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Abstract

In this thesis a model is developed to characterise the behaviour of layered SAW 2-

port resonator sensors operating in liquid media. In the critical review of literature, it

is found that methods based on the periodic Green’s function combined with the COM

model are best suited to this task. However, an important deficiency of this approach

is the lack of a good model for electrodes buried within layered media. This deficiency

is resolved in this thesis by the formulation of a periodic matrix eigen-operator, using

a phase-shifted Fourier series representation. This model is then utilised in the study

of resonator behaviour as a function of guiding layer thickness, including the mass

sensitivity.

Based on this modelling work, a SAW resonator structure is designed, and its fre-

quency response is found to be in generally good agreement with theoretical predic-

tions. The mass sensitivity of this device is then analysed using both theoretical and

experimental means. In contrast to the sensitivity analyses found in the literature, sen-

sitivity variation across the device surface is considered in this work. For the resonator

structure it is found that sensitivity is greatest at the device centre, with the ends of the

device making negligible contribution to the complete device response. The result is

that the sensitive material may be deposited only in a small region in the centre of the

device, with minimal reduction in device response.
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Chapter 1

Introduction

This thesis is devoted to the design and optimisation of layered Surface Acoustic Wave

(SAW) resonator sensors for liquid media sensing applications. In this chapter the

concept of acoustic wave sensors will be introduced, and the specific features of the

layered SAW and resonator configurations will be outlined.

In Section 1.1, the simplest type of acoustic wave sensors based on bulk acoustic

waves will be described. In Section 1.2 surface acoustic wave devices will be intro-

duced, and the distinction between Rayleigh and shear-horizontal waves will be made.

In Section 1.3, the advantages of a layered SAW sensor will be explained, and applica-

tions of these devices in liquid and gas media will be reviewed. The resonator structure

will be described in Section 1.4, and it will be explained why this structure was chosen

for this work. The problem of sensing in liquid media will be introduced in Section 1.5,

whilst sensing in gas media will be discussed in Section 1.6. An outline of the author’s

achievements and publication record will be given in Section 1.7. Finally, in Section

1.8, the objectives of the thesis will be introduced, and an overview of its structure will

be given.

For the purposes of this thesis, acoustic wave sensors are those which measure the

presence of some analyte by the influence it has on the propagation of a mechanical

wave. The term acoustic is commonly used in the literature, even when referring to

frequencies which are well above audible range. The analyte perturbs some property

of the acoustic wave, most commonly velocity. This causes a change in the frequency

response, which is typically characterised by measuring the change in resonant fre-
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quency, or in the phase response. This phase or frequency change serves as a measure

of the analyte concentration.

1.1 Bulk Acoustic Wave Sensors

The first acoustic device commonly used for electronic applications was the Quartz

Crystal Resonator (QCR). It consists of a disc of quartz (typically AT-cut), with elec-

trodes patterned on each side to excite acoustic waves using the piezoelectric effect,

as shown in Figure 1.1. It is typically used for oscillator applications due to its high

quality (Q) factor, low temperature sensitivity and compact form.

Side View

Quartz Disc

Electrode
(Reverse Side)

Electrode

Plan View

Figure 1.1: Quartz crystal resonator

The first reported use of this device for sensing application was made in 1959 by

Sauerbrey [1]. When used as a sensor this device most commonly referred to as a

quartz crystal microbalance (QCM), since its response is predominantly due to the

mass of the analyte. For operation in gas media, it was shown that the fractional fre-

quency change due to mass loading increases linearly with operating frequency. Since

the device operates in thickness shear mode (TSM), it is also able to operate in liquid

media with relatively little acoustic energy loss. It has been shown that in the liquid

media case correction factors need to be included to take account of viscous effects on

mass sensitivity [2].
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1.2 Surface Acoustic Wave Sensors

Output IDTPiezoelectric Substrate

I

Input IDT

Figure 1.2: Delay line SAW device

Piezoelectric surface acoustic wave devices were first developed by White and Volt-

mer in 1965 [3]. In their most basic form, these devices consist of two interdigital trans-

ducers (IDTs) fabricated on a planar piezoelectric substrate and separated by a gap, as

shown in Figure 1.2. An RF voltage applied across one interdigital transducer results

in an alternating electric field, which launches acoustic waves due to the piezoelectric

effect. The receiving transducer converts the acoustic signal back to electrical form.

Due to the bidirectional nature of the IDT structure, the input and output IDTs can be

interchanged. As the IDT structure only launches and detects acoustic waves with a

wavelength similar to the period of the IDTs, a band-pass filtering effect occurs.

These devices were found to have a wide range of useful signal processing appli-

cations, due to the fact that acoustic wave velocities are at least 4 orders of magnitude

lower than electromagnetic wave velocities [4]. This results in a corresponding re-

duction in wavelength, which allows for filter structures which had previously been

impractical to construct.

Particularly in the initial years of their development, SAW devices mostly operated

in Rayleigh mode, which has displacement components in the x1 and x3 directions,

using the coordinate convention shown in Figure 1.3. Devices based on this mode

were also the first to be used for sensing applications [5].

As with TSM resonators, the analyte perturbs the boundary conditions, and typi-

cally reduces the propagation velocity of the wave. These devices offer greater mass
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Free space

x3

x1

x2

Propagation Direction

Semi-infinite substrate

Figure 1.3: Coordinate system, where x2 is the direction into the page

sensitivity than TSM sensors due to the their higher operating frequency, and because

waves propagating near the device surface are more readily perturbed by changes in

surface boundary conditions.

Amplifier

SAW Counter

Figure 1.4: Feedback loop oscillator

To use the devices for sensing applications, they are most commonly employed in a

feedback oscillator configuration, which is depicted in Figure 1.4. In this configuration,

the circuit will oscillate at the resonant frequency of the SAW, and this will be measured

by the counter.

In addition to the well known Rayleigh mode, there are a number of other acous-

tic modes which are able to propagate at or near the surface of solids. Most of these

modes are either purely or predominantly polarised in the x2 direction. They have cer-

tain advantages over Rayleigh modes in signal processing applications, such as higher

velocity or stronger piezoelectric coupling. For sensing applications, they are of great

interest because they are able to propagate while the device is in contact with a liquid
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medium.

In the literature a number of different terms can be found to describe shear hori-

zontal waves, which are listed here for clarity:

• Surface-Skimming Bulk Wave (SSBW) or Shallow Bulk Acoustic Wave (SBAW) -

A bulk mode propagating at shallow angle to the surface.

• Leaky Surface Acoustic Wave (LSAW) or Pseudo Surface Acoustic Wave (PSAW)

- A surface mode imperfectly confined by the surface, which ”leaks” energy into

the substrate as it propagates.

• Bleustein-Gulyaev (BG) wave - A bulk mode confined to the surface by piezo-

electricity in certain symmetry classes of material.

• Shear Horizontal Surface Acoustic Wave (SH-SAW), or Surface Transverse Wave

(STW) - An SSBW mode which is confined to the device surface by an array of

electrodes or a periodically grooved surface.

• Love Wave - An SSBW mode which is confined to the surface by a guiding layer

of lower acoustic shear velocity than the substrate.

It should be noted that in some cases (particularly the PSAW), these modes may not be

exactly shear-horizontally polarised, and are referred to as being “quasi-SH” modes.

Additionally, some authors use the term SAW to include only modes which are per-

fectly guided by the surface, such as the Rayleigh wave. In this thesis, the term SAW

will be used to denote any mode which is guided by the surface, even if this guiding

is imperfect.

1.3 Layered SAW Sensors

A conventional SAW device consists of a piezoelectric substrate with metal inter-digital

transducers (IDTs) patterned on the surface. Layered devices are fabricated by deposit-

ing a thin film onto the conventional SAW substrate. Any SAW chemical sensor will

employ a sensitive layer which interacts with the analyte. However, in this thesis the

term layered is used for devices where an intermediate layer has been added between
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the substrate and sensitive layer because its acoustic, dielectric or protective proper-

ties will improve some aspect of device performance. This is illustrated in Figure 1.5,

which also indicates the possible locations of the IDTs.

OR

Gas or Liquid Environment

Sensing Layer

Intermediate Layer

Substrate

Electrode
Location

Figure 1.5: Layered SAW device configuration

Layered SAW sensors offer a number of advantages over conventional SAW devices

without layers:

• By adding a layer with low density and low shear wave velocity, shear horizontal

waves will be confined to the surface. This increases the mass sensitivity of the

device and causes it to operate in a Love [6] mode. This is typically applied to

substrates which support PSAW or SSBW modes.

• An intermediate layer over the IDTs which is protective or electrically shielding

enables the whole sensor surface to be exposed to the analyte, thus increasing the

response magnitude.

• A highly conductive sensitive layer or liquid environment may inhibit oscillation

due to the high capacitive or conductive loading. Thus an intermediate layer can

have a useful isolating effect which ensures that oscillation is reliable, and that

the resulting signal is due to the acoustic response.

• A layer of passive material will protect the IDT electrodes from a harsh gas or

liquid environment, which improves long term stability.
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• Adding a piezoelectric or highly dielectric layer above the IDTs increases elec-

tromechanical coupling, allowing fabrication of devices with reduced insertion

loss or smaller size.

• Temperature compensation can be achieved if the layer and substrate have tem-

perature coefficients of opposite sign.

• A piezoelectric layer allows the generation of acoustic waves on non-piezoelectric

substrates. This increases the design flexibility, and allows the SAW device to be

fabricated on the same substrate as other components in the system.

• An intermediate layer can match the conductivity of a sensitive layer to the op-

erating point of the SAW device, increasing the sensitivity for conductometric

sensing applications.

1.4 SAW Resonator Structures

The delay line structure pictured in Figure 1.2 is commonly used in many sensing

applications. However, an alternative SAW structure is the resonator. This may be

either a 1-port or 2-port device, as illustrated in Figure 1.6. The reflective electrode

gratings create a resonant cavity due to small reflections which add in phase at the

resonant frequency.

Resonator structures are preferred for frequency stabilisation applications, since

they can achieve high Q with a more compact layout than a delay line device. This is

important because it reduces the instability due to noise, which can greatly improve

the minimum detection limit of the device. Two port resonators are easier to work

with than single port resonators, and are appropriate to use with the same feedback

loop oscillator as is used for delay line structures [7].

Delay-line SAW sensors are well established in the literature, and a number of au-

thors have used resonator structures for sensing applications [7–13]. However, there

has been little work reported in the literature which gives great insight into how the

behaviour of a resonator structure changes when a guiding layer is used, and when the

device is loaded with liquid media. In addition, there are a number of deficiencies in
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One Port Resonator

IDTReflective Grating Reflective GratingIDT

Reflective Grating Reflective GratingIDT

Two Port Resonator

Figure 1.6: Basic one port and two port SAW resonator structures

the existing approaches to modelling these devices, which will be discussed in detail

in Chapter 2. They are summarised briefly here, since addressing these deficiencies is

a major goal of this thesis:

• A lack of insight into the interaction of acoustic waves with electrodes buried

within layered media.

• No models for the behaviour of a periodic system of electrodes within layered

media, and when subject to liquid loading.

• Poor understanding of the behaviour of resonator structures where the mass
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loading does not occur evenly over the surface.

1.5 Sensing in Liquid Media

Layered SAW devices have received a great deal of attention for liquid media sensing

applications. In liquid media, shear horizontal waves must generally be used, since

a Rayleigh mode will radiate energy into the liquid and as a result will be severely

attenuated. However, shear horizontal modes tend to be poorly trapped by the surface

of a solid substrate, and thus have low mass sensitivity. For this reason a layered

configuration is typically used to increase sensitivity.

1.5.1 Mass Sensing with Love Wave Devices

The theoretical work by Love [6] showed that a low velocity layer on a semi-infinite

substrate will have a trapping effect upon shear waves. This trapping effect can be used

to increase the mass sensitivity of a SAW sensor, since it makes the wave more sensi-

tive to a change in surface boundary conditions. The first devices to take advantage of

this phenomenon were reported by Gizeli et al. [14, 15]. A polymer (PMMA) guiding

layer was deposited onto 90◦ rotated ST-cut quartz, and the device was applied as an

immuno-sensor. In general, polymers have low density and low shear modulus, mak-

ing them suitable candidates for use as the guiding layer (see Section 2.7.1). However,

polymers have high acoustic losses in comparison with most other materials used for

SAW devices. With a polymer guiding layer, the acoustic propagation loss increases

strongly with increasing layer thickness [15]. Thus the optimum layer thickness for

maximum sensitivity results in excessive insertion loss, which inhibits device opera-

tion. On the other hand, an attractive feature of polymer layers is that they can be

deposited using relatively simple techniques such as spin coating.

