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Abstract:

This thesis attempts to address the problem of how best to remedy different
types of channel distortions on speech when that speech is to be used in automatic
speaker recognition and verification systems.

Automatic speaker recognition is when a person’s voice is analysed by a
machine and the person’s identity is worked out by the comparison of speech
features to a known set of speech features. Automatic speaker verification is when a
person claims an identity and the machine determines if that claimed identity is
correct or whether that person is an impostor.

Channel distortion occurs whenever information is sent electronically through
any type of channel whether that channel is a basic wired telephone channel or a
wireless channel. The types of distortion that can corrupt the information include
time-variant or time-invariant filtering of the information or the addition of ‘thermal
noise’ to the information, both of these types of distortion can cause varying degrees
of error in information being received and analysed.

The experiments presented in this thesis investigate the effects of channel
distortion on the average speaker recognition rates and testing the effectiveness of
various channel compensation algorithms designed to mitigate the effects of channel
distortion.

The speaker recognition system was represented by a basic recognition
algorithm consisting of: speech analysis, extraction of feature vectors in the form of
the Mel-Cepstral Coefficients, and a classification part based on the minimum
distance rule.

Two types of channel distortion were investigated:

¢ Convolutional (or lowpass filtering) effects
e Addition of white Gaussian noise
Three different methods of channel compensation were tested:
e (Cepstral Mean Subtraction (CMS)
e RelAtive SpecTrAl (RASTA) Processing
e Constant Modulus Algorithm (CMA)

iv



The results from the experiments showed that for both CMS and RASTA
processing that filtering at low cutoff frequencies, (3 or 4 kHz), produced
improvements in the average speaker recognition rates compared to speech with no
compensation. The levels of improvement due to RASTA processing were higher
than the levels achieved due to the CMS method.

Neither the CMS or RASTA methods were able to improve accuracy of the
speaker recognition system for cutoff frequencies of 5 kHz, 6 kHz or 7 kHz.

In the case of noisy speech all methods analysed were able to compensate for
high SNR of 40 dB and 30 dB and only RASTA processing was able to compensate
and improve the average recognition rate for speech corrupted with a high level of

noise (SNR of 20 dB and 10 dB).
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Chapter 1 - Introduction

1.1 Problem Statement

With security of personal details becoming more and more of an issue for people in
today’s society people want companies to make sure the best possible preventative measures
are in place to prevent the possibility of identity fraud occurring.

Telephone banking in particular is becoming more and more popular, the potential
issues with this type of banking is the relative ease in which people can break into the system
if a password is leaked and gets into the wrong hands.

Banking customer’s are expecting more and more security to be introduced to try and
prevent this from occurring, possible solutions being researched and implemented are
biometric ‘fingerprints.” One biometric ‘fingerprint’ that could be particularly useful over the
telephone is Speaker Recognition and Speaker Verification.

Speaker Recognition is the process of a machine recognising who a person is from
their voice by comparing the unique features in that person’s voice to a database of features
from known speakers. The theory behind Speaker Recognition is that by just listening to
people’s voices humans are able to recognise who a person is (assuming they have heard their
voice before in the past). Therefore if humans can recognise people from their voices so, in
theory, should machines, if certain unique features can be isolated and used by the machine
for comparison [1],[2]. Speaker verification on the other hand is the process of a machine
ensuring a person is who they say they are by statistically comparing the speaker’s voice to
the voice of the person they claim to be and calculating the probability that they belong to the
same person [3],[4]. Again this is something humans are capable of doing, so in theory
machines should also be able to do it too, and very possibly improve upon the accuracy of
verification.

The main problem with these processes when used in conjunction with a telephone
and a telephone channel is the effect channel distortion has on the features in a person’s voice.
Telephone channels remove the frequencies stored in a person’s voice, above 3 KHz and
below 300 Hz, so when listening to a person speaking on a telephone the speech tends to
sound different to what it would in a face to face situation. This effect is also evident when
trying to process speech using a computer. Automatic speaker recognition is primarily based
on frequency-domain analysis, therefore any loss of this frequency information can
effectively destroy the speaker recognition, speaker verification and many other speech

processing applications.



For the effective use of speaker recognition technologies these effects need to be
mitigated before the technologies can be accepted by companies and the general public.

This research attempts to improve upon the already existing technologies already out
there and compare what methods of speech enhancement are already in the field to attempt to

mitigate the effects of Channel distortion on speech features.

1.2 Contribution of the Thesis

This thesis analyses different channel compensation and equalisation methods that
could be used in speaker recognition and verification systems when speech is sent through
channels. Channel distortion is a major problem for these types of systems since only the
smallest amount of distortion to speech can potentially cause unique features in a person’s
voice to be changed and necessary information for recognition destroyed.

One of the channel equalisation methods studied in the experiments, namely the
Constant Modulus Algorithm (CMA), is a channel equalisation method not specifically aimed
at speaker recognition systems. Unlike the other two channel compensation methods
researched and implemented in this thesis (the Cepstral Mean Subtraction algorithm and the
RASTA processing method) little research has been conducted on the CMA algorithm in
regards to the effect this algorithm could have on the Cepstral speech features extracted from
speakers and the potential improvements to the quality of speech this algorithm could provide
in these types of systems. This algorithm is of particular interest since it is also being used on
speech that has been converted into binary digits and sent over wireless channels, which is a
very practical application of this type of information.

This thesis attempts to shed light on the issues surrounding the effects channel
distortion has on the Cepstral features and hence the effects it has on speaker recognition
systems and attempts to compare the performance of the Constant Modulus Algorithm with
other very well known speech processing algorithms used for channel and microphone
distortion compensation in speaker recognition and verification systems. These methods

include Cepstral Mean Subtraction (CMS) and RelAtive SpecTrAl (RASTA) Processing.



1.3 Scope

This thesis studies different channel compensation and equalisation methods available
to effectively reduce errors in speech data sent over different channels for the purpose of
increasing accuracy of speaker recognition systems.

This research focuses on both direct channel equalisation, and channel compensation
during the feature extraction phase of the speaker recognition system. The block diagram of
the direct channel equalisation is illustrated in Figure 1.1. The block diagram of the channel

compensation applied after the feature extraction is illustrated in Figure 1.2.

Speaker —Hh et —> Speaker Recognition | Decision
pe |::> Channel | Channel Equalisation Lok ::)

Figure 1.1: Channel equalisation directly after channel (before data is entered into speaker

recognition system)

Decision

Speaker
e h
Charnel 1 Feature Extraction Channel_ Recagnition )
— Compensation ¥

Figure 1.2: Channel compensation during feature extraction phase of speaker recognition

system

The following three effects channels have on speech characteristics will be considered:
1. Addition of white (Gaussian) noise.
2. Convolutional channel distortion, and
3. Loss of frequency information due to channel band limiting (filtering).

The effectiveness of the channel compensation techniques will be tested on a speaker
recognition system, where the speech features extracted from an unknown speaker will be
compared with a set of known speaker’s features. It will be assumed that the same type of
channel equalisation technology could be implemented in a speaker verification system since
the feature extraction phase is almost identical in both cases, and the changes occur in the
classification and recognition phases of the two systems.

Other factors that can affect the quality of the features extracted from a person’s voice
include illness, aging, oral prosthetics and anything that alters the shape of the oral cavity [4].
The effects of these factors on speaker recognition are beyond the scope of this thesis, only

the channel effects on speaker recognition will be considered.



1.4 Outline of the Thesis

This thesis aims to analyse and evaluate the effects that channel distortion and noise
have on speaker recognition and verification systems. It also aims to evaluate algorithms used
for equalisation and compensation of the distorted speech in order to improve the
effectiveness of speaker recognition and verification systems over different channels.

This thesis will be laid out and presented in the following manner:

Chapter 2: Speaker Recognition and Verification Theory Overview.

In this chapter, current technologies used in speaker recognition and verification
systems will be reviewed. Firstly the differences between the two systems will be discussed
and then the potential applications of these systems will be presented.

The block diagrams containing the main components of these two systems will be
presented. The individual components of these block diagrams will be discussed in detail.

The purpose of the pre-processing of speech before feature extraction will be
explained and common pre-processing algorithms will be presented and discussed.

Speech activity detection will be presented and the role it plays in the efficiency of a
speech processor will be discussed. Two different approaches to speech activity detection will
be analysed and the strengths and weaknesses these algorithms will be listed.

Feature extraction algorithms including the Mel-Cepstral Coefficients will be then
discussed. It will be explained what these features represent and why they are useful for
identification and verifications of people from their voices.

Finally the speaker classification algorithm will be discussed, this being the

Minimum-Distance classification algorithm.

Chapter 3: Channel Effects and Equalisation Techniques

In this chapter the main types of channel effects on speech will be discussed. It will be
explained how these effects could corrupt information contained in speech.

Several different channel equalisation algorithms described in the literature will be
introduced.

The discussed channel equalisation methods will include Cepstral Mean Subtraction
and RASTA methods, which are techniques specifically used in speaker recognition and

verification.



These techniques will be discussed in detail and their strengths and weaknesses
analysed. In particular it will be explained how these algorithms function in different speech
processing applications and for what kinds of distortions these algorithms are designed to

work the best.

Chapter 4: Speaker Recognition using Blind Channel Equalisation Methods.

This chapter will discuss the concept of blind channel equalisation, what it is and what

it means to speech processing.

Two commonly used blind channel equalisation algorithms will be introduced; the
Least Mean-Squared (LMS) algorithm and the Constant Modulus Algorithm. It will be
discussed how these algorithms can be applied to channel equalisation in speaker verification
and recognition applications. These algorithms are used in general channel equalisation for

many types of channel transmitted information and many purposes.

Chapter 5: Experiment and Results.

This chapter will firstly discuss the experimental design, software and algorithms used
in this study.

The source of the speech data, size of the speech database, language and gender of
speakers will be explained.

The different channel compensation methods used in this study will be discussed. The
structure of the algorithms used will be outlined with important information about the
programming of the system.

The second part of this chapter will present the results obtained from the experiments
based on the proposed speaker recognition system and the channel compensation methods
discussed in Chapters 3 and 4. Graphs showing the recognition rate for each speaker used in

the experiments will be included.

Chapter 6: Conclusions and Future Research Directions.
In this chapter research summary and concluding remarks will be presented as well as

future research directions stemming from this research.



Chapter 2 - Speaker Recognition and Verification
Theory Overview

2.1 Introduction

Speaker recognition and verification is becoming an increasingly important
area of research of recent times with public security becoming more and more of a
concern. Both speaker recognition and verification systems have potential use in
different areas of public security with speaker recognition determining a person’s
identity from a known set of speakers and speaker verification on determining
whether a person is who they claim to be by working out the probability of their
voice features belonging to the voice of person they are claiming to be or not.

A speaker recognition system has potential use in situations where only a
closed set of people are using the system. Possible applications include a person’s
voice being used to activate personal settings for, cars or computers where the
speaker recognition can be used to determine who is attempting to use the system.

A speaker verification system on the other hand could be potentially useful to
ensure security of telephone banking and telephone access to personal details from
organisations, particularly with the addition of text dependence into the system to
have the double security of a password plus the speaker dependent voice features.

In the following sections of this chapter the outline and components of the
speaker recognition and verification systems will be presented and each component
will be discussed with details. Different approaches realising these components will

be presented and their usefulness for different applications will be analysed.



2.2 General Speaker Verification System

Speaker Verification is a process of determining whether a person is who he
or she claims to be or an impostor [1].

This speaker verification system operates in the following way: In the
training phase, an average or Universal Background Model (UBM) containing the
features from the voices of people who are not the claimed speaker is created. The
features stored in the UBM are extracted from approximately 1-2 hours of speech
[5]. During this phase features are also extracted from the claimed speaker and the
characteristic model of the claimant is created. This phase is also called ‘enrolment’
into the system.

At the testing phase characteristic features are extracted from the claimant
(the unknown person), next the background model as well as the model of the
claimed speaker are combined and a likelihood ratio test is performed by the system.

A decision is then made by the system on whether the voice of the claimant is
of the person he or she claims to be or of someone else [4].

Block diagrams of the speaker verification training and testing phases are

illustrated in Figure 2.1 and Figure 2.2 respectively.
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Figure 2.1: Block diagram of speaker verification training phase
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Figure 2.2: Block diagram of speaker verification testing phase

2.3 General Speaker Recognition System

Speaker recognition or identification is a process of determining who a
person is from his or her voice features. This is achieved by comparing an unknown
speaker’s voice features to a database of known speakers and then determining
whose features match the unknown speakers features the closest [1].

The speaker recognition system operates in the following way: at the training
phase, features are extracted from all the people who are to use the system, these
features are then stored.

At the testing phase features are extracted from the unknown speaker and
compared to the features of all the system users stored in the database [2].

A decision is then made by the system about the unknown speaker’s identity.

The speaker recognition system is very similar to the speaker verification

system with only a few small differences. The block diagrams of the training and



testing phases of a speaker recognition system are shown in Figure 2.3 and Figure

2.4 respectively.
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Figure 2.3: Block diagram of speaker recognition/identification training phase
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Figure 2.4: Block diagram of speaker recognition/identification testing phase




2.4 Common Pre-Processing Methods

2.4.1 Pre-Emphasis Filter

Before extracting features from the speech it needs to be pre-processed to
remove any unwanted distortion such as a low frequency noise. This is achieved by
using a pre-emphasis filter. The pre-emphasis filter is used to emphasise the speech
frequency bands containing the first formants, which are essential for the speech
intelligibility [6]. A commonly used pre-emphasis filter in speech signal processing

is a first order high pass filter that has the transfer function of:

15

=]1——"7" 2.1
H(z)=1 6’ (2.1)

2.5 Speech Activity Detection (Speech / Silence Detection)
techniques

On average, speech utterances tend to consists of around 20%-25% silence,
these segments of silence appear at the start of the utterance as well as at the end of
the utterance, between words and also very small silence segments appear between
syllables in words [7]. Since silence segments contain no useful information about a
person’s identity, which is needed for speaker recognition, removing it should not
decrease the accuracy of a speaker recognition system and should improve the
overall efficiency of the system. Another downside of having silence in amongst the
speech needing to be processed is that keeping the silence takes up storage space and
increases the computational effort since features are extracted from the silence as
well as the speech. Therefore, it is essential to remove the silence intervals before
feature extraction takes place.

