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Abstract 
 

 

Satellite-based communication system can provide access to voice, data, video and internet 

transmission that is independent of terrestrial infrastructure. This is particularly important 

in disaster response situations and military maneuvers where mobile personnel need to 

maintain direct contact with each other and the central control.  One of the factors that 

currently limits the effectiveness and practicality of these systems is portability. These 

systems require lightweight equipment that can be quickly and easily deployed and 

operated in a variety of environments. Parabolic dish antennas are the only antennas 

capable of providing the high gain required for direct satellite communication but their size 

and weight severely limit their portability and hence their use for portable direct satellite 

communication. Inflatable structures have been used in the space environment to 

overcome the limitations of launch vehicle size and weight restrictions. They are 

constructed from thin film, or gossamer materials, and use internal pressure to maintain 

their shape. Inflatable structures are lightweight, have a low stowed volume and a high 

packing efficiency. It is proposed that this type of structure can be used to produce an 

inflatable parabolic dish antenna that can operate under terrestrial conditions to overcome 

the limits on portability for land-based communication. This thesis presents a design for a 

parabolic dish antenna and conical feed horn constructed entirely from polyester thin film. 

To further reduce the weight and stowed volume of the antenna the conical horn is fed by a 

microstrip patch. The performance of the components and their ability to operate under 

terrestrial conditions are assessed by comparing the results to those of an identical rigid 

system.  
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Introduction 

 

Satellite-based communication systems provide access to voice, data, video and internet 

transmission that is independent of terrestrial infrastructure. The satellite communication 

network can be accessed either via a fixed ground station or directly from a portable 

terminal. Access to satellite-based communication which is independent of a ground 

station is particularly important in disaster response situations and military manoeuvres 

where mobile personnel need to maintain direct contact with each other and the central 

control [1, 2].   

 

Satellite-based personal communications systems (SPCS) are an effective way to connect 

mobile personnel with a central support network in both military and disaster management 

situations [3]. SPCS use the network of orbiting satellites to make broadband 

communication possible when there is no infrastructure on the ground or the infrastructure 

has been damaged. One of the factors that currently limits the effectiveness and 

practicality of these systems is portability [1, 2]. To increase portability these systems 

require lightweight equipment that can be quickly and easily deployed and operated in a 

variety of environments. Parabolic dish antennas are the only antennas capable of 

providing the high gain required for direct satellite communication but their size and 

weight severely limit their portability and the effectiveness of the SPCS.  

 

To increase the portability of SPCS, without sacrificing performance, it is desirable to 

replace the reflector and feed system with a lightweight, stowable alternative that matches 

the performance of a rigid antenna. Rigid deployable structures such as umbrella and petal 

reflectors have been used to reduce stowed volume but they offer only limited reduction in 

weight and have limited shape accuracy [4, 5].  

 

Inflatable structures have been used in the space environment to overcome the limitations 

the launch vehicle places on the achievable size of the structure and its weight [6]. The 

launch of the Inflatable Antenna Experiment (IAE) demonstrated that an inflatable 

structure was capable of achieving the shape accuracy and dimensional stability required 

to perform as an antenna in the space environment [7]. It is proposed that inflatable 

structures technology can be used to produce an inflatable parabolic dish antenna that will 
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operate reliably under terrestrial conditions to overcome the limits on portability for land-

based direct satellite communication.  

 

This thesis presents the design of an inflatable antenna with gossamer feed horn fed by a 

microstrip patch. It will be shown how a combination of structural design, material 

selection and internal pressure can be used to produce a parabolic reflector and conical 

feed horn from thin film materials which can match the performance of a rigid antenna 

under the influence of gravity. It will then be shown how this approach can be used to 

produce a reusable antenna capable of direct satellite communication which is truly human 

portable.  This will be achieved by:  

1. Measuring the return loss and radiation pattern of a feed horn manufactured from 

thin film and fed by a microstrip patch which resonates at 12.5 GHz, and 

comparing it to the return loss and radiation pattern of a rigid Aluminium feed horn 

of the same design fed by the same microstrip patch.  

2. Measuring the radiation pattern of a parabolic dish antenna fed by the above 

gossamer horn and comparing it to the radiation pattern of a rigid parabolic dish 

antenna of the same design fed by the same gossamer horn.  

3. Measuring the weight and stowed volume of the gossamer and rigid antennas and 

comparing their portability. 

4. Comparing the portability and performance of the inflatable antenna with existing 

alternatives.  

 

This work was conducted between March 2002 and December 2005 and was first 

published in February 2003. 
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1. Background 

 

1.1 Satellite-based Personal Communications Systems (SPCS) 

 

Satellite-based Personal Communications Systems (SPCS) allow the user to directly access 

the global communications network. This network uses wireless based technologies, both 

terrestrial and satellite-based, to offer a seamless infrastructure that provides global 

personal connectivity and access to broadband wireless multimedia, communications and 

services, by anyone, from anywhere, at any time [3].  

 

The use of SPCS is fundamentally changing the way disaster response and military 

conflicts are managed. The ability to transmit detailed information quickly and reliably to 

and from all parts of the globe helps streamline command and control, enabling faster 

deployment of highly mobile personnel capable of adapting quickly to changing conditions 

[1, 8]. The ability to integrate interactive data access with simultaneous video broadcasts 

opens new opportunities for information dissemination to roaming clients whose needs 

evolve with time.  

 

The successful implementation of this system is equipment dependent. It requires the 

development of lightweight, man-portable ground station technologies. 

    

1.2 Existing land-based direct satellite communication technology 

 

All satellite communication systems are composed of a space segment and a ground 

segment. The Ground Station is responsible for transmitting, or uplinking, data to the 

satellite and receiving, or downloading, data from the satellite. Ground stations can also 

transmit data between themselves if they are within line-of-sight. 

 

To fulfil this role ground stations are equipped with a user interface, a power system, a 

tracking system, a baseband processor, an up converter, an amplifier, and a parabolic dish 

antenna. Parabolic dish antennas are required for direct satellite communication as smaller, 

lighter antennas, such as dipoles and Yagi antennas do not generate the gain required for 
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direct satellite communication. The gain of the antenna is directly related to the aperture of 

the parabolic reflector.  

 

Over time there has been a concerted research effort into miniaturizing the components of 

ground station terminals and reducing power consumption in order to increase portability 

[9]. Despite all these advances the portability of the system remains limited by the 

parabolic reflector. Reducing the size of the parabolic reflector in an attempt to increase 

the portability of the system, results in a reduction in the gain of the antenna and a 

reduction in performance. The challenge is to design a parabolic dish antenna which is 

lightweight and portable but which has the performance of a large reflector. 

 

1.2.1 Portable rigid parabolic dish antennas 

 

While fixed ground stations can handle large amounts of data which can then be relayed to 

individual users, mobile ground stations offer the ability to access the satellite network 

directly from multiple locations. Current mobile systems can be divided into two main 

categories: larger antennas that require a vehicle to transport them and smaller antennas 

that are intended for individual use but which are severely limited in performance due to 

their small size.  

 

These two systems offer Communications-on-the-Halt (COTH) and Communications-on-

the-Pause (COTP) [2, 10]. COTH is established where the user is stationed at a fixed 

location for a long period of time and can deploy a semi-permanent communications 

system. Fig. 1 shows a typical military COTH ground station. COTP is deployed rapidly to 

establish connectivity and then rapidly dismantled in order for the user to continue on their 

way. Fig. 2 shows a typical COTP ground station. The ability to implement COTP or 

COTH is equipment dependent, driving the development of lightweight, portable ground 

station technologies. 

 

Communication kits have been developed that are typically housed in a weatherproof and 

ruggedized briefcase style carrier, and powered either by internal batteries or an external 

power source, these devices combine cryptography, and routing into a single human 

portable product [11]. With all the baseband equipment conveniently stored in a single 

suitcase, all that is needed is an antenna to connect to the appropriate network.  
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A parabolic dish antenna is the only antenna that produces the gain required for direct 

satellite communication. The gain of the antenna, and hence its performance, is directly 

related to the effective aperture of the reflector. As such the parabolic reflector is 

responsible for the greatest percentage of the size of the system and contributes 

significantly to its weight. If a parabolic dish reflector is to be used for portable satellite 

based personal communication the reflector and feed system will need to be replaced with 

a lightweight, stowable alternative without sacrificing performance.  The provision of a 

small, lightweight, high gain antenna therefore presents the greatest design challenge and 

has the biggest impact on the portability of the unit. 

 

1.2.2 Articulated parabolic dish antennas 

 

To increase the portability of direct satellite communication systems without sacrificing 

performance a wide variety of deployable antennas have been developed, including mesh 

deployable, petal deployable and hybrid antennas [4, 5, 12]. A common feature of these 

antennas is that they can be stowed and then deployed when needed, thus reducing the size 

of the antenna during transit. As these systems are rigid they offer little if any reduction in 

weight.     

 

The two most common deployable antennas are articulated mesh, or “umbrella” parabolic 

dish reflectors and petal deployable parabolic reflectors. Examples of these antennas are 

shown in Fig. 3 and Fig. 4. Both forms of deployable antennas help to reduce the stowed 

volume of the parabolic dish antenna but neither solution offers a significant reduction in 

Fig. 1: Typical military Communications-on-the-

Halt (COTH) ground station  

(image courtesy of US DoD) 

 

Fig. 2: Typical military Communications-on-the-

Pause (COTP) ground station 

 (image courtesy of US DoD) 
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weight. As weight also limits portability it is not sufficient to reduce the stowed volume 

alone, both factors must be reduced whilst maintaining performance.  

 

       

 

 

 

The diameter of a parabolic dish antenna is the main factor that influences the gain of the 

antenna, hence the urge to increase the achievable size of portable systems, however the 

shape and surface accuracy must be maintained or the reflective characteristics of the 

antenna will be degraded to such a point as to render the antenna useless. When operating 

in the field equipment durability and reliability must also be demonstrated.  

 

Articulated mesh, or umbrella, parabolic reflectors are mechanical systems whereby 

articulated ribs support a flexible mesh surface. The use of a mesh offers some weight 

reduction but the mechanical complexity of articulated system, combined with problems 

associated with shape accuracy, reduces their appeal. The shape accuracy of an articulated 

antenna is permanently limited by an effect known as pillowing [13]. Pillowing is caused 

by the localized stiffness of the ribs combined with the weight of the mesh. The pillowing 

effect means that the mesh surface will never achieve a true parabolic shape. The shape 

accuracy of an articulated antenna can be compromised even further if one of the ribs is 

bent or it fails to deploy as designed. The large number of joints in articulated antennas 

makes this type of design vulnerable to deployment defects. In remote or military 

scenarios this lack of resilience is unacceptable, especially when it is not possible to carry 

replacement reflectors. 

 

Fig. 3: Typical articulated mesh, or umbrella, 

parabolic dish antenna (image courtesy of US DoD) 

 

Fig. 4: Typical petal deployable parabolic dish 

antennas (image courtesy Thales and US of DoD) 
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Deployable petal antennas do not suffer from pillowing but their overall shape accuracy is 

dependent on the shape accuracy of the individual pieces being maintained and the 

accuracy of the assembly. In general this type of antenna is quite resilient but once one of 

the petals or any of the hinges is deformed the shape accuracy is permanently 

compromised.  

 

When looking for ways to increase the size of a parabolic dish reflector whilst reducing 

stowed volume and weight inspiration can be drawn from the space environment where the 

limitations of launch vehicle size and lifting capacity have produced concepts for inflatable 

antennas. These inflatable antennas create the possibility of large diameter, high gain 

parabolic dish antennas for a fraction of the weight and volume, and hence cost, of their 

rigid counterparts. In the same way that inflatable space-based antennas overcome the 

limitations of launch, inflatable antennas could be used to overcome the limits on 

portability for land-based communication. To make this transition an inflatable antenna 

must be created that can match the performance of a rigid or articulated antenna under 

terrestrial conditions. 

 

1.3 Existing Space-based Technology 

 

Although there is fundamentally no difference between the antennas on satellites and those 

on the ground, the unique operating environments and the ability to establish the necessary 

infrastructure place limitations on both systems. The capacity of the launch vehicle places 

restrictions on the size, weight, and power of the satellite and subsequently each additional 

kilogram, cubic metre or Watt adds to the cost. This poses a complex problem as the 

performance of a parabolic reflector antenna is directly related to its size and power.  

 

1.3.1 Rigid Space-based parabolic dish antennas 

 

It has already been discussed that to maximize the gain of a parabolic dish antenna the 

aperture of the antenna should be maximized. As there is currently no capacity for orbital 

assembly the size of any space structure is either limited by the launch vehicle or it must 

be deployed post launch. Currently launch vehicles limit the diameter of rigid parabolic 

dish antennas to between 2 and 4 metres.  
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Deploying a structure post launch increases the achievable dimensions but it also 

introduces additional complexity to the system and increased risk. In the conservative 

context of space engineering and operation any risk must be justified by a significant 

improvement in performance [14]. The requirements for space systems are stringent; they 

must be capable of operating in extreme conditions whilst still maintaining the highest 

standards of reliability as they cannot be retrieved for maintenance or repair.  

 

Maximizing the gain of an antenna is desirable to increase the capacity of the system but 

unless the shape and surface accuracy are maintained the performance will be degraded. 

The use of rigid parabolic dishes, whose behaviour in the space environment is understood, 

guarantees the required shape and surface accuracy will be maintained. The decision must 

then be made if a new technology offers a significant improvement in performance to 

justify the additional risk. 

 

1.3.2 Articulated Space-based parabolic dish antennas 

 

As in the terrestrial environment, deployable structures have been investigated to 

overcome the limitations of the launch vehicle [14]. In 1989 the Galileo probe was 

launched to study Jupiter’s atmosphere, satellites and magnetosphere. Galileo used a 

deployable articulated antenna [15] as shown in Fig. 5 to overcome the limitations of the 

launch vehicle and increase the size of the high gain antenna. The Galileo high gain 

antenna was a 4.8 metre diameter gold-plated metal mesh paraboloid stretched over 18 

jointed ribs that were designed to unfold like an umbrella. When deployed the antenna 

would supply a bandwidth of 134,000 bits per second.  
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Fig. 5: Galileo High Gain Antenna (image courtesy of NASA) 

 

Launching the antenna in a folded position served two purposes. The first and most 

important was that a larger diameter dish was possible and the second was that the antenna 

could be protected from thermal damage behind a sun shield until the craft was a safe 

distance from the sun [15]. Fig. 6 shows the Galileo high gain antenna in the stowed 

position and Fig. 7 shows the high gain antenna in the fully deployed position. 

 

               

 

 

 

In 1991 when engineers attempted to deploy the antenna they realized it was stuck. The 

problem was attributed to the sticking of a few antenna ribs due to friction between their 

standoff pins and their sockets [15]. The loss of the high gain antenna made the low gain 

antenna the prime source of communication and reduced the data rate to 160 bits per 

Fig. 6: Galileo High Gain Antenna in the 

stowed position (image courtesy of NASA) 
Fig. 7: Galileo High Gain Antenna in the fully 

deployed position (image courtesy of NASA) 
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second. This demonstrates the significant improvement in performance achievable with a 

larger diameter dish and the crippling impact of a failure to deploy as designed.  

 

The operation of any mechanical system in the space environment has risks associated 

with it, the greater the number of joints and stages in the sequence, the higher the risk 

associated with it. Current concepts for mechanically deployable space structures tend to 

be complicated, requiring vast number of spring-loaded joints or motorized hinges, thereby 

increasing the possibility of a malfunction during deployment [16, 17]. Although these 

systems offer advantages in the achievable size of the structure they offer limited or no 

weigh saving and require additional power during deployment. The Galileo example also 

illustrated that should the deployment be off design the performance of the system is 

permanently diminished. The solution is not to abandon the concept of deployable 

structures but to look for reliable solutions that deliver maximum performance for 

minimum risk. 

 

1.4 Inflatable Structures in the Space Environment 

 

Until there is a viable facility to assemble structures in space, the size, weight and 

available power of space-based structures will be limited by the launch vehicle. There are 

many proposed space structure whose final dimensions are required to be much greater 

than that of the available launch vehicles, such as solar sails and shades, or whose 

performance would be improved by increased size such as antennas and remote sensing 

radar [6, 18].  

 

The ability to deploy a structure after launch removes the limitations of the launch vehicle 

and increases the achievable size. Articulated structures have been used, however their 

mechanical complexity reduces their deployment reliability, and they offer little weight 

reduction [14]. Inflatable structures are an attractive option as they can achieve a weight 

saving of at least 50% and a reduction in stowed volume of up to 75% in addition to the 

significant increase in achievable size [6, 18].  
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1.4.1 Non-Precision Inflatable Structures in the Space Environment 

 

The space environment presents many unique operating challenges including temperature 

extremes and solar radiation, but the absence of a gravitational field eliminates the need for 

high load bearing structures. The use of rigid truss structures in this environment 

concentrates the applied loads at the joints requiring them to be reinforced, which in turn 

increases the weight of the structure and the applied loads. The use of inflatable structures 

has a distinct advantage over rigid structures as the loads are evenly distributed over the 

entire surface. In inflatable structures the skin acts as a structural member eliminating the 

need for reinforced joints, and reducing the overall mass. As the skin is the main load 

bearing member, structural design, material selection and internal pressure are the key 

design factors. 

 

The use of inflatable structures increases the achievable dimensions of the space structure 

whilst reducing the launch weight and their high packing efficiency reduces the stowed 

volume. Many applications already make use of the high packaging efficiency of inflatable 

structures and the strength and durability of thin films, such as solar sails, inflatable trusses 

and the impact attenuation system originally used for the Pathfinder mission and then 

again for the Mars Exploration Rover missions [19]. For example, the inflatable TransHab 

concept developed by NASA as a habitation module for the International Space Station 

(ISS) is designed to be launched inside the shuttle’s cargo bay with a diameter of 4.3 

metres, but once inflated is expanded to 8.2 metres, giving the crew of the ISS a 340 cubic 

metre facility [20]. 

 

All the examples provided benefit from the reduced weight, high packing efficiency and 

increased dimensions offered by inflatable structures but all are considered non-precision 

structures as they don’t rely on shape accuracy to maintain performance. 

 

1.4.2 Inflatable Antennas in the Space Environment 

 

The designer of high gain antennas for space-based operations is limited by the capacity of 

the launch vehicle. As the gain of parabolic dish antennas is directly related to the aperture 

of the dish, maximum dish diameter and minimum weight are key drivers of the 

technology. The use of an articulated antenna increases the achievable aperture but the 
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weight saving is negligible and their mechanical complexity reduces their deployment 

reliability [15].  

 

The use of inflatable structures increases the achievable dimensions of the space structure 

whilst reducing the launch weight and their high packing efficiency reduces the stowed 

volume. From Fig. 8 and Fig. 9 it can be seen that inflatable antennas perform better than 

either mesh deployable or precision deployable structures in the areas of weight and 

stowed volume. However, if inflatable structures are to be used for communications 

applications a number of additional structural and electromagnetic requirements must be 

met. 

 

      

 

 

 

Inflatable antennas are not a new concept in the space industry. The first successful space-

based communications antenna was an inflatable structure. Echo 1A [6, 18], shown in   

Fig. 10, was launched in 1960. It was a 30.5 m diameter inflated sphere constructed from 

0.0127 mm thick metalized polyester thin film. Echo designers utilised the fact that a 

uniform thickness spherical shell with uniform internal pressure behaves as a perfect 

membrane and resists its pressure load with a uniform membrane stress acting all over its 

surface. This allowed Echo designers to produce a structure that greatly exceeded the size 

of the launch vehicle whilst dramatically reducing the launch weight. 

 

 

Fig. 8: Weight comparison of a range of 

deployable antennas (source JPL) 
Fig. 9: Stowed volume comparison of a range of 

deployable antennas (source JPL) 
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Fig. 10: Echo 1A (image courtesy of NASA) 

 

Echo was a passive satellite which permitted signals to be “bounced” off its metalized 

surface and was successfully used to redirect transcontinental and intercontinental 

telephone, radio, and television signals. In addition to demonstrating the potential of 

satellite communications, Echo examined the dynamics of large inflatable structures in the 

space environment. Data was collected for the calculation of atmospheric density and solar 

pressure, indicating that Echo encountered significant orbital changes due to solar 

pressure, thereby highlighting an important consideration for future large inflatable 

structures. Instrumentation was also included to monitor the balloons skin temperature and 

internal pressure [6, 18].  

 

The structure proved to be space worthy and surprisingly durable, laying the foundation 

for future inflatable space structures. Although NASA abandoned passive communications 

systems in favour of active satellites the success of Echo proved the validity of 

communications satellites and inflatable structures for use in space. 

 

Despite the success of the Echo project it still fell into the category of a non-precision 

structure. The next major breakthrough in large inflatable antennas was the L’Garde 

Inflatable Antenna Experiment (IAE), shown in Fig. 11, launched in May 1996 as part of 

the NASA office of Space Access and Technology, In-Space Technology Experiments 

Program (IN-STEP) [21, 22, 7, 23, 24]. The objective of the experiment was to verify low 

cost and light weight precision structures by building a flight-quality reflector antenna, 

demonstrate deployment reliability in a realistic environment, and measure the reflector 

surface precision in a realistic gravity and thermal environment.  
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Fig. 11:  L’Garde Inflatable Antenna Experiment (IAE) in orbit (image courtesy of L’Garde) 

 

The IAE maintained the classical configuration of a conventional land-based antenna with 

a 14 metre diameter parabolic dish reflector and three struts supporting a feed system, or in 

this case photogrammetry equipment to measure the shape and surface accuracy of the 

reflector. The parabolic reflector was constructed from metalized thin film gores and a 

transparent canopy which formed an enclosure for inflation. The rim of the reflector 

assembly was supported by an inflatable torus which was then attached to the surface 

measurement system via three 28 metre long inflatable struts which rigidized after 

deployment. The total weight of IAE was 60 kg and the stowed antenna can be seen in Fig. 

12. So as not to compromise the Space Shuttle the mission utilized the recoverable Spartan 

spacecraft as the experiment carrier. 