Kovacs et al. introduced the SiO2/90◦ rotated ST-cut quartz Love wave structure

[16, 17]. The acoustic loss of SiO2 is much lower than that of polymers; however for

good sensitivity it is necessary to deposit a thick layer, resulting in long film deposition

time for devices operating at low frequency. Ogilvy [18] and Du et al. [19, 20] carried

out comprehensive studies of the SiO2/90◦ ST quartz structure. They used RF mag-
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netron sputtering for the deposition of SiO2 films. They also conducted experimental

analysis of the mass sensitivity as a function of layer thickness. This experimentally

verified the predicted high mass sensitivity of the structure, but led to some anoma-

lous results at high thickness that remain unexplained. Jakoby et al. [21, 22] utilised

Chemical Vapour Deposition (CVD) for deposition of the SiO2 guiding layer and theo-

retically modelled the sensitivity of such devices. Herrmann et al. [23] showed that the

combination of 90◦ ST quartz and SiO2 results in devices with poor temperature charac-

teristics. They demonstrated that by selecting an appropriate orientation of quartz for

the selected SiO2 layer thicknesses, it is possible to achieve temperature compensation.

Another major step was taken by Du et al. with the introduction of a multi-layered

structure [24]. Using a PMMA/SiO2/quartz layered SAW higher sensitivity was ob-

tained than with devices having only SiO2 or PMMA layers. Harding [25] demon-

strated that the acoustic properties of a SiO2 thin film can be modified by introducing

CF4 gas during sputtering. This can be used to reduce the propagation velocity in the

guiding layer, thus increasing mass sensitivity. In the same paper it was shown that the

mass sensitivity can vary considerably across the surface of the device. This finding is

quite significant because most existing models of the mass sensitivity of SAW devices

assume that the device is uniformly loaded, which will be discussed further in Section

2.7.1.

By utilising ZnO as the guiding layer on a quartz substrate, Kalantar-zadeh et al.

[26–28] showed that mass sensitivity is improved compared to SiO2. As ZnO is a piezo-

electric layer, it has the additional benefit of increasing the electromechanical coupling

coefficient. Chu et al. [29] demonstrated that by controlling the thickness and deposi-

tion parameters, the temperature coefficient of ZnO/quartz devices can be reduced by

an order of magnitude compared with non-layered devices. This is due to the oppo-

site signs of the temperature coefficients for ZnO and 90◦ ST quartz, which results in a

cancelling effect. In principal further compensation can be achieved but is limited by

the precision with which the guiding layer deposition can be controlled.

When choosing a substrate and layer combination, a decision must be made to

trade-off mass sensitivity, electromechanical coupling (which affects device size and

insertion loss), and temperature stability. A good example comparing practical perfor-
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mance of LiTaO3 and quartz devices can be found in [30]. Since there is no material

combination which out-performs all others in each of these areas, the best choice is

dependant on the specific application.

1.5.2 Viscosity Influence

A difficulty arises from the presence of viscosity during mass sensing measurements,

such as the viscous response during immuno-sensing [14], or during the measurement

of liquid density. Using only velocity or frequency measurements, it is impossible to

distinguish between the mass and viscosity components of the output signal. A com-

mon solution is to monitor both frequency and insertion loss of the device, since inter-

action with a viscous medium will attenuate the acoustic wave. This can be achieved

by incorporating automatic gain control into the oscillator amplifier. Herrmann et al.

[31] utilised a non-smooth surface by fabricating corrugated Love-mode devices. The

showed that a dual configuration using conventional and corrugated devices was able

to distinguish between viscosity and density of a liquid by measuring only frequency

change.

1.6 Sensing in Gas Media

SAW devices have been investigated for sensing applications in gas media since 1979

[5]. Layered SAW devices have received much less attention for applications in gas

media than for liquid media. An obvious advantage of using a layered structure is for

protection of the IDTs. Many gaseous environments contain gasses which will dam-

age or corrode the metal electrodes. This is detrimental to long-term stability, thus it

is desirable to protect the metal patterns with an inert dielectric layer. For filter appli-

cations SAW devices are hermetically sealed, however this is not possible for sensing

applications, thus a protective layer is preferred.

1.6.1 Mass Sensing

Because the acoustic radiation from a SAW device into gas is minimal, Rayleigh waves

can be applied in gaseous media. Rayleigh waves are strongly guided by the surface
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of the substrate, and an additional layer does not generally improve mass sensitiv-

ity. However, the mass sensitivity of Love wave sensors can be greater than that of

Rayleigh wave devices, because the use of a guiding layer gives the sensor designer an

additional degree of freedom to increase sensitivity. Thus, layered SAW sensors are ad-

vantageous for mass sensing applications such as sensing of organic vapours absorbed

by a polymer layer. As an example of this, Jakoby et al. [22] applied a Love wave

device to vapour sensing, applying the molecular imprinting technique to a polymer

sensitive layer. Zimmermann et al. [32] successfully applied a Love wave device for

the detection of organophosphorus vapours, and achieved approximately 10 times the

sensitivity of a Rayleigh wave sensor operating at a similar frequency. A novel appli-

cation of a layered SAW device was presented by Penza et al. [33], who used a SiO2

layer on ST quartz for mass-based detection of organic vapours interacting with carbon

nanotubes. In this case the SiO2 layer prevents shorting of the IDTs by the conductive

nanotubes, and protects the IDTs from exposure to the analyte.

1.6.2 Conductometric Sensing

In conductometric gas sensing applications, the interaction of the gas molecules with

the sensitive layer perturbs the electrical boundary condition at the surface of the SAW

device. As a result, the velocity and attenuation of the electro-mechanical waves are

perturbed. Ricco and Martin [34] first reported SAW sensors based on the conduc-

tometric sensing mechanism, using a non-layered device. This conductometric sen-

sitivity can be important even in cases where it is not desired, since it can lead to

interference in the response.

1.7 Author’s Achievements

This thesis describes the work undertaken by the author during his PhD program. The

most significant achievements are:

• Development of a new model for mechanical interactions between acoustic wave

and electrodes buried within layered media
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• Use of the periodic Green’s function and COM models to understand the be-

haviour of resonator structures fabricated using layered media, and the applica-

tion to liquid loaded devices

• Development of a model for the behaviour of SAW resonator structures when

subject to mass loading which varies across the device surface

• Design and fabrication of SAW resonator devices to experimentally verify the

model

The following papers have been published based on the work undertaken in this

thesis. Most of the material presented in these papers has been incorporated into this

thesis.

• D. A. Powell, K. Kalantar-zadeh, W. Wlodarski, and S. J. Ippolito, “Layered sur-

face acoustic wave chemical and bio-sensors,” in Encyclopedia of Sensors, C. Grimes,

E. Dickey, and M. V. Pishko, Eds. American Scientific, 2006, vol. 5, pp. 245–262.

• D. A. Powell, K. Kalantar-zadeh, and W. Wlodarski, “Spatial sensitivity distribu-

tion of surface acoustic wave resonator chemical and bio-sensors,” IEEE Sensors

J., 2006, (accepted for publication).

• D. A. Powell, K. Kalantar-zadeh, and W. Wlodarski, “Numerical calculation of

SAW sensitivity: Application to ZnO/LiTaO3 transducers,” Sens. Act. A: Phys.,

vol. 115, pp. 456–461, 2004.

• D. A. Powell, K. Kalantar-zadeh, and W. Wlodarski, “Comprehensive analysis of

SAW sensor performance in liquid media by Green’s function method,” in Proc.

IEEE Ultrason. Symp., Oct. 2003, pp. 146–149.

• D. A. Powell, K. Kalantar-zadeh, S. Ippolito, and W. Wlodarski, “A layered SAW

device based on ZnO/LiTaO3 for liquid media sensing applications,” in Proc.

IEEE Ultrason. Symp., 2002, pp. 493–496.

A number of presentations have been given by the author at international confer-

ences:
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• 2002 IEEE International Ultrasonics Symposium, October 8-11, 2002, Munich,

Germany

• Eurosensors XVII, September 21-24, 2003, Guimarães, Portugal

• 2003 IEEE International Ultrasonics Symposium, October 5-8, 2003, Honolulu,

USA

• IEEE Sensors 2005, October 31-November 3, 2005, Irvine, USA

The research described in thesis was conducted within the scope of the Co-operative

Research Centre (CRC) for Microtechnology Project 3.5 “BIO-SAW”. This project aims

to develop and commercialise a SAW biosensor system through a spin-off company

“Bio-Senz”. The author of this thesis was involved in collaborative work within the

CRC with researchers from other fields, and has delivered a tutorial on the theory of

surface acoustic wave devices.

In addition, the author has been involved in a number of other research activities,

which were conducted in collaboration with other researchers:

• Development of a Langasite SAW device with a carbon nanotube functional layer

for NO2 and H2 sensing applications.

• The study of layered SAW structures for gas sensing with conductometric sensi-

tive materials, with an analysis of the effects of layered media.

These have resulted in the following publications:

• D. A. Powell, L. Valentini, I. Armentano, W. Wlodarski, K. Kalantar-zadeh, and

J. M. Kenny, “Langasite SAW gas sensor with self-assembled carbon nanotube

functional layer,” in Proc. Eurosensors XIX, 2005.

• D. A. Powell, K. Kalantar-zadeh, S. Ippolito, and W. Wlodarski, “Comparison of

conductometric gas sensitivity of surface acoustic wave modes in layered struc-

tures,” Sensor Letters, vol. 3, no. 1, pp. 66–70, Mar. 2005.

• K. Kalantar-zadeh, D. A. Powell, S. Ippolito, and W. Wlodarski, “Study of layered

SAW devices operating at different modes for gas sensing applications,” in Proc.

IEEE Ultrason. Symp., 2004, pp. 191–194.
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1.8 Thesis Objective and Structure

The objective of this thesis is to develop an improved model of layered SAW resonator

sensors operating in liquid media. The remainder of this thesis is primarily devoted to

this topic, and is divided as follows:

• Chapter 2 gives a review of modelling techniques and describes the limitations of

existing work in the literature. In this chapter it will be shown that models based

on the development of a periodic Green’s function, combined with the extraction

of parameters for a phenomenological model, are the best tool for analysing res-

onator structures. The limitations of existing models will be described, and the

need for the author’s novel model will be explained in detail.

• Chapter 3 introduces a simpler model based on the spectral domain Green’s func-

tion. This will be used to provide the underlying mathematical framework for

other techniques developed in this thesis. It will also be shown that this model

can be used to find many useful parameters for SAW sensors

• Chapter 4 introduces the periodic Green’s function model, and describes the ex-

traction of parameters for phenomenological models. Most importantly the au-

thor’s novel developments will be presented, which make these techniques better suited

to resonator structures fabricated in a layered configuration. This is achieved by ac-

counting for the mechanical influence of electrodes buried within layered media.

Modelling results are presented for the behaviour of resonator structures in lay-

ered media subject to liquid loading.

• Chapter 5 utilises the developed modelling techniques to design a layered SAW

resonator sensor. The design process is presented and the fabrication procedure

is described. A comparison is made between the measured and calculated fre-

quency response of the device, and discrepancies are discussed.

• Chapter 6 presents a novel approach to characterising the sensitivity of SAW resonator

sensors where the mass loading is not uniform over the surface. This phenomenon has

not been studied previously in the literature, and is much more predominant in

the SAW resonator structure than the delay line structure. The theoretical work
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developed to this point, including the author’s novel technique, will be used to

solve this problem.

• Chapter 7 concludes the thesis, and suggests likely advances in several emerging

areas of research which are related to the work presented in this thesis.
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Chapter 2

Review of Modelling Techniques

2.1 Introduction

In this chapter a critical literature review will be undertaken, with a view to developing

a model for SAW sensors based on layered resonator structures. Particular attention

will be paid to the complications which arise when operating such a device in liquid

media. To the best of the author’s knowledge, an adequate model for this application

cannot be found in the publicly available literature. Layered resonator structures oper-

ating in liquid media have important applications in bio-sensing, liquid viscosity and

density monitoring as well as liquid identification. A model for these devices is nec-

essary in order to understand the operation of these transducers and to optimise their

design.

There is an extensive body of knowledge regarding design and modelling of SAW

devices [35]. They have the interesting property that their operating principal is simple

to comprehend, yet the details of their operation can be quite complex. The physics of

acoustic and piezoelectric wave propagation are well understood [36, 37], which facil-

itates the analysis of SAW devices. This analysis has two main purposes: understand-

ing the properties of materials and their combination regarding propagation, gener-

ation and detection of acoustic waves, and analysing and designing structures such

as transducers, reflectors and couplers to obtain a desired frequency response. While

the latter purpose is the major concern in the design of communications and signal

processing components, sensor design places much greater emphasis on the former.
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A technique to model SAW devices should ideally give highly accurate results, be

quick and easy to compute, and directly show the relationship between the parameters

of a device and its performance. A wide variety of techniques have been developed

to model SAW devices, each of which makes a compromise between these criteria. In

this chapter, modelling techniques for SAW devices will be compared. The majority

of these techniques were developed for signal processing applications, however this

review is specifically concerned with techniques which may be applicable to SAW sen-

sors. Particular emphasis will be placed on techniques which are suitable for layered

resonator type SAW sensors, operating in liquid media.