One issue with the speech / silence detection is the presence of a background
noise in speech recordings. The background noise can often make it difficult to
detect the start and endpoints of certain words and phrases, particularly when the
start or the end sound blends in with the background noise, such as, for example, the
sound of for v [8]. A speech processing algorithm therefore needs to be able to detect

silence intervals even when the silence intervals contain a background noise.
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Techniques derived for the purpose of speech-silence detection in the
presence of noise include algorithms designed to detect energy content in the signal,
rate of zero crossing of the signal and statistical rules of speech behaviour. Many of
these techniques can be adapted to account for changes in intensity of the noise but
their effectiveness can diminish when Signal to Noise Ratios fall below around 25 -

30 dB.

2.5.1 Rabiner and Sambur Algorithm

L. R. Rabiner and M. R. Sambur [8] proposed an algorithm to determine the
start and end-points of utterances. This algorithm requires that the first 100 ms of a
speech recording contain silence. The algorithm uses this time to calculate the zero
crossing rate and the short time energy of the silence segment so it can initialise the
system and set up appropriate threshold values for speech silence detection.

This algorithm determines the thresholds in the following manner. The short

time speech energy over 10 ms windows is calculated using the following equation:

E(n)= Y ls(n+i)l (2.2)

i==50

Where s(n) are the speech samples of the utterance being processed with the
sampling frequency assumed to be 10 kHz.

By using equation (2.2) the values of the peak energy within the speech
segments (IMX) and the energy during the 100 ms silence segment (IMN), can be
calculated and the energy thresholds can then be determined. The energy threshold

equations are shown in equations (2.3), (2.4), (2.5) and (2.6).

11=0.03*(IMX — IMN) + IMN (2.3)
12=4%IMN (2.4)

ITL = Min(11,12) (2.5)

ITU =5*ITL (2.6)

The zero-crossing rate is determined by the number of times per 10 ms that

the signal crosses zero during the silence segment, this value is then checked against

11



the zero-crossing rate of unvoiced speech (25 crossings per 10 ms) to determine what

zero-crossing threshold should be used. This is achieved from the equation (2.7) [8]:

IZCT = Min(IF ,1ZC + 20 ,,,.) 2.7)

Where IF is the zero-crossing rate of unvoiced speech, IZC is the mean zero-
crossing rate during the silence and oyzc is the standard deviation of the zero-
crossing rate during the silence.

Figure 2.5 shows a flowchart of the way this algorithm determines endpoints

[8].
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Figure 2.5: Flowchart of the Rabiner and Sambur speech endpoint detection

algorithm




At the beginning of this algorithm the start-point of the speech utterance is
estimated by determining where the energy of the signal increases beyond the first
energy threshold (ITL), this point is taken initially as the start-point unless the energy
level again falls below ITL before exceeding the second energy level (ITU). The
algorithm then searches the samples for 250 ms before this estimated start-point and
sees whether the zero-crossing rate increased past the zero-crossing threshold
determined from the silence segment (IZCT). If it did, then the algorithm determines
how many times this occurred, if it occurred 3 or more times then the start-point is
changed to the first time at which the zero-crossing threshold was exceeded.

The end-point is then determined similarly. It is firstly estimated by detecting
the time when the energy level drops off to the silence energy threshold (ITL) and
then the next 250 ms are tested to determine the starting point for which the zero-
crossing rate exceeds the silence threshold level; the new end-point is then altered

accordingly.

2.5.2 Rule Based Adaptive Endpoint detection

Rule Based Adaptive Endpoint Detection as presented in [6] takes a different
approach to the Rabiner and Sambur algorithm in that this algorithm attempts to
adapt itself to any change over time in the noise energy levels in the signal. It also
works on statistical inferences on the general behaviour of speech.

Assumptions made about speech and its behaviour, determine how the speech
is to be processed for endpoint detection using this algorithm. It is assumed that:

®* 99.9% of continuous speech segments contain talk intervals of less than 2.0
seconds in duration.

® 99.56% of continuous speech segments contain gaps of less than 150 ms.

e Speech energy can only increase the signal level above the background
acoustic level.

Using these assumptions three ‘metrics’ are generated representing: the
speech energy level, background noise energy level and the minimum energy level.

The speech, noise and minimum noise energy levels are shown in figure 2.5.
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Figure 2.5: Adaptive endpoint detection algorithm metrics

Figure 2.5 shows the speech signal with the three metrics plotted on top, these
metrics are as follows: the speech energy level metric (dotted line), the noise energy
metric (solid line) and the minimum noise level metric (dashed line).

These three metrics assume the speech is sampled at 8 kHz and are calculated
using the following rules [6]: firstly the speech energy metric (s) is defined. This

metric will show the peak values of the noise during the duration of the utterance:

if uk) > sk-1)
(2.8)
s(k) = u(k)

if u(k) < s(k-1)
(2.9)
s(k)=(—B,)u(k)+ B,s(k —1)

Where u is the absolute value of the original speech and By is the decay time
constant set at 0.9992
The noise metric n(k) is then defined; this metric is to show the current level

of the background noise:

14



if n(k) > u(k-1) (2.10)
n(k) = u(k)

if u(k) <s(k-1)
n(k)=(1-B,)u(k)+ B, n(k—1)

(2.11)

Where and Bg is the decay time constant set at 0.9922

The final metric, the minimum noise energy level metric, tn(k), is then

defined by:

if tn(k-1) > n(k)
tn(k) = (1-B,)n(k)+ B,tn(k —1)

(2.12)

if tn(k-1) < n(k) (2.13)
tn(k) = n(k)

Where and B; is the final decay time constant set at 0.999975

These metrics are then used to detect the silence in speech segments by
choosing the following threshold levels: speech threshold T = 2, noise threshold T,
= 1.414 and Minimum threshold level Ty, = the level that is 40 dB below the
maximum allowable signal [6]. The following speech-silence detection rules are then

applied to the signal:

if (s(k)>T.tm(k)+T,;,)

(2.14)
segment is speech
if (s(k)<T,tn(k)+T,;,
(s( ( ) 2.15)
segment is noise
if Tmmk)+T,,, <stk)<Ttnk)+T, )
(2.16)

no change
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The positive aspect of this technique is its adaptability to changes in
background noise levels. The downside is that it doesn’t take into account the spoken
sounds that could be lost in the background noise, for example f or v, which the
Rabiner and Sambur algorithm did take into account, therefore it’s still susceptible to

deleting speech segments of those types of sounds.

2.6 Speech Segmentation

For speaker recognition / verification purposes speech needs to be segmented
into small frames before short time spectral analysis can be performed and speaker
dependent features can be extracted from each frame. Short time analysis is required
in speech signal processing since just calculating a Fourier transform on the whole
speech signal would make it impossible to be able to characterise changes in the
spectral content over time, therefore time varying components of the speech would
not be able to be considered [9].

The most common way this is achieved is using a Hamming Window of 20
ms length with a 10 ms overlap [7]. An example of this is shown in figure 2.6 with

the Hamming windows shown as dashed lines against the speech signal.
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Figure 2.6: Example of using Hamming windows to segment a speech utterance into

20 ms frames with 10 ms overlap.
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2.7 Current Feature Extraction Techniques

For automatic speaker recognition to be able to occur certain features need to
be extracted from the speech being used in the system, these features need to be
unique for every individual speaker being enrolled in the system.

Many features about a person’s voice contributes to it being unique, some of
these features include, dialect, syntax usage and speech style, these features are
considered high level information and are the types of features humans use to aid in
recognising who a speaker is.

Machines on the other hand are unable to use these types of features easily
for recognition so low level features are extracted and used in automatic speaker
recognition, these features are based on spectral analysis of the speech signal,
formant frequencies, voice pitch frequency and bandwidth [10].

In this section spectral features will be analysed, particularly Cepstral

analysis and the extraction of the Mel-frequency Cepstral coefficients from speech.

2.7.1 Cepstral Feature Extraction

The Mel-Frequency Cepstrum is the discrete cosine transform of the log-
spectral energies of a speech segment where the spectral energy is calculated using
logarithmically spaced filters with increasing bandwidths [7],[11].

Cepstral analysis has proven to be an effective feature extraction technique as
the extracted features depend on the structure of a person’s vocal tract. This makes
the Cepstral analysis very effective in extracting features in noisy speech [12].
Before Cepstral analysis can be performed the speech needs to be pre-processed as
explained in Sections 2.4, 2.5 and 2.6.

After the pre-processing and the windowing of the speech Cepstral feature
extraction can begin. For each frame of speech the Short Time Fourier Transform is
calculated and the absolute value of it is computed and passed into a mel-scale filter
bank. The Short Time Fourier Transform for the n-th window is given as:

X(w)= 3 alklnin - ke~ 2.17)

k=—oco

Where w[n] is the analysis window (the Hamming window).
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The mel-scale is a logarithmic scale that is designed to match the human
auditory perception of pitch. The scale was introduced by S.S. Stevens, J.E. Volkman
and E.B. Newman in 1937 and was determined through an experimental testing of
human pitch and loudness perception. For a given frequency f in Hz, the

corresponding mel-scale frequency Mel(f) can be calculated as:

f

Mel =25951o 1-—
el(f) gm( 700

) (2.18)

Davis and Mermelstein [13] introduced the use of this scale in creating a
filter-bank for the extraction of Mel-Frequency Cepstral Coefficients. Figure 2.7
shows a mel-scale filterbank with 20 filters logarithmically spaced according to the

mel-scale. These filters are used to extract speech features.
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Figure 2.7: Triangular Mel-scale filterbank containing 20 logarithmically spaced

filters

The speech frames are passed through the mel-scale filterbank and the log
energy of the outputs are calculated. The Mel-Frequency Cepstral Coefficients
(MFCCs) are then found using the Equation 2.19:
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20
MFCC:ZXkcos[i(k—%)z—ji)} i=123,..,M, k=123,....P (2.19)

k=1

Where X is the log energy of the output from the k™ filter, M is the number
of MFCCs and P is the number of filters in the filterbank.

A finite number of MFCCs (between 12 to 20) are calculated for each frame
of speech and stored in a database to be used in the recognition phase of a speaker
recognition or verification system. In theory, each speaker should have a unique
combination of coefficients after his or her voice has been processed in this way
since everyone’s voice contains different frequency components.

By using the mel-scale this technique is one of the better ways of extracting
unique frequency characteristics from a person’s voice, therefore it is one of the most

commonly used feature extraction processes.

2.8 Current Feature Classification Techniques

2.8.1 Minimum Distance Classification

As its name suggests the Minimum Distance Classifier takes the feature
coefficients from the unknown speaker and compares the distance between them and
the coefficients taken from known speakers.

Equation 2.20 can be used to calculate the distance between these two sets of
coefficients:

1 N o
Distance = ﬁ;(c “[n]-C"[n])?* (2.20)

Where N is the total number of feature coefficients, C* [n] is the mean of the

testing coefficients, and Cc" [#] is the mean of the known coefficients (training

coefficients) [9].

For speaker verification the speaker’s identity is confirmed when the distance
exceeds a pre-defined threshold. For speaker recognition/identification the speaker is
identified as a person whose coefficients are at the closest —distance to the

coefficients of the unknown speaker.

19



2.8.2 Vector Quantisation

While the minimum distance classifier takes an average of all the speech
features extracted from the speakers over all frames and classifies the speech based
on these averages, Vector Quantisation (VQ) is able to categorise speech over
different acoustic classes [9].

Vector quantisation uses the k-nearest neighbour clustering algorithm to
determine centroids for each acoustic class within the training speech. These
centroids become the basis of the recognition system.

At the testing phase features are extracted from the test speech segments, the
distance between the testing feature vectors and the trained centroids are calculated
by using a distance measure. The identity of the speaker is then determined by which
centroids are nearest to the testing feature vectors [11].

This concept of vector quantisation in illustrated in Figures 2.8 and 2.9.
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Figure 2.8: Illustration of vector quantisation at training phase.

Figure 2.8 shows the way in which the centroids are determined in order to
represent individual speaker’s acoustic patterns.
At training vector quantisation of speakers occurs by taking a k-dimensional

X = (Xg,Xp 500 Xpy)

feature vector representing a speaker and mapping each of these
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input feature vectors to centroid vectors or codewords used to represent the region of
the vector space that the feature vectors fall into.

The centroid vector chosen for each feature vector is determined by
minimising the distortion between the original feature vector x and the centroid

vector X using Equation 2.21.
k-1
dx,%) =Y lx, -2 1’ (2.21)
i=0

Where d(x,X) is the distortion between x and X [14],[15].
These codewords representing each individual speaker are then gathered and
stored as a codebook to represent each speaker for the speaker recognition system to

refer to.

O Centroids for speaker A
B Centroids for speaker B

X Test vectors

Figure 2.9: Illustration of vector quantisation used at testing phase. Speaker B has

been identified in this case.

At the recognition phase the vector quantiser determines the speaker’s
identity by taking the testing feature vectors, determining which centroids these
vectors map to and then identifies which speaker’s codebook those centroids match

the closest to, this is returned then as the speaker’s identity [15].
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2.9 Summary

This chapter has discussed the basic structures of both speaker verification

and speaker recognition systems and what purposes each system can be used for.

This chapter also analysed and discussed each component in each of these

systems and described some common algorithms used for these components. The

algorithms described in this section include;

The pre-emphasis filter, which is used to remove any unwanted low
frequency noise in a speech segment

Two different methods of speech activity detection, including the Rabiner and
Sambur algorithm which uses energy and zero-crossing rate to detect speech
activity and the rule based adaptive endpoint detection algorithm which
detects speech using thresholds determined from statistical assumptions of
speech.

