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Abstract:  

  

 This thesis attempts to address the problem of how best to remedy different 

types of channel distortions on speech when that speech is to be used in automatic 

speaker recognition and verification systems. 

 Automatic speaker recognition is when a person’s voice is analysed by a 

machine and the person’s identity is worked out by the comparison of speech 

features to a known set of speech features. Automatic speaker verification is when a 

person claims an identity and the machine determines if that claimed identity is 

correct or whether that person is an impostor. 

 Channel distortion occurs whenever information is sent electronically through 

any type of channel whether that channel is a basic wired telephone channel or a 

wireless channel. The types of distortion that can corrupt the information include 

time-variant or time-invariant filtering of the information or the addition of ‘thermal 

noise’ to the information, both of these types of distortion can cause varying degrees 

of error in information being received and analysed. 

 The experiments presented in this thesis investigate the effects of channel 

distortion on the average speaker recognition rates and testing the effectiveness of 

various channel compensation algorithms designed to mitigate the effects of channel 

distortion.  

The speaker recognition system was represented by a basic recognition 

algorithm consisting of: speech analysis, extraction of feature vectors in the form of 

the Mel-Cepstral Coefficients, and a classification part based on the minimum 

distance rule. 

Two types of channel distortion were investigated: 

• Convolutional (or lowpass filtering) effects 

• Addition of white Gaussian noise 

Three different methods of channel compensation were tested:  

• Cepstral Mean Subtraction (CMS) 

• RelAtive SpecTrAl (RASTA) Processing  

• Constant Modulus Algorithm (CMA)  

 



 v 

The results from the experiments showed that for both CMS and RASTA 

processing that filtering at low cutoff frequencies, (3 or 4 kHz), produced 

improvements in the average speaker recognition rates compared to speech with no 

compensation. The levels of improvement due to RASTA processing were higher 

than the levels achieved due to the CMS method.  

Neither the CMS or RASTA methods were able to improve accuracy of the 

speaker recognition system for cutoff frequencies of 5 kHz, 6 kHz or 7 kHz. 

In the case of noisy speech all methods analysed were able to compensate for 

high SNR of 40 dB and 30 dB and only RASTA processing was able to compensate 

and improve the average recognition rate for speech corrupted with a high level of 

noise (SNR of 20 dB and 10 dB). 
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Chapter 1 - Introduction  

 

1.1 Problem Statement 
 

With security of personal details becoming more and more of an issue for people in 

today’s society people want companies to make sure the best possible preventative measures 

are in place to prevent the possibility of identity fraud occurring. 

Telephone banking in particular is becoming more and more popular, the potential 

issues with this type of banking is the relative ease in which people can break into the system 

if a password is leaked and gets into the wrong hands. 

Banking customer’s are expecting more and more security to be introduced to try and 

prevent this from occurring, possible solutions being researched and implemented are 

biometric ‘fingerprints.’ One biometric ‘fingerprint’ that could be particularly useful over the 

telephone is Speaker Recognition and Speaker Verification. 

Speaker Recognition is the process of a machine recognising who a person is from 

their voice by comparing the unique features in that person’s voice to a database of features 

from known speakers. The theory behind Speaker Recognition is that by just listening to 

people’s voices humans are able to recognise who a person is (assuming they have heard their 

voice before in the past). Therefore if humans can recognise people from their voices so, in 

theory, should machines, if certain unique features can be isolated and used by the machine 

for comparison [1],[2]. Speaker verification on the other hand is the process of a machine 

ensuring a person is who they say they are by statistically comparing the speaker’s voice to 

the voice of the person they claim to be and calculating the probability that they belong to the 

same person [3],[4]. Again this is something humans are capable of doing, so in theory 

machines should also be able to do it too, and very possibly improve upon the accuracy of 

verification. 

The main problem with these processes when used in conjunction with a telephone 

and a telephone channel is the effect channel distortion has on the features in a person’s voice. 

Telephone channels remove the frequencies stored in a person’s voice, above 3 KHz and 

below 300 Hz, so when listening to a person speaking on a telephone the speech tends to 

sound different to what it would in a face to face situation. This effect is also evident when 

trying to process speech using a computer. Automatic speaker recognition is primarily based 

on frequency-domain analysis, therefore any loss of this frequency information can 

effectively destroy the speaker recognition, speaker verification and many other speech 

processing applications. 
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For the effective use of speaker recognition technologies these effects need to be 

mitigated before the technologies can be accepted by companies and the general public.  

This research attempts to improve upon the already existing technologies already out 

there and compare what methods of speech enhancement are already in the field to attempt to 

mitigate the effects of Channel distortion on speech features.  

 

1.2 Contribution of the Thesis 
 

This thesis analyses different channel compensation and equalisation methods that 

could be used in speaker recognition and verification systems when speech is sent through 

channels. Channel distortion is a major problem for these types of systems since only the 

smallest amount of distortion to speech can potentially cause unique features in a person’s 

voice to be changed and necessary information for recognition destroyed. 

One of the channel equalisation methods studied in the experiments, namely the 

Constant Modulus Algorithm (CMA), is a channel equalisation method not specifically aimed 

at speaker recognition systems. Unlike the other two channel compensation methods 

researched and implemented in this thesis (the Cepstral Mean Subtraction algorithm and the 

RASTA processing method) little research has been conducted on the CMA algorithm in 

regards to the effect this algorithm could have on the Cepstral speech features extracted from 

speakers and the potential improvements to the quality of speech this algorithm could provide 

in these types of systems. This algorithm is of particular interest since it is also being used on 

speech that has been converted into binary digits and sent over wireless channels, which is a 

very practical application of this type of information.  

This thesis attempts to shed light on the issues surrounding the effects channel 

distortion has on the Cepstral features and hence the effects it has on speaker recognition 

systems and attempts to compare the performance of the Constant Modulus Algorithm with 

other very well known speech processing algorithms used for channel and microphone 

distortion compensation in speaker recognition and verification systems. These methods 

include Cepstral Mean Subtraction (CMS) and RelAtive SpecTrAl (RASTA) Processing. 
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1.3 Scope 

  

 This thesis studies different channel compensation and equalisation methods available 

to effectively reduce errors in speech data sent over different channels for the purpose of 

increasing accuracy of speaker recognition systems.    

This research focuses on both direct channel equalisation, and channel compensation 

during the feature extraction phase of the speaker recognition system. The block diagram of 

the direct channel equalisation is illustrated in Figure 1.1. The block diagram of the channel 

compensation applied after the feature extraction is illustrated in Figure 1.2.  

 

 

Figure 1.1: Channel equalisation directly after channel (before data is entered into speaker 

recognition system) 

 

Figure 1.2: Channel compensation during feature extraction phase of speaker recognition 

system 

The following three effects channels have on speech characteristics will be considered: 

1. Addition of white (Gaussian) noise. 

2. Convolutional channel distortion, and 

3. Loss of frequency information due to channel band limiting (filtering). 

The effectiveness of the channel compensation techniques will be tested on a speaker 

recognition system, where the speech features extracted from an unknown speaker will be 

compared with a set of known speaker’s features. It will be assumed that the same type of 

channel equalisation technology could be implemented in a speaker verification system since 

the feature extraction phase is almost identical in both cases, and the changes occur in the 

classification and recognition phases of the two systems. 

Other factors that can affect the quality of the features extracted from a person’s voice 

include illness, aging, oral prosthetics and anything that alters the shape of the oral cavity [4]. 

The effects of these factors on speaker recognition are beyond the scope of this thesis, only 

the channel effects on speaker recognition will be considered. 
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1.4 Outline of the Thesis 
 

This thesis aims to analyse and evaluate the effects that channel distortion and noise 

have on speaker recognition and verification systems. It also aims to evaluate algorithms used 

for equalisation and compensation of the distorted speech in order to improve the 

effectiveness of speaker recognition and verification systems over different channels. 

This thesis will be laid out and presented in the following manner:  

 

Chapter 2: Speaker Recognition and Verification Theory Overview.  

In this chapter, current technologies used in speaker recognition and verification 

systems will be reviewed. Firstly the differences between the two systems will be discussed 

and then the potential applications of these systems will be presented.  

The block diagrams containing the main components of these two systems will be 

presented. The individual components of these block diagrams will be discussed in detail. 

The purpose of the pre-processing of speech before feature extraction will be 

explained and common pre-processing algorithms will be presented and discussed. 

Speech activity detection will be presented and the role it plays in the efficiency of a 

speech processor will be discussed. Two different approaches to speech activity detection will 

be analysed and the strengths and weaknesses these algorithms will be listed. 

Feature extraction algorithms including the Mel-Cepstral Coefficients will be then 

discussed. It will be explained what these features represent and why they are useful for 

identification and verifications of people from their voices.  

Finally the speaker classification algorithm will be discussed, this being the 

Minimum-Distance classification algorithm.  

 

Chapter 3:  Channel Effects and Equalisation Techniques 

In this chapter the main types of channel effects on speech will be discussed. It will be 

explained how these effects could corrupt information contained in speech. 

Several different channel equalisation algorithms described in the literature will be 

introduced.  

The discussed channel equalisation methods will include Cepstral Mean Subtraction 

and RASTA methods, which are techniques specifically used in speaker recognition and 

verification.  
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These techniques will be discussed in detail and their strengths and weaknesses 

analysed. In particular it will be explained how these algorithms function in different speech 

processing applications and for what kinds of distortions these algorithms are designed to 

work the best. 

 

Chapter 4: Speaker Recognition using Blind Channel Equalisation Methods. 

This chapter will discuss the concept of blind channel equalisation, what it is and what 

it means to speech processing.  

Two commonly used blind channel equalisation algorithms will be introduced; the 

Least Mean-Squared (LMS) algorithm and the Constant Modulus Algorithm. It will be 

discussed how these algorithms can be applied to channel equalisation in speaker verification 

and recognition applications. These algorithms are used in general channel equalisation for 

many types of channel transmitted information and many purposes.  

 

Chapter 5: Experiment and Results.  

This chapter will firstly discuss the experimental design, software and algorithms used 

in this study. 

The source of the speech data, size of the speech database, language and gender of 

speakers will be explained.  

The different channel compensation methods used in this study will be discussed. The 

structure of the algorithms used will be outlined with important information about the 

programming of the system.  

The second part of this chapter will present the results obtained from the experiments 

based on the proposed speaker recognition system and the channel compensation methods 

discussed in Chapters 3 and 4. Graphs showing the recognition rate for each speaker used in 

the experiments will be included. 

 

Chapter 6: Conclusions and Future Research Directions.  

In this chapter research summary and concluding remarks will be presented as well as 

future research directions stemming from this research.
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Chapter 2 - Speaker Recognition and Verification 

Theory Overview  
 

2.1 Introduction 
 

Speaker recognition and verification is becoming an increasingly important 

area of research of recent times with public security becoming more and more of a 

concern. Both speaker recognition and verification systems have potential use in 

different areas of public security with speaker recognition determining a person’s 

identity from a known set of speakers and speaker verification on determining 

whether a person is who they claim to be by working out the probability of their 

voice features belonging to the voice of person they are claiming to be or not.  

 A speaker recognition system has potential use in situations where only a 

closed set of people are using the system. Possible applications include a person’s 

voice being used to activate personal settings for, cars or computers where the 

speaker recognition can be used to determine who is attempting to use the system. 

A speaker verification system on the other hand could be potentially useful to 

ensure security of telephone banking and telephone access to personal details from 

organisations, particularly with the addition of text dependence into the system to 

have the double security of a password plus the speaker dependent voice features. 

In the following sections of this chapter the outline and components of the 

speaker recognition and verification systems will be presented and each component 

will be discussed with details. Different approaches realising these components will 

be presented and their usefulness for different applications will be analysed. 
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2.2 General Speaker Verification System 
 

Speaker Verification is a process of determining whether a person is who he 

or she claims to be or an impostor [1].  

This speaker verification system operates in the following way: In the 

training phase, an average or Universal Background Model (UBM) containing the 

features from the voices of people who are not the claimed speaker is created. The 

features stored in the UBM are extracted from approximately 1-2 hours of speech 

[5]. During this phase features are also extracted from the claimed speaker and the 

characteristic model of the claimant is created. This phase is also called ‘enrolment’ 

into the system.  

At the testing phase characteristic features are extracted from the claimant 

(the unknown person), next the background model as well as the model of the 

claimed speaker are combined and a likelihood ratio test is performed by the system. 

A decision is then made by the system on whether the voice of the claimant is 

of the person he or she claims to be or of someone else [4]. 

Block diagrams of the speaker verification training and testing phases are 

illustrated in Figure 2.1 and Figure 2.2 respectively.  

 

 

 

Figure 2.1: Block diagram of speaker verification training phase 
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Figure 2.2: Block diagram of speaker verification testing phase 

 

2.3 General Speaker Recognition System 
 

Speaker recognition or identification is a process of determining who a 

person is from his or her voice features. This is achieved by comparing an unknown 

speaker’s voice features to a database of known speakers and then determining 

whose features match the unknown speakers features the closest [1]. 

The speaker recognition system operates in the following way: at the training 

phase, features are extracted from all the people who are to use the system, these 

features are then stored.  

At the testing phase features are extracted from the unknown speaker and 

compared to the features of all the system users stored in the database [2]. 

A decision is then made by the system about the unknown speaker’s identity.  

The speaker recognition system is very similar to the speaker verification 

system with only a few small differences. The block diagrams of the training and 
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testing phases of a speaker recognition system are shown in Figure 2.3 and Figure 

2.4 respectively. 