In order to evaluate and compare models of SAW sensors, there are a number of

parameters which are required and effects which need to be taken into account, which

will be discussed in Section 2.2. There are two broad categories of SAW device model,

phenomenological and numerical. The phenomenological models which calculate the

device response based on that of a simple equivalent system will be presented in Sec-

tion 2.3. In Section 2.4 numerical models will be discussed, which differ significantly

from phenomenological models, since they solve the piezoelectric equations with vary-

ing degrees of approximation. Subsequently, the extension of both classes of model to

the case of layered media will be discussed in Section 2.6. In Section 2.7 the application

of these models to SAW sensors will be discussed, and they will be compared with the

simpler models used exclusively for sensor applications.

2.2 Features Required of SAW Modelling Techniques

In this section the requirements which a model for SAW sensors must meet are dis-

cussed. This begins with the output parameters, and is followed by a discussion of the

effects which must be taken into account to calculate these parameters.

2.2.1 Parameters Obtained from Model

Modelling techniques can be used to calculate various parameters of interest for SAW

device design, the most important of which are given here. These are essential to the

performance of any SAW device, regardless of whether it is used for sensing or sig-
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nal processing applications. Parameters specific to SAW sensors are discussed subse-

quently.

• Phase velocity - The phase velocity vp determines the operational frequency of

the device. For sensing applications the change in propagation velocity is mea-

sured, typically via a change in oscillation frequency. It can also be measured

via the phase change of a constant frequency signal [14], and in wireless sensing

applications it is usually measured via a change in time-domain response [38].

Regardless of how the sensor response is measured, it is important to know how

the device configuration and environmental parameters contribute to the phase

velocity.

• Frequency response - For signal processing applications, the frequency response

is usually the most important parameter in SAW device performance, although

occasionally the time-domain response may be of interest instead. In sensing

applications the frequency response is still very significant in determining de-

vice performance. The complete 4-parameter frequency response is typically ex-

pressed using a scattering matrix S or admittance matrix Y . An important com-

ponent of the frequency response is the input admittance [4], as it determines

the interaction between the SAW device and external circuit elements. Ignoring

parasitic effects such as electrode resistance, it can be represented by a parallel

radiation conductance Ga, radiation susceptance Ba and input capacitance C (see

Figure 2.1). Alternatively a series equivalent representation may be used, giving

the same information.

• Quality factor - An important parameter which can be determined from the fre-

quency response of a resonator is its quality factor (Q). This is a measure of how

strongly the SAW device determines the oscillation frequency, and rejects the in-

fluence of phase fluctuations due to other circuit elements. It is related to the

slope of the phase response and the bandwidth of the resonant peak. In the case

of a delay line structure the group delay plays a similar role.

• Electromechanical coupling coefficient - Electromechanical coupling parameter

K2 is an approximate measure of the strength of coupling between the electrical
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C

G(ω) jB(ω)

Figure 2.1: Parallel representation of SAW input admittance

and mechanical fields, and thus has a very strong bearing on reflection, genera-

tion and detection of acoustic waves. Unfortunately it does not have an unam-

biguous definition which is valid in all contexts. Informally, it may be described

as a measure of the importance of the piezoelectric properties of the material rel-

ative to its dielectric properties.

It was shown by Campbell and Jones [39] that the electromechanical coupling

could be estimated from the difference between phase velocity with a free sur-

face boundary condition(vf ) and that with an infinitely thin, perfectly conducting

layer on the surface of the SAW (vm):

K2 ≈ 2
vf − vm

vf

. (2.1)

This estimate is most accurate in cases where the difference between free and

metallised surface velocities is small, and where the wave is strongly guided.

Equation (2.1) is often used as the definition of K2, although it is not universally

applicable. In some cases the coupling is different on free and metallised sur-

faces, or the SAW may only propagate on a metallised surface. In this thesis,

more rigorously defined measures of piezoelectric coupling will be used when

referring to the properties of an electrode array. However the parameter K2 has

some intuitive value, and equation (2.1) is sufficiently accurate for many require-

ments.

When considering SAW sensors the most important additional parameter is sensi-

tivity. This will be a change in one of the parameters in the above list, most commonly

the propagation velocity, due to some external interaction with the SAW device. The

most important types of sensitivity are:
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• Mass sensitivity - Mass sensitivity (sometimes termed gravimetric sensitivity) is

defined as the velocity or frequency shift caused by the addition of a small layer

of material onto the surface. It is strongly related to the surface confinement; i.e.

the guiding of acoustic energy near the surface. This is the primary mechanism

by which most SAW sensors operate. In practice, stiffness, viscosity and geome-

try of the material will affect the response, particularly if the layer thickness is a

significant fraction of the acoustic wavelength.

• Sensitivity to liquid loading - The effect of liquid loading is particularly impor-

tant for sensing applications in liquid media, since it can introduce losses through

viscosity, conductivity and energy radiation mechanisms. The dielectric and con-

ductive properties of a liquid can also influence the charge distribution on elec-

trodes if the device is not shielded by a conductive layer.

• Conductometric sensitivity - Conductometric sensitivity is the change of velocity

or frequency due to the addition of a thin layer on the surface with some finite

conductivity. For sensing applications, this allows a conductometric response to

be used, which is particularly useful in the case of strongly oxidising or reducing

gasses.

The analytical expressions for these sensitivity parameters are given in Section 2.7.

SAW devices are also sensitive to physical parameters such as pressure, electric field

and torque, however these will not be considered in this thesis. From the appropriate

sensitivity parameter, the sensitivity of the SAW device to the target analyte can be

calculated. However, this requires some knowledge of the sensitive material and its

interaction with the analyte. For example, the change in mass due to the interaction

between antibodies and antigens, or the change in conductivity of a metal oxide due to

an oxidising gas. The behaviour of the sensitive layer dominates many sensing param-

eters such as sensitivity, selectivity, response time and recovery time. These properties

of the sensitive layer are beyond the scope of the models considered here.
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2.2.2 Effects Influencing Device Response

Returning to the most general case of SAW device analysis, there are a number of

effects which may need to be taken into account. The most important effects are:

• Wave type - The type of acoustic mode and corresponding polarisation have

a large impact on the device response, since different modes can behave dif-

ferently when propagating under an electrode structures. For sensing appli-

cations, the wave polarisation is extremely important. For example, Rayleigh

waves with shear vertical and longitudinal components are well guided by a

surface, and thus have high mass sensitivity. On the other hand, in liquid me-

dia shear horizontal waves must be used, since they minimise the energy dissi-

pated into the liquid. However, shear horizontal waves have much more compli-

cated behaviour, due to their interaction with bulk waves [40]. A surface wave

in anisotropic media will in the most general case exhibit particle displacement

components in all 3 directions.

• Propagation loss - Any acoustic wave will suffer from some finite attenuation as

it propagates, which is usually undesirable. Slobodnik [41] attributes this attenu-

ation to three mechanisms which are dominant in signal processing applications.

The first is interaction of the acoustic wave with thermally excited phonons. The

second is due to defects, impurities and scratches in the material as well as scat-

tering from grain boundaries in polycrystalline materials. The third mechanism

is due to coupling of acoustic energy into the surrounding air, and in the sensing

case this can be generalised to include a surrounding liquid.

These mechanisms are the most significant for single and poly-crystalline mate-

rials, however polymer layers are often used for SAW sensors. In these materials

there is usually high energy loss due to viscoelastic behaviour caused by relax-

ation of the polymer chains [42]. Since these phenomena are quite complex, they

must generally be treated by empirical parameters. As a further cause of wave

attenuation, Pseudo-SAW and SSBW modes are not perfectly guided by a surface

and will partially radiate energy into the substrate, where it cannot be usefully

recovered. It should be noted that the attenuation can also be used as an output
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signal of the sensor, since in some cases it will change significantly in the presence

of an analyte [43].

• Electrode mechanical and electrical loading - The mass loading of an electrode

and the local short circuit boundary condition which it imposes upon the wave

cause mismatch of the wave under and between electrodes. This is analogous to a

change of characteristic impedance in a transmission line, which causes wave re-

flections. For a periodic system of electrodes, these reflections will add in phase at

the resonant frequency to form a Bragg reflector. For resonator applications these

reflections are essential for device operation, but for delay lines they represent

an undesired distortion. The electrode mass and electrical loading also causes

a change in the effective propagation velocity of the wave through an electrode

array.

• Bulk wave interference - Interference from undesired bulk wave modes can de-

grade the frequency response of a SAW device. In sensor applications this can

cause the output signal to have a contribution from multiple modes, which means

that the response will have an unpredictable mixture of sensitivities. This can

also cause ripple in the passband response, creating uncertainty as to the start-up

frequency of oscillation. The problem is particularly complex in shear horizontal

waves, where the surface wave can interact with bulk waves. This can result in

energy being to be lost to bulk waves, and energy storage effects changing the

effective propagation velocity of the SAW in an electrode array.

• Velocity dispersion - Under an electrode grating, or in a layered device, the phase

velocity can vary with frequency. This dispersion effect is most significant in

wide-band devices, however the concept is an essential part of device opera-

tion in layered media and under electrodes, since propagation properties in such

structures strongly depend on the wavelength. Further dispersion may be caused

in electrode structures due to energy storage effects, or to materials with losses

which vary strongly with frequency. It is possible to define a group velocity vg at

which a wave packet will travel, and in dispersive structures this will differ from

the phase velocity vp.
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• Effect of layered media - For many sensing applications, thin films are placed

on top of the substrate because of their wave-guiding, protective or sensitivity

enhancing effect. These films affect all of the parameters of a SAW device to a

greater or lesser extent. Layered media are also used for some signal processing

applications, including piezoelectric layers used on non-piezoelectric substrates.

Acoustic wave propagation in layered media exhibits velocity dispersion, thus

complicating analysis.

• Triple-transit interference - When the acoustic wave reaches the output IDT, the

resultant charge distribution will generate an acoustic wave returning to the in-

put IDT. At the input IDT a charge distribution will be generated which will

again cause another signal to travel to the output IDT. In principal this process

will continue infinitely, but in practice the signal which travels the distance be-

tween input and output IDTs 3 times is the most significant, hence the name of

this phenomenon. This will interfere with the desired signal in delay line devices,

causing distortion of the amplitude and phase response. This is not a problem in

resonator devices, where reflection is deliberately enhanced.

• Electromagnetic feed-through - Electromagnetic feed-through is the direct cou-

pling between input and output IDTs due to the propagation of an electromag-

netic wave. This degrades the frequency response of the SAW, and can cause

interference in the output signal of a sensor.

• End effects - The change between an electrode array and a free or metallised

surface may result in some energy being scattered into the bulk of the material.

Also, the charge distribution on electrodes at the end of an IDT may differ sub-

stantially from those in the middle. Any technique which assumes an infinitely

periodic system will be unable to account for these effects.

• Electrode resistivity - For devices with sharp resonance characteristics, the device

quality factor may be reduced due to resistive losses in the IDT electrodes. This

resistance may also affect the charge distribution on the electrodes, thus changing

parameters such as wave generation and reception.
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• Anisotropic effects - In an anisotropic material, properties such as propagation

velocity and wave polarisation vary with direction. A piezoelectric material is

necessarily anisotropic [36], since the piezoelectric effect is due to asymmetry

in the crystal structure. Many other polycrystalline and single-crystal materials

used in acoustics are also strongly anisotropic. This considerably complicates

the analysis, and can result in unique effects such as beam steering, where the

direction of power flow is not parallel to the wave propagation vector k. The

difference between these two angles is known as the power flow angle. In the

anisotropic case, the material constants must be represented in tensor or matrix

form.

• 3-dimensional effects - Almost all analysis techniques assume a 2-dimensional

wave propagation model, which neglects all variations along the transversal di-

rection. This means that diffraction in the surface plane and wave-guiding due to

bus-bars are neglected. For RF filters with tight specifications on their frequency

response, this can be a significant problem. A number of authors have studied

these effects using both theoretical [44, 45] and experimental [46] methods. For

most sensing applications these effects are of little concern, so the 2-dimensional

approximation is used throughout this work.

• Temperature influence - The properties of an acoustic device always exhibit some

dependance on temperature. This is commonly characterised by a temperature

coefficient of delay (TCD), which includes the effect of thermal expansion and

velocity change on the propagation time of a wave. This is extremely important

for any frequency stabilising application including sensors, since high temper-

ature sensitivity degrades the detection limit. For many oscillator applications

substrate materials and orientations are selected so that the TCD has a zero near

the desired operating temperature.