Description of the importance of speech segmentation and windowing of
speech segments in preparation of feature extraction.

A description of the Cepstral feature extraction algorithm which extracts Mel-
Frequency Cepstral coefficients (MFCCs). The MFCCs have been proven to
be a reliable indication of unique features in a person’s voice.

Two different feature classification algorithms. Classification algorithms are
used in the recognition/verification stage of the systems where a decision
needs to be made on a speaker’s identity. The two algorithms discussed were;
- The Minimum Distance Classifier where all features are averaged and the
distance between known and unknown features are measured and a decision
is made on identity from the distance between these averaged features.

- The Vector Quantisation classifier where speech features are clustered and
assigned codewords rather than averaged and a decision on identity is made
by comparing the codewords representing a known speaker and the

codewords representing an unknown speaker and seeing if they match.

22



Chapter 3 — Channel Effects and Equalisation
Techniques

3.1 Introduction

Channel effects, as mentioned in Chapters 1 and 2, are major causes of errors
in speaker recognition and verification systems. In this chapter some common
channel effects will be discussed in detail and common methods of compensation

and equalisation of these effects will be presented.

3.2 Common Channel Effects

3.2.1 Bandlimiting

All communication channels have a limited bandwidth, which means that
only signal frequencies that fall within this bandwidth can be transmitted through the
channel.

Human voice has a frequency range of approximately 200 Hz — 4 kHz. It is
possible that important speaker dependent information is stored in this entire range.
Therefore, it is very important that as much of the spectrum can be preserved, so as
many speaker dependent features as possible can be extracted, even after the speech
has been transmitted through a communication channel.

For common, landline telephone systems, the frequency range is between 300
Hz - 3.4 kHz, therefore some of the upper and lower frequency components
contained in the voice signal are removed. This can significantly reduce efficiency of

speaker recognition systems working over telephone lines.
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3.2.2 Additive White Gaussian Noise

The most common distortion effect on signals being sent through channels is

the additive white Gaussian noise, as represented in Figure 3.1.

' Channel |
Input Signal x(t) | l/_|\\l | Corrupted
: AN | " signal
TR, LARTIER TR I witl=x{t}+nt)
Maise nit)

Figure 3.1: Diagram of additive noise channel

Addition of noise to the signal can be caused by many factors including
electronic components in a communication system, thermal interference as well as
environmental factors such as storms and radiation in the atmosphere (mainly in
wireless transmission).

White noise is defined as an uncorrelated random noise process with spectral
power spread equally over all frequencies, for channels this entire frequency range is
in actuality the bandwidth of the channel and for discrete time signals this bandwidth
is equal to half the sampling frequency of the signal [16]. This means that its power
spectral density (PSD) is constant over all frequencies contained within the channel’s

bandwidth:

_n
PSD _EHZB(f) (3'1)

where % is the average power of the noise and II,, is the rectangular pulse function

with width 2B [17].
A Gaussian noise represents a random signal with the probability density

function pdf(n) given as a Gaussian function:

1 ~(n-m)* 120?
pdf (n) =E€ (o2 (3.2)

24



Where m is the mean value, usually assumed equal to zero, and o is the standard
deviation.

There are many other non-white types of noise which can distort a signal,
these include coloured noise, where the noise power is not evenly distributed over
the entire spectrum but concentrated in certain ranges of the bandwidth and

impulsive noise which consists of random bursts of noise of short duration [16].

3.2.3 Linear Time-Invariant filtering

In addition to the white Gaussian noise, convolutional (or filtering) effects are
often present in channels. One of the easier convolutional effects to analyse and
compensate for is the Linear Time-Invariant (LTI) convolutional distortion. This type
of distortion is constant over time. The block diagram of a Linear Time-Invariant
filtering channel is presented in Figure 3.2:

Input Signal x(t) :- Channel 1 Corrupted signal
" hit) ! yit) = x(t)*h(t)

Figure 3.2: Diagram of Linear Time-Invariant filtering channel.

Assuming that x(t) is an input signal, the output y(t) of a channel can be in

general described as: h(7;t)

y(t) = x() * h(t) + n(t). (3.3)

where h(t) is the channel impulse response function and n(t) is the white Gaussian

noise [18].
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3.2.4 Linear Time-Variant filtering

The Linear Time-Variant (LTV) channel distortion is similar to LTI filtering
except that the impulse response of the filter, A(7;¢), changes over time. The block

diagram of a Linear Time Variant filtering channel is presented in Figure 3.3:

I
Input Signal x(t) | Channel I Corrupted

= h(z;t) :_"' signal
____________ y{t)=x{t)*h{z:t)

Figure 3.3: Diagram of Linear Time-Variant (fading) filtering channel

Assuming that x(t) is an input signal, the output y(t) of a LTV channel can be
in general described as:

y(t) = x(t) * h(t ; t) + n(t). (3.4)

where h(T ; t) is the channel impulse response at time t due to an impulse

applied at time (t - 7) [18].

3.3 Channel Equalisation Methods

Channel Compensation methods discussed in this chapter include: Cepstral
Mean Subtraction, RASTA Processing, Least Mean-Squared Filtering and the
Constant Modulus Algorithm. This section focuses on the compensation methods
which can be integrated in the feature extraction phase of a speaker recognition or
verification system, these include the Cepstral Mean Subtraction Method and the
RASTA processing.

Least Mean-Squared and the Constant Modulus Algorithm will be discussed

in more detail in the next chapter.

3.3.1 Cepstral Mean Subtraction

The Cepstral Mean Subtraction is often used during the feature extraction
phase of speaker recognition/verification systems to compensate for convolutional

channel distortion of voice signals. The convolutional channel distortion can be
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caused by different microphones used between the testing and training phases or
different transmission channels used during testing and training [19],[20].

The Cepstral Mean Subtraction method assumes that the time average of all
speech signals is zero and the convolutional effects due to the channel are uniform
over time (ie. time-invariant) [9],[21]. Therefore, it does not provide a perfect
solution for eliminating channel effects because speech does not necessarily have a
zero mean and often there are time-variant channel effects due to external factors that
can affect speech signals. Despite these drawbacks, the Cepstral Mean Subtraction
method can be relatively effective and useful.

The convolutional channel effect results in a distorted speech signal y[n]

given as:

yln] = x[n]* h[n] (3.5)

Where x[n] is the clean speech and h[n] is the channel impulse response
causing distortion to the speech. With Short-Time Fourier Transform applied to y[n]
using a window w[pL-k] (where L is the window length and p = 1, 2, 3...) this

distorted signal can be referred to in the frequency domain by equation 3.6 [9]:

Y(pL,w) = X(pL,0)H(®) (3.6)

Equation 3.6 shows that the convolutional distortion applied to the clean
speech has a multiplicative character in the frequency domain, therefore it is not easy
to isolate the channel distortion H(®) from the speech signal X(pL,m).

To aid in isolating the convolutional distortion, a logarithmic operation can
be performed. By taking the log of both sides of Equation 3.6 the signal Y(pL,®) can
be represented as a sum of two logarithms; the log of the speech and the log of the

convolutional distortion:

log[Y (pL, @)] = log[ X (pL, w)] +log[H (w)] (3.7)

Assuming that the convolutional distortion H(®) is time-invariant, it is now

easier to isolate the channel distortion from the speech.
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Firstly this is achieved by calculating the inverse Fourier Transform of

log[Y(pL, w)] given by Equation 3.8:

jln, @] =37 (log[ X (pL,®)]+ 3" (log[H (@)]) (3.8)

And finally a Cepstral lifter (I[n]) is applied to remove the mean of y[n, @] .

This results in a signal x[n, @] given as:
in, @] = l[n]3[n, ®] (3.9)
The Cepstral lifter 1[n] is a function defined as:

l[n]:{o forn=1 (3.10)

1 elsewhere

The Cepstral lifter when applied to y[n, @] removes the 0" value in yln, w]

and leaves the remaining values intact [9],[22].

While the Cepstral Mean Subtraction is relatively effective in removing
convolutional distortion, it is not able to compensate for additive channel distortion
[23],[21]. Therefore, it is not capable of removing an additive channel distortion such

as white Gaussian noise, which occurs commonly in transmission channels.

3.3.2 RASTA Processing

RASTA, which stands for Relative Spectral Processing, is another channel
compensation technique, RASTA was proposed by H. Hermansky and N. Morgan
[23]. This speech processing technique acts in a similar way to Cepstral Mean
Subtraction, in that it attempts to compensate for convolutional distortion due to
mismatched microphones or channels and attempts to eliminate any DC component
within the channel distorted signal [24]. One of the differences between Cepstral
Mean Subtraction and RASTA is that RASTA assumes that the convolutional effects
on the speech due to the channel are non-uniform over time, whereas the Cepstral
Mean Subtraction does not take into effect varying convolutional distortion and

assumes uniform convolutional effects [9]. RASTA Processing also is designed to
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help take into account the additive channel distortion caused by the addition of white

Gaussian noise [25].

The process of RASTA processing can be outlined as follows; the short time

Fourier Transform is firstly taken of the distorted speech segment y[n], then the

logarithmic transform is taken of the speech’s spectrum.

The logarithmically transformed speech is then passed through the RASTA
IIR filter which has the following transfer function H(z) [23],[9]:

2+ Z—l _Z—S _2Z—4

1-0.9877"

H(z) =

The filter amplitude response is shown in Figure 3.4.

Attenuation (dB)

10 e

-10

-15

-20

-25

-30

-35

40

45

10 10 10" 10! 10
Modulation Frequency (Hz)

Figure 3.4: RASTA filter response
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This RASTA filter effectively removes time-variant convolutional distortion
caused by transmission channels by having a high attenuation at low modulation
frequencies at and near DC [24],[9].

The RASTA filter also reduces the effect of additive white Gaussian noise
more effectively than Cepstral Mean Subtraction but its effectiveness at reducing
noise can be improved again by implementing the J-RASTA processing algorithm
[26],[23].

J-RASTA is very similar to RASTA processing except that a J factor is
introduced at the logarithmic transform stage. Therefore the transformation is

calculated as in Equation 3.12:

y =In(l+ Jx) (3.12)

Where x is the speech segment and J is a factor dependent on the
characteristics of the noise corrupting the speech. This is calculated using Equation

3.13:

(3.13)

CE

*~ noise

Where E __  is the mean energy of the noise corrupting the signal and C is a

constant chosen to achieve the best possible reduction of noise distortion. In the
paper [23] the optimal C value for the author’s experiments was found to be C=3, but
this value can change depending on experimental conditions.

Using this type of transform on the signal being processed increases the
accuracy of the system for compensation of noise distortion above the plain log

transform used in RASTA processing.
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3.4 Summary

This chapter discussed some common channel effects known to causer
corruption to speech signals and some algorithms used to attempt to mitigate these
effects in speaker recognition and verification systems.

The channel effects discussed in this section include:

¢ Bandlimiting where a signal can be distorted by a filtering effect from the
medium the signal is being sent through.

e Additive White Gaussian Noise (AWGN) which is distortion caused by
electrical, thermal and/or environmental factors where random signal
distortion is added to a signal during transmission through a vulnerable
channel.

¢ Linear Time—Invariant and Linear Time-Variant filtering which are filtering
effects that cause convolutional distortion to a signal being transmitted.
Two channel compensation methods were also discussed in this section;

Cepstral Mean Subtraction which is designed to remove Linear Time-Invariant
filtering from speech features and RASTA Processing designed to remove Linear

Time-Variant distortion from speech features.
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Chapter 4 - Speaker Recognition using Blind
Channel Equalisation Methods

4.1 Introduction

Blind Channel Equalisation is an invaluable method to compensate for

channel distortion when the channel impulse response A[n] is unknown.

Channel equalisation with a known impulse response is relatively easy and
can be achieved by designing a matched filter with a response that is the inverse of
the known channel’s response, [27],[16],[17]. Unfortunately this is not always
possible in practice and particularly when a channel is noisy, non-linear or time-
variant [16].

One method used to equalise an unknown channel distortion is by sending a
training sequence which is known to both the sender and receiver. This technique is
known as a supervised channel equalisation technique. A flowchart of this method is
shown in Figure 4.1.

The receiver receives the distorted training sequence and then adapts its
inverse filter coefficients to compensate for the distortion that has occurred to the
training sequence. This is an effective method; however it has very high bandwidth

and power requirements [28].

- e Filter
Distorted training
sigral &

Filtared training
Filter saguencea
coafficiants

| Adapiation Process |-

Clean training
signal

Figure 4.1: Flowchart of a supervised channel equalisation technique
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Blind, or unsupervised channel equalisation methods can be implemented to
adapt a filter’s coefficients, and hence it’s response, to equalise the corrupted
information with no knowledge of the channel’s impulse response or the training
sequence being sent over the channel [27]. This type of equalisation uses statistics to
retrieve the signal.

A basic diagram of an adaptive blind equalisation system is shown in Figure

4.2.

Channel K, Statistical estimation
=4 Geotoninisa | | Adaptive filer ) algorithm —

Message signal Equalised signal

T

Figure 4.2: Basic system block diagram for an adaptive blind equaliser

There are many examples of this type of system used in digital signal
processing applications. Two of these methods including the Least Mean-Squared

algorithm and the Constant Modulus Algorithm will be discussed in this Chapter.
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4.2 Adaptive Blind Equalisation Algorithms

4.2.1 Least Mean-Squared Adaptive Filtering

Least Mean-Squared filtering (LMS) is an adaptive filtering algorithm used
for discrete time signals. The LMS algorithm uses a feedback system to reduce noise
and channel distortion by changing the coefficients on a filter to minimise the error
between the filtered signal x(n) and the expected or desired response d(n)

[29],[17].

Observed signal
yin)
»{ Channel distortion ||  Adaptive filier
x(n)

A

Esfimate of x(n)
x(#
B

+

Error, &(n) Q

-+

din)
Reference signal

e, |
A

Figure 4.3: Least Mean-Squared system block diagram

As shown in Figure 4.3 the filter’s coefficients are altered by taking the

output of the filter x(n) and subtracting that value away from the desired signal
dn).