 

 

 

Figure 2.3: Block diagram of speaker recognition/identification training phase 

 

 

Figure 2.4: Block diagram of speaker recognition/identification testing phase 
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2.4 Common Pre-Processing Methods 
 

 

2.4.1 Pre-Emphasis Filter 

 

Before extracting features from the speech it needs to be pre-processed to 

remove any unwanted distortion such as a low frequency noise. This is achieved by 

using a pre-emphasis filter. The pre-emphasis filter is used to emphasise the speech 

frequency bands containing the first formants, which are essential for the speech 

intelligibility [6]. A commonly used pre-emphasis filter in speech signal processing 

is a first order high pass filter that has the transfer function of:  

 

1

16

15
1)( −−= zzH   

 

2.5 Speech Activity Detection (Speech / Silence Detection) 

techniques 
 

On average, speech utterances tend to consists of around 20%-25% silence, 

these segments of silence appear at the start of the utterance as well as at the end of 

the utterance, between words and also very small silence segments appear between 

syllables in words [7]. Since silence segments contain no useful information about a 

person’s identity, which is needed for speaker recognition, removing it should not 

decrease the accuracy of a speaker recognition system and should improve the 

overall efficiency of the system. Another downside of having silence in amongst the 

speech needing to be processed is that keeping the silence takes up storage space and 

increases the computational effort since features are extracted from the silence as 

well as the speech. Therefore, it is essential to remove the silence intervals before 

feature extraction takes place.  

One issue with the speech / silence detection is the presence of a background 

noise in speech recordings. The background noise can often make it difficult to 

detect the start and endpoints of certain words and phrases, particularly when the 

start or the end sound blends in with the background noise, such as, for example, the 

sound of f or v [8]. A speech processing algorithm therefore needs to be able to detect 

silence intervals even when the silence intervals contain a background noise.  

(2.1) 
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Techniques derived for the purpose of speech-silence detection in the 

presence of noise include algorithms designed to detect energy content in the signal, 

rate of zero crossing of the signal and statistical rules of speech behaviour. Many of 

these techniques can be adapted to account for changes in intensity of the noise but 

their effectiveness can diminish when Signal to Noise Ratios fall below around 25 - 

30 dB. 

 

2.5.1 Rabiner and Sambur Algorithm 

 

 L. R. Rabiner and M. R. Sambur [8] proposed an algorithm to determine the 

start and end-points of utterances. This algorithm requires that the first 100 ms of a 

speech recording contain silence. The algorithm uses this time to calculate the zero 

crossing rate and the short time energy of the silence segment so it can initialise the 

system and set up appropriate threshold values for speech silence detection. 

This algorithm determines the thresholds in the following manner. The short 

time speech energy over 10 ms windows is calculated using the following equation: 

 

∑
−=

+=
50

50

|)(|)(
i

insnE  

 

Where s(n) are the speech samples of the utterance being processed with the 

sampling frequency assumed to be 10 kHz. 

By using equation (2.2) the values of the peak energy within the speech 

segments (IMX) and the energy during the 100 ms silence segment (IMN), can be 

calculated and the energy thresholds can then be determined. The energy threshold 

equations are shown in equations (2.3), (2.4), (2.5) and (2.6).  

 

IMNIMNIMXI +−= )(*03.01  

IMNI *42 =  

)2,1( IIMinITL =  

ITLITU *5=  

 

The zero-crossing rate is determined by the number of times per 10 ms that 

the signal crosses zero during the silence segment, this value is then checked against 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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the zero-crossing rate of unvoiced speech (25 crossings per 10 ms) to determine what 

zero-crossing threshold should be used. This is achieved from the equation (2.7) [8]: 

 

)2,( IZCIZCIFMinIZCT σ+=  

 

Where IF is the zero-crossing rate of unvoiced speech, IZC  is the mean zero-

crossing rate during the silence and σIZC is the standard deviation of the zero-

crossing rate during the silence. 

Figure 2.5 shows a flowchart of the way this algorithm determines endpoints 

[8]. 

 

 

Figure 2.5: Flowchart of the Rabiner and Sambur speech endpoint detection 

algorithm 

(2.7) 



 13 

 

 At the beginning of this algorithm the start-point of the speech utterance is 

estimated by determining where the energy of the signal increases beyond the first 

energy threshold (ITL), this point is taken initially as the start-point unless the energy 

level again falls below ITL before exceeding the second energy level (ITU). The 

algorithm then searches the samples for 250 ms before this estimated start-point and 

sees whether the zero-crossing rate increased past the zero-crossing threshold 

determined from the silence segment (IZCT). If it did, then the algorithm determines 

how many times this occurred, if it occurred 3 or more times then the start-point is 

changed to the first time at which the zero-crossing threshold was exceeded. 

 The end-point is then determined similarly. It is firstly estimated by detecting 

the time when the energy level drops off to the silence energy threshold (ITL) and 

then the next 250 ms are tested to determine the starting point for which the zero-

crossing rate exceeds the silence threshold level; the new end-point is then altered 

accordingly. 

 

2.5.2 Rule Based Adaptive Endpoint detection 

 

 Rule Based Adaptive Endpoint Detection as presented in [6] takes a different 

approach to the Rabiner and Sambur algorithm in that this algorithm attempts to 

adapt itself to any change over time in the noise energy levels in the signal. It also 

works on statistical inferences on the general behaviour of speech. 

 Assumptions made about speech and its behaviour, determine how the speech 

is to be processed for endpoint detection using this algorithm. It is assumed that: 

• 99.9% of continuous speech segments contain talk intervals of less than 2.0 

seconds in duration. 

• 99.56% of continuous speech segments contain gaps of less than 150 ms. 

• Speech energy can only increase the signal level above the background 

acoustic level. 

Using these assumptions three ‘metrics’ are generated representing: the 

speech energy level, background noise energy level and the minimum energy level. 

The speech, noise and minimum noise energy levels are shown in figure 2.5. 
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Figure 2.5: Adaptive endpoint detection algorithm metrics 

Figure 2.5 shows the speech signal with the three metrics plotted on top, these 

metrics are as follows: the speech energy level metric (dotted line), the noise energy 

metric (solid line) and the minimum noise level metric (dashed line). 

 These three metrics assume the speech is sampled at 8 kHz and are calculated 

using the following rules [6]: firstly the speech energy metric (s) is defined. This 

metric will show the peak values of the noise during the duration of the utterance: 

 

if u(k) > s(k-1) 

s(k) = u(k) 

 

if u(k) ≤ s(k-1) 

)1()()1()( −+−= ksBkuBks ss  

 

Where u is the absolute value of the original speech and Bs is the decay time 

constant set at 0.9992 

 The noise metric n(k) is then defined; this metric is to show the current level 

of the background noise: 

(2.8) 

(2.9) 
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if n(k) > u(k-1) 

n(k) = u(k) 

 

if u(k) ≤ s(k-1) 

)1()()1()( −+−= knBkuBkn nn  

 

Where and Bs is the decay time constant set at 0.9922 

 

 The final metric, the minimum noise energy level metric, tn(k), is then 

defined by: 

 

if tn(k-1) > n(k) 

)1()()1()( −+−= ktnBknBktn tt  

 

if tn(k-1) ≤ n(k) 

tn(k) = n(k) 

 

Where and Bt is the final decay time constant set at 0.999975 

These metrics are then used to detect the silence in speech segments by 

choosing the following threshold levels: speech threshold Ts = 2, noise threshold Tn 

= 1.414 and Minimum threshold level Tmin = the level that is 40 dB below the 

maximum allowable signal [6]. The following speech-silence detection rules are then 

applied to the signal: 

 

if ))()(( minTktnTks s +>  

segment is speech 

 

if ))()(( minTktnTks n +<  

segment is noise 

 

if ))()()(( minmin TktnTksTktnT sn +≤≤+  

no change 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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 The positive aspect of this technique is its adaptability to changes in 

background noise levels. The downside is that it doesn’t take into account the spoken 

sounds that could be lost in the background noise, for example f or v, which the 

Rabiner and Sambur algorithm did take into account, therefore it’s still susceptible to 

deleting speech segments of those types of sounds. 

 

2.6 Speech Segmentation 
 

 For speaker recognition / verification purposes speech needs to be segmented 

into small frames before short time spectral analysis can be performed and speaker 

dependent features can be extracted from each frame. Short time analysis is required 

in speech signal processing since just calculating a Fourier transform on the whole 

speech signal would make it impossible to be able to characterise changes in the 

spectral content over time, therefore time varying components of the speech would 

not be able to be considered [9].  

 The most common way this is achieved is using a Hamming Window of 20 

ms length with a 10 ms overlap [7]. An example of this is shown in figure 2.6 with 

the Hamming windows shown as dashed lines against the speech signal. 

 

Figure 2.6: Example of using Hamming windows to segment a speech utterance into 

20 ms frames with 10 ms overlap. 
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2.7 Current Feature Extraction Techniques  
 

 For automatic speaker recognition to be able to occur certain features need to 

be extracted from the speech being used in the system, these features need to be 

unique for every individual speaker being enrolled in the system. 

 Many features about a person’s voice contributes to it being unique, some of 

these features include, dialect, syntax usage and speech style, these features are 

considered high level information and are the types of features humans use to aid in 

recognising who a speaker is.  

Machines on the other hand are unable to use these types of features easily 

for recognition so low level features are extracted and used in automatic speaker 

recognition, these features are based on spectral analysis of the speech signal, 

formant frequencies, voice pitch frequency and bandwidth [10]. 

In this section spectral features will be analysed, particularly Cepstral 

analysis and the extraction of the Mel-frequency Cepstral coefficients from speech.  

 

2.7.1 Cepstral Feature Extraction 

 

The Mel-Frequency Cepstrum is the discrete cosine transform of the log-

spectral energies of a speech segment where the spectral energy is calculated using 

logarithmically spaced filters with increasing bandwidths [7],[11].  

Cepstral analysis has proven to be an effective feature extraction technique as 

the extracted features depend on the structure of a person’s vocal tract. This makes 

the Cepstral analysis very effective in extracting features in noisy speech [12]. 

Before Cepstral analysis can be performed the speech needs to be pre-processed as 

explained in Sections 2.4, 2.5 and 2.6. 

After the pre-processing and the windowing of the speech Cepstral feature 

extraction can begin. For each frame of speech the Short Time Fourier Transform is 

calculated and the absolute value of it is computed and passed into a mel-scale filter 

bank. The Short Time Fourier Transform for the n-th window is given as: 

nj

k

eknwkxnX
ωω −

∞

−∞=

∑ −= ][][),(  

Where w[n] is the analysis window (the Hamming window). 

(2.17) 
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The mel-scale is a logarithmic scale that is designed to match the human 

auditory perception of pitch. The scale was introduced by S.S. Stevens, J.E. Volkman 

and E.B. Newman in 1937 and was determined through an experimental testing of 

human pitch and loudness perception. For a given frequency f in Hz, the 

corresponding mel-scale frequency Mel(f) can be calculated as: 

)
700

1(log2595)( 10

f
fMel −=  

Davis and Mermelstein [13] introduced the use of this scale in creating a 

filter-bank for the extraction of Mel-Frequency Cepstral Coefficients. Figure 2.7 

shows a mel-scale filterbank with 20 filters logarithmically spaced according to the 

mel-scale. These filters are used to extract speech features.  
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Figure 2.7: Triangular Mel-scale filterbank containing 20 logarithmically spaced 

filters 

  

The speech frames are passed through the mel-scale filterbank and the log 

energy of the outputs are calculated. The Mel-Frequency Cepstral Coefficients 

(MFCCs) are then found using the Equation 2.19: 

 

(2.18) 
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Where Xk is the log energy of the output from the k
th

 filter, M is the number 

of MFCCs and P is the number of filters in the filterbank. 

A finite number of MFCCs (between 12 to 20) are calculated for each frame 

of speech and stored in a database to be used in the recognition phase of a speaker 

recognition or verification system. In theory, each speaker should have a unique 

combination of coefficients after his or her voice has been processed in this way 

since everyone’s voice contains different frequency components.  

By using the mel-scale this technique is one of the better ways of extracting 

unique frequency characteristics from a person’s voice, therefore it is one of the most 

commonly used feature extraction processes.   

 

2.8 Current Feature Classification Techniques 
 

2.8.1 Minimum Distance Classification 

 

 As its name suggests the Minimum Distance Classifier takes the feature 

coefficients from the unknown speaker and compares the distance between them and 

the coefficients taken from known speakers. 

Equation 2.20 can be used to calculate the distance between these two sets of 

coefficients: 

Distance ∑
−

=

−
−

=
1
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Where N is the total number of feature coefficients, ][nC
ts  is the mean of the 

testing coefficients, and ][nC
tr  is the mean of the known coefficients (training 

coefficients) [9]. 

For speaker verification the speaker’s identity is confirmed when the distance 

exceeds a pre-defined threshold. For speaker recognition/identification the speaker is 

identified as a person whose coefficients are at the closest –distance to the 

coefficients of the unknown speaker. 

 

(2.19) 

(2.20) 
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2.8.2 Vector Quantisation 

 

  

While the minimum distance classifier takes an average of all the speech 

features extracted from the speakers over all frames and classifies the speech based 

on these averages, Vector Quantisation (VQ) is able to categorise speech over 

different acoustic classes [9]. 

Vector quantisation uses the k-nearest neighbour clustering algorithm to 

determine centroids for each acoustic class within the training speech. These 

centroids become the basis of the recognition system. 

At the testing phase features are extracted from the test speech segments, the 

distance between the testing feature vectors and the trained centroids are calculated 

by using a distance measure. The identity of the speaker is then determined by which 

centroids are nearest to the testing feature vectors [11]. 

This concept of vector quantisation in illustrated in Figures 2.8 and 2.9. 

 

 

 
 

 

Figure 2.8: Illustration of vector quantisation at training phase.  

 

 

Figure 2.8 shows the way in which the centroids are determined in order to 

represent individual speaker’s acoustic patterns. 

At training vector quantisation of speakers occurs by taking a k-dimensional 

feature vector 
),...,( 110 −= kxxxx

 representing a speaker and mapping each of these 
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input feature vectors to centroid vectors or codewords used to represent the region of 

the vector space that the feature vectors fall into.  