 

 

Fig. 12:  L’Garde Inflatable Antenna Experiment (IAE) stowed ready for launch  

(image courtesy of L’Garde) 

 

During the initial ejection and inflation of the structure it experienced unexpected 

dynamics. Fig. 13 shows the deployment sequence of the IAE. The inflatable structure 

deployment did not proceed as predicted due to an unexpected amount of residual air in the 

stowed structure and a significant amount of strain energy release from the torus structure 
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[7]. This combination threatened to twist and tangle the structure which would be a 

catastrophic failure in the space environment.  

 

     

Fig. 13:  Deployment of the L’Garde Inflatable Antenna Experiment (IAE) (images courtesy of L’Garde) 

 

After reaching the desired orbit the antenna was jettisoned from the Spartan 207, and on 

the following day the Spartan 207 was successfully retrieved for return to Earth. For the 

mission to be considered successful it needed to demonstrate that the inflatable structure 

could achieve the required reflector shape and surface accuracy as well as maintain the 

dimensional relationship between the reflector and the feed. The IAE was measured to 

have a shape accuracy of within 2 mm RMS thus demonstrating that it was possible to 

manufacture a precision inflatable structure for space applications [7].  

 

1.4.2.1 Current development of space-based inflatable antennas  

 

NASA has continued to develop both non precision and precision inflatable technologies. 

Pappa et al [25] presented an overview of the technology development in progress at 

Goddard Space Flight Center, Langley Research Center, and Marshall Space Flight Center. 

JAXA, ESA and China also have programs to develop large deployable structures [26, 27, 

28, 29, 30] although the majority of the work being conducted would be categorised as 

deployable or hybrid structures rather than inflatable. 

 

Many of the problems associated with the development of large space-based antennas, 

whether they are inflatable or mechanically deployable, are the ability to test and evaluate 

the system and the ability to maintain the shape accuracy once deployed. The modelling 

and testing of large deployable structures is something that must be perfected if they are to 

become a mature technology. Ruggiero and Inman [31] presented a comprehensive 

overview of current modelling and testing techniques as well as some of the active control 
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mechanisms being introduced to maintain shape accuracy after deployment. Japan and 

China have made significant advances in the active control of mesh deployable and truss 

deployable antennas [26, 27, 31]. It is conceivable that some of these techniques could be 

adapted to the active control of inflatable structures. 

 

1.4.3 Disadvantages of Using Inflatable Structures in the Space Environment 

 

Despite the success of Echo and the Inflatable Antenna Experiment there are challenges 

associated with using inflatable structures in the space environment. These challenges fall 

into two main categories, the issues associated with the operating environment and the 

issues associated with deploying the structure.  

 

In addition to the normal challenges such as temperature, atomic oxygen, radiation and 

micrometeorites, the large size of inflatable structures makes them more susceptible to 

solar winds.  During its five year lifespan Echo encountered significant orbital changes due 

to solar pressure [6, 18]. Advances in material design are being used to address the 

structures resilience to the space environment but the dynamic response to solar pressure is 

more challenging as it is variable and unpredictable. 

 

The deployment of the inflatable structure is an even greater challenge. The deployment 

and dynamic response of the Inflatable Antenna Experiment proved to be marginal. During 

the initial ejection and inflation of the structure it experienced unexpected dynamics. Fig. 

13 shows the deployment sequence of the IAE. If the antenna had twisted and tangled it 

would have been a catastrophic failure.  

 

Following the IAE a great deal of attention was devoted to understanding and controlling 

the dynamic response of large inflatable structures, in particular during deployment [33, 

34]. Another active area of research was in rigidization techniques for inflatable structures 

[35, 36]. By rigidizing an inflatable structure after deployment it behaves like a rigid 

structure and the dynamic response in better understood. Conversely, the advantage of 

high natural damping is lost. Recent development has concentrated on the modelling of the 

structural dynamics to better understand and predict the behaviour of inflatable structures.   
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Many of the problems faced in the space environment are of no concern in the terrestrial 

environment but the advantages of increased size, reduced weight and reduced stowed 

volume are common. It is proposed that in addition to pursuing the development of 

inflatable antennas in the space environment they can be developed for the terrestrial 

environment to address the issue of portability for direct satellite communication.  

 

1.5 Comparison of Space-based Parabolic Antenna Structures 

 

There are many other parabolic antenna designs that have been used in the space 

environment and many more are being developed. The main categories have been 

explored; rigid, mechanical deployable and inflatable, but there are many variations and 

combinations of these.  

 

Each approach has both its advantages and disadvantages, and the ultimate selection is 

made taking all the mission requirement into consideration. The characteristics of the most 

common parabolic dish antenna structures are summarised in Table 1. 
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Type of 

Antenna 

Achievable 

Diameter 

Shape 

Accuracy 

Stowed 

Volume 

Weight Mechanical 

Complexity 

Risk Durability Maturity of 

Technology 

Cost 

Rigid Limited by 

launch 

vehicle 

Excellent High High Very Low Very Low High Mature Low 

Petal 

Deployable 

Medium Good Medium High Medium Medium High Mature Medium 

Mesh 

Deployable 

Large Good Medium Medium High  Medium/ 

High 

Medium Mature High 

Cable 

Truss 

Large Good Medium Medium High High Medium Immature Medium/ 

High 

Hybrid Very Large Good Low Low Medium Medium/ 

High 

Medium Immature Medium 

Inflatable Extremely 

Large 

Good Very Low Very Low Low Medium/ 

High 

Medium/ 

Low 

Immature Medium/ 

Low 

 

  
Table 1: Comparison of space-based parabolic antenna structures [4-7, 14-18, 21-36] 
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1.6 Inflatable Antennas in the Terrestrial Environment 

 

After reviewing the types of parabolic dish antennas used in the space environment it is 

proposed that in the same way that inflatable antennas have been used to overcome the 

limitations of the launch vehicle, inflatable antennas could be used in the terrestrial 

environment to overcome limitations on the portability and performance of personal 

satellite-based communication systems. The ability to stow the antenna when it is not 

needed, carry it without the need for a vehicle and deploy it when required, creates the 

possibility of personal direct satellite access for mobile military applications, emergency 

response teams and remote media broadcasting.  

 

To develop an inflatable antenna that can be used in a terrestrial environment, it must be 

demonstrated that a precision inflatable structure can be developed from a material with 

the necessary electromagnetic characteristics that can achieve the required shape and 

surface accuracy and maintain the dimensional relationship between the antenna elements 

whilst under the influence of environmental conditions.  

 

The design presented in this thesis uses similar thin film materials and construction 

techniques as those used for the space-based inflatable antenna. Unlike the IAE the 

inflatable antenna presented in this thesis can support its own weight and maintain its 

dimensional stability under terrestrial conditions without being rigidized. This allows the 

inflated structure to maintain all the positive qualities of a pressure vessel like distributing 

the applied loads through the skin and excellent vibration damping as well as maintaining 

the ability to be deflated and stowed for reuse. The use of a single enclosure for inflation 

also allows the antenna to be inflated without risk of tangling.   

 

The inflatable antenna concept, including gossamer feed horn, presented in this thesis was 

first published in February 2003 along with preliminary results for the gossamer feed horn 

fed by a microstrip patch. Since that date an alternative design for a terrestrial inflatable 

antenna has been commercialised by GATR Technologies. The GATR design, shown in 

Fig. 14, was first published in May 2003 and again in July 2005 by Phase IV Systems and 

SRS Technologies in Huntsville, Alabama [37, 38] and GATR Technologies was 

incorporated in 2004 to commercialise the antenna.  
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Fig. 14: GATR Technologies inflatable antenna (images courtesy of GATR) 

 

The GATR Technologies antenna uses an inflatable sphere to support a rigid feed horn and 

inflatable lenticular. It is currently the lightest antenna of its size on the market and has the 

smallest stowed volume. However, the use of a rigid feed assembly makes it heavier and 

larger than the inflatable antenna presented in this thesis. The positioning of the rigid feed 

assembly at the focal point of the dish creates aperture blockage and acts to unbalance the 

antenna on its curved base.  

 

In the following chapters the concept for an inflatable parabolic dish antenna and feed horn 

constructed entirely from thin film materials will be presented. It will be shown that using 

a combination of structural design and material selection an inflatable antenna can be 

constructed that matches the performance of an identical rigid antenna under terrestrial 

conditions. It will also be shown that using a microstrip patch to feed the gossamer horn 

further reduces the weight and stowed volume of the antenna and reduces the cost of 

manufacturing the antenna, producing a low cost solution to human portable direct satellite 

communication. 
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2 Design 

 

For mobile direct satellite communication to be a reality, an antenna with an aperture large 

enough to generate the gain necessary for voice, data and video transmission, whist small 

enough and light enough to be human portable, is needed. It has been demonstrated that 

using inflatable structures in the space environment can reduce launch weight and volume 

whilst increasing the achievable size [18]. It has been further demonstrated that in the 

space environment an inflatable structure can maintain the shape accuracy and dimensional 

stability required to operate as an antenna [7]. 

 

An inflatable antenna is a precision structure, which means the performance of the antenna 

is directly related to the dimensional stability of the structure. This includes both the shape 

accuracy of the individual components and the dimensional relationship between the 

antenna elements. It is proposed that it is possible to manufacture an inflatable structure 

that performs reliably as an antenna under terrestrial conditions. 

 

The following chapter explores how this can be achieved using a combination of structural 

design, material selection and internal pressure. 

 

2.1 Material 

 

The inflatable antenna concept presented makes use of a design technique known as a 

monocoque design. This is a design technique commonly used in aircraft fuselages and 

submarines where a combination of the design and the internal pressure enable the skin to 

carry bending and compression loads beyond the ability of the material alone. The skin 

acts as a structural member eliminating the need for reinforced joints, and reducing the 

overall mass. As the skin is the main load bearing member, structural design, material 

selection and internal pressure are the key design factors. 

 

The use of the skin as the main load bearer in monocoque structures makes the material 

selection critical. As well as carrying the applied loads, the skin in an inflatable structure 

has additional requirements. For the structure to be stowed and then inflated the material 

must be foldable and have low gas permeation to sustain the inflation. The material when 
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stowed must not become permanently deformed and to maintain inflation it must be 

durable, and tear and puncture resistant. The materials that best fulfil these requirements 

are polymer thin films, including polyesters, ployimides and polyamides. These thin films 

are often referred to as membrane or gossamer materials as they have a small thickness, 

which allow them to be folded for storage, but are incapable of carrying compressive or 

bending loads.  

 

If the gossamer material is to be used to construct a non-precision structure, high packing 

efficiency and durability are the key factors for material selection. If the final product is to 

be a precision structure the dimensional stability of the material becomes critical and if the 

structure is intended for a communications application the electromagnetic properties of 

the material must also be considered. The electromagnetic properties required for the 

material to be used to construct an antenna are explored in section 2.4.1. 

 

Thin films are available commercially in thicknesses from 12 um to 350 um and their 

properties can be manipulated with a variety of additives, treatments and coatings. In a 

commercial context the material would be designed to provide the required properties. For 

the purpose of demonstrating the concept a prototype was constructed using polyester thin 

films donated by VISIPAK. The structural and electromagnetic testing of the materials is 

outlined in section 3.3 and the results are presented in section 4.2.  

 

2.2 Pressure vessels 

 

The internal pressure gives the structure its desired shape and stability and introduces 

membrane stresses which enable the skin to carry bending and compression loads beyond 

the ability of the material alone. The most efficient pressure vessel to contain uniform 

pressure is a uniform thickness spherical shell. Such a vessel behaves as a perfect 

membrane and resists its pressure load with a uniform membrane stress acting all over its 

surface.  

 

Pressure vessels are not limited to spherical shells; other curved structures such as 

cylinders, paraboloids and cones can be used. For curved panels under combined 

compression and internal pressure, the following interaction equation applies 
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𝑅𝐶
2 − 𝑅𝑃 =1.0 Eq. 1 

 

Where 

𝑅𝐶 =
𝑓𝐶
𝐹𝐶𝐶𝑅

 
Eq. 2 

 

𝑓𝐶 = applied compression stress 

 

𝐹𝐶𝐶𝑅 = critical buckling stress for curved panel under compression stress only 

𝑅𝑃 =
𝑞

𝑝𝐶𝑅𝐼𝑇
 

Eq. 3 

 

𝑞 = applied internal pressure 

 

𝑝𝐶𝑅𝐼𝑇 = external inward pressure that would buckle a cylinder of which the curve panel is 

a part. 

 

Shear buckling stress of curved panels under internal pressure: 

 

𝑅𝑆
2 − 𝑅𝑃 = 1 Eq. 4 

 

Where 

𝑅𝑆 =
𝑓𝑆
𝐹𝑆𝐶𝑅

 
Eq. 5 

 

𝑓𝑆 = applied shear stress 

 

𝐹𝑆𝐶𝑅 = critical buckling stress for curved panel under shear stress only 

 

It can be seen that the introduction of membrane stresses in the skin due to pressurisation, 

increases the buckling stress level for panels under compression and shear and thus the 

loads the overall structure can carry. 
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A parabolic dish reflector was chosen because it offers the high gain necessary for direct 

satellite communication and the curvature of the dish can be generated by forming an 

enclosed environment between the reflector and the canopy which can then be pressurized. 

Fig. 15 shows the inflatable antenna design under consideration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0BFig. 15: Layout of inflatable antenna 

 

Both the parabolic reflector and the conical canopy are surfaces of revolution. The 

reflector surface is a parabola of revolution, or paraboloid and the canopy is a cone.  
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2.2.1 Parabolic reflector 

 

A paraboloid is best approximated as an ellipsoid of revolution. In this case half of the 

ellipsoid is used, as shown in Fig. 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16: Membrane forces in parabolic reflector 

 

The principal radii of curvature in the case of an ellipse with semi axes a and b are given 

by the formulas 

 

𝑟1 =
𝑎2𝑏2

 𝑎2 sin𝜑2 + 𝑏2 cos𝜑2 
3
2

 
Eq. 6 

 

𝑟2 =
𝑎2

 𝑎2 sin𝜑2 + 𝑏2 cos𝜑2 
1
2

 
Eq. 7 

 

 If the resultant of the total load on the shell is denoted by R, the equation of equilibrium is 

given by 
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2𝜋𝑟0𝑁𝜑  sin𝜑 + 𝑅 = 0 Eq. 8 

 

Once 𝑁𝜑  is known 𝑁𝜃  can be calculated from 

 

𝑁𝜑

𝑟1
+
𝑁𝜃
𝑟2

= −𝑍 
Eq. 9 

 

Where 𝑁𝜑  and 𝑁𝜃  are the membrane forces per unit length in the two meridian planes.  

 

If q is the internal pressure, then for a parallel circle of radius r0, giving R = -πqr0
2
 and 

 

𝑁𝜑 =
𝑞𝑟0

2 sin𝜑
=
𝑞𝑟2

2
 

 

Eq. 10 

 

𝑁𝜃 = 𝑟2𝑝 −
𝑟2

𝑟1
𝑁𝜑 = 𝑞  𝑟2 −

𝑟2
2

2𝑟1
  

 

Eq. 11 

 

At the top of the shell, point O,  

𝑟1 = 𝑟2 =
𝑎2

𝑏
 

 

Eq. 12 

 

Giving  

𝑁𝜑 = 𝑁𝜃 =
𝑞𝑎2

2𝑏
 

 

Eq. 13 

At the equator AA,  

 

𝑟1 =
𝑏2

𝑎
 

and 𝑟2 = 𝑎 

 

Giving 

𝑁𝜑 =
𝑞𝑎

2
 

Eq. 14 

 

 and 
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𝑁𝜃 = 𝑞𝑎  1 −
𝑎2

2𝑏2
  

Eq. 15 

 

In the case of a sphere where a = b it can be seen that 

 

𝑁𝜑 = 𝑁𝜃 =
𝑞𝑎

2
 

Eq. 16 

 

Confirming that in a spherical shell membrane forces are equal in all directions. 

 

2.2.2 Conical canopy 

 

The membrane forces in the conical canopy will be considered next. Fig. 17 shows the 

conical canopy and the membrane stress distribution due to internal pressure.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Membrane stress distribution in conical canopy 
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In the case of the conical canopy membrane stresses are produced by a force applied at the 

top of the cone. If a force P is applied in the direction of the axis of the cone, the stress 

distribution is symmetrical, and  

 

𝑁𝜑 = −
𝑃

2𝜋𝑟0 cos 𝛼
 

Eq. 17 

 

Substituting Eq. 17 into Eq. 9 gives  

 

𝑁𝜃 = 0 

 

If lateral forces are symmetrically distributed over the conical surface due to internal 

pressure, the membrane stresses can be calculated by using Eq. 8 and Eq. 9. Since the 

curvature of the meridian in the case of a cone is zero, r1=∞; we can write these equations 

in the following form: 

 

𝑁𝜑 = −
𝑅

2𝜋𝑟0 sin𝜑
 

Eq. 18 

 

𝑁𝜃 = −𝑍𝑟2 = −
𝑍𝑟0

sin𝜑
 

Eq. 19 

 

Each of the resultant forces 𝑁𝜑  and 𝑁𝜃  can be calculated independently provided the load 

distribution is known.  

 

The membrane stresses in the skin provide the structural rigidity needed to maintain the 

position of the sub-reflector. It can be seen from the previous analysis that when an 

external load is applied to the canopy, due to environmental conditions like wind, the load 

will be transferred through the skin to the torus.  

 

A conical canopy was chosen as opposed to a parabolic canopy for additional rigidity. The 

formation of a cone from a gossamer material applies a pre-stress in the skin which allows 

the cone to maintain its shape under the influence of gravity even without internal 

pressure. This pre-stress provides additional stability which allows the canopy to maintain 
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the dimensional relationship between the antenna elements and makes the antenna 

performance less dependent on the internal pressure.  

 

2.2.3 Torus 

 

If the junction between the parabolic reflector and the conical canopy was unrestrained the 

internal pressure and membrane stresses will act to balance the stress in the skin and 

ripples will form around the edge of the reflector, reducing the shape accuracy of the 

reflector, and degrading the antenna performance. To counteract this force an inflatable 

torus is used to maintain the diameter of the dish. Fig. 18 shows the torus and the 

membrane stress distribution.    

 

 

 

 

 

 

 

 

 

 

Fig. 18: Membrane stress distribution in torus 

 

If a torus is obtained by rotation of a circle of radius a about a vertical axis the forces 𝑁𝜑  

are obtained by considering the equilibrium of the ring-shaped portion of the shell AB. 

Since the forces  𝑁𝜑  along the parallel circle BB are horizontal, we need consider only the 

forces 𝑁𝜑  along the circle AA and the external forces acting on the ring when discussing 

equilibrium in the vertical direction. Assuming the shell is under uniform internal pressure 

p, we obtain the equation of equilibrium. 

 

2𝜋𝑟0𝑁𝜑 sin𝜑 = 𝜋𝑞 𝑟0
2 − 𝑏2  Eq. 20 
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𝑁𝜑 =
𝑞 𝑟0

2 − 𝑏2 

2𝑟0 sin 𝜑
=  

𝑞𝑎 𝑟0 − 𝑏 

2𝑟0
 

Eq. 21 

 

Substituting this expression in Eq. 9 we find 

 

𝑁𝜃 =
𝑞𝑟2 𝑟0 − 𝑏 

2𝑟0
=  

𝑞𝑎

2
 

Eq. 22 

 

Which is logical since the torus is circular. 

 

2.3 Internal pressure 

 

If the walls of a vessel are relatively thin and have no abrupt changes in thickness, slope or 

curvature and if the loading is uniformly distributed or smoothly varying, the stresses 1 

and 2 are practically uniform throughout the thickness of the wall and are the only 

important ones present. The radial stress 3 and such bending stresses as occur are 

negligibly small. 

 

Despite the fact that the antenna design proposed uses a cone for the canopy, the vessel 

will be approximated as a sphere to calculate an initial pressure. For a spherical pressure 

vessel the internal pressure can be calculated using 

 

t

qr

2
21   

 

Eq. 23 

Where 

 

q = uniform internal pressure 

r = radius of the sphere 

t = thickness of the sphere 

 

The operating pressure is the pressure required to remove the wrinkles from the material 

after being stowed. Freeland et al. [21] showed that for a metalized PET thin film an 

internal pressure of 6.89 MPa was required to remove the wrinkles after deployment. 
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Referring to section 4.2.1 the thickness of the metalized thin film was measured as 50 µm 

and the thickness of the clear thin film was measured as 25 µm. To be conservative the 

greater of the two will be used. Substituting into Eq. 23 gives 

 

6

6

10502

25.0
1089.6






q
 

 

kPaq 75.2  

 

It can be seen that only a very low internal pressure is needed to remove the wrinkles from 

the skin. Starting at this minimum, the pressure can then be optimized to provide the best 

shape accuracy. The internal pressure generates membrane stresses that add to the stability 

of the structure but over inflation can cause the structure to pillow. Pillowing is caused by 

the localized stiffening created by the seams combining with the flexibility of the 

membrane material and the internal pressure to degrade the shape accuracy.  

 

The maximum operating pressure is limited by the strength of the material. The material 

will fail when the material’s tensile strength is exceeded but the maximum operating 

pressure is determined by the yield strength of the material.  When the yield strength is 

exceeded the inflatable structure will no longer be able to maintain its dimensional stability 

and the performance will be degraded. Of the two materials used to construct the inflatable 

antenna the yield strength of the metalized PET thin film was measured to have a lower 

yield strength than the clear PET thin film. Substituting the yield strength and thickness 

stated in section 4.2.1 into Eq.23, and assuming the seams have the same strength as the 

material, the maximum operating pressure is given by 

 

6

6

10502

25.0
1025.31






q
 

 

kPaq 5.12  

   

To increase the maximum operating pressure of the antenna a material with a higher yield 

strength should be chosen. 
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The combination of the pressurized elements detailed above, produces a structure that can 

withstand the external forces of gravity and other environmental conditions. In addition, 

the high natural damping characteristics of inflatable structures act to stabilize any 

transient loading such as wind gusting. It must then be shown that the structure provides 

the dimensional stability to perform reliably as an antenna. 