The desired signal d(n) is a signal chosen to have properties as near to what
is expected of the message x(n) as possible, this may take the form of a training

sequence known both to the sender and receiver or in the case of noise cancellers

d(n) can be a delayed version of the observed signal y(n) [17].
After subtracting d(n) from Xx(n) the resulting value, e(n), is the estimation

error which is fed back into the filter to determine the coefficient changes needed.

The estimation error e(n) is given as:

e(n) =d(n)—x(n) 4.1)

34



The changes in the filter’s coefficient values are determined iteratively using

Equation 4.2:
a,=a,+ue(n)y(n) (4.2)
Where a are the filter’s coefficients at the n™ instant and U is the convergence
accuracy coefficient which affects the convergence speed and accuracy of the

system.

Observed signal

yir)

i)

Figure 4.4: Least Mean-Squared adaptive filter implementation diagram

Figure 4.4 shows the implementation of an M+1 tap adaptive filter within an
LMS filtering system. M+1 represents the filter’s length and the number of
components needed in the filter, the larger M is the better the estimation of the filter
coefficients but the more delay will occur in the output.

The convergence accuracy coefficient, i determines both the accuracy and
speed of convergence of the filter’s coefficients. Small values of w will cause the
system to be more accurate but slower to converge while larger values of p will
cause the system to converge quickly but be less accurate [17]. Convergence will

hold accurately as long as the following criterion is met for the chosen value of p

[29]:

0< i< 2 (4.3)

tap input power

35



Where the tap input power is equal to the sum of the mean squared values of

the tap inputs in the filter, this is shown in Equation 4.4.

M
tap input power = Zﬁiz (4.4)

i=0

4.2.2 Constant Modulus Algorithm (CMA)

The Constant Modulus Algorithm (CMA) is a blind channel equalisation
method, meaning that there is no assumed knowledge of the impulse response of the
transmission channel and there is no reference or training data that can be used to
equalise the channel distortion.

The CMA algorithm assumes that the received signal x(n) is a binary output
from a wireless channel of unknown impulse response. At the receiver end of this
system there is a linear filter used to equalise the received signal, this received signal
will be corrupted with white Gaussian noise and inter-symbol interference (ISI) [30].

Similarly to the Least-Means Squared algorithm, the CMA algorithm uses an
iterative technique in order to determine the optimal filter coefficients to effectively
compensate for the distortion in the channel.

In the CMA case the filter’s coefficients are updated using the following

stochastic gradient descent algorithm [27],[28].
f(n+ 1) =f(n)+ ur* )Yy, (n) 4.5)
Where: f(n) represents a vector of filter coefficients

M 1s the step-size parameter

W cua 18 the error function of the CMA calculated as:

Ve (V) =y, (r=1y,1") (4.6)
Where ¥ = E[l x(n) I*]1/ E[l x(n) I*]
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The Constant Modulus Algorithm uses the Godard cost function as shown in
Equation 4.7 [27],[29] and seeks to minimise this cost function to achieve ideal

equalisation for the received signal [28].

J(n) = E[(Ily(m)I” =R,)*] (4.7)

_ Ell x(n) 7]

Where R
P Ellx(n)1”]

and is chosen so that the gradient of the function

J(n) is zero when perfect equalisation is achieved.

The benefits of using blind equalisation similar to what has been discussed in
this section is that instead of sending training sequences down the channel first to
determine the distortion caused by the channel, the adaptive filter can be used on the
signal itself and adapt to the channel to equalise the signal during the transmission
process. This is a much more efficient equalisation technique than supervised
channel equalisation, particularly in respect to the efficient use of bandwidth since

training sequences need not be used.

4.3 Summary

This chapter covered adaptive channel equalisation methods used to filter a
received signal. Adaptive filtering involves iteratively altering a filter’s impulse
response in order to minimise error in a received signal, therefore reducing the
effects channel distortion have on a signal.

The adaptive filtering methods discussed in this chapter included;

e The Least Means Squared adaptive filtering which uses a reference signal to
alter a filter’s coefficients to minimise the error between the reference signal
and the distorted received signal.

e The Constant Modulus Algorithm which is a blind equalisation method that
assumes no knowledge of the impulse response of the channel and also uses

no training sequence to initialise the filter coefficients
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Chapter S - Experiment and Results

5.1 Introduction

All the experiments were performed as text-independent speaker recognition
experiments, meaning that the semantic information included in the speech was not
taken into account during the speaker recognition process.

The aim of the speaker recognition experiments was to determine who the
speaker was rather than making sure that the query speaker was who he or she
claimed to be.

The results are presented in the following manner. Firstly an analysis is
performed on clean undistorted speech before analysing speech corrupted with noise
and filtering effects with no equalisation. Statistical analyses of the effects these
distortions play on the recognition rate are discussed for these cases. The second part
of the results focus on statistical comparison of speech that has been corrupted with
channel distortion and equalised using Cepstral Mean Subtraction (CMS), RelAtive
SpecTral processing (RASTA) and the Constant Modulus Algorithm (CMA) and
finally the preferred methods of equalisation are discussed.

The experiments described in this chapter were set up in the following

manner.

5.2 Test data

Clean speech samples from 10 people (5 male and 5 female) were used. The
speech was sampled at a rate of 16,000 Hz. For each speaker 6 samples of speech of
duration of 1 to 4 seconds were analysed. The samples represented six different
utterances. One utterance was used in the training phase of the system and five other
utterances were used in the testing phase.

Both the testing and training utterances represented clean speech containing
no channel distortion such as filtering or noise.

All the speech samples were selected from the Berlin emotional speech
database [31] containing voices portraying happiness, sadness, anger, neutral,
boredom, fear and disgust. Only neutral speech recordings were used in these

experiments. The emotional aspect of speech was not taken into account.
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5.3 Speaker recognition system structure

The experimental algorithms were developed and tested using Matlab
(version 7.1) programming language.
The flowcharts of the training and testing systems used in the experiments are

illustrated in Figure 5.1 and 5.2 respectively.

Training Speech

Il

Pre-Processing

Il

SpeachiSilence
seqgmentation

-

Mel-Cepstral
Feature Extraction

= =

a

Feature database

Figure 5.1: Flowchart of the speaker recognition training system used in the

experiments
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Minimum Distance
Classifier

|dentification

Figure 5.2: Flowchart of the speaker recognition testing system used in the

experiments

The training and testing systems used in the experiments were based on the

Mel-frequency Cepstral Coefficient features extracted from each speaker as

described in section 2.7.1. The use of Mel-Frequency Cepstral Coefficient features in

speaker recognition has been proven to be very effective in being able to identify

individual speakers from the individual phonetic and frequency characteristics in

their speech [9],[13].
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5.4 Training Procedure

The training system consisted of a pre-processing component, involving the
entering of raw data containing the speech to be trained into the system. Figures 5.3
and 5.4 shows an example of a speech segment used in the system and a time-

frequency plot of its STFT.

Amplitude

-0.8 =

_1 1 | 1 1 1 1 1

1
0 02 0.4 0B ns 1 1.2 1.4 16 1.8
Time, sec

Figure 5.3: Undistorted speech sample used in the speaker recognition system
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Figure 5.4: Time Frequency plot of an undistorted speech sample used in the

speaker recognition system

This speech was firstly pre-emphasised using a first order high pass filter
given in Equation 2.1 emphasising important high frequency information in the
speech and reducing the effect of low frequency background noise such as machine
and air-conditioner noise, which could affect the accuracy of speaker recognition
(see section 2.4.1).

Because speech utterances are made up of many silence segments as well as
speech segments for efficiency of the system, silence intervals were removed in the
pre-processing phase. Silence intervals are unnecessary as they contain no useful
information about the speaker’s identity and takes up processing time and computer
storage space.

The silence detection and removal in this research involved a technique
similar to the Rule Based Adaptive Endpoint detection discussed in section 2.5.2 and
proposed in [6]. This technique uses speech and noise energy metrics to represent the
levels of speech and noise throughout a spoken utterance. The silence/noise intervals
are then detected using an adaptive thresholding scheme. The silence segments are

then removed.
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After pre-processing the training speech was segmented into 20ms frames
with a frame overlap of 10ms. The short time spectral analysis was then performed
on a frame-to-frame basis and the Mel-Cepstral Coefficients were calculated. The
feature extraction method used in the experiments was the same as described in the
section 2.7.1.

These features were averaged over all frames and stored in a library of

speaker models.

5.5 Testing Procedure

5.5.1 Speaker recognition based on clean speech

To test the system firstly three clean speech utterances from the testing set for
each speaker were processed in the same manner as the training speech and had their
MFCCs extracted (see Figure 5.2). These coefficients were then compared to the
coefficients extracted earlier in the training phase using the Minimum Distance
Classifier method as discussed in Section 2.8.1. In this way the system was able to
determine which speaker was most likely to have been the one to have uttered the

test phrases from the group of speakers trained into the system.

5.5.2 Speaker recognition based on distorted speech

The next stage was to test how well the system can perform after the clean
speech is corrupted by channel effects. In this experiment, the test speech was
distorted in a way simulating the effects of channel filtering and/or addition of white
noise.

The effect of channel filtering was analysed using a Butterworth filter with
five different cutoff frequencies, fc = 7, 6, 5, 4 or 3 kHz. A Butterworth filter of
order 9 was used in this experiment because this type of filter has no ripple in the
pass band region which would have caused extra unwanted distortion to the speech.

The frequency response of the low-pass filter used in the experiments is

illustrated in Figure 5.5
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Figure 5.5: Frequency response of a 9™ order low pass filter with cutoff frequency =

5 kHz

The second effect analysed in this experiment was the addition of Gaussian
noise to the speech. A vector of random noise at different power levels were
generated and added to the speech files to simulate the addition of channel noise at
Signal to Noise Ratios of 10, 20, 30 and 40 dB. An example of a noisy speech signal
with a Signal to Noise Ratio of 30 dB is shown in Figure 5.6 and it’s time —

frequency plot is shown in Figure 5.7.
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Figure 5.6: Noisy speech sample used in experiments. Signal to Noise Ratio is 30
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Figure 5.7: Time-frequency plot of noisy speech sample used in experiments. Signal

to Noise Ratio is 30 dB
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The same procedure as described in recognising clean speech (Section 5.4.2)
was then used to extract the features from the corrupted speech segments and then

compared with the clean features stored in the library of speaker models.

5.5.3 Speaker recognition based on distorted speech with channel compensation

Two channel compensation algorithms: the Cepstral Mean Subtraction
(CMS) algorithm and the RASTA algorithm were used to compensate for the
convolutional channel distortion.

To test the effectiveness of the Cepstral Mean Subtraction Algorithm (CMS)
and the RASTA algorithm the channel compensation part of the system based on
CMS or RASTA was added before the extraction of the Mel-Frequency Cepstral
Coefficients. This is illustrated in Figure 5.8.

Testing Speach

Convolutional
| channel distorticn
and noise

Pre-Processing

Speech/Sikence
seagmentation

CMS or RASTA

Feature Dalabase
- L C;%f) 1% speaker’s features
Mel-Cepstral 2™ epaaker's features & Minimum Distance
Featurs Extraction | C———— Classifiar :}
¥

% n'" speaker's features iecaE=t

Figure 5.8: Flowchart of speaker recognition based on distorted speech with channel

distortion compensated using either the CMS or RASTA algorithm.
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CMS and RASTA are channel compensation algorithms designed to be used
before the feature extraction phase rather than before the pre-processing phase.

To compensate for the channel noise distortion as well as for the
convolutional distortion the Constant Modulus Algorithm (CMA) was used.

To test the effectiveness of the CMA, the test utterances were converted from
decimal wav files into binary text files.

The binary files consisted of samples of the .wav files converted into 16 bit
binary numbers.

The binary test files were then distorted by low pass filtering and the addition
of white noise (See Figure 5.9). The effects of channel distortion were then equalised
by the CMA algorithm. The equalised speech files were then converted back into
decimal wav files and used in the speaker recognition system.

The accuracy of the channel equalisation algorithms was measured by mean
squared error between the equalised speech and the original speech before the

addition of the channel distortion.
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Figure 5.9: Flowchart of speaker recognition based on distorted speech with channel

distortion compensated by the CMA algorithm.
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5.6 Performance Measure

The performance of the speaker recognition algorithms tested in the
experiments was measured by calculating the percentage of times the speakers were
correctly identified over all the trials.

The following percentage recognition rates were measured:

1. Correct recognition rate for clean speech

2. Correct recognition rate for speech with channel distortion

3. Correct recognition rate for speech with channel distortion and
channel compensation

The channel algorithms were assumed to give reasonable performance if the
recognition rate for the equalised speech was noticeably better than the recognition

rate for the distorted speech.

5.7 Test Results and Discussion
5.7.1 Results of speaker recognition for clean speech

The test data used in this experiment represented clean speech with no
addition of channel distortion in the form of either noise or low pass filtering. Figure
5.10 shows the summary of speaker recognition results obtained for clean speech.
The recognition rates in Figure 5.10 represent the percentage of correct

classifications obtained over all tested speech samples.
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Figure 5.10: Percentage of speakers recognised from clean speech with overall

average percentage recognition rate shown in pink

As indicated in Figure 5.10 the recognition rate is relatively high. For four
speakers (speakers 1, 2, 3 and 5), the recognition rate is 100%, for four speakers
(speakers 6, 7, 8 and 9), the recognition rate is equal or more than 60%. There was
one case with recognition rate of 0% (speaker 4), which can be attributed to a
number of potential problems with the speech, including the small number of training
samples used in the experiments (only 1 to 4 seconds of speech) and/or the speaker’s
recording quality being inferior as this speaker had a lower pitched voice than the
other speakers and the high pass filtering used during the pre-processing phase could
have affected the low frequency characteristic features enough for this speaker to not
be recognised. This issue may be able to be rectified if using a more complicated
feature classification scheme or different features extracted from the speaker. The
result for speaker number 10 is also low (only 20% recognition rate).