The centroid vector chosen for each feature vector is determined by 

minimising the distortion between the original feature vector x  and the centroid 

vector x̂  using Equation 2.21. 

 

∑
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Where )ˆ,( xxd  is the distortion between x  and x̂  [14],[15]. 

These codewords representing each individual speaker are then gathered and 

stored as a codebook to represent each speaker for the speaker recognition system to 

refer to.  

 

 

 

Figure 2.9: Illustration of vector quantisation used at testing phase. Speaker B has 

been identified in this case. 

 

 At the recognition phase the vector quantiser determines the speaker’s 

identity by taking the testing feature vectors, determining which centroids these 

vectors map to and then identifies which speaker’s codebook those centroids match 

the closest to, this is returned then as the speaker’s identity [15].  

 

(2.21) 
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2.9 Summary 

 

 This chapter has discussed the basic structures of both speaker verification 

and speaker recognition systems and what purposes each system can be used for. 

 This chapter also analysed and discussed each component in each of these 

systems and described some common algorithms used for these components. The 

algorithms described in this section include;  

• The pre-emphasis filter, which is used to remove any unwanted low 

frequency noise in a speech segment 

• Two different methods of speech activity detection, including the Rabiner and 

Sambur algorithm which uses energy and zero-crossing rate to detect speech 

activity and the rule based adaptive endpoint detection algorithm which 

detects speech using thresholds determined from statistical assumptions of 

speech. 

• Description of the importance of speech segmentation and windowing of 

speech segments in preparation of feature extraction. 

• A description of the Cepstral feature extraction algorithm which extracts Mel-

Frequency Cepstral coefficients (MFCCs). The MFCCs have been proven to 

be a reliable indication of unique features in a person’s voice. 

• Two different feature classification algorithms. Classification algorithms are 

used in the recognition/verification stage of the systems where a decision 

needs to be made on a speaker’s identity. The two algorithms discussed were; 

- The Minimum Distance Classifier where all features are averaged and the 

distance between known and unknown features are measured and a decision 

is made on identity from the distance between these averaged features.  

- The Vector Quantisation classifier where speech features are clustered and 

assigned codewords rather than averaged and a decision on identity is made 

by comparing the codewords representing a known speaker and the 

codewords representing an unknown speaker and seeing if they match.  
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Chapter 3 – Channel Effects and Equalisation 

Techniques 
 

 

3.1 Introduction 
 

Channel effects, as mentioned in Chapters 1 and 2, are major causes of errors 

in speaker recognition and verification systems. In this chapter some common 

channel effects will be discussed in detail and common methods of compensation 

and equalisation of these effects will be presented. 

 

3.2 Common Channel Effects 
 

3.2.1 Bandlimiting 

 

 All communication channels have a limited bandwidth, which means that 

only signal frequencies that fall within this bandwidth can be transmitted through the 

channel. 

 Human voice has a frequency range of approximately 200 Hz – 4 kHz. It is 

possible that important speaker dependent information is stored in this entire range. 

Therefore, it is very important that as much of the spectrum can be preserved, so as 

many speaker dependent features as possible can be extracted, even after the speech 

has been transmitted through a communication channel.   

For common, landline telephone systems, the frequency range is between 300 

Hz – 3.4 kHz, therefore some of the upper and lower frequency components 

contained in the voice signal are removed. This can significantly reduce efficiency of 

speaker recognition systems working over telephone lines.  
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3.2.2 Additive White Gaussian Noise 

 

 The most common distortion effect on signals being sent through channels is 

the additive white Gaussian noise, as represented in Figure 3.1. 

 

 

Figure 3.1: Diagram of additive noise channel  

 Addition of noise to the signal can be caused by many factors including 

electronic components in a communication system, thermal interference as well as 

environmental factors such as storms and radiation in the atmosphere (mainly in 

wireless transmission). 

White noise is defined as an uncorrelated random noise process with spectral 

power spread equally over all frequencies, for channels this entire frequency range is 

in actuality the bandwidth of the channel and for discrete time signals this bandwidth 

is equal to half the sampling frequency of the signal [16]. This means that its power 

spectral density (PSD) is constant over all frequencies contained within the channel’s 

bandwidth:  

)(
2

2 fPSD BΠ=
η

 

where 
2

η
 is the average power of the noise and B2Π  is the rectangular pulse function 

with width 2B [17].  

A Gaussian noise represents a random signal with the probability density 

function pdf(n) given as a Gaussian function:  
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(3.1) 

(3.2) 
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Where m is the mean value, usually assumed equal to zero, and σ  is the standard 

deviation. 

 There are many other non-white types of noise which can distort a signal, 

these include coloured noise, where the noise power is not evenly distributed over 

the entire spectrum but concentrated in certain ranges of the bandwidth and 

impulsive noise which consists of random bursts of noise of short duration [16]. 

 

3.2.3 Linear Time-Invariant filtering 

 

 In addition to the white Gaussian noise, convolutional (or filtering) effects are 

often present in channels. One of the easier convolutional effects to analyse and 

compensate for is the Linear Time-Invariant (LTI) convolutional distortion. This type 

of distortion is constant over time. The block diagram of a Linear Time-Invariant 

filtering channel is presented in Figure 3.2: 

 

 

Figure 3.2: Diagram of Linear Time-Invariant filtering channel.  

 Assuming that x(t) is an input signal, the output y(t) of a channel can be in 

general described as: );( th τ  

 

y(t) = x(t) * h(t) + n(t). 

 

where h(t) is the channel impulse response function and n(t) is the white Gaussian 

noise [18]. 

 

(3.3) 
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3.2.4 Linear Time-Variant filtering 

 

 The Linear Time-Variant (LTV) channel distortion is similar to LTI filtering 

except that the impulse response of the filter, );( th τ , changes over time. The block 

diagram of a Linear Time Variant filtering channel is presented in Figure 3.3: 

 

 

Figure 3.3: Diagram of Linear Time-Variant (fading) filtering channel  

 Assuming that x(t) is an input signal, the output y(t) of a LTV channel can be 

in general described as: 

y(t) = x(t) * h(τ ; t) + n(t). 

 

 where h(τ ; t) is the channel impulse response at time t due to an impulse 

applied at time (t - τ) [18].  

 

3.3 Channel Equalisation Methods 
 

Channel Compensation methods discussed in this chapter include: Cepstral 

Mean Subtraction, RASTA Processing, Least Mean-Squared Filtering and the 

Constant Modulus Algorithm. This section focuses on the compensation methods 

which can be integrated in the feature extraction phase of a speaker recognition or 

verification system, these include the Cepstral Mean Subtraction Method and the 

RASTA processing.  

Least Mean-Squared and the Constant Modulus Algorithm will be discussed 

in more detail in the next chapter.  

 

3.3.1 Cepstral Mean Subtraction 

 

The Cepstral Mean Subtraction is often used during the feature extraction 

phase of speaker recognition/verification systems to compensate for convolutional 

channel distortion of voice signals. The convolutional channel distortion can be 

h(τ;t) 

(3.4) 
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caused by different microphones used between the testing and training phases or 

different transmission channels used during testing and training [19],[20]. 

The Cepstral Mean Subtraction method assumes that the time average of all 

speech signals is zero and the convolutional effects due to the channel are uniform 

over time (ie. time-invariant) [9],[21]. Therefore, it does not provide a perfect 

solution for eliminating channel effects because speech does not necessarily have a 

zero mean and often there are time-variant channel effects due to external factors that 

can affect speech signals. Despite these drawbacks, the Cepstral Mean Subtraction 

method can be relatively effective and useful.  

The convolutional channel effect results in a distorted speech signal y[n] 

given as: 

 

][*][][ nhnxny =  

 

Where x[n] is the clean speech and h[n] is the channel impulse response 

causing distortion to the speech. With Short-Time Fourier Transform applied to y[n] 

using a window w[pL-k] (where L is the window length and p = 1, 2, 3…) this 

distorted signal can be referred to in the frequency domain by equation 3.6  [9]: 

 

Y(pL,ω) = X(pL,ω)H(ω) 

 

Equation 3.6 shows that the convolutional distortion applied to the clean 

speech has a multiplicative character in the frequency domain, therefore it is not easy 

to isolate the channel distortion H(ω) from the speech signal X(pL,ω).  

To aid in isolating the convolutional distortion, a logarithmic operation can 

be performed. By taking the log of both sides of Equation 3.6 the signal Y(pL,ω) can 

be represented as a sum of two logarithms; the log of the speech and the log of the 

convolutional distortion: 

 

)](log[)],(log[)],(log[ ωωω HpLXpLY +=  

 

Assuming that the convolutional distortion H(ω) is time-invariant, it is now 

easier to isolate the channel distortion from the speech. 

(3.5) 

(3.6) 

(3.7) 
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Firstly this is achieved by calculating the inverse Fourier Transform of 

)],(log[ ωpLY  given by Equation 3.8: 

)])((log[)],((log[],[ˆ 11 ωωω HpLXny
−− ℑ+ℑ=  

 

And finally a Cepstral lifter (l[n]) is applied to remove the mean of ],[ˆ ωny . 

This results in a signal ],[ˆ ωnx  given as: 

 

],[ˆ][],[ˆ ωω nynlnx =  

  

The Cepstral lifter l[n] is a function defined as: 

 


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The Cepstral lifter when applied to ],[ˆ ωny  removes the 0
th

 value in ],[ˆ ωny  

and leaves the remaining values intact [9],[22]. 

While the Cepstral Mean Subtraction is relatively effective in removing 

convolutional distortion, it is not able to compensate for additive channel distortion 

[23],[21]. Therefore, it is not capable of removing an additive channel distortion such 

as white Gaussian noise, which occurs commonly in transmission channels.   

 

3.3.2 RASTA Processing 

 

 RASTA, which stands for Relative Spectral Processing, is another channel 

compensation technique, RASTA was proposed by H. Hermansky and N. Morgan 

[23]. This speech processing technique acts in a similar way to Cepstral Mean 

Subtraction, in that it attempts to compensate for convolutional distortion due to 

mismatched microphones or channels and attempts to eliminate any DC component 

within the channel distorted signal [24]. One of the differences between Cepstral 

Mean Subtraction and RASTA is that RASTA assumes that the convolutional effects 

on the speech due to the channel are non-uniform over time, whereas the Cepstral 

Mean Subtraction does not take into effect varying convolutional distortion and 

assumes uniform convolutional effects [9].  RASTA Processing also is designed to 

(3.8) 

(3.9) 

(3.10) 
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help take into account the additive channel distortion caused by the addition of white 

Gaussian noise [25].  

 The process of RASTA processing can be outlined as follows; the short time 

Fourier Transform is firstly taken of the distorted speech segment y[n], then the 

logarithmic transform is taken of the speech’s spectrum. 

 The logarithmically transformed speech is then passed through the RASTA 

IIR filter which has the following transfer function H(z) [23],[9]: 
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The filter amplitude response is shown in Figure 3.4. 

 

Figure 3.4: RASTA filter response 

(3.11) 
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This RASTA filter effectively removes time-variant convolutional distortion 

caused by transmission channels by having a high attenuation at low modulation 

frequencies at and near DC [24],[9]. 

The RASTA filter also reduces the effect of additive white Gaussian noise 

more effectively than Cepstral Mean Subtraction but its effectiveness at reducing 

noise can be improved again by implementing the J-RASTA processing algorithm 

[26],[23].  

J-RASTA is very similar to RASTA processing except that a J factor is 

introduced at the logarithmic transform stage. Therefore the transformation is 

calculated as in Equation 3.12: 

 

)1ln( Jxy +=  

 

Where x is the speech segment and J is a factor dependent on the 

characteristics of the noise corrupting the speech. This is calculated using Equation 

3.13: 

 

noiseEC
J

.

1
=  

 

Where noiseE  is the mean energy of the noise corrupting the signal and C is a 

constant chosen to achieve the best possible reduction of noise distortion. In the 

paper [23] the optimal C value for the author’s experiments was found to be C=3, but 

this value can change depending on experimental conditions. 

Using this type of transform on the signal being processed increases the 

accuracy of the system for compensation of noise distortion above the plain log 

transform used in RASTA processing. 

 

(3.12) 

(3.13) 
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3.4 Summary 
 

 

 This chapter discussed some common channel effects known to causer 

corruption to speech signals and some algorithms used to attempt to mitigate these 

effects in speaker recognition and verification systems. 

 The channel effects discussed in this section include:  

• Bandlimiting where a signal can be distorted by a filtering effect from the 

medium the signal is being sent through. 

• Additive White Gaussian Noise (AWGN) which is distortion caused by 

electrical, thermal and/or environmental factors where random signal 

distortion is added to a signal during transmission through a vulnerable 

channel. 

• Linear Time–Invariant and Linear Time-Variant filtering which are filtering 

effects that cause convolutional distortion to a signal being transmitted. 

Two channel compensation methods were also discussed in this section; 

Cepstral Mean Subtraction which is designed to remove Linear Time-Invariant 

filtering from speech features and RASTA Processing designed to remove Linear 

Time-Variant distortion from speech features.  
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Chapter 4 - Speaker Recognition using Blind 

Channel Equalisation Methods 
 

4.1 Introduction 
 

Blind Channel Equalisation is an invaluable method to compensate for 

channel distortion when the channel impulse response ][nh  is unknown.  

Channel equalisation with a known impulse response is relatively easy and 

can be achieved by designing a matched filter with a response that is the inverse of 

the known channel’s response, [27],[16],[17]. Unfortunately this is not always 

possible in practice and particularly when a channel is noisy, non-linear or time-

variant [16]. 

One method used to equalise an unknown channel distortion is by sending a 

training sequence which is known to both the sender and receiver. This technique is 

known as a supervised channel equalisation technique. A flowchart of this method is 

shown in Figure 4.1.  

