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Abstract

The limits of current micro-scale technology is approaching rapidly. As the technology

is going toward nano-scale devices, physical phenomena involved are fundamentally

different from micro-scale ones [1], [2]. Principles in classical physics are no longer

powerful enough to explicate the phenomena involved in nano-scale devices. At this

stage, quantum mechanic sheds some light on those topics which cannot be described

by classical physics. The primary focus of this research work is the development of

an analysis technique for understanding the behavior of strongly perturbed harmonic

oscillators.

Developing ‘‘auxiliary’’ boundary value problems we solve monomially perturbed har-

monic oscillators. Thereby, we assume monomial terms of arbitrary degree and any

finite coefficient desired. The corresponding eigenvalues and eigenvectors can be uti-

lized to solve more complex anharmonic oscillators with non polynomial anharmonicity

or numerically defined anharmonicity.

A large number of numerical calculations demonstrate the robustness and feasibility of

our technique. Particular attention has been paid to the details as have implemented

the underlying formula. We have developed iterative expressions for the involved in-



tegrals and the introduced ‘‘Universal Functions.’’ The latter are applications and

adaptations of a concept which was developed in 1990’s to accelerate computations in

the Boundary Element Method.
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Chapter 1

Introduction

1.1 Motivation

The limit of current micro-scale technologies urge scientists and researchers to antici-

pate the development of the nano-scale devices. In doing research in this field of study,

quantum mechanics is the most crucial branch of theoretical physics with vast appli-

cations in practical physics which avoids deficiencies of classical physics at atomic and

subatomic level.

Quantum, meaning how much in Latin, refers to discrete units that in quantum theory

assigns to energy of an atom in stable or equilibrium state. The discovery of the fact

that waves can be assumed as a small packet of energy which is called quanta led to

the introduction of quantum mechanics.

The basic idea that led to the discovery of quantum mechanics was the study of light

which is an electromagnetic wave. This initialized an explanation for the spectra of

light emitted by different type of atoms. Originally, it was providing justification for

1
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electron’s residing in its orbital, which cannot be explained by classical mechanics.

When in 1900 Max Planck found that the energy of waves are quanta, Einstein utilized

this revolutionary finding to illustrate that electromagnetic waves such as light consist

of elementary particle called photon. Each photon has discrete energy level which

directly depends on the frequency of the wave.

The precursor of the modern theory is the first twenty-five years of quantum mechanics

[3]. The first quarter of the twentieth century was a golden era for advancement in quan-

tum mechanic. Scientists including Heisenberg, Planck, de Broglie, Bohr, Schrödinger,

Dirac, Einstein and others had great contribution in establishing and promoting quan-

tum mechanics [3], [4]. The creation of quantum mechanics provides us with a theory

that appears to be in complete accordance to our empirical knowledge of all nonrela-

tivistic phenomena [5].

Quantum mechanics is a more fundamental concept than Newtonian classical mechan-

ics. It explains those phenomena which are in small scale level and classical mechanics

cannot have any explanation for the observed phenomena. For instance, from New-

tonian point of view an electron in an atom should move toward nucleus and crash

into it. In contrast to the classical picture, electron is moving in an orbit around the

nucleus.

In quantum mechanic, formulating state of the system at any time is defined by a

complex-valued wave function. From the mathematical point of view, the fact that the

probability of finding an electron at a particular time and region around the nucleus

can be obtained is in contrast to classical mechanics that could not calculate prediction
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of conjugate variables such as momentum and position (in one direction) simultane-

ously. In fact, electron is always considered to be located somewhere in the space with

unknown but accurate position. The contours of constant probabilities will enable us

to conceptualize a cloud around the nucleus of atom. This cloud is the most proba-

ble place where the electron might be located. In Heisenberg’s uncertainty principle,

inability to accurately locating a particle is expressed.

Generally speaking, quantum mechanics can explain four types of phenomena that

classical mechanics cannot explain:

? Discretization of certain physical quantities

? Uncertainty principle

? Quantum entanglement

? Wave particle duality

Quantum mechanics has tremendous success in describing many features of our world

[57]. Chiefly, it has a logical justification for phenomena at atomic and subatomic

levels that classical mechanics was not able to explain them. In chemistry, it has a

great impact on clarification of atoms combined covalently to form a molecule. It gives

us a quantitative approximation that how much molecules are vigorously favorable to

each other.

Most of our contemporary technology is operating on a scale which has significant quan-

tum impact. For instance, laser, electron, microscope and transistor are significantly
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influenced by quantum effects. Transistors are semiconductor-based microelectronic

devices the study of which led to their invention along with diodes [57].

Researchers are moving toward manipulation of quantum states. The effort resulted

in the development of a secure broadcasting of information by quantum cryptography.

One of the ultimate goals is construction of quantum computers in order to work expo-

nentially faster than the current ones in computational tasks. Quantum teleportation

which allow transmission of quantum states over arbitrary distances is one of the hot

spots in quantum mechanics [18].

All the above-mentioned facts and reasoning, along with the remaining significance of

the theoretical findings and probable suggestion of a unified methodology for a robust

computational analysis of perturbed systems had motivated me and had an impact on

my taking up of this research.

1.2 Objective

The main objective of my research is to carry out theoretical and numerical computa-

tional work on canonical and perturbed harmonic oscillators. Our target is to devise

a methodology that provides robust numerical calculations of eigenpairs for perturbed

oscillators with a flexible range of perturbation and simultaneously eliminates the cum-

bersome load of traditional computations.

We pose our ‘‘original’’ (given) problem as a complicated problem, which in our case

is a strongly perturbed harmonic oscillator. Our imposed perturbation is an arbitrary
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monomial potential function added to the parabolic potential of harmonic oscillator. As

is shown in this work the analysis can be extended to include polynomial perturbations.

Eigenvalues and the corresponding eigenfunctions for a variety of perturbed harmonic

oscillator have been calculated and presented in this work.

Our method consists of the construction of an auxiliary problem. An auxiliary prob-

lem, as used in our formulations is a boundary value which is related to our original

(given) problem but has a simpler structure to the effect that its eigenpairs can be

calculated comparatively straight forwardly analytically or numerically [56]. Here, the

main characteristic of our auxiliary problem that urge us to choose it as our gauging

problem, is the fact that we can obtain its eigen solutions in closed-form. Therefore,

we start our analysis by finding out the solutions of the unperturbed harmonic oscilla-

tor. More broadly speaking, closed-form solutions are equations which are utilized to

solve given problems in terms of mathematical operators and functions from a given

generally accepted set.

We considered the perturbation of our system as a monomial with a general form, which

means that it can have any arbitrary power and coefficient. Therefore, our assumption

includes linear, quadratic and other higher-order monomial perturbations. We set up

the wave function of the perturbed system as a linear combination (superposition) of

the original eigensolutions. This is permitted since the eigenfunctions of the harmonic

oscillator constitute a complete set of orthonormal functions which can serve as basis.

As the next we carry out the ‘‘action’’ of the original system on the auxiliary system and

vice versa. Then, we subtract the two ‘‘actions’’ and minimize the weighted resulting
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residual ‘‘action’’ by using the orthonormal functions of the harmonic oscillator.

Thereby, we have implemented our own method for the calculation of the involved

integrals. Subsequently the eigenpairs of the original problems are calculated. As

has been outlined in this work our method can straightforwardly be extended to solve

polynomial perturbations of any complexity and order. An interesting feature of out

technique is that the involved interaction matrix associated with each monomial can

be precalculated separately (individually) and stored. As it is shown in an upcoming

publication this procedure is amenable to symbolic computation and further generalized

our concept of the Universal Functions utilized in this thesis.

1.3 Summary of Chapters

In Chapter 2, aspects of the quantum mechanics relevant to this work have been re-

viewed. Then, basic ideas needed for understanding the problems solved in the follow-

ing chapters are discussed. In this research, the solution of the harmonic oscillator are

used as analysis tools. Therefore, the definition of the harmonic oscillator is crucial and

will be discussed in this chapter. Two different conceptions for harmonic oscillator will

be explained separately. The first one is the classical concept which can be discussed

based on the classical or Newtonian mechanics principles. The classical view concern

systems in which the displacement of a mass point from its equilibrium will introduce

a restoring force to the mass (such as spring or a pendulum). Quantum harmonic

oscillator is different from classical harmonic oscillator in the aspect that this system

can not be explained by the tools developed in classical mechanics. Quantum harmonic
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oscillator can be formulated by quantum mechanics rather than its analogous, classical

mechanics.

The involved notations are described very briefly in Chapter 2. I describe Hermite

polynomials, as they play a significant role in the formulation of simple harmonic

oscillator. Moreover, I talk about eigenvalues, eigenvectors and eigenvalue problems

due to the fact that I use these terms very often in my thesis.

In literature review of Chapter 3, we discuss the traditional (standard) way of formu-

lating changes in harmonic oscillator when a linear perturbation is introduced.

In Chapters 4 and 5, I used the notation of Hamiltonian operators which is utilized in

order to find the kinetic and potential energies of a moving particle. These two chapters

are based on early formulation of our theory reported in two papers published in ACES

2007 (Applied Computation Electromagnetics Society) and PIERS 2007 (Progress In

Electromagnetics Research Symposium) [6], [7].

Chapter 4 is the ‘‘heart’’ of the thesis and details the implementation of the concept of

auxiliary problems and Universal Functions. We propose an easy-to-implement method

for the calculation of eigenfunctions of monomially perturbed harmonic oscillator. Our

method is based upon using the eigensolutions of the unperturbed harmonic oscillator

as auxiliary gauging functions. The obtained eigenfunctions of perturbed harmonic

oscillator can be used as complete set of functions for analyzing related boundary

value problems.

This technique with appropriate variations has successfully been applied to a variety
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of related boundary value problems, [8], [9], [10], and [11].

We present our approach for solving any monomial perturbation added to harmonic

oscillator which among others may include linear perturbation. We consider the idea

based on the construction of an auxiliary boundary value problem to be original and

promises applications for beyond the work presented here.

In Chapter 5 numerical results of the calculated eigenfunctions of monomially perturbed

harmonic oscillators are presented and compared with the corresponding solutions of

the (unperturbed) solutions of the harmonic oscillator. Varies solutions depending on

the degree of the monomials and the ‘‘strength’’ of the perturbation are presented.

The continuous variation of the perturbed solutions by increasing the perturbation

is encouraging. The orthonormality property of the obtained solutions validates our

concept.

In Chapter 6 prospect for the future work are outlined.

In Chapter 7 the summary of our achievement along with conclusions of my thesis are

given.



Chapter 2

Background

2.1 Introduction

At first glance, this thesis may strike you as excessively mathematical [12]. You may

ask whether this much of explanation and mathematics is a real necessity? I would

say may be not but physics is like carpentry. By using the right tool your job would

become much easier [12].

In this Chapter, I am going to explain the basics. The first topic that I am going to

discuss is the history and the nature of quantum mechanics. The discussion is on how

it started.

After this brief introduction on quantum mechanic, I will focus on explaining the

harmonic oscillator due to the fact that this thesis is reformulating the changes in

characteristics of harmonic oscillator such as its eigenvalues. Then, several fundamen-

tal terms which are implemented in my formulation and the solution of the problem

will be introduced with a brief clarification of the involved notions. Due to the fact

9
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that we set up the Schrödinger equation for the unperturbed and perturbed harmonic

oscillators and by solving that equation eigenvectors and eigenvalues of the canonical

and perturbed problem can be obtained, we discuss all those terms such as, Schrödinger

equation, eigensolution and so on with their properties in order to shed light on this

vital fact of quantum mechanics.

Subsequently, alternative views for solving perturbed harmonic oscillator found in lit-

erature have been described.

2.2 Quantum Mechanics: A Brief Review of the

Concepts Used

By the end of nineteen century and after nearly 200 years, classical Newtonian mechan-

ics was still the basis of theoretical explanation of any physical or chemical phenomena.

In classical mechanics motion of electron assumes propagation of electron in wave for-

mat. Therefore, based on that view if there is an obstacle which has higher energy

level than the electron (e.g. potential well), the electron cannot pass through the wall.

In contrast, in quantum mechanics electron is counted as a packet of energy, and for-

mulated such that, it can penetrate the barrier exponentially decreasing through that

potential. It was generally believed that all natural phenomena are well established

and well behaved, due to the fact that they could be described by classical motion

of electrons. It was unimaginable for them to foresee that the following decades will

revolutionize theoretical physics and classical mechanics no longer will use to describe

electrons motion [43]. First, some shades of doubt were introduced by the work of
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Lorentz, Einstein and others that high speed phenomena could not be described in the

category of classical mechanics.

Different line of thought which was commenced by Planck, Heisenberg, Schrödinger

and others, led to the realization that classical Newtonian mechanics fails to elucidate

atomic phenomena. When you search through the quantum mechanic books, you

instantly will notice that Planck was the pioneer of quantum mechanics [3], [13].

The birth of quantum mechanics to the universe is on fall of 1900. The day when, the

German Physicist, Max Planck presented two papers at the German Physicist Society

[3]. These two papers were presented on October 19 and December 14 of 1900. These

papers have had that much revolutionary impact that science historians can not concur

as which of these two papers should be considered as a true start [44].

Those papers were final analysis of the energy distribution in what Planck called normal

spectrum. He discovered that the energy of waves can be explained as consisting of

small packets or quanta. Later, Albert Einstein utilized Planck’s idea to illustrate that

electromagnetic waves such as light consists of particles called photon with a discrete

energy level depending on frequency [45].

2.3 Harmonic Oscillator

Harmonic oscillator played a significant role in the theoretical advancement at the

beginning of this century, since it was an indispensable part of many of the theories

which led to quantum mechanics. Any system which is fluctuated by a small amount
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near a configured equilibrium can be modelled either by harmonic oscillator or by a

collection of decoupled harmonic oscillators [44]. Since the dynamic complexity of a

collection of decoupled harmonic oscillator is not more than that of a single one, in

tackling the problems we imagine the general form. In fact, harmonic oscillator was

often regarded as a beginning point of theories which involves electronic movement in

atoms, molecules or crystals. It became known that an atom consisted of a nucleus

and certain number of electron which are moving around the nucleus [46].

In classical mechanics, harmonic oscillator is a system in which, when any disturbance

that displaces it from its equilibrium occurred, experiences a restoring force, F, pro-

portional to the displacement x according to Hooke’s law [47].

In one dimension, a harmonic oscillator is a particle with mass m, oscillating back and

forth around the zero point or origin 0 (equilibrium). It should be pointed out that

this displacement always tends to move back to the origin point of 0.

In my research, I assume a simple harmonic oscillator which means that it does not

have a driving force or friction force.

F = −kx (2.1)

Since any conservative field F (x) can be written as the negative gradient of a potential

function V (x), F = −dV /dx, the potential energy of the particle can be found by

integrating F, which is the following:
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V (x) =
1

2
kx2 (2.2)

The following Hamiltonian of the one dimensional harmonic oscillator will have a po-

tential of zero at the origin, that is, V = 0 when x = 0.

H(x, p) = − p2

2m0

+
kx2

2
(2.3)

It drives from Hamiltonian’s equations of motions in which the conjugate variables x

and p are determined by the equations:

∂x

∂t
=

p

m0

(2.4)

and

∂p

∂t
= −kx. (2.5)

By taking the derivative of the equation (2.4) with respect to t and then replacing

∂p/∂t by the equation (2.5), we obtain

∂2x

∂t2
= − k

m0

x. (2.6)

It is customary to introduce the angular frequency
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ω =

(
k

m0

)1/2

. (2.7)

Therefore, by substituting equation (2.7) into (2.6), we obtain

ẍ+ ω2x = 0. (2.8)

Here, the dot symbolizes the derivative with respect to time. The solutions of this

homogenous ordinary differential equation are:

x = C e±iωt. (2.9)

Hence, the general solution for harmonic oscillator is

x = Aeiωt +Be−iωt (2.10)

With the two unknown parameters A and B which have to determined from initial

conditions. By setting the condition that the value of the solution at zero point (the

origin of our coordinate system) is zero, that is, x(0) = 0 , we can obtain the solution

x(t) = A sinωt. (2.11)

The motion of harmonic oscillator depends on two parameters:

ω: the angular frequency,
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and

A: the amplitude of oscillator.

ω = 2πγ. (2.12)

In which γ is the frequency of oscillator or the number of complete cycles covered per

unit time. By replacing the equations (2.12) and (2.11) into the equation (2.4), the

following result is obtained:

p(t) = Am0 ω cosωt (2.13)

By plugging the equations (2.11) and (2.13) into equation (2.3), we will get the following

result;

E = H(x, p) (2.14a)

=
1

2
m0A

2ω2 (2.14b)

Energy is a function of ω when m and A are constant. Due to the fact that ω is squared,

it can be said that the values of ω2 and respectively (the total energy) E are always

positive. For more detail refer to [4], [14] and [15].
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2.4 Quantum Harmonic Oscillator

Quantum harmonic oscillator is one of the most fascinating mechanism and is one of

the most significant intellectual achievement of twentieth century [42]. In quantum

mechanics harmonic oscillator is defined as the vibration of a diatomic molecule for the

fact that is somewhat like that of two masses on a spring with a potential energy that

depends on the square of displacement from the equilibrium state. As it turns out, the

energy levels of harmonic oscillator are quantized at equally spaced values.

The most astonishing difference between simple and quantum harmonic oscillator is

the so-called zero-point vibration of the n = 0 ground state. This statement means

that unlike simple harmonic oscillator molecules are not completely at steady state,

even at absolute zero temperature.