The speaker recognition rates could also be affected by the fact that the
recognition had a text-independent character and different utterances were used
during the training and testing phases. The text-dependent systems are usually
expected to perform better for small training samples since the matching semantic
speech information is used as an additional cue during the recognition process.

A larger number of training samples of longer duration would enable the
system to obtain statistically more accurate characteristics of speakers during the

training phase. This would lead to better recognition rates.
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However, this experiment was designed to test the effects of channel
distortion on a basic speaker recognition system; therefore an improvement of the
system performance was outside the scope of this research.

The speaker recognition results based on clean speech were produced as a
reference data allowing observing the effects of different types of channel distortion
on the speaker recognition rates.

The results for speakers 4 and 10 were not treated as outliers and were kept as
valid in order to observe if there will be any change in these speaker’s recognition

rates when channel distortion is introduced and when equalisation is applied.

5.7.2 Results of speaker recognition for distorted speech

The results presented in this section relate to the accuracy of the speaker
recognition system after channel distortion has been applied. No equalisation or
compensation method has been applied to the distorted speech in this section.

The following types of distortion have been analysed; low pass filtering and

the addition of white Gaussian noise.

5.7.2.1 Results of speaker recognition for low pass filtered speech

The low pass filtering was expected to have some effect on the recognition
rate, since the removal of the high frequency components of speech would reduce the
number of Mel-Cepstral Coefficients and thus, reduce the amount of speaker-
dependent characteristic information available to the system.

Table 5.1 shows a summary of the speaker recognition rates obtained for low
pass filtered speech with different cutoff frequencies.

Figures 5.11 through to 5.13 show the individual results for the lowpass
filters with the respective cutoff frequencies of 7, 6 and 5 kHz.

The recognition rates in Figures 5.11 through to 5.13 and Table 5.1 represent

percentage of correct classifications obtained over all tested speech samples.
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TABLE 5.1: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED SPEECH

Speaker | Cutoff frequency of a lowpass Butterworth filter

number | Clean | 7kHz | 6kHz | 5kHz | 4kHz | 3kHz
1 100% | 80% | 80% | 40% 0% 0%
2 100% | 100% | 100% | 100% | 0% 0%
3 100% | 80% | 100% | 100% | 0% 0%
4 0% 0% 0% 60% | 20% 0%
5 100% | 100% | 100% | 60% 0% 0%
6 60% | 80% | 80% | 60% 0% 0%
7 60% | 60% | 60% | 60% 0% 0%
8 80% | 80% | 80% 0% 0% 0%
9 60% | 80% | 80% | 80% 0% 0%
10 20% | 40% | 20% | 20% 0% 0%

average | 68% | 710% | 72% | 58% 0% 0%
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Figure 5.11: Percentage of speakers recognised from low pass filtered speech with

cutoff of 7 kHz
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Figure 5.12: Percentage of speakers recognised from low pass filtered speech with

cutoff of 6 kHz
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Figure 5.13: Percentage of speakers recognised from low pass filtered speech with

cutoff of 5 kHz

The results of the paired t-test for the recognition rates based on clean speech

versus the recognition rates based on low pass filtered speech are given in Table 5.2.



TABLE 5.2: PAIRED T-TEST FOR CLEAN SPEECH VERSUS LOW PASS FILTERED SPEECH
(ALPHA =0.05)

Clean speech versus lowpass speech

Cutoff | Cutoff Cutoff Cutoff Cutoff

7kHz 6kHz SkHz 4kHz 3kHz
Pearson correlation | 0.912 | 0.9389 | 0.2902 | Undefined | Undefined
t stat -0.4286 | -1 0.7851 6.0526 6.0526
P(T<=t) one-tail 0.3392 | 0.1717 | 0.2263 | 9.4943E-05 | 9.4943E-05
t critical one-tail 1.8331 | 1.8331 1.8331 1.8331 1.8331
P(T<=t) two-tail 0.6783 | 0.3434 | 0.4525 | 0.0002 0.0002
t critical two-tail 22622 | 2.2622 | 22622 |2.2622 2.2622

Both Figures 5.11 and 5.12 show very similar results to what was obtained
using clean speech. This is confirmed by the t-test which shows that there is no
significant difference in the mean recognition rates between the clean speech and the
low pass filtered speech with cutoff frequencies of 7, 6 and 5 kHz. For the cutoff
frequencies below 5 kHz the difference does become significant.

It seems, therefore, in speech that frequencies above 5 kHz do not play an
important role in the process of speaker recognition. These results would be expected
as human conversational speech has an upper frequency limit of approximately 5
kHz; therefore it is likely that only speech characteristics at frequencies below 5 kHz
are used in the speaker recognition process. This is confirmed in Table 5.1, which
shows a rapid decline in the average recognition rates of the system as those
important frequencies above 5 kHz are removed.

These results indicate that the telephone systems with bandwidths reduced to
the range of 300 Hz to 3kHz may almost certainly provide significant difficulties in

the process of automatic speaker recognition.

5.7.2.2 Results from recognising speakers after speech has had noise added

White Gaussian noise is also a very important factor affecting speaker
recognition systems. White noise can be attributed to many different environmental
sources such as the weather, storms or solar radiation. Factors such as the proximity

to electrical wires and other electromagnetic devices can also cause noise in signals.
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The results presented in this section show the effect noise has on speaker
recognition systems.

As a speech-silence-noise segment detection algorithm is normally used in
the pre-processing phase of the speaker recognition system, very noisy segment of
speech could be detected as not containing any speech information and, hence, being
removed and rendering the system useless. Therefore the speech-silence-noise
detection algorithm was disabled on very noisy segments to prevent the entire
utterance being detected as noise. Disabling this algorithm did not affect the features
being extracted only the amount of time the system took to process the speech
segments.

Table 5.3 shows the summary of speaker recognition results obtained for
noisy speech with different values of Signal-to-Noise Ratio (SNR). Figures 5.14
through to 5.17 show the individual results for the SNR values of 40 dB, 30 dB, 20
dB and 10 dB respectively.

The recognition rates in Figures 5.14 through to 5.17 and Table 5.3 represent

the percentage of correct classifications obtained over all tested speech samples.

TABLE 5.3: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH.

Speaker Signal — to — Noise Ratio

number | Clean | 40dB | 30dB | 20dB | 10dB
1 100% | 80% 80% 40% 0%
2 100% | 100% | 100% 100% | 100%
3 100% | 80% 80% 20% 20%
4 0% 0% 0% 60% 0%
5 100% | 100% 100% 20% 20%
6 60% | 60% 40% 20% 0%
7 60% | 60% 20% 0% 0%
8 80% | 80% 60% 40% 20%
9 60% | 80% 80% 80% 60%
10 20% | 20% 20% 20% 40%

average | 68% | 66% 58 % 40 % 26 %
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Figure 5.14: Percentage of speakers recognised from noisy speech with signal to

noise ratio of 40 dB
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Figure 5.15: Percentage of speakers recognised from noisy speech with signal to

noise ratio of 30 dB
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Figure 5.16: Percentage of speakers recognised from noisy speech with signal to

noise ratio of 20 dB
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Figure 5.17: Percentage of speakers recognised from noisy speech with signal to

noise ratio of 10 dB

The results of the paired t-test for the recognition rates based on clean speech

versus the recognition rates based on noisy speech are given in Table 5.4.



TABLE 5.4: PAIRED T-TEST FOR CLEAN SPEECH VERSUS NOISY SPEECH

Clean speech versus noisy speech
SNR=40dB | SNR=30dB | SNR=20dB | SNR=10dB
Pearson correlation | 0.9479 0.8866 0.04 0.2217
t stat 0.5571 1.8605 1.9091 3.1151
P(T<=t) one-tail 0.2955 0.0479 0.0443 0.0062
t critical one-tail 1.8331 1.8331 1.8331 1.8331
P(T<=t) two-tail 0.5911 0.0957 0.0886 0.0124
t critical two-tail 2.2622 2.2622 2.2622 2.2622

Subjective listening tests showed that the gradual decrease in SNR from 40
dB to 10 dB was resulting in systematic reduction of speech intelligibility and at the
same time in the reduction of human ability to recognise the speakers. At SNR=10
dB, the speakers and the semantic contents of the speech were practically
unrecognisable to human listeners.

As expected the noise being added to the speech had an almost immediate
effect on the recognition rate. As indicated in Table 5.4, there is a decrease in the
average recognition rates over all values of SNR. The t-test results in Table 5.4
indicate that the decline in recognition rates for SNR < 30 dB is statistically

significant.

5.7.3 Test Results for Equalised speech

The results presented in this section show the effects different channel
equalisation techniques have on the accuracy of speaker recognition systems.

The following equalisation methods are analysed in this section; Cepstral
Mean Subtraction (CMS), the RASTA algorithm and the Constant Modulus
Algorithm (CMA).
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5.7.3.1 Using Cepstral Mean Subtraction (CMS) Algorithm for Compensation of low

pass filtering effects

Tables 5.5 and 5.6 shows the summary of speaker recognition results
obtained for the low pass filtered speech and the results using the CMS algorithm
compensating for the results of low pass filtering. Figures 5.18 through to 5.22 show
the individual results for the low pass filters with cutoff frequencies of 7, 6, 5, 4 and
3 kHz respectively.

The recognition rates in Figures 5.18 to 5.22 and Tables 5.5 and 5.6 represent

the percentage of correct classifications obtained over all tested speech samples.

TABLE 5.5: COMPARISON OF AVERAGE RECOGNITION RATE FOR LOWPASS FILTERED

SPEECH AND LOWPASS FILTERED SPEECH USING CMS.

Cutoff frequency of a lowpass Butterworth filter
7kHz | 6kHz | 5kHz 4kHz 3kHz
Average without compensation 70% 72% 58% 0% 0%
Average using CMS 48% 44% 46% 38% 22%

TABLE 5.6: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED SPEECH

WITH CMS COMPENSATION.

Speaker | Cutoff frequency of a lowpass Butterworth filter
number | 7kHz | 6kHz | 5kHz 4kHz 3kHz
1 80% | 40% 0% 20% 60%
2 0% 0% 0% 0% 0%
3 100% | 100% | 100% 80% 0%
4 20% | 40% 40% 20% 0%
5 100% | 100% | 100% 100% 0%
6 80% | 60% 60% 80% 100%
7 60% | 60% 80% 20% 20%
8 40% | 40% 80% 60% 0%
9 0% 0% 0% 0% 40%
10 0% 0% 0% 0% 0%
average | 48% | 44% 46 % 38% 22%
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Figure 5.18: Percentage of speakers recognised from CMS equalised speech with
low pass filter (cutoff =7 kHz)
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Figure 5.19: Percentage of speakers recognised from CMS equalised speech with
low pass filter (cutoff = 6 kHz)
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Figure 5.20: Percentage of speakers recognised from CMS equalised speech with
low pass filter (cutoff = 5 kHz)
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Figure 5.21: Percentage of speakers recognised from CMS equalised speech with
low pass filter (cutoff =4 kHz)
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Figure 5.22: Percentage of speakers recognised from CMS equalised speech with
low pass filter (cutoff = 3 kHz)

The average recognition rates for the CMS-equalised speech shown in Tables
5.5 and 5.6 show increased values compared to the corresponding average
recognition rates for low pass filtered speech with no compensation for cutoff
frequencies of 4 kHz and 3 kHz.

The results of the paired t-test for the recognition rates based on
uncompensated low pass filtered speech versus the recognition rates based on CMS-

equalised speech are given in Table 5.7.

TABLE 5.7: PAIRED T-TEST FOR LOWPASS FILTERED SPEECH VERSUS CMS-EQUALISED

SPEECH
lowpass speech versus CMS-equalised speech

Cutoff | Cutoff Cutoff | Cutoff Cutoff

7kHz 6kHz SkHz 4kHz 3kHz
Pearson correlation 0.3564 | 0.386 0.0097 | Undefined | Undefined
t stat 1.6732 | 2.3333 0.7093 | -3.1425 -2.0121
P(T<=t) one-tail 0.0643 | 0.0223 0.2481 | 0.0059 0.03754
t critical one-tail 1.8331 | 1.8331 1.8331 | 1.8331 1.8331
P(T<=t) two-tail 0.1286 | 0.0445 0.4961 | 0.0119 0.07508
t critical two-tail 2.2622 | 2.2622 2.2622 | 2.2622 2.2622
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Comparison of the results for the low pass filtered speech in Table 5.5
indicates that at frequencies of 5 kHz, 6 kHz and 7 kHz that there is a decline in the
average recognition rate with a statistically significant value (Table 5.7) at 6 kHz.

The t-test results in Table 5.7 and the average recognition rates in Table 5.5
indicate that the increase of average speaker recognition rates due to CMS
compensation is statistically significant for low pass filtered speech with cutoff
frequencies of 3 kHz and 4 kHz.

The Cepstral Mean Subtraction method appears to compensate very well for
errors due to filtering at very low cutoff frequencies such as 3 and 4 kHz. But CMS
does not seem to compensate well for the low pass filtering effects with higher cutoff
frequencies above 4 kHz.

This implies that the CMS technique is useful for improvement or speaker
recognition rates when the speech is transmitted over channels with very narrow
bandwidths. For wider bandwidths, this type of channel compensation could be
detrimental to the speaker recognition system.

Another effect that CMS has on the speech is to remove the natural time
invariant convolutional effects on speech which are not due to the channel. As
discussed in Section 3.3.1 this compensation method assumes the speech signal has a
zero mean which is not necessarily correct in most cases, therefore removal of this
convolutional effect could also severely impact on the individuality of the speech
features and therefore the accuracy of the speaker recognition system.

As stated in section 5.7.1 if longer segments of speech were used in the
experiments or text-dependent rather than text-independent speech was used the

result would have been expected to have improved yet again.
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5.7.3.2 CMS compensation for white Gaussian noise

Tables 5.8 and 5.9 shows the summary of speaker recognition results
obtained for noisy speech and the results using the CMS algorithm compensating for
the results of additive white Gaussian noise. Figures 5.23 through to 5.26 show the
individual results for the noisy speech with Signal-to-Noise Ratios of 40 dB, 30 dB,
20 dB and 10 dB respectively.