 

2.4 Rigidizing inflatable structures 

  

During the initial investigations into inflatable structures in the space environment 

emphasis was placed on rigidizing the structure after deployment to increase their 

durability [35, 36]. Rigidizing the structure after deployment is necessary for structures 

that are not capable of maintaining their structural integrity or dimensional stability but 

there are some major disadvantages associated with rigidizing inflatable structures.  

 

The ability of an inflatable structure to distribute the applied loads through the skin 

reduces the overall weight of the structure and increases its vibration damping. The 

extreme flexibility of the skin, combined with internal pressure, produces only local 

deformation when an external point load is applied rather than exciting any of the global 

modes [39]. If the structure is rigidized it loses these characteristic and behaves like a rigid 

structure, concentrating loads at the joints rather than distributing the load over the skin. 

Maintaining vibrational damping in a terrestrial environment is important as it helps to 

minimize the impact of varying wind conditions. 

 

The inflatable antenna design presented can maintain its structural integrity without relying 

on rigidization. Not rigidizing makes the antenna re-usable and eliminates the risk of 

rigidizing the structure in a deformed state; it also eliminates the weight and added 

complexity of an additional system.  

 

2.5 Antenna configuration 

 

The antenna design presented is a dual reflector antenna, so it consists of a feed system, a 

primary reflector and secondary reflector which must maintain their dimensional 

relationship relative to one another to maintain communication. The most common dual 



34 

 

reflector antennas are Cassegrain and Gregorian antennas. The Cassegrain antenna consists 

of a primary concave reflector and a secondary convex reflector. In a Gregorian antenna 

both the primary reflector and the secondary reflector are convex. The inflatable antenna 

concept presented can be used to generate either a Cassegrain or a Gregorian antenna of 

varying dimensions. It can also be used to generate offset Cassegrain or Gregorian 

antennas. For the purpose of discussion a Cassegrain antenna will be considered. 

 

A dual reflector configuration was chosen to reduce the loading on the canopy and 

improve the balance of the structure. However, dual reflector antennas have a range of 

other features that make them appealing. They have increased focal length, all the 

transmitting and receiving equipment can be housed in the same unit as the positioning and 

tracking equipment behind the main reflector, and the antenna noise is reduced because the 

feed is facing the cool sky.  

 

In a prime focus antenna the feed assembly is placed at the focal point of the reflector. 

Positioning the feed assembly at this point places a lot of weight at the end of a long 

moment arm which places strain on the support structure and in turn the reflector, causing 

distortions. To maintain shape accuracy the antenna structure must be reinforced which 

then adds weight and reduces portability. In the case of rigid antennas the feed is supported 

by either a single strut in an attempt to reduce aperture blockage and weight, or three struts 

to distribute the load evenly through the reflector. In an inflatable antenna the support 

structure is a thin film canopy. The clear canopy eliminates any aperture blockage caused 

by struts but is incapable of supporting the weight of a rigid feed horn. 

 

Using a dual reflector configuration significantly reduces the loading on the canopy by 

placing the feed assembly at the centre of the primary reflector and all transmitting and 

receiving equipment behind the primary reflector. As a result, the only non thin film 

component the inflatable structure must support is the metallic sub-reflector. The surface 

and shape accuracy required of the hyperbolic sub-reflector and its small size means that 

machining it from a lightweight Aluminium alloy is the preferred solution.  

 

2BPlacing all the electronics behind the primary reflector also minimizes the transmission 

loss which occurs if the feed is placed at the focal point. The elimination of transmission 

lines from the feed assembly at the focal point to the processing equipment behind the 
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reflector also eliminates scattering of the signal and the possibility of the cables puncturing 

the inflatable antenna due to either friction or heat concentration.  

 

3BThe greatest advantage of using the clear thin film canopy to support the sub-reflector is 

that it eliminates any aperture blockage and scattering of the signal due to support struts. 

The aperture blockage caused by the sub-reflector is also significantly less than the 

blockage caused by a feed assembly.  

 

The antenna design presented is manufactured entirely from polyester thin film with the 

exception of the sub-reflector and the microstrip patch used to feed the horn. The use of a 

microstrip patch to feed the horn reduces the weight and stowed volume of the antenna 

further and enhances the balance of the structure. The use of this feed system also reduces 

the manufacturing cost of the system. A single patch antenna could not produce the gain 

required for direct satellite communication and even using a patch array the aperture of the 

antenna would need to be significantly increased. The placement of a rigid flat patch array 

on the surface of a gossamer reflector would also distort the dish and reduce the effective 

area. 

 

Using a microstrip patch to feed a gossamer conical horn increases the gain of the feed and 

produces a narrow beamwidth whilst minimizing the weight and size of the feed assembly. 

 

The antenna under consideration is intended to operate under terrestrial conditions. It will 

therefore be necessary for the antenna to operate under the influence of gravity and 

atmospheric pressure. In addition to these basic parameters the antenna must operate under 

a range of temperature extremes, wind conditions, rain, and snow and be durable enough to 

operate reliably in both military and disaster response situations. 

 

Rigid antenna dishes suffer distortions due to gravity, wind and particles such as snow and 

rain settling in the dish. To maintain the required shape a rigid dish is supported by a rigid 

structure to prevent distortion. An inflatable antenna constructed from thin film is so light 

that the internal pressure is sufficient to counteract the impact of gravity. The cone 

provides an aerodynamic profile which minimizes the wind loading on the entire structure 

and transfers the load through the skin to the torus. The clear canopy also acts as a radome 

which prevents the dish acting like a sail and stops any particles settling in the dish.  
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2.5.1 Skin depth 

 

To maintain antenna performance the inflatable structure must maintain the shape accuracy 

of the individual components and the relationship between the components whilst under 

the influence of the operating environment. Any components which will act as a canopy 

must be radio frequency (RF) transparent at the operating frequency and any components 

acting as a reflector must be metalized such that the signal is reflected without loss. The 

thickness of the metal coating can be calculated using the principle of skin effect [40] 

which varies depending on the wavelength of the signal to be reflected and the 

conductivity of the material used for the coating. The thickness of the metalized layer can 

be calculated using  

 




2
  

Eq. 24 

 

 = 2F giving 




F

1
  

Eq. 25 

Where 

 

 = skin depth 

F = frequency (Hz) 

 = 410
-7

 (H/m) 

 = conductivity (mhos/m) 

   = 3.5510
7
 mhos/m for Aluminium sheet 

  

At the chosen operating frequency of 12.5 GHz 

 

 = 7.5510
-5 

m 

= 0.76 m 
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4B2.5.2 Basic antenna parameters 

 

The characteristics of pressurized monocoque structures that will give the inflatable 

antenna dimensional stability have been explored and the electromagnetic properties of the 

thin films required to construct the antenna have been examined. This approach is not 

limited to any particular size or design but for the purposes of testing the hypothesis a 

design must be specified.  

 

The inflatable antenna concept presented is a dual reflector antenna but before this 

configuration can be tested it is important to understand the behaviour of each of the 

components. As such the testing will be conducted in the following stages.  

 

1. Microstrip patch 

2. Gossamer conical feed horn for prime focus antenna fed by microstrip patch 

3. Inflatable prime focus antenna supported by rigid mount fed by gossamer horn  

4. Inflatable prime focus antenna supported by inflatable torus fed by gossamer horn  

5. Gossamer conical feed horn for Cassegrain antenna fed by microstrip patch 

6. Inflatable Cassegrain antenna supported by rigid mount fed by gossamer horn  

7. Inflatable Cassegrain antenna supported by inflatable torus fed by gossamer horn  

 

The following section presents the design of the various components used to test the 

hypothesis that an inflatable antenna can be manufactured that matches the performance of 

an identical rigid antenna under terrestrial conditions. Each component will be 

manufactured as a rigid structure and an inflatable structure. The performance of the rigid 

structure and the inflatable structure will then be compared.  

 

The behaviour of parabolic reflector antennas can be explained using the principles of 

physical optics. These principles can be applied as microwaves fall in the region between 

radio waves and visible light. The surface of the dish reflector is defined by rotating a 

parabola about its axis. This ensures that a signal originating at the focal point is reflected 

by the dish as plane waves and conversely any incoming signal collected by the dish is 

reflected to the focal point. This reciprocity means parabolic dish antennas can be used 

equally for receiving and transmitting signals.  
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5BWhen fed efficiently from the focal point paraboloidal reflectors produce a high gain 

pencil beam with low side lobes and good cross polarization characteristics. This type of 

antenna is widely used for low noise applications and is considered a good compromise 

between performance and cost. The frequency of operation, bandwidth, beamwidth, gain 

and cross polarization level are among the main design parameters and directly influence 

the performance of the antenna. Using these parameters, the performance of the inflatable 

antenna will be compared to that of an identical rigid antenna.  

 

A paraboloidal reflector antenna operates efficiently, provided that it has an aperture 

exceeding 10 wavelengths, a surface roughness less than 1/8 wavelength and the profile of 

the antenna is maintained. The wavelength is related to the frequency of the signal and the 

velocity of propagation by 

Hz

sm
m

F

v /  
 

Eq. 26 

 

Since radio waves propagate at the speed of light 300,000,000 m/s, the expression for 

wavelength can be written as 

MHz

m
F

300
  

 

 

 

As the antenna is intended for direct satellite communications it must operate in the Ku 

band (12 – 18GHz). A frequency of 12.5GHz has been chosen for demonstration purposes 

but the inflatable antenna concept can be applied to other frequencies.  

 

At 12.5GHz the wavelength is 

5.12

3.0
  

 

 

= 0.024 m  

 

Thus the antenna must be at least 0.24 m in diameter and the surface roughness must be 

less than 3 mm.  
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The gain of a parabolic antenna is a function of several factors, dish diameter, feed 

illumination and surface accuracy. The dish diameter should be large compared with its 

depth. For a standard dish 

 

0.15.0 
D

f
 

For demonstration purposes an average value of 75.0
D

f
 and a diameter of 0.5 m was 

chosen giving a focal length of 0.375 m.  

 

Each of these factors can be varied to optimize the design for specific applications but as 

this antenna is for proof of concept only, little attention has been paid to refining the 

design.  

 

2.5.3 Conical feed horn for prime focus antenna  

 

Now that the size and shape of the reflector have been determined a feed horn can be 

designed to maximize the feed illumination. Feed illumination refers to how evenly the 

feed element radiates to the reflector surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Layout of prime focus parabolic dish antenna 
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Eq. 27 
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     = 36.8  

 

02  is referred to as the included angle and is used to calculate the optimum feed required 

to fully illuminate the main reflector. 

 

 6.732 0  

 

From basic geometry 
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Eq. 28 
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Eq. 29 
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The next step is to consider the directivity and aperture efficiency of the main reflector and 

how they are impacted on by the primary feed. To simplify the analysis it is assumed that 

the feed pattern is circularly symmetric. 

 

The antenna directivity in the forward direction is given by 
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Eq. 30 

 

The factor 

2












d
is the directivity of a uniformly illuminated constant phase aperture. 

Therefore the ideal directivity would be 4283.68. 

 

This can be represented in decibels as 

 

D(dB) = 10 log D 

           = 36.3 dB 

 

The remaining part of the equation defines the aperture efficiency, therefore 
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Eq. 31 

 

From Eq. 31 it can be seen that efficiency is a function of the subtended angle θo and the 

feed pattern Gf(θ) of the reflector. 

 

To illustrate the variation of the aperture efficiency as a function of the feed pattern and 

the angular extent of the reflector, the following feed patterns can be used 
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Where G0
(n)

 is a constant for a given value of n. The intensity in the back region 

  2/  was assumed to be zero in order to avoid interference between the direct 

radiation from the feed and scattered radiation from the reflector. 

 

The constant G0
(n)

 can then be determined from  

 

     4sin   ddGdG
S S

ff  Eq. 32 

 

Which becomes 
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Eq. 33 

 

For even values of n=2 through n=8 
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Fig. 20 shows the variations of Eq. 33 as a function of the angular aperture of the reflector 

θ0 or the f/d ratio. From this figure the value of n that gives the highest aperture efficiency 

can be determined. 

 



43 

 

 

Fig. 20: Aperture efficiency as a function of reflector half-angle [source: Constantine A. Balanis, Antenna 

Theory: Analysis and Design (2
nd

 Ed.), John Wiley & Sons, 1997] 

 

The aperture efficiency is a product of: 

 spillover efficiency εs - the fraction of the total power that is radiated by the feed, 

intercepted, and collimated by the reflecting surface  

 taper efficiency εt - the uniformity of the amplitude distribution of the feed pattern over 

the surface of the reflector  

 polarization efficiency εx - the phase uniformity of the field over the aperture plane  

 blockage efficiency εb – the fraction of the total power blocked by a physical 

obstruction such as the feed assembly or struts 

 random error efficiency εr – the accuracy of the reflector surface 

 

This gives 

εap =εs εt εp εx εb εr 

 

Thus for a reflector half angle of  36.8° the highest aperture efficiency, εap is achieved for 

n=8. εap= 0.8 or 80% 

 

Using n=8 
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     = 0.8 or 80% 

 

Which agrees with the result taken from the graph in Fig. 20. 

 

Referring back to Eq. 30, if the factor 

2












d
is the directivity of a uniformly illuminated 

constant phase aperture and the remaining part of the equation defines the aperture 

efficiency 

 

𝐷0 = 𝐷𝜀𝑎𝑝  

 

D0 = 4283.68 x 0.8 

= 3426.9 

= 35.35 dB 

 

Taper and spillover efficiencies are obtained from the graph in Fig. 21. 

 

 

Fig. 21: Taper and spillover efficiency as a function of reflector half-angle [source: Constantine A. Balanis, 

Antenna Theory: Analysis and Design (2
nd

 Ed.), John Wiley & Sons, 1997] 

 

From Fig. 21, it can be seen that for a reflector half angle of 36.8° the best compromise for 

taper and spillover efficiency is obtained from n=8. This supports the result for aperture 

efficiency. From Fig. 21 taper efficiency εt= 0.93 and spillover efficiency εs= 0.86 
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Taper and spillover efficiency dominate the aperture efficiency. The values taken from 

Fig. 21 support the value taken from Fig. 20. Thus aperture efficiency εap= 0.8 and n=8 

will be used to determine the relative field strength. 

 

From Fig. 22 it can be seen that for n=8 the relative field strength is 10.2 dB. 

 

 

 

Fig. 22: Relative field strength of feed pattern along reflector edge bounds as a function of primary feed 

pattern number [source: S. Silver (ed.), Microwave Antenna Theory and Design, MIT Radiation Lab. Series 

Vol. 12,  McGraw-Hill, New York, 1949] 

 

If the feed pattern of the reflector is given by 
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for n=8       Go
(8)

 = 18 

 

thus Gf(θ) = 18 cos
8
(36.8) 

   = 3.04 
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In decibels 

 

 Gf(θ) =10 log 3.04 

     = 4.82dB 

 

This gives the gain of the feed at the edge of the reflector. To calculate the gain of the feed 

we need  

 

Gf(θ) at θ = 0  

 

Thus  

 

Gf  = 18 

 

In decibels 

 

Gf   = 10 log 18 

      = 12.55 dB 

 

The feed directivity in the forward direction is given by 

 

   




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
 2

210

4
log10 adBD apc 




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Eq. 34 

 sL
C











2

10log10


 
 

Where  

 

C = circumference of the feed horn (m) 

s = quadratic phase factor 

 

The first term in Eq. 34 represents the directivity of a uniform circular aperture and the 

second term is a correction figure to account for the loss in directivity due to the aperture 

efficiency. This loss figure is calculated in decibels by using 
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   32 79.1725.2671.18.0 ssssL   Eq. 35 

 

H-plane and E-plane universal patterns for a conical horn are used to select a value for s. 

From Fig. 23 and Fig. 24 it can be seen that as s increases the beamwidth gets broader and 

the asymmetry between E-plane and H-plane increases. A broader beamwidth leads to a 

loss in gain and reduced aperture efficiency. From Fig. 23 and Fig. 24 it can be seen that 

s<0.2 produces a reasonable pattern, whilst larger values of s give significantly distorted 

patterns.  

 

 

Fig. 23: H-plane universal pattern for a conical horn [source: A. D. Olver, P. J. B. Clarricoats, A. A. Kishk 

and L. Shafai, Microwave Horns and Feeds, IEE Electromagnetic Wave Series 39, IEEE Press 1994] 
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Fig. 24: E-plane universal pattern for a conical horn [source: A. D. Olver, P. J. B. Clarricoats, A. A. Kishk 

and L. Shafai, Microwave Horns and Feeds, IEE Electromagnetic Wave Series 39, IEEE Press 1994] 

 

Substituting s = 0.1 into Eq. 10 

 

   32 79.1725.2671.18.0 ssssL   

L(0.1) = 0.87dB 

 

From Eq. 34 

Peak gain =  sL
C









2

10log10
  

 

12.55 = 87.0
024.0

log10

2

10 






 C

 

 

Giving a horn circumference, C = 0.1125 m, and a horn radius, R = 0.0179 m 

 

The quadratic phase factor is given by 
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l

R
s

2

2

  
 

Eq. 36 

 
024.02

0179.0
1.0

2




l  

l = 0.0668 m 

from geometry 𝜃 = 15.5° 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Layout of conical horn 

 

 

2.5.3.1 Phase Centre 

 

The phase centre of a feed is the local centre of the spherical wavefront of the radiated 

field from the feed and is located along the axis of the horn. It is important to position the 

feed horn such that the focus of the reflector coincides with the phase centre. 

 

There is no single phase centre for a horn: each plane of radiation has its own phase centre. 

It is therefore necessary to calculate an average value for the phase centre using formulae 

based on the predicted phase pattern for the horn. For a conical horn the universal phase 

centre curves shown in Fig. 26 have been plotted in terms of the relative position of the 

phase centre as a function of the total length of the horn.  

 

15° 

66 mm 

26 mm 40 mm 

21 mm 

35 mm 
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Fig. 26: Universal phase-centre curves for conical horns [source: A. D. Olver, P. J. B. Clarricoats, A. A. 

Kishk and L. Shafai, Microwave Horns and Feeds, IEE Electromagnetic Wave Series 39, IEEE Press 1994] 

 

From Fig. 23 and Fig. 24 it was established that s = 0.1. Referring to Fig. 26, when s=0.1, 

L/R = 0.12 in the E-plane and L/R = 0.19 in the H-plane. Given the radius of the horn R = 

0.0179m, in the E-plane the phase centre is positioned 2.15mm from the aperture and in 

the H-plane the phase centre is located 3.40mm from the aperture. Taking the average 

places the phase centre at 2.77mm from the aperture. This difference means that there is no 

single position for a conical horn to be positioned when used as a feed for a reflector. This 

feed misalignment causes a phase variation over the reflector aperture which results in a 

symmetrical increase in side lobes and filling of the antenna pattern nulls. 

 

2.5.4 Prime focus antenna 

 

The primary reflector is defined by a parabola rotated about its axis or paraboloid. 

 

uxy 2
 Eq. 37 

 

From geometry we know that when y = 0.25, x = 0.042. This gives a value of u = 1.5. 

Therefore the reflective dish is defined by 
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xy 5.12   

 

The inflatable antenna must then be constructed such that the parabolic reflector achieves 

the above geometry and the phase centre of the feed horn is positioned at the focal point of 

the reflector. Fig. 27 shows the layout of the inflatable antenna used to achieve this. 
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50mm 

35mm 

440.3mm 42mm 

21mm 

2.7mm 

66mm 

375mm 

500mm 

26mm 40mm 

36.8° 

Fig 27: Dimensions of prime focus antenna and clear canopy required to position 

the phase centre of the feed horn at the focal point of the reflector 
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2.6 Cassegrain antenna and horn 

 

To maintain consistency in testing the same primary reflector design that was used for the 

prime focus antenna will be used for the Cassegrain antenna. Ideally the diameter of the 

sub-reflector will be 10% of the diameter of main reflector to minimize aperture blockage. 

However, with the parameters specified, the flare angle of the horn would need to be so 

large that it would cause more aperture blockage than the sub-reflector.  

 

The software package PCAAD was used to find a compromise between the size of the sub-

reflector and the flare angle of the feed horn needed to efficiently illuminate the sub-

reflector. Fig. 28 shows the layout of the Cassegrain antenna and Fig. 29 shows the 

dimensions of the conical horn feed horn for the antenna. This design will result in a poor 

antenna but the purpose of the investigation is to demonstrate the ability to manufacture an 

inflatable antenna that matches the performance of a rigid antenna not to evaluate the 

quality of the design. 
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375mm 

120mm 

500mm 

110mm 179mm 

Fig 28: Layout of Cassegrain antenna 
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Fig. 29: Cassegrain antenna horn design 

 

The above designs will be manufactured as both rigid and inflatable structures and their 

performance compared. The diameters of the circular waveguides in the two horns are 

21mm and 23mm, respectively. For the dominant mode TE11 excitation, this diameter is 

large and can generate other higher order modes. If these higher order modes are excited 

this should be observed equally in the rigid and gossamer horns. Future work would 

include the design of a more efficient antenna. This thesis explores the ability to 

effectively replicate a rigid parabolic dish antenna and conical feed horn as a gossamer 

structure. Any reduction in efficiency due to a loss in shape and surface accuracy or 

dimensional stability will result in a decrease in gain, an increase in beamwidth, an 

increase in side lobe level, an increase in the number of side lobes and an increase in cross 

polar levels. These parameters will be used to measure of the stability of the inflatable 

antenna.  

 

From the above calculations it can be seen that increasing the effective area of antenna has 

the greatest impact on its gain. Table 2 presents a comparison of the theoretical gain for 

various apertures assuming the operating frequency and f/d are kept constant. From this 

comparison it can be seen why emphasis is placed on maximizing the diameter of the dish 

and why an inflatable antenna that can be stowed for transportation, and then inflated to a 

size greater than any existing portable antenna, is of interest.  