The quantum harmonic oscillator has far more inference than the simple diatomic

molecule. It serve as a fundamental concept for the elucidation of other problems such

as complex modes of vibration in larger molecules, the motion of atoms in a solid

lattice, and the theory of heat capacity. In real systems, energy quantization is equal

only for the lowest levels in which the potential is an excellent approximation of the

mass on a spring type harmonic potential. The anharmonic terms which emerge from

the potential of a diatomic molecule are valuable for plotting the detailed potential of

such systems.

In order to obtain a solution to the Schrödinger equation and to appreciate the pecu-

liarities of nature at quantum level, I proceed with a simple form of problem. Assuming
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the wave function ψ(x) and potential V (x) depend on the x-coordinate only. Then,

the corresponding Schrödinger equation for one-dimensional problem is an Ordinary

Differential Equation (ODE):

− ~2

2m0

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (2.15)

This equation can be solved for various special forms of the potential V (x). In this

thesis, we have taken V (x) to represent any monomial of the from αxr added to a

parabolic potential. In particular for α = 0 we obtain the ideal harmonic oscillator

characterized by the potential:

V (x) =
1

2
m0 ω

2 x2 (2.16a)

=
1

2
kx2 (2.16b)

In the above equation ω is the angular frequency of the harmonic oscillator.

2.5 Hermite Polynomials

From mathematical point of view, Hermite polynomials are classical orthogonal polyno-

mials originate from the theory of probability. They are the eigenstates of the quantum

harmonic oscillator. The name of the Hermite polynomial is for the honour of Charles

Hermite. He was a French mathematician who did research on number theory, orthog-

onal polynomials, quadratic forms and etc. Hermitian operators are named after him



2.5 Hermite Polynomials 18

as well. He was the first scientist who proved that e is a transcendental number. Later

on, Lindemann by using his methodology proved that π is transcendental [53].

Hermite polynomials can be defined in different ways. These definitions are not com-

pletely the same; based on the properties that each definition may have, they are used

in different fields of knowledge.

General form:

Hn(x) = (−1)nex
2/2 dn

dxn
e−x

2/2 (2.17)

Physicists notation:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(2.18)

Probabilists notation:

Hn(x) = 2n/2 Hprob
n (
√

2x) (2.19)

Equation (4.13a) is most widely used form. Probabilists notation often follow the

general form, due to the fact that the function

1√
2π
e−x

2/2 (2.20)

is the probability density function for the normal distribution. The standard deviation

and expected value of this function are, respectively, 1 and 0.

The first six Hermite polynomials based on the probabilists view are as follows:
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H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15

The followings are the first eleven Hermite polynomials (H0, · · · , H10) based on physi-

cist’s definition of Hermite polynomials. This definition has been used for solving the

problems in this thesis.
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H0(x) = 1 (2.21a)

H1(x) = 2x (2.21b)

H2(x) = 4x2 − 2 (2.21c)

H3(x) = 8x3 − 12x (2.21d)

H4(x) = 16x4 − 48x2 + 12 (2.21e)

H5(x) = 32x5 − 160x3 + 120x (2.21f)

H6(x) = 64x6 − 480x4 + 720x2 − 120 (2.21g)

H7(x) = 128x7 − 1344x5 + 3360x3 − 1680x (2.21h)

H8(x) = 256x8 − 3584x6 + 13440x4 − 13440x2 + 1680 (2.21i)

H9(x) = 512x9 − 9216x7 + 48384x5 − 80640x3 + 30240x (2.21j)

H10(x) = 1024x10 − 23040x8 + 161280x6 − 403200x4 + 302400x2 − 30240

(2.21k)

In the following typical graphs of Hermite polynomials have been shown:

The above graph is the second solution of Hermite polynomials (H2(x)) which has the

following form:

H2(x) = 4x2 − 2 (2.22)

This is H3(x). However, due to the fact that Hermite Polynomials start from H0 , this

graph is for:
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Figure 2.1: The graph of 2nd Hermite Polynomial
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Figure 2.2: The graph of 3rd Hermite Polynomial

H3(x) = 8x3 − 12x (2.23)

This figure shows the first five solutions of Hermite polynomials presented together. In

this figure when n=0, Hermite polynomial is H0(x) = 1. The next curve is H1(x) = 2x,
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Figure 2.3: The first five Hermite Polynomials

the blue line having the slope of 2. Dotted line corresponds to H2(x) = 4x2 − 2. As

the number of n increases, the power of x increases in Hermite polynomials. The

long dotted form stands for H3(x) = 8x3 − 12x. The purple one is for H4(x) =

16x4 − 48x2 + 12.

Hermite polynomials have desirable properties which will be summerised here. The first

and the most notable property of Hermite polynomials is the orthogonality. Hn(x) for

n ∈ N are nth-degree polynomials that are orthogonal to each other with respect to

the weight function explained below.

Weighting functions for probabilists and physicists are defined as e−x
2/2 and e−x

2
,

respectively.

As a result of the orthogonality we can show that from physicist’s point of view:

∫ ∞
−∞

dxHn(x)Hm(x) e−x
2

= n! 2n
√
π δnm (2.24)
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This is the representation for the orthogonality of Hermite polynomials. Thereby, δnm

stands for Kronecker’s symbol. It is 1 when n = m, and is 0 otherwise. Further

important properties of Hermite polynomials are summarized below [16], [17].

2.5.1 Hermite’s Differential Equation

Hermite polynomials Hn(x) (n ∈ N) satisfy the following differential equation:

H
′′
n(x)− 2xH

′
n(x) + 2nHn(x) = 0 (2.25)

Here, the prime symbolizes the derivative with respect to the independent spatial

coordinate x.

2.5.2 Hermite’s Recursion Relation

Hermite polynomials also satisfy the following recursion formula:

Hn+1(x) = 2xHn(x)−H ′n(x) (2.26)

2.5.3 Hermite’s Recurrence Relation

In addition the (n + 1)th Hermite polynomial satisfies the following relation with its

two immediate predecessor polynomials:
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Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2.27)

2.5.4 Hermite’s Generating Function

e2xt−t2 =
∞∑
n=0

1

n!
Hn(x) tn

2.5.5 Hermite’s Expected Value

From probabilists point of view, assume x is a random variable with a normal distribu-

tion and standard deviation of unity with expected value of µ, under these conditions

the following important result for the expected value of Hn(x) holds true:

E (Hn(x)) = µn (2.28)

2.5.6 Hermite Polynomial Application

Utilizing the Hermite polynomials from the physicist’s prospective, we define the wave

function ψn(x) as follows:

ψn(x) =
1√√
π n! 2n

e−x
2/2Hn(x) (2.29)

The wave functions ψn(x) involve the square root of the weight function e−x
2/2 and

also have been properly scaled to yield:
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∫ ∞
−∞

dxψn(x)ψm(x) = δnm (2.30)

Hermite functions also satisfy the differential equation which is,

ψ
′′
n(x) +

(
2n+ 1− x2

)
ψn(x) = 0 (2.31)

The above equation corresponds to the Schrödinger equation for harmonic oscilla-

tors in quantum mechanics. Therefore, Hermite functions are eigenfunctions of the

Schrödinger equation for harmonic oscillator.

2.6 Schrödinger Equation

Schrödinger equation was first proposed by the Austrian Physicist, Erwin Schrödinger

in 1925. The theoretical and experimental rationalization of the Schrödinger equation

inspired the discovery of the Schrödinger equation. Schrödinger equation describes

the motion of non-reletivistic particles. This equation explains the space- and time-

dependence of quantum mechanical systems (time-dependent Schrödinger equation).

Schrödinger equation is the fundamental equation of (non-relativistic) quantum me-

chanics, playing a role similar to Newton’s law in classical mechanics [48].

From a mathematical point of view every quantum mechanical system is associated with

a complex Hilbert space. Therefore, every state of the system is illustrated by a unit

vector in that space. The state vector determines the probabilities for the outcome of

all possible measurements practical to the system. Since the state of a system generally

changes over the time, that is, the state vector is time dependent, Schrödinger equation
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provides a quantitative rate of changes of the state vector involving the Hamiltonian

of the system:

The Hamiltonian of the system as it is derived from the classical Hamiltonian with a

possible correction term for relativity.

Ĥψ = i ~
∂

∂t
ψ (2.32)

For many of the real-world problem Hamiltonian is not a time-dependant energy opera-

tor. Based on this observation, it can be said that time-independent Schrödinger equa-

tion is simplified form of time-dependant Schrödinger equation. The one-dimensional

time-independent Schrödinger equation for a particle can be written as

− ~2

2m0

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x), (2.33)

where m is mass of the particle and V (x) is the potential that particle moves in.

Likewise, three-dimensional time-independent Schrödinger equation can be written as

− ~2

2m0

∇2 ψ(x, y, z) + V (x, y, z)ψ(x, y, z) = Eψ(x, y, z) (2.34)

In which the second derivative has been replaced by nabla operator ∇2.

A time-independent Hamiltonian operator is associated with a set of quantum states

which are known as energy eigenstates.
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For relatively simple cases, solutions of time-independent Schrödinger equation can be

obtained in closed-form. These solutions provide insight into the nature of quantum

phenomena under consideration.

Moreover, they may provide a reasonable approximations of behaviour of more complex

systems. For instance, in quantum mechanics, molecular vibrations can be reasonably

well modelled as harmonic oscillators.

2.7 Schrödinger Equation for Harmonic Oscillator

By using the classical ideal spring potential, we can obtain the Schrödinger Equation

for harmonic oscillator:

V (x) =
1

2
k x2 (2.35a)

=
1

2
m0 ω

2 x2 (2.35b)

In which ω =
√
k/m0 is the angular frequency and in ω = 2 πν, ν is the frequency.

In order to simplify our discussion, we assume that V and ψ only depend on x. Then,

the Schrödinger equation corresponding to this one dimensional problem can be written

as

− ~2

2m0

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x), (2.36)
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where it potential energy is equation(2.35a) ; therefore, the so-called Schrödinger equa-

tion for harmonic oscillator is

− ~2

2m0

d2

dx2
ψ(x) + kx2ψ(x) = Eψ(x) (2.37)

2.8 Hermitian Operators

In simple words, Hermitian is the name of self-adjoint in physics literature. Self-

adjoint operator is the one that its adjoint’s matrix is Hermitian on a finite-dimensional

inner product space. The conjugate transpose of a Hermitian matrix is equal to itself.

Utilizing the finite-dimensional spectral theorem, Hermitian operators can be shown

to be represented by a diagonal matrix with real numbers.

Hermitian operators are used in quantum mechanics. In Dirac’s formulation of quan-

tum mechanics, physical observables such as position, momentum, angular momentum

and spin are represented by Hermitian operators on a Hilbert space [51], [52].

The most important Hamiltonian operators is the following which as an observable

corresponds to the total energy of a particle of mass m and has a potential of V:

HΨ = − ~2

2m0

∇Ψ + VΨ (2.38)

A partially defined linear operator A is called symmetric when it has the following

property on Hilbert space H, which is a real or complex vector with a positive-definite

Hermitian form that is complete under its norm,
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〈Ax
∣∣y〉 = 〈Ay

∣∣x〉 (2.39)

For all elements of x and y in A domain. Based on the Hellinger-Toeplitz theorem, an

everywhere defined symmetric operator is bounded. Bounded symmetric operator is

called Hermitian operator.

In other words, generally linear operators are complex quantities which mean that their

correspondence to dynamical variable would be complex. On the other hand, physical

quantities like momentum and position when they are measured are real numbers. As

a result of that, the linear operators that represent dynamical variables must be a

real linear operator. Such operators are defined as follows and are called Hermitian

operators:

∣∣q〉 = L
∣∣p〉 (2.40)

When L is a linear operator and the bra (〈q
∣∣) associated with the ket (

∣∣q〉) can be

written:

〈q
∣∣ = 〈p

∣∣L† (2.41a)

〈q
∣∣ = (L

∣∣p〉)†

= (
∣∣q〉)† (2.41b)

Here, L† is the Hermitian adjoint of L. The bra 〈q
∣∣ as it is shown is the Hermitian
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adjoint of
∣∣q〉. Therefore, it can be said that this is the result of a linear operator like

L† operating on 〈p|. It is immediate to show that

L†† = L. (2.42)

We have

∣∣a〉 = L
∣∣p〉. (2.43)

Where
∣∣p〉 is an arbitrary ket vector. Its associated bra is

〈a∣∣ = 〈p∣∣L†. (2.44)

If we take one more step and take adjoint again, we have

∣∣a〉 = L††
∣∣p〉. (2.45)

If we take the scalar product of the equation (2.45) with an arbitrary bra 〈c∣∣ and

replace the right-hand side by the equation (2.43), we obtain

〈c
∣∣a〉 = 〈c

∣∣L††
∣∣p〉 (2.46a)

〈c
∣∣L
∣∣p〉 = 〈c

∣∣L††
∣∣p〉 (2.46b)



2.8 Hermitian Operators 31

Since 〈c
∣∣ and

∣∣p〉 are arbitrary. Consequently, L†† = L is proven. In addition, if we let

∣∣c〉 = L
∣∣p〉 and 〈c

∣∣ = 〈p
∣∣L†, we have

〈p
∣∣L†
∣∣c〉 = 〈c

∣∣L
∣∣p〉∗. (2.47)

If the linear operator is self-adjoint, it means that L† = L we obtain

〈p
∣∣L
∣∣c〉 = 〈c

∣∣L
∣∣p〉∗ (2.48)

As mentioned earlier, the outcome of a measurement is a real number. This property

has been significant in formulating the theory in this thesis. The fact that this mea-

surement is coming from the expectation value of 〈Q〉 =
∫
drψ∗Q̂ψ will impose some

restriction on dynamical variables Q. Let’s say

〈Q〉 = 〈Q〉∗ (2.49)

We have,

∫
drψ∗Q̂ψ =

∫
dr(ψQ̂)∗ψ (2.50)

In general this integration extends over all the coordinates of all participating particles.

For instance, if we have n particles, we have 3 coordinates for each particle which result

in 3n coordinates. If we include spin, then another integration has to be carry out over
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the spin variables as well. Consequently, it will be 4n if spin is included [53]. In this

way we will save in writing and instead of saying the details we remove dr and write

the integral in the following form;

〈Q〉 =

∫
ψ∗Q̂ψ (2.51)

and

∫
ψ∗Q̂ψ =

∫
(Q̂ψ)∗ψ (2.52)

The above formula shows that integrated and summed over all the coordinates of

particles which constitute the system. It is worth mentioning that operators satisfying

(2.52) were first studied by Charles Hermite.

2.9 Eigenvalues and Eigenvectors of Hermitian Op-

erators

In general, the act of a hermitian operator on a vector will change the magnitude or

direction of the vector. If we imagine that the action of a hermitian operator on a

vector will change the magnitude of that vector, it means that the magnitude of that

vector is multiplied by a constant. We can write

Â
∣∣ai〉 = ai

∣∣ai〉 (2.53)
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When A is the operator and
∣∣ai〉 is the vector. The subscript shows that N independent

vectors satisfy this equality. Constants a; and vectors
∣∣ai〉 (i = 1, · · · , N) which satisfy

(2.53) are referred to as the eigenvalue and the corresponding eigenvectors of operator

Â.

In German language ‘‘eigen’’ means ‘‘self’’, ‘‘characteristic’’. Therefore, the eigen-

vectors and eigenvalues are characteristic (characterizing) vectors and values of the

operator. The set of eigenvalues is customarily called the spectrum of the operator.

2.10 Eigenvalue Problems

The classical view suggests that the eigenvalue problem can be defined as followings:

Avn = λnvn n = 1, · · · , N (2.54)

Here, we assume A to be a real and also symmetric matrix. On the other hand, A

might be singular and the eigenvalue λn becomes zero. A typical eigenvector vn has

certain orthogonality properties:

vTmvn = δmn (2.55)

and
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vTmAvn = vTmλnvn

= λnv
T
mvn

= λnδmn (2.56)

where the δmn denotes Kronecher’s delta symbol.

Introducing the matrix V , the columns of which are the eigenvectors of A and the

diagonal matrix Ω the element of which are the eigenvalues of A we can write

V TAV = Ω or AV = V Ω (2.57)

There are different numerical methods available to obtain the eigenvectors V and the

associated eigenvalues Ω. In general, it is only necessary to find a certain number of

smallest eigenvalues [59].

2.10.1 The Jacobi Method

This method is one of the oldest and most popular techniques for solving eigenvalue

problems which was introduced in 1846. In this method the eigenvectors can be ob-

tained from the following series of matrix multiplications.

V = T (0)T (1) · · · T (k) · · · T (n−1)T (n) (2.58)
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where is assumed a unit matrix and T (k) is defined as orthogonal transformation matrix

with four nonzero terms in different i and j rows and columns, [18] as indicated below:




− − − − − − − −
− − − − − − − −
− − Tii − − Tij − −
− − − − − − − −
− − − − − − − −
− − Tji − − Tjj − −
− − − − − − − −
− − − − − − − −




The four nonzero terms are the elements of an unknown rotation angle θ and defined

as:

Tii = Tjj = cos θ and Tji = −Tij = sin θ (2.59)

Since the matrices T (k) are by definition normal matrices we have
(
T (k)

)T
T (k) = I,

which does not depend on θ. Here I stands for the identity matrix and the superscript

T signifies transposition. The following matrix operation indicates the typical iteration,

which enters our calculations:

A(k) = T (k)TA(k−1)T (k) (2.60)

In order to force the terms (i, j) and (j, i) in the matrix A(k) becomes zero, the angle

θ must be calculated as follow:



2.10 Eigenvalue Problems 36

tan 2θ =
2Ak−1

ij

Ak−1
ii − Ak−1

jj

(2.61)

This method can be applied to all off-diagonal terms sequentially. This method con-

tinues until all terms decays to smaller number in comparison with the absolute value

of all matrix terms. In order to reduce an off-diagonal term to zero approximately 8N

numerical operations are needed. The exact number of numerical operations is not

predictable; however, experience has shown that the number of operations to achieve

convergence is of the order of 10N3, [18].