The recognition rates in Figures 5.23 through to 5.26 and Tables 5.8 and 5.9

represent the percentage of correct classifications obtained over all tested speech

samples.

TABLE 5.8: COMPARISON OF AVERAGE RECOGNITION RATE FOR NOISY SPEECH AND

NOISY SPEECH WITH CMS.
Signal — to — Noise Ratio
40 dB 30dB 20 dB 10dB
Average without compensation 66% 58% 40% 26%
Average using CMS 38% 30% 10% 4%

TABLE 5.9: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED

BY THE CMS ALGORITHM.

Speaker Signal — to — Noise Ratio

number | 40dB | 30dB 20 dB 10 dB
1 80% 80% 20% 0%
2 0% 0% 0% 0%
3 60% 40% 0% 0%
4 40% 20% 60% 40%
5 60% 20% 0% 0%
6 40% 40% 0% 0%
7 80% 60% 0% 0%
8 20% 40% 0% 0%
9 0% 0% 20% 0%
10 0% 0% 0% 0%

average | 38% 30% 10% 4%
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Figure 5.23: Percentage of speakers recognised from CMS equalised speech with
additive noise (SNR =40 dB)
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Figure 5.24: Percentage of speakers recognised from CMS equalised speech with
additive noise (SNR = 30 dB)
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Figure 5.25: Percentage of speakers recognised from CMS equalised speech with
additive noise (SNR =20 dB)
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Figure 5.26: Percentage of speakers recognised from CMS equalised speech with
additive noise (SNR = 10 dB)

The results of the paired t-test for the recognition rates based on
uncompensated noisy speech versus the recognition rates based on CMS-equalised

speech are given in Table 5.10.
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TABLE 5.10: PAIRED T-TEST FOR NOISY SPEECH VERSUS CMS-EQUALISED SPEECH

Noisy speech versus CMS-equalised speech
SNR=40dB | SNR=30dB | SNR=20dB | SNR=10dB

Pearson correlation | 0.0979 -0.0687 0.3656 -0.2791
t stat 2.0397 1.9091 3.1429 1.8193
P(T<=t) one-tail 0.0359 0.0443 0.0059 0.0511
t critical one-tail 1.8331 1.8331 1.8331 1.8331
P(T<=t) two-tail 0.0718 0.0886 0.0119 0.1022
t critical two-tail 2.2622 2.2622 2.2622 2.2622

Comparison of the results for the noisy speech in Table 5.8 indicates that, for
all of the tested values of SNR there is a decline in the average recognition rates.

The t-test results in Table 5.10 and the average recognition rates in Table 5.8
indicate that the decrease of the average speaker recognition rates due to the CMS
compensation is statistically significant for all of the tested values of SNR.

In conclusion, the CMS channel equalisation technique does not provide
effective compensation for noisy speech, and it does not improve the performance of

this speaker recognition system in this case.

5.7.6 Using RASTA Processing for Channel Compensation

RASTA processing of speech as discussed in Section 3.3.2, was tested as an
alternative to CMS, as it was specifically developed to compensate for both

convolutional (filtering) as well as additive signal distortion (corruption by noise).

5.7.6.1 Using RASTA processing for low pass filtering effects

Table 5.11 and 5.12 shows the summary of speaker recognition results
obtained for low pass filtered speech and the results using the RASTA algorithm
compensating for the results of the low pass filtering. Figures 5.27 through to 5.31
show the individual results for the low pass filters with cutoff frequencies of 7, 6, 5,

4 and 3 kHz respectively.
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The recognition rates in Figures 5.27 through to 5.31 and Tables 5.11 and

5.12 represent the percentage of correct classifications obtained over all tested

speech samples.

TABLE 5.11: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED

SPEECH WITH RASTA PROCESSING.

Cutoff frequency of a lowpass Butterworth filter

7kHz 6kHz SkHz 4kHz 3kHz

Average without compensation 70% 2% 58% 0% 0%
Average using CMS 48% 44% 46% 38% 22%
Average using RASTA Processing 60% 56% 58% 56% 26%

TABLE 5.12: PERCENTAGE OF SPEAKERS RECOGNISED FROM LOWPASS FILTERED

SPEECH WITH RASTA COMPENSATION.

Speaker | Cutoff frequency of a lowpass Butterworth filter

number | 7kHz | 6kHz 5kHz 4kHz 3kHz
Lo 80% ) g0 | 60% | 60% 0%
2| 80% gog | g0% | s0% 0%
3 [ 109% 1 y000 | 100% | 80% 0%
%% L og | oom | 0w 0%
> 0% 000 | 100% | 80% 0%
6 | 80% | g00 | 80% | 80% | 100%
T 2% ] 400 | a0% | 20% 0%
8 | 0% 400 | 40% | 40% 0%
O | 0% | 400 | a0% | 80w | 10V0%
10 140% | o0, | 400 | 40% 60%

AVETAEC | 60% | 56% | 58% | 56% 26%
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Figure 5.27: Percentage of speakers recognised from RASTA equalised speech with
low pass filter (cutoff =7 kHz)
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Figure 5.28: Percentage of speakers recognised from RASTA equalised speech with
low pass filter (cutoff = 6 kHz)
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Figure 5.29: Percentage of speakers recognised from RASTA equalised speech with
low pass filter (cutoff = 5 kHz)
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Figure 5.30: Percentage of speakers recognised from RASTA equalised speech with
low pass filter (cutoff = 4 kHz)
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Figure 5.31: Percentage of speakers recognised from RASTA equalised speech with
low pass filter (cutoff = 3 kHz)

The results of the paired t-test for the recognition rates based on
uncompensated low pass filtered speech versus the recognition rates based on

RASTA processed speech are given in Table 5.13.

TABLE 5.13: PAIRED T-TEST FOR LOWPASS SPEECH VERSUS RASTA-EQUALISED

SPEECH
lowpass speech versus RASTA-equalised speech

Cutoff | Cutoff Cutoff Cutoff Cutoff

7kHz 6kHz SkHz 4kHz 3kHz
Pearson correlation | 0.823 0.8839 0.4323 Undefined | Undefined
t stat 1.627 | 3.2071 -2E-16 | -6 -1.9007
P(T<=t) one-tail 0.0691 |0.0054 |0.5 0.0001 0.0449
t critical one-tail 1.8331 | 1.8331 1.8331 1.8331 1.8331
P(T<=t) two-tail 0.1382 | 0.0107 1 0.0002 0.0898
t critical two-tail 2.2622 | 2.2622 2.2622 2.2622 2.2622

Comparison of the results for the low pass filtered speech and RASTA
processed speech in Table 5.11 indicates that at frequencies of 7 kHz and 6 kHz the

RASTA processing shows a decline in the average recognition rate with a
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statistically significant value (Table 5.13) at 6 kHz. At a cutoff frequency of 5 kHz
the recognition rate remained the same as for uncompensated speech. However at the
cutoff frequencies of 4 kHz and 3 kHz, there is a significant increase of the average
recognition rate due to RASTA processing.

As indicated in Table 5.11, for all cutoff frequencies the RASTA processing

method produces higher average recognition rates compared to the CMS method.

5.7.6.2 Using RASTA processing for white Gaussian noise

Tables 5.14 and 5.15 shows the summary of speaker recognition results
obtained for noisy speech and the results using the RASTA algorithm compensating
for the results of additive white Gaussian noise. Figures 5.32 through to 5.35 show
the individual results for the noisy speech with Signal-to-Noise Ratios of 40 dB, 30
dB, 20 dB and 10 dB respectively.

The recognition rates in Figures 5.32 through to 5.35 and Tables 5.14 and
5.15 represent the percentage of correct classifications obtained over all tested

speech samples.

TABLE 5.14: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED

WITH THE RASTA ALGORITHM.

Signal — to — Noise Ratio
40 dB 30dB 20 dB 10 dB
Average without compensation 66% 58% 40% 26%
Average using CMS 38% 30% 10% 4%
Average using RASTA Processing 56% 54% 48% 30%
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TABLE 5.15: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED

WITH THE RASTA ALGORITHM.

Speaker Signal — to — Noise Ratio
number | 40dB | 30dB 20dB 10 dB
1 80% 60% 60% 0%
2 80% 100% 80% 100%
3 100% 80% 60% 20%
4 0% 0% 0% 0%
5 100% 80% 40% 20%
6 80% 80% 60% 60%
7 0% 40% 60% 0%
8 20% 20% 20% 0%
9 60% 60% 80% 80%
10 40% 20% 20% 20%
average | 56% 54 % 48 % 30%
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Figure 5.32: Percentage of speakers recognised from RASTA equalised speech with
additive noise (SNR =40 dB)
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Figure 5.33: Percentage of speakers recognised from RASTA equalised speech with
additive noise (SNR =30 dB)
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Figure 5.34: Percentage of speakers recognised from RASTA equalised speech with
additive noise (SNR =20 dB)
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Figure 5.35: Percentage of speakers recognised from RASTA equalised speech with

The results of the paired t-test for the recognition rates based on

uncompensated noisy speech versus the recognition rates based on RASTA

additive noise (SNR = 10 dB)

processed speech are given in Table 5.16.

TABLE 5.16: PAIRED T-TEST FOR NOISY SPEECH VERSUS RASTA-EQUALISED SPEECH

Noisy speech versus CMS-equalised speech

SNR=40dB | SNR=30dB | SNR=20dB | SNR=10dB
Pearson correlation | 0.6536 0.7844 0.2632 0.793
t stat 1.0476 0.5571 -0.7121 -0.5571
P(T<=t) one-tail 0.1611 0.2955 0.2472 0.2955
t critical one-tail 1.8331 1.8331 1.8331 1.8331
P(T<=t) two-tail 0.3221 0.5911 0.4945 0.5911
t critical two-tail 2.2622 2.2622 2.2622 2.2622

Comparison of the results for the noisy speech and the RASTA equalised
speech in Table 5.14 indicate that at SNR values of 40 dB and 30 dB the RASTA
processing shows small statistically insignificant decline in the average recognition
rate, however, at SNR values of 20 dB and 10 dB, there is a small increase of the

average recognition rate due to the RASTA processing.
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As indicated in Table 5.14, for all tested values of SNR, the RASTA
processing method produces higher average recognition rates compared to the CMS
method.

In summary, both the RASTA and CMS methods produced improvements in
the average recognition rates for the low cutoff frequencies of the filtered speech and
for the low SNR values of the noisy speech.

The levels of improvements for RASTA were higher than for CMS
particularly with corruption due to additive noise as was expected from the theory
saying that RASTA took this sort of distortion into account rather than just
compensating for convolutional distortion (filtering) alone.

Unfortunately, for low pass filtered speech with higher cutoff frequencies

both RASTA and CMS reduced the speaker recognition rates slightly.
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5.7.7 Using CMA Algorithm for Channel Equalisation

The CMA compensation algorithm was tested on speech corrupted by both a
low pass filter as well as the addition of white noise.

The low pass filter impulse response used in these experiments was given as
the vector: ¢ = [0.04, -0.05, 0.07, -0.21, - 0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07],
illustrated in Figure 5.36 and amplitude response illustrated in Figure 5.37.

As illustrated in Figure 5.37 the cutoff frequency of the low pass filter was
about 7500 Hz.

_DE 1 1 1 | 1 1 1 | 1
0

samples

Figure 5.36: Channel impulse response used in channel simulation for CMA

algorithm
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Figure 5.37: Channel amplitude response used in channel simulation for CMA

algorithm

The level of noise used in the channel simulation had the SNR values of 10,
20, 30 and 40 dB. When using SNR values below 20 dB, the speech-silence-noise
detection algorithm was disables to prevent all the speech being deleted (section

5.7.2).
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5.7.7.1 CMA compensation results for the low pass filtered and noisy speech

Tables 5.17 and 5.18 shows the summary of speaker recognition results
obtained for noisy speech and the results using the CMA compensation algorithm.
Figures 5.38 through to 5.41 show the individual results for the noisy speech with
Signal-to-Noise Ratios of 40 dB, 30 dB, 20 dB and 10 dB respectively.

The recognition rates in Figures 5.38 through to 5.41 and Tables 5.17 and
5.18 represent the percentage of correct classifications obtained over all tested

speech samples.

TABLE 5.17: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED

WITH THE CMA ALGORITHM.

Signal — to — Noise Ratio
40 dB 30dB 20 dB 10 dB
Average without compensation 66% 58% 40% 26%
Average using CMS 38% 30% 10% 4%
Average using RASTA Processing 56% 54% 48% 30%
Average using CMS Algorithm 56% 52% 52% 8%
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TABLE 5.18: PERCENTAGE OF SPEAKERS RECOGNISED FROM NOISY SPEECH EQUALISED

WITH THE CMA ALGORITHM.

Speaker Signal — to — Noise Ratio

number | 40dB | 30dB 20dB 10 dB
1 80% 80% 80% 0%
2 100% 80% 80% 20%
3 80% 80% 100% 0%
4 0% 0% 0% 0%
5 80% 60% 40% 0%
6 80% 80% 60% 0%
7 20% 20% 20% 0%
8 60% 20% 40% 0%
9 60% 80% 100% 60%
10 0% 20% 0% 0%

average | 56% 52% 52% 8%
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Figure 5.38: Percentage of speakers recognised from CMA equalised speech with
additive noise (SNR =40 dB)
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Figure 5.39: Percentage of speakers recognised from CMA equalised speech with
additive noise (SNR = 30 dB)
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Figure 5.40: Percentage of speakers recognised from CMA equalised speech with
additive noise (SNR =20 dB)
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Figure 5.41: Percentage of speakers recognised from CMA equalised speech with
additive noise (SNR = 10 dB)

As discussed in Section 5.7.1, at high cutoff frequencies (above 6 kHz), the
recognition rates are similar to these for clean speech, thus the CMA results in this
experiment were expected to be affected mostly by the addition of noise and were
compared to the results for noisy speech from Section 5.7.2.