100 mm 

17.35° 

157 mm 

119 mm 38 mm 

23 mm 
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Table 2: Comparison of antenna gain for various apertures 

 

2.7 Microstrip patch 

 

To further reduce the weight and stowed volume of the feed assembly and reduce the 

loading on the inflatable antenna it was decided to investigate using a microstrip patch to 

feed the gossamer feed horn. Replacing the waveguide with a microstrip patch reduces the 

weight and stowed volume of the feed assembly and significantly reduces the 

manufacturing cost of the antenna. This combination not only increases the portability of 

the system, it also makes it possible to carry multiple antennas. The ability to carry 

multiple antennas can be used to either provide redundancy at a single frequency or to 

carry antennas that operate at multiple frequencies. 

 

The design of the microstrip patch is beyond the scope of this investigation. The microstrip 

patch requirements were given to Dr Kamran Ghorbani at RMIT University who designed 

a variety of patch antennas which were then manufactured by RMIT technician, Mr. David 

Welch.  

 

The impedance characteristics and the radiation patterns of each patch were measured and 

the results compared. The patch with a resonant frequency closest to the design frequency 

F 12.5GHz 12.5GHz 12.5GHz 

f/d 0.75 0.75 0.75 

d 0.5m 1.0m 5.0m 

f 0.375m 0.75m 3.75m 

λ 0.024m 0.024m 0.024m 

θ 36.8° 36.8° 36.8° 

z0 0.333m 0.667m 3.333m 

r 0.416m 0.833m 4.16m 

D (ideal) 36.3dB 42.34dB 56.32dB 

εap 0.8 0.8 0.8 

G 35.35dB 41.37dB 55.34dB 



57 

 

of 12.5 GHz and which demonstrated the lowest cross polar radiation was selected. The 

patch selected to feed the gossamer horn was a proximity patch with the dimensions shown 

in Fig. 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: Dimensions of microstrip patch 

 

The proposed inflatable concept is not limited to the design presented; it can be applied to 

a variety of antenna designs, sizes and operating frequencies. The design presented is 

intended to demonstrate the concept, it is not necessarily the most efficient design, but an 

example to facilitate the direct comparison between the performance of an inflatable and 

rigid antenna. The testing procedure is presented in section 3 and the results are presented 

in section 4. 

  

Ø 50 mm 

Ø 9 mm 

Antenna substrate  
εr = 2.2 
tanδ = 0.002 
thickness h = 0.508 mm 

Feed substrate 
εr = 2.2 
tanδ = 0.002 
thickness h = 0.508 mm 
 

10 mm 

1.5 mm 

1 mm 
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3 Fabrication Methodology and Measurement Set-Up 
 

3.1 Antenna design to be tested 

 

This chapter presents the methodology used to construct and test the inflatable antenna 

presented in section 2. The antenna design presented will be manufactured and tested to 

demonstrate that it is possible to construct an inflatable antenna that provides the shape 

accuracy and dimensional stability required for portable direct satellite communication 

under terrestrial conditions. To validate this, the performance of an inflatable antenna will 

be compared to the performance of an identical rigid antenna under terrestrial conditions. 

 

The inflatable antenna concept presented is a dual reflector antenna but before this 

configuration can be tested it is important to understand the behaviour of each of the 

components. As such the testing will be conducted in the following stages.  

 

1. Microstrip patch 

2. Gossamer conical feed horn for prime focus antenna fed by microstrip patch 

3. Inflatable prime focus antenna supported by rigid mount fed by gossamer horn  

4. Inflatable prime focus antenna supported by inflatable torus fed by gossamer horn  

5. Gossamer conical feed horn for Cassegrain antenna fed by microstrip patch 

6. Inflatable Cassegrain antenna supported by rigid mount fed by gossamer horn  

7. Inflatable Cassegrain antenna supported by inflatable torus fed by gossamer horn  

 

Basic antenna design principles were used to design the antenna and feed assembly. 

Complete calculations are included in section 2.4 and the main parameters are listed 

below. 

 

Operating frequency 12.5GHz 

m024.0 . 

mf

md

d

f

375.0

5.0

75.0






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The surface of the reflector dish is defined by rotating a parabola about its axis. The dish is 

defined by 

xy 5.12   

 

For complete calculations refer to section 2.4.2.  Fig. 19 showing the prime focus antenna 

dimensions is reproduced below.
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Primary focus antenna design (reproduced from section 2.4.2) 

 

A feed horn was designed to feed this antenna in a prime focus configuration. For 

complete calculations refer to section 2.4.3. Fig. 25 showing the dimensions of the conical 

feed horn used to feed the prime focus antenna is reproduced below. 

 

 

 

 

 

 

 

 

 

Fig. 25: Prime focus antenna horn design (reproduced from section 2.4.3) 

15° 

66 mm 

26 mm 40 mm 

21 mm 

35 mm 
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A feed horn was designed to feed the Cassegrain antenna. For complete calculations refer 

to section 2.4.5. Fig. 29 showing the dimensions of the conical feed horn used to feed the 

Cassegrain antenna is reproduced below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29: Cassegrain antenna horn design (reproduced from section 2.4.5) 

 

3.2 Simulation 

 

The patch and horns were modelled using CST Microwave Studio. The author would like 

to thank Dr Christophe Granet of CSIRO’s Electromagnetics and Antennas Group for 

generating the models and results. The simulation results are presented in section 4.1 and 

an analysis is presented in section 5.1. 

 

The patch was simulated and an impedance plot generated to confirm that it should 

resonate at the desired frequency. The prime focus antenna feed horn was then simulated. 

To compare the effects of feeding the horn with a patch instead of a standard waveguide 

input, the horn was simulated with both a standard TE11 circular-waveguide feed and the 

microstrip patch. Impedance and radiation plots were generated. 

 

The analysis was repeated for the Cassegrain antenna feed horn. The horn was simulated 

with both a standard TE11 circular-waveguide feed and the microstrip patch. Impedance 

and radiation plots were generated. 

 

100 mm 

17.35° 

157 mm 

119 mm 38 mm 

23 mm 
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To evaluate the performance of the inflatable horn and the inflatable antenna the 

impedance and radiation characteristics will be compared to those of identical rigid 

structures. It is known that pillowing, and aperture blockage adversely affects the 

performance of a reflector antenna. To facilitate the interpretation of the measured results I 

generated a series of simulations using the antenna simulation software, GRASP, 

progressing from a perfect paraboloid, to one with ribs but no pillowing, and then to one 

with ribs and pillowing. I generated a similar series of simulations using GRASP 

progressing from no struts supporting the feed horn, to a single strut supporting the feed 

horn, and then three struts supporting the feed horn. These results are presented in    

section 4.1.6. 

 

3.3 Material testing 

 

3.3.1 Structural properties 

 

The clear thin film and the metalized thin film used to construct the gossamer feed horn 

and the inflatable antenna was donated by VISIPAK. The material specifications for the 

two thin films were not available but it is known that both thin films were polyesters. It is 

known that the clear thin film has a layer of Linear Low Density Polyethylene (LLDPE) on 

one side of the polyester core and it is known that the second film was metalized with 

Aluminium by vapour deposition and then sandwiched between two layers of LLDPE. 

 

Thin films are available commercially in thicknesses from 12 um to 350 um and their 

properties can be manipulated with a variety of additives, treatments and coatings. The 

most common polyester thin film is Polyethylene Terephthalate (PET). PET is produced 

by DuPont Teijin Films under a variety of trade names including Mylar [41].  

 

The material properties of the two thin films that would be used to construct the inflatable 

antenna and feed horn were measured and compared to the properties stated for the most 

common Mylar thin film, Type A 48-1400 Gauge as specified by DuPont [41].  The 

materials were weighed and the thickness of the two materials was measured using a 

micrometer with a tolerance of ±0.1 µm. A series of five tensile tests were conducted on 
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each material and the average taken. These tests measured the yield strength of the 

material, the tensile strength and the elongation at break. For results refer to section 4.2.1. 

 

3.3.2 Electromagnetic properties 

 

The electromagnetic properties of the clear thin film and the metalized thin film were 

tested using a Vector Network Analyser and the arrangement shown in Fig. 30. Any 

material used for a canopy must transmit a signal without loss at the operating frequency 

whilst a material used as a reflective surface must reflect a signal without loss at the 

operating frequency. A signal was generated in Port 1 and received in Port 2. The material 

under test was sandwiched between two waveguides connected to the respective ports with 

coaxial cable. The intended operating frequency of the inflatable antenna is 12.5 GHz so 

measurements were made at frequencies between 12 GHz and 13 GHz at increments of 0.5 

GHz. For results refer to section 4.2.2. 

 

 

 

 

 

 

 

 

 

Fig. 31: Testing electromagnetic properties using network analyser 

 

3.4 Microstrip patch 

 

To further reduce the weight and stowed volume of the feed assembly and reduce the 

loading on the inflatable antenna it was decided to investigate using a microstrip patch to 

feed the gossamer feed horn. The use of a microstrip patch also significantly reduces the 

manufacturing cost of the antenna. 

 

The design of the microstrip patch is beyond the scope of this investigation. The microstrip 

patch requirements were given to Dr Kamran Ghorbani at RMIT University who designed 

Material 

waveguide waveguide 

 

Network Analyser 

Port 1 Port 2 
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a variety of patch antennas which were then manufactured by RMIT technician, Mr. David 

Welch.  

 

I then tested the impedance characteristics of each patch using a Network Analyser and 

measured the radiation characteristics of each patch in the anechoic chamber at RMIT. The 

RMIT anechoic chamber is XX m long, XX m wide and XX m high, allowing far field 

measurements to be recorded. The test antenna was mounted on a turntable such that the 

phase centre of the antenna was positioned at the centre of the turnstile. The height of the 

test antenna and the source were aligned as shown in Fig. 32. During the testing procedure 

the turnstile was rotated at a constant velocity and measurements were recorded at 1° 

intervals using a network analyser. Co-polar and cross polar measurements were taken by 

rotating the source antenna and repeating the procedure. This method and procedure were 

repeated to test the horn and the parabolic reflector. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig. 32: Schematic of test setup in anechoic chamber 
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The patch with a resonant frequency closest to the design frequency of 12.5 GHz and 

which demonstrated the lowest cross polar radiation was then selected. The patch selected 

was a proximity fed patch. The dimensions of the patch are presented in section 2.4.6 and 

reproduced below in Fig. 32. The patch is shown in Fig. 33. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: Dimensions of microstrip patch (reproduced from section 2.4.6) 

 

    

    

 

Fig. 33: Microstrip patch 

Ø 50 mm 

Ø 9 mm 

Antenna substrate  
εr = 2.2 
tanδ = 0.002 
thickness h = 0.508 mm 

Feed substrate 
εr = 2.2 
tanδ = 0.002 
thickness h = 0.508 mm 
 

10 mm 

1.5 mm 

1 mm 
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3.5 Feed horn 

 

After demonstrating that the thin film selected has the structural and electromagnetic 

qualities needed to construct an antenna, it must then be demonstrated that an antenna can 

be manufactured from this material such that it matches the performance of a rigid 

antenna.  

 

A rigid horn was machined from Aluminium as per the design. I would like to 

acknowledge RMIT technician, Mr. David Welch, for the manufacture of the Aluminium 

feed horn. The Aluminium feed horn is shown in Fig. 34.   

 

    

Fig. 34: Aluminium feed horn 

 

As the antenna is being constructed from a flat, dimensionally stable gossamer material, 

the shape is established using pattern making techniques and seaming the panels together 

to form an enclosed structure which can then be inflated. For components such as the feed 

horn and the canopy, which are constructed from tubular or conical sections having 

curvature in one direction, a flat pattern can be easily produced using basic geometry. 

Despite the simplicity of the geometry care must be given to the accuracy of the seam 

allowance calculation and the cutting precision.  
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Fig. 35: Patterns for prime focus antenna feed horn components 

 

 

       

 

Fig. 36: Cutting pattern pieces for prime focus antenna feed horn components 

 

Once a pattern has been produced for each of the components the pieces can be connected 

and the components assembled. The flexible nature of the material can impede the accurate 

assembly of the shaped components. It was found that using a plug assisted in the 

assembly of the components. Fig. 36 shows how the use of a plug can aid the accurate 

assembly of the individual components. 

 

Ø 50 mm 

Ø 23 mm 
10 mm 66 mm 

39 mm 

39 mm 

10 mm 

110 mm 

26 mm 
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Fig. 37: Assembly of individual horn components with the assistance of shaped plugs 

 

To reduce the stiffness of the seams and minimize surface irregularity a highly adhesive 

transfer tape was used to seal the seams. Transfer tape is a pressure sensitive tape pre-

applied to a special release liner. As the tape is applied to the first surface the release liner 

is removed ready for the second surface to be connected and pressure applied. As it has no 

backing it is highly flexible and can bond gossamer materials without causing localized 

stiffening. Transfer tapes are available with a variety of adhesive properties including high 

tack, high temperature resistance, exceptional moisture or solvent resistance and adhesion 

to low surface energy plastic. Fig. 38 shows the specialist applicator used to apply the 

transfer tape. 

 

       

Fig. 38: Transfer tape applicator 

 

Tape is strongest in plane or shear mode and weakest in tensile mode. Fig. 39 shows the 

technique used to seal the individual components of the feed horn.  It can be seen that each 

of the components are connected using lap joints and so all seams are loaded in shear. 

 

 

 

 

 

Fig. 39: Lap joint used to assemble feed horn components 

PET thin film Transfer tape PET thin film 
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Fig. 40: Individual components of feed horn 

 

Once the individual components have been assembled they need to be connected to form 

the feed horn. Because of the angle of the joints it was impractical to tape the joints. A 

variation on heat welding was used to connect the components. 

 

Heat welding uses a combination of temperature and pressure to, melt two thermoplastic 

layers, force them to combine, and then allow the combined layer to harden to an 

extremely strong bond. Heat welding can be used to produce bonded joints with 

mechanical properties that approach those of the base material. The PET thin film has a 

layer of Linear Low Density Polyester (LLDPE), which melts at approximately 80C, 

allowing it to be heat welded. 

 

A hot glue gun was used to heat weld the horn components together. The glue is raised to a 

temperature which partially melts the LLDPE layer and combines with it to form a robust 

bond. This technique produces a bond which is adequate for testing the prototype horn. 

 

     

Fig. 41: Hot glue gun used to assemble feed horn pieces 

 

Fig. 42 shows the fully assembled gossamer horn and the Aluminium horn. 
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Fig. 42: Assembled gossamer horn with Aluminium horn 

 

Once the horn has been assembled the microstrip patch is attached with transfer tape. Care 

must be taken that the resonating patch is located in the centre of the horn and that the seal 

is complete. Any gaps between the microstrip patch and the horn will result in 

interference. The microstrip patch is attached to the Aluminium horn using the same 

method. Fig. 43 shows the gossamer horn with the microstrip patch and Fig. 44 shows the 

Aluminium horn with the microstrip patch. Before testing both horns were weighed. 

 

   

Fig. 43: Gossamer horn with microstrip patch 

 

   

Fig. 44: Aluminium horn with microstrip patch 
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The impedance characteristics of the Aluminium horn were tested and compared to the 

simulated results to measure how well the system is matched and verify that a microstrip 

patch can be used to feed a conical horn. The impedance characteristics of the gossamer 

horn were then measured and compared to those of the Aluminium horn. The impedance 

characteristics of the gossamer horn were also tested after the horn had been crushed and 

then returned to its original shape, to simulate a horn that had been stowed and then 

deployed. 

 

Once it was confirmed that a microstrip patch can be used to feed a conical horn without 

affecting the impedance characteristics the radiation patterns of the horns were measured 

and compared. 

 

The rigid Aluminium horn and the gossamer horn fed by the same microstrip patch were 

tested in the anechoic chamber at RMIT at 12.576 GHz and the results normalized with 

respect to a standard gain horn. The tests were conducted in an anechoic chamber as 

detailed in section 3.4 and shown in Fig. 32 to eliminate the impact of wind. The antenna 

system is ultimately required to operate reliably under all environmental conditions; 

however before the impact of environmental conditions such as wind and rain can be 

considered the impact of the material and the structural design must be fully understood.   

 

The radiation patterns for both horns were measured in the E-plane, H-plane, 45-plane,    

E-cross pole, H-cross pole and 45-cross pole. 

 

3.6 Parabolic reflector 

 

After demonstrating that the gossamer conical feed horn fed by a microstrip patch matched 

the performance of the Aluminium horn of the same design it was possible to progress to 

the testing of a parabolic reflector.  As the characteristics of the gossamer horn were now 

defined it will be used as the feed for the parabolic reflector.  

 

The shape of the parabolic reflector is generated by forming an enclosed environment 

between the reflector and a canopy and then pressurising it.  
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The use of a pressurised structure distributes the load through the skin. Unless the structure 

is constrained the natural tendency is for the structure to deform until the stress is evenly 

distributed. The parabolic reflector and clear canopy are connected at a sharp angle. Unless 

this connection is supported the internal pressure will act to round out this connection and 

creases will form. An exaggerated simulation of what would happen to the antenna if the 

internal pressure was increased and there was no rim support is shown in Fig. 45. This 

simulation does not show the creases around the rim because the material in the simulation 

has elasticity and so will stretch rather than crease. In the final antenna the connection 

between the reflector and the canopy, which is also the circumference of the reflector, will 

be supported by an inflatable torus. To eliminate the torus as a variable and investigate the 

performance of the parabolic reflector the circumference was supported by a rigid frame.  

 

 

Fig. 45: Simulation of increasing antenna pressure without rim support 

 

A cone was selected as the shape for the canopy because of its dimensional stability and 

the way this shape transfers the load in the skin to the rim support. Forming a cone from 

thin film pre-stresses the skin and gives the final structure good dimensional stability. As 

the conical canopy has curvature in only one dimension it was assumed that it performed 

in the same way as the conical horn. The increase in scale does introduce some pillowing 

and limited modelling was performed to understand how much allowance needs to be 

made for the movement in the feed or sub-reflector due to this pillowing. It was shown that 

a conical canopy at low pressure with a good rim support experienced minimal pillowing. 

It was decided not to make allowances for any pillowing in the canopy in the initial testing. 

However, it is recommended that this be reviewed in any further testing. 
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To test if it is possible to construct a parabolic reflector from thin film the radiation 

characteristics of the gossamer reflector were measured and compared to the radiation 

characteristics of a rigid parabolic reflector of the same design to facilitate the assessment 

of the shape accuracy.  

 

Basic antenna design principles were applied then replicated using thin film materials in 

such a way that the integrity of the design is maintained. The surface of the reflector dish 

is defined by rotating a parabola about its axis. The dish is defined by 

 

xy 5.12   

 

A plug was machined to aid in the construction of the thin film reflector. The plug was 

also used to manufacture a rigid parabolic dish from composite materials. A woven pre-

preg was laid over the reflector plug and cured in an autoclave. This was done with the 

assistance of RMIT technician Terry Rosewarne. The reflector plug and the composite dish 

are shown in Fig. 46. The composite dish was then coated with Aluminium foil to make it 

RF reflective.   

 

  

Fig. 46: Reflector plug and rigid composite reflector dish manufactured using reflector plug 

 

The radiation characteristics of the rigid reflector fed by the gossamer horn were tested in 

the anechoic chamber. An adjustable platform was used to support the dish and the horn. 

Fig. 47 shows the platform with the rigid dish and gossamer horn in the anechoic chamber. 

The platform facilitated the adjustment of the horn height and distance from the dish. The 

radiation patterns were measured in the E-plane, H-plane, 45-plane, E-cross pole, H-cross 

pole and 45-cross pole. 
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Fig. 47: Rigid reflector dish fed by gossamer horn in anechoic chamber 

 

To construct the gossamer parabolic reflector, a surface with curvature in two directions 

must be constructed from a flat, dimensionally stable material. This was achieved using a 

gored construction.  

 

A Computer Aided Design (CAD) program was used to generate a three dimensional 

model of the antenna. This program was then used to generate a flat pattern of the 

reflector. To produce the desired curvature a minimum number of gores are required. The 

more gores that are used the more curvature that can be imparted; on the other hand the 

seams create both surface and shape inaccuracies that reduce the performance. It was 

found that six gores was the best compromise between shape and surface accuracy. A seam 

allowance was added around the circumference of the reflector to allow the reflector to be 

attached to a rigid frame for testing. Fig. 48 shows one of six identical gores used to 

construct the reflector. 

 

 

Fig. 48: Pattern for one of six identical gores used to construct the gossamer reflector dish 
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Six identical gores were cut from Aluminized thin film taking care to maintain cutting 

precision. To provide the maximum flexibility the gores were assembled using transfer 

tape. Tape is strongest in plane or shear mode and weakest in tensile mode. Fig. 49 shows 

the technique used for taping the gores together to form the parabolic reflector. It can be 

seen that each of the panels are connected using lap joints and so all of these seams are 

loaded in shear. 

 

 

 

 

 

Fig. 49: Lap joint used to assemble gores in parabolic dish reflector 

 

As with the gossamer horn a plug was used to assist in the assembly of the gossamer 

reflector. The plug was marked to indicate the desired position of the gores. The plug 

helped to align the gores and apply the tape to curved seams. Fig. 50 shows how the use of 

a plug can aid the accurate assembly of the individual components. 

 

  

  

Fig. 50: Assembly of gossamer reflector 

Transfer tape PET thin film 
PET thin film strip 
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The internal pressure of the inflatable antenna acts on the parabolic reflector to form the 

curved surface. To generate this internal pressure an enclosed environment is formed 

between the parabolic reflector and the clear canopy. In the case of the prime focus 

antenna the canopy will support the feed horn and in the Cassegrain design the canopy will 

support the sub-reflector. Fig. 27 showing the dimensions of the conical canopy used to 

position the phase centre of the feed horn at the focal point of the reflector has been 

reproduced from section 2.4.4. Fig. 51 shows the flat pattern for the canopy. A seam 

allowance is added to form the cone and to attach the cone to the reflector. The position of 

the patch is marked on the cone to facilitate the alignment of the horn. 
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50mm 

35mm 

440.3mm 42mm 

21mm 

2.7mm 

66mm 

375mm 

500mm 

26mm 40mm 

36.8° 

Fig 27: Dimensions of prime focus antenna and clear canopy required to position 

the phase centre of the feed horn at the focal point of the reflector  

(reproduced from section 2.4.4) 
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Fig. 51: Clear canopy pattern 

 

The clear canopy is cut from clear thin film and assembled using transfer tape. Fig. 52 

shows the flat pattern of the cone and the clear polyester thin film. 