2.10.2 Solution of General Eigenvalue Problems

Assume the following generalized eigenvalue problem:

AV = BV Ω (2.62)

Let A and B be both symmetric matrices. First we calculate the eigenvector of the

matrix B. Now we can let V be a linear combination of the eigenvectors of matrix B.

Therefore,

V = VBV . (2.63)

By substituting (2.63) into (2.62) and multiplying both sides of the resulting equation

by V T
B , we obtain:
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V T
B AVBV = V T

B BVBV Ω (2.64)

By normalizing V T
B BVB = I (if there is no zero eigenvalue in matrix) equation (2.64)

equals to the classical form:

A V = V Ω (2.65)

Thus A = V T
B AVB. Hence, Jacobi method can applied to both matrices. If matrix B

is diagonal its eigenvector matrix (VB) will be diagonal and the diagonal terms equal

1/
√
Bnn (assume Bnn 6= 0) [49], [50].



Chapter 3

Literature Review

3.1 Introduction

Possibly, the simplest answer to why we need to know about quantum mechanics is

the fact that we are living in a quantum world [18]. Engineers would like to design

electronic, optical and optoelectronic devices in atomic scale. In biology, they deal

with cells and molecules which they wish to understand their motion and modify them

in atomic scale. The same is true for chemistry in order to synthesize organic and

inorganic compositions. Quantum mechanic provides the tool for those who are dealing

with objects in atomic level [18].

Quantum mechanics is the basis of our present knowledge of physical phenomena in

micro and nano scale. It provides a theoretical framework based on which it is feasible

to correlate, demonstrate, and predict the behavior of large range of physical phenom-

ena [19]. Quantum mechanics has a wide range of applications in different areas of

science. For instance, in Engineering, it has great impact on various topics such as

semiconductor transistors, lasers, and quantum optic [18].

38
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With the advance of technology, it is predictable in the near future to have quantum

devices such as single-electron memory cells. It is expected that new devices, with

functionality based on principles of quantum mechanics, will be created [6], [18].

The small glimpse of our quantum world will reveal notable differences from our every-

day life. Quiet often based on quantum view, the motion of objects does not follow our

(classical) expectation [20], [41]. An interesting example is what happens when you

throw a ball against a wall. We expect the ball to bounce back. Quantum mechanic

has totally different view from what we expect. That is, under certain conditions, there

is a possibility for the ball to pass through the wall. This is called tunnelling which

is quantum mechanical effect and takes place due to the fact that on appropriate time

and length scales particles are described as waves [18].

We will devote our attention in this thesis to quantum harmonic oscillator and its

behavior when it is strongly perturbed. One may wonder why considerable effort has

been dedicated to harmonic oscillator. The concept of quantum harmonic oscillator is

far beyond a simple system [21]. It is so fundamental for quantum mechanics that in

each and every quantum mechanical book one can find a chapter devoted to harmonic

oscillator. In fact, the harmonic oscillator is one of the most important model systems in

quantum mechanics. The most significant reason is the fact that any arbitrary potential

can be approximated as a harmonic potential in the vicinity of its equilibrium point [4].

The indispensable reason for this applicability is that all systems in stable equilibrium

perform harmonic motion around the equilibrium state for a small perturbations [21].

For instance, a radiation field behaves like a collection of harmonic oscillators [22].
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Moreover, harmonic oscillator is one of few quantum mechanical systems for which we

have an exact solution. The solution of harmonic oscillator has extensive applications

in theoretical physics and chemistry. It is the foundation for describing complex modes

of vibration in molecules and crystals, and the theory of electromagnetic field [3], [20].

A simple harmonic oscillator is characterized as a mass attached to a spring with its mo-

tion following a linear differential equation with constant coefficients [23]. This system

has a restoring force which is proportional to the displacement from the equilibrium

position (Hooke’s Law).

In quantum mechanics the motion of a particle of mass m, in a potential V (x) is

illustrated by Schrödinger equation for the wave function ψ(x) characterizing that

particle. When the potential is V (x) = kx2, this system represents a quantum harmonic

oscillator [40].

3.2 Background Knowledge

Quantum Mechanics of a particle bound to the origin by an elastic potential kx2 is

of both practical and academic significance. In physical problems the motion of elec-

tromagnetic radiation, lattice vibration in solids, and molecular vibrations may be

decompose into one dimensional harmonic oscillator [4]. Since any arbitrary potential

can be approximated by a harmonic oscillator, it is important to investigate the charac-

teristics of harmonic oscillator. This fundamental significance of harmonic oscillator for

quantum mechanic has caused enormous attention and a large number of publications

has been produced for this problem. When I searched the library of my university, I find
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overwhelming number of books and journal publications related to quantum harmonic

oscillator. This intense interest shows the continuing need for updated presentations

of the material [24].

Because of the importance of harmonic oscillator, the classical as well as quantum

harmonic oscillator has received renewed interest. Therefore, it can be seen that there

are so many attempts for numerical and analytical approximation to the harmonic

oscillator [25], [26], [27], [34], [35], [36]. Furthermore, for the eigenvalues of the bounded

harmonic oscillator and hydrogen-type atoms several analytical approaches have been

proposed [28], [38], [39].

The problem of a particle moving under the influence of a linear restoring force, F (x) =

−kx or a quadratic potential is one of those problems which have been studied at

different levels of theoretical physics, from elementary classical mechanics to quantum

field theory, [37]. As already mentioned, one of the most important features of such

problems is the fact that it is exactly soluble. Therefore, it can be used as a closed-form,

analytic example. Even if it had no practical usage for real-world physical systems,

it would be of only academic interest [24]. In fact the solution of this problem has

extensive application in theoretical physics and chemistry [3].

One of the important applications of this problem is its wide-ranging usefulness. By

using standard differential equation approach the solution of harmonic oscillator in

nonrelativististic quantum mechanics can be obtained.

The stationary state of harmonic oscillator is determined by two different methods. The
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first one is the so-called Polynomial method in which the procedure is essentially the

same as for the particle in a box. All possible mathematical solutions of a second-order

of differential equation are first determined and then the physically permissible ones

are selected. This method is called the classical method. A second approach, is called

the algebraic method [3]. This method simply solve a first-order differential equation

for the ground state. Then after, higher states are determined from the already known

ground state by means of a ladder operator [3], [29]. The algebraic method plays

an important role in modern quantum mechanics. In this thesis, we also utilize the

algebraic method.

One dimensional systems are of interest for the fact that they illustrate some non-

classical effects and even though we are living in a three dimensional world, many

physical situations are effectively one dimensional [30]. Since harmonic oscillator is a

fascinating system to study, perturbation of such system would be very interesting,

indeed.

Undoubtedly the most widely used approximation method is perturbation theory. The

notion of perturbation theory extends to quantum mechanics in cases where the ob-

served system can be describe as an ‘‘unperturbed’’ Hamiltonian, for which eigenstates

can be attained exactly [24]. In quantum mechanics, a perturbation usually refers to

a slight variation in the potential function V (x). Through the perturbation theory,

the effect of perturbation on the states of the unperturbed potential can be obtained.

These perturbed states can be acquired by having prior knowledge of the unperturbed

ones.
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It is a common practice to approach quantum mechanics through the study of a few

exact soluble examples by using Schrödinger equation. The number of potential energy

functions for which we have closed-form solutions is fairly small. Fortunately, most of

the examples correspond relatively well to actual physical systems. For instance, one

of the systems that has a closed-form solution which works very well with the actual

system is the harmonic oscillator [24].

Nevertheless, it is good to pinpoint that other methods can be used to study the

properties of a quantum system. Some of these methods are very different from the

Schrödinger equation approach, and some others can be used as a numerical method

for those problems for which analytical solutions are not available [24].

3.3 Perturbation Theory

As already mentioned, one of the methods of acquiring approximate solutions is the

perturbation theory given by Schrödinger. This theory is an adjustment of a method

developed by Rayleigh for the vibrating strings problem [5], [31]. For systems whose

Hamiltonian is independent of time, time-independent Schrödinger equation is:

HΨn = EnΨn (3.1)

This theory is based on comparing the Hamiltonian H of the given system to an already

solved system H(0), i.e.,
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H(0)Ψ(0)
n = E (0)

n Ψ(0)
n (3.2)

of which the set of eigenpairs (eigenvalues E (0)
n and the corresponding eigenfunctions

Ψ
(0)
n (x); n ∈ N) are known to us:

{
E (0)
n ,Ψ(0)

n

∣∣n ∈ N
}

Moreover, the functions Ψ
(0)
n ;n ∈ N are assumed to form a complete set of normalized

and orthogonal functions. The difference H−H(0) is assumed to be small and expressed

in the form

H = H(0) + λH(1) + λ2H(2) + · · · , (3.3)

where λ is a parameter:

0 ≤ λ ≤ 1

Here, λ = 0 corresponds to zeroth-order system, equation (3.2), and λ = 1 corresponds

to one degree perturbed. It is considered that eigenfunctions and eigenvalues can be

expressed in the following form:
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En = E (0)
n + λE (1)

n + λ2E (2)
n + · · · (3.4a)

Ψn = Ψ(0)
n + λΨ(1)

n + λ2Ψ(2)
n + · · · (3.4b)

in which E (1)
n ,E (2)

n , · · · , λΨ
(1)
n , λ2Ψ

(2)
n , · · · are the first- and second- and higher pertur-

bations due to H(1),H(2), · · · , which need to be determined.

Substituting (3.3) and (3.4a) into (3.1) and equating the coefficients of various power

of λ, we obtain

λ0 : H(0)Ψ
(0)
n = E (0)

n Ψ
(0)
n (3.5a)

λ1 : H(0)Ψ
(1)
n + H(1)Ψ

(0)
n = E (0)

n Ψ
(1)
n + E (1)

n Ψ
(0)
n (3.5b)

λ2 : H(0)Ψ
(2)
n + H(1)Ψ

(1)
n + H(2)Ψ

(0)
n = E (0)

n Ψ
(2)
n + E (1)

n Ψ
(1)
n + E (2)

n Ψ
(0)
n (3.5c)

Then, we can proceed to calculate the functions Ψ
(1)
n ,Ψ

(2)
n , · · · in succession [54], [55].

Assuming that the zeroth-order solution of the system is non-degenerate, that is, for

different eigenstates, Ψ
(0)
n , we have different eigenvalues, E (0)

n , we can write the following

series expansion for Ψ
(1)
n :

Ψ(1)
n =

∑
m

amnΨ(0)
m (3.6)

Substituting (3.6) into equation (3.5a), the eigenpairs (3.6) can be obtained [31]. Now,

we are going to see how this method can be implemented. Our research focuses on one-
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dimensional canonical and strongly perturbed quantum harmonic oscillator. We have

utilized the solution of unperturbed harmonic oscillator as our gauging system in order

to get an insight for the perturbed harmonic oscillator. In my view, it is very important

to have a basic conceptual understanding of an alternative way of approaching linearly

perturbed harmonic oscillator [4], and other monomially perturbed harmonic oscillator

problems.

3.4 Standard Procedure for Tackling Linear Per-

turbation of Harmonic Oscillator

We will briefly describe the standard method and demonstrate how the technique is

applied. The problem can be stated as follows:

The differential equation for linearly perturbed harmonic oscillator is set up. The

original position variable x is replaced by a dimensionless variable ξ such that Ψ = Ψ(ξ).

Finding the eigenpairs of unperturbed harmonic oscillator leads to the construction of

Hermite polynomials. A recurrence formula involving Hermite polynomials is then used

to calculate the eigensolutions related to the linear perturbation of harmonic oscillator.

Both sides of the recurrence equation are divided by 2, and an expression for ξΨn is

obtained in terms of Ψn−1 and Ψn+1. Subsequently, this expression is implemented to

calculate the influence of the perturbation caused by x. In the next section details of

calculations are presented.
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3.4.1 Numerical Calculations of Linearly Perturbed Harmonic
Oscillator: Standard Way

For the sake of completeness and in order to avoid cross-referencing, the main result

associated with ideal harmonic oscillator have been summarized.

Ideal (Unperturbed) Harmonic Oscillator

An unperturbed harmonic oscillator simply implies that figure (3.1) shows its original

form. The problem is set up as the case of a particle constrained to move along the

x-axis subject to an elastic potential proportional to a point located on that axis [32].

Harmonic Oscillator

 

 

Figure 3.1: The Linearly Distributed Eigenvalues and the Corresponding Eigenfunc-
tions of the Harmonic Oscillator

The harmonic oscillator can be solved by using Schrödinger equation

HΨ = EΨ, (3.7)
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where H is known as the Hamiltonian operator and corresponds to the total energy of

the system [33]. Therefore, it corresponds to the sum of Kinetic and Potential Energy.

In the case of one-dimensional linear harmonic oscillator the hamiltonian operator is

H =
1

2m0

p2 +
1

2
m0ω

2x2 (3.8)

To construct the quantum mechanical analogon x and p must be operators. Thereby,

x is represented by x and p by (~/i)(d/dx).

Then Schrödinger equation for the harmonic oscillator is

(
− ~2

2m0

d2

dx2
+

1

2
m0ω

2x2

)
Ψ = EΨ (3.9)

in which ω2 = k/m0. The eigenfunctions of this Hamiltonian are real, non-degenerate,

unique, and mutually orthogonal.

By changing variable x to be a dimensionless variable ξ =
√
αx where α = m0ω/~,

equation (3.9) transforms to,

d2

dξ2
Ψn(ξ) +

(
λn
α
− ξ2

)
Ψn(ξ) = 0 (3.10)

where λn = 2m0En/~2. Those solutions that satisfy Ψn(±∞) = 0 are acceptable.

Next, a solution of the form is assumed
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Ψ = G(ξ)H(ξ) (3.11)

where G(ξ) is a function describing general behavior of Ψ for large |ξ| and H(ξ) is an

infinite series.

These considerations lead to the result

Ψn(ξ) = Nne
−ξ2/2Hn(ξ), (3.12)

where Nn is the normalization constant,

Nn =
(α
π

)1/4
(

1

2nn!

)1/2

(3.13)

Linearly Anharmonic Oscillator

Sketch of the idea:

− ~2

2m0

d2

dx2
ψ̃ +

1

2
kx2ψ̃ + βxψ̃ = E ψ̃ (3.14)

going through our procedure:

We need to calculated interaction matrices of the form
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〈ψm
∣∣x
∣∣ψn〉 =

∫
dxNme

−x2/2 Hm(x)xNne
−x2/2Hn(x)

= NmNn

∫
dx xHm(x)Hn(x)e−x

2

(3.15)

Then, ξ =
√
αx is introduced. Using the recurrence property of Hermite polynomials,

i.e.

Hn+1(ξ)− 2ξHn(ξ) + 2nHn−1(ξ) = 0, (3.16)

Multiplying both side of the above equation by e−ξ
2

and dividing to 2, the following

relation can be obtained

ξHn(ξ) = nHn−1(ξ) +
1

2
Hn+1(ξ) (3.17)

which can be implemented in the following equation which are the matrix elements of

x̂:

〈ψm
∣∣ξ
∣∣ψn〉 =

1

α
NmNn

∫
dξ Hm(ξ)

[
nHn−1(ξ) +

1

2
Hn+1(ξ)

]
e−x

2

=
1

α
NmNn

{
1

2

∫
dξ Hm(ξ)Hn+1(ξ) e−x

2

+ n

∫
dξ Hm(ξ)Hn−1(ξ) e−x

2

}

=
1

α
NmNn

{
1

2
δm,n+1 + nδm,n−1

}
(3.18)

Substituting equation (3.17) into (3.18), the matrix elements result in



3.4 Standard Procedure for Tackling Linear Perturbation of Harmonic
Oscillator 51

〈ψm
∣∣x̂
∣∣ψn〉 =

Nn

Nn−1

n√
α
δm,n−1 +

Nn

Nn+1

n√
α
δm,n+1. (3.19)

The only nonvanishing matrix elements are

〈ψn−1

∣∣x̂
∣∣ψn〉 =

√
n~

2m0ω
(3.20a)

〈ψn+1

∣∣x̂
∣∣ψn〉 =

√
(n+ 1)~

2m0ω
. (3.20b)

Therefore, it can be shown in matrix form as follow:

x̂ −→
(

~
2m0ω

)1/2




0
√

1 0 . . .

√
1 0

√
2 . . .

0
√

2 0 . . .

...
...

...
. . .




(3.21)

As will be shown in Chapter 4 our formulation is valid for arbitrary monomial per-

turbation βxr of order r, by construction includes the case r = 1 and results in the

‘‘system’’ matrix given in (3.21).

The above calculation was for linear perturbation of harmonic oscillator [4] but our

method of computation extend the perturbation for any arbitrary perturbation mono-

mial with an arbitrary coefficient.
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In the following, I will provide a brief outline of the topics which will be covered in

Chapters 4 -7.