The results of the paired t-test for the recognition rates based on
uncompensated noisy speech versus the recognition rates based on the CMA-

equalised speech are given in Table 5.19.

TABLE 5.19: PAIRED T-TEST FOR NOISY SPEECH VERSUS CMA-EQUALISED SPEECH

Noisy speech versus CMA-equalised speech
SNR=40dB SNR=30dB | SNR=20dB | SNR=10dB
Pearson correlation | 0.8836 0.7758 0.3746 0.6185
t stat 1.86052 0.8182 -0.97 2.2119
P(T<=t) one-tail 0.04787 0.2172 0.1786 0.0271
t critical one-tail 1.8331 1.8331 1.8331 1.8331
P(T<=t) two-tail 0.09573 0.4344 0.3572 0.0543
t critical two-tail 2.2622 2.2622 2.2622 2.2622
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Comparison on the results in Tables 5.17 through to 5.19 show that as the
SNR value increased so did the accuracy of the speaker recognition system.

The results in Table 5.17 and Table 5.19 show that only for SNR=20 dB does
the CMA algorithm give a higher recognition rate compared to uncompensated noisy

speech, however, this improvement is statistically insignificant.
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Chapter 6 — Conclusions and Future Research

Directions

6.1 Introduction

The experiments presented in this thesis investigate the effects of channel
distortion on the average speaker recognition rates and testing the effectiveness of
various channel compensation algorithms designed to mitigate these channel effects.

The speaker recognition system was simulated using a basic recognition
algorithm consisting of the following components: speech analysis calculating
feature vectors in the form of Mel-Frequency Cepstral Coefficients and the

classification component based on the minimum distance algorithm.

Two types of channel distortion were investigated:
e Convolutional (or low pass filtering) effects,

e Addition of white Gaussian noise.

Three types of channel compensation algorithms were tested:
e (Cepstral Mean Subtraction (CMS),
e RelAtive SpecTrAl (RASTA) Processing,
¢ Constant Modulus Algorithm (CMA).

6.2 Effects of Low Pass Filtering on Recognition rates

The results show that for low pass filtering the speech segments there is no
significant difference in the mean recognition rates between the clean speech and the
low pass filtered speech with cutoff frequencies of 7, 6 and 5 kHz. For speech
filtered with low pass filter cutoff frequencies below 5 kHz, the average recognition
rates for the filtered speech drops significantly to a zero recognition rate.

It indicates that the spectral features of speech above 5 kHz do not play an
important role in the process of speaker recognition. This result would be expected as

human conversational speech has an upper frequency limit of approximately 5 kHz;
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therefore it is likely that only speech characteristics at frequencies below 5 kHz are

used in speaker recognition by humans.

6.3 Effect of white Gaussian noise on speaker recognition

rates

The speaker recognition tests based on noisy speech showed that a gradual
decrease in the SNR from 40 dB to 10 dB resulted in a systematic reduction of
average recognition rates.

For all values of SNR the speaker recognition rates for noisy speech were
lower than those for clean speech. The decline in recognition rates were statistically
significant for SNR less than or equal to 30 dB

For situations where there is a high level of noise distorting the speech these
experiments showed that a compensation method would be needed for an effective

recognition rate to be achieved.

6.4 Results of Cepstral Mean Subtraction Compensation

6.4.1 CMS compensation of low pass filtered speech

A comparison of the results obtained from the experiments using no
compensation methods and experiments using CMS to compensate for low pass
filtering indicate that at frequencies of 5 kHz, 6 kHz and 7 kHz there was a decline in
the average recognition rate after compensation with a statistically significant value
at 6 kHz. This result could have occurred due to the CMS algorithm removing the
natural mean in the speech due to speaker variability in addition to removing the
convolutional effects caused by the low pass filters.

For low pass filters with cutoff frequencies below 5 kHz, the average
recognition rates after CMS compensation were higher than before compensation.
The increase of the average speaker recognition rates due to the CMS compensation
was statistically significant for the cutoff frequencies of 3 kHz and 4 kHz.

The Cepstral Mean Subtraction compensation method proved to compensate

very well for the effects of low cutoff frequencies (below 4 kHz). CMS does not
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seem to compensate well for the low pass filtering effects with the cutoff frequencies

above 4 kHz.
6.4.2 CMS compensation of noisy speech

Comparison of the speaker recognition rates for uncompensated noisy speech
and noisy speech with CMS compensation indicates that for all tested SNR values
there was a decline in the average recognition rates.

Over all SNR values, the decrease of the average speaker recognition rates
was statistically significant.

It was found that that the CMS channel compensation algorithm is ineffective

in noisy situations and does not improve the average speaker recognition rates.

6.5 Results of RASTA compensation

6.5.1 RASTA compensation of Low Pass filtered speech

A comparison of the results obtained from the experiments of uncompensated
low pass filtered speech and experiments using RASTA processing to compensate
for low pass filtering indicate that at cutoff frequencies of 7 kHz, 6 kHz and 5 kHz,
the RASTA method shows a decline in the average recognition rates with a
statistically significant decrease at 6 kHz. At the lower cutoff frequencies of 4 kHz
and 3 kHz, there is a statistically significant increase of the average recognition rates
after RASTA processing.

It was also observed that, for all of the tested values of cutoff frequencies

RASTA processing performed better than the CMS compensation method.

6.5.1 RASTA compensation of noisy speech

A comparison of the results obtained from the experiments of uncompensated
noisy speech and experiments using RASTA processing to compensate for white
Gaussian noise indicate that, at SNR values of 40 dB and 30 dB the RASTA
processing method shows a small and statistically insignificant decline in the average

recognition rates, however at SNR clues of 20 dB and 10 dB, there is a small, also
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statistically insignificant increase of the average recognition rate after RASTA
processing.

Additionally it was observed that for all tested values of SNR, the RASTA
compensation method produced a higher recognition rate compared to the CMS

compensation method.

6.6 Results of Constant Modulus Algorithm on noisy speech

The tests of the CMA compensation for noisy speech showed that at only
SNR = 20 dB was there any improvement in recognition rates compared to the
uncompensated noisy speech, however this improvement was found to be statistically

insignificant.

6.7 Comparison of methods and summary

In summary, out of the three different channel compensation methods
analysed it was shown that both RASTA and the CMS method produced
improvements in the average speaker recognition rates for the low cutoff frequencies
(4 kHz and 3 kHz) compared to the low pass filtered speech without compensation.
The levels of improvements due to RASTA compensation were higher than the
levels of improvements due to the CMS compensation method.

Neither the CMS or RASTA methods were able to improve the accuracy of
the speaker recognition system for cutoff frequencies of 5 kHz, 6 kHz or 7 kHz.

In the case of noisy speech, all methods analysed were unable to compensate
for high SNR of 40 dB and 30 dB and only RASTA processing was able to
compensate and improve the average recognition rates for speech corrupted with a

high level of noise (SNR of 20 dB and 10 dB).

6.8 Future research directions

Future research directions stemming from this research could include testing
the channel equalisation methods from this work using more complex speaker
recognition classifiers such as using Vector Quantisation (VQ), Gaussian Mixture

Models (GMM) or the Hidden Markov Models (HMM) which are much more
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complicated classifiers than the minimum distance classifier used in these
experiments. These methods also rely on statistical rules for classification which
could increase the performance of the system.

The impact of illness, age, prosthetics as well as many other problems that
can affect the shape of the oral cavity and vocal tract is also another area that could
be researched to aid in improving speaker recognition and verification systems.

Another field stemming from the work is on the transmission of speech
through wireless channels includes implementing modulation algorithms and
compression schemes on the testing speech in addition to the channel simulations
completed in this research. This could be a beneficial area of research since wireless
communication systems are being used on a much wider scale and use modulation
and compression schemes on the data for transmission, which could cause potential
errors in frequency information stored in speech in addition to the distortion

occurring from the channel analysed in this work.
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Appendix A — Source Code

A.l Training

A.1.1 Preprocessing

Yo %o %0 Fo Yo To Yo Yo To Yo To o Yo To Yo To To Yo To Yo Yo To Yo To To Yo Fo Yo Jo To Yo Fo Fo Yo To Yo Yo To Yo To Yo
% This code: loads wav files, pre-emphasises, removes silence from and saves

% these as 1 second long files ready for the feature extraction phase

Y0 %o %o %o To To Yo Yo To Yo To o Fo To Yo Yo To Fo To Yo Yo To Yo Fo To Yo To o Yo To Fo To o Yo Yo Yo Yo Yo Yo Yo Yo

A=10; %Number of speakers

for i=1:A
clear silence result
string] = 'speaker’;
string2=num?2str(i);
string3 = ".'wav';
string4=[string] string2 string3];
[x,fs,bits]=wavread(string4); %Input speech

To o To To To Fo Yo To %o Yo Yo Yo To To To Fo Fo Fo To Fo Yo Yo T Yo Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Yo Fo Fo Jo Jo Yo Yo
%Filtering Signal with pre-emphasis filter
To %o To To To Fo T To %o Yo Yo Yo To To To Fo Fo Fo Fo Fo Yo To To Yo Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Yo Fo Fo Jo Jo Yo Yo

v=preemph(x);
N=length(x);

To o To To To Fo Yo To Fo Yo Yo Yo To To To Fo Fo Fo Fo Fo Yo T Fo Vo Fo Fo Fo Fo Yo Fo Yo Yo Yo Yo Yo Fo Fo Jo Fo Jo Yo
%Speech/Silence Detection
To %o To To To Fo Yo To %o Yo Yo Yo To To To Fo Fo Fo Fo Fo Yo Yo Fo Yo Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Yo To Fo Jo Fo Yo Yo

u=abs(v);
maxlevel=max(u); %Maximum speech input into system

Bs=0.9992; %Decay time constant for speech metric
Bn=0.99722; %Decay time constant for noise metric
Bt=0.999975; %Decay time constant for silence metric

%Speech Metric
s(1)=u(l);

for k=2:N
if u(k) > s(k-1)
s(k)=u(k);
else
s(k)=((1-Bs)*u(k))+(Bs*s(k-1));

92



end
end

%Noise Metric
n(1)=u(l);

for k=2:N
if u(k) > n(k-1)
n(k)=u(k);
else
n(k)=((1-Bn)*u(k))+(Bn*n(k-1));
end
end

%Silence Metric
tn(1)=u(1);

for k=2:N
if tn(k-1) < n(k)
tn(k)= ((1-Bt)*n(k))+(Bt*tn(k-1));
else
tn(k) = n(k);
end
end

Ths=4; %Speech Threshold
Thn= 2.828; %Noise Threshold
Tmin= 0.001;

%Speech/silence decision
for k=1:N
if s(k) > Ths*tn(k)+Tmin
result(k)=1;
end
if s(k) < Thn*tn(k)+Tmin | tn(k)==
result(k)=0;
end
if Thn*tn(k)+Tmin <= s(k) <= Ths*tn(k)+Tmin
result(k)= 0;
end
end

silence=find(result==0);

%v(silence)=[]; %Removes silence from pre-emphasised speech
N=length(v);
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To %o %o To To T Yo Yo Fo Yo Yo o To To To Fo Yo Fo Yo Yo Fo Yo Yo Fo To Fo Fo Fo Yo Yo Yo Fo Yo Yo o To Fo Fo Fo Yo Yo
%Splitting the speech into 1 second long files
To %o %o To To To Yo Yo Fo Yo To Vo To To To Fo Fo Fo Yo Yo Fo Yo Yo Fo To Fo Fo Fo Fo Yo Yo Fo Yo Yo o To Fo Fo Fo Yo Yo

for k=fs:fs:N
y=v((k=(fs-1)):K);
stringS=num?2str((k/fs),'%02d");
string6="preprocessed';
str=[string6 string2 string5 string3];
wavwrite(y,fs,str)

end

end

A.1.2 Pre-Emphasis Filter Algorithm

G0 %0 Fo To Yo To Yo o Yo Fo To Yo To Yo To Yo To Yo o To Yo To Yo To Yo Fo To Yo To Yo To Yo Fo Jo Yo Fo Yo To Yo o
%This function pre-emphasises speech with high-pass filter: v(k)=x(k)-0.95x(k-1)
Go %0 o To Yo To Yo To Yo o To Yo To Yo To Yo To Yo o To Yo To Yo To Yo Fo To Yo To Yo To Yo Fo To Yo Fo Yo To Yo o

function y = preemph(x)

N=length(x);

a=15/16;

y(D)=x(1);

for k=2:N
y(k)=x(k)-a*x(k-1);

end

A.1.3 Feature Extraction

T %o %o To To T Yo To Fo Yo Yo Fo To To To Fo Fo Fo Yo Yo Yo Yo Yo Fo To Fo Fo Fo Fo Yo Yo Yo Yo Yo Yo To Fo Fo Fo Yo Yo
% This code takes in 1 second wav files produced in preprocess.m, extracts the Mel-

Frequency Cepstral Coefficients and saves these as dat files to be used in classifier
To o %o To To Fo T To %o Yo Yo Yo To To Fo Fo Fo Fo To Fo Yo Yo Fo Yo Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Yo Fo Fo Fo Jo Jo Yo

clear

A=20; %Number of speakers

a=20; %Number of seconds per speaker
Coef=20; %Number of Cepstral Coefficients

To o %0 %0 ToFo To %o To Fo To Yo To Fo Yo Yo Fo Fo Yo Yo To Fo To Yo Fo Fo Yo Yo Fo To Yo Yo Fo Fo Yo To Fo Yo Yo To Jo
%Signal input
To o %0 %0 To Fo To Yo To Fo To Yo To Fo %o Yo Fo Fo Yo Yo To Fo Fo Yo Fo Fo Yo Yo Fo Fo Yo Yo Fo Fo Yo To Fo Yo Yo Yo Jo
for i=1:A

string] = 'd:\katrina\research\Training\textindepend\speaker'; %this creates

constant part of filename
string2 = num2str(i); %this converts number i into a string
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for k=1:a
string3 = num2str(k,'%02d");
string4 = ".wav'; %this adds the file extension to the filename
stringS=[string] string2 string3 string4]; %this concatenates the four strings into
one string
[x,fs,bits]=wavread(string5); %Input speech
fs=11000;
N=length(x);