 

 

Fig. 52: Conical canopy pattern and clear polyester thin film 

1.571 m 

0.405 m 

0.045 m 

0.010 m 

0.010 m 

.0157 m 
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To help position the feed horn accurately the cone was marked with the correct position 

and a connector was added to the feed horn. Fig. 53 shows the conical feed horn with the 

adapter and the feed horn installed in the apex of the clear canopy. 

 

   

Fig. 53: Conical feed horn and adapter. Conical feed horn installed in the apex of the clear canopy 

 

When a thin film vessel is pressurized the skin deforms until it reaches a state of 

equilibrium. The antenna was inflated using a compressor connected to a small valve at the 

edge of the dish. The pressure was controlled using a regulator. The antenna required a 

large volume of air but operates at just above atmospheric pressure. A pressure regulator 

and cutoff switch was used to achieve the desired pressure but once inflated the antenna 

could maintain its shape.  

 

The parabolic reflector and clear canopy are connected at a sharp angle. Unless this 

connection is supported the internal pressure will act to round out this connection and 

creases will form. In the final antenna the connection between the reflector and the canopy, 

which is also the circumference of the reflector, will be supported by an inflatable torus. 

To eliminate the torus as a variable and isolate the parabolic reflector the circumference 

was supported by a rigid frame. The prime focus antenna mounted on the rigid frame can 

be seen in Fig. 54. Fig. 54 also shows a template of the desired reflector shape being held 

next to the inflated antenna. As any contact would cause the reflector to conform to the 

shape of the template care was taken not to make contact with the reflector.   
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Fig. 54: Inflatable antenna with gossamer horn mounted on rigid frame 

 

The radiation characteristics of the prime focus inflatable antenna fed by the gossamer 

horn were tested in the anechoic chamber as detailed in section 3.4 and shown in Fig. 32. 

The antenna was supported by a rigid frame and rotated about the axis of the dish. Fig. 55 

shows the inflatable antenna in the anechoic chamber. The radiation patterns were 

measured in the E-plane, H-plane, 45-plane, E-cross pole, H-cross pole and 45-cross pole. 

 

 

Fig. 55: Inflatable antenna with gossamer horn mounted on rigid frame in anechoic chamber 

 

   

Fig. 56: Inflatable antenna with gossamer horn mounted on rigid frame in anechoic chamber 
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The reflectors were both tested at 12.5GHz using an inflatable feed horn at the focal point. 

The test was conducted in an anechoic chamber to eliminate the impact of wind. It will be 

necessary for the final antenna system to operate reliably under all environmental 

conditions however this test is concerned with the ability to manufacture the reflector dish.  

 

The rationale for this investigation is to increase the portability of direct satellite 

communication systems. As such, the weight and stowed volume of the system are pivotal. 

The weight of the inflatable antenna and gossamer horn were measured and compared to 

the weight of the rigid antenna and gossamer horn. Both antennas were weighed without 

the support structure. The results are presented in section 4.4.  

 

The gossamer antenna and feed horn were folded and stowed and the volume calculated. 

Fig. 57 shows the stowed antenna. 

 

 

Fig. 57: Inflatable antenna with gossamer horn stowed for travel 

 

The results from this analysis are presented in section 4 and an analysis of the results is 

presented in section 5.  
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4 Results 

 

All the simulated and measured results collected during this investigation are presented in 

this section. The methods and procedures used to collect the data presented in this section 

have been defined in section 3. An evaluation of the results is presented in section 5. 

 

4.1 Simulation 

 

The following simulations were generated: 

- microstrip patch 

- prime focus antenna conical feed horn with patch feed and waveguide feed 

- prime focus antenna fed by feed horn with patch feed and feed horn with 

waveguide feed 

- Cassegrain antenna conical feed horn with patch feed and waveguide feed 

- Cassegrain antenna fed by feed horn with patch feed and feed horn with waveguide 

feed 

 

4.1.1 Microstrip patch  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31: Dimensions of microstrip patch (reproduced from section 2.4.6) 

Ø 50 mm 

Ø 9 mm 

Antenna substrate  
εr = 2.2 
tanδ = 0.002 
thickness h = 0.508 mm 

Feed substrate 
εr = 2.2 
tanδ = 0.002 
thickness h = 0.508 mm 
 

10 mm 

1.5 mm 

1 mm 
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Fig. 58: Simulated microstrip patch 

 

 

 

 

Fig. 59: Simulated S11 (Return Loss) of the patch 
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4.1.2 Conical horn fed by microstrip patch for prime focus antenna 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Layout of conical horn (reproduced from section 2.4.3) 

 

 

 

 

           

 

 

Fig. 60: Simulated horn for prime focus antenna fed by microstrip patch 

 

 

15° 

66 mm 

26 mm 40 mm 

21 mm 

35 mm 
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Fig. 61: Simulated S11 (Return Loss) of the conical horn fed by microstrip patch 

 

 

Fig. 62: Simulated co and cross polar radiation patterns of a conical horn fed by microstrip patch at 12.50 

GHz. (Peak=13.72 dBi) 
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To compare the effects of feeding the horn with a patch instead of a standard waveguide 

input, the horn was simulated fed by a standard TE11 circular-waveguide mode (best 

theoretical feeding mechanism). 

 

 

Fig. 63: Simulated horn fed by TE11 circular-waveguide mode 

 

 

Fig. 64: Simulated co and cross polar radiation patterns of a conical horn fed by a TE11 circular waveguide 

mode at 12.5 GHz (Peak=12.58 dBi) 
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4.1.3 Conical feed horn fed by microstrip patch for Cassegrain antenna 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29: Cassegrain antenna horn design (reproduced from section 2.4.5) 

 

 

 

 

 

Fig. 65: Simulated horn for Cassegrain antenna fed by microstrip patch 

 

 

 

100 mm 

17.35° 

157 mm 

119 mm 38 mm 

23 mm 
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Fig. 66: Simulated S11 (Return Loss) of the conical horn for Cassegrain antenna fed by microstrip patch
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 Fig. 68: Simulated radiation pattern of conical horn for 

Cassegrain antenna fed by a TE11 circular waveguide mode at 

12.5 GHz (Peak=19.2 dBi) 

Fig. 67: Simulated radiation pattern of conical horn for 

Cassegrain antenna fed by microstrip patch at 12.50 GHz. 

(Peak=19.26 dBi) 
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4.1.4 Impact of support struts, ribs and pillowing on antenna performance 

 

The impact of struts, ribs and pillowing was simulated using the TICRA GRASP 

simulation software. These simulations were generated by the author to aid the evaluation 

of the inflatable antennas performance. The following simulations were generated: 

 

- single parabolic reflector fed by point source 

- single parabolic reflector fed by point source supported by single 0.005m diameter strut 

- single parabolic reflector fed by point source supported by three 0.005m diameter struts 

- single parabolic reflector fed by point source 

- single parabolic reflector fed by conical feed horn 

- single parabolic reflector fed by point source, 8 ribs, no pillowing 

- single parabolic reflector fed by conical feed horn, 8 ribs, no pillowing 

- single parabolic reflector fed by point source, 8 ribs with pillowing 

- single parabolic reflector fed by conical feed horn, 8 ribs with pillowing 

- single parabolic reflector fed by point source, 12 ribs, no pillowing 

- single parabolic reflector fed by conical feed horn, 12 ribs, no pillowing 

- single parabolic reflector fed by point source, 12 ribs with pillowing 

- single parabolic reflector fed by conical feed horn, 12 ribs with pillowing 

- single parabolic reflector fed by point source, 16 ribs, no pillowing 

- single parabolic reflector fed by conical feed horn, 16 ribs, no pillowing 

- single parabolic reflector fed by point source, 16 ribs with pillowing 

- single parabolic reflector fed by conical feed horn, 16 ribs with pillowing 

 

All simulations were conducted keeping the following parameters constant: 

 

Frequency: 12.5GHz 

Wavelength: 0.024m 

Main reflector diameter: 0.5m 

Main reflector focal length: 0.375m 

Distance between main reflector axis and parabola axis: 0 

 

Point source 

Taper angle: 36.869898 (ideal – automatically generated) 
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Taper: -12 (ideal – automatically generated) 

  

Conical feed horn 

 Aperture radius: 0.0175015m 

Flare length: 0.067184m 

Phase displacement: 0 

Modes: type TE11, amplitude 1, phase 0, rotation 0 

 

4.1.4.1 Rigid parabolic reflector fed by point source 

 

 

Fig. 69: Simulated radiation pattern of single rigid parabolic reflector fed by point source (Black: E-field / 

Blue: H-field / No cross polar) 
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4.1.4.2 Impact of single strut on the radiation patterns 

 

 

Fig. 70: Simulated radiation pattern of single rigid parabolic reflector fed by point source supported by 

single 0.005m diameter strut (Black: E-field / Red: H-field / Blue: cross polar (E) / No cross polar (H)) 

 

The final radiation plot above is a combination of the following two effects: 

 

 

 

 

 

 

 

 

Black: E-field / Blue: H-field / Red: cross polar (E) / No cross polar H 

 

  

Black: E-field / Green: H-field / Blue: cross polar (E) / No cross polar H 
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4.1.4.3 Impact of three struts on the radiation patterns 

 

 

Fig. 71: Simulated radiation pattern of single rigid parabolic reflector fed by point source supported by 

three 0.005m diameter strut (Black: E-field / Blue: H-field / Green: cross polar (E) / No cross polar (H)) 

 

Final radiation plot is a combination of the following two effects: 

  

 

 

 

 

 

 

 

Black: E-field / Blue: H-field / Red: cross polar (E) / No cross polar (H) 

 

  

 

 

 

 

 

 

 

Black: E-field / Blue: H-field / Green: cross polar (E) / No cross polar (H) 
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4.1.4.4 Comparison of point source and horn feed 

 

 

Fig. 72: Simulated radiation pattern of single parabolic reflector fed by point source, with no ribs and no 

pillowing (E-field) 

 

 

Fig. 73: Simulated radiation pattern of single parabolic reflector fed by conical horn, with no ribs and no 

pillowing (E-field) 
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4.1.4.5 Impact of pillowing in an antenna with 8 ribs  

 

 

Fig. 74: Simulated radiation pattern of single parabolic reflector fed by point source, with 8 ribs and no 

pillowing (E-field) 

 

 

Fig. 75: Simulated radiation pattern of single parabolic reflector fed by conical horn, with 8 ribs and no 

pillowing (E-field) 

 

 

Fig. 76: Simulated radiation pattern of single parabolic reflector fed by point source, with 8 ribs and 

pillowing (E-field) 

 

 

Fig. 77: Simulated radiation pattern of single parabolic reflector fed by conical horn, with 8 ribs and 

pillowing (E-field) 
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4.1.4.6 Impact of pillowing in an antenna with 12 ribs  

 

 

Fig. 78: Simulated radiation pattern of single parabolic reflector fed by point source, with 12 ribs and no 

pillowing (E-field) 

 

 

Fig. 79: Simulated radiation pattern of single parabolic reflector fed by conical horn, with 12 ribs and no 

pillowing (E-field) 

 

 

Fig. 80: Simulated radiation pattern of single parabolic reflector fed by point source, with 12 ribs and 

pillowing (E-field) 

 

 

Fig. 81: Simulated radiation pattern of single parabolic reflector fed by conical horn, with 12 ribs and 

pillowing (E-field) 
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4.1.4.7 Impact of pillowing in an antenna with 16 ribs  

 

 

Fig. 82: Simulated radiation pattern of single parabolic reflector fed by point source, with 16 ribs and no 

pillowing (E-field) 

 

 

Fig. 83: Simulated radiation pattern of single parabolic reflector fed by conical horn, with 16 ribs and no 

pillowing (E-field) 

 

 

Fig. 84: Simulated radiation pattern of single parabolic reflector fed by point source, with 16 ribs and 

pillowing (E-field) 

 

 

Fig. 85: Simulated radiation pattern of single parabolic reflector fed by conical horn, with 16 ribs and 

pillowing (E-field) 
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4.2 Material Testing 

 

4.2.1 Structural properties 

 

Property 

 

Units Clear thin film 

 

Metalized thin 

film 

Thickness m 24 50 

Yield m
2
/kg 60 31.25 

Unit Weight g/m
2
 68.23 79.44 

Tensile Strength 

(Ultimate) 

MPa, 

MD 

TD 
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106 

Elongation at 

Break 

%, 

MD 

TD 

 

122 

 

130 

 

Table 3: Measured structural properties of clear thin film and metalized thin film 

 

4.2.2 Electromagnetic properties 

 

Property 

 

Units Clear thin film 

 

Metalized thin 

film 

Return loss dB -43.611 0 

 

Table 4: Measured electromagnetic properties of clear thin film and metalized thin film 

 

The transmission properties of the clear thin film and the metalized thin film were tested as 

detailed in section 3.3.2. Measurements were taken at 0.5 GHz increments between 12 

GHz and 13 GHz. It was observed that the clear thin film had a minimum return loss of      

-43.611 dB and the metalized thin film fully reflected the signal at all frequencies within 

the range.  
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4.3 Microstrip patch 

 

The microstrip was tested with the intention of using it to feed a gossamer horn. This was 

explored to reduce the overall weight of the antenna, improve the balance of the structure 

and achieve a higher gain and directivity than would be achieved by using a patch alone to 

feed the antenna. The use of a patch to feed a conical horn is an entirely novel approach 

and one that could have many applications. The interaction of the patch with the horn and 

the optimisation of a patch for this purpose offer a whole new area of research which was 

not explored as part of this investigation. This investigation focused on the impact of using 

a gossamer material to construct an antenna and feed horn. As such the patch was tested 

and defined but the comparison of the gossamer horn fed by the microstrip patch with the 

rigid horn fed with the microstrip patch was of greatest interest. 

 

Before any testing was undertaken a conical horn fed by a microstrip patch and a conical 

horn fed by a TE11 waveguide were simulated and the results compared. The simulated 

results are presented in Section 4.1.2. From Fig. 62 and Fig. 64 it can be seen that, for the 

design under consideration, using a microstrip patch to feed the horn has little impact on 

the performance of the horn.  

   

The impedance characteristics of the patch were tested and the results are shown in       

Fig. 90. It can be seen that the patch has a resonant frequency of 12.59 GHz and a 

maximum return loss of -18 dB. The patch has a bandwidth of 480 MHz. From these 

results it can be seen that the patch will operate at the design frequency of 12.5 GHz.  
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Fig. 86: Impedance characteristics of microstrip patch 

 

The radiation characteristics of the patch were tested in the anechoic chamber at RMIT.    

To understand the interaction between the patch and the feed horn the near field radiation 

pattern should be measured. As this investigation is interested in the impact of using an 

inflatable structure on the performance of the feed horn and the antenna the performance 

of the assembled feed horn is of more interest. To demonstrate the increase in gain and 

directivity achieved by using a patch fed horn as opposed to a patch on its own the 

radiation characteristics of the patch were measured and presented below. 

 

These results are shown in Fig. 87. The results showed that the patch had a maximum gain 

of 7 dB at 28°. The results also showed that the radiation patterns were not symmetrical 

and that there was a dip in gain in the forward direction. In future development the patch 

would be optimized for improved performance. In this investigation the important thing is 

to define the performance of the patch to differentiate between a loss in performance due 

to the patch as distinct from a loss in performance due to the use of an inflatable structure. 
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Fig. 87: Radiation patterns of microstrip patch 

 

4.4 Gossamer horn 

 

The impedance characteristics of the gossamer horn fed by the microstrip patch were 

tested and the results are shown in Fig. 88. The results showed that the horn patch 

combination has a resonant frequency of 12.576 GHz with a return loss of -29.91 dB and a 

bandwidth of 390 MHz.  

 

 

Fig. 88: Impedance characteristics of microstrip patch and gossamer horn fed by microstrip patch 

 

Testing conducted using an earlier patch design compared the impedance characteristics of 

a rigid Aluminium horn fed by a microstrip patch, a gossamer horn fed by the same patch 
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and a gossamer horn that had been crushed and then returned to its original shape, also fed 

by the same patch, to simulate a horn that had been stowed and then deployed. The results 

are shown in Fig. 89. 

   

 

Fig. 89: Impedance characteristics of an Aluminium horn fed by a microstrip patch, a gossamer horn fed by 

a microstrip patch and a crushed gossamer horn fed by a microstrip patch 

 

The radiation characteristics of the rigid and gossamer horns fed by the microstrip patch 

were tested in the anechoic chamber at RMIT at 12.576 GHz and the results normalized 

with respect to a standard gain horn.  

 

Fig. 90 shows the radiation patterns for the Aluminium horn fed by the microstrip patch. 

These results showed that the horn produced a symmetrical radiation pattern with a 

maximum gain of 13.23 dBi and a beamwidth of 47°. It can be seen from Fig. 90 that the 

Aluminium horn produces a 10 dB beamwidth of 83°. The cross polar characteristics of 

the system are good with the only significant cross polar radiation being seen in the         

E-plane with a front to back ratio of 10 dB. 
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Fig. 90: Radiation patterns of rigid conical horn fed by microstrip patch operating at 12.576 GHz 

 

Fig. 91 shows the radiation patterns for the gossamer horn fed by the microstrip patch. 

These results showed that the horn produced a symmetrical radiation pattern with a 

maximum gain of 12.1 dBi and a beamwidth of 40.5°. It can be seen from Fig. 91 that the 

gossamer horn produces a 10 dB beamwidth of 77°. The cross polar characteristics of the 

system are good with the most significant cross polar radiation being seen in the 45-plane 

with a front to back ratio of 9 dB. 

 

 

Fig. 91: Radiation patterns of gossamer conical horn fed by microstrip patch operating at 12.576 GHz 
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Fig. 92 shows a comparison between the E and H-plane radiation patterns of the rigid and 

gossamer horns.  

 

 

Fig. 92: Comparison between rigid and inflatable conical horns fed by microstrip patch operating at 

12.5GHz 

 

The two horns with the microstrip patch feed were weighed. The rigid Aluminium horn 

and patch weighed 124.6g and the gossamer horn and patch weighed 1.5g.  

 

 

4.5 Parabolic reflector 

 

The radiation characteristics of the rigid and gossamer parabolic reflectors fed by the 

gossamer horn were tested in the anechoic chamber at RMIT at 12.576 GHz and the results 

normalized with respect to a standard gain horn.  

 

Fig. 93 shows the radiation patterns for the rigid parabolic antenna fed by the gossamer 

horn. These results showed that the antenna produced a maximum gain of 24 dBi and a 

beamwidth of 4.3°. The maximum side lobe level is in the H-plane at 20 dB down. 
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Fig. 93: Radiation pattern of rigid prime focus parabolic dish antenna fed by gossamer feed horn operating 

at 12.576GHz 

 

Fig. 94 shows the radiation patterns for the inflatable antenna fed by the gossamer horn. 

These results showed that the antenna produced a maximum gain of 27 dBi and a 

beamwidth of 3.5°. The maximum side lobe level is in the H-plane at 17 dB down. 

 

 

Fig. 94: Radiation pattern of inflatable prime focus parabolic dish antenna fed by gossamer feed horn 

operating at 12.5GHz 
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Fig. 95 shows the co-polar and cross-polar radiation patterns for the inflatable antenna fed 

by the gossamer horn. These results showed that the antenna produced had a front to back 

ratio of 16.55 dB. 

 

 

Fig. 95: Co-polar and cross-polar radiation patterns of inflatable prime focus parabolic dish antenna fed by 

gossamer feed horn operating at 12.5GHz 

 

The two antennas were weighed without the rigid rim support. The rigid parabolic dish and 

gossamer feed horn weighed 150 g and the inflatable antenna weighed 12.2g.  

 

The ability to reduce the stowed volume of a rigid parabolic dish antenna is limited by the 

diameter of the reflector. Assuming the feed horn and support strut could be folded and 

stowed within the dish, the rigid parabolic reflector under consideration has a stowed 

volume of 825 x 10
-6

 m
3
. When folded and stowed the inflatable antenna has a stowed 

volume of 80.75 x 10
-6

 m
3
. Fig. 96 shows the stowed inflatable antenna. 
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Fig. 96: Inflatable antenna folded and stowed 

 

Section 5 presents an evaluation of the simulated and measured results. Based on these 

results recommendations for further work are then presented in section 6. 
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5 Evaluation 

 

This thesis presents a design for a Cassegrain antenna constructed entirely from polyester 

thin film. To further reduce the weight and stowed volume of the antenna the conical horn 

is fed by a microstrip patch. The enclosed environment is formed between the parabolic 

reflector and a clear conical canopy. This canopy supports the sub reflector at its apex and 

the gossamer horn is positioned at the centre of the parabolic reflector. The connection 

between the parabolic reflector and the canopy is supported by an inflatable torus. The 

performance of the antenna is related to the shape and surface accuracy of the components 

and the ability to maintain the dimensional relationship between them. 

 

The aim of this investigation is to evaluate the performance of the components and assess 

their ability to operate under terrestrial conditions. 

 

The performance of a parabolic dish antenna is related to the shape and surface accuracy of 

the dish and the ability to maintain the dimensional relationship between the feed and the 

reflector(s). Any deviation from the design will result in a reduction in gain, an increase in 

side lobe level, an increase in cross-polar level and an increase in beamwidth. In an 

inflatable antenna the shape and surface accuracy, and the relationship between the 

elements is achieved through material selection, structural design and internal pressure. 

 

The flexible nature of inflatable structures eliminates the possibility of validating the shape 

accuracy via contact methods. The contact methods commonly used are invalid as the 

application of anything to the surface will change the local stiffness and load bearing 

properties of the skin and the structure will conform to a template placed in contact with 

the surface. Scanning methods such as photogrammetry can be employed but the use of 

both transparent and highly reflective materials impact on the accuracy of these methods. 