In Chapter 4 of this thesis, we demonstrate our method of solving perturbation on

harmonic oscillator. The uniqueness of our method is due to the flexibility that gives

us to calculate arbitrary perturbation monomials with arbitrary coefficients. At the

beginning section of the following chapter, we demonstrate our method of obtaining the

solutions of the unperturbed harmonic. The following section is devoted to determining

the solution of the anharmonic oscillator. Finally, last section of Chapter 4 details the

calculation of the involved integrals which we introduces.

In Chapter 5, the numerical results obtained are discussed thoroughly. We divide

these numerical results in two main categories based on the power of the perturbation

monomial to be odd or even.

In Chapter 6, we point to some new problems which can be solved based on our

methodology.

Finally, in Chapter 7, we summarize the work emphasizing the achievements in this

research.



Chapter 4

Anharmonic Oscillator

4.1 Introduction

In this chapter, we focus on solving the following monomially perturbed harmonic

oscillator problem:

− ~2

2m0

d2

dx2
ϕ̃(x) +

(
1

2
kx2 + β̃xr

)
ϕ̃(x) = Ẽ ϕ̃(x) (4.1)

In this equation the term β̃xr is the perturbation with arbitrary β̃ and r ≥ 1. Our

method consists of, in the first step, the determination of the eigenvalues and the corre-

sponding eigenfunctions of the unperturbed harmonic oscillator. To this end we use the

standard techniques, which result in closed-form for the eigenfunctions, eigenstates and

linearly distributed eigenvalues. The complete set of eigensolutions of the harmonic

oscillator can be calculated in analytical form using Hermite polynomials [1]. Having

determined the solutions of this ‘‘auxiliary problem’’, we then proceed to solve our

anharmonic oscillator. Therefore, our method is based upon using the eigensolutions

53
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of the unperturbed harmonic oscillator as auxiliary (gauging) functions. The obtained

eigenfunctions of the unperturbed harmonic oscillator can be used as a complete set

of functions for analyzing related boundary value problems, in particular the family

of problems given in (4.1). Thereby, the key idea is the construction of an appropri-

ately devised auxiliary problem the eigenpairs, which in the present case is the ideal

harmonic oscillator. As it will become apparent the applicability range of the concept

presented here is quite large. More challenging cases have been announced at the end

of the manuscript.

In summary, in this chapter we will describe our methodology for solving perturbed har-

monic oscillator. In the first two sections calculation of eigenfunctions ψ(ξ) and corre-

sponding eigenvalue Ê for unperturbed harmonic oscillator will be discussed. Thereby,

the replacement of the coordinate x by an appropriately introduced nondimensional

variable ξ plays a significant role, as is known from standard text books. Thereby, the

determination of ψm(ξ) and corresponding Êm will be facilitated by the help of anni-

hilation and creation operators. The annihilation and creation operators are discussed

in detail in the same section. In the following section, our objective will be the deter-

mination of the solution of perturbed harmonic oscillator, i.e. the eigenfunction ψ̃m(ξ)

and the corresponding eigenvalues
̂̃
Em. For the calculation of perturbed eigenfunction

and corresponding eigenvalues, we have developed a very novel recursion formula for

the closed-form evaluation of the involved definite integrals. These integral calculations

are discussed in the final section of this chapter.
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4.2 Normalized Eigenfunctions ψm(ξ) and the Cor-

responding Normalized Eigenvalues Êm of an

Harmonic Oscillator

In the following subsections, we will describe the steps for the computation of the eigen-

values and corresponding eigenfunctions of the unperturbed harmonic oscillator,these

‘‘auxiliary’’ results are then used for the determination of the eigenstates of the per-

turbed harmonic oscillator.

4.2.1 Eigenvalues Êm

Consider the harmonic motion of a particle with mass m in the parabolic potential

energy function V (x) given by

V (x) =
1

2
kx2. (4.2)

Assuming the validity of the Hook’s Law for the linearized spring in our problem, k

represents the spring constant. Newton’s equation of motion dictates that the equation

for a point with mass m0 attached to spring with the spring constant k is:

m0ẍ = −kx (4.3)

Assuming a harmonic time-dependence according to x = e−jωt and substituting into

equation (4.3) we obtain



4.2 Normalized Eigenfunctions ψm(ξ) and the Corresponding Normalized
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m0ω
2 = k, (4.4)

or, alternatively,

ω =

√
k

m0

. (4.5)

Here, ω stands for the angular frequency of oscillations.

The Hamiltonian function of our system is (the total energy)

H =
p2

2m0

+ V (x) (4.6)

Using the particle/wave duality principle

p = ~k (4.7a)

E = ~ω (4.7b)

and using the hypothesis that energy observable in classical physics has a corresponding

operator in quantum mechanics according to
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x ⇐⇒ x (4.8a)

V (x) ⇐⇒ V (x) (4.8b)

p ⇐⇒ ~
j

∂

∂x
(4.8c)

E ⇐⇒ −~
j

∂

∂t
(4.8d)

and using the time-harmonic dependence(ejωt), we arrive at the time-dependent Schrödinger

equation:

− ~2

2m0

d2

dx2
ϕ(x) + V (x)ϕ(x) = E ϕ(x) (4.9)

Here, ~ denotes the reduced Planck’s constant ~ = h/(2π) with h standing for the

Planck’s constant h. The potential function V (x), as expressed in equation (4.2) is

1/2kx2 in the current problem. We obtain:

− ~2

2m0

d2

dx2
ϕ(x) +

1

2
m0 ω

2 x2ϕ(x) = E ϕ(x) (4.10)

As will be seen shortly the following variable transformation allows the simplification

of calculations considerably:

x =
1√
α
ξ (4.11)

Introducing the function ψ(ξ)
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ϕ(x) = ψ(ξ) (4.12)

We can write,

d

dx
ϕ(x) =

d

dx
ψ(ξ) (4.13a)

=
dξ

dx

d

dξ
ψ(ξ) (4.13b)

taking into account (4.11) we arrive at:

d

dx
=
√
α
d

dξ
(4.14)

proceeding similarly we obtain

d2

dx2
= α

d2

dξ2
. (4.15)

Using the above results and factorizing out the term m0ω
2/α equation (4.10) leads to

m0ω
2

α

[
− α

m0ω2

~2

2m0

α
d2

dξ2
ψ(ξ) +

1

2
ξ2ψ(ξ)

]
= E ψ(ξ). (4.16)

Setting the coefficient of differential term equal to unity, we obtain the following value

for α:
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~2α4

m0
2ω2

= 1 =⇒ α =
m0ω

~
(4.17)

The multiplicative factor in front of the square bracket in (4.16) has consequently the

value

m0ω
2

α
= m0ω

2 ~
m0ω

(4.18a)

= ~ω. (4.18b)

These considerations lead to the result:

~ω
[
−1

2

d2

dξ2
ψ(ξ) +

1

2
ξ2 ψ(ξ)

]
= E ψ(ξ) (4.19)

Dividing both sides of this equation by ~ω and introducing the dimensionless variable

Ê = E/~ω, we obtain

1

2

[
− d2

dξ2
ψ(ξ) + ξ2 ψ(ξ)

]
= Êψ(ξ). (4.20)

In the following we will aim at finding othomalised eigenfunctions of the equation (4.20)

in the sense:

〈
ϕm(x)

∣∣∣ϕn(x)
〉

= δmn, (4.21)
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where δmn denotes Kronecher’s delta symbol.

The term in the square bracket at the left-hand side of equation (4.20) can be written

as

− d2

dξ2
+ ξ2 =

(
− d

dξ
+ ξ

)(
d

dξ
+ ξ

)
+ I (4.22)

where I denotes the identity operator: If(ξ) = f(ξ).

By normalizing the operators at the right-hand side on equation (4.22), we can obtain

normalized annihilation and creation operators a and a† which are differential operators

and are defined as,

a =
1√
2

(
d

dξ
+ ξ

)
(4.23)

and

a† =
1√
2

(
− d

dξ
+ ξ

)
(4.24)

The reason why these operators are referred to as the annihilation and creation opera-

tors has been discussed in detail in Chapter 2 of this thesis, where also their importance

are also addressed.

Apply the composed operator aa† to the wave function ψ(ξ) we obtain:
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Eigenvalues Êm of an Harmonic Oscillator 61

a a† ψ(ξ) =
1

2

[
− d2

dξ2
ψ(ξ) + ξ2 ψ(ξ)− ψ(ξ)

]
(4.25)

Alternatively, the application of a† a to ψ(ξ) results in:

a† aψ(ξ) =
1

2

[
− d2

dξ2
ψ(ξ) + ξ2 ψ(ξ) + ψ(ξ)

]
(4.26)

• A comparison between the last two equations reveals the following equation:

a a† ψ(ξ)− a† aψ(ξ) = ψ(ξ) (4.27)

Since this identity is valid for any permissible not identically vanishing wave

function ψ(ξ) the following identity for the a and a† can be deduced:

a a† − a† a = I (4.28)

• Schrödinger equation can be expressed as,

a† aψ(ξ) =

(
Ê − 1

2

)
ψ(ξ) (4.29)

since,

−1

2

d2

dξ2
+

1

2
ξ2 =

(
a† a +

1

2

)
(4.30)
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• In particular the solution of the differential equation

aψ(ξ) = 0 (4.31a)

(
d

dξ
+ ξ

)
ψ(ξ) = 0 (4.31b)

is denoted ψ0(ξ) and is given

ψ0(ξ) = A e−ξ
2/2. (4.32)

Which is seen immediately by substituting ψ0(ξ) into equation (4.31b). A can be

determined by the normalization condition, equation (4.21), the constant result-

ing in

A = 1/ 4
√
π.

It is easily seen that Ê 0 = 1/2 is corresponding eigenvalue to the eigenfunction

ψ0(ξ),

(
a†a+

1

2

)
ψ(ξ) = Êψ(ξ) (4.33a)

(
a†a
)
ψ(ξ) =

(
Ê − 1

2

)
ψ(ξ) (4.33b)

which can be written in the following correspondence form:

ψ0(ξ)

(
=

1
4
√
π
e−ξ

2/2

)
⇐⇒ 1

2
(4.34)
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• It is immediate to see that the function a†ψ0 is a solution of Schrödinger equation

belonging to the eigenvalue Ê = 3/2.

To demonstrate this result and its generalization, we proceed as follows

a† aψ(ξ) =
(

Ê − 1/2
)
ψ(ξ) (4.35)

Substitute for ψ(ξ) the solution ψn(ξ) with Ên as its eigenvalue

a† aψn(ξ) =
(

Ên − 1/2
)
ψn(ξ) (4.36)

with

ψn(ξ)⇐⇒ Ên − 1/2 (4.37)

Multiplying both sides of the equation (4.36) by a†

a†a† aψn(ξ) =
(

Ên − 1/2
)
a†ψn(ξ) (4.38)

Using equation (4.28) in (4.38)

a†
(
a a† − I) ψn(ξ) =

(
Ên − 1/2

)
a†ψn(ξ) (4.39)

and bringing the term a†ψn to the right-hand side we obtain:

a† a a† ψn(ξ) =

(
Ên − 1

2
+ 1

)
a†ψn(ξ) (4.40)
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which implies

a† ψn(ξ)⇐⇒ Ên − 1

2
+ 1 (4.41)

meaning that a† ψn is an eigenfunction of the Schrödinger equation with the

corresponding eigenvalue Ên − 1
2

+ 1 which is higher than the eigenvalue of ψn

(Ên − 1/2) by one. Therefore,

a† ψn(ξ) = ψn+1 (4.42)

Analogously, it can be shown that

a† ψn(ξ) = ψn+1(ξ)⇐⇒ Ên − 1

2
+ 1 (4.43)

Therefore,

ψm(ξ) ⇐⇒ (m+ 1/2) (4.44)

In this section, we have obtained an expression for Em which is eigenvalue of the

unperturbed harmonic oscillator.

4.2.2 Eigenfunction ψm(ξ)

The ‘‘ground state’’ for the harmonic oscillator has the form
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ψ0(ξ) = A0e
−ξ2/2 (4.45)

where A0 = 1/ 4
√
π.

Applying the creation operator on ψ0(ξ) will obtain the first excited state. Therefore,

n-times application of creation operator on ψ0(ξ) will produce nth excited state. To

elucidate these ideas consider the following calculations:

Application of a on the ground state ψ0(ξ)

ψ0(ξ) = A0e
−ξ2/2 (4.46)

With A0 being a constant.

Ground state can be shown,

aψ0(ξ) =

(
d

dξ
+ ξ

)
A0e

−ξ2/2

= −A0ξe
−ξ2/2 + ξA0e

−ξ2/2 (4.47a)

= 0 (4.47b)
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For the first excited state, we have

a†ψ0(ξ) =

(
− d

dξ
+ ξ

)
A0e

−ξ2/2

= − d

dξ
A0e

−ξ2/2 + ξA0e
−ξ2/2 (4.48a)

= ψ1(ξ) (4.48b)

For the second excited state,

a†ψ1(ξ) =

(
− d

dξ
+ ξ

)
2A0ξe

−ξ2/2

= − d

dξ
2A0ξe

−ξ2/2 + 2A0ξ
2e−ξ

2/2

= (−2 + 4ξ2)ψ0(ξ) (4.49a)

= ψ2(ξ) (4.49b)

By applying the creation operator a = (−d/dξ + ξ) m-times onto ψ0(ξ), we obtain the

expression for mth ‘‘excited state’’ ψm(ξ) along with its corresponding eigenvalue Êm.

Therefore, for the normalized eigenfunction ψm(ξ) we obtain:

ψm(ξ) =
1√√
πm!2m

Hm(ξ)e−ξ
2/2 (4.50)

where Hm(ξ) (m ∈ N) stands for the normalized Hermite polynomials which are dis-

cussed in detail in Chapter 2, Section 2.5.
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By utilizing the solutions of harmonic oscillator as our chosen auxiliary boundary value

problem, we next focus on the perturbed harmonic oscillator problem.

4.3 Schrödinger Equation for Monomially Perturbed

Harmonic Oscillators

The hamiltonian for 1D harmonic oscillator is

H =
p2

2m0

+
m0ω

2x2

2
(4.51)

Then, the time-independent Schrödinger equation is

− ~2

2m0

d2

dx2
ϕ(x) +

1

2
kx2ϕ(x) = Êϕ(x) (4.52)

We introduce a new dimensionless variable ξ by changing the scale of x =
√
αξ where

α will be chosen such that we obtain a simpler coefficients in that differential equation

(4.52). Consequently, we changed ϕ(x) to ψ(ξ). The solution of equation (4.52) with

the new variable ξ i.e. eigenfunction ψm(ξ) and the corresponding eigenvalue Êm) were

discussed in detail in the Section (4.2).

As we found out, the time-independent Schrödinger equation had the form

−1

2

d2

dx2
ψ(x) +

1

2
ψ(x) = Êψ(x) (4.53)
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let our perturbed harmonic oscillator has the form,

− ~2

2m0

d2

dx2
ϕ̃(x) +

1

2
m0ω

2x2ϕ̃(x) + β̃xrϕ̃(x) = Ẽ ϕ̃(x) (4.54)

where the perturbation coefficient β̃ stands for

β̃ = ~ω
(m0ω

~

)r/2
β (4.55)

By replacing the following substitution into equation (4.54),

ϕ̃(x) = ψ̃(ξ), x =
1√
α
ξ and

d

dx
=
√
α
d

dξ
(4.56)

equation (4.54) transforms into,

− ~2

2m0

α
d2

dξ2
ψ̃(ξ) +

1

2
m0ω

2 1

α
ξ2ψ̃(ξ) + ~ω

√(m0ω

~

)r
β

1

αr/2
ξrψ̃(ξ) = Ẽ ψ̃(ξ) (4.57)

Factorizing out the term m0ω
2/α in equation (4.57), we have

m0ω
2

α

[
− α

m0ω2

~2

2m0

α
d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) +

α

m0ω2
~ω
√(m0ω

~

)r
β

1

αr/2
ξrψ̃(ξ)

]
= Ẽ ψ̃(ξ).

(4.58)

Again, if we set the coefficient of the first term in the square bracket in (4.58) to 1, we

obtain
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α =
m0ω

~
. (4.59)

By substituting α into equation (4.58), we have

~ω
[
− d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) + βξrψ̃(ξ)

]
= Ẽ ψ̃(ξ), (4.60)

which is equal to,

− d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) + βξrψ̃(ξ) =

̂̃
E ψ̃(ξ) (4.61)

Therefore, this equation is the scaled
(
x =

√
~/m0ωξ

)
version of

− ~2

2m0

d2

dx2
ϕ̃(x) +

1

2
m0ω

2x2ϕ̃(x) + ~ω
√(m0ω

~

)r
βxrϕ̃(x) = Ẽ ϕ̃(x) (4.62)

4.3.1 Proposed Methodology

Auxiliary Problem: The differential equation for the harmonic oscillator obtained

in equation (4.20) is:

−1

2

d2

dξ2
ψ(ξ) +

1

2
ξ2ψ(ξ) = Êψ(ξ) (4.63)

We shall consider the eigenpairs {ψm, Êm} of this problem as our gauging system. This
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is the reason why we will refer to (4.63) as our auxiliary problem.