Depending on the particular application and device configuration, these effects will

be of varying importance. For example, mechanical loading due to electrodes becomes

more important at higher frequencies, where the electrode height relative to the wave-

length becomes more significant. Electrode electrical loading, triple-transit interference
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and conductometric sensitivity are more significant for devices with high electrome-

chanical coupling K2. End effects are more prominent in IDTs with few electrodes,

and may be completely absent in a resonator structure which consists only of syn-

chronously located electrodes.

It now remains to discuss the most important modelling techniques which may be

applied to SAW sensors, with reference to the criteria discussed in this section.

2.3 Phenomenological Models

There are a number of phenomenological models which are commonly used for the

design of SAW devices. They can be defined as models which do not have an accurate

physical basis, but which nonetheless are able to replicate the important behaviour of

a structure.

The strength of these models is their comparatively simple nature, which enables

them to be used in an iterative design procedure, where many design variants are

evaluated against some specified criteria. Their major disadvantage is that they require

parameters to be extracted from some other source - either experiment or numerical

simulation methods. They are usually only able to take into account a single mode of

propagation, and may be limited in applicability to devices operating over a narrow

frequency range. They tend to ignore many second order effects, so they are most

applicable to situations where these effects are known to be negligible.

The delta function model [47] is one of the simplest models of a SAW device re-

sponse. It considers the edges of each electrode of the input IDT to be the location

of an impulsive source δ(x1) with amplitude proportional to the electrode length. It

allows a desired frequency response to be implemented in terms of a finite impulse

response, much like a digital filter. However it contains no impedance information,

and is only useful for specifying the shape (but not absolute magnitude) of ideal delay

line filters. It ignores almost all second order effects and takes little account of material

properties, and is thus ill-suited for sensor applications.

The equivalent circuit model [47] is based on the crossed field or in-line field models

of the IDTs. This model assumes a highly simplified electric field distribution between

electrodes, allowing analytical expressions to be derived for the input admittance of
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Figure 2.2: Equivalent circuit model for a single electrode

an IDT. By cascading 2-port and 3-port matrices based on these models, the complete

device response is given. A more advanced equivalent circuit model was reported by

Smith [48], and is illustrated in Figure 2.2. It models IDT electrodes and the spaces

between as sections of transmission line of impedance Zm and Zf respectively, thus

including electrode reflection. Triple-transit effects are automatically included in the

equivalent circuit model. Susceptance jB between sections may also be added to take

into account energy storage at electrode edges. A major advantage of the equivalent

circuit model is that it can be implemented using standard circuit simulation software.

In the case of SAW resonators it is also possible to produce a simple RLC equivalent

circuit to describe the resonance peak [49]. However, such a model is only useful for

modelling the SAW’s interaction with an external circuit, and is not useful for SAW

device design.

Given the typical applications of SAW devices, it is not surprising that many mi-

crowave modelling techniques are commonly applied to their design. In the scattering

(S-matrix) model, an IDT is modelled as a 3 port network with 2 acoustic ports and an

electrical port. Each port is represented as generating outgoing waves in response to

incident waves at any port. Reflectors and free or metallised sections are represented

by 2 acoustic ports [50]. However, for the electrical port it is generally more convenient

to use voltage and current rather than wave amplitudes. Making this modification re-



28 Chapter 2. Review of Modelling Techniques

sults in the P-Matrix model, which was originally introduced by Tobolka [51]. It’s pri-

mary advantage is that identical sections may be cascaded analytically, and differing

sections may still be cascaded quite easily.

The Coupling of Modes (COM) model comes from a rich mathematical background

developed for physical problems in periodic media [52]. It approximates the difference

equation for the multiple reflections within an IDT or grating by a differential equation,

thus allowing analytical solutions. It models the wave distribution in each electrode

array as consisting of a single spatial harmonic coupled to another spatial harmonic

propagating in the infinite direction. All higher order harmonics are neglected.

The model was extended by Chen and Haus [53] to include interaction between

acoustic waves and the voltage and current in an IDT or metallic grating. They also

developed variational expressions for all COM parameters, thus allowing the COM

model to be used independently with acceptable accuracy for many applications. It

has long been used in the design of resonant SAW structures, and despite the relatively

high degree of approximation involved, it can show very good agreement with exper-

imental results. The COM model may be used to give analytical expressions for the

P-matrix of a transducer, thus to some extent these models are complementary. A thor-

ough treatment of COM analysis can be found in [40]. It’s major strength is its ability

to characterise reflection, thus it is commonly applied to devices where reflection is a

dominant phenomenon, such as resonators and low loss RF filters. Expressions for the

COM parameters in Rayleigh wave devices which yield reasonably good agreement

with experiment are reported in [53, 54]. Although they are based on perturbation

methods, they are quite useful in many signal processing applications.

All phenomenological models have difficulty accurately simulating shear horizon-

tal waves, due to the interaction between SH-SAW and SH-BAW modes [40]. Plessky

[55] introduced a new model similar to COM, which is able to characterise these effects

with moderate accuracy. However, this model can only be applied to reflective grat-

ings, and not to IDTs. Abbot and Hashimoto [56] formally combined Plessky’s model

with the traditional COM model, thus allowing shear horizontal waves to be included

in the COM model with acceptable accuracy. Koskela [57] presented a completely new

phenomenological model based on a simplified Green’s function model, which also
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accounts for the effect of the finite length of a structure on bulk wave interaction.

The COM, P-matrix and equivalent circuit models are similar in their overall ap-

proach, with minor differences making them more suitable for different device types.

The COM model is particularly appealing however, because the parameters it uses

have a close correspondence to the physical phenomena of interest to a device designer.

It should be noted that all these models have many variations and extensions which are

too numerous to mention here. Any of these phenomenological models can be applied

to a SAW sensor, since many of the design requirements are similar to those of devices

for signal processing applications. This is because a SAW sensor also requires con-

trol over it’s frequency response to ensure good signal-to-noise ratio. As these models

rely on parameters derived elsewhere, they cannot directly include many of the effects

which are important in sensing, such as mass loading or liquid interaction. However,

if these effects have been characterised by some experimental or numerical technique,

then their impact on device performance can be calculated using the COM, P-matrix

or equivalent circuit models. This will then show the effect on the complete device

frequency response.

2.4 Numerical Models

The phenomenological techniques presented in Section 2.3 all share the disadvantage

that they must be fitted to a measured or simulated device, severely limiting their use-

fulness for predicting the response of devices using new materials, or new orientations

or combinations of materials. The most rigourous method of analysing acoustic wave

propagation is through the use of the piezoelectric constitutive relations, which are

well known [36]. However, due to the anisotropy of piezoelectric materials, analyti-

cal solutions to these equations are only possible for selected orientations of materials

having particular crystal symmetry. To calculate solutions for arbitrary orientations

numerical techniques are required.

The advantages of using numerical techniques are:

• They can be calculated directly from material constants

• Being directly derived from the physics of the problem they give a high degree
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of confidence in the solution

• They are valid for arbitrary symmetry classes of material

• All surface wave, bulk wave and electrostatic effects are directly included

• Differing material orientations and combinations can be analysed without exper-

imental measurement

There are also a number of drawbacks:

• Stability issues - piezoelectric problems can be ill-conditioned, and require careful

scaling to ensure accuracy [58].

• Iterative techniques are often required, which are susceptible to producing spu-

rious results or finding local minima (convergence problems)

• Material constants are often unavailable for many of the materials which are used

for sensing applications

• The numerically obtained answer does not isolate the effects of different input

parameters on the calculated result, thus it is harder to gain insight into the mech-

anisms at work.

Numerical solution of the piezoelectric constitutive equations has been used for a

wide variety of piezoelectric devices, including SAW devices. Examples can be found

in [37, 59, 60] for a many differing material configurations. All of these techniques

use the quasi-static approximation, which assumes that the electric field can be repre-

sented as the gradient of a scalar potential (i.e. the electromagnetic part of solution is

neglected).

Complex wave propagation problems including a substrate, guiding layer, sensi-

tive material, an analyte and a surrounding liquid are most readily solved using nu-

merical methods. Thus they are highly suitable for sensing applications. Since these

techniques are all based on the solution of the piezoelectric constitutive equations there

is no great distinction between them in terms of applicability to the sensing case, dis-

cussion of which will be deferred to Section 2.7.4.
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The most important classes of numerical techniques reported in the literature for

SAW devices are based on the finite element, finite difference, partial wave and bound-

ary element methods. The application of numerical models to periodic systems are also

discussed.

2.4.1 Finite Element and Finite Difference Techniques

The most flexible approaches to the piezoelectric wave problem are finite element and

finite difference, which discretise the field variables in all regions throughout the prob-

lem domain. The advantage of these techniques is that the problem can often be solved

using available software. These methods are very flexible regarding the simulation of

complex shapes. They can be extended to include the effects of other circuit elements

such as pads, bonding wires and packaging. Layered structures require no special

treatment, since each simulated region can have arbitrary material properties. The fi-

nite difference method is less flexible than the finite element method since it requires

all points to be regularly arranged in a grid or grids.

The disadvantage of these techniques is the very large number of elements re-

quired, resulting in long computation time. Additionally, they have poor convergence

for electrode arrays, which further increases the number of nodes required. This prob-

lem is caused by the discontinuities in charge distribution which occur at the electrode

edges, violating the assumption that field variables are continuous. A surface wave is

generally considered to propagate on a semi-infinite substrate, which does not reflect

energy towards the surface. To represent this open boundary with a finite domain in-

volves the use of a perfectly matched layer [61] in order to artificially absorb the wave

energy.

Finite element models are usually used in the frequency domain for wave propaga-

tion problems, as this is where performance requirements are typically specified. How-

ever, finite difference time domain (FDTD) is a popular technique for solving electro-

magnetic wave propagation problems, as it requires no matrix inversions. It has been

proposed to use this technique for studying piezoelectric wave propagation [62], how-

ever to the best of the author’s knowledge no applications have been reported to date.

The disadvantage of time domain techniques is that they cannot be applied specifically
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to a region of interest in the frequency domain, thus becoming somewhat inefficient if

a narrow frequency range needs to be simulated with high resolution.

2.4.2 Partial Wave Techniques

Partial wave techniques are those which represent the field inside a region as a sum of

bulk wave solutions of the form exp [j (ωt− k1x1 − k2x2 − k3x3)], where terms ki rep-

resent the complex wave number components along each Cartesian coordinate axis.

These bulk modes can be found by solving the Christoffel equation (see Section 3.2.3).

For acoustic waveguides such as SAW devices, the partial modes are combined to sat-

isfy the boundary conditions between materials and at the boundaries. These partial

modes can easily be applied to open devices boundaries, thus allowing simulation of a

surface wave on a semi-infinite substrate. Various techniques based on this approach

are able to account for most important effects in SAW devices, including beam steer-

ing, electromechanical coupling, capacitance, bulk wave generation and temperature

induced variation.

A problem with the partial wave method is it’s application to PSAW solutions,

which have some finite propagation loss due to wave leakage into the substrate. This

means that the corresponding singularities of the Green’s function can be considered

to be offset from the real slowness axis into the complex plane. Adler [63] gave a tech-

nique for partial mode selection when searching for PSAW poles in the complex plane,

but gave no physical justification for this method. Biryukov and Weihnacht [64] inves-

tigated the question of partial mode selection in the complex plane. They concluded

that by tracking the partial modes from the real axis, it is possible to uniquely iden-

tify the correct partial modes in the complex plane. This result is important because it

makes the process of searching for PSAW solutions more rigourous, and less prone to

finding solutions with no physical basis.

Partial wave techniques are useful in their own right, but are even more important

because they form the basis of more advanced techniques, which are discussed next.
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2.4.3 Green’s Function and Spectral Domain Techniques

This section covers an important family of related techniques, variously known as

spectral domain analysis [65], surface impedance or admittance [66], effective permit-

tivity [67, 68] or spectral domain Green’s function. The earliest example of this work is

that of Ingebrigtsen [69], who gave analytical expressions for the electrical impedance

of a piezoelectric material, assuming weak piezoelectric coupling. This was able to

give analytical expressions for the input admittance of a SAW transducer at centre fre-

quency.

Milsom et al. [68] developed a rigourous method for calculating the effective per-

mittivity, and the accompanying Green’s function. This Green’s function approach is

advantageous because it represents the piezoelectric equations in integral form. The

4 coupled partial differential equations in 4 tensor variables are reduced to a single

scalar equation:

ϕ(x1, ω) =

∞∫

−∞

G(x1 − x′1, ω)q(x′1, ω) dx′1, (2.2)

where ϕ is the voltage and q is the charge density per unit width. The substrate is

assumed to occupy the region x3 < 0 and propagation is considered in the direction

x1 (see Figure 1.3). The Green’s function G(x1, ω) encapsulates the behaviour of the

acoustic waveguide and is discussed further in Chapter 3. By choosing appropriate

weighting and expansion functions for the voltage and charge distribution, an equa-

tion results of the form:

ϕi =
J∑

j=1

Aijqj, (2.3)

where ϕi are the known1 coefficients of the voltage weighting functions, and qj are

the unknown coefficients of the charge expansion functions. The form of matrix A

depends upon the choice of weighting and expansion functions, the Green’s function

and problem geometry.