Reference dots would normally be used to overcome the reflective nature of the material 

but as previously mentioned contact methods change both the local stiffness of the material 

and the shape of the structure.    

 

As the shape and surface accuracy of the dish and the ability to maintain the dimensional 

relationship between the feed and the reflector(s) has a direct impact on the performance, 
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the radiation pattern of the gossamer structure can be compared to that of a rigid structure 

to indirectly assess the shape accuracy. This method is not definitive but it is acceptable 

for evaluating the potential of inflatable structures to be used for land-based direct satellite 

communication. The accuracy of the gossamer structures were evaluated by comparing the 

input impedance, gain, beamwidth and peak cross polar level. Any deviation from the 

design will result in an increase in return loss, a reduction in gain, an increase in side lobe 

level, an increase in cross-polar level and an increase in beamwidth.  

 

The flexible nature of the various components and the large number of new techniques 

being introduced made it important to test each component individually before combining 

them to help isolate the impact of the various new techniques and identify the limitations 

in the system. A literature review showed that there was no evidence of anyone replacing 

the waveguide with a microstrip patch to feed a horn. The use of a microstrip patch further 

reduces the weight and stowed volume of the feed assembly and reduces the loading on the 

inflatable antenna. Before testing commenced simulations were performed to assess if it 

was theoretically possible to feed a horn with a microstrip patch and to help identify the 

impact of varying parameters such as aperture blockage and pillowing. These simulations 

were then used to assist the interpretation of the measured results. 

 

5.1 Simulation 

 

A microstrip patch was investigated as an alternative to a traditional waveguide. If it could 

be demonstrated that a horn fed by a patch performed as required the weight of the feed 

assembly could be reduced considerably which would also reduce the loading on the 

inflatable antenna. Using a microstrip patch to feed the horn would have the additional 

benefits of reducing the stowed volume of the feed and the manufacturing cost. 

 

Before testing commenced a simulation was generated to compare the performance of a 

conical horn fed by a microstrip patch and a conical horn fed by a standard TE11 circular-

waveguide mode. This mode was selected as it is the best theoretical feeding mechanism. 

To facilitate comparison at a later stage, the conical horn used in the simulation is the 

design that will be manufactured and tested. A comparison of the simulated radiation 

patterns of the patch fed horn and the waveguide fed horn are presented in Fig. 97, 98 and 

99.  
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Fig. 97: Comparison of E-plane simulations for patch fed horn and TE11 waveguide fed horn (conical horn 

for prime focus antenna) 

 

 

Fig. 98: Comparison of H-plane simulations for patch fed horn and TE11 waveguide fed horn (conical horn 

for prime focus antenna) 
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Fig. 99: Comparison of 45-plane simulations for patch fed horn and TE11 waveguide fed horn (conical horn 

for prime focus antenna) 

 

The simulation indicated that the conical horn fed by the microstrip patch was well 

matched with a return loss of -27 dB. The radiation patterns were generated in the E-plane, 

H-plane and 45-plane and showed that the horn fed by the microstrip patch performed well 

when compared to the horn fed by the TE11 circular-waveguide mode. The horn fed by the 

microstrip patch generates a slightly higher gain (approx. 1 dB) than the horn fed by the 

TE11 circular-waveguide mode; it also has a slightly narrower half power beamwidth. In 

all three planes the side lobe levels of the patch fed horn were higher than the TE11 

circular-waveguide fed horn but all were at least -15 dB relative to the main beam.  
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The cross polar radiation levels are another measure of the efficiency of the horn and the 

effectiveness of using a microstrip patch to feed the conical horn. The simulated cross 

polar radiation patterns for the prime focus horn fed by a microstrip patch are shown in 

Fig. 100. The cross polar radiation in the E-plane is too low to show on the plot. 

  

 

Fig. 100: Simulated cross polar radiation patterns for prime focus horn fed with patch.  

 

The simulated results for the patch fed horn show excellent cross polar performance in the 

forward direction and compare well to the simulated cross polar radiation results presented 

in Fig. 64 for the waveguide fed horn. The use of a microstrip patch increased the peak 45° 

plane cross polar level by approx. 3 dB. The overall cross polar performance can be 

improved through the optimization of the horn and patch designs but this is outside the 

scope of this thesis. These results indicated that it was theoretically possible to feed a solid 

conical horn with a microstrip patch and that testing should proceed. 

 

To examine if the shape of the feed horn influenced the effectiveness of using a microstrip 

patch, simulations were also generated of a conical horn for a dual reflector antenna with 

both a microstrip patch feed and a TE11 waveguide feed. The results are presented in 

section 4.1.4 and the most significant comparisons are presented in Fig. 101, 102 and 103.  

 

The simulation indicated that the Cassegrain conical horn fed by the microstrip patch was 

well matched with a return loss of -31 dB. The radiation patterns were generated in the    

E-plane, H-plane and 45-plane and showed that the horn fed by the microstrip patch 
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performed well when compared to the horn fed by the TE11 circular waveguide mode. The 

maximum gain and the half power beamwidth for the two horns were identical. In all three 

planes the side lobe levels of the patch fed horn were minimally higher than the TE11 

circular waveguide fed horn but all were at least -15 dB relative to the main beam. These 

results cannot conclusively prove that all conical horns can be effectively fed by a 

microstrip patch but the results do indicate that it was theoretically possible to feed the two 

conical horns used in this investigation and that testing should proceed. 

  

 

 

Fig. 101: Simulated comparison of E-plane radiation pattern for Cassegrain antenna fed by conical horn 

with patch and conical horn with waveguide 
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Fig. 102: Simulated comparison of H-plane radiation pattern for prime focus antenna fed by conical horn 

with patch and conical horn with waveguide 

 

 

 

Fig. 103: Simulated comparison of 45-plane radiation pattern for prime focus antenna fed by conical horn 

with patch and conical horn with waveguide 
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These simulations will aid the interpretation of the measured results and held distinguish 

the effects of the feed as distinct from the impact of using a gossamer material to construct 

the horn. 

 

Further simulations were performed to help differentiate the impact of various factors in 

the measured radiation patterns for the antenna. It is known that aperture blockage from 

the feed and support struts adversely affects antenna performance, as does the deformation 

of the parabolic reflector due to the use of ribs and the effects of pillowing. The 

simulations presented in section 4.1.6 show varying degrees of these impacts and will be 

used in the evaluation of the shape accuracy of the antennas dish and the ability of an 

inflatable antenna to perform under terrestrial conditions. 

 

The simulations investigating the impact of struts were performed using a perfect 

paraboloid reflector. The results showed that the aperture blockage caused by the feed horn 

increased the side lobe levels and the use of struts to support the feed assembly caused 

aperture blockage as well as scattering of the signal. The scattering of the signal was 

observed as an increase in the number of side lobes and their intensity, and an increase in 

cross polar levels.  

 

The simulations investigating the impact of ribs and pillowing were generated with both a 

point source and a conical horn but no support struts. The elimination of the support struts 

reflects the use of a clear canopy to support the feed assembly. Pillowing is a common 

problem in articulated antenna dishes where the local stiffness of the ribs, compared to the 

flexibility and weight of the mesh, imparts a distortion and the performance is reduced 

[13]. When working with membrane structures the seams are commonly either taped or 

heat welded, giving some flexibility. This reduces the localized stiffness and the pillowing 

effect but does not eliminate it. The series of simulations helped extrapolate the level of 

pillowing in the measured radiation patterns for the inflatable antenna. 

 

From the simulations it can be seen that the introduction of ribs reduces the overall gain, 

increases the beamwidth and increases the side lobe level. These effects are exacerbated 

when the effects of pillowing are included. The simulations showed that the impact of the 

ribs and pillowing were reduced when the number of ribs was increased from eight to 
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twelve to sixteen. As the number of ribs is increased the reflector surface approaches a 

perfect paraboloid. However, continuing to increase the number of ribs to improve 

performance counteracts any weight and stowed volume advantage gained through the use 

of a deployable structure. It is suggested that the use of a gossamer material can achieve 

both good performance and a reduction in weight and stowed volume.  

 

5.2 Material 

 

The material is an integral part of the design of any inflatable structure. For the structure to 

be stowed and then inflated the material must be foldable and have low gas permeation to 

sustain the inflation. The material when stowed must not become permanently deformed 

and to maintain inflation it must be durable, and tear and puncture resistant. The materials 

that best fulfil these requirements are polymer thin films, including polyesters, ployimides 

and polyamides. These thin films are often referred to as membrane or gossamer materials 

as they have a small thickness, which allow them to be folded for storage, but are 

incapable of carrying a compressive load. It is therefore necessary to use the design of the 

structure combined with internal pressure to give the inflated structure its desired shape. 

If the gossamer material is to be used to construct a non-precision structure, high packing 

efficiency and durability are the key factors for material selection. If the final product is to 

be a precision structure then the dimensional stability of the material becomes important, 

and if the structure is intended for a communications application then the electromagnetic 

properties of the material must also be considered. Any components which will act as a 

canopy must be radio frequency (RF) transparent at the operating frequency and any 

components acting as a reflector must be metalized such that the signal is reflected without 

loss. To maintain antenna performance the inflatable structure must maintain the shape 

accuracy of the individual components and maintain the relationship between the antenna 

components whilst under the influence of the operating environment.  

 

There is an extensive range of polymer thin films with varying material properties and this 

range continues to expand. The material properties of thin films can be manipulated at a 

polymer level and by varying the conditions during extrusion to significantly vary the 

physical and mechanical properties of the film. Thin films can also be combined in layers 

to form a laminate to further control their properties. The design of the material that best 
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satisfies the requirements of the inflatable antenna is an area of research in itself. This 

level of design was beyond the scope of this investigation.  

 

Off the shelf materials that provide the basic material properties required to demonstrate 

the concept of an inflatable antenna are readily available. It is therefore more important to 

test and define the properties of the material used to allow the limitations of the material to 

be differentiated from the limitations of the antenna. 

 

The material used to demonstrate the inflatable antenna concept was Polyethylene 

Terephthalate (PET) thin film. PET is a polymer that has been commercially available for 

some time under various trade names including Mylar, Melinex and Diafoil [41]. To form 

a thin film the bulk material is extruded in two directions producing an orthotropic film. 

This means the material properties will be different in the two directions, the material 

direction (MD) and the thickness direction (TD). This difference is not significant but must 

be taken into consideration. PET thin film is used successfully in a wide range of 

applications, due to its excellent combination of optical, physical, mechanical, thermal, 

and chemical properties, as well as its unique versatility and low cost.  

 

The PET thin films used for the inflatable antenna prototype were donated by VISIPAK 

and only limited material properties were defined. A range of structural and 

electromagnetic tests were conducted to confirm the properties specified and define the 

unknown properties. The results of these tests are presented in section 4.2 and a 

comparison to typical properties for three typical gages of Mylar as given by Du Pont [41] 

are shown in Table 5. 
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Property 

 

Test Units 48 

Gauge 

75 

Gauge 

92 

Gauge 

Clear 

PET 

thin film 

Metalized 

PET thin 

film 

Thickness ASTM-D374 m 12 19 32 24 50 

Yield  m
2
/kg 59.35 38.02 31.25 60 31.25 

Unit Weight ASTM-E252 g/m
2
 16.85 26.30 32.00 68.23 79.44 

Tensile 

Strength 

(Ultimate) 

ASTM-D882 MPa, 

MD 

TD 

 

186 

234 

 

200 

242 

 

187 

276 

 

97 

 

106 

Elongation at 

Break 

ASTM-D882 %,  

MD 

TD 

 

110 

80 

 

130 

100 

 

140 

80 

 

122 

 

130 

Modulus ASTM-D882 Mpa 3790 3790 3790   

Tear (Graves) ASTM-D1004 G 300 400 500   

Haze ASTM-D1003 % 4.5 6.5 9.0   

Clarity ASTM-D1746 % 76 73 70   

Gloss (20) ASTM-D2457  200 180 150   

Shrinkage 30min in 

150C oven 

%, 

MD 

TD 

 

2.2 

1.3 

 

2.2 

1.1 

 

1.6 

1.6 

  

Oxygen 

Permeability 

ASTM-D3985 

22C 

cc/ 

m
2
.day.atm 

140 110 75   

 

Table 5: Typical Properties of Mylar MBP as specified by Du Pont [33] 

 

It is known that the clear PET thin film has an additional layer of Linear Low Density 

Polyester (LLDPE) and that the metalized thin film was produced by evaporating a thin 

layer of Aluminium onto the PET core and laminating it on both sides with LLDPE. 

Comparing the measured results to the stated properties it is most likely that the clear film 

has a core of 48 Gauge Mylar MBP and the metalized film has a core of 75 Gauge Mylar 

MBP.  

 

It can be seen that the clear PET has comparable yield strength to the material properties as 

stated by DuPont but the metalized PET yields at a much lower value. Combined with the 

higher elongation at break it is possible that the metalized PET has been co-polymerized to 

reduce the crystallinity of the film and increase the bond between the metal deposit and the 

PET layer.  
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5.2.1 Material physical properties 

 

Tensile strength: The tensile strength of a material quantifies how much stress the 

material will endure before failing. This helps to assess a polymer's physical strength and 

durability. Although the strength and durability of the material is important its dimensional 

stability has greater implications for the performance of the antenna.  

 

Young's modulus of elasticity: Young's Modulus quantifies the elasticity of the polymer. 

It is defined, for small strains, as the ratio of rate of change of stress to strain. The modulus 

is dependent on temperature. 

 

As the intended application is a precision inflatable structure dimensional stability is 

critical. The dimensional stability of the material impacts the ability of the structure to 

maintain the relationship between the elements so the material must neither shrink nor 

creep due to the environmental conditions or the applied loads. As such it is not sufficient 

for the skin to carry the load due to the internal pressure and wind loading without failing, 

it must also carry the load without creeping.   

 

The tests showed that both the clear and metalized thin films had a higher elongation at 

break than that stated by Du Pont. It is known that the clear PET thin film has an additional 

layer of LLDPE and the metalized thin film has two additional layers of LLDPE. LLDPE 

has a Young’s modulus of 0.2 GPa compared with PET which has a Young’s modulus of 

between 2 - 3.8 GPa [41]. When evaluating the results the elasticity of the material will be 

considered however it is not expected to have an adverse effect on the performance of the 

antenna as the load carried by the material due to inflation of the antenna is much lower 

than the loads applied during the material tests.  

 

The inflatable antenna will operate at a pressure just above atmospheric. As the skin is the 

primary load bearer it must carry the stress due to the internal pressure. Referring to 

section 2.2 the metalized thin film can withstand an internal pressure of 12.5 kPa without 

yielding. Beyond this pressure the dimensional stability of the structure cannot be 

maintained and the performance of the antenna will be reduced. In future tests it is 

recommended that a material with lower modulus of elasticity is tested.  
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5.2.2 Material electromagnetic properties  

 

To verify that the polyester thin film selected can be used for communications applications 

it must be demonstrated that it satisfies electromagnetic as well as structural requirements. 

For the material to be used as a canopy it must be RF transparent at the operating 

frequency and if it is to be used as a reflector it must be metalized such that an RF signal is 

reflected without loss. From the equation for skin depth it was calculated that at least 0.24 

m of Aluminium must be deposited for a 12.5 GHz signal to be reflected without loss. 

The temptation is to deposit an Aluminium layer well in excess of the calculated minimum 

to ensure that the signal is fully reflected. The drawback with this is that a thicker metal 

layer is more likely to bend or fracture when it is stowed, creating permanent deformations 

or voids in the reflector surface and reducing the performance of the antenna.  

 

The electromagnetic properties of the clear PET thin film and the metalized PET thin film 

were tested and the results presented in section 4.2.2. It was shown that between 12 - 13 

GHz the clear thin film transmitted the signal without loss and the metalized thin film 

reflected the signal with a return loss of -43.6 dB. From these tests it was shown that at 

12.5 GHz the electromagnetic properties of the material will have no impact on the 

performance of the inflatable antenna.  

 

5.3 Testing of the inflatable antenna 

 

Once it was shown that the material had both the structural and electromagnetic properties 

required to construct an antenna, it must then be demonstrated that an antenna can be 

manufactured from this material such that it matches the performance of a rigid antenna. 

As shape accuracy has a direct impact on the radiation patterns produced by an antenna, 

the radiation patterns of the gossamer structure will be compared to those of a rigid 

structure to indirectly assess the shape accuracy. 

 

The flexible nature of the various components and the large number on new techniques 

being introduced made it important to test each component individually before combining 

them to help isolate the impact of the various new techniques and identify the limitations 

in the system. The first thin film component to be tested is the conical horn. The design of 
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the conical horn is presented in section 2.4.3 and the manufacturing techniques are 

discussed in section 3.5. The horn is constructed from thin film and fed by a microstrip 

patch to further reduce the weight and stowed volume of the feed assembly and reduce the 

loading on the inflatable antenna. Before the gossamer horn can be tested it is important to 

understand the performance of the microstrip patch. 

 

5.3.1 Microstrip patch 

 

The use of a microstrip patch to feed a conical horn reduces the weight and stowed volume 

of the feed assembly and reduces the loading on the inflatable antenna it will be used to 

feed. The use of a microstrip patch instead of a waveguide also significantly reduces the 

manufacturing cost of the antenna. A literature review was conducted and no evidence was 

found of a microstrip patch being used to feed a horn.  

 

The design of the microstrip patch is outside the scope of this investigation. Dr Kamran 

Ghorbani at RMIT University was approached to design a microstrip patch that would 

resonate at 12.5 GHz with low cross polar levels. The resulting patch design is presented in 

section 2.4.6. Further optimization of the patch design is required, but as this is a proof of 

concept it is sufficient to understand the performance of the patch so that its limitations can 

be differentiated from the limitations of the feed horn and the inflatable antenna. 

 

The impedance characteristics of the patch were tested and the results are presented in 

section 4.3. It can be seen that the patch has a resonant frequency of 12.59 GHz and a 

maximum return loss of -18.00 dB which is within the acceptable limits. The microstrip 

patch has a bandwidth of 480 MHz. Patch antennas are not broadband devices, and the 

bandwidth characteristics of the patch will limit the bandwidth of the feed horn. From 

these results it was shown that the patch will operate at the design frequency of 12.5 GHz. 

  

The radiation characteristics of the patch were then tested in the anechoic chamber at 

RMIT. These results are presented in section 4.3. Fig. 91 shows that the patch has a 

maximum gain of 7 dB at 20° and a gain of 5.5 dB in the forward direction. This decrease 

in gain in the forward direction will be considered when evaluating the radiation patterns 

for the conical feed horn fed by the microstrip patch, although the microstrip patch will be 

used as the feed in all future tests so the impact will be sustained uniformly throughout 
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testing. Once the characteristics of the microstrip patch were understood it was possible to 

use it as the feed for a conical horn. 

  

5.3.2 Gossamer horn 

 

A feed horn operates as a radiating body in the same way as an antenna. It is therefore 

suggested that the conical horn can be used to test the premise that a gossamer material can 

be used to construct an antenna that matches the performance of a rigid antenna under 

terrestrial conditions. Before this testing began it was necessary to demonstrate that using a 

microstrip patch was a viable method for feeding a conical horn.  

 

A conical horn was chosen, as opposed to a rectangular horn, because the curved 

components of a conical horn distribute the load applied by the internal pressure evenly 

throughout the skin with a minimum of shape distortion. If a rectangular feed was used the 

natural tendency of a pressure vessel to evenly distribute the stress through the skin would 

cause the straight sides of the horn to pillow and the corners of the horn to round out, thus 

reducing the performance of the horn. 

 

The design of the conical horn is presented in section 2.4.3 and the manufacturing process 

is presented in section 3.5. The manufacturing processes used to construct the gossamer 

horn have implications for its performance. The method of construction must produce the 

desired shape and surface accuracy and then maintain it. The theoretical acceptable limit 

for surface inaccuracies is λ/8, where λ is the operating wavelength of the antenna. It can 

be seen that at lower frequencies where the wavelength is longer the seams present no 

problem but when the antenna is operating at higher frequencies the surface imperfection 

caused by the seams will reduce the performance. In section 2.4.2 it was shown that at an 

operating frequency of 12.5 GHz the surface roughness must not exceed 3mm. 

 

5.3.2.1 Pattern making 

 

As the horn is being constructed from a flat, dimensionally stable gossamer material, the 

shape is established using pattern making techniques and seaming the panels together to 

form an enclosed structure which can then be inflated. A conical feed horn is a 

combination of a tubular section and a conical section. As both these geometric shapes 
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have curvature in only one direction, a flat pattern can be easily produced. Despite the 

simplicity of the geometry, care must be given to the accuracy of the seam allowance 

calculation and the cutting precision. Any deviation from the pattern will result in a 

variation in the final dimensions of the horn which in turn impacts on its performance. The 

individual pieces of the horn constructed to test the hypothesis were cut by hand using 

scissors. In a commercial context the pieces would be either laser cut or punched to 

increase the accuracy.      

 

5.3.2.2 Assembly 

 

Once the individual pieces were cut the horn was assembled. The flexible nature of the 

material made it difficult to assemble the components with accuracy. It was found that 

using a plug simplified this process whilst confirming the shape accuracy of the individual 

components as a plug is a rigid representation of the desired shape. Two plugs were 

machined to assist in the assembly of the horn, one for the conical section and one for the 

tubular section. Fig. 104 shows the plug used to assemble the conical section of the feed 

horn.  

 

 

   

 

 

 

 

 

 

Fig. 104: Assembly of conical section of feed horn using a plug 

 

As discussed in section 2.4.2, to maintain performance any surface discontinuity must be 

less than λ/8. The use of flat gores to construct the horn introduces a single seam on each 

component and a seam at the joint of the components. The challenge is to minimize the 

surface discontinuity due to the seams whilst ensuring the seams are strong enough to 

carry the load distributed through the skin. Ideally, the strength of the bond should 
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approach that of the material to prevent rupture; the seam should have the same flexibility 

as the material to prevent pillowing; and should introduce no surface discontinuity.  