Actual problem: Our actual (original) problem is a perturbation of the harmonic

oscillator by an additive monomial potential function. Here, we consider general mono-

mials of the form βξr with r being an integer and β a positive constant specifying the

magnitude of the perturbation. The differential equation characterizing our actual

problem has therefore the form:

− d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) + βξrψ̃(ξ) =

̂̃
E ψ̃(ξ) (4.64)

Our objective is the solution of (4.64) and thus the determination of eigenfunctions

ψ̃m(ξ) and the corresponding eigenvalues
̂̃
Em. To this end we proceed as follows:

Multiply the auxiliary system by ψ̃(ξ) and the actual problem by ψ(ξ) and subtract

the resulting ‘‘actions’’ obtaining:

−





−ψ̃(ξ) d2

dξ2ψ(ξ) + 1
2
ψ̃(ξ)ξ2ψ(ξ) = Ê ψ̃(ξ)ψ(ξ)

−ψ(ξ) d2

dξ2 ψ̃(ξ) + 1
2
ψ(ξ)ξ2ψ̃(ξ) + βψ(ξ)ξrψ̃(ξ) =

̂̃
Eψ(ξ)ψ̃(ξ)

We obtain:

−ψ̃(ξ)
d2

dξ2
ψ(ξ)− ψ(ξ)

d2

dξ2
ψ̃(ξ)− βξrψ(ξ)ψ̃(ξ) =

(
Ê − ̂̃E

)
ψ(ξ)ψ̃(ξ) (4.66)

By integrating both sides of this equation from −∞ to +∞, we have
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−
∫ +∞

−∞
dξ

(
ψ̃(ξ)

d2

dξ2
ψ(ξ)− ψ(ξ)

d2

dξ2
ψ̃(ξ)

)
−
∫ +∞

−∞
dξβξrψ(ξ)ψ̃(ξ)

=

∫ +∞

−∞
dξ

(
Ê − ̂̃E

)
ψ(ξ)ψ̃(ξ) (4.67)

It is instructive to introduce I and J as follows:

I =

∫ +∞

−∞
dξψ̃(ξ)

d2

dξ2
ψ(ξ), (4.68)

and

J =

∫ +∞

−∞
dξψ(ξ)

d2

dξ2
ψ̃(ξ), (4.69)

First we calculate I as follow:

I =

∫ +∞

−∞
dξψ̃(ξ)

d2

dξ2
ψ(ξ) (4.70)

Using the identity

d(uv) = udv + vdu (4.71)

we can write
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∫ b

a

d(uv) =

∫ b

a

udv +

∫ b

a

vdu =⇒ uv

∣∣∣∣
b

a

=

∫ b

a

udv +

∫ b

a

vdu (4.72)

for the partial integration.

Therefore,

I =

∫ +∞

−∞
dξ ψ̃(ξ)︸︷︷︸

u

d

dξ

d

dξ
ψ(ξ)

︸ ︷︷ ︸
v′

= ψ̃(ξ)
d

dξ
ψ(ξ)

∣∣∣∣
+∞

−∞
−
∫ +∞

−∞
dξ

{
d

dξ
ψ̃(ξ)

}{
d

dξ
ψ(ξ)

}
(4.73)

Since ψ̃(+∞) = ψ̃(−∞) = 0:

I = −
∫ +∞

−∞
dξ

{
d

dξ
ψ̃(ξ)

}{
d

dξ
ψ(ξ)

}
(4.74)

Applying the same procedure to J, we arrive at

J =

∫ +∞

−∞
dξ ψ(ξ)︸︷︷︸

u

d

dξ

d

dξ
ψ̃(ξ)

︸ ︷︷ ︸
v′

= ψ(ξ)
d

dξ
ψ̃(ξ)

∣∣∣∣
+∞

−∞
−
∫ +∞

−∞
dξ

{
d

dξ
ψ(ξ)

}{
d

dξ
ψ̃(ξ)

}
(4.75)

Again imposing the conditions ψ(+∞) = ψ(−∞) = 0 result in
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J = −
∫ +∞

−∞
dξ

{
d

dξ
ψ(ξ)

}{
d

dξ
ψ̃(ξ)

}
(4.76)

Consequently, I =J and thus

−
∫ +∞

−∞
dξ

(
ψ̃(ξ)

d2

dξ2
ψ(ξ)− ψ(ξ)

d2

dξ2
ψ̃(ξ)

)
= 0. (4.77)

With this result equation (4.67) is:

−
∫ +∞

−∞
dξβξrψ(ξ)ψ̃(ξ) =

∫ +∞

−∞
dξ

(
Ê − ̂̃E

)
ψ(ξ)ψ̃(ξ) (4.78)

or,

β

∫ +∞

−∞
dξξrψ(ξ)ψ̃(ξ) =

(
̂̃
E − Ê

)∫ +∞

−∞
dξψ(ξ)ψ̃(ξ) (4.79)

In particular choosing ψm(ξ) (m ∈ N) for ψ(ξ) we have

β

∫ +∞

−∞
dξξrψm(ξ)ψ̃(ξ) =

(
̂̃
E − Êm

)∫ +∞

−∞
dξψ(ξ)ψ̃(ξ) (4.80)

Using the completeness property of the set of functions {ψn(ξ)}, we can write the

following series expansion for ψ̃(ξ) with a priori expansion coefficients αn

ψ̃(ξ) =
∞∑
n=0

αnψn(ξ) (4.81)
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Substituting (4.81) into (4.80) results in

β

∫ +∞

−∞
dξξrψm(ξ)

∞∑
n=0

αnψn(ξ) =

(
̂̃
E − Êm

)∫ +∞

−∞
dξψm(ξ)

∞∑
n=0

αnψn(ξ) (4.82)

We know that Ê = E/~ω and Em = (m + 1/2)~ω; therefore, Êm = (m + 1/2), which

result in

β

∞∑
n=0

αn〈ψm(ξ)|ξr|ψn(ξ)〉 =

[
̂̃
E − (m+ 1/2)

] ∞∑
n=0

αn〈ψm(ξ)|ψn(ξ)〉 (4.83)

right hand side of equation (4.83) can be named in the following form,

For the ‘‘interaction’’ matrix element (the term in the angled brackets) we write

Armn = 〈ψm(ξ)|ξr|ψn(ξ)〉. (4.84)

Writing the explicit expression for ψm(ξ) and ψn(ξ) we obtain:

β

∞∑
n=0

αn

∫ +∞

−∞
dξ

1√√
πm!2m

Hm(ξ)e−ξ
2/2ξr

1√√
πn!2n

Hn(ξ)e−ξ
2/2

=

[
̂̃
E − (m+ 1/2)

] ∞∑
n=0

αn

∫ +∞

−∞
dξ

1√√
πm!2m

√
πn!2n

Hm(ξ)e−ξ
2/2Hn(ξ)e−ξ

2/2

(4.85)

Introducing the function,
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Ul(ξ) =
1√√
πl!2l

Hl(ξ)e
−ξ2/2 (4.86)

Leads to

β

∞∑
n=0

αn〈Um(ξ)|ξr|Un(ξ)〉 =

[
̂̃
E − (m+ 1/2)

] ∞∑
n=0

αn〈Um(ξ)
∣∣Un(ξ)〉

With respect to the fact that

∫ +∞

−∞
dξUm(ξ)Un(ξ) = δmn (4.87)

we obtain

〈Um(ξ)
∣∣Un(ξ)〉 = δmn (4.88)

Therefore, we have

β

∞∑
n=0

αn〈Um(ξ)
∣∣ξr
∣∣Un(ξ)〉 =

[
̂̃
E − (m+ 1/2)

] ∞∑
n=0

αnδmn (4.89)

Using the expression for Um(ξ) and Un(ξ) according to (4.86), we have:

〈Um(ξ)
∣∣ξr
∣∣Un(ξ)〉 =

1√√
πm!2m

1√√
πn!2n

∫ ∞
−∞

dξHm(ξ)Hn(ξ)ξre−ξ
2

(4.90)
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Preparatory Calculations:

Hm(ξ) = amξ
m + am−2ξ

m−2 + · · · (4.91a)

Hn(ξ) = bnξ
n + bn−2ξ

n−2 + bn−4ξ
n−4 + · · · (4.91b)

‘

Coefficients of Hm(ξ)Hn(ξ) can be determined

Coefficient {Hm(ξ)Hn(ξ)} =




am
am−2

...



[
bn bn−2 bn−4 . . .

]

=




ambn ambn−2 ambn−4 . . .
am−2bn am−2bn−2 am−2bn−4 . . .

...
...

...
. . .




Exponents {Hm(ξ)Hn(ξ)} =




ξm

ξm−2

...



[
ξn ξn−2 ξn−4 . . .

]

=




ξmξn ξmξn−2 ξmξn−4 . . .
ξm−2ξn ξm−2ξn−2 ξm−2ξn−4 . . .

...
...

...
. . .




The following table provides the normalized Hermite polynomials for the first ten poly-

nomials.
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U
l

ξ0
ξ1

ξ2
ξ3

ξ4
ξ5

ξ6
ξ7

ξ8
ξ9

U
0
(ξ

)
0

0.
75

11
0

0
0

0
0

0
0

0

U
1
(ξ

)
0.

37
56

0
-0

.1
87

8
0

0
0

0
0

0
0

U
2
(ξ

)
0

0.
12

52
0

-0
.1

87
8

0
0

0
0

0
0

U
3
(ξ

)
0.

03
13

0
-0

.0
93

9
0

0.
02

35
0

0
0

0
0

U
4
(ξ

)
0

0.
00

63
0

-0
.0

31
3

0
0.

02
35

0
0

0
0

U
5
(ξ

)
0.

00
1

0
-0

.0
07

8
0

0.
01

17
0

-0
.0

02
0

0
0

U
6
(ξ

)
0

0.
00

01
0

-0
.0

01
6

0
0.

00
39

0
-0

.0
02

0
0

U
7
(ξ

)
0

0
-0

.0
00

3
0

0.
00

1
0

-0
.0

01
0

0.
00

01
0

U
8
(ξ

)
0

0
0

0
0

0.
00

02
0

-0
.0

00
3

0
0.

00
01

U
9
(ξ

)
0

0
0

0
0

0
-0

.0
00

1
0

0.
00

01
0
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Obviously we can write:

• If l = 2k + 1, then

Ul(ξ) =
k∑
i=0

α2i+1ξ
2i+1. (4.92)

• If l = 2k, then

Ul(ξ) =
k∑
i=0

α2iξ
2i. (4.93)

Whenever the result of equation (4.90) is an even function, we have a nonvanishing

outcome otherwise the outcome is zero. From the right-hand side of equation (4.90)

we have four different cases where the outcome is an even function.

Note: We denote the mth moment with respect to kernel e−ξ
2

by Im:

Im =

∫ +∞

−∞
dξξme−ξ

2

(4.94)

• When r = 2r′ (even), the following two conditions are valid

Case 1: m = 2m′ + 1 (odd) and n = 2n′ + 1 (odd)

Um(ξ) is an odd polynomial

Un(ξ) is an odd polynomial
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Multiplication of Um(ξ) and Un(ξ) results in an even function. Then the multipli-

cation of an even function (xr) by the resulting even function is itself an even func-

tion. Therefore, based on equation (4.105d) in Section 4.4 and equations(4.92)

and (4.93), we can write the following result:

β

∞∑
n=0

αn

∫ +∞

−∞
dξ

m′∑

k=0

α2k+1 ξ
2k+1ξ2r′

n′∑

l=0

α2l+1 ξ
2l+1e−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm (4.95)

Exchanging the order of summations and integration gives:

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k+1 α2l+1

∫ +∞

−∞
dξ ξ2k+1 ξ2r′ ξ2l+1 e−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

(4.96)

In view of the equation (4.94), the integral in equation (4.96) is equal to I2k+2l+2r′+2

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k+1 α2l+1︸ ︷︷ ︸
α′n,2k+2,2l+1

I2k+2l+2r′+2 =

[
̂̃
E − (m+ 1/2)

]
αm

Case 2: m = 2m′ (even)& n = 2n′ (even)

Um(ξ) is an even polynomial

Un(ξ) is an even polynomial

Multiplication of Um(x) and Un(ξ) results in an even function. Then the multi-

plication of an even function (ξr) by our even function is again an even function.
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Therefore, based on equation (4.105d) in Section 4.4 and equations (4.92) and

(4.93), we can have the following result:

β

∞∑
n=0

αn

∫ +∞

−∞
dξ

m′∑

k=0

α2k ξ
2kξ2r′

n′∑

l=0

α2l ξ
2le−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

(4.97)

Therefore, exchanging the order of summations and integration gives:

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k α2l

∫ +∞

−∞
dξ ξ2k ξ2r′ ξ2l e−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

In view of the equation (4.94), the integral in equation (4.98) is I2k+2l+2r′

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k α2l︸ ︷︷ ︸
α′2n,2k,2l

I2k+2l+2r′ =

[
̂̃
E − (m+ 1/2)

]
αm

• When r = 2r′ + 1 (odd), the following two conditions are valid

Case 1: m = 2m′ (even)& n = 2n′ + 1 (odd)

Um(ξ) is an even polynomial

Un(ξ) is an odd polynomial

Multiplication of Um(ξ) and Un(ξ) results in an odd function. Then multiplica-

tion of an odd function (ξr) by the resulting odd function is an even function.

Therefore, based on equation (4.105d) in Section 4.4 and equations (4.92) and

(4.93), we can result the following;
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β

∞∑
n=0

αn

∫ +∞

−∞
dξ

m′∑

k=0

α2k ξ
2kξ2r′+1

n′∑

l=0

α2l+1 ξ
2l+1e−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

(4.98)

Therefore,

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k α2l+1

∫ +∞

−∞
dξ ξ2k ξ2r′+1 ξ2l+1 e−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

(4.99)

In view of the equation (4.94), the integral in equation (4.99) is I2k+2l+2r′+2

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k+1 α2l+1︸ ︷︷ ︸
α′n,2k+1,2l+1

I2k+2l+2r′+2 =

[
̂̃
E − (m+ 1/2)

]
αm

(4.100)

Case 2: m = 2m′ + 1 (odd)& n = 2n′ (even)

Um(ξ) is an even polynomial

Un(ξ) is an odd polynomial

Multiplication of Um(ξ) and Un(ξ) results in an odd function. Then multiplica-

tion of an odd function (ξr) by the resulting odd function is an even function.

Therefore, based on equation (4.105d) in Section 4.4 and equations (4.92) and

(4.93), we can result the following;
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β

∞∑
n=0

αn

∫ +∞

−∞
dξ

m′∑

k=0

α2k+1 ξ
2k+1ξ2r′+1

n′∑

l=0

α2l ξ
2le−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

(4.101)

Therefore,

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k+1 α2l

∫ +∞

−∞
dξ ξ2k+1 ξ2r′+1 ξ2l e−ξ

2

=

[
̂̃
E − (m+ 1/2)

]
αm

(4.102)

In view of the equation (4.94), the integral in equation (4.102) is I2k+2l+2r′+2

β

∞∑
n=0

m′∑

k=0

n′∑

l=0

αn α2k+1 α2l︸ ︷︷ ︸
α′n,2k+1,2l

I2k+2l+2r′+2 =

[
̂̃
E − (m+ 1/2)

]
αm

(4.103)

I2l can be calculated from equation (4.121) in Section 4.4.

4.4 Development of a Recursion Formula for the

Calculation of Im(ξ)

This section as it is used in our calculations extensively is in order to find out the value

of I’s.

This section is devoted to the calculation of the integrals which appear in the evaluation

of interaction terms, < Um(ξ)|ξr|Un(ξ) >, i.e.,
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Im =

∫ +∞

−∞
dξ pm(ξ) e−ξ

2

. (4.104)

Observe that we have the following results:

I0 =

∫ +∞

−∞
dξ e−ξ

2

(4.105a)

I1 =

∫ +∞

−∞
dξ ξ e−ξ

2

= 0 (4.105b)

I2 =

∫ +∞

−∞
dξ ξ2 e−ξ

2

(4.105c)

I2l+1 =

∫ +∞

−∞
dξ ξ2l+1 e−ξ

2

= 0 (4.105d)

I2l =

∫ +∞

−∞
dξ ξ2l e−ξ

2

(4.105e)

Furthermore, we have

∫ +∞

−∞
dξ e−ξ

2

=
√
π. (4.106)

Based on (4.106) we obtain the values for I2l(l ∈ N) as follows.

I2 = 2

∫ ∞
0

dξ ξ2 e−ξ
2

= 2

{
ξ3

3
e−ξ

2
∣∣∣
∞

0
−
∫ +∞

0

dξ
ξ3

3
(−2ξ) e−ξ

2

}
(4.107)

Considering the fact that
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ξ3

3
e−ξ

2
∣∣∣
∞

0
= 0 (4.108)

We have,

I2 =
4

3

∫ +∞

0

dξ ξ4 e−ξ
2

=
2

3

{
2

∫ +∞

0

dξ ξ4 e−ξ
2

}

=
2

3
I4 (4.109)

Or, alternatively,

I4 =
3

2
I2 (4.110)

Thus, reducing the calculation of I4 to I2.

I4 = 2

∫ +∞

0

dξ ξ4 e−ξ
2

= 2

{
ξ5

5
e−ξ

2
∣∣∣
∞

0
−
∫ +∞

0

dξ
ξ5

5
(−2ξ) e−ξ

2

}
(4.111)

=
4

5

∫ +∞

0

dξ ξ6 e−ξ
2

=
2

5

{
2

∫ +∞

0

dξ ξ6 e−ξ
2

}

=
2

5
I6 (4.112)

Or, alternatively,



4.4 Development of a Recursion Formula for the Calculation of Im(ξ) 85

I6 =
5

2
I4 (4.113)

Thus, reducing the calculation of I6 to I4.