The receiver receives the distorted training sequence and then adapts its 

inverse filter coefficients to compensate for the distortion that has occurred to the 

training sequence. This is an effective method; however it has very high bandwidth 

and power requirements [28]. 

 

 

 

Figure 4.1: Flowchart of a supervised channel equalisation technique 
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Blind, or unsupervised channel equalisation methods can be implemented to 

adapt a filter’s coefficients, and hence it’s response, to equalise the corrupted 

information with no knowledge of the channel’s impulse response or the training 

sequence being sent over the channel [27]. This type of equalisation uses statistics to 

retrieve the signal. 

A basic diagram of an adaptive blind equalisation system is shown in Figure 

4.2. 

 

 

 

Figure 4.2: Basic system block diagram for an adaptive blind equaliser  

There are many examples of this type of system used in digital signal 

processing applications. Two of these methods including the Least Mean-Squared 

algorithm and the Constant Modulus Algorithm will be discussed in this Chapter. 
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4.2 Adaptive Blind Equalisation Algorithms 
 

4.2.1 Least Mean-Squared Adaptive Filtering 

 

 Least Mean-Squared filtering (LMS) is an adaptive filtering algorithm used 

for discrete time signals. The LMS algorithm uses a feedback system to reduce noise 

and channel distortion by changing the coefficients on a filter to minimise the error 

between the filtered signal )(ˆ nx  and the expected or desired response )(nd  

[29],[17]. 

 

Figure 4.3: Least Mean-Squared system block diagram  

As shown in Figure 4.3 the filter’s coefficients are altered by taking the 

output of the filter )(ˆ nx  and subtracting that value away from the desired signal 

)(nd .  

The desired signal )(nd  is a signal chosen to have properties as near to what 

is expected of the message )(nx  as possible, this may take the form of a training 

sequence known both to the sender and receiver or in the case of noise cancellers 

)(nd  can be a delayed version of the observed signal )(ny  [17].  

After subtracting )(nd  from )(ˆ nx the resulting value, )(ne , is the estimation 

error which is fed back into the filter to determine the coefficient changes needed. 

The estimation error )(ne is given as: 

 

)(ˆ)()( nxndne −=  

 

(4.1) 
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 The changes in the filter’s coefficient values are determined iteratively using 

Equation 4.2: 

 

)()(.1 nyneaa nn µ+= −  

 

 Where a are the filter’s coefficients at the n
th

 instant and µ is the convergence 

accuracy coefficient which affects the convergence speed and accuracy of the 

system.  

 

 

Figure 4.4: Least Mean-Squared adaptive filter implementation diagram  

Figure 4.4 shows the implementation of an M+1 tap adaptive filter within an 

LMS filtering system. M+1 represents the filter’s length and the number of 

components needed in the filter, the larger M is the better the estimation of the filter 

coefficients but the more delay will occur in the output. 

The convergence accuracy coefficient, µ determines both the accuracy and 

speed of convergence of the filter’s coefficients. Small values of µ will cause the 

system to be more accurate but slower to converge while larger values of µ will 

cause the system to converge quickly but be less accurate [17]. Convergence will 

hold accurately as long as the following criterion is met for the chosen value of µ 

[29]: 

 

power input tap

2
0 << µ  

  

(4.2) 

(4.3) 



 

 36 

Where the tap input power is equal to the sum of the mean squared values of 

the tap inputs in the filter, this is shown in Equation 4.4. 

 

∑
=

=
M

i

iapower input tap
0

2  

 

4.2.2 Constant Modulus Algorithm (CMA) 

 

 The Constant Modulus Algorithm (CMA) is a blind channel equalisation 

method, meaning that there is no assumed knowledge of the impulse response of the 

transmission channel and there is no reference or training data that can be used to 

equalise the channel distortion. 

 The CMA algorithm assumes that the received signal )(nx  is a binary output 

from a wireless channel of unknown impulse response. At the receiver end of this 

system there is a linear filter used to equalise the received signal, this received signal 

will be corrupted with white Gaussian noise and inter-symbol interference (ISI) [30].  

 Similarly to the Least-Means Squared algorithm, the CMA algorithm uses an 

iterative technique in order to determine the optimal filter coefficients to effectively 

compensate for the distortion in the channel.  

In the CMA case the filter’s coefficients are updated using the following 

stochastic gradient descent algorithm [27],[28]. 

 

)()(*)()1( nnrnn CMAψµ+=+ ff  

 

Where: f(n) represents a vector of filter coefficients 

µ is the step-size parameter 

CMAψ is the error function of the CMA calculated as: 

 

)||()( 2*

nnnCMA yyy −= γψ  

Where ]|)([|/]|)([| 24 nxEnxE=γ  

 

  

(4.5) 

(4.6) 

(4.4) 
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The Constant Modulus Algorithm uses the Godard cost function as shown in 

Equation 4.7 [27],[29] and seeks to minimise this cost function to achieve ideal 

equalisation for the received signal [28].  

 

])|)([(|)( 2

p

p
RnyEnJ −=  

 

Where 
]|)([|

]|)([| 2

p

p

p
nxE

nxE
R =  and is chosen so that the gradient of the function  

J(n) is zero when perfect equalisation is achieved. 

 

The benefits of using blind equalisation similar to what has been discussed in 

this section is that instead of sending training sequences down the channel first to 

determine the distortion caused by the channel, the adaptive filter can be used on the 

signal itself and adapt to the channel to equalise the signal during the transmission 

process. This is a much more efficient equalisation technique than supervised 

channel equalisation, particularly in respect to the efficient use of bandwidth since 

training sequences need not be used. 

 

4.3 Summary 
 

 This chapter covered adaptive channel equalisation methods used to filter a 

received signal. Adaptive filtering involves iteratively altering a filter’s impulse 

response in order to minimise error in a received signal, therefore reducing the 

effects channel distortion have on a signal. 

 The adaptive filtering methods discussed in this chapter included; 

• The Least Means Squared adaptive filtering which uses a reference signal to 

alter a filter’s coefficients to minimise the error between the reference signal 

and the distorted received signal. 

• The Constant Modulus Algorithm which is a blind equalisation method that 

assumes no knowledge of the impulse response of the channel and also uses 

no training sequence to initialise the filter coefficients  

 

(4.7) 
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Chapter 5 - Experiment and Results 
 

 

5.1 Introduction 
 

All the experiments were performed as text-independent speaker recognition 

experiments, meaning that the semantic information included in the speech was not 

taken into account during the speaker recognition process. 

 The aim of the speaker recognition experiments was to determine who the 

speaker was rather than making sure that the query speaker was who he or she 

claimed to be. 

 The results are presented in the following manner. Firstly an analysis is 

performed on clean undistorted speech before analysing speech corrupted with noise 

and filtering effects with no equalisation. Statistical analyses of the effects these 

distortions play on the recognition rate are discussed for these cases. The second part 

of the results focus on statistical comparison of speech that has been corrupted with 

channel distortion and equalised using Cepstral Mean Subtraction (CMS), RelAtive 

SpecTral processing (RASTA) and the Constant Modulus Algorithm (CMA) and 

finally the preferred methods of equalisation are discussed. 

 The experiments described in this chapter were set up in the following 

manner. 

 

5.2 Test data 
  

 Clean speech samples from 10 people (5 male and 5 female) were used. The 

speech was sampled at a rate of 16,000 Hz. For each speaker 6 samples of speech of 

duration of 1 to 4 seconds were analysed. The samples represented six different 

utterances. One utterance was used in the training phase of the system and five other 

utterances were used in the testing phase. 

 Both the testing and training utterances represented clean speech containing 

no channel distortion such as filtering or noise.  

All the speech samples were selected from the Berlin emotional speech 

database [31] containing voices portraying happiness, sadness, anger, neutral, 

boredom, fear and disgust. Only neutral speech recordings were used in these 

experiments. The emotional aspect of speech was not taken into account. 



 

 39 

 

5.3 Speaker recognition system structure 
 

 The experimental algorithms were developed and tested using Matlab 

(version 7.1) programming language.  

 The flowcharts of the training and testing systems used in the experiments are 

illustrated in Figure 5.1 and 5.2 respectively. 

 

 

 

Figure 5.1: Flowchart of the speaker recognition training system used in the 

experiments 
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Figure 5.2: Flowchart of the speaker recognition testing system used in the 

experiments 

The training and testing systems used in the experiments were based on the 

Mel-frequency Cepstral Coefficient features extracted from each speaker as 

described in section 2.7.1. The use of Mel-Frequency Cepstral Coefficient features in 

speaker recognition has been proven to be very effective in being able to identify 

individual speakers from the individual phonetic and frequency characteristics in 

their speech [9],[13]. 
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5.4 Training Procedure 
 

The training system consisted of a pre-processing component, involving the 

entering of raw data containing the speech to be trained into the system. Figures 5.3 

and 5.4 shows an example of a speech segment used in the system and a time-

frequency plot of its STFT.  

 

Figure 5.3: Undistorted speech sample used in the speaker recognition system   
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Figure 5.4: Time Frequency plot of an undistorted speech sample used in the 

speaker recognition system 

This speech was firstly pre-emphasised using a first order high pass filter 

given in Equation 2.1 emphasising important high frequency information in the 

speech and reducing the effect of low frequency background noise such as machine 

and air-conditioner noise, which could affect the accuracy of speaker recognition 

(see section 2.4.1). 

Because speech utterances are made up of many silence segments as well as 

speech segments for efficiency of the system, silence intervals were removed in the 

pre-processing phase. Silence intervals are unnecessary as they contain no useful 

information about the speaker’s identity and takes up processing time and computer 

storage space. 

The silence detection and removal in this research involved a technique 

similar to the Rule Based Adaptive Endpoint detection discussed in section 2.5.2 and 

proposed in [6]. This technique uses speech and noise energy metrics to represent the 

levels of speech and noise throughout a spoken utterance. The silence/noise intervals 

are then detected using an adaptive thresholding scheme. The silence segments are 

then removed. 
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 After pre-processing the training speech was segmented into 20ms frames 

with a frame overlap of 10ms. The short time spectral analysis was then performed 

on a frame-to-frame basis and the Mel-Cepstral Coefficients were calculated. The 

feature extraction method used in the experiments was the same as described in the 

section 2.7.1. 

 These features were averaged over all frames and stored in a library of 

speaker models.  

 

5.5 Testing Procedure 
 

 

5.5.1 Speaker recognition based on clean speech 

 

To test the system firstly three clean speech utterances from the testing set for 

each speaker were processed in the same manner as the training speech and had their 

MFCCs extracted (see Figure 5.2). These coefficients were then compared to the 

coefficients extracted earlier in the training phase using the Minimum Distance 

Classifier method as discussed in Section 2.8.1. In this way the system was able to 

determine which speaker was most likely to have been the one to have uttered the 

test phrases from the group of speakers trained into the system.  

 

5.5.2 Speaker recognition based on distorted speech 

 

The next stage was to test how well the system can perform after the clean 

speech is corrupted by channel effects. In this experiment, the test speech was 

distorted in a way simulating the effects of channel filtering and/or addition of white 

noise.  

The effect of channel filtering was analysed using a Butterworth filter with 

five different cutoff frequencies, fc = 7, 6, 5, 4 or 3 kHz. A Butterworth filter of 

order 9 was used in this experiment because this type of filter has no ripple in the 

pass band region which would have caused extra unwanted distortion to the speech. 

The frequency response of the low-pass filter used in the experiments is 

illustrated in Figure 5.5 
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Figure 5.5: Frequency response of a 9
th

 order low pass filter with cutoff frequency = 

5 kHz 

The second effect analysed in this experiment was the addition of Gaussian 

noise to the speech. A vector of random noise at different power levels were 

generated and added to the speech files to simulate the addition of channel noise at 

Signal to Noise Ratios of 10, 20, 30 and 40 dB. An example of a noisy speech signal 

with a Signal to Noise Ratio of 30 dB is shown in Figure 5.6 and it’s time – 

frequency plot is shown in Figure 5.7. 
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Figure 5.6: Noisy speech sample used in experiments. Signal to Noise Ratio is 30 

dB 

 

Figure 5.7: Time-frequency plot of noisy speech sample used in experiments. Signal 

to Noise Ratio is 30 dB 
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The same procedure as described in recognising clean speech (Section 5.4.2) 

was then used to extract the features from the corrupted speech segments and then 

compared with the clean features stored in the library of speaker models.  

 

5.5.3 Speaker recognition based on distorted speech with channel compensation 

 

 Two channel compensation algorithms: the Cepstral Mean Subtraction 

(CMS) algorithm and the RASTA algorithm were used to compensate for the 

convolutional channel distortion.  

 To test the effectiveness of the Cepstral Mean Subtraction Algorithm (CMS) 

and the RASTA algorithm the channel compensation part of the system based on 

CMS or RASTA was added before the extraction of the Mel-Frequency Cepstral 

Coefficients. This is illustrated in Figure 5.8. 

 

 

 

Figure 5.8: Flowchart of speaker recognition based on distorted speech with channel 

distortion compensated using either the CMS or RASTA algorithm. 
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CMS and RASTA are channel compensation algorithms designed to be used 

before the feature extraction phase rather than before the pre-processing phase.  

To compensate for the channel noise distortion as well as for the 

convolutional distortion the Constant Modulus Algorithm (CMA) was used. 

 To test the effectiveness of the CMA, the test utterances were converted from 

decimal wav files into binary text files. 

 The binary files consisted of samples of the .wav files converted into 16 bit 

binary numbers. 

 The binary test files were then distorted by low pass filtering and the addition 

of white noise (See Figure 5.9). The effects of channel distortion were then equalised 

by the CMA algorithm. The equalised speech files were then converted back into 

decimal wav files and used in the speaker recognition system. 

 The accuracy of the channel equalisation algorithms was measured by mean 

squared error between the equalised speech and the original speech before the 

addition of the channel distortion.  