 

5.3.2.3 Tape 

 

To reduce the stiffness of the seams and minimize pillowing a highly adhesive transfer 

tape was used to assemble the cone and the tube of the feed horn. Transfer tape is a 

pressure sensitive tape pre-applied to a special release liner. As the tape is applied to the 

first surface the release liner is removed ready for the second surface to be connected and 

pressure applied. As it has no backing it is highly flexible and can bond gossamer 

materials without causing localized stiffening. Transfer tapes are available with a variety 

of adhesive properties including high tack, high temperature resistance, exceptional 

moisture or solvent resistance and adhesion to low surface energy plastic. The tape used to 

construct the horn was adequate for testing in the laboratory, for field use the choice of 

tape would need to be revised. 

 

Tape is strongest in plane or shear mode and weakest in tensile mode. Fig. 105 shows the 

technique used for taping the gores together to form the components of the conical horn. It 

can be seen that each of the components are connected using lap joints and so all of these 

seams are loaded in shear. 

 

 

 

 

Fig. 105: Lap joint used to assemble conical canopy and feed horn  

 

The seams have minimal impact on the flexibility of the surface, making it possible to 

achieve the desired shape with inflation. Taped lap joints are an effective assembly method 

for surfaces under low pressure, if the pressure is increased the loading on the seam is 

increased and the tape will fail. The inflatable horn operates at a very low pressure; in fact 

once deployed the horn is able to maintain its shape without internal pressure, so the use of 

taped seams is acceptable.  

 

PET thin film Transfer tape PET thin film 
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Transfer tape was also used to attach the feed horn to the microstrip patch. It is important 

to make sure that there is a cohesive connection between the horn and the patch to prevent 

the signal leaking. Transfer tape has a low profile and provides a strong bond and even 

coverage. 

 

5.3.2.4 Heat welding 

 

Transfer tape was used to assemble the cone and tube for the feed horn but the sharp joint 

between these components made the use of tape to connect them impractical. To maintain 

the performance of the horn the components must be connected with precision. Care must 

be taken to ensure there are no gaps between the components to prevent the signal leaking. 

Care must also be taken to ensure there are no sharp edges inside the horn that can scatter 

the signal.  

 

Heat welding is a seaming technique widely used in the film packaging industry to 

produce complex shapes with high precision.  It can be used to produce bonded joints with 

mechanical properties that approach those of the base material. Heat welding uses a 

combination of temperature and pressure to, melt two thermoplastic layers, force them to 

combine, and then allow the combined layer to harden to an extremely strong bond. Heat 

welding can be divided into two main groups:  

 

1. Processes involving mechanical movement – ultrasonic welding, friction welding, 

vibration welding. 

2. Processes involving external heating – hot plate welding, hot gas welding and resistive 

and implant welding. 

 

If the correct material was available, and a technique such as ultrasonic welding was used, 

it would be possible to assemble the entire antenna using heat welding. Ultrasonic welding 

was not available. The assembly of the gossamer feed horn was achieved using a crude 

form of heat welding. A hot glue gun was used to apply a line of hot glue to the connection 

between the individual components of the feed horn. The hot glue melted the LLDPE layer 

and as the glue and the LLDPE cooled they combined to form an adequate bond. This 

technique would not be suitable for commercial use as it is neither strong enough nor 

accurate enough but is acceptable to demonstrate the concept. 



125 

 

5.3.2.5 Testing 

 

To test the ability of a microstrip patch to feed a conical horn a rigid Aluminium horn was 

tested using a microstrip patch. Testing conducted using an earlier patch design compared 

the impedance characteristics of a rigid Aluminium horn fed by a microstrip patch, a 

gossamer horn fed by the same patch and a gossamer horn that had been crushed and then 

returned to its original shape, also fed by the same patch. The crushed horn was tested to 

investigate the impact of stowing a horn and then deploying it. From Fig. 89 it can be seen 

that the system of horn fed by microstrip patch was well matched and that the gossamer 

material had no impact on the impedance characteristics of the system. It can also be seen 

that even when the gossamer horn is crushed excessively, generating more creases than 

normal stowage would cause, the impedance characteristics are not adversely affected. 

   

 

 

Fig. 89: Impedance characteristics of an Aluminium horn fed by a microstrip patch, a gossamer horn fed by 

a microstrip patch and a crushed gossamer horn fed by a microstrip patch (reproduced from section 4.4) 

  

Once it was confirmed that a microstrip patch could be used to feed a conical horn without 

sacrificing performance the ability to manufacture a radiating structure from gossamer 

materials could be tested. The conical feed horn was tested first because of its structural 

simplicity. Structures with straight sided components such as the conical horn can be 

manufactured using flat panels or gores. The shape accuracy of the inflated structure is 
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then largely dependent on the accuracy of the pattern and the manufacturing technique, 

and the dimensional stability of the material.  

 

The impedance characteristics of the horn fed by the microstrip patch were tested and the 

results presented in section 4.4. Fig. 88 is reproduced below and shows that the 

combination of the patch and the gossamer horn has better impedance characteristics that 

the patch alone, showing that the system is well matched. The combination of the patch 

and gossamer horn has a slightly narrower bandwidth of 390 MHz than the patch alone at 

500 MHz, but the impedance graph confirms that the horn will operate at the design 

frequency of 12.5 GHz. The test showed that the horn patch combination has a resonant 

frequency of 12.576 GHz with a return loss of -29.91 dB so all radiation testing will be 

conducted at this frequency.  

 

 

Fig. 88: Impedance characteristics of microstrip patch and gossamer horn fed by microstrip patch 

(reproduced from section 4.4) 

 

These results confirmed the results generated in the simulation although the resonant 

frequency is a little higher than that predicted by the simulation. For simulated results refer 

to section 4.1.2. 

 

Once it was confirmed that a microstrip patch can be used to feed a conical horn without 

affecting the impedance characteristics it was then possible to consider the radiation 

patterns. The impedance testing identified 12.576 GHz as the resonant frequency. The 

rigid Aluminium horn and the gossamer horn fed by the same microstrip patch were tested 
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in the anechoic chamber at RMIT at 12.576 GHz and the results normalized with respect to 

a standard gain horn. The tests were conducted in an anechoic chamber to eliminate the 

impact of wind. The antenna system is ultimately required to operate reliably under all 

environmental conditions; however before the impact of environmental conditions such as 

wind and rain can be considered the impact of the material and the structural design must 

be fully understood.   

 

The radiation patterns for the Aluminium horn fed by the microstrip patch are presented in 

section 4.4 Fig. 90 shows that the horn produced a symmetrical radiation pattern with a 

maximum gain of 13.23 dBi, a beamwidth of 47° and a 10 dB beamwidth of 83°. Referring 

to section 2.4.3 the horn was designed to have a 10 dB beamwidth of 73.6° which would 

produce a theoretical maximum gain of 12.55 dB. 

 

It is not proposed that the measured horn is performing better than theoretical; the 

discrepancy in gain is within the margin of error. The results do show that it is possible to 

use a microstrip patch to feed a conical horn without sacrificing gain. The 10 dB 

beamwidth of the Aluminium horn is broader than desired so if this horn were used as the 

feed for the design antenna the parabolic reflector would be slightly overfed, producing 

some spillover. The cross polar characteristics of the system have been defined with a front 

to back ratio of 10 dB. Once the cross polar characteristics of the system are understood 

any additional cross polar radiation generated by using a gossamer structure can be 

identified.   

 

A gossamer horn of the same dimensions and fed by the same microstrip patch was then 

tested at the same operating frequency. The radiation patterns for the Aluminium horn fed 

by the microstrip patch are presented in section 4.4. 

 

From Fig. 91 it can be seen that the horn produced a symmetrical radiation pattern with a 

maximum gain of 12.1 dBi, a beamwidth of 40.5° and a 10 dB beamwidth of 88° in the   

H-plane and 79° in the E-plane. Referring to section 2.4.3 the horn was designed to have a 

10 dB beamwidth of 73.6° which would produce a theoretical maximum gain of 12.55 dB. 

 

The simulation indicated that a rigid conical horn fed by a microstrip patch would produce 

a maximum gain of 13.72 dB and a half power beamwidth of 38°. The 10 db beamwidth of 
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the simulation was 77 dB. The measured gain of the gossamer horn compares well with the 

theoretical value of 12.55 dB and the simulated gain of 13.78 dB. It also compares well 

with the measured gain of the Aluminium horn of 13.23 dBi. The beamwidth of the 

gossamer horn was slightly narrower than the Aluminium horn at 40.5°. The results show 

that it is possible to use a metalized gossamer material to construct a conical horn with a 

small sacrifice in gain. The 10 dB beamwidth of the gossamer horn is broader than desired 

in both the E-plane and H-plane, so if this horn were used as the feed for the design 

antenna the parabolic reflector would be slightly overfed, producing some spillover. The 

variation in the two planes means the antenna will experience greater spillover in the       

H-plane than in the E-plane.  

 

As expected the cross polar characteristics of the gossamer horn are not as good as the 

rigid horn with cross polar radiation being observed in all planes. An increase in cross 

polar radiation was expected due to the flexible nature of the structure. The question is 

whether the increase in cross polar radiation is workable and whether the increase in 

achievable gain and portability outweigh any increase in cross polar radiation. The highest 

cross polar radiation was observed in the 45-plane with a front to back ratio of 9 dB. This 

is high for a rigid horn when the weight and stowed volume of the patch fed horn are 

considered it is acceptable.  

 

A comparison between the E and H-plane radiation patterns of the rigid and gossamer 

horns is presented in section 4.4 Fig. 92 shows that the use of gossamer materials produced 

nearly a 2 dB decrease in gain and an increase in the side lobe level.  

 

It has been shown that the use of a gossamer structure produces a small loss in the gain of 

the horn. Next the impact of using a gossamer structure on the shape of the radiation 

pattern will be examined. To compare the shape of the radiation patterns more closely the 

simulated and measured radiation patterns from the rigid and gossamer horns were 

normalised and compared. Fig. 106 shows a comparison of the shape of the radiation 

patterns in the E, H and 45-planes.  
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Fig. 106: Comparison of normalized radiation patterns for a simulated, rigid and gossamer conical horn fed 

by a microstrip patch operating at 12.576 GHz 
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From these results it can be seen that the use of a gossamer structure has minimal impact 

on the shape of the radiation pattern indicating that the shape accuracy of the conical horn 

was good and that it was maintained under the effects of gravity. It can therefore be 

concluded that as long as the metalized layer is of sufficient thickness [40] it is possible to 

use a polymer thin film to construct a conical feed horn that provides the dimensional 

accuracy and structural stability required for communication under the influence of 

gravity.  

 

 

Fig. 107: Comparison of cross polar performance of simulated, rigid and gossamer horns 

 

It can further be concluded that a microstrip patch can be used to feed such a horn to 

produce an ultra lightweight, low cost feed system. The rigid Aluminium horn and patch 

weighed 124.6g whilst the gossamer horn and patch weighed 1.5g. The loss in gain due to 

the use of a thin film could be easily compensated for by increasing the aperture of the 

horn with little or no additional weight. 

 

These results demonstrate that it is possible to manufacture an antenna from gossamer 

materials that matches the performance of an identical rigid antenna. At this point the 

results are limited to an antenna with curvature in one dimension. The next step is to 

construct and test an inflatable parabolic dish antenna which has curvature in two 

dimensions. Now that the performance of the feed system is defined it can be incorporated 

in the inflatable antenna to further reduce the overall weight and stowed volume. 
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5.3.3 Inflatable antenna 

 

The success of the gossamer horn as a radiating body demonstrated that it is possible to 

construct an antenna with curvature in one dimension, such as a conical feed horn, from 

thin film material that matches the performance of an identical rigid antenna. The next step 

is to demonstrate that an antenna with curvature in two dimensions can be manufactured 

from thin film material that matches the performance of an identical rigid antenna.  

 

A parabolic reflector constructed from polyester thin film was tested and compared to an 

identical rigid parabolic reflector. As the performance of the gossamer horn was now 

defined it was used to feed both the inflatable and rigid antennas. 

 

In the ultimate Cassegrain configuration the canopy will support the sub-reflector at its 

apex. To test the shape accuracy of the parabolic reflector it was initially tested as a prime 

focus antenna with the clear canopy supporting the gossamer feed horn. With the behavior 

of the feed horn and the canopy understood and the rim of the antenna constrained the 

performance of the parabolic reflector was investigated. 

 

As with the gossamer horn the radiation patterns were used to indirectly assess the shape 

and surface accuracy. The radiation patterns were measured and compared to those of an 

identical rigid reflector. Simulations were generated to help differentiate the impact of 

various factors such as aperture blockage, pillowing and struts in the measured radiation 

patterns for the antenna. These simulated results are presented in section 4.1.6. 

 

5.3.3.1 Pattern making 

 

To manufacture a gossamer parabolic dish, a surface with curvature in two directions must 

be constructed from a flat, dimensionally stable material. This requires either a gored 

construction or forming the dish as a single entity. As the antenna is being constructed 

from a flat, dimensionally stable gossamer material, the shape is established using pattern 

making techniques and seaming the panels together to form an enclosed structure which 

can then be pressurized. To construct a parabolic reflector, the curvature is generated using 

shaped gores which are then seamed together. The pattern for the parabolic reflector was 
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created by producing a CAD model and then using a feature of the software to unwrap the 

surface and generate a flat pattern. 

 

The shape accuracy is restricted by the number of gores, as the number of gores is 

increased the shape approaches the design. However, as the number of seams is increased 

surface discontinuities are introduced and the potential for seams to rupture is increased. 

This becomes compromise between more gores offering better shape accuracy and less 

gores offering better surface accuracy. For the 0.5m dish constructed for testing, 6 gores 

were chosen as the best compromise. The introduction of seams also introduces the same 

pillowing effect experienced in articulated antenna dishes however the flexibility of the 

seams reduces the localized stiffness, which minimizes this effect. 

 

The acceptable limit for surface inaccuracies is λ/8, where λ is the operating wavelength of 

the antenna. It can be seen that at lower frequencies where the wavelength is longer the 

seams present no problem but when the antenna is operating at higher frequencies the 

surface imperfection caused by the seams will reduce the performance. In section 2.3 it 

was shown that at an operating frequency of 12.5 GHz the surface roughness must not 

exceed 3mm. 

 

5.3.3.2 Forming the parabolic reflector 

 

The inflatable antenna design presented is constructed using individual gores which are 

then assembled using transfer tape. These seams produced surface and shape inaccuracies 

and degrade the performance of the antenna. To maximize the performance of the antenna 

forming the dish as a single entity was explored. Forming the dish as a single entity has the 

added advantage of reducing the number of seams that can rupture and cause the structure 

to deflate.  

 

To successfully produce a reflector as a single entity requires the ability to accurately 

shape the material without sacrificing any of the physical or electromagnetic properties. 

Mackenzie et al [42] attempted to cast a self-metalizing polyamide film. This approach 

achieved some success but demonstrated that it was difficult to control the distribution of 

the metal particles, which limited their ability to produce a uniform reflective surface. 
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Using the thermal properties of Polyester films makes it possible to thermoform a dish 

under temperature and pressure. When the film is re-heated beyond its glass transition 

temperature Tg the crystal structure relaxes and the material becomes ductile. In this state 

the film can be formed. It is necessary to then rapidly cool the material to prevent 

crystallization. Should the material crystallize it becomes brittle and is no longer foldable. 

Crystallization can also be reduced with the addition of co-polymers. However with the 

addition of co-polymers dimensional stability of the film is sacrificed and the material 

becomes more ductile. 

 

The success of this process with a pre-metalized film relies on the strength of the bond 

between the base film and the metal layer. The inert nature of PET can cause the bond 

between the polymer and the metal coating to be quite weak. The difference in the 

coefficient of thermal expansion between the film and the coating can cause the coating to 

delaminate. Should the metal layer delaminate and fracture the reflective characteristics of 

the surface are compromised and any improvement gained through increased shape 

accuracy is lost. As the material is orthotropic the material properties vary in the 

longitudinal and transverse directions and forming a uniform paraboloid becomes difficult. 

The other alternative is to metalize the film after it has been formed. This increases the 

complexity of the metal deposition and makes it hard to achieve a uniform reflective layer. 

 

When the antenna is intended for use at lower temperatures metalized Orientated 

Polypropylene (OPP) can be substituted for PET. The bond between the metal layer and 

the OPP is much stronger, causing the metal to draw rather than fracture, and thus 

maintaining the integrity of the reflective surface.  

 

Some initial experiments were conducted using the metalized PET but the metalized layer 

fractured. This is suggested as an area for further investigation but for the purpose of this 

investigation the manufacturing method will be limited to a gored construction. 

 

5.3.3.3 Assembly 

 

As with the horn a plug was used to facilitate the assembly of the parabolic reflector. The 

plug was produced from the CAD model using a CNC machine and provided an accurate 

representation of the parabolic reflector. Guidelines were marked on the plug as shown in 
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Fig. 108 to help position the gores, and transfer tape with an additional strip of PET film 

was used to connect the gores as presented in Fig. 109. A butt join with a reinforced strip 

on the back was used to minimize any discontinuities on the surface of the reflector whilst 

providing a strong join that won’t rupture. The use of the metalized PET for the strip on 

the back of the reflector ensures that there is no gap in the reflector surface where the 

signal will not be fully reflected. 

 

   

Fig. 108: Assembly of parabolic reflector from thin film gores using a plug.  

 

 

 

 

 

 

 

Fig. 109: Lap joint used to assemble gores in parabolic dish reflector 

 

This procedure can be replicated for antennas of any size and curvature but the greater the 

curvature the more gores that are required. This method of construction is adequate for 

surfaces under low pressure; the strength of the tape limits the pressure the seams can carry 

without rupturing. The antenna operates at very low pressure and so this method of 

construction is suitable for testing purposes. It is recommended that the use of heat welded 

seams be investigated. Heat welding would provide a stronger seam but it would need to 

be demonstrated that the required shape and surface accuracy could be achieved.    

 

 

 

 

Transfer tape PET thin film 
PET thin film strip 

Reflective surface 



135 

 

5.3.3.4 Testing 

 

The premise that it is possible to manufacture a gossamer parabolic reflector that matches 

the performance of a rigid parabolic reflector under terrestrial conditions was tested by 

integrating the two reflectors into separate prime focus antennas of identical design and 

measuring their performance. These results can then be compared to evaluate the shape 

accuracy and stability of the gossamer reflector. The performance of a parabolic dish 

antenna is related to the shape and surface accuracy of the dish and the ability to maintain 

the dimensional relationship between the feed and the reflector. Any deviation from the 

design will result in a reduction in gain, an increase in side lobe level, an increase in cross 

polar level and an increase in beamwidth. These are the factors that are used to assess the 

shape accuracy of the gossamer dish and the ability of the conical canopy to accurately 

position the feed horn. The radiation patterns of the gossamer antenna will be compared to 

the radiation patterns of a rigid antenna of the same design and the simulated results. 

 

Both antennas were tested using the same support stand and both used the gossamer horn 

as the feed. The tests were conducted in an anechoic chamber to eliminate the impact of 

wind and other environmental factors. It will be necessary for the final antenna system to 

operate reliably under all environmental conditions however initially it is important to 

understand the impact of gravity alone. 

 

All rigid prime focus antennas require the feed assembly to be supported at the focal point 

of the reflector. The feed assembly and the support strut, or struts, cause aperture blockage 

and scattering of the signal which reduces gain and increases side lobe level. When testing 

the rigid parabolic reflector the feed horn was positioned at the focal point using an 

adjustable stand. When testing the inflatable antenna the feed horn was supported by the 

clear canopy. The clear canopy is also used to create an enclosed environment which can 

be pressurized to generate the curvature of the gossamer reflector. 

 

Radiation patterns were measured for both the inflatable and rigid parabolic antennas in 

the E-plane and H-plane. The results of these tests are presented in section 4.5. 

 

Fig. 93 shows the measured radiation patterns for the rigid prime focus antenna fed by the 

gossamer horn. It can be seen that the rigid antenna produced a maximum gain of 23.8 dBi, 
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and a beamwidth of 4.4°. Referring to section 2.4.3 the theoretical gain of the antenna is 

35.35 dB and the beamwidth is 3.36°.  

 

The aperture blockage due to the horn is consistent between the rigid and inflatable 

antennas but the horn support stand introduces additional aperture blockage in the rigid 

antenna. To understand the impact of the stand on the radiation patterns a series of 

simulations were generated with different feed support configurations. These results can be 

reviewed in section 4.1.6 and a summary is presented in Fig. 110.    

 

 

 

 

 

 

Fig. 110: Summary of simulated results showing the impact of feed support struts on the radiation pattern of 

a prime focus antenna 

 

From the simulations in Fig. 110 it can be seen that the introduction of a feed support 

introduces aperture blockage and scattering of the signal, reducing the gain of the antenna 

and increasing the number of side lobes and the side lobe level. This is consistent with 

what is observed in the radiation patterns. In the rigid antenna radiation pattern, the very 

No support struts 1 support strut 

3 support struts 
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high side lobe observed at -4.5°, which is merging with the main beam, can be attributed 

the feed support.   

 

From the tests conducted on the gossamer horn it is known that the 10 dB beamwidth of 

the horn is broader than desired in both the E-plane and H-plane. It is therefore expected 

that both the rigid antenna and the inflatable antenna will be overfed and the radiation 

patterns will show signs of spillover. The 10 dB beamwidth of the horn is broader in the 

H-plane than the E-plane and so it is expected that the antenna will experience greater 

spillover in the H-plane than in the E-plane. The higher side lobe levels in H-plane plots 

support this. Other factors that contribute to a loss in gain and an increase in side lobe level 

are misalignment of the feed and the reflector, and distortions in the main reflector due to 

gravity.  

 

Fig. 94 shows the measured radiation patterns for the inflatable prime focus antenna fed by 

the gossamer horn. It can be seen that the inflatable antenna produced a maximum gain of 

28.9 dBi, and a beamwidth of 3.04°. Referring to section 2.4.3 the theoretical gain of the 

antenna is 35.35 dB and the beamwidth is 3.36°. From Fig. 93 it can be seen that the rigid 

prime focus antenna had a measured gain of 23.8 dBi and a beamwidth of 4.4°. 