Based on equations (4.110) and (4.114) we have:

I6 =
5

2

3

2
I2 (4.114)

Similarly we can show that

I2l =
2l − 1

2
I2l−2 (4.115)

Or, alternatively,

I2l−2 =
2

2l − 1
I2l (4.116)

Finally I2l can be expressed in terms of I2l+2:
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I2l =

∫ +∞

−∞
dξ ξ2l e−ξ

2

= 2

∫ +∞

0

dξ ξ2l e−ξ
2

= 2

{
ξ2l+1

2l + 1
e−ξ

2
∣∣∣
∞

0
− 1

2l + 1

∫ +∞

0

dξ (−2ξ) ξ2l+1 e−ξ
2

}

=
2

2l + 1
2

∫ +∞

0

dξ ξ2l+2 e−ξ
2

=
2

2l + 1
I2l+2 (4.117)

Thus,

I2l =
2

2l + 1
I2l+2 (4.118)

Or, similarly,

I2l+2 =
2

2l + 3
I2l+4. (4.119)

The following reformulations are self explanatory:

I2l+4 =
2l + 3

2
I2l+2

=
2l + 3

2

2l + 1

2
I2l (4.120)

Consequently by induction we can write:
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I2l =
1

2l

l−1∏

l=0

(2l + 1)I0 (4.121)

Therefore, we have been able to reduce the calculation of I2l to I0 with I0 being equal

to
√
π.

This convenient recursion formula for the calculation of I2l has extensively used in our

calculation significantly facilitating the numerical procedures.

4.5 An Observation How Matlab Presents the Cal-

culated Eigenvalues and Eigenvectors

In numerical calculation of perturbed harmonic oscillator problem with Matlab an im-

portant observation was made. The observation was made in relation to the solution

of eigenequations. The ‘‘problem’’ occurs whenever the dimension of the system ma-

trix exceeds 5. In case of r being an even number, the matrix exhibits the following

symmetry pattern.








A11 0 A13 0
0 A22 0 A24

A31 0 A33 0
0 A42 0 A44


+




d11 0 0 0
0 d22 0 0
0 0 d33 0
0 0 0 d44











α1

α2

α3

α4


 = λ




α1

α2

α3

α4




(4.122)

The pattern of the A-matrix suggests the following ‘‘obvious’’ decomposition of the A

and the diagonal matrices into the matrices P , Q and E, F , respectively.
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A11 0 A13 0
0 0 0 0
A31 0 A33 0
0 0 0 0




︸ ︷︷ ︸
P

+




0 0 0 0
0 A22 0 A24

0 0 0 0
0 A42 0 A44




︸ ︷︷ ︸
Q

+




d11 0 0 0
0 0 0 0
0 0 d33 0
0 0 0 0




︸ ︷︷ ︸
E

+




0 0 0 0
0 d22 0 0
0 0 0 0
0 0 0 d44




︸ ︷︷ ︸
F





+








α1

0
α3

0


+




0
α2

0
α4








= λ








α1

0
α3

0




︸ ︷︷ ︸
a

+




0
α2

0
α4




︸ ︷︷ ︸
b





(4.123)

therefore, we obtain:

[P +Q+ E + F ][a+ b] = λ[a+ b] (4.124a)

Pa+ 0 + 0 +Qb+ Ea+ Fb = λa+ λb (4.124b)

based on equation (4.124a) and (4.124b)





Pa+ Ea = λa

Qb+ Fb = λb
=⇒





(P + E)︸ ︷︷ ︸
T

a = λa

(Q+ F )︸ ︷︷ ︸
S

b = λb

the above equations show that this system can be decoupled and diagonal matrix

D = E + F can be absorbed into A.
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On the other hand, when r is odd we have








0 A12 0 A14

A21 0 A23 0
0 A32 0 A34

A41 0 A43 0


+




d11 0 0 0
0 d22 0 0
0 0 d33 0
0 0 0 d44











α1

α2

α3

α4


 = λ




α1

α2

α3

α4


 (4.125)

By decomposing the matrices A and D in the obvious form:








0 A12 0 A14

0 0 0 0
0 A32 0 A34

0 0 0 0


+




0 0 0 0
A21 0 A23 0
0 0 0 0
A41 0 A43 0




+




d11 0 0 0
0 0 0 0
0 0 d33 0
0 0 0 0


+




0 0 0 0
0 d22 0 0
0 0 0 0
0 0 0 d44








+








α1

0
α3

0


+




0
α2

0
α4








= λ








α1

0
α3

0


+




0
α2

0
α4








(4.126)

we obtain

[P +Q+ E + F ][a+ b] = λ[a+ b] (4.127a)

0 + Pb+Qb+ 0 + Ea+ Fb = λa+ λb (4.127b)

where the zero indicates a 4-by-4 null matrix. Taking into account the structure of

the matrices P , Q, E and F and the structure of the vectors a and b, we realize the

equation (4.127a) and (4.127b) can be written in the form.
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Pb+ Ea = λa

Qa+ Fb = λb
=⇒





Pb = (λI − E)a

Qa = (λI − F )b

However, in this case the original system-matrix A + D cannot be decoupled and the

diagonal matrix D cannot be absorbed into the matrices P and Q.

βrx
r with r being even As we learned from this analysis in cases where r in βrx

r

is an even number the discretized version of the problem which leads to a system

matrix can be decoupled into eigenvalue problem. As rule the eigenvalues are arranged

in increasing order with their corresponding eigenvectors arranged in the resulting

eigenvector matrix. In carrying out the evaluation of the eigenpairs by Matlab two

cases may happen: Ndim the dimension of the system matrix less equal or larger than

5, as we have observed.

Case 1: the system-matrix Amn for η = 100 and Ndim = 5 for r=2 is the following

(Ndim + 1)× (Ndim + 1) matrix:




50.5000 0 0.2500 0 0 0

0 150.7500 0 0.1250 0 0

0.2500 0 250.3125 0 0.0313 0

0 0.1250 0 350.0729 0 0.0052

0 0 0.0313 0 450.0117 0

0 0 0 0.0052 0 550.0014




Eigenvalues of Amn are,
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50.4997 0 0 0 0 0

0 150.7499 0 0 0 0

0 0 250.3128 0 0 0

0 0 0 350.0730 0 0

0 0 0 0 450.0117 0

0 0 0 0 0 550.0014




with the corresponding eigenvectors of Amn




1.0000 0.0000 −0.0013 −0.0000 −0.0000 0.0000

−0.0000 1.0000 0.0000 0.0006 −0.0000 0.0000

−0.0013 0.0000 −1.0000 −0.0000 −0.0002 0.0000

−0.0000 −0.0006 −0.0000 1.0000 −0.0000 0.0000

0.0000 −0.0000 0.0002 −0.0000 −1.0000 0.0000

0.0000 0.0000 0.0000 −0.0000 0.0000 1.0000




We recognize that the eigenvalues appear in the increasing order as we would expect.

Case 2: Next, we consider the same problem (η = 100, r = 2), however, this time

with Ndim = 8 instead of Ndim = 5. We obtain the following result:

the (8 + 1)× (8 + 1) system-matrix A has the following form:
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50.5000 0 0.2500 0 −0.0000 0 0.0000 0 −0.0000

0 150.7500 0 0.1250 0 0.0000 0 −0.0000 0

0.2500 0 250.3125 0 0.0313 0 0 0 −0.0000

0 0.1250 0 350.0729 0 0.0052 0 −0.0000 0

−0.0000 0 0.0313 0 450.0117 0 0.0007 0 0.0000

0 0.0000 0 0.0052 0 550.0014 0 0.0001 0

0.0000 0 0.0000 0 0.0007 0 650.0001 0 0.0000

0 −0.0000 0 −0.0000 0 0.0001 0 750.0000 0

−0.0000 0 −0.0000 0 0 0 0.0000 0 850.0000




for the eigenvalues of Amn we obtain:




50.4997 0 0 0 0 0 0 0 0

0 250.3128 0 0 0 0 0 0 0

0 0 450.0117 0 0 0 0 0 0

0 0 0 650.0001 0 0 0 0 0

0 0 0 0 850.0000 0 0 0 0

0 0 0 0 0 150.7499 0 0 0

0 0 0 0 0 0 350.0730 0 0

0 0 0 0 0 0 0 550.0014 0

0 0 0 0 0 0 0 0 750.0000




with the corresponding eigenvectors of Amn
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−1.0000 0.0013 0 0 0 0 0 0 0

0 0 0 0 0 −1 0.0006 0 0

0.0013 1 −0.0002 0 0 0 0 0 0

0 0 0 0 0 0.0006 1 0 0

0 −0.0002 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0 0




Comparing the two eigenvalue matrices, we realize that the eigenvalues do not appear

in increasing order, but rather seemingly in a mix order. However, a closer scrutiny

of the eigenvalues reveals the fact that the first five eigenvalues corresponds to the

S matrix and the remaining four eigenvalues correspond to the T matrix introduced

earlier this observation is of value since ordinarily it is assumed that the eigenvalues

appear in increasing order with larger eigenvalue being calculated with less accuracy.

Summary: The composition A −→ S + T carried out by Matlab automatically,

explains the apparent rearrangement of the eigenvalues in the eigenvalue matrix above.

In case of odd powers, there is no such a symmetry. Therefore, we do not have any

decoupling of matrix. However, when the matrix dimension increases the off-diagonal

elements approach zero. This property may cause decoupling toward the end of eigen-

value and eigenvector matrices where off-diagonals are nearly zero.
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4.6 Summary

An easy-to-implement method for the determination of eigenpairs of monomially per-

turbed harmonic oscillators has been purposed. The method is based on using the

ideal unperturbed harmonic oscillator as an auxiliary problem. We have shown that

our solution concept leads to an algebraic system for the determination of unknowns

of the problem with closed-form formula for the arising matrix elements.



Chapter 5

Numerical Results

5.1 Numerical Results

In this chapter we apply our theory, developed and discussed in Chapter 4, to a large

number of problems and present the numerical results graphically. The results shows

that the proposed formalism applies to perturbed harmonic oscillators with arbitrary

monomials βrx
r with arbitrarily high integer-valued exponents r, irrespectively, of r

being even or odd.

To obtain numerical results we first truncate the sum in (5.1) by taking into account

N + 1 terms only (n = 0 · · ·N). Furthermore, we introduced
˜̃̂
E =

̂̃
E/β to obtain:

N∑
n=0

αn

∫ +∞

−∞
dξUm(ξ)ξrUn(ξ) = [

˜̃̂
E − (m+

1

2
)η]αm (5.1)

For a given m (5.1) represents one equation for the unknown expansion coefficients

{α0, · · · , αN}. Let m vary from 0 to N, then we obtain an (N +1)× (N +1) eigenvalue

equation. The eigenvalues and corresponding eigenvectors of the resulting eigensystem

95
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are the desired
˜̃̂
E k and the associated eigenvectors, which are represented as the column

vectors of the matrix {αlk
∣∣l = 0, · · · , N ; k = 0, · · · , N}.

Next, we consider graphs for r being even, respectively, odd.

5.1.1 Monomial Perturbations of Even Order (r = 2r′)
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Unperturbed Harmonic Oscillator
Perturbed Harmonic Oscillator

Figure 5.1: Ndim=8, η = 100, r = 2, 3rd eigensolution of Perturbed Harmonic Oscillator

In figure (5.1), we chose η to be 100 which corresponds to a very small perturbation.

This result from the fact that η = 1/β with β being the perturbation parameter.

β appearing as βxr in the Schrödinger equation. As we can see for a small pertur-

bation, perturbed and unperturbed harmonic oscillator have nearly indistinguishable

eigenfunctions ψ and ψ̃.

We could observe that for small values of the perturbation parameter β (large values

of η) the graphs for perturbed and unperturbed eigenfunctions remain nearly indis-

tinguishable. This is comforting since this property ensures rapid convergence in the
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Figure 5.2: Ndim=5, η = 100, r = 2, 3rd eigensolution of Perturbed Harmonic Oscillator

series expansions for the perturbed solution. We examined this behavior by increasing

the Ndim up to 16.
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Figure 5.3: Ndim=16, η = 100, r = 2, 3rd eigensolution of Perturbed Harmonic Oscil-
lator

In Figure (5.3), by increasing the perturbation (reducing η = 1/β to 10) we observe

slight difference between the perturbed and unperturbed solutions which can be rec-
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ognized in the corresponding graphs.
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Figure 5.4: Ndim=5, η = 10, r = 2, 3rd eigensolution of Perturbed Harmonic Oscillator
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Figure 5.5: Ndim=10, η = 10, r = 2, 3rd eigensolution of Perturbed Harmonic Oscillator

In Figure (5.5), the case with η = 10 we have larger perturbation for various matrix

dimensions.

When η is one, the magnitude of perturbation is large, and perturbation can be seen
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Figure 5.6: Ndim=8, η = 1, r = 2, 3rd eigensolution of Perturbed Harmonic Oscillator

clearly.
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Figure 5.7: Ndim=5, η = 1, 3rd eigensolution of Perturbed Harmonic Oscillator

In Figures (5.6) and (5.7) η is equal to 1 (β = 1). Again rapid convergence manifests

itself in the fact that, irrespective of the chosen matrix dimensions, we obtain virtually

the same result for the perturbed eigenfunctions for the same degree of perturbation.
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By analyzing graphs, eigenvalues and eigenvectors of matrix dimension five and eight in

detail, we can see disorientation of their eigenvalues and eigenvectors. This is because

of the decoupling of Matlab for calculating these values for matrix dimension of more

than five. This is an issue for even-function perturbation mostly, as we have some sort

of symmetry in Amn matrix.

The symbolic (automatic) decoupling of the system-matrices for even r are demon-

strated here for Ndim = 5 and Ndim = 8, respectively. The graphical representation of

the eigenvalues clearly demonstrate the matrix decoupling and explains the apparent

violation of monotically increasing of the successive eigenvalues.

Amn =




1 0 0.25 0 0 0

0 2.25 0 0.125 0 0

0.25 0 2.812 0 0.0313 0

0 0.125 0 3.572 0 0.0052

0 0 0.0313 0 4.5117 0

0 0 0 0.0052 0 5.5014




Eigenvalues and the corresponding eigenvectors for Ndim = 5 with η = 1 and r=2 are

calculated next.

Eigenvalues:
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0.9661 0 0 0 0 0

0 2.2383 0 0 0 0

0 0 2.8458 0 0 0

0 0 0 3.5846 0 0

0 0 0 0 4.5123 0

0 0 0 0 0 5.5014




The corresponding eigenvectors:




0.991 0 −0.1342 0 −0.0013 0

0 0.9956 0 0.0933 0 0.0001

−0.1342 0 −0.9908 0 −0.0186 0

0 −0.0933 0 0.9956 0 0.0027

0.0012 0 0.0186 0 −0.9998 0

0 0.0001 0 −0.0027 0 1




The above six eigenvalues are graphically represented in Figure (5.8).

As expected the eigenvalues appear in ascending order corresponding from the 0th to

the 5th perturbed eigenfunctions.

Amn for Ndim = 8 with the same perturbation strength (η = 1) as in the previous case.
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Figure 5.8: The graph of the Eigenvalues for Ndim=5, r = 2, η = 1

Amn =




1 0 0.25 0 0 0 0 0 0

0 2.25 0 0.1250 0 0 0 0 0

0.25 0 2.812 0 0.0313 0 0 0 0

0 0.125 0 3.5729 0 0.0052 0 0 0

0 0 0.031 0 4.5117 0 0.0007 0 0

0 0 0 0.0052 0 5.5014 0 0.0001 0

0 0 0 0 0 0 6.5001 0 0

0 0 0 0 0 0 0 7.5 0

0 0 0 0 0 0 0 0 8.5




Eigenvalue and eigenvector for Ndim = 8 corresponding to a ‘‘perturbation’’ βξ2 is

shown next.

Eigenvalues:
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0.9661 0 0 0 0 0 0 0 0

0 2.8458 0 0 0 0 0 0 0

0 0 4.5123 0 0 0 0 0 0

0 0 0 6.5001 0 0 0 0 0

0 0 0 0 8.5 0 0 0 0

0 0 0 0 0 2.2383 0 0 0

0 0 0 0 0 0 3.5846 0 0

0 0 0 0 0 0 0 5.5014 0

0 0 0 0 0 0 0 0 7.5




The corresponding eigenvectors:




0.991 −0.1342 0.0013 0 0 0 0 0 0

0 0 0 0 0 −0.9956 0.0933 −0.0001 0

−0.1342 −0.9908 0.0186 0 0 0 0 0 0

0 0 0 0 0 0.0933 0.9956 −0.0027 0

0.0012 0.0186 0.9998 0.0003 0 0 0 0 0

0 0 0 0 0 −0.0001 −0.0027 −1 0

0 0 −0.0003 1 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0 0




The above are the eigenvalues and the corresponding eigenvectors for Ndim = 8. It

is shown that the eigenvalues appear misplaced (not in monotically increasing order).

However, this misplacement follows a recognizable pattern. Obviously wherever the
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eigenvalues are shifted to another column its corresponding eigenvector is shifted to

the same column.
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Figure 5.9: The graph of the Eigenvalues for Ndim=8, r = 2, η = 1

Therefore, in order to compare the perturbed solution associated with the unperturbed

one, we should figure out which solution in the eigenvalue matrix we are looking for.

For instance, in the case Ndim = 8 the 3rd solution appears in column seven. That is,

if we want to compare 3rd unperturbed and perturbed solutions, comparison should

be made between 4th column of the ψ matrix and the 7th column of the ψ̃ matrix. It

took us pains to decipher that Matlab decomposes matrices (in eigenvalue problem)

whenever it is possible to do so. Our conclusion is the observing the monotonicity of the

order of eigenvalues in a good check to recognize this decomposition. Or, alternatively,

we can order the eigenvalues in increasing order (with reordering their corresponding

eigenvectors). Then, no misinterpretation can take place.