 

 

 

Figure 5.9: Flowchart of speaker recognition based on distorted speech with channel 

distortion compensated by the CMA algorithm. 
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5.6 Performance Measure 
 

The performance of the speaker recognition algorithms tested in the 

experiments was measured by calculating the percentage of times the speakers were 

correctly identified over all the trials.  

The following percentage recognition rates were measured:  

1. Correct recognition rate for clean speech 

2. Correct recognition rate for speech with channel distortion 

3. Correct recognition rate for speech with channel distortion and 

channel compensation 

The channel algorithms were assumed to give reasonable performance if the 

recognition rate for the equalised speech was noticeably better than the recognition 

rate for the distorted speech. 

 

5.7 Test Results and Discussion 
 

5.7.1 Results of speaker recognition for clean speech 

 

 The test data used in this experiment represented clean speech with no 

addition of channel distortion in the form of either noise or low pass filtering. Figure 

5.10 shows the summary of speaker recognition results obtained for clean speech. 

The recognition rates in Figure 5.10 represent the percentage of correct 

classifications obtained over all tested speech samples. 
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Figure 5.10: Percentage of speakers recognised from clean speech with overall 

average percentage recognition rate shown in pink 

 As indicated in Figure 5.10 the recognition rate is relatively high. For four 

speakers (speakers 1, 2, 3 and 5), the recognition rate is 100%, for four speakers 

(speakers 6, 7, 8 and 9), the recognition rate is equal or more than 60%. There was 

one case with recognition rate of 0% (speaker 4), which can be attributed to a 

number of potential problems with the speech, including the small number of training 

samples used in the experiments (only 1 to 4 seconds of speech) and/or the speaker’s 

recording quality being inferior as this speaker had a lower pitched voice than the 

other speakers and the high pass filtering used during the pre-processing phase could 

have affected the low frequency characteristic features enough for this speaker to not 

be recognised. This issue may be able to be rectified if using a more complicated 

feature classification scheme or different features extracted from the speaker. The 

result for speaker number 10 is also low (only 20% recognition rate).  

The speaker recognition rates could also be affected by the fact that the 

recognition had a text-independent character and different utterances were used 

during the training and testing phases. The text-dependent systems are usually 

expected to perform better for small training samples since the matching semantic 

speech information is used as an additional cue during the recognition process.  

A larger number of training samples of longer duration would enable the 

system to obtain statistically more accurate characteristics of speakers during the 

training phase. This would lead to better recognition rates.  
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 However, this experiment was designed to test the effects of channel 

distortion on a basic speaker recognition system; therefore an improvement of the 

system performance was outside the scope of this research. 

 The speaker recognition results based on clean speech were produced as a 

reference data allowing observing the effects of different types of channel distortion 

on the speaker recognition rates. 

 The results for speakers 4 and 10 were not treated as outliers and were kept as 

valid in order to observe if there will be any change in these speaker’s recognition 

rates when channel distortion is introduced and when equalisation is applied.  

 
5.7.2 Results of speaker recognition for distorted speech 

 

 The results presented in this section relate to the accuracy of the speaker 

recognition system after channel distortion has been applied. No equalisation or 

compensation method has been applied to the distorted speech in this section. 

 The following types of distortion have been analysed; low pass filtering and 

the addition of white Gaussian noise. 

 

5.7.2.1 Results of speaker recognition for low pass filtered speech 

  

 The low pass filtering was expected to have some effect on the recognition 

rate, since the removal of the high frequency components of speech would reduce the 

number of Mel-Cepstral Coefficients and thus, reduce the amount of speaker-

dependent characteristic information available to the system.  

 Table 5.1 shows a summary of the speaker recognition rates obtained for low 

pass filtered speech with different cutoff frequencies.   

 Figures 5.11 through to 5.13 show the individual results for the lowpass 

filters with the respective cutoff frequencies of 7, 6 and 5 kHz. 

 The recognition rates in Figures 5.11 through to 5.13 and Table 5.1 represent 

percentage of correct classifications obtained over all tested speech samples. 
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TABLE 5.1: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED SPEECH 

Cutoff frequency of a lowpass Butterworth filter Speaker 

number Clean 7kHz 6kHz 5kHz 4kHz 3kHz 

1 100% 80% 80% 40% 0% 0% 

2 100% 100% 100% 100% 0% 0% 

3 100% 80% 100% 100% 0% 0% 

4 0% 0% 0% 60% 20% 0% 

5 100% 100% 100% 60% 0% 0% 

6 60% 80% 80% 60% 0% 0% 

7 60% 60% 60% 60% 0% 0% 

8 80% 80% 80% 0% 0% 0% 

9 60% 80% 80% 80% 0% 0% 

10 20% 40% 20% 20% 0% 0% 

average 68% 70% 72% 58% 0% 0% 
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Figure 5.11: Percentage of speakers recognised from low pass filtered speech with 

cutoff of 7 kHz  
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Figure 5.12: Percentage of speakers recognised from low pass filtered speech with 

cutoff of 6 kHz  
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Figure 5.13: Percentage of speakers recognised from low pass filtered speech with 

cutoff of 5 kHz 

 The results of the paired t-test for the recognition rates based on clean speech 

versus the recognition rates based on low pass filtered speech are given in Table 5.2. 

 



 

 53 

TABLE 5.2: PAIRED T-TEST FOR CLEAN SPEECH VERSUS LOW PASS FILTERED SPEECH 

(ALPHA =0.05) 

Clean speech versus lowpass speech  

Cutoff  

7kHz 

Cutoff 

6kHz 

Cutoff 

5kHz 

Cutoff  

4kHz 

Cutoff 

3kHz 

Pearson correlation 0.912 0.9389 0.2902 Undefined Undefined 

t stat -0.4286 -1 0.7851 6.0526 6.0526 

P(T<=t) one-tail 0.3392 0.1717 0.2263 9.4943E-05 9.4943E-05 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.6783 0.3434 0.4525 0.0002 0.0002 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 2.2622 

 

Both Figures 5.11 and 5.12 show very similar results to what was obtained 

using clean speech. This is confirmed by the t-test which shows that there is no 

significant difference in the mean recognition rates between the clean speech and the 

low pass filtered speech with cutoff frequencies of 7, 6 and 5 kHz. For the cutoff 

frequencies below 5 kHz the difference does become significant. 

It seems, therefore, in speech that frequencies above 5 kHz do not play an 

important role in the process of speaker recognition. These results would be expected 

as human conversational speech has an upper frequency limit of approximately 5 

kHz; therefore it is likely that only speech characteristics at frequencies below 5 kHz 

are used in the speaker recognition process. This is confirmed in Table 5.1, which 

shows a rapid decline in the average recognition rates of the system as those 

important frequencies above 5 kHz are removed. 

These results indicate that the telephone systems with bandwidths reduced to 

the range of 300 Hz to 3kHz may almost certainly provide significant difficulties in 

the process of automatic speaker recognition. 

 

5.7.2.2 Results from recognising speakers after speech has had noise added 

 

White Gaussian noise is also a very important factor affecting speaker 

recognition systems. White noise can be attributed to many different environmental 

sources such as the weather, storms or solar radiation. Factors such as the proximity 

to electrical wires and other electromagnetic devices can also cause noise in signals. 
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The results presented in this section show the effect noise has on speaker 

recognition systems. 

As a speech-silence-noise segment detection algorithm is normally used in 

the pre-processing phase of the speaker recognition system, very noisy segment of 

speech could be detected as not containing any speech information and, hence, being 

removed and rendering the system useless. Therefore the speech-silence-noise 

detection algorithm was disabled on very noisy segments to prevent the entire 

utterance being detected as noise. Disabling this algorithm did not affect the features 

being extracted only the amount of time the system took to process the speech 

segments. 

Table 5.3 shows the summary of speaker recognition results obtained for 

noisy speech with different values of Signal-to-Noise Ratio (SNR). Figures 5.14 

through to 5.17 show the individual results for the SNR values of 40 dB, 30 dB, 20 

dB and 10 dB respectively. 

The recognition rates in Figures 5.14 through to 5.17 and Table 5.3 represent 

the percentage of correct classifications obtained over all tested speech samples.  

 

TABLE 5.3: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH. 

Signal – to – Noise Ratio Speaker 

number Clean 40 dB 30 dB 20 dB 10 dB 

1 100% 80% 80% 40% 0% 

2 100% 100% 100% 100% 100% 

3 100% 80% 80% 20% 20% 

4 0% 0% 0% 60% 0% 

5 100% 100% 100% 20% 20% 

6 60% 60% 40% 20% 0% 

7 60% 60% 20% 0% 0% 

8 80% 80% 60% 40% 20% 

9 60% 80% 80% 80% 60% 

10 20% 20% 20% 20% 40% 

average 68% 66% 58% 40% 26% 
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Figure 5.14: Percentage of speakers recognised from noisy speech with signal to 

noise ratio of 40 dB  
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Figure 5.15: Percentage of speakers recognised from noisy speech with signal to 

noise ratio of 30 dB  
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Figure 5.16: Percentage of speakers recognised from noisy speech with signal to 

noise ratio of 20 dB  
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Figure 5.17: Percentage of speakers recognised from noisy speech with signal to 

noise ratio of 10 dB 

 

 

  The results of the paired t-test for the recognition rates based on clean speech 

versus the recognition rates based on noisy speech are given in Table 5.4. 
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TABLE 5.4: PAIRED T-TEST FOR CLEAN SPEECH VERSUS NOISY SPEECH 

Clean speech versus noisy speech  

SNR=40dB SNR=30dB SNR=20dB SNR=10dB 

Pearson correlation 0.9479 0.8866 0.04 0.2217 

t stat 0.5571 1.8605 1.9091 3.1151 

P(T<=t) one-tail 0.2955 0.0479 0.0443 0.0062 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.5911 0.0957 0.0886 0.0124 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 

 

Subjective listening tests showed that the gradual decrease in SNR from 40 

dB to 10 dB was resulting in systematic reduction of speech intelligibility and at the 

same time in the reduction of human ability to recognise the speakers. At SNR=10 

dB, the speakers and the semantic contents of the speech were practically 

unrecognisable to human listeners. 

As expected the noise being added to the speech had an almost immediate 

effect on the recognition rate. As indicated in Table 5.4, there is a decrease in the 

average recognition rates over all values of SNR. The t-test results in Table 5.4 

indicate that the decline in recognition rates for SNR ≤ 30 dB is statistically 

significant. 

 

5.7.3 Test Results for Equalised speech 

 

 The results presented in this section show the effects different channel 

equalisation techniques have on the accuracy of speaker recognition systems. 

 The following equalisation methods are analysed in this section; Cepstral 

Mean Subtraction (CMS), the RASTA algorithm and the Constant Modulus 

Algorithm (CMA). 
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5.7.3.1 Using Cepstral Mean Subtraction (CMS) Algorithm for Compensation of low 

pass filtering effects 

 

 Tables 5.5 and 5.6 shows the summary of speaker recognition results 

obtained for the low pass filtered speech and the results using the CMS algorithm 

compensating for the results of low pass filtering. Figures 5.18 through to 5.22 show 

the individual results for the low pass filters with cutoff frequencies of 7, 6, 5, 4 and 

3 kHz respectively. 

The recognition rates in Figures 5.18 to 5.22 and Tables 5.5 and 5.6 represent 

the percentage of correct classifications obtained over all tested speech samples. 

  

TABLE 5.5: COMPARISON OF AVERAGE RECOGNITION RATE FOR LOWPASS FILTERED 

SPEECH AND LOWPASS FILTERED SPEECH USING CMS. 

Cutoff frequency of a lowpass Butterworth filter  

7kHz 6kHz 5kHz 4kHz 3kHz 

Average without compensation  70% 72% 58% 0% 0% 

Average using CMS 48% 44% 46% 38% 22% 

 

TABLE 5.6: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED SPEECH 

WITH CMS COMPENSATION. 

Cutoff frequency of a lowpass Butterworth filter Speaker 

number 7kHz 6kHz 5kHz 4kHz 3kHz 

1 80% 40% 0% 20% 60% 

2 0% 0% 0% 0% 0% 

3 100% 100% 100% 80% 0% 

4 20% 40% 40% 20% 0% 

5 100% 100% 100% 100% 0% 

6 80% 60% 60% 80% 100% 

7 60% 60% 80% 20% 20% 

8 40% 40% 80% 60% 0% 

9 0% 0% 0% 0% 40% 

10 0% 0% 0% 0% 0% 

average 48% 44% 46% 38% 22% 
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Figure 5.18: Percentage of speakers recognised from CMS equalised speech with 

low pass filter (cutoff = 7 kHz) 
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Figure 5.19: Percentage of speakers recognised from CMS equalised speech with 

low pass filter (cutoff = 6 kHz) 
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Figure 5.20: Percentage of speakers recognised from CMS equalised speech with 

low pass filter (cutoff = 5 kHz) 
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Figure 5.21: Percentage of speakers recognised from CMS equalised speech with 

low pass filter (cutoff = 4 kHz) 
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Figure 5.22: Percentage of speakers recognised from CMS equalised speech with 

low pass filter (cutoff = 3 kHz) 

The average recognition rates for the CMS-equalised speech shown in Tables 

5.5 and 5.6 show increased values compared to the corresponding average 

recognition rates for low pass filtered speech with no compensation for cutoff 

frequencies of 4 kHz and 3 kHz.  

The results of the paired t-test for the recognition rates based on 

uncompensated low pass filtered speech versus the recognition rates based on CMS-

equalised speech are given in Table 5.7. 