This method is highly suitable for computer implementation, since numerical in-

tegration is a well established area of numerical computing. Using this method it is

possible to show how the desired SAW response and the undesired BAW response

1For structures with floating electrodes the electrode voltages are unknown, and can be found by

requiring charge neutrality (
∑

qn = 0) on each electrode
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contribute to the total admittance curve. Equation (2.2) can be regarded as an exact

solution of the 2 dimensional piezoelectric wave propagation problem in a half-space,

when there are no surface-normal stresses at x3 = 0. Analysis based on the formu-

lation of a Green’s function is referred to as the Boundary Element Method (BEM) or

Method of Moments (MOM). The Green’s function is most readily calculated from a

partial mode analysis in the spectral domain, where functions of the spatial variable

x1 are Fourier transformed to be functions of the spectral variable k1. The resulting

expression for the relationship between voltage and charge is:

ϕ(k1, ω) = G(k1, ω)q(k1, ω), (2.4)

where the bar notation is used to indicate quantities in the spectral domain which

also have a representation in the spatial domain. It is closely related to the effective

permittivity, which for real values of k1 is expressed as [4]:

εeff (k1, ω) =
q(k1, ω)

|k1|ϕ(k1, ω)
=

1

|k1|G(k1, ω)
. (2.5)

The simplest application of the spectral domain Green’s function is to search for ho-

mogenous solutions, corresponding to free or metallised surface velocities of SAW,

PSAW or SSBW modes. Various techniques [39, 64, 68, 70, 71] are used to estimate

the electromechanical coupling, power flow angle, attenuation and temperature de-

pendance of these modes, which are based on or compatible with the Green’s function

formulation.

There is a simple Fourier transform relationship between G(x1, ω) and G(k1, ω), the

real-space and spectral Green’s functions [4]:

G(x1, ω) =
1

2π

∞∫

−∞

G(k1, ω)ejk1x1dk1. (2.6)

In practice, singularities in the spectral Green’s function require careful analytical treat-

ment [68, 72, 73], which complicates the numerical integration of equation (2.6), and

makes computer automation error prone. However, it was shown [74] that apart from

bulk wave contributions, all elements of the matrix A in equation (2.3) can be calculated

analytically from the tabulation of a single function. Despite the efficiency of Green’s

function based techniques, a large number of source terms need to be considered in
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practical devices, particularly resonator structures which have many electrodes. Direct

implementation of equation (2.3) to these device geometries results in long computa-

tion time. For this reason periodic techniques described were developed, which will

be discussed in Section 2.4.4.

Another approach to remedy this problem, a quasi-static2 Green’s function analy-

sis, was developed by Morgan [75], based on the weak-coupling approximation. This

assumes that the Green’s function terms due to electrostatic effects dominate the admit-

tance of a transducer, and that transfer characteristics can be calculated by using only

the surface wave terms. For many applications with delay line devices on low cou-

pling substrates this is sufficiently accurate, and the transfer function can be computed

rapidly. This method is very useful for structures where reflections have negligible

effect on input admittance, particularly delay lines with split electrode geometries. It

is not appropriate for modelling of resonant structures where reflection is an essen-

tial part of device operation, as it is not self consistent. A thorough treatment of SAW

device modelling using quasi-static analysis was presented by Morgan [4].

An important limitation of the scalar Green’s function in equation (2.2) is that it only

includes the electrical contribution of the electrodes to reflection and velocity pertur-

bation. In applications on low coupling substrates, with acoustically thick electrodes

(i.e. electrode height is not negligible compared wavelength, or electrode material is of

high density) the mechanical contribution is also significant. Milsom’s results can be

generalised to derive a dyadic Green’s function (e.g. [76, 77]) which addresses these

issues. It consists of a 4×4 matrix relating particle displacement and voltage to applied

stress and charge, and in the spectral domain is expressed as:
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. (2.7)

The dyadic Green’s function allows both mechanical and electrical sources to be

considered, and is again computed by partial mode methods. It is advantageous be-

2This should not be confused with the quasi-static approximation to the piezoelectric equations,

which is used in almost all SAW analysis techniques.



36 Chapter 2. Review of Modelling Techniques

cause it allows mechanical electrode interactions to be included in equation (2.3), and

can be more readily extended to layered media (see Section 2.6). For situations where

mechanical electrode interactions are negligible, only the element G44 need be used,

thus retaining the simplicity of the scalar Green’s function. The dyadic Green’s func-

tion reveals the existence of acoustic modes which are not coupled to the electric field,

and thus cannot be generated piezoelectrically. These modes are not included in the

effective permittivity, but may be excited by mode conversion due to mechanical reflec-

tion. Further elaboration on the details of the dyadic Green’s function will be deferred

to Chapter 3.

Utilising the dyadic Green’s function, Reichinger and Baghai-Wadji [78] combined

a FEM model for electrodes with the BEM model of a substrate, using pulse expan-

sion functions. This allows the semi-infinite substrate to be efficiently represented by

using the BEM, and electrodes of arbitrary two dimensional shape to be represented

by the FEM. Peach [79] and Ventura [80] presented variations of this technique, us-

ing Tchebychev expansion functions, which were previously shown [81] to give much

more efficient representation of charge in a periodic system of electrodes. In order to

make computation more efficient, Peach [79] used a rigourous Green’s function for

interaction between nearby electrodes, and a much faster analytical Green’s function

for long range electrode interactions. This shows the flexibility of methods based on a

Green’s function, which allow accuracy to be carefully balanced against computation

time.

Biryukov [82] demonstrated a fast variational approach to modelling the mechan-

ical fields within electrodes, assuming isotropic and homogeneous material. Using

polynomial expansion functions, stress discontinuities at the electrode edge are well

approximated with a technique which requires no meshing, making it much simpler

than FEM. This method can be combined with the BEM model of the substrate[83].

Gamble and Malocha [84] combined the FEM/BEM model with lumped resistances

in series with each electrode to represent the distributed electrode resistance. They also

demonstrated a method to extract an angular power distribution from the FEM/BEM

model, which allows power lost to bulk waves to be characterised. Previous techniques

had not given exact information about the influence of the finite thickness electrodes
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on generation of bulk waves, which can be particularly important in the case of shear

horizontal waves.

Peverini et al. [85] presented a method to optimally represent the charge distribu-

tion on the electrodes of a SAW device. The solution was calculated at a number of

widely spaced frequencies using pulse weighting functions. Using a model order re-

duction technique, the response at other frequencies was computed using the original

solutions as expansion functions. This results in a significant reduction in computation

time for structures with large numbers of electrodes. Although it was only demon-

strated for the case of the scalar Green’s function this approach could also be beneficial

for fast computation of SAW device responses using the FEM/BEM method.

The disadvantage of boundary element methods is that they form a relationship

between every point on the surface, thus creating a dense matrix, rather than a sparse

matrix as in the case of FEM. However, the matrices in BEM are typically much smaller,

because there is no need for a mesh the complete geometry of the device. BEM also re-

quires the formulation of a Green’s function and analytical treatment of singularities

within it, whereas the FEM and FD techniques described in Section 2.4.1 follow much

more directly from the piezoelectric constitutive equations. A significant advantage of

BEM is that the discontinuities in the charge distribution can be much more readily

accounted for than in FEM or FD, thus offering greatly improved convergence. Con-

sidering all these factors, it is the author’s opinion that amongst numerical methods

BEM is the best suited for modelling of SAW devices.

2.4.4 Modelling of Periodic Systems

The quasi-static Green’s function provides a very good trade-off between accuracy,

computation time and physical understanding. However, it is only appropriate for

devices with weak piezoelectric coupling. An alternative approach to reducing the

computational burden of the Green’s function based calculations is to consider an in-

finitely periodic array of electrodes. This approximation is appropriate for any SAW

device with a large arrays of identical electrodes, particularly reflective arrays where

the fields decay strongly, so that end effects can be safely neglected. The advantage

of this approach is that only a single period of the system needs to be analysed, of-
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fering enormous savings in computation time. The periodic Green’s function can be

calculated directly from the spectral domain Green’s function, often without needing

to characterise the singularities, which is a difficult process to automate.

Bløtekjær et al. [67] introduced the concept of harmonic admittance (also referred

to as strip admittance), based on Ingebrigtsen’s approximation of the effective permit-

tivity. The tangential electric field component E1 between electrodes is represented in

the spectral domain in the form:

E1(β) =
∞∑

n=−∞

M+1∑
m=−M

αmSn−mPn−m [cos(l/p)] e−j(β+2πn/p)x1 , (2.8)

where Sn is the sign of n, Pn is the Legendre function of order n, l/p is the metallisa-

tion ratio of the electrodes, p is the period of a single electrode in the array and the

product βp gives the phase shift between adjacent electrodes. The coefficients α are

determined from the effective permittivity, and M determines the order of the approx-

imation. The normal component of electric flux D3(β) is represented in a similar form,

and the harmonic admittance is calculated as:

Y (β, ω) = V (β, ω)/I(β, ω), (2.9)

where voltage V is obtained by integrating E1 between electrodes and current I is cal-

culating by integrating jωD3 beneath the electrodes. The result applies to any electrode

in the array. This approach is very efficient, because although it only explicitly models

interactions between a finite number of harmonics, it is able to account for an infinite

number of non-interacting harmonics due to electrostatic effects. This allows the com-

plicated charge distribution on electrodes to be taken into account using a very small

number of coefficients. By solving for β as a function of ω, the dispersion curve can be

obtained, which characterises the propagation in the electrode array.

This harmonic admittance formulation was combined with Milsom’s rigourously

derived effective permittivity by Zhang et al. [86]. This combined the advantages of an

efficient method of representing electrode charge, with the exact analysis of the Green’s

function, which includes SAW, PSAW and bulk wave contributions. They showed that

this harmonic admittance is related to the mutual admittance Yn between electrodes,
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sometimes referred to as the discrete Green’s function, satisfying:

In(ω) =
∞∑

m=−∞
Ym−n(ω)Vm(ω), (2.10)

Ym(ω) =
p

2π

∫ 2π/p

0

Y (β, ω)ejmβp dβ, (2.11)

with In(ω) and Vn(ω) being the current and voltage on electrode n. Thus a structure

of regular electrodes with arbitrary connections can be rigourously simulated, but dif-

fering electrode periods and gaps cannot be accounted for. Unfortunately this model

requires extensive computation time and also requires analytical treatment of singu-

larities at each frequency. However, this technique was used to show the behaviour of

bulk wave propagation in a periodic array of electrodes, which had previously been

neglected.

Hashimoto [65] extended Bløtekjær’s theory to include the mechanical effects of

electrodes, and named the technique FEM/SDA (spectral domain analysis). This re-

tains the advantage of implicitly dealing with all higher harmonics of the charge distri-

bution, but requires explicit calculation of higher harmonics for the mechanical effects.

Thus it loses the advantage of faster computation and becomes complicated to imple-

ment. Working in the spectral domain is advantageous because it converts convolution

to multiplication. On the other hand, complicated boundary conditions and electrode

configurations are more difficult to deal with in the spectral domain.

Another approach is the periodic Green’s function [73, 87], which was introduced

in scalar form, neglecting mechanical interactions between the acoustic wave and the

electrodes. This approach is an implementation of the techniques presented in Sec-

tion 2.4.3 to the periodic case. The periodic Green’s function Gp is the response of the

substrate to an infinite number of regularly spaced impulse charge sources:

Gp (x1) =
∞∑

n=−∞
G (x1 − np) . (2.12)

Here p is the period of the electrodes. Charge distribution on the electrodes is repre-

sented either as a series of pulses, or in the form

q (x1) =

∑
n

qnTn(x1/w)

√
1− (x1/w)2

, (2.13)
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where Tn is the Tchebychev polynomial of order n, w is the electrode half width and

qn is the charge expansion coefficient. It was shown that Tchebychev basis functions

result in much faster convergence than pulse functions. The resultant BEM equation

has the same form as equation (2.3), however the elements of matrix A are determined

by sampling the spectral Green’s function at an infinite number of spatial harmonics.

In practice this summation can be limited to a finite number of harmonics, since the

spectral domain representation of the weighting function converges to zero for large

k1.