 

It is not surprising that the gain of the inflatable antenna did not match the theoretical 

value. What was unexpected is that the inflatable antenna produced a gain 5 dB higher 

than the rigid antenna. Any loss in shape accuracy or misalignment of the feed with respect 

to the reflector results in a decrease in gain. Comparing the gain of the rigid and inflatable 

antennas indicates that the inflatable antenna experienced minimal loss in gain due to 

shape accuracy or misalignment. The cross polar radiation produced by the gossamer horn 

will contribute to a reduction in gain but as the horn is being used to feed both antennas 

any reduction in gain due to the horn will be consistent between the two antennas. 

 

Fig. 111 presents a comparison of the radiation patterns for the rigid antenna and the 

inflatable antenna. This comparison clearly shows the reduction in gain for the rigid 

antenna. It also shows that the overall shape of the radiation patterns for the two antennas 

compare well. Both main beams are positioned at 0° and both antennas have a narrow 

beamwidth that is close to design. The side lobe level in both planes of both antennas is at 



138 

 

least 15 dB down from the maximum gain, and so will have little impact on the 

performance of the antenna. 

 

 

 

Fig. 111: Comparison of the radiation patterns of the inflatable prime focus parabolic dish antenna fed by 

gossamer feed horn and the rigid prime focus parabolic dish antenna fed by gossamer feed horn both 

operating at 12.5GHz 

 

The next step is to use the radiation patterns to identify if the inflatable antenna has 

experienced a loss in performance due to misalignment of the feed and reflector, loss of 

shape accuracy or surface accuracy on the radiation patterns. To facilitate this comparison 

Fig. 112 shows the H-plane radiation plots for the rigid and inflatable antennas and       

Fig. 113 shows the E-plane radiation plots for the rigid and inflatable antennas. 
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Fig. 112: Comparison of the H-plane radiation patterns of the inflatable prime focus parabolic dish antenna 

fed by gossamer feed horn and the rigid prime focus parabolic dish antenna fed by gossamer feed 

horn both operating at 12.5GHz 

 

 

Fig. 113: Comparison of the E-plane radiation patterns of the inflatable prime focus parabolic dish antenna 

fed by gossamer feed horn and the rigid prime focus parabolic dish antenna fed by gossamer feed 

horn both operating at 12.5GHz 

 

The inflatable antenna uses a clear conical canopy to create an enclosed environment 

which can then be pressurized to give the whole structure rigidity and shape the parabolic 

reflector. If this antenna deforms under the influence of gravity the parabolic dish will 

suffer shape deformation and the feed and reflector will become misaligned. The 

positioning of the feed at the apex of the canopy places an extra load on the canopy which 

will be eliminated in the Cassegrain configuration. This additional loading increases the 

impact of gravity on the inflatable antenna. Misalignment of the feed and reflector would 
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be observed as a reduction in gain, broadening of the main beam and increase in side lobe 

level. From the radiation patterns these effects were more obvious in the rigid antenna.  

 

The results suggest that the inflatable antenna experienced little reduction in performance 

due to the impact of gravity. The results also suggest that the conical cone maintained the 

alignment of the reflector and the feed. 

 

The greatest concern with respect to the shape and surface accuracy of the gossamer 

parabolic reflector was the gored construction. The gossamer parabolic reflector was 

constructed from individual gores that were taped together. The seams between the gores 

have the potential to reduce the surface accuracy as well as reduce the shape accuracy due 

to pillowing. Pillowing is a common problem in articulated antenna dishes where the local 

stiffness of the ribs, compared to the flexibility and weight of the mesh, imparts a 

distortion [13]. When working with membrane structures the seams are commonly either 

taped or heat welded, giving some flexibility. This reduces the localized stiffness and the 

effect of pillowing but does not eliminate it. To understand the effects of both ribs and 

pillowing on the performance of the antenna a series of simulations were performed. Full 

results are presented in section 4.1.6 and a summary is presented in Fig. 114.  
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 Fig. 114: Summary of simulated results showing the impact of ribs and pillowing on the radiation 

pattern of a prime focus antenna 
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The simulated results showed that the introduction of ribs has a measurable impact on the 

performance of the antenna but the introduction of pillowing had a significant impact. The 

simulated results showed that when ribs are used in an antenna but there is no pillowing it 

is better to minimize the number of ribs in order to maximize performance. When 

pillowing is introduced the effects are reduced when the number of ribs is increased. The 

increase in the number of ribs reduces the distance between them and hence the 

deformation of the reflector surface between them. 

 

The radiation patterns in Fig. 112 and Fig. 113 show that the impact of pillowing on the 

gossamer dish is minimal. Some reduction in gain, increase in beamwidth, increase in side 

lobe number and level could be attributed to pillowing but it is suggested that when 

comparing the inflatable antenna radiation patterns to those of the rigid antenna the 

common factors of aperture blockage and spillover far outweigh the impact of pillowing. 

 

The last factor to consider is cross polar radiation. The cross polar radiation is a good 

measure of the alignment of the antenna and its shape and surface accuracy. Fig. 115 

shows the measured co-polar and cross polar radiation patterns for the inflatable antenna. 

The results show that the antenna experience high cross polar radiation levels but that the 

antenna had a front to back ratio of 16.55 dB. Some of the cross polar radiation measured 

in the antenna can be attributed to the horn and subsequently to the microstrip patch.  

 

 

Fig. 115: Co-polar and cross-polar radiation patterns of inflatable prime focus parabolic dish antenna fed 

by gossamer feed horn operating at 12.5GHz 
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The results obtained from these tests were very encouraging and although they showed that 

there are many areas that need to be further developed and refined, they also showed that it 

was possible to construct a reflector with curvature in two directions from gossamer 

material that could match the performance of a rigid dish under the influence of gravity. 

 

The prime focus antenna is not the intended design for operation as a direct satellite 

antenna but it has successfully demonstrated that it is possible to manufacture an inflatable 

antenna that matches the performance of a rigid antenna of the same design. In the case of 

the rigid antenna used for comparison the inflatable antenna performed better than the rigid 

antenna.  

 

The light weight and high packing efficiency of inflatable structures facilitates the 

construction of larger structures that can then be stowed for transportation. As antenna 

gain is directly related to the diameter of the dish any loss in performance due to shape 

distortion can be compensated for by an increase in size without sacrificing portability. 

Table 4 shows the comparison of weight and stowed volume for a variety of parabolic 

reflectors.  

 

Type of Dish Weight Stowed Volume 

Rigid Aluminium 5kg 0.05m
3 

Grid Aluminium 3kg 0.05m
3
 

Mesh 1.9kg 0.0125 m
3
 

Inflatable 12g 80 x 10
-6

 m
3
 

 

Table 6: Comparison of weight and stowed volume for a variety of 0.5m diameter parabolic dish reflectors 

 

Before progressing to the manufacture of a Cassegrain antenna and the appropriate conical 

horn to feed this antenna it is suggested that further refinement and testing be performed 

on the microstrip patch, the gossamer horn fed by the microstrip patch and the 

manufacturing techniques used to produce the gossamer reflector. 

 

Although the final Cassegrain configuration wasn’t tested the results from the inflatable 

prime focus antenna showed that it is possible to manufacture an inflatable antenna fed by 
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a gossamer horn, which in turn is fed by a microstrip patch, that produces the shape and 

surface accuracy and maintains the dimensional stability required to match the 

performance of an identical rigid antenna under terrestrial conditions. Most importantly 

this was achieved with an antenna that weighed a little over 12g that can be stowed in a 

package the size of a CD case, thus providing the potential of truly portable direct satellite 

communication.  
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6 Future Work 

 

The objective of this investigation is to investigate the possibility of using an inflatable 

antenna for portable direct satellite communication under terrestrial conditions. The tests 

conducted on the gossamer horn and inflatable prime focus antenna demonstrated that it is 

possible to construct an inflatable structure from gossamer materials that maintains the 

shape and surface accuracy, as well as the dimensional stability required to operate as an 

antenna under terrestrial conditions.  

 

Although it was demonstrated that the concept was possible there remains a number of 

investigations that must be completed to move from a proof of concept antenna to a 

commercial prototype.  

 

Inflatable torus 

 

The ability of an inflatable torus to provide the necessary rim support for the antenna must 

be tested and the results compared to the rigid support. It is possible that depending on the 

operational circumstances and the tracking system used both types of rim support could be 

viable.  

 

Dual reflector configuration 

 

It was demonstrated that the inflatable structure could maintain the dimensional 

relationship between the feed horn and the primary reflector under the influence of gravity. 

For the design presented to be realized, the ability of the inflatable structure to maintain 

the dimensional relationship between the feed horn, a sub-reflector and the primary 

reflector must be tested. Further testing could then be undertaken to compare the 

performance of inflatable Cassegrain and Gregorian antennas as well as inflatable offset 

antennas.  
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Environmental conditions 

 

The inflatable antenna performed well under the influence of gravity. It must then be 

demonstrated that the antenna can operate reliably under the influence of the full range of 

environmental conditions. This includes both the performance of the overall structure and 

the material. 

 

The impact of environmental factors on the physical and electromagnetic properties of 

polymers is best addressed during the material selection process. The impact of 

environmental conditions on the shape accuracy and the relative dimensional stability of 

the antenna components can be influenced directly by environmental conditions like wind 

or indirectly by the operating temperature increasing the internal pressure. 

 

The impact on performance of all conceivable environmental conditions must be tested 

individually and then in combination to understand the limitations of the antenna. It is not 

expected that this type of antenna will operate reliable under extreme weather conditions 

but its limitations should be well defined.      

 

Optimizing performance 

 

The antenna design presented demonstrated the concept of an inflatable antenna for 

terrestrial use but there are many aspects of the design that require further investigation 

and optimization. 

 

It was demonstrated that it is possible to use a microstrip patch to feed a gossamer feed 

horn. The performance of two conical horns was simulated but only a single horn design 

was tested and no optimization was performed on the microstrip patch design. To 

characterize the performance and limitations of this combination, further testing should be 

conducted on various microstrip patch designs, with particular emphasis on cross polar 

reduction, and various conical horn designs.  

 

It is recommended that further investigation of the antenna operating pressure be 

conducted, including the impact of pillowing on each component as well as on the overall 
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performance of the antenna. This investigation should be conducted in conjunction with an 

investigation into adjusting the antenna pattern and construction technique. 

 

It is known that increasing the effective area of the antenna and increasing the operating 

frequency will both increase the gain of the antenna. The use of an inflatable antenna 

makes it possible to increase the dish diameter beyond any existing portable antenna. 

However, there is a limit to the physical size that can be achieved before the structure 

becomes unstable under environmental conditions and a limit to the shape and surface 

accuracy that can be achieved, placing a limit on the operating frequency. It is 

recommended that these limits be established. 

 

Material 

 

The material used to construct the prototype performed as required. However, as the 

material was donated there was no possibility of selecting and testing the materials based 

on their physical and electromagnetic qualities. It is recommended that further 

investigation be conducted into the material selection as well as the possibility of forming 

the reflector as a single entity.  

 

Forming thin films 

 

The inflatable antenna design presented is constructed using individual gores which are 

then assembled using either tape or heat welding. The seams produced as a result of these 

construction methods create localized stiffening which exaggerates a condition known as 

pillowing. To eliminate pillowing and any interference caused by the seams, as well as 

guarantee the shape accuracy of the reflector dish, the ideal would be to mould the dish as 

a single entity. This approach has the added advantage of reducing the number of seams 

that can rupture and cause the structure to deflate.  

 

To successfully produce a reflector as a single entity requires the ability to accurately 

shape the material without sacrificing any of the physical or electromagnetic properties. 

Mackenzie et al [42] attempted to cast a self-metalizing polyamide film. This approach 

achieved some success but demonstrated that it was difficult to control the distribution of 

the metal particles, which limited their ability to produce a uniform reflective surface. 
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The thermal properties of Polyester films make it possible to thermoform a dish under 

temperature and pressure. This requires careful manipulation of temperature and pressure 

to prevent the material crystallizing and becoming brittle. Crystallization can also be 

reduced with the addition of co-polymers. However with the addition of co-polymers 

dimensional stability of the film is sacrificed and the material becomes more ductile. 

 

In addition to the structural properties of the material the electromagnetic properties must 

also be maintained. The success of this process with a pre-metalized film relies on the 

strength of the bond between the base film and the metal layer. The inert nature of PET 

can cause the bond between the polymer and the metal coating to be quite weak. The 

difference in the coefficient of thermal expansion between the film and the coating can 

cause the coating to delaminate. Should the metal layer delaminate and fracture the 

reflective characteristics of the surface are compromised and any improvement gained 

through increased shape accuracy is lost. PET thin film is orthotropic so the material 

properties vary in the longitudinal and transverse directions making forming a uniform 

paraboloid very challenging. The other alternative is to metalize the film after it has been 

formed. This increases the complexity of the metal deposition and makes it hard to achieve 

a uniform reflective layer. Developing a technique for forming a metalized material will 

enhance the performance of the inflatable antenna presented. 

 

Dichroic surfaces 

 

As well as manipulating the shape of the film the differing electromagnetic properties of 

films make it possible to construct a laminate such that the different RF characteristics are 

used to the advantage of the designer. Films with different attenuation properties can be 

laminated to produce the desired electromagnetic properties.  This is the principle used for 

frequency selective surfaces (FSS), known as dichroic surfaces. Dichroic surfaces can be 

used to manipulate the radiation characteristic of the antenna or the use of a polarizing 

layer can control the skin temperature of the antenna. In this way the material becomes an 

integral and important part of both the structural and RF design process.  
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Rigidizing  

 

The inflatable antenna design presented can maintain its structural integrity without relying 

on rigidization and so the decision was made not to sacrifice the vibrational damping 

characteristics of inflatable structures by rigidizing the antenna. It is recommended that 

further investigation be conducted into both alternatives and the wide range of rigidizing 

techniques available [36], including: 

- stretched Aluminium laminate 

- hydro-gel 

- heat-cured thermoset composite laminate 

- thermoplastic composite laminate 

- UV curable composite laminate 

- Inflation gas reaction laminates 

- Cold Hibernation Elastic Memory (CHEM) materials  

 

Of all the techniques available the most promising is CHEM materials as the process is 

reversible. CHEM materials have a fully cured elastic memory. When heated above the 

glass transition temperature Tg, the material becomes pliable enough to be stowed. The 

material is then cooled below Tg “setting” it in its stowed form. Reheating the material 

above Tg returns the material to its cured shape. CHEM materials can undergo this process 

repeatedly without degradation to either physical or mechanical properties. 

 

Packaging and Deployment 

 

One of the most attractive features of an inflatable structure is its ability to be folded down 

to a fraction of its final size. To successfully deploy the structure to its intended shape the 

packing method and deployment mechanism is critical. Much can be learned from the use 

of deployable structures in the space environment including the deployment of the 

Inflatable Antenna Experiment [43].  

 

One attractive feature of a monocoque structure is that it eliminates any possibility of the 

structure tangling during deployment. Therefore, the emphasis of any packaging technique 

is minimizing permanent creasing, minimizing stowed volume and ensuring the safety of 

the feed assembly. There are many inflation techniques available. The inflatable antenna 
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requires a large volume of gas but the operating pressure is low and if the antenna is well 

sealed constant inflation should not be required.  

 

It is recommended that different folding techniques be tested for ease of deployment and 

the amount and permanence of creasing. It is also recommended that the impact of stowing 

the antenna for increasing lengths of time on the permanence of creasing be tested. It is 

recommended that various inflation techniques be tested for practicality and effectiveness. 

In particular it is recommended that the possibility of inflating the antenna by mouth be 

explored for emergency situations. It is known that this inflation technique will add 

moisture to the enclosed environment which could attenuate the signal at particular 

operating frequencies. It is recommended that this be quantified. 

 

As this is a new area of investigation there are a number of aspects that need to be 

evaluated and optimized. However, the results obtained from this initial investigation are 

very promising and indicate that further development would result in an ultra light antenna 

capable of providing portable direct satellite communication.    
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7 Other Applications 

 

After demonstrating the performance of the inflatable antenna under terrestrial conditions 

it is proposed that the structural approach presented can also be used to overcome the 

limitations the launch vehicle places on the size of communications antennas for space-

based use. Limiting the size of a parabolic reflector limits the gain of the antenna and 

restricts the scientific information that can be returned to Earth. 

 

When unmanned spacecraft or humans travel beyond Earth the Deep Space Network 

(DSN) provides the two-way communications link that guides and controls the mission 

and receives the images and scientific data they send back. The amount, quality and 

regularity of the data sent back is dependent on the capabilities of both the Earth-based and 

space-based systems. On Earth the three communications complexes of the DSN are 

equipped with a range of large, rigid, high precision, high gain antennas supported by ultra 

sensitive receiving and processing systems. In space the restrictions placed on the size, 

weight and power supply of the communications equipment by the cargo area and weight 

lifting capacity of the launch vehicle limit the gain of the antenna and result in extremely 

weak signals being received by the DSN.  

 

These restrictions place limits on the scientific information that can be returned to Earth 

for analysis. To increase the scientific return, the gain and bandwidth of the space-based 

antennas must be increased to transmit video, high definition still images and hyperspectral 

imaging. To increase the gain of the antenna the size of parabolic dish must be increased 

whilst minimizing launch weight and volume. An increase in the gain of the antenna has 

the added advantage of narrowing the beamwidth resulting in an improved signal-to-noise 

ratio and higher resolution.  

 

7.1 Portable direct satellite communication on the moon 

 

It is proposed that the inflatable antenna developed for portable terrestrial communication 

could be applied to the lunar environment to provide high gain, light weight, portable 

direct satellite communication. The use of an inflatable antenna gain would also reduce the 

launch weight and hence the launch cost as well as making it possible to carry multiple 



152 

 

antennas for redundancy. The articulated antenna used during the Apollo program suffered 

from lunar dust settling on the dish and distorting its shape [44]. The enclosed design used 

for the inflatable antenna prevents moon dust settling in the dish and applying additional 

loading. The reduced gravity environment and absence of wind on the moon further 

reduces the loading on the structure.  

 

To adapt the structural design to the lunar environment the selection of a suitable material 

is the greatest obstacle. The material used for the inflatable antenna prototype, 

Polyethylene Terephthalate (PET), was initially developed for the space environment to 

provide radiation shielding for space structures. Its low gas permeability, structural 

stability, durability, tear and puncture resistance, low cost, chemical inertness, high 

packing efficiency, RF transparency and reflectivity when metalized make it perfect for 

use in inflatable antennas in the terrestrial environment. Despite being developed for the 

space environment, it has been shown that prolonged exposure to the space environment 

degrades PET due to particulate radiation, Atomic Oxygen (AO), UV radiation and 

thermal cycling [45].  

 

Specialist films such as Kapton, and the polyimides CP1 and CP2 have been developed 

specifically for long duration exposure to the space environment, making them suitable for 

use in inflatable antennas on the lunar surface [45]. The development of these new 

materials is also concentrating on optical transparency, low solar absorptivity and high 

thermal emissivity to avoid overheating and allow for thermal energy dissipation, allowing 

the power levels of the antenna to be increased. Solar winds contribute to antenna noise 

but they also carry elements such as Hydrogen, Helium, Nitrogen, Carbon and the Noble 

gases Krypton, Xenon and Argon, which are volatile to many materials.  The thin films 

proposed are not degraded under the influence of these elements. 

 

7.2 Radio astronomy from the moon 

 

In addition to providing portable high gain communications on the lunar surface inflatable 

antennas could enable astronomers to access the low frequency window between 50 kHz 

and 30 MHz to make observations related to the early universe. These frequencies are not 

accessible from the Earth’s surface due to attenuation of the ionosphere and radio 

interference. The two weeks of Lunar night on the far side of the moon provides an 
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environment free from solar radiation and radio noise from the Earth, and the lack of 

seismic activity and wind provide a stable environment. 

 

Concept studies from the 1960’s to present [46] have explored what might be possible by 

establishing an array of antennas on the far side of the moon, including a Very Low 

Frequency Lunar Array proposed by ESA in 1997. Fig. 116 presents an artist’s concept of 

an array of radio telescopes on the moon. The disadvantage of all proposals to date has 

been the cost and logistics of placing an array of antenna having an estimated weight of 

100kg over an area of 20km to 30 km on the far side of the Moon.  

 

 

Fig. 116: Radio Astronomy on the lunar surface. (image courtesy of ESA) 

 

The use of inflatable antennas would reduce the launch costs associated with transporting 

the antennas to the moon and also increase the achievable diameter of each antenna thus 

increasing their gain. The use of lightweight, inexpensive infrastructure also reduces 

establishment, maintenance and replacement costs. 

 

There are many applications that could benefit from the low weight and high packing 

efficiency offered by inflatable structures. The inflatable antenna concept presented can be 

replicated in various sizes and operated at different frequencies. The availability of thin 

films that can withstand both terrestrial and space conditions makes it possible to apply 

this approach in both environments.  
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Conclusions 

 

Technology is constantly being transferred between the terrestrial and space environments. 

In this case a concept that addressed the limitations placed on the size of space structures 

by the launch vehicle has been used to inspire a design for increasing the portability of 

terrestrial-based communication antennas. This thesis demonstrates that an inflatable 

structure manufactured from polyester thin film can maintain the shape accuracy and 

dimensional stability required for satellite communication under the influence of gravity. It 

has also been shown that a microstrip patch can be used to feed a gossamer horn and 

further reduce the weight and stowed volume of the system.  The resulting product is an 

antenna with a fraction of the weight and stowed volume of a rigid or articulated dish 

which is suitable for portable, re-usable, low-cost, land-based direct satellite 

communication.  

 

This concept requires further development but the performance of the inflatable antenna 

compared to the rigid antenna demonstrated that the concept is viable. This concept can be 

replicated in various sizes to operate at a range of frequencies making it suitable for 

multiple applications such as mobile military communication, emergency response 

communication, tele-medicine, tele-education and media broadcasting in remote areas. 

With the use of existing materials developed for the space environment it has also been 

shown how this concept could be applied to the lunar environment.  
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