 

TABLE 5.7: PAIRED T-TEST FOR LOWPASS FILTERED SPEECH VERSUS CMS-EQUALISED 

SPEECH 

lowpass speech versus CMS-equalised speech  

Cutoff  

7kHz 

Cutoff 

6kHz 

Cutoff 

5kHz 

Cutoff 

4kHz 

Cutoff 

3kHz 

Pearson correlation 0.3564 0.386 0.0097 Undefined Undefined 

t stat 1.6732 2.3333 0.7093 -3.1425 -2.0121 

P(T<=t) one-tail 0.0643 0.0223 0.2481 0.0059 0.03754 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.1286 0.0445 0.4961 0.0119 0.07508 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 2.2622 
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Comparison of the results for the low pass filtered speech in Table 5.5 

indicates that at frequencies of 5 kHz, 6 kHz and 7 kHz that there is a decline in the 

average recognition rate with a statistically significant value (Table 5.7) at 6 kHz. 

The t-test results in Table 5.7 and the average recognition rates in Table 5.5 

indicate that the increase of average speaker recognition rates due to CMS 

compensation is statistically significant for low pass filtered speech with cutoff 

frequencies of 3 kHz and 4 kHz. 

The Cepstral Mean Subtraction method appears to compensate very well for 

errors due to filtering at very low cutoff frequencies such as 3 and 4 kHz. But CMS 

does not seem to compensate well for the low pass filtering effects with higher cutoff 

frequencies above 4 kHz. 

This implies that the CMS technique is useful for improvement or speaker 

recognition rates when the speech is transmitted over channels with very narrow 

bandwidths. For wider bandwidths, this type of channel compensation could be 

detrimental to the speaker recognition system. 

Another effect that CMS has on the speech is to remove the natural time 

invariant convolutional effects on speech which are not due to the channel. As 

discussed in Section 3.3.1 this compensation method assumes the speech signal has a 

zero mean which is not necessarily correct in most cases, therefore removal of this 

convolutional effect could also severely impact on the individuality of the speech 

features and therefore the accuracy of the speaker recognition system. 

As stated in section 5.7.1 if longer segments of speech were used in the 

experiments or text-dependent rather than text-independent speech was used the 

result would have been expected to have improved yet again.  
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5.7.3.2 CMS compensation for white Gaussian noise  

 

Tables 5.8 and 5.9 shows the summary of speaker recognition results 

obtained for noisy speech and the results using the CMS algorithm compensating for 

the results of additive white Gaussian noise. Figures 5.23 through to 5.26 show the 

individual results for the noisy speech with Signal-to-Noise Ratios of 40 dB, 30 dB, 

20 dB and 10 dB respectively. 

The recognition rates in Figures 5.23 through to 5.26 and Tables 5.8 and 5.9 

represent the percentage of correct classifications obtained over all tested speech 

samples. 

 

TABLE 5.8: COMPARISON OF AVERAGE RECOGNITION RATE FOR NOISY SPEECH AND 

NOISY SPEECH WITH CMS. 

Signal – to – Noise Ratio  

40 dB 30 dB 20 dB 10 dB 

Average without compensation 66% 58% 40% 26% 

Average using CMS 38% 30% 10% 4% 

 

 

TABLE 5.9: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED 

BY THE CMS ALGORITHM. 

Signal – to – Noise Ratio Speaker 

number 40 dB 30 dB 20 dB 10 dB 

1 80% 80% 20% 0% 

2 0% 0% 0% 0% 

3 60% 40% 0% 0% 

4 40% 20% 60% 40% 

5 60% 20% 0% 0% 

6 40% 40% 0% 0% 

7 80% 60% 0% 0% 

8 20% 40% 0% 0% 

9 0% 0% 20% 0% 

10 0% 0% 0% 0% 

average 38% 30% 10% 4% 
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 Figure 5.23: Percentage of speakers recognised from CMS equalised speech with 

additive noise (SNR = 40 dB) 
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Figure 5.24: Percentage of speakers recognised from CMS equalised speech with 

additive noise (SNR = 30 dB) 
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Figure 5.25: Percentage of speakers recognised from CMS equalised speech with 

additive noise (SNR = 20 dB) 
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Figure 5.26: Percentage of speakers recognised from CMS equalised speech with 

additive noise (SNR = 10 dB) 

 

The results of the paired t-test for the recognition rates based on 

uncompensated noisy speech versus the recognition rates based on CMS-equalised 

speech are given in Table 5.10. 
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TABLE 5.10: PAIRED T-TEST FOR NOISY SPEECH VERSUS CMS-EQUALISED SPEECH 

Noisy speech versus CMS-equalised speech  

SNR=40dB SNR=30dB SNR=20dB SNR=10dB 

Pearson correlation 0.0979 -0.0687 0.3656 -0.2791 

t stat 2.0397 1.9091 3.1429 1.8193 

P(T<=t) one-tail 0.0359 0.0443 0.0059 0.0511 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.0718 0.0886 0.0119 0.1022 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 

 

   

 Comparison of the results for the noisy speech in Table 5.8 indicates that, for 

all of the tested values of SNR there is a decline in the average recognition rates. 

 The t-test results in Table 5.10 and the average recognition rates in Table 5.8 

indicate that the decrease of the average speaker recognition rates due to the CMS 

compensation is statistically significant for all of the tested values of SNR. 

 In conclusion, the CMS channel equalisation technique does not provide 

effective compensation for noisy speech, and it does not improve the performance of 

this speaker recognition system in this case.  

 

5.7.6 Using RASTA Processing for Channel Compensation 

 

RASTA processing of speech as discussed in Section 3.3.2, was tested as an 

alternative to CMS, as it was specifically developed to compensate for both 

convolutional (filtering) as well as additive signal distortion (corruption by noise). 

  

5.7.6.1 Using RASTA processing for low pass filtering effects 

 

Table 5.11 and 5.12 shows the summary of speaker recognition results 

obtained for low pass filtered speech and the results using the RASTA algorithm 

compensating for the results of the low pass filtering. Figures 5.27 through to 5.31 

show the individual results for the low pass filters with cutoff frequencies of 7, 6, 5, 

4 and 3 kHz respectively. 
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The recognition rates in Figures 5.27 through to 5.31 and Tables 5.11 and 

5.12 represent the percentage of correct classifications obtained over all tested 

speech samples. 

 

TABLE 5.11: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED 

SPEECH WITH RASTA PROCESSING. 

Cutoff frequency of a lowpass Butterworth filter  

7kHz 6kHz 5kHz 4kHz 3kHz 

Average without compensation 70% 72% 58% 0% 0% 

Average using CMS 48% 44% 46% 38% 22% 

Average using RASTA Processing 60% 56% 58% 56% 26% 

 

 

TABLE 5.12: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED 

SPEECH WITH RASTA COMPENSATION. 

Cutoff frequency of a lowpass Butterworth filter Speaker 

number 7kHz 6kHz 5kHz 4kHz 3kHz 

1 80% 
60% 60% 60% 0% 

2 80% 
80% 80% 80% 0% 

3 100% 
100% 100% 80% 

0% 

4 0% 
0% 0% 0% 0% 

5 100% 
100% 100% 80% 

0% 

6 80% 
80% 80% 80% 100% 

7 20% 
40% 40% 20% 

0% 

8 40% 
40% 40% 40% 

0% 

9 60% 
40% 40% 80% 

100% 

10 40% 
20% 40% 40% 

60% 

average 
60% 56% 58% 56% 26% 
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Figure 5.27: Percentage of speakers recognised from RASTA equalised speech with 

low pass filter (cutoff = 7 kHz) 
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Figure 5.28: Percentage of speakers recognised from RASTA equalised speech with 

low pass filter (cutoff = 6 kHz) 
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Figure 5.29: Percentage of speakers recognised from RASTA equalised speech with 

low pass filter (cutoff = 5 kHz) 
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Figure 5.30: Percentage of speakers recognised from RASTA equalised speech with 

low pass filter (cutoff = 4 kHz) 
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Figure 5.31: Percentage of speakers recognised from RASTA equalised speech with 

low pass filter (cutoff = 3 kHz) 

The results of the paired t-test for the recognition rates based on 

uncompensated low pass filtered speech versus the recognition rates based on 

RASTA processed speech are given in Table 5.13. 

 

TABLE 5.13: PAIRED T-TEST FOR LOWPASS SPEECH VERSUS RASTA-EQUALISED 

SPEECH 

lowpass speech versus RASTA-equalised speech  

Cutoff  

7kHz 

Cutoff 

6kHz 

Cutoff 

5kHz 

Cutoff 

4kHz 

Cutoff 

3kHz 

Pearson correlation 0.823 0.8839 0.4323 Undefined Undefined 

t stat 1.627 3.2071 -2E-16 -6 -1.9007 

P(T<=t) one-tail 0.0691 0.0054 0.5 0.0001 0.0449 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.1382 0.0107 1 0.0002 0.0898 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 2.2622 

 

 Comparison of the results for the low pass filtered speech and RASTA 

processed speech in Table 5.11 indicates that at frequencies of 7 kHz and 6 kHz the 

RASTA processing shows a decline in the average recognition rate with a 
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statistically significant value (Table 5.13) at 6 kHz. At a cutoff frequency of 5 kHz 

the recognition rate remained the same as for uncompensated speech. However at the 

cutoff frequencies of 4 kHz and 3 kHz, there is a significant increase of the average 

recognition rate due to RASTA processing. 

 As indicated in Table 5.11, for all cutoff frequencies the RASTA processing 

method produces higher average recognition rates compared to the CMS method. 

 

5.7.6.2 Using RASTA processing for white Gaussian noise 

 

Tables 5.14 and 5.15 shows the summary of speaker recognition results 

obtained for noisy speech and the results using the RASTA algorithm compensating 

for the results of additive white Gaussian noise. Figures 5.32 through to 5.35 show 

the individual results for the noisy speech with Signal-to-Noise Ratios of 40 dB, 30 

dB, 20 dB and 10 dB respectively. 

The recognition rates in Figures 5.32 through to 5.35 and Tables 5.14 and 

5.15 represent the percentage of correct classifications obtained over all tested 

speech samples. 

 

 

TABLE 5.14: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED 

WITH THE RASTA ALGORITHM. 

Signal – to – Noise Ratio  

40 dB 30 dB 20 dB 10 dB 

Average without compensation 66% 58% 40% 26% 

Average using CMS 38% 30% 10% 4% 

Average using RASTA Processing 56% 54% 48% 30% 
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TABLE 5.15: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED 

WITH THE RASTA ALGORITHM. 

Signal – to – Noise Ratio Speaker 

number 40 dB 30 dB 20 dB 10 dB 

1 80% 60% 60% 0% 

2 80% 100% 80% 100% 

3 100% 80% 60% 20% 

4 0% 0% 0% 0% 

5 100% 80% 40% 20% 

6 80% 80% 60% 60% 

7 0% 40% 60% 0% 

8 20% 20% 20% 0% 

9 60% 60% 80% 80% 

10 40% 20% 20% 20% 

average 56% 54% 48% 30% 
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Figure 5.32: Percentage of speakers recognised from RASTA equalised speech with 

additive noise (SNR = 40 dB) 
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Figure 5.33: Percentage of speakers recognised from RASTA equalised speech with 

additive noise (SNR = 30 dB) 
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Figure 5.34: Percentage of speakers recognised from RASTA equalised speech with 

additive noise (SNR = 20 dB) 
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Figure 5.35: Percentage of speakers recognised from RASTA equalised speech with 

additive noise (SNR = 10 dB) 

The results of the paired t-test for the recognition rates based on 

uncompensated noisy speech versus the recognition rates based on RASTA 

processed speech are given in Table 5.16.  

 

TABLE 5.16: PAIRED T-TEST FOR NOISY SPEECH VERSUS RASTA-EQUALISED SPEECH 

Noisy speech versus CMS-equalised speech  

SNR=40dB SNR=30dB SNR=20dB SNR=10dB 

Pearson correlation 0.6536 0.7844 0.2632 0.793 

t stat 1.0476 0.5571 -0.7121 -0.5571 

P(T<=t) one-tail 0.1611 0.2955 0.2472 0.2955 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.3221 0.5911 0.4945 0.5911 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 

 

Comparison of the results for the noisy speech and the RASTA equalised 

speech in Table 5.14 indicate that at SNR values of 40 dB and 30 dB the RASTA 

processing shows small statistically insignificant decline in the average recognition 

rate, however, at SNR values of 20 dB and 10 dB, there is a small increase of the 

average recognition rate due to the RASTA processing. 
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As indicated in Table 5.14, for all tested values of SNR, the RASTA 

processing method produces higher average recognition rates compared to the CMS 

method. 

In summary, both the RASTA and CMS methods produced improvements in 

the average recognition rates for the low cutoff frequencies of the filtered speech and 

for the low SNR values of the noisy speech.  

The levels of improvements for RASTA were higher than for CMS 

particularly with corruption due to additive noise as was expected from the theory 

saying that RASTA took this sort of distortion into account rather than just 

compensating for convolutional distortion (filtering) alone. 

Unfortunately, for low pass filtered speech with higher cutoff frequencies 

both RASTA and CMS reduced the speaker recognition rates slightly. 
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5.7.7 Using CMA Algorithm for Channel Equalisation 

 

 The CMA compensation algorithm was tested on speech corrupted by both a 

low pass filter as well as the addition of white noise. 

 The low pass filter impulse response used in these experiments was given as 

the vector: c = [0.04, -0.05, 0.07, -0.21, - 0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07], 

illustrated in Figure 5.36 and amplitude response illustrated in Figure 5.37. 

As illustrated in Figure 5.37 the cutoff frequency of the low pass filter was 

about 7500 Hz. 

 

Figure 5.36: Channel impulse response used in channel simulation for CMA 

algorithm 
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Figure 5.37: Channel amplitude response used in channel simulation for CMA 

algorithm 

  

The level of noise used in the channel simulation had the SNR values of 10, 

20, 30 and 40 dB. When using SNR values below 20 dB, the speech-silence-noise 

detection algorithm was disables to prevent all the speech being deleted (section 

5.7.2). 
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5.7.7.1 CMA compensation results for the low pass filtered and noisy speech  

 

Tables 5.17 and 5.18 shows the summary of speaker recognition results 

obtained for noisy speech and the results using the CMA compensation algorithm. 