As with the non-periodic case, mechanical electrode effects can also be included

in the periodic Green’s function. Peach [72] and Ventura et al. [88] presented periodic

FEM/BEM methods using Tchebychev basis functions. Mathematically, the FEM/BEM

and FEM/SDA techniques are equivalent. The spectral domain approach has difficulty

handling arbitrary electrode configurations or other complicated boundary conditions.

The FEM/BEM approach has the advantage of being able to simulate both finite de-

vices and infinite electrode arrays with relatively minor modifications.

Noting that the FEM part accounts for most of the computational burden in the

FEM/BEM model, Laude et al. [89] applied asymptotic waveform evaluation to the

FEM/BEM model. The FEM part of the model is calculated only for a single frequency,

and approximated at nearby frequencies by a Taylor series expansion. Although it

shows great improvement in computation speed, care needs to be taken when using

the technique over a wide frequency range, and for complete certainty comparison

needs to be made with the exact method. As reported the method was unable to deal

with resonant behaviour of electrodes, although it was claimed that it may be extended

to cover this case. It has also been shown that this asymptotic waveform evaluation

can accelerate the computation of oblique propagation in infinite gratings [90], which

would allow these periodic techniques to efficiently account for some 3-dimensional

effects.

Ballandras et al. [91] extended the FEM/BEM model to include buried electrodes

and also applied this extended model to the study of boundary waves propagating be-

tween two semi-infinite materials [92]. This was achieved by using FEM for the region

containing the electrodes, as well as some surrounding region, and using BEM only
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to account for semi-infinite boundaries. This allows full simulation of electrical and

mechanical electrode interactions in layered media. The disadvantage of this method

is that it’s computational cost is very high, whilst the implementation of the method in

software is complex.

Jakoby [93] introduced an FFT-based method, which greatly speeds up the integra-

tion necessary to compute the elements of the A matrix in equation (2.3) for the case

of pulse weighting functions in a periodic BEM simulation. This performance increase

can result in significant computational savings in cases where the computational bur-

den of calculating the elements of matrix A is much greater than that of solving it,

which is often the case for a periodic system with a small number of weighting func-

tions.

One drawback of any periodic analysis is that it is unable to account for wave scat-

tering which may occur at the transition between an array of electrodes and a free or

metallised gap, or the change in charge distribution towards the ends of an electrode

array. Additionally, properties of SH surface waves and interfering bulk waves can

have a strong dependance on the IDT length [57], which cannot be represented in a

periodic model.

It should be noted that continuing advances in computer processing power mean

that direct FEM/BEM analysis of finite devices has received renewed interest [84, 85,

94], and is likely to become more widely used for analysing the RF performance of

SAW devices. However, this techniques is not applicable to structures with electrodes

buried within layered media. An additional problem that remains with the direct ap-

plication of non-periodic methods is that they numerically calculate the response of a

specific geometry, without providing analytical insight. In order to understand how

device properties change due to some parameter change such as layer thickness, ex-

traction of phenomenological parameters from a numerical model is necessary. This

topic is discussed in the next section.

2.5 Parameterisation of Periodic Numerical Models

Calculating the response of a periodic system is highly advantageous from a computa-

tional point of view. However, the problem remains how to use the resulting harmonic
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admittance or dispersion curves, which have been shown to yield identical informa-

tion [95]. In order to simulate the response of a device, the COM and P-matrix models

are typically used (Section 2.3), since their parameters can be extracted from periodic

models.

The simplest method is to identify the edges of the stop-band for short circuit and

open circuit gratings [65]. The stop band is the frequency range over which waves are

reflected in an infinite array. This method gives very good results for Rayleigh waves,

however it is less accurate for shear horizontal modes such as SSBW and PSAW. In

particular it does not account for propagation loss and bulk wave conversion. Ven-

tura [96] presented a method to calculate the P-matrix parameters from the harmonic

admittance. Examples were presented showing the effect of electrode size and shape

on propagation velocity and reflection, including an analysis of the sensitivity of these

parameters to fabrication error.

Koskela [97] presented a method based on the harmonic admittance of an infinite

IDT. This method is quite suited for PSAW modes and lossy media, since it is able

to characterise propagation loss. However, it is also unable to characterise bulk wave

generation and energy storage effects, thus rendering it more suitable for narrow band-

width devices. The advantage of this method is that it only requires calculation of two

admittance values for each frequency, instead of a full search to find the dispersion

curve. This means that the computational burden of the rigourous periodic simulation

is minimised.

Hashimoto et al. [98] developed a technique which is able to account for many of

the subtleties of SH wave propagation. The disadvantage of this method is most of

the parameters calculated are allowed to vary arbitrarily with frequency. This means

that the technique is suited to the task of accurate representation, but is unable to

summarise the behaviour of the structure in a few simple variables. This technique

must be fitted to a complete dispersion curve, which requires searching in the com-

plex wavenumber plane for each frequency point. A similar approach was presented

by Sveshnikov et al. [99]. This approach is similar to a numerical computation of the

complete device response in that it emphasises accuracy at the expense of analytical

insight.
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Although these techniques are able to give near perfect representation of the har-

monic admittance and dispersion behaviour of infinite structures, there is often some

discrepancy which occurs in finite structures [57, 99], even if they have a large num-

ber of electrodes. This is due to the nature of bulk wave generation, which strongly

depend on the IDT geometry. If accurate characterisation of bulk wave interaction is

required, then the best solution is to perform a full FEM/BEM simulation of a finite

structure. This is because all bulk wave effects are automatically included, and require

no special characterisation.

On the other hand, if it is desirable to represent the results of rigourous simulations

with a few analytical parameters, the extraction techniques discussed in this section

are often quite adequate. They make it easy to identify the effect of process parameters

such as electrode size and shape in a meaningful way. For resonator type structures

these techniques are ideal. A resonator structure is well approximated by an infinite

array, and does not need highly accurate representation at frequencies far from the

resonance. For SAW resonators acting as sensors in liquid media, these techniques

appear quite promising. This is because they have the accuracy and flexibility of the

underlying numerical techniques, and represent device performance in terms of a few

simple parameters. The dependence of these parameters on effects such as liquid and

mass loading or the impact of using a layered device would be of great interest for

sensor design, but has not been considered in the existing literature.

2.6 Modelling of Layered Devices

There are a number of SAW device applications which make use of a layered configura-

tion. These include piezoelectric thin films such as ZnO deposited on non piezoelectric

substrates such as glass or diamond, or dielectric films deposited onto piezoelectric

substrates to achieve temperature compensation or to modify velocity or electrome-

chanical coupling. For sensing applications layered media are very important, partic-

ularly for shear horizontal modes where mass sensitivity can be greatly increased (see

Section 2.7.1). Layered media may also be used to protect a SAW sensor, or a sensitive

material may be modelled as an additional layer on the surface of the device.

For simple configurations such as an isotropic layer on an isotropic substrate, or
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a thin membrane, analytical solutions are available [37]. For the addition of a thin

isotropic layer, the perturbation theory of Tiersten [37] can be used to estimate the

change in parameters such as propagation velocity. The greatest weakness of pertur-

bation theory is that it is valid only for small changes to the solution. Exactly what

constitutes a small change depends on the specifics of the device being characterised.

To be certain that perturbation theory is valid it is necessary to compare with numerical

solutions, which undermines many of the advantages of perturbation theory.

Techniques for the numerical characterisation of mechanical wave propagation in

non-piezoelectric layered media are well established [100]. The transfer matrix is the

most commonly used approach, as it treats structures with any number of layers in a

consistent and simple manner. It was adapted to the piezoelectric case by Adler et al.

[63, 101, 102], and implemented in freely available software [103]. The vector of fields

variables ψ (defined in Section 3.2.4) at the top and bottom of a layer can be related by

a transfer matrix Φ:

ψ(x3 + h, k1) = Φ(h, ω, k1)ψ(x3, k1). (2.14)

This depends on the layer height h, frequency ω and propagation wavenumber k1. To

include the effect of multiple layers, the product of Φ matrices for each layer is taken.

From this matrix product, a boundary condition function can be derived. A numerical

search of this function is made for values of k1 which best satisfy the free or metallised

surface boundary condition. Adler et al. [63] also demonstrated how the effective

permittivity can be calculated using the transfer matrix method.

Smith et al. [104] extended Adler’s method to produce a frequency dependant

dyadic Green’s function of a layered system. This extends all the capabilities of the

Green’s function analysis to multi-layered structures. It was shown that this method

suffers from numerical instability for thick layers at high frequencies, so a scattering

matrix approach was developed to solve this problem [105–107]. This formulation re-

tains all the advantages of Adler’s approach, and can be used to calculate a Green’s

function. Another more recent approach is the layer impedance or layer stiffness

method [108, 109]. The advantages of this method are almost identical to those of

the scattering matrix approach, although implementation is slightly simpler.

The scattering matrix approach has been extended by Reinhardt [110] to include
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perfectly conducting metal layers, as well as non-viscous liquids. Such a model is very

useful for ultrasonic transducers in liquid media, but for typical operating frequencies

of SAW sensors the assumption of a liquid having negligible viscosity is not appro-

priate. Further discussion of including liquid media in these models is contained in

Sections 2.7.3 and 2.7.4.

In order to consider the problem of piezoelectric generation at a layer other than

the surface (e.g. for IDTs sandwiched between a layer and substrate), it is necessary

to take an approach such as the surface impedance methods of Hashimoto [76] and

Zhang [66]. This allows an interface to be modelled under the assumption of infinitely

thin grating electrodes, and a resultant Green’s function to be calculated. This results in

very efficient computation, but suffers from poor accuracy for devices with low elec-

tromechanical coupling, heavy electrode material, thick electrodes or high operating

frequency, where mechanical reflections play a critical role in device operation.

Wang et al. [111] introduced an asymptotic model for layered systems. They

demonstrated that this approximate model can give acceptable accuracy compared

to the exact method whilst improving computation speed. However, for maximum

accuracy the improvement in speed is only by a factor of 2, and the model is more

complicated than the exact models. Additionally, for certain cases the approximations

cannot be used, so exact methods must be resorted to. Although the authors show how

to detect these cases, it is not clear that the reduction in computation time outweighs

the extra complexity of implementation.

A common feature of all the techniques for multi-layer devices discussed in this

section is that they assume that each layer is perfectly homogeneous, and that the in-

terface between layers is perfectly smooth. In practice such a conditions are never met,

particularly in the case of poly-crystalline thin films. Nonetheless, good agreement is

generally achieved. For problems with highly irregular layer boundaries a finite ele-

ment approach would be more suitable.

For accurate modelling of layered SAW filter and sensor structures, it is necessary

to account for electrodes of finite height buried between a layer and substrate. The

FEM/BEM models discussed in Section 2.4.3 cannot be applied because they treat each

electrode separately, whereas within layered media they are directly coupled to each
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other by the layer material. To date only Ballandras et al. [91] have reported a solution

to this problem based on using FEM to mesh most of the problem, leaving most of the

semi-infinite substrate or homogenous layers to be simulated via a Green’s function

analysis. This solution is very crude, since it uses the FEM for the most critical sections

of the problem, resulting in poor convergence and long computation time. Thus there

is a requirement for a simpler model to handle this case.

2.7 Modelling of SAW Sensor Response

For SAW and other acoustic sensors, the analysis requirements are somewhat differ-

ent from those of signal processing components. Factors such as precise control of the

operating frequency are of less concern. More importance is placed on the change in

these parameters due to the quantity being sensed, as well as interfering effects. To

model sensor performance it is necessary to know the mechanism by which it will

operate. The most common is a mass response, whereby a mass adsorbed into or de-

posited onto the sensitive layer causes a change in wave velocity. Another mechanism

is through a change in conductivity of a thin film, which causes a change in veloc-

ity due to acousto-electric interaction between the wave and a conductive material.

Other common mechanisms include loading of the wave by the density, viscosity, con-

ductivity or permittivity of a liquid medium. Usually only one of these mechanisms

corresponds to the desired response, so other mechanisms will results in some interfer-

ence. For mass sensing there may be additional effects due to the elastic properties and

geometry of the additional mass. Techniques to calculate the sensitivity to mass will be

reviewed in Section 2.7.1, and sensitivity to conductivity changes will be reviewed in

Section 2.7.2, since these are the parameters of greatest interest in sensing applications.