To o To To To Fo T To To Yo Yo Vo To Fo To Fo Fo Fo T To Yo Yo Yo Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Vo Fo Fo Fo Yo Yo Yo
%Extracting Mel-Cepstral Coefficients
To %o To To To Fo T To Yo T Yo Vo Fo Fo To Fo Fo Fo To Yo Yo Yo Yo Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Vo Fo Fo Fo Yo Yo Yo

signal_duration=N;

window_length=0.02*fs; %length of window (should be 20ms)
window_overlap=0.01*fs; %overlap of frames (should be 10ms)
ceps=mfcc_1(x,window_overlap,window_length,Coef,12000);

To %o %0 %o Yo Fo Jo To To To To To To o %o Yo Yo To To Fo Fo Fo Fo To Fo To Yo Yo Yo T Yo Fo Fo Yo Fo Fo Fo Fo Fo Yo Yo
%Saving Mel-Frequency Coefficients
%o %0 %0 %o Yo To Fo To To To To To To o %o Yo Yo To To Fo Fo Fo Fo To Fo To Yo Yo Yo Yo Yo Fo Yo Yo Fo Fo Fo Fo Fo Yo Yo

stringb=".dat’;
string7= [string] string2 string3 string6];
fid = fopen(string7,'w");

for n=1:Coef
fprintf(fid,'%4.6f ',ceps(n,:));
fprintf(fid,\n');
end
end
fclose('all');
end

A.1.4 Mel-Frequency Cepstral Coefficient Algorithm

% mfcc.m

% Calculates cepstral coefficients for sequence y, using window length N,

% window step size M (for overlap between blocks), and order P (= number of cep
% coeff's wanted).

function ccep=mfcc_1(y,M,N,P.fs);

Nt=length(y); % total speech length

N2=N/2;

F=fs/N; % frequency step

f=F*(-N2:N2-1); % frequency vector for one block
H=zeros(20,N);Le=zeros(1,20);coef=zeros(P,ceil(Nt/N));ccep=zeros(1,P);

% % Start & end of trianglar filters
% Formula used is: Mel(f)=2595*1og10(1+t/700) with Range of 4000 Hz.
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fo=[069 146 231 324 426 539 663 799 949 1113 1295 1494 1713 1954 2219 2511
2832 3185 3573];

fe =[146 231 324 426 539 663 799 949 1113 1295 1494 1713 1954 2219 2511 2832
3185 3573 4000 4469];

fc=fo+(fe-fo)/2; % centers of filters

B=fe-fo; % band-widths

for k=1:20
Box I=stepfun(f,fo(k))-stepfun(f,fe(k));
Box2=stepfun(f,-fe(k))-stepfun(f,-fo(k));
H(k,:)=abs(1-abs(f-fc(k))/(B(k)/2)).*Box1+abs(1-abs(f+fc(k))/(B(k)/2)).*Box2; %

k-th +ve/-ve triangle

end

% for k=1:20

%  H(k,:)=abs(1-(f-fc(k))/(2*B(k))).*(stepfun(f,fo(k))-stepfun(f,fe(k)))+abs(1-

(f+fc(k))/(2*B(k))).*(stepfun(f,-fe(k))-stepfun(f,fo(k))); % k-th +ve/-ve triangle

% end

ns=1; %start point

ne=N; %end point

m=1;

while ne <= Nt
ym=y(ns:ne); % m-th block
yw=hamming(N).*ym; % windowed m-th block
Y w=abs(fftshift(fft(yw)))/fs;

for j=1:20 % mel filters outputs
Y1{(,:)=H(,:).*Yw."

Ef=sum(Yf1(j,:).*2); % Energy o/p of j-th filter
Le(j)=log(Ef); % log-energy output of the j-th filter
end

V=[1:20];

for i=1:P % P is the number of coeff required
coef(i,m)=sum(Le.*cos(i*(V-.5)*pi/20));
end

m=m-+1;
ns=1+(m-1)*M; % new start
ne=ns+N-1; % new end

end; % go back for a new frame (block)

ccep= coef;
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A.1.5 Averaging the Features

To %o o To To T Yo To To Yo Yo To To To To Fo Fo Fo To Fo Yo Yo o To Fo Fo Fo Yo Fo Yo Yo Yo Yo Fo Fo To Fo Yo Yo Yo
% This code takes in Mel-frequency cepstral coefficients from each speaker and

calculates the average of the feature vectors over multiple analysis frames.
T o To To To Fo To %o Yo Yo Yo Vo Fo Fo To Fo Fo To To Yo Yo Yo T Fo Fo Fo Fo Fo Fo Yo Yo Yo Yo Vo Fo Fo Fo Yo Yo Yo

clear, clc

A=10; %Number of Speakers
a=10; %Number of seconds per speaker
Coef=20; %Number of Cepstral Coefficients

for j=1:A

fori=1l:a

string1='d:\katrina\research\training\textindepend\';
string2="speaker';

string3=num?2str(j);

string4=num?2str(i,'%02d");

string5=".dat’;

string6=[string1 string2 string3 string4 string5];
load (string6)

end

if j==
speaker = [speaker101 speaker102 speaker103 speaker104 speaker105
speaker106 speaker107 speaker108 speaker109 speaker110];

elseif j==
speaker = [speaker201 speaker202 speaker203 speaker204 speaker205
speaker206 speaker207 speaker208 speaker209 speaker210];

elseif j==3
speaker = [speaker301 speaker302 speaker303 speaker304 speaker305
speaker306 speaker307 speaker308 speaker309 speaker310];

elseif j==

speaker = [speaker401 speaker402 speaker403 speaker404 speaker405
speaker406 speaker407 speaker408 speaker4(09 speaker410];
elseif j==

speaker = [speaker501 speaker502 speaker503 speaker504 speaker505
speaker506 speaker507 speaker508 speaker509 speaker510];

elseif j==
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speaker = [speaker601 speaker602 speaker603 speaker604 speaker605
speaker606 speaker607 speaker608 speaker609 speaker610];

elseif j==7
speaker = [speaker701 speaker702 speaker703 speaker704 speaker705
speaker706 speaker707 speaker708 speaker709 speaker710];

elseif j==8
speaker = [speaker801 speaker802 speaker803 speaker804 speaker805
speaker806 speaker807 speaker808 speaker809 speaker810];

elseif j==
speaker = [speaker901 speaker902 speaker903 speaker904 speaker905
speaker906 speaker907 speaker908 speaker909 speaker910];

elseif j==10
speaker = [speaker1001 speaker1002 speaker1003 speaker1004 speaker1005
speaker1006 speaker1007 speaker1008 speaker1009 speaker1010];

for i=1:Coef
avg(:,i)=mean(speaker(i,:));
end

string7="mean';
string8= [string] string7 string3 string5];
fid = fopen(string8,'w");

for n=1:Coef

fprintf(fid, %4.6f ',avg(:,n));

end

fclose('all");

end
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A.2 Testing

A.2.1 Minimum Distance Classifier Algorithm

clear, clc
A=10; %Number of trained speakers
Coef=20; %Number of Cepstral Coefficients

string1='d:\katrina\research\testing\textindepend\AvFeatVec\;

for i=1:A
string2="mean’;
string3=num?2str(i);
string4=".dat’;
string5=[string1 string2 string3 string4];
load(string5)
end

results(1,20)=zeros;

for i=1:A
stringb= "testmean’;
string7 = num2str(i);
string8= [string] string6 string7 string4];
meantestsamp = load(string8);

C2=(1/(Coef))*sum((mean2(1:Coef)-meantestsamp(1:Coef))."2);
C3=(1/(Coef))*sum((mean3(1:Coef)-meantestsamp(1:Coef))."2);
C4=(1/(Coef))*sum((mean4(1:Coef)-meantestsamp(1:Coef))."2);
C5=(1/(Coef))*sum((mean5(1:Coef)-meantestsamp(1:Coef))."2);
C6=(1/(Coef))*sum((mean6(1:Coef)-meantestsamp(1:Coef))."2);
C7=(1/(Coef))*sum((mean7(1:Coef)-meantestsamp(1:Coef))."2);
C8=(1/(Coef))*sum((mean8(1:Coef)-meantestsamp(1:Coef))."2);
C9=(1/(Coef))*sum((mean9(1:Coef)-meantestsamp(1:Coef))."2);
C10=(1/(Coef))*sum((mean10(1:Coef)-meantestsamp(1:Coef))."2);

C=[CI C2C3C4C5C6C7C8C9Cl10];
[g,Speaker]=min(C);

results(1,1)=i;

results(2,i)=Speaker;

end

results
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Appendix B — Test Results

Results with no Equalisation/Compensation

LPFs Noise

Speaker
# Gender | Clean | 3kHz |4kHz | 5kHz | 6kHz | 7kHz | 10dB | 20dB | 30dB | 40dB

100% 0% 0% | 40% 80% 80% 0% | 40% 80% 80%

100% 0% 0% | 100% | 100% | 100% | 100% | 100% | 100% | 100%

100% 0% 0% | 100% | 100% 80% 20% 20% 80% 80%

0% 0% 0% | 60% | 20% 0% 0% | 60% 0% 0%

100% 0% 0% 60% | 100% | 100% 20% 20% | 100% | 100%

60% 0% 0% 60% 80% 80% 0% 20% | 40% 60%

60% 0% 0% 60% 60% 60% 0% 0% 20% 60%

80% 0% 0% 0% 80% 80% 20% | 40% 60% 80%

60% 0% 0% 80% 80% 80% 60% 80% 80% 80%

SO |0 |QA[AN[N|H|WIN|—

20% 0% 0% 20% 20% | 40% | 40% 20% 20% 20%

—

Channel Compensation with Cepstral Mean Subtraction

LPFs Noise

Speaker
# Gender | 3kHz | 4kHz | 5kHz | 6kHz | 7kHz | 10dB | 20dB | 30dB | 40dB

1M 60% 20% 0% 40% 80% 0% 20% 80% 80%
2| F 0% 0% 0% 0% 0% 0% 0% 0% 0%
3|F 0% 80% | 100% | 100% | 100% 0% 0% 40% 60%
4 | M 0% 20% 40% 40% 20% 40% 60% 20% 40%
50 M 0% | 100% | 100% | 100% | 100% 0% 0% 20% 60%
6 | M 100% 80% 60% 60% 80% 0% 0% 40% 40%
7| F 20% 20% 80% 60% 60% 0% 0% 60% 80%
8| F 0% 60% 80% 40% 40% 0% 0% 40% 20%
9 M 40% 0% 0% 0% 0% 0% 20% 0% 0%
10 | F 0% 0% 0% 0% 0% 0% 0% 0% 0%
Channel Equalisation with
CMA
Noise
Speaker

# Gender | 10dB | 20dB | 30dB | 40dB

0% 80% 80% 80%
20% 80% 80% | 100%
0% | 100% 80% 80%
0% 0% 0% 0%
0% | 40% 60% 80%
0% 60% 80% 80%
0% 20% 20% 20%
0% | 40% 20% 60%
60% | 100% 80% 60%
0% 0% 20% 0%

[=IINII- BN o N [V, N SUSE T SR

—
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Channel Compensation with RASTA Processing

LPFs Noise
Speaker

# Gender | 3kHz | 4kHz | 5kHz | 6kHz | 7kHz | 10dB | 20dB | 30dB | 40 dB
1| M 0% 60% 60% 60% 80% 0% 60% 60% 80%

2| F 0% 80% 80% 80% 80% | 100% 80% | 100% 80%
3|F 0% 80% | 100% | 100% | 100% 20% 60% 80% | 100%

4| M 0% 0% 0% 0% 0% 0% 0% 0% 0%

5/ M 0% 80% | 100% | 100% | 100% 20% 40% 80% | 100%

6| M 100% 80% 80% 80% 80% 60% 60% 80% 80%
71F 0% 20% 40% 40% 20% 0% 60% 40% 0%

8| F 0% 40% 40% 40% 40% 0% 20% 20% 20%

91 M 100% 80% 40% 40% 60% 80% 80% 60% 60%

10 | F 60% 40% 40% 20% 40% 20% 20% 20% 40%
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Appendix C — Formulas and Tables

C.1 Mel-Scale Filters
Range (Hz) 4000
Mel Range 2146.06
Mel increments 107.30
Mel-scale Linear scale
Filter Start Finish Start Finish
1 0.00 | 214.61 0.00 146.83
2 107.30 | 321.91 69.92 | 231.43
3| 214.61| 429.21| 146.83 | 324.47 Mel(f) = 259510&0(”%)
4 321.91 536.52 231.43 426.80
5 429.21 643.82 324.47 539.36
6| 536.52| 751.12| 426.80| 663.16
7| 643.82 | 858.43 | 539.36 | 799.33
8| 75112 | 965.73| 663.16 | 949.10
9| 85843 | 1073.03| 799.33 | 1113.84
10 | 965.73 | 1180.34 | 949.10 | 1295.02
11 | 1073.03 | 1287.64 | 1113.84 | 1494.31
12 | 1180.34 | 1394.94 | 1295.02 | 1713.50
13 | 1287.64 | 1502.25 | 1494.31 | 1954.59
14 | 1394.94 | 1609.55 | 1713.50 | 2219.77
15 | 1502.25 | 1716.85 | 1954.59 | 2511.43
16 | 1609.55 | 1824.15 | 2219.77 | 2832.22
17 | 1716.85 | 1931.46 | 2511.43 | 3185.06
18 | 1824.15 | 2038.76 | 2832.22 | 3573.15
19 | 1931.46 | 2146.06 | 3185.06 | 4000.00
20 | 2038.76 | 2253.37 | 3573.15 | 4469.49
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