Figures 5.38 through to 5.41 show the individual results for the noisy speech with 

Signal-to-Noise Ratios of 40 dB, 30 dB, 20 dB and 10 dB respectively. 

The recognition rates in Figures 5.38 through to 5.41 and Tables 5.17 and 

5.18 represent the percentage of correct classifications obtained over all tested 

speech samples. 

 

TABLE 5.17: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED 

WITH THE CMA ALGORITHM. 

Signal – to – Noise Ratio  

40 dB 30 dB 20 dB 10 dB 

Average without compensation 66% 58% 40% 26% 

Average using CMS 38% 30% 10% 4% 

Average using RASTA Processing 56% 54% 48% 30% 

Average using CMS Algorithm 56% 52% 52% 8% 
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TABLE 5.18: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED 

WITH THE CMA ALGORITHM. 

Signal – to – Noise Ratio Speaker 

number 40 dB 30 dB 20 dB 10 dB 

1 80% 80% 80% 0% 

2 100% 80% 80% 20% 

3 80% 80% 100% 0% 

4 0% 0% 0% 0% 

5 80% 60% 40% 0% 

6 80% 80% 60% 0% 

7 20% 20% 20% 0% 

8 60% 20% 40% 0% 

9 60% 80% 100% 60% 

10 0% 20% 0% 0% 

average 56% 52% 52% 8% 
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Figure 5.38: Percentage of speakers recognised from CMA equalised speech with 

additive noise (SNR = 40 dB) 
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Figure 5.39: Percentage of speakers recognised from CMA equalised speech with 

additive noise (SNR = 30 dB) 
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Figure 5.40: Percentage of speakers recognised from CMA equalised speech with 

additive noise (SNR = 20 dB) 
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Figure 5.41: Percentage of speakers recognised from CMA equalised speech with 

additive noise (SNR = 10 dB) 

As discussed in Section 5.7.1, at high cutoff frequencies (above 6 kHz), the 

recognition rates are similar to these for clean speech, thus the CMA results in this 

experiment were expected to be affected mostly by the addition of noise and were 

compared to the results for noisy speech from Section 5.7.2. 

The results of the paired t-test for the recognition rates based on 

uncompensated noisy speech versus the recognition rates based on the CMA-

equalised speech are given in Table 5.19. 

 

TABLE 5.19: PAIRED T-TEST FOR NOISY SPEECH VERSUS CMA-EQUALISED SPEECH 

 

 

Noisy speech versus CMA-equalised speech  

SNR=40dB SNR=30dB SNR=20dB SNR=10dB 

Pearson correlation 0.8836 0.7758 0.3746 0.6185 

t stat 1.86052 0.8182 -0.97 2.2119 

P(T<=t) one-tail 0.04787 0.2172 0.1786 0.0271 

t critical one-tail 1.8331 1.8331 1.8331 1.8331 

P(T<=t) two-tail 0.09573 0.4344 0.3572 0.0543 

t critical two-tail 2.2622 2.2622 2.2622 2.2622 
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Comparison on the results in Tables 5.17 through to 5.19 show that as the 

SNR value increased so did the accuracy of the speaker recognition system. 

The results in Table 5.17 and Table 5.19 show that only for SNR=20 dB does 

the CMA algorithm give a higher recognition rate compared to uncompensated noisy 

speech, however, this improvement is statistically insignificant.  
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Chapter 6 – Conclusions and Future Research 

Directions  

 

6.1 Introduction 
 

The experiments presented in this thesis investigate the effects of channel 

distortion on the average speaker recognition rates and testing the effectiveness of 

various channel compensation algorithms designed to mitigate these channel effects. 

The speaker recognition system was simulated using a basic recognition 

algorithm consisting of the following components: speech analysis calculating 

feature vectors in the form of Mel-Frequency Cepstral Coefficients and the 

classification component based on the minimum distance algorithm. 

 

Two types of channel distortion were investigated: 

• Convolutional (or low pass filtering) effects, 

• Addition of white Gaussian noise. 

 

Three types of channel compensation algorithms were tested: 

• Cepstral Mean Subtraction (CMS), 

• RelAtive SpecTrAl (RASTA) Processing, 

• Constant Modulus Algorithm (CMA). 

 

 

6.2 Effects of Low Pass Filtering on Recognition rates  
 

 The results show that for low pass filtering the speech segments there is no 

significant difference in the mean recognition rates between the clean speech and the 

low pass filtered speech with cutoff frequencies of 7, 6 and 5 kHz. For speech 

filtered with low pass filter cutoff frequencies below 5 kHz, the average recognition 

rates for the filtered speech drops significantly to a zero recognition rate.   

 It indicates that the spectral features of speech above 5 kHz do not play an 

important role in the process of speaker recognition. This result would be expected as 

human conversational speech has an upper frequency limit of approximately 5 kHz; 
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therefore it is likely that only speech characteristics at frequencies below 5 kHz are 

used in speaker recognition by humans. 

 

6.3 Effect of white Gaussian noise on speaker recognition 

rates 

 

The speaker recognition tests based on noisy speech showed that a gradual 

decrease in the SNR from 40 dB to 10 dB resulted in a systematic reduction of 

average recognition rates.   

For all values of SNR the speaker recognition rates for noisy speech were 

lower than those for clean speech. The decline in recognition rates were statistically 

significant for SNR less than or equal to 30 dB  

For situations where there is a high level of noise distorting the speech these 

experiments showed that a compensation method would be needed for an effective 

recognition rate to be achieved.  

 

6.4 Results of Cepstral Mean Subtraction Compensation 

 

6.4.1 CMS compensation of low pass filtered speech 

 

A comparison of the results obtained from the experiments using no 

compensation methods and experiments using CMS to compensate for low pass 

filtering indicate that at frequencies of 5 kHz, 6 kHz and 7 kHz there was a decline in 

the average recognition rate after compensation with a statistically significant value 

at 6 kHz. This result could have occurred due to the CMS algorithm removing the 

natural mean in the speech due to speaker variability in addition to removing the 

convolutional effects caused by the low pass filters. 

  For low pass filters with cutoff frequencies below 5 kHz, the average 

recognition rates after CMS compensation were higher than before compensation. 

The increase of the average speaker recognition rates due to the CMS compensation 

was statistically significant for the cutoff frequencies of 3 kHz and 4 kHz. 

 The Cepstral Mean Subtraction compensation method proved to compensate 

very well for the effects of low cutoff frequencies (below 4 kHz). CMS does not 
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seem to compensate well for the low pass filtering effects with the cutoff frequencies 

above 4 kHz.  

 

6.4.2 CMS compensation of noisy speech 

 

Comparison of the speaker recognition rates for uncompensated noisy speech 

and noisy speech with CMS compensation indicates that for all tested SNR values 

there was a decline in the average recognition rates. 

 Over all SNR values, the decrease of the average speaker recognition rates 

was statistically significant.  

It was found that that the CMS channel compensation algorithm is ineffective 

in noisy situations and does not improve the average speaker recognition rates. 

 

6.5 Results of RASTA compensation 

 
6.5.1 RASTA compensation of Low Pass filtered speech 

 

A comparison of the results obtained from the experiments of uncompensated 

low pass filtered speech and experiments using RASTA processing to compensate 

for low pass filtering indicate that at cutoff frequencies of 7 kHz, 6 kHz and 5 kHz, 

the RASTA method shows a decline in the average recognition rates with a 

statistically significant decrease at 6 kHz. At the lower cutoff frequencies of 4 kHz 

and 3 kHz, there is a statistically significant increase of the average recognition rates 

after RASTA processing.  

It was also observed that, for all of the tested values of cutoff frequencies 

RASTA processing performed better than the CMS compensation method.   

 

6.5.1 RASTA compensation of noisy speech 

 A comparison of the results obtained from the experiments of uncompensated 

noisy speech and experiments using RASTA processing to compensate for white 

Gaussian noise indicate that, at SNR values of 40 dB and 30 dB the RASTA 

processing method shows a small and statistically insignificant decline in the average 

recognition rates, however at SNR clues of 20 dB and 10 dB, there is a small, also 
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statistically insignificant increase of the average recognition rate after RASTA 

processing. 

 Additionally it was observed that for all tested values of SNR, the RASTA 

compensation method produced a higher recognition rate compared to the CMS 

compensation method. 

 

6.6 Results of Constant Modulus Algorithm on noisy speech 
 

The tests of the CMA compensation for noisy speech showed that at only 

SNR = 20 dB was there any improvement in recognition rates compared to the 

uncompensated noisy speech, however this improvement was found to be statistically 

insignificant.  

 

6.7 Comparison of methods and summary 
 

 In summary, out of the three different channel compensation methods 

analysed it was shown that both RASTA and the CMS method produced 

improvements in the average speaker recognition rates for the low cutoff frequencies 

(4 kHz and 3 kHz) compared to the low pass filtered speech without compensation. 

The levels of improvements due to RASTA compensation were higher than the 

levels of improvements due to the CMS compensation method. 

Neither the CMS or RASTA methods were able to improve the accuracy of 

the speaker recognition system for cutoff frequencies of 5 kHz, 6 kHz or 7 kHz. 

In the case of noisy speech, all methods analysed were unable to compensate 

for high SNR of 40 dB and 30 dB and only RASTA processing was able to 

compensate and improve the average recognition rates for speech corrupted with a 

high level of noise (SNR of 20 dB and 10 dB).  

 

6.8 Future research directions 
 

Future research directions stemming from this research could include testing 

the channel equalisation methods from this work using more complex speaker 

recognition classifiers such as using Vector Quantisation (VQ), Gaussian Mixture 

Models (GMM) or the Hidden Markov Models (HMM) which are much more 
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complicated classifiers than the minimum distance classifier used in these 

experiments. These methods also rely on statistical rules for classification which 

could increase the performance of the system.  

The impact of illness, age, prosthetics as well as many other problems that 

can affect the shape of the oral cavity and vocal tract is also another area that could 

be researched to aid in improving speaker recognition and verification systems.  

Another field stemming from the work is on the transmission of speech 

through wireless channels includes implementing modulation algorithms and 

compression schemes on the testing speech in addition to the channel simulations 

completed in this research. This could be a beneficial area of research since wireless 

communication systems are being used on a much wider scale and use modulation 

and compression schemes on the data for transmission, which could cause potential 

errors in frequency information stored in speech in addition to the distortion 

occurring from the channel analysed in this work. 
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Appendix A – Source Code   
 

A.1 Training 
 

A.1.1 Preprocessing 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This code: loads wav files, pre-emphasises, removes silence from and saves  

%  these as 1 second long files ready for the feature extraction phase 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

A=10; %Number of speakers 

 

for i=1:A 

    clear silence result 

    string1 = 'speaker'; 

    string2=num2str(i); 

    string3 = '.wav'; 

    string4=[string1 string2 string3]; 

    [x,fs,bits]=wavread(string4); %Input speech 

     

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Filtering Signal with pre-emphasis filter  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

    v=preemph(x); 

     

    N=length(x); 

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Speech/Silence Detection 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

    u=abs(v); 

    maxlevel=max(u); %Maximum speech input into system  

     

        Bs=0.9992; %Decay time constant for speech metric 

        Bn=0.99722; %Decay time constant for noise metric 

        Bt=0.999975; %Decay time constant for silence metric  

 

    %Speech Metric 

    s(1)=u(1); 

 

    for k=2:N 

        if u(k) > s(k-1) 

            s(k)=u(k); 

        else 

            s(k)=((1-Bs)*u(k))+(Bs*s(k-1)); 
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        end 

    end 

 

    %Noise Metric 

    n(1)=u(1); 

 

    for k=2:N 

        if u(k) > n(k-1) 

            n(k)=u(k); 

        else 

            n(k)=((1-Bn)*u(k))+(Bn*n(k-1)); 

        end 

    end 

 

    %Silence Metric 

 

    tn(1)=u(1); 

   

    for k=2:N 

        if tn(k-1) < n(k)  

            tn(k)= ((1-Bt)*n(k))+(Bt*tn(k-1)); 

        else 

            tn(k) = n(k); 

        end 

    end 

     

        Ths= 4; %Speech Threshold 

        Thn= 2.828; %Noise Threshold 

        Tmin= 0.001; 

 

    %Speech/silence decision 

    for k=1:N 

        if s(k) > Ths*tn(k)+Tmin 

            result(k)=1; 

        end 

        if s(k) < Thn*tn(k)+Tmin | tn(k)==0 

            result(k)=0; 

        end 

        if Thn*tn(k)+Tmin <= s(k) <= Ths*tn(k)+Tmin 

            result(k)= 0; 

        end 

    end 

 

    silence=find(result==0); 

     

    %v(silence)=[]; %Removes silence from pre-emphasised speech 

    N=length(v); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %Splitting the speech into 1 second long files  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    for k=fs:fs:N 

        y=v((k-(fs-1)):k); 

        string5=num2str((k/fs),'%02d'); 

        string6='preprocessed'; 

        str=[string6 string2 string5 string3]; 

        wavwrite(y,fs,str) 

    end 

end 

 

A.1.2 Pre-Emphasis Filter Algorithm 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%This function pre-emphasises speech with high-pass filter:  v(k)=x(k)-0.95x(k-1) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function y = preemph(x) 

 

N=length(x); 

a=15/16; 

y(1)=x(1); 

for k=2:N 

    y(k)=x(k)-a*x(k-1); 

end 

 

A.1.3 Feature Extraction 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This code takes in 1 second wav files produced in preprocess.m, extracts the Mel-

Frequency Cepstral Coefficients and saves these as dat files to be used in classifier 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear 

A=20; %Number of speakers 

a=20; %Number of seconds per speaker 

Coef=20; %Number of Cepstral Coefficients 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Signal input 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for i=1:A 

     

    string1 = 'd:\katrina\research\Training\textindepend\speaker'; %this creates 

constant part of filename 

    string2 = num2str(i); %this converts number i into a string 
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    for k=1:a 

        string3 = num2str(k,'%02d'); 

        string4 = '.wav'; %this adds the file extension to the filename 

        string5=[string1 string2 string3 string4]; %this concatenates the four strings into 

one string 

        [x,fs,bits]=wavread(string5); %Input speech 

        fs=11000; 

        N=length(x); 

        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %Extracting Mel-Cepstral Coefficients    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        

        signal_duration=N;  

        window_length=0.02*fs; %length of window (should be 20ms) 

        window_overlap=0.01*fs; %overlap of frames (should be 10ms) 

        ceps=mfcc_1(x,window_overlap,window_length,Coef,12000); 

         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %Saving Mel-Frequency Coefficients    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

        string6='.dat'; 

        string7= [string1 string2 string3 string6]; 

        fid = fopen(string7,'w'); 

 

        for n=1:Coef 

            fprintf(fid,'%4.6f ',ceps(n,:)); 

            fprintf(fid,'\n'); 

        end 

    end 

    fclose('all'); 

end 

 

A.1.4 Mel-Frequency Cepstral Coefficient Algorithm 
 

% mfcc.m 

% Calculates cepstral coefficients for sequence y, using window length N,  

% window step size M (for overlap between blocks), and order P (= number of cep  

% coeff's wanted). 