This will be followed in Section 2.7.3 by a discussion of techniques to characterise the

operation of SAW sensors in liquid media, and in Section 2.7.4 by a review of numerical

techniques for the determination of sensitivity.
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2.7.1 Mass Sensitivity

Mass sensitivity represents the change in output signal caused by a mass bound to the

surface of a sensor. The most widely used definition of the mass sensitivity of a SAW

mode is [112]:

Sv
m = lim

∆m→0

(
∆v/vp

∆m/a

)
, (2.15)

where vp is the SAW phase velocity and ∆v is velocity change due to mass change

∆m per area a. In practice, it can be regarded as the fractional velocity change due

to loading by a small mass per unit area, and is commonly expressed in cm2/g. A

quantity which is often useful in deriving the velocity sensitivity is the sensitivity of

the wavenumber k1:

Sk
m = lim

∆m→0

(
∆k/k1

∆m/a

)
, (2.16)

Since frequency is typically the parameter which is experimentally measured, the cor-

responding sensitivity of the output frequency [16]:

Sf
m = lim

∆m→0

(
∆f/f0

∆m/a

)
=

(
vg

vp

)
Sv

m = −
(

vg

vp

)2

Sk
m, (2.17)

is of more practical interest, where vg is the group velocity of the SAW mode, which can

be calculated from the phase velocity. In a non-layered device the group and phase ve-

locities are equal, thus Sf
m, Sv

m and Sk
m are identical. In layered devices with significant

velocity dispersion this equality no longer holds.

Perturbation theory is commonly used to describe the variation of SAW propaga-

tion properties due to the addition of a layer, or a change in its properties. A thorough

explanation of this theory can be found in [37]. This theory gives the expression for the

wavenumber shift due to the addition of a thin isotropic layer as:

∆k

k1

= − vph

4|P |
[(

ρ′ − 4c′44

v2
p

c′12 + c′44

c′11

)
|v1|2 +

(
ρ′ − c′44

v2
p

)
|v2|2 + ρ′|v3|2

]

x3=0

, (2.18)

where ρ′ and c′ are the density and stiffness constants of the perturbing layer, vp is

the phase velocity of the underlying device, v1..3 are the particle velocity components

of the unperturbed mode and |P | is the integrated SAW power flow per unit width.

These can be readily calculated using the numerical techniques discussed in Section

2.6. Assuming that the shear wave velocity of the perturbing material is much less than

the phase velocity of the SAW mode (ie. c′44/ρ
′ ¿ v2

p), the coefficient of |v2|2 in equation
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2.18 reduces to ρ′. Also, noting that the term (c′12 + c′44) /c′11 must lie between 0.5 and 1

for physically realisable materials, the coefficient of v1 will also reduce to ρ′ if the shear

wave velocity of the perturbing material is low. By making these simplifications and

combining with equation 2.18, the following expression for mass sensitivity is obtained

[113]:

Sv
m = − vp

4|P |
(|v1|2 + |v2|2 + |v3|2

) ∣∣∣
x3=0

. (2.19)

Perturbation theory can only be meaningfully applied to small changes, and it’s range

of validity can generally only be determined by comparing with exact numerical solu-

tions. The assumption that the shear wave velocity of the perturbing material is low

means that mass of the material can only be independently measured when it has low

stiffness and high density, even for very thin layers.

By approximating the guiding layer and substrate as being isotropic, Wang et al.

[112] obtained analytical expressions for the mass sensitivity of a layered SAW and

plate mode devices. For a Love wave device, they showed that optimum mass sensi-

tivity is achieved when quarter wave resonance occurs in the layer, and is given as

(
Sf

m

)
max

= −4
vs1

vs2ρ2λ1

, (2.20)

where vs1 and λ1 are the substrate shear wave velocity and propagation wavelength

and vs2 is the guiding layer shear velocity. Thus maximum sensitivity is expected when

using a high velocity substrate and a guiding layer with a low density and velocity. It

should be noted that this approach is strictly only valid for structures with pure SH

polarisation, but would be expected to qualitatively apply to structures with quasi-SH

polarisation.

The useful property of these methods is that they give an indication of which pa-

rameters have an impact on device performance, thus providing some design insight.

Although the resultant mass sensitivity is useful for comparison of devices, it does not

necessarily correspond to the response that will be observed in a given experimen-

tal situation. This is because any practical analyte will also have finite geometry and

stiffness or viscosity, which also affect wave propagation.

A limitation of these models is that they do not account for the specific geometry of

the SAW sensor, which can result in different sensitivity from that predicted by models

which assume propagation along an infinite substrate [25]. In addition, these models
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assume that the device is loaded by a homogeneous layer. In practical applications

such as bio-sensing, this is not necessarily the case.

2.7.2 Conductometric Sensitivity

Conductometric sensitivity gives the velocity change due to a change in conductivity

of a layer on the surface of the SAW device. For sensing oxidising and reducing gasses

this is the most common mechanism used, in combination with an appropriate sensing

layer. Ricco and Martin [34] developed the basic theory of a SAW sensor responding to

a conductivity change. Using perturbation theory, assuming weak electromechanical

coupling, and neglecting the thickness of the layer, they showed that the velocity shift

∆v/vp and normalised attenuation α/k1 of a non-layered SAW device in contact with a

thin conductive layer are:

∆v

vp

= −K2

2

σ2
sh

σ2
sh + v2

pε
2
p

, (2.21a)

α

k1

=
K2

2

vpεpσsh

σ2
sh + v2

pε
2
p

, (2.21b)

where K2 is the electromechanical coupling of SAW mode at the device surface, εp

is the permittivity of the structure (including free space permittivity), vp is the phase

velocity and σsh is the sheet conductivity of the layer. A normalised plot of equations

(2.21) is given in Figure 2.3. It is important to note that the conductivity sensitivity is

a function of the sheet resistance of the thin layer (σsh), and is largest when σsh = vpεp,

which coincides with maximum power dissipation into the layer. This indicates that

to achieve high sensitivity the sheet conductivity of the layer must be matched to the

velocity-permittivity product of the SAW mode.

Conductometric sensitivity is linearly proportional to electromechanical coupling

coefficient K2. An important distinction which must be made in the case of layered

SAW devices is between K2 at the device surface, and at the substrate-layer interface.

For modelling acoustic wave generation and detection K2 should be calculated where

the IDT is located, which is often at the interface between the guiding layer and the

substrate. For conductivity sensing purposes K2 should be calculated at the device

surface, since this is where the conductometric sensitive layer is deposited. In both

cases the same techniques can be used to calculate the coupling.
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Figure 2.3: Surface wave velocity and attenuation as a function of layer conductivity

2.7.3 Influence of Liquid Media

Operation in liquid media has a significant impact on the wave propagation character-

istics of a device. The conductivity and viscosity of the liquid can significantly increase

attenuation and shift the phase velocity. In addition, acoustic modes with substantial

shear vertical components may be strongly attenuated due to radiation of energy into

the liquid.

Niemczyk et al. [114] and Josse and Shana [115] derived perturbation relations for

the effect of liquid conductivity σ on the velocity and attenuation of a surface acoustic

wave. As expected, these equations have similar form to the response of a SAW to a

thin conductive film given in equations (2.21):

∆v

vp

=
−K2

2

(εs + ε0) σ2

(εs + εl) [σ2 + ω2 (εs + εl)]
. (2.22a)

α

k
=

K2

2

(εs + ε0) ωσ (εs + εl)

(εs + εl) [σ2 + ω2 (εs + εl)]
. (2.22b)

Here εs is the permittivity of the structure excluding the area above the substrate, εl is

the liquid permittivity, ε0 is the free space permittivity and ω is the angular frequency.

The most significant difference from the case of a thin conducting layer is that this
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result is frequency dependant, and is sensitive to both changes in conductivity and

permittivity of the liquid. The matching conditions for maximum sensitivity to liquid

conductivity are dependant on the permittivity of the liquid.

The viscosity sensitivity of a shear horizontal SAW device operating in liquid me-

dia is closely related to its mass sensitivity. The velocity change due to a change of

Newtonian liquid of viscosity from ηl to η′l and density from ρl to ρ′l is calculated via

perturbation theory as [116]:

∆v

vp

= −vg |v2|2
4ω|P |

(√
ωη′lρ

′
l

2
−

√
ωηlρl

2

)
, (2.23)

where v2 is the shear particle velocity. By comparison with equation (2.19) it can be seen

that a SAW device with high mass sensitivity must also have high viscosity sensitiv-

ity. However, viscosity sensitivity is also enhanced by surface roughness and porosity,

but this cannot be characterised so easily in an analytical form. Some differentiation

between the mass and viscosity responses can be achieved because a perfectly elas-

tic material does not cause wave attenuation, whereas a viscosity change will cause

attenuation change of

∆α

k
=

vg |v2|2
4ω|P |

(√
ωη′lρ

′
l

2
+

√
ωηlρl

2

)
. (2.24)

A more in-depth study of the effect of liquid viscosity on Love wave devices was

presented by Tamarin et al. [117]. By assuming isotropic materials, dispersion relations

were obtained showing the effect of liquid viscosity on the SAW velocity. This work

also showed that a viscous liquid can actually increase the mass sensitivity, due to the

trapping effect of the liquid.

McHale et al. [118] presented an analysis of Love wave devices loaded with vis-

coelastic materials, thus unifying the theory of the response to mass and viscosity

changes. The influence of viscoelastic characteristics of the guiding layer were also

shown, which are significant when a polymer is used. Analytical formulas for the

mass sensitivity in liquid and vacuum media were given. An important result is that

the effects of mass loading and liquid loading cannot be considered to be independent

additive effects, but must be considered together. It was shown that for mass loading

in liquid media, the sensitivity Sliq
m has an extra factor compared to the sensitivity in
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the vacuum case Svac
m :

Sliq
m ≈

1− jω

c
(m)
44 k

(m)
3

√
1
2
ρlηlω

1− jω

c
(g)
44 k

(g)
3

√
1
2
ρlηlω

Svac
m . (2.25)

In this expression k3 refers to the surface-normal component of the wave vector, quan-

tities with superscripts (g) and (m) are those of the guiding layer and perturbing mass

layer respectively. It is important to note that unlike equation (2.19), where the contri-

bution of the elastic properties was shown to be negligible when the perturbing ma-

terial has high density and low stiffness, no such limit occurs in this case. Instead,

there is an explicit dependance on the properties of the liquid, guiding layer and the

perturbing mass.

These analytical techniques provide useful insight, but do not give a complete pic-

ture of device operation in liquid media. This is due to the assumption of isotropic

materials, and the neglecting of electrode effects, which are particularly important for

resonator structures.

2.7.4 Numerical Models for Sensing Application

The analytical techniques presented so far in this section give a great deal of useful

insight, but do not necessarily reveal the complete device behaviour. Numerical tech-

niques can give a much more accurate picture, assuming that all the underlying param-

eters are well known. Most of the techniques presented in Section 2.6 were developed

for signal processing applications, where dielectric, piezoelectric and ideal conducting

layers are modelled. The adaptation of these techniques to the sensing case will be

considered here. Numerical techniques are also quite applicable to SAW sensors oper-

ating in liquid media, as the liquid can be considered another semi-infinite layer with

well known properties.

Furukawa et al. [119] modelled a viscous liquid as a dielectric solid with complex

stiffness constants, by manipulating the equations for a Newtonian liquid into a stress

and displacement form. This allows a viscous liquid to be included in the analysis

techniques presented in Section 2.4. A more formal approach by Ballandras et al. [120]

considering interaction with a viscous liquid gave essentially the same result. They
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combined this approach with the layered Green’s function, to calculate the harmonic

admittance of infinitesimally thin electrodes directly exposed to water.

Zaitsev et al. [121] used a similar numerical approach to model a conductive liq-

uid, finding significant differences between the numerical approach and perturbation

theory of equations (2.22). The major difference that liquid viscosity or conductivity

introduces to the analysis of liquids is the frequency dependance of the material con-

stants. Since the velocity and other properties of a layered structure are almost always

frequency dependant, this does not significantly increase the computational complex-

ity. For narrow bandwidth acoustic devices such as resonators, the values at centre

frequency are likely to be sufficiently accurate over the bandwidth of interest.

Briot et al. [122] analysed the sensitivity of a shear plate mode device using the har-

monic admittance. Utilising a simple spectral representation of the charge distribution,

the dispersion curve was calculated and an equivalent circuit derived. The change in

resonant frequency of this equivalent circuit due to mass loading was calculated to

give the mass sensitivity.

The conclusion which can be drawn from these works is that many numerical tech-

niques suitable for SAW device analysis can be applied to SAW devices operating in

liquid media. Some obvious exceptions exist, such as using the FEM/BEM method for

electrodes directly covered in liquid. In practice this is not a useful configuration, since

the liquid will cause excessive electrical loading. The most common situation is liq-

uid/guiding layer/IDT/substrate. As discussed in Section 2.6 this configuration can

readily be modelled, however the problem of finite height electrodes and non-smooth

guiding layer is likely to be even more significant, since a corrugated surface has been

shown [31] to strongly affect SAW/liquid interaction. There is a significant need for a

relatively simple model which accurately characterises the effect of mechanical inter-

actions with electrodes buried within layered media, due to the common use of this

configuration in liquid media sensing.