The following graphs show a fix Ndim with varying exponents r for even-function mono-
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mials.
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Figure 5.10: Ndim=9, η = 5, r = 4, 3rd eigensolution of Perturbed Harmonic Oscillator

The perturbative term for the above plot is 5~ωξ4. Consequently, the magnitude of

the perturbation is 5~ω which corresponds to β = 5. Figure (5.11) compares the

3rd solution of the perturbed solution with the corresponding eigenfunction of the

unperturbed harmonic oscillator.

In this figure (5.11), we have even-order perturbation (5ξ6) but perturbation order is

different from Figure (5.10). In order to find the third perturbed solution in Figure

(5.11) we should look for the corresponding perturbed solution in eigenvalue matrix.

In the above plot (5.12), matrix dimension is different, but we are comparing the same

solution with the same perturbation term.

In the next section we will focus on the monomial perturbation of off order.
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Figure 5.11: Ndim=9, η = 5, r = 6, 3rd eigensolution of Perturbed Harmonic Oscillator
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Figure 5.12: Ndim=5, η = 5, r = 6, 3rd eigensolution of Perturbed Harmonic Oscillator

5.1.2 Monomial Perturbations of Odd Order (r = 2r′ + 1)

For r being an odd number we have the following pattern for the system-matrix A2r′+1
mn :

A(2r′+1)
mn =




d11 A12 0 A14

A21 d22 A23 0

0 A32 d33 A34

A41 0 A43 d44
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Figure 5.13: Ndim=9, η = 5, r = 8, 3rd eigensolution of Perturbed Harmonic Oscillator
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Figure 5.14: Ndim=8, η = 100, r = 1, 3rd eigensolution of Perturbed Harmonic Oscil-
lator

Figure (5.14) is similar to Figure (5.1). The only difference between them is the fact

that the latter figure is for perturbation power one, which signifies a linear perturbation.

The matrix dimension and perturbation coefficient are held to be the same.

Similar to the previous figure, this figure (5.15) corresponds to Figure (5.2) with dif-
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Figure 5.15: Ndim=5, η = 100, r = 1, 3rd eigensolution of Perturbed Harmonic Oscil-
lator

ferent perturbation power and a very small magnitude of perturbation.
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Figure 5.16: Ndim=16, η = 100, r = 1, 3rd eigensolution of Perturbed Harmonic
Oscillator

The above Figures of (5.14), (5.15), and (5.16) illuminate the fact that by changing

the matrix dimension for the same solution and with the same ‘‘strength’’ for the
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perturbation, we obtain nearly the same graph.

Next, we examine the effect of changing η. Remember, smaller η, means larger β which

means stronger perturbation (η = 1/β).
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Figure 5.17: Ndim=5, η = 10, r = 1, 3rd eigensolution of Perturbed Harmonic Oscillator
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Figure 5.18: Ndim=10, η = 10, r = 1, 3rd eigensolution of Perturbed Harmonic Oscil-
lator
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From the plot (5.18) it is obvious that by changing the matrix dimension, for the same

perturbation, we obtain results which are virtually indistinguishable. These results

show the rapid convergence of the series expansions for expressing perturbed eigen-

functions in terms eigenfunctions of the harmonic oscillator.

As can be expected, by changing the perturbation strength, we should be able to

recognize the change in the eigenfunctions of the perturbed harmonic oscillator. We

can examine this perturbation for two matrix dimensions as follows. In Figure (5.19)
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Figure 5.19: Ndim=8, η = 1, r = 1, 3rd eigensolution of Perturbed Harmonic Oscillator

and (5.20) with η being one, we have a comparatively strong perturbation.

As explained thoroughly before, in the case of r = 2r′ + 1 no decoupling of the eigen-

system matrix can take place. The only exception is when the diagonal terms is much

stronger compared to the off-diagonal one. Now, we compare these two situations by

examining Amn and its eigenpairs for both cases.
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Figure 5.20: Ndim=5, η = 1, r = 1, 3rd eigensolution of Perturbed Harmonic Oscillator

Amn for the non-decoupling case is:

Amn =




0.5 0.5 0 0 0 0

0.5 1.5 0.25 0 0 0

0 0.25 2.5 0.0625 0 0

0 0 0.0625 3.5 0.0104 0

0 0 0 0.0104 4.5 0.0013

0 0 0 0 0.0013 5.5




Eigenvalues and the corresponding eigenvectors for Ndim = 5, η = 1 and r = 1 are as

follows.

Eigenvalues:
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0.2887 0 0 0 0 0

0 1.6450 0 0 0 0

0 0 2.5623 0 0 0

0 0 0 3.5039 0 0

0 0 0 0 4.5001 0

0 0 0 0 0 5.5000




the corresponding eigenvectors:




0.9202 −0.3865 −0.0620 −0.0014 0 0

0 0.9956 0 0.0933 0 0

0.0440 0.2594 −0.9626 −0.0642 0.0003 0

−0.0009 −0.0087 0.0642 −0.9978 0.0104 0

0 0 −0.0003 0.0104 0.9999 0.0013

0 0 0 0 −0.0013 1




The following Figure (5.21) is a graph for the eigenvalues for Ndim = 5 with odd

order perturbation. From the graph, it can be deduced that these eigenvalues are in

ascending order which is the right order. The reason for having 6-by-6 matrix is that

the eigenvalues and the corresponding eigenvectors start from 0th solution to the fifth

solution.

Amn for matrix dimension ten is:
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Figure 5.21: The graph of the Eigenvalues for Ndim=5, r = 1, η = 1

Amn =




0.5 0.5 0 0 0 0 0 0 0 0 0

0.5 1.5 0.25 0 0 0 0 0 0 0 0

0 0.25 2.5 0.0625 0 0 0 0 0 0 0

0 0 0 3.5 0.0104 0 0 0 0 0 0

0 0 0 0.0104 4.5 0.0013 0 0 0 0 0

0 0 0 0 0.0013 5.5 0.0001 0 0 0 0

0 0 0 0 0 0.0001 6.5 0 0 0 0

0 0 0 0 0 0 0 7.5 0 0 0

0 0 0 0 0 0 0 0 8.5 0 0

0 0 0 0 0 0 0 0 0 9.5 0

0 0 0 0 0 0 0 0 0 0 10.5




The eigenvalues and the corresponding eigenvector for matrix dimension ten with the

same η and r is
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Eigenvalues:




0.9661 0 0 0 0 0 0 0 0

0 2.8458 0 0 0 0 0 0 0

0 0 4.5123 0 0 0 0 0 0

0 0 0 6.5001 0 0 0 0 0

0 0 0 0 8.5 0 0 0 0

0 0 0 0 0 2.2383 0 0 0

0 0 0 0 0 0 3.5846 0 0

0 0 0 0 0 0 0 5.5014 0

0 0 0 0 0 0 0 0 7.5




The corresponding eigenvectors:
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−0.9202 0.3865 0.0620 −0.0014 0 0 0 0 0 0 0

0.3889 0.8850 0.2557 −0.0084 0 0 0 0 0 0 0

−0.0440 −0.2594 0.9626 −0.0642 0.0003 0 0 0 0 0 0

0.0009 0.0087 −0.0642 −0.9978 0.0104 0 0 0 0 0 0

0 0 0 0.0104 0.9999 −0.0013 0 0 0 0 0

0 0 0 0 −0.0013 −1 0.0001 0 0 0 0

0 0 0 0 0 0.0001 1 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1




Apparently, studying eigenvalues and eigenvectors for Ndim = 10 shows misplacement

of the last two columns. This misplacement of columns happened after the appearance

of some sort of symmetry in matrix Amn.

Our eigenvalues are shifted to another column their corresponding eigenvectors are

shifted to the corresponding columns.

The following graphs (5.23 - 5.26) show for different odd monomial perturbations with

a fixed Ndim.

As expected by increasing the order of perturbation, the harmonic oscillator is per-

turbed correspondingly.
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Figure 5.22: The graph of the Eigenvalues for Ndim=8, r = 2, η = 1
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Figure 5.23: Ndim=9, r = 3, η = 5, 3rd eigensolution of Perturbed Harmonic Oscillator

5.2 Conclusion

Our numerical results show a strong indication for the validity of our theoretical con-

siderations and their numerical implementation. These graphs show the robustness of

the numerical technique for perturbation powers vanishing small to very large values.
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Figure 5.24: Ndim=9, r = 5, η = 5, 3rd eigensolution of Perturbed Harmonic Oscillator
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Figure 5.25: Ndim=9, r = 7, η = 5, 3rd eigensolution of Perturbed Harmonic Oscillator

In contrast to the perturbative and/or asymptotic approaches our proposed formulation

tackles very weak to very strong perturbations in a unified form.

This is a very encouraging result and we feel satisfied that we could achieve all our

objectives with one stroke.
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Figure 5.26: Ndim=9, r = 9, η = 5, 3rd eigensolution of Perturbed Harmonic Oscillator

Our result also testify the accuracy of the developed novel recurrence formula devised

for the involved integrals and also for the representation of the Hermite polynomials.



Chapter 6

Future Work

6.1 Introduction

In the following sections, we will review a straight forward methodology for implement-

ing polynomially perturbed 1D harmonic oscillator and linearly-perturbed harmonic

oscillator in two dimensions. The involved steps follow the same logical explanation as

described in Chapters 5 and 6. we have provided the lay out of our proposed method-

ology for possible future works pertaining to this research. This section gives a theo-

retical explanation on how problems related to the polynomially perturbed harmonic

oscillators can be tackled.

6.2 Polynomially Perturbed Harmonic Oscillators

The results obtained in Chapter 4 can be utilized to solve polynomially perturbed har-

monic oscillators. Our previous auxiliary problem can be exploited as a new auxiliary

problem for our new ‘‘original’’ problem. The solutions of the ideal harmonic oscillator

119
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− d2

dξ2
ψ(ξ) +

1

2
ξ2ψ(ξ) = Ê ψ(ξ) (6.1)

is known to us. Equation (6.1) is scaled version of the following equation:

− ~2

2m0

d2

dx2
ϕ(x) +

1

2
m0ω

2x2ϕ(x) = E ϕ(x) (6.2)

By utilizing the above auxiliary problem and based on our methodology, we aim at

solving our new original problem, which is:

− ~2

2m0

d2

dx2
ϕ̃(x) +

1

2
m0ω

2x2ϕ̃(x) +
R∑
r=0

~ω
√(m0ω

~

)r
βrx

rϕ̃(x) = Ẽ ϕ̃(x) (6.3)

Replacing x by a dimensionless variable ξ (x = ξ/
√
α) and using the equation (4.56)

Chapter (4), the following relation results:

− ~2

2m0

α
d2

dξ2
ψ̃(ξ) +

1

2
m0ω

2 1

α
ξ2ψ̃(ξ) +

R∑
r=0

~ω
√(m0ω

~

)r
βr

1√
αr
ξrψ̃(ξ) = Ẽ ψ̃(ξ) (6.4)

Factorizing out the coefficient of the second term (m0ω
2/α), we have

m0ω
2

α

[
− ~2

2m0

α

m0ω2
α
d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ)

+
R∑
r=0

α

m0ω2
~ω
√(m0ω

~

)r
βr

1√
αr
ξrψ̃(ξ)

]
= Ẽ ψ̃(ξ) (6.5)
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Setting the coefficient of the first term to one, α can be obtained as:

α =
m0ω

~
(6.6)

Therefore, equation (6.5) can be rewritten as:

~ω

[
− d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) +

R∑
r=0

βrξ
rψ̃(ξ)

]
= Ẽ ψ̃(ξ) (6.7)

which can be represented in the following alternative form:

− d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) +

R∑
r=0

βrξ
rψ̃(ξ) =

̂̃
E ψ̃(ξ) (6.8)

Writing equation (6.8) more explicitly we obtain:

− d2

dξ2
ψ̃(ξ) +

1

2
ξ2ψ̃(ξ) +

(
β0ξ

0 + β1ξ
1 + · · ·+ βRξ

R
)
ψ̃(ξ) =

̂̃
E ψ̃(ξ) (6.9)

Multiplying equation (6.9) by ψ(ξ) and equation (6.1) by ψ̃(ξ) and subtracting the

resulting equations we arrive at:

[
−ψ(ξ)

d2

dξ2
ψ̃(ξ) + ψ̃(ξ)

d2

dξ2
ψ(ξ)

]
− (β0ξ

0 + β1ξ
1 + · · ·+ βRξ

R
)
ψ(ξ)ψ̃(ξ)

=

(
Ê − ̂̃E

)
ψ(ξ)ψ̃(ξ) (6.10)
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Integrating both sides of equation (6.10) from −∞ to +∞ leads to:

∫ +∞

−∞
dξ

[
−ψ(ξ)

d2

dξ2
ψ̃(ξ) + ψ̃(ξ)

d2

dξ2
ψ(ξ)

]
−
∫ +∞

−∞
dξ
(
β0ξ

0 + β1ξ
1 + · · ·+ βRξ

R
)
ψ(ξ)ψ̃(ξ)

=

(
Ê − ̂̃E

)∫ +∞

−∞
dξψ(ξ)ψ̃(ξ)(6.11)

The first integral at the left-hand side vanishes, as shown in Chapter (4). Consequently,

we obtain:

∫ +∞

−∞
dξ
(
β0ξ

0 + β1ξ
1 + · · ·+ βRξ

R
)
ψ(ξ)ψ̃(ξ) =

(
̂̃
E − Ê

)∫ +∞

−∞
dξψ(ξ)ψ̃(ξ) (6.12)

Writing more explicitly, we obtain:

∫ +∞

−∞
dξβ0ξ

0ψ(ξ)ψ̃(ξ) +

∫ +∞

−∞
dξβ1ξ

1ψ(ξ)ψ̃(ξ)

+ · · ·+ βR

∫ +∞

−∞
dξξRψ(ξ)ψ̃(ξ) =

(
̂̃
E − Ê

)∫ +∞

−∞
dξψ(ξ)ψ̃(ξ) (6.13)

In this case, each individual perturbation term can be calculated based of our technique

discussed thoroughly in Chapter (4). Therefore, we obtain:

∞∑
n=0

[
β0〈Um

∣∣∣ξ0
∣∣Un〉+ β1〈Um

∣∣ξ1
∣∣Un〉

+ · · ·+ βR〈Um
∣∣∣ξR
∣∣Un〉

]
αn =

[
̂̃
E − (m+ 1/2)

] ∞∑
n=0

αnδmn (6.14)
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Introducing the notation A
(r)
mn = βr〈Um|ξr

∣∣Un〉 equation (6.14) can be written in the

following compact form:

∞∑
n=0

[
β0A

0
mn + β1A

1
mn + · · ·+ βRA

R
mn

]
αn = [

̂̃
E − (m+ 1/2)]αm (6.15)

6.3 2D Linearly Perturbed Harmonic Oscillators

Our research in this work allows for solving linearly perturbed harmonic oscillator

problems in two dimension.

The following partial differential equation in 2D is used as an auxiliary problem for

linearly perturbed harmonic oscillator:

− ~2

2m0

∂2

∂x2
ϕ(x, y)− ~2

2m0

∂2

∂y2
ϕ(x, y) +

1

2
k1x

2ϕ(x, y) +
1

2
k2y

2ϕ(x, y) = Eϕ(x, y) (6.16)

Here, ~ is the reduced Planck’s constant; m0 is the mass of the electron and k specifies

the magnitude of the quadratic potential functions. Since our problem is in two-

dimensional domain, we have second derivatives with respect to both x and y for the

kinetic energy associated with the motions in x- and y-directions. In addition, for the

potential term in the Schrödinger equation, two terms appear, one for the x- and the

second one for the y-depenence.