 

function ccep=mfcc_1(y,M,N,P,fs); 

Nt=length(y); % total speech length 

N2=N/2; 

F=fs/N; % frequency step 

f=F*(-N2:N2-1); % frequency vector for one block 

H=zeros(20,N);Le=zeros(1,20);coef=zeros(P,ceil(Nt/N));ccep=zeros(1,P); 

%............................................. 

% % Start & end of trianglar filters 

% Formula used is: Mel(f)=2595*log10(1+f/700) with Range of 4000 Hz. 
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fo = [0 69 146 231 324 426 539 663 799 949 1113 1295 1494 1713 1954 2219 2511 

2832 3185 3573]; 

fe = [146 231 324 426 539 663 799 949 1113 1295 1494 1713 1954 2219 2511 2832 

3185 3573 4000 4469]; 

%............................................. 

fc=fo+(fe-fo)/2; % centers of filters 

B=fe-fo; % band-widths 

for k=1:20 

    Box1=stepfun(f,fo(k))-stepfun(f,fe(k)); 

    Box2=stepfun(f,-fe(k))-stepfun(f,-fo(k)); 

    H(k,:)=abs(1-abs(f-fc(k))/(B(k)/2)).*Box1+abs(1-abs(f+fc(k))/(B(k)/2)).*Box2; % 

k-th +ve/-ve triangle 

end 

% for k=1:20 

%     H(k,:)=abs(1-(f-fc(k))/(2*B(k))).*(stepfun(f,fo(k))-stepfun(f,fe(k)))+abs(1-

(f+fc(k))/(2*B(k))).*(stepfun(f,-fe(k))-stepfun(f,fo(k))); % k-th +ve/-ve triangle 

% end 

%............................................. 

 

 

ns=1; %start point 

ne=N; %end point 

m=1; 

while ne <= Nt 

    ym=y(ns:ne); % m-th block 

    yw=hamming(N).*ym; % windowed m-th block 

    Yw=abs(fftshift(fft(yw)))/fs; 

 

for j=1:20 % mel filters outputs 

Yf(j,:)=H(j,:).*Yw.';  

Ef=sum(Yf(j,:).^2); % Energy o/p of j-th filter 

Le(j)=log(Ef); % log-energy output of the j-th filter 

end 

 

V=[1:20]; 

for i=1:P  % P is the number of coeff required 

 coef(i,m)=sum(Le.*cos(i*(V-.5)*pi/20)); 

end 

 

m=m+1; 

ns=1+(m-1)*M; % new start 

ne=ns+N-1; % new end 

end; % go back for a new frame (block) 

 

ccep= coef; 
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A.1.5 Averaging the Features 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This code takes in Mel-frequency cepstral coefficients from each speaker and 

calculates the average of the feature vectors over multiple analysis frames.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear, clc 

 

A=10; %Number of Speakers 

a=10; %Number of seconds per speaker 

Coef=20; %Number of Cepstral Coefficients 

 

for j=1:A 

 

    for i=1:a 

  

    

        string1='d:\katrina\research\training\textindepend\'; 

        string2='speaker'; 

        string3=num2str(j); 

        string4=num2str(i,'%02d'); 

        string5='.dat'; 

        string6=[string1 string2 string3 string4 string5]; 

        load (string6) 

     

    end 

     

if j==1 

     speaker = [speaker101 speaker102 speaker103 speaker104 speaker105 

speaker106 speaker107 speaker108 speaker109 speaker110];  

     

 elseif j==2 

     speaker = [speaker201 speaker202 speaker203 speaker204 speaker205 

speaker206 speaker207 speaker208 speaker209 speaker210];  

      

 elseif j==3 

     speaker = [speaker301 speaker302 speaker303 speaker304 speaker305 

speaker306 speaker307 speaker308 speaker309 speaker310];  

      

 elseif j==4 

     speaker = [speaker401 speaker402 speaker403 speaker404 speaker405 

speaker406 speaker407 speaker408 speaker409 speaker410];  

      

 elseif j==5 

     speaker = [speaker501 speaker502 speaker503 speaker504 speaker505 

speaker506 speaker507 speaker508 speaker509 speaker510];  

      

 elseif j==6 
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     speaker = [speaker601 speaker602 speaker603 speaker604 speaker605 

speaker606 speaker607 speaker608 speaker609 speaker610];  

     

 elseif j==7 

     speaker = [speaker701 speaker702 speaker703 speaker704 speaker705 

speaker706 speaker707 speaker708 speaker709 speaker710]; 

      

 elseif j==8 

     speaker = [speaker801 speaker802 speaker803 speaker804 speaker805 

speaker806 speaker807 speaker808 speaker809 speaker810];  

      

 elseif j==9 

     speaker = [speaker901 speaker902 speaker903 speaker904 speaker905 

speaker906 speaker907 speaker908 speaker909 speaker910];  

      

 elseif j==10 

     speaker = [speaker1001 speaker1002 speaker1003 speaker1004 speaker1005 

speaker1006 speaker1007 speaker1008 speaker1009 speaker1010];  

      

 

for i=1:Coef 

    avg(:,i)=mean(speaker(i,:)); 

end 

 

        string7='mean'; 

        string8= [string1 string7 string3 string5]; 

        fid = fopen(string8,'w'); 

for n=1:Coef 

    fprintf(fid,'%4.6f ',avg(:,n)); 

end 

fclose('all'); 

end 
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A.2 Testing 
 

A.2.1 Minimum Distance Classifier Algorithm 

 

clear, clc 

A=10; %Number of trained speakers 

Coef=20; %Number of Cepstral Coefficients 

 

string1='d:\katrina\research\testing\textindepend\AvFeatVec\'; 

 

for i=1:A 

    string2='mean'; 

    string3=num2str(i); 

    string4='.dat'; 

    string5=[string1 string2 string3 string4]; 

    load(string5) 

end 

 

results(1,20)=zeros; 

 

for i=1:A 

    string6= 'testmean'; 

    string7 = num2str(i); 

    string8= [string1 string6 string7 string4]; 

    meantestsamp = load(string8); 

 

C2=(1/(Coef))*sum((mean2(1:Coef)-meantestsamp(1:Coef)).^2); 

C3=(1/(Coef))*sum((mean3(1:Coef)-meantestsamp(1:Coef)).^2); 

C4=(1/(Coef))*sum((mean4(1:Coef)-meantestsamp(1:Coef)).^2); 

C5=(1/(Coef))*sum((mean5(1:Coef)-meantestsamp(1:Coef)).^2); 

C6=(1/(Coef))*sum((mean6(1:Coef)-meantestsamp(1:Coef)).^2); 

C7=(1/(Coef))*sum((mean7(1:Coef)-meantestsamp(1:Coef)).^2); 

C8=(1/(Coef))*sum((mean8(1:Coef)-meantestsamp(1:Coef)).^2); 

C9=(1/(Coef))*sum((mean9(1:Coef)-meantestsamp(1:Coef)).^2); 

C10=(1/(Coef))*sum((mean10(1:Coef)-meantestsamp(1:Coef)).^2); 

 

 

C=[C1 C2 C3 C4 C5 C6 C7 C8 C9 C10]; 

[g,Speaker]=min(C); 

results(1,i)=i; 

results(2,i)=Speaker; 

end 

results
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Appendix B – Test Results 
 

Results with no Equalisation/Compensation 

 
      LPFs Noise 
Speaker 

# Gender Clean 3kHz 4 kHz 5 kHz 6 kHz 7 kHz 10 dB 20 dB 30 dB 40 dB 

                        

1 M 100% 0% 0% 40% 80% 80% 0% 40% 80% 80% 

2 F 100% 0% 0% 100% 100% 100% 100% 100% 100% 100% 

3 F 100% 0% 0% 100% 100% 80% 20% 20% 80% 80% 

4 M 0% 0% 0% 60% 20% 0% 0% 60% 0% 0% 

5 M 100% 0% 0% 60% 100% 100% 20% 20% 100% 100% 

6 M 60% 0% 0% 60% 80% 80% 0% 20% 40% 60% 

7 F 60% 0% 0% 60% 60% 60% 0% 0% 20% 60% 

8 F 80% 0% 0% 0% 80% 80% 20% 40% 60% 80% 

9 M 60% 0% 0% 80% 80% 80% 60% 80% 80% 80% 

10 F 20% 0% 0% 20% 20% 40% 40% 20% 20% 20% 

            

Channel Compensation with Cepstral Mean Subtraction     

            

  LPFs Noise  
Speaker 

# Gender 3kHz 4 kHz 5 kHz 6 kHz 7 kHz 10 dB 20 dB 30 dB 40 dB  

                       

1 M 60% 20% 0% 40% 80% 0% 20% 80% 80%  

2 F 0% 0% 0% 0% 0% 0% 0% 0% 0%  

3 F 0% 80% 100% 100% 100% 0% 0% 40% 60%  

4 M 0% 20% 40% 40% 20% 40% 60% 20% 40%  

5 M 0% 100% 100% 100% 100% 0% 0% 20% 60%  

6 M 100% 80% 60% 60% 80% 0% 0% 40% 40%  

7 F 20% 20% 80% 60% 60% 0% 0% 60% 80%  

8 F 0% 60% 80% 40% 40% 0% 0% 40% 20%  

9 M 40% 0% 0% 0% 0% 0% 20% 0% 0%  

10 F 0% 0% 0% 0% 0% 0% 0% 0% 0%  

            

Channel Equalisation with 

CMA         

            

  Noise       
Speaker 

# Gender 10 dB 20 dB 30 dB 40 dB       

                  

1 M 0% 80% 80% 80%       

2 F 20% 80% 80% 100%       

3 F 0% 100% 80% 80%       

4 M 0% 0% 0% 0%       

5 M 0% 40% 60% 80%       

6 M 0% 60% 80% 80%       

7 F 0% 20% 20% 20%       

8 F 0% 40% 20% 60%       

9 M 60% 100% 80% 60%       

10 F 0% 0% 20% 0%       
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Channel Compensation with RASTA Processing      

            

    LPFs Noise  
Speaker 

# Gender 3kHz 4 kHz 5 kHz 6 kHz 7 kHz 10 dB 20 dB 30 dB 40 dB  

                       

1 M 0% 60% 60% 60% 80% 0% 60% 60% 80%  

2 F 0% 80% 80% 80% 80% 100% 80% 100% 80%  

3 F 0% 80% 100% 100% 100% 20% 60% 80% 100%  

4 M 0% 0% 0% 0% 0% 0% 0% 0% 0%  

5 M 0% 80% 100% 100% 100% 20% 40% 80% 100%  

6 M 100% 80% 80% 80% 80% 60% 60% 80% 80%  

7 F 0% 20% 40% 40% 20% 0% 60% 40% 0%  

8 F 0% 40% 40% 40% 40% 0% 20% 20% 20%  

9 M 100% 80% 40% 40% 60% 80% 80% 60% 60%  

10 F 60% 40% 40% 20% 40% 20% 20% 20% 40%  
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Appendix C – Formulas and Tables 
 

C.1 Mel-Scale Filters 
 

Range (Hz) 4000    

Mel Range 2146.06    

Mel increments 107.30    

 Mel-scale Linear scale 

Filter Start Finish Start Finish 

1 0.00 214.61 0.00 146.83 

2 107.30 321.91 69.92 231.43 

3 214.61 429.21 146.83 324.47 

4 321.91 536.52 231.43 426.80 

5 429.21 643.82 324.47 539.36 

6 536.52 751.12 426.80 663.16 

7 643.82 858.43 539.36 799.33 

8 751.12 965.73 663.16 949.10 

9 858.43 1073.03 799.33 1113.84 

10 965.73 1180.34 949.10 1295.02 

11 1073.03 1287.64 1113.84 1494.31 

12 1180.34 1394.94 1295.02 1713.50 

13 1287.64 1502.25 1494.31 1954.59 

14 1394.94 1609.55 1713.50 2219.77 

15 1502.25 1716.85 1954.59 2511.43 

16 1609.55 1824.15 2219.77 2832.22 

17 1716.85 1931.46 2511.43 3185.06 

18 1824.15 2038.76 2832.22 3573.15 

19 1931.46 2146.06 3185.06 4000.00 

20 2038.76 2253.37 3573.15 4469.49 

)
700

1(log2595)( 10

f
fMel +=
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