Assuming a variable seperation for ϕ(x, y), i.e., can be variable separated and written

in the following way:
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ϕ(x, y) = ϕ1(x)ϕ2(y) (6.17)

and substituting into (6.16), we obtain:

− ~2

2m0

ϕ2(y)

(
d2

dx2
ϕ1(x)

)
− ~2

2m0

ϕ1(x)

(
d2

dy2
ϕ2(y)

)

+
1

2
k1x

2ϕ1(x)ϕ2(y) +
1

2
k2y

2ϕ1(x)ϕ2(y) = Eϕ1(x)ϕ2(y) (6.18)

We divide both sides of equation by ϕ1(x)ϕ2(y):

− ~2

2m0

1

ϕ1(x)

d2

dx2
ϕ1(x)− ~2

2m0

1

ϕ2(y)

d2

dy2
ϕ2(y) +

1

2
k1x

2 +
1

2
k2y

2 = E (6.19)

Regrouping of the terms results in:

− ~2

2m0

1

ϕ1(x)

d2

dx2
ϕ1(x) +

1

2
k1x

2 − ~2

2m0

1

ϕ2(y)

d2

dy2
ϕ2(y) +

1

2
k2y

2 = E (6.20)

the x- and y-dependent equations decouple, yielding:

− ~2

2m0

1

ϕ1(x)

d2

dx2
ϕ1(x) +

1

2
k1x

2ϕ1(x) = E 1ϕ1(x) (6.21a)

− ~2

2m0

1

ϕ2(y)

d2

dy2
ϕ2(y) +

1

2
k2y

2ϕ2(y) = E 2ϕ2(y) (6.21b)

E 1 + E 2 = E (6.21c)

Following the same procedure as in Chapter (4) and performing the variable substitu-

tions
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x =
ξ√
α1

(6.22a)

y =
η√
α2

(6.22b)

we obtain:

−1

2

d2

dx2
ψ1(ξ) +

1

2
ξ2ψ1(ξ) = Ê 1ψ1(ξ) (6.23a)

−1

2

d2

dy2
ψ2(η) +

1

2
η2ψ2(η) = Ê 2ψ2(η) (6.23b)

The solution to the first equation leads to the eigenvalues Ê 1 and the corresponding

eigenfunctions ψ1(ξ) can give us the eigenvalue and the corresponding to the eigen-

function:

Ê 1 ⇐⇒ ψ1(ξ) (6.24)

Equivalently, the solution to the second equation leads to the eigenvalue Ê 2 and the

corresponding eigenfunction ψ2(η):

Ê 2 ⇐⇒ ψ2(η) (6.25)

Therefore, we have:
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ψ1(ξ) =
1√√
πm!2m

Hm(ξ)e−1/2ξ2 ⇐⇒ Ê
m

1 (6.26a)

ψ2(η) =
1√√
πn!2n

Hn(η)e−1/2η2 ⇐⇒ Ê
n

2 (6.26b)

ψm,n(ξ, η) =
1√√
πm!2m

Hm(ξ)e−1/2ξ2 1√√
πn!2n

Hn(η)e−1/2η2 ⇐⇒ Ê
m

1 + Ê
n

2

(6.26c)

The Schrödinger Equation for the linearly perturbed two-dimensional has the form:

− ~2

2m0

∂2

∂x2
ϕ̃(x, y)− ~2

2m0

∂2

∂y2
ϕ̃(x, y)

+
1

2
k1x

2ϕ̃(x, y) +
1

2
k2y

2ϕ̃(x, y) + U(x, y)ϕ̃(x, y) = Ẽ ϕ̃(x, y) (6.27)

Multiplying the auxiliary equation by ψ̃(x, y) and the perturbed equation by ψ(x, y),

and subtracting the resulting equations, we obtain:

− ~2

2m0

[
ϕ(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
ϕ̃(x, y)− ϕ̃(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
ϕ(x, y)

]

− U(x, y)ϕ(x, y)ϕ̃(x, y) =
(

E − Ẽ
)
ϕ(x, y)ϕ̃(x, y) (6.28)

Integrating both sides of equation with respect to x and y from −∞ to +∞ we obtain:
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− ~2

2m0

∫ +∞

−∞

∫ +∞

−∞
dxdy

[
ϕ(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
ϕ̃(x, y)− ϕ̃(x, y)

(
∂2

∂x2
+

∂2

∂y2

)
ϕ(x, y)

]

−
∫ +∞

−∞

∫ +∞

−∞
dxdyU(x, y)ϕ(x, y)ϕ̃(x, y) =

(
E − Ẽ

)∫ +∞

−∞

∫ +∞

−∞
dxdyϕ(x, y)ϕ̃(x, y)

(6.29)

Consider the first integral at the left-hand side of the equation (6.29):

− ~2

2m0

∫ +∞

−∞

∫ +∞

−∞
dxdyϕ(x, y)

∂2

∂x2
ϕ̃(x, y)

=

∫ +∞

−∞
dy

∫ +∞

−∞
dxϕ(x, y)

∂2

∂x2
ϕ̃(x, y)

=

∫ +∞

−∞
dy

{
ϕ(x, y)

∂2

∂x2
ϕ̃(x, y)

∣∣∣
+∞

−∞
−
∫ +∞

−∞
dx

∂

∂x
ϕ(x, y)

∂

∂x
ϕ̃(x, y)

}

=

∫ +∞

−∞

∫ +∞

−∞
dxdy

{
∂

∂x
ϕ(x, y)

}{
∂

∂x
ϕ̃(x, y)

}
(6.30)

Rewriting the second integral at the left-hand side, we realize that the contribu-

tions from ϕ(∂2ϕ̃/∂x2) − ϕ̃(∂2ϕ/∂x2) cancel out. Similarly, the contribution from

ϕ(∂2ϕ̃/∂y2)− ϕ̃(∂2ϕ/∂y2) cancel out.

Therefore, it can be concluded that the first integral at the left-hand side of (6.29)

vanishes.

Consequently, we obtain:

∫ +∞

−∞

∫ +∞

−∞
dxdyU(x, y)ϕ(x, y)ϕ̃(x, y) =

(
Ẽ − E

)∫ +∞

−∞

∫ +∞

−∞
dxdyϕ(x, y)ϕ̃(x, y)

(6.31)
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Utilizing the transformations x = ξ/
√
α1 and y = η/

√
α2 and introducing following

relationships

U(x, y) = V (ξ, η) (6.32a)

ϕ(x, y) = ψ(ξ, η) (6.32b)

ϕ̃(x, y) = ψ̃(ξ, η) (6.32c)

we can write:

∫ +∞

−∞

∫ +∞

−∞

1√
α1

dξ
1√
α2

dηV (ξ, η)ψ(ξ, η)ψ̃(ξ, η)

=
(

Ẽ − E
)∫ +∞

−∞

∫ +∞

−∞

1√
α1

dξ
1√
α2

dηψ(ξ, η)ψ̃(ξ, η) (6.33)

Substituting,

ψmn(ξ, η) =⇒ ψ(1)
m (ξ)ψ(2)

n (η) (6.34)

and then the series expansion

ψ̃(ξ, η) =
∑
m̄

∑
n̄

αm̄n̄ψ
(1)
m̄ (ξ)ψ

(2)
n̄ (η) (6.35)

For illustrating the details of calculations, we consider two simple, yet relevant cases:
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Case 1: Assume V (ξ, η) = V (1)(ξ) + V (2)(η), then the elements of the interaction

matrix can be written as follows:

Amm̄nn̄ =

∫ +∞

−∞

∫ +∞

−∞
dξdη

[
V (1)(ξ) + V (2)(η)

]
ψ(1)
m (ξ)ψ(2)

n (η)ψ
(1)
m̄ (ξ)ψ

(2)
n̄ (η)

=

∫ +∞

−∞
dξV (1)(ξ)ψ(1)

m (ξ)ψ
(1)
m̄ (ξ)

∫ +∞

−∞
dηψ(2)

n (η)ψ
(2)
n̄ (η)

+

∫ +∞

−∞
dξψ(1)

m (ξ)ψ
(1)
m̄ (ξ)

∫ +∞

−∞
dηV (2)(η)ψ(2)

n (η)ψ
(2)
n̄ (η)

= Bmm̄δnn̄ + δmm̄Cnn̄ (6.36)

Here, we have defined the matrix elements Bmm̄ and Cnn̄ in the obvious fashion.

By substituting the result from equation (6.36), (6.35), (6.34) and (6.32) into the

equation (6.33) we arrive at:

∑
m̄

∑
n̄

αm̄n̄Amm̄nn̄ =
(

Ẽ − Emn

)∑
m̄

∑
n̄

δmm̄δnn̄ (6.37)

Case 2: Assume V (ξ, η) = V (1)(ξ)V (2)(η)

Amm̄nn̄ =

∫ +∞

−∞

∫ +∞

−∞
dξdηV (1)(ξ)V (2)(η)ψ(1)

m (ξ)ψ(2)
n (η)ψ

(1)
m̄ (ξ)ψ

(2)
n̄ (η)

= Bmm̄Cnn̄ (6.38)

For carrying out numerical calculation for monomially and polynomially perturbed 2D

harmonic oscillator the following considerations seem relevant:
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Let us assume:

U (1)(x) = βrx
r x =

1

α1

ξ (6.39a)

U (1)(x) = V (1)(ξ)

U (1)(x) = βrx
r

= βrα1
−r/2ξr

= V (1)(ξ) (6.39b)

In view of this analysis, we start the following ansatz:

U (1)(x) = βrα1
r/2xr (6.40a)

U (1)(x) = V (1)(ξ)

U (1)(x) = βrξ
r

= βrα1
r/2α1

−r/2ξr

= βrξ
r

= V (1)(ξ) (6.40b)

Similarly,
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U (2)(y) = βsα2
s/2ys (6.41a)

U (2)(y) = V (2)(η)

U (2)(y) = βsα2
s/2α2

−s/2ηs

= βsη
s

= V (2)(η) (6.41b)

Calculating the involved integrals by utilizing our results from 1D case enables the

determination of eigenfunctions of 2D perturbed harmonic oscillator for weak or strong

excitations.

6.4 Summary

By utilizing the method developed for the computation of monomial perturbations of

the harmonic oscillator, we demonstrated that we can solve some related problems such

as polynomially perturbed 1D harmonic oscillator and 2D linearly perturbed harmonic

oscillator.



Chapter 7

Conclusion

7.1 Introduction

This chapter is the round off the preceding chapters and accounts the conclusion that

we have achieved by performing our research on monomial and polynomial perturbed

harmonic oscillators. The first section summarizes Chapters 4 and 5 which where our

main chapters. In Section 7.3, a conclusion is drawn from the objective we set in

Chapter 1 and discusses those areas in which our research has made contributions. We

provide the scope of future works related to our current research in Section 7.4. Section

7.5 is a reflection on research methodology and the numerical results achieved.

7.2 Summary of Chapters

In Chapters 4 and 5 we have extensively discussed monomially perturbed harmonic

oscillator in one dimension. Numerous cases were analyzed numerically. In Chapter 4,

we provided explanation for monomially perturbed harmonic oscillator. Therefore, by

changing the ‘‘strength’’ of the perturbation, changes in characteristic of the system
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can be studied from the figures. In Chapter 5, we discussed perturbation of harmonic

oscillator numerically. In that Chapter 4, we did not confine our proposed method

to a particular power of perturbation. Therefore, we can observe changes in system

characteristics for any type of polynomial perturbation, which is probably the main

result of this research project.

7.3 Research Contribution

Our results demonstrate that we have successfully accomplished our goals that we set in

Chapter 1. We provided an innovative approach for the robust calculation of perturbed

eigenvalues and eigenvectors for monomial perturbation of the harmonic oscillator.

Utilizing the results for the monomial perturbation, we demonstrated that we can

solve much more complex problem such as polynomially perturbed harmonic oscillators.

Controlling this additional potential reveals that by choosing an arbitrary potential,

we can control the distribution of eigenstates to some degree and thus obtaining a

desirable degree of localization. This achievement through our research is significant

in the realm of the quantum harmonic oscillator and its wide ranging applications.

7.4 Suggestion for Possible Future Research

Through our research, we have developed the ground for a fascinating series of poten-

tial research studies. A probable research can be named as sinusoidal perturbation. A

further idea could be summation of a polynomial and a sinusoidal function as an in-

duced potential. The latter problem can be calculated by obtaining the solution for the
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polynomial and sinusoidal perturbation. For polynomial perturbation we can observe

the result for the negative potentials. A large number of attractive research prob-

lems can be formulated and solved for two- and three-dimensional perturbed harmonic

oscillators.

7.5 Conclusion

We have successfully accomplished our research objective, i.e. we have proved and

shown in greater details that problems related to 1D monomial harmonic oscillators can

be solved using our proposed methodology. Results obtained by applying our method

have been shown in the form of figures in Chapter 5. Furthermore, we have provided

sufficient ground work necessary for tackling similar problem in a two-dimensional

scenario and also polynomial perturbation of 1D harmonic oscillator. Our methodology

is easy to use and eliminates the limitations of traditional computation techniques.

Further ideas would include the development of robust and efficient numerical schemes

for the construction of problem-specific basis functions for modelling molecular dynamic

problems and more complex systems such as nano-wire transistors.



Appendix A

Hamiltonian

A.1 Hamiltonian’s Eqautions

The classical equation of motion for a mass m0 moving in one dimension,x, under a

force F = −kx, is

m0
d2x

dt2
= −kx. (A.1)

which we write in the form

d2x

dt2
= − k

m0

x (A.2)

Assume a harmonic time-dependence

x(t) = x0e
−iωt (A.3)
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with x(0) = x0 we obtain

d2

dt2
x = −ω2x (A.4)

a comparison with (A.2) suggest the equality

ω2 =
k

m0

(A.5)

or, equivalently,

ω =
√
k/m0 (A.6)

For a particle with the mass m0 and linear velocity v and the linear momentum p = m0v

the kinetic energy T can be calculated in the following equivalent forms:

T =
m0v

2

2

=
m2

0v
2

2m0

=
p2

2m0

(A.7)

Assuming a conservative field the force F can be represented as the negative gradient

of a potential function V , which in one dimension has the from:
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−dV (x)

dx
= F (A.8)

Taking the integral with respect to x of the terms at both sides of this equation and the

relationship F = −kx we obtain the following explicit form for the potential function:

V (x) =
1

2
k x2

=
1

2
m0 ω

2 x2 (A.9)

These equations are derivatives of Hamiltonian function

H = T + V (A.10a)

=
p2

2m0

+
1

2
m0 ω

2 q2 (A.10b)

or, equivalently

H =
p2

2m0

+
1

2
k q2 (A.11)

in physicist’s notation.

Another function of fundamental significance is the Lagrange function which is the

difference between the kinetic and the potential energy:
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L =
p2

2m0

− 1

2
m0 ω

2 q2 (A.12)

Denoting the generalized coordinate q and the velocity q̇ (q = x, q̇ = ẋ) the differential

of the Lagrangian can be written in the form:

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇. (A.13)

Introducing p by the definition

p =
∂L

∂q̇
(A.14)

the Hamiltonian can be written as

H = pq̇− L (A.15)

Considering H to be a function of p and q, the differential of H, dH, is

dH = −ṗdq + q̇dp (A.16)

It follows from (A.16)

q̇ =
∂H

∂p
(A.17)
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and

−ṗ =
∂H

∂q
. (A.18)

For a system described by l generalized coordinates and l generalized momenta, the

Poisson bracket {· · · , · · · } is defined as

{u, v} =
l∑

i=1

(
∂u

∂qi

∂v

∂pi
− ∂v

∂qi

∂u

∂pi
) (A.19)

Based on the Poisson brackets the following equations are immediate:

q̇ = {q,H} (A.20)

and

ṗ = {p,H}. (A.21)

Furthermore, the following important relationship between q and p is valid:

{q, p} = 1 (A.22)

Next, for given mathematical objects u and v we define the commutator [· · · , · · · ] by
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[u, v] = uv − vu, (A.23)

when u and v represent functions, the commutator is obviously zero. In this case, the

correspondence between Poisson brackets and commutators is determined by the rule

{q, p} ⇐⇒ 1

i~
[q, p] (A.24)

~ is Planck’s constant and i is imaginary unit.

From equation (A.23) and (A.24), it can be inferred that q and p satisfy the commu-

tation condition

qp− pq = i~. (A.25)

A.1.1 Energy Quanta

By using the relationship between p and q as given in equation (A.22), we obtain

energy states of the harmonic oscillator with classical Hamiltonian given by (A.11).

We write p and q, respectively, as p̂ and q̂, in order to explicitly show that they should

be considered as operators. We proceed similarly for the relevant observables. As

shown in this thesis, the energy values of the harmonic or anharmonic oscillators are

given by the eigenvalues of the discretized energy matrices. These can be determined

by introducing the annihilation operator â and the creation operator â† which are,
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respectively, deduced from differential operators in equation (4.23) and (4.24)

â =

√
m0 ω

2 ~

(
q̂ + i

p̂

m0 ω

)
(A.26)

and

â† =

√
m0 ω

2 ~

(
q̂− i p̂

m0 ω

)
. (A.27)

The operators p̂ and q̂ can be obtained by inverting the equations (A.26) and (A.27):

q̂ =

√
~

2m0 ω

(
â+ â†

)
(A.28)

and

p̂ =
1

i

√
~m0 ω

2

(
â− â†) . (A.29)

In order to have real eigenvalues, both p̂ and q̂ should be Hamiltonian operators. The

definition of the Hermitian conjugate matrix of A which is shown by A† is:

A†ij = A∗ji. (A.30)

A matrix A is Hermitian if A† = A, or in other word, Aij = A∗ji.
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As it is apparent from the definition, â is the Hermitian conjugate of â†.

Since p̂ and q̂ satisfy commutation relation

[q̂, p̂] = i ~ (A.31)

while [q̂, q̂] = [p̂, p̂] = 0, we conclude that,

[â, â†] = 1. (A.32)

By replacing q and p with q̂ and p̂ in the Hamiltonian equation (A.11) and by using

equations (A.28) and (A.29), we arrive at:

H = ~ω
(
â†â+

1

2

)
(A.33)

The eigenvalues of H can be obtained from the eigenvalues of

M̂ = â†â. (A.34)

As shown in this thesis, the eigenvalues of M̂ are non-negative integers, therefore,

energy eigenstates are given by

En =

(
n+

1

2

)
~ω; {n = 1, 2, · · · } (A.35)



A.1 Hamiltonian’s Eqautions 143

In this thesis we made extensive use of the (A.35) and the fact that the corresponding

eigenfunction constitute an orthogonal complete set of analyzing functions. We applied

the fact to determine eigenfunctions of harmonic oscillators by perturbed by arbitrary

monomials of even or odd order an arbitrary weak or strong perturbation.
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Publication

• P. Peidaee, A. R. Baghai-Wadji, ‘‘On the Calculation of Linearly-Perturbed Har-

monic Oscillators,’’ in Proceedings of ACES, Applied Computational Electro-

magnetic Society Conference, Verona, Italy, March 2007.

• P. Peidaee, A. R. Baghai-Wadji, ‘‘On the Calculation of Polynomially-Perturbed

Harmonic Oscillators,’’ in Proceedings of PIERS, Progress in Electromagnetic

Research Symposium, Beijing, China, March 2007.
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