Another area of concern is the sensitivity expressions given in Sections 2.7.1 and

2.7.2. These equations assume that the device interaction with the analyte is uniform

over the surface. However, in applications such as bio-sensing, this assumption is not

well grounded. Using analytical models it is not possible to conclude which part of the
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device surface is most sensitive to surface perturbations. It has previously been shown

by Harding [25] that for a SAW delay line with electrodes exposed to the analyte, sensi-

tivity varies significantly over the device surface. For resonator type SAW devices even

stronger sensitivity variation is expected, since acoustic energy decays exponentially

into the reflective gratings. Thus there is a strong need for a model which characterises

the effect of inhomogeneous loading, in order to find the region of the SAW where sen-

sitivity is highest. This is particularly important in cases where only a small quantity

selective material is available, so that it can be placed on the most sensitive region of

the SAW device. It is also important when a limited amount of analyte is available.

2.8 Other Modelling Considerations

None of the methods mentioned in this section include electromagnetic feed-through,

or the effects of packaging. These issues can be quite important in sensor design.

Electromagnetic feed-through can distort the frequency response, which can cause the

startup frequency to be unpredictable. The effect of bond leads and packaging are typ-

ically included separately in signal processing applications via electromagnetic simu-

lations [123]. Packaging is an important issue in its own right which can impact on

sensor performance by affecting thermal insulation, electrical interference, mechanical

stresses and vibration isolation. This area has not received such a great deal of attention

in the literature. In the author’s opinion this is because packaging details are consid-

ered commercially sensitive, due to their highly critical importance in the performance

of the sensor system.

Many other techniques also exist in the literature to study effects such as unidirec-

tionality and non-linear interaction. These effects are almost always insignificant for

SAW sensors, so they will not be considered here.

2.9 Conclusion

It was shown that modelling techniques for SAW device analysis vary between simple

analytical models and computationally intensive numerical models. Numerical meth-

ods such as those based on the Green’s function give greater accuracy but can require
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long computation time. Analytical or phenomenological methods are much quicker to

use and easier to understand, but are often quite limited in their applicability. Tech-

niques also exist which extract analytical parameters from the results of rigourous

simulation methods, thus combining the merits of both approaches. In the author’s

opinion, these techniques are highly appealing because they give results rigourously

based on the physics of the problem, whilst still being relatively quick to compute and

providing useful insight.

The rigourous numerical techniques which were discussed in this chapter were de-

veloped primarily for signal processing applications. In order to apply them to layered

SAW resonator sensors operating in liquid media, a new model is required to account

for mechanical electrode interactions when the electrodes are buried within layered

media. In subsequent chapters of this thesis, the author will propose a new model

which accurately describes the behaviour of resonant layered SAW sensors operating

in liquid media.

The author’s novel approach to this problems will be presented in Chapter 4, utilis-

ing the periodic Green’s function. In order to develop this function the spectral domain

Green’s function is required, so this is outlined in Chapter 3, and extended to include

material classes used in SAW sensors. As the spectral domain Green’s function can

also be used for the analysis of delay line structures, examples of this analysis will be

given and compared with experimental results.

When considering SAW sensors specifically, an important limitation is the simplis-

tic nature of the existing models. Although they provide useful insight, they are not

always sufficiently accurate for optimisation of sensor performance. In particular, all

of these models assume that the SAW device is homogeneously loaded by the analyte,

thus they are unable to determine which areas of the sensor are most sensitive. The

author’s approach to this problem will be detailed in Chapter 6, based on the novel

technique developed in Chapter 4.
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Chapter 3

Spectral Domain Green’s Function Model

3.1 Introduction

In Chapter 2 it was shown that techniques based on the extraction of phenomenolog-

ical parameters from a periodic numerical model are the most suitable for analysing

SAW resonator structures. These techniques will form the basis of the author’s novel

approach to modelling layered SAW resonators for liquid media sensing applications.

In order to present this approach, it is necessary to first introduce the spectral domain

Green’s function, which will be done in this chapter.

The spectral domain Green’s function will be presented in such a manner as to lead

naturally to the periodic analysis, which will be discussed in Chapter 4. In this chapter

it will be shown how the spectral domain Green’s function can be used as an analytical

tool in it’s own right. This technique will be employed to determine propagation ve-

locity, electromechanical coupling and mass sensitivity, which are the most important

properties for both delay line and resonator SAW structures. Example calculations will

be presented of the ZnO/36◦-YX LiTaO3 configuration, alongside the author’s mea-

surements of delay line SAW devices, which are used to validate the model.

Section 3.2 covers the derivation of the layered spectral domain Green’s function

from the constitutive and governing equations for piezoelectric and other materials.

From the spectral domain Green’s function it is possible to gain insight into the perfor-

mance of SAW sensors before proceeding to the more complicated periodic analysis.

Section 3.3 describes the techniques used to extract useful parameters describing SAW
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sensor performance from the Green’s function, and gives several examples of these

parameters. It also includes a comparison with parameters extracted from measure-

ment of devices. Although the analysis undertaken in this chapter is applicable to

SAW resonator sensors, it does not include several effects which are specific to them.

These effects will be discussed and methods to account for them will be developed in

Chapter 4.

3.2 Development of Spectral Domain Green’s Function

In this section the derivation of the spectral domain Green’s function is given. This is a

powerful analytical tool which can be used to solve partial differential equations, and

forms the basis of all subsequent analysis. For SAW devices the equations to be solved

are the piezoelectric constitutive and governing equations, which will be introduced

first. For the analysis of wave propagation problems, it is most convenient to work in

the frequency domain with all field quantities proportional to ejωt, with ω being the

angular frequency. This convention will be used throughout this thesis.

3.2.1 Constitutive and Governing Equations for Piezoelectric Materials

The piezoelectric constitutive and governing equations [36] can be used to describe

the behaviour of almost all piezoelectric micro-devices. The essential details are re-

produced here, and in Section 3.2.2 they will be extended to describe the behaviour of

other materials which are important for liquid media sensing applications.

The linearised strain tensor S represents the deformation of a material under the

acoustic approximation. The acoustic approximation implies that the deformation of

the material is small (∂ui/∂xj ¿ 1) and that the material response can be assumed to

be linear. Strain is related to the particle displacement ui by

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.1)

Diagonal elements (i = j) represent the expansion or contraction of a material along

direction xi. Off-diagonal elements (i 6= j) represent shear deformation in the (xi, xj)

plane.



Chapter 3. Spectral Domain Green’s Function Model 59

Stress tensor element Tij is the force per unit area in the direction xj on an infinitesi-

mal surface normal to the direction xi. It is related to the acceleration of an infinitesimal

volume of material, having density ρ, via the governing equation:

∂

∂xj

Tij = −ρω2ui. (3.2)

In this equation the Einstein notation is used [36] whereby summation is implied over

repeated indices.

The stress and strain tensors are coupled to each other, as well as the electric field

E and electric flux D, via the piezoelectric constitutive equations:

Tij = −eijkEk + cE
ijklSkl. (3.3a)

Di = εS
ijEj + eijkSjk. (3.3b)

The stress and strain tensors are related by the stiffness tensor cijkl, with the super-

script E indicating that the stiffness is defined at constant electric field. The dielectric

tensor εij represents the relationship between electric field and flux density, with the

superscript S indicating that it is defined at constant strain. The piezoelectric tensor

eijk is responsible for the interaction between electrical and mechanical fields.

The divergence of electrical flux is equal to volume charge density qv:

∇ ·D = qv. (3.4)

In this work the volume charge density is taken to be zero in all regions except for on

electrodes and metal layers, where it takes the form of a surface charge density.

The quasi-static approximation is almost always used in the analysis of piezoelec-

tric wave propagation. It assumes that the electric field can be represented as the gra-

dient of a scalar voltage field ϕ, such that:

Ei = − ∂

∂xi

ϕ. (3.5)

Another quantity which is often used is particle velocity, which is the time derivative

of particle displacement:

vi = jωui. (3.6)

Due to the high degree of symmetry in the tensors Sij , Tij , cijkl and eijk they can be rep-

resented in a more compact matrix form as SI , TI , cIJ and eiJ . The dielectric tensor εij
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remains unchanged in this matrix notation. The stress and strain matrices are formed

from the tensor elements as follows:

T =
[

T11 T22 T33 T23 T13 T12

]T

. (3.7)

S =
[

S11 S22 S33 2S23 2S13 2S12

]T

. (3.8)

Superscript T indicates the matrix transpose operation. Apart from the factors of 2 in

the strain matrix, all of the equations are consistent with the tensor form. Stress and

strain matrices obey the following equations:

∇TT = −ρω2u (3.9)

S = ∇u, (3.10)

where the operator ∇ represents the tensor divergence in matrix form and is given by

the expression:

∇ =
∂

∂x1

N1 +
∂

∂x2

N2 +
∂

∂x3

N3. (3.11)

The effect of elements Ni is to select the direction of tensor quantities expressed in

matrix form, and they are defined as [124]:

N1 =




1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0




N2 =




0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0




N3 =




0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0




. (3.12)

In matrix form the constitutive equations are as follows:

T = −eE + cES, (3.13a)

D = εSE + eTS, (3.13b)

where cE is a 6×6 symmetric matrix, e is a 6×3 matrix and ε is a 3×3 symmetric matrix.

For most materials there are further constraints upon the elements of these matrices,

based on the crystal symmetry of the material, which reduce the number of indepen-

dent elements. A very important class of materials are the isotropic ones, which have
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only two independent elastic constants c11 and c44, and a single dielectric constant ε11.

They greatly simplify the analysis because their properties such as propagation veloc-

ity are independent of direction. However the piezoelectric materials used to generate

acoustic waves are necessarily anisotropic, and so are many of the crystalline materials

used in SAW devices.

An important practical consideration is the numerical stability of equation (3.13)

and of the many subsequent equations which are derived from it. Based on data from

the literature [36], Table 3.1 gives the typical orders of magnitude of the material con-

stants when expressed in SI units.

Table 3.1: Typical order of magnitude of material constants

Parameter SI Unit Magnitude

c N/m2 1011

e C/m−2 1

ε F/m 10−11

These greatly differing numbers are highly problematic for numerical computation,

since the smaller numbers can easily be much less than the rounding errors of the larger

numbers. In many matrix based computations these quantities will be added to each

other, thus the smaller quantities will be obliterated and the resultant solution will be

erroneous. This problem can be remedied by introducing scaled versions of the field

variables as follows:

D′
i =

Di

D0

u′i =
ui

u0

. (3.14)

By substituting equation (3.14) into equations (3.9), (3.10) and (3.13), it is seen that

working with the normalised variables has the effect of scaling the material constants:

∇TT = −u0ρω2u′. (3.15a)

S′ = ∇u′. (3.15b)

T = −eE + u0c
ES′. (3.15c)

D′ =
1

D0

εSE +
u0

D0

eTS′. (3.15d)
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For consistency it is required that the scaling on e and eT are identical, so that:

D0 = u0. (3.16)

This then allows the following normalised material constants to be defined, which then

simplify equations (3.15):

ρ′ = u0ρ. c′ = u0c. ε′ =
ε

u0

. (3.17)

Examining Table 3.1 and equations (3.15), it can be seen that u0 = 10−11 would be

sufficient to bring the typical value of all 3 constitutive constants to near unity. Den-

sity is also scaled in order to ensure that characteristic velocities of the materials are

unchanged, since these have dimensions of
√

c/ρ (see Section 3.2.3).

In all further analysis in this thesis, it is assumed that the normalised parameters

are used, so the symbol ’ will be omitted. Once the piezoelectric equations have been

solved the scaling is simply reversed, thus giving the correct result in SI units. The

values of the material constants used in this thesis are given in Appendix A.

3.2.2 Extension to Other Classes of Material

The theory in Section 3.2.1 was developed for piezoelectric solids. It can also be ex-

tended to other classes of material which are of interest in SAW sensor modelling.

Non-piezoelectric solids are represented by setting all elements of piezoelectric matrix

e to zero, thus decoupling the electrical and mechanical fields. These material mod-

els are adequate for most acoustic devices used for signal processing applications. For

sensing applications a variety of materials are used which have much less ideal charac-

teristics. Viscoelastic materials and liquid loading are commonly encountered in such

applications.

Viscoelastic materials, such as the polymer layers often used in SAW sensors, can

also be represented in a similar form to a non-piezoelectric solid [118]. Assuming

isotropic media, the shear stiffness constant c44 can be replaced by a complex shear

modulus of the form:

c′44 =
jωη

1 + jωη/c44

, (3.18)

where η is the shear viscosity coefficient. At low frequencies (ωη/c44 ¿ 1) such a

material will have a viscous limit: c′44 ∼ jωη, whereas at high frequencies (ωη/c44 À 1)
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it will have an elastic limit: c′44 ∼ c44. In the case of elastic solids [36], losses can be

considered in a much simpler form by making the substitution

c′IJ = cIJ + jωηIJ . (3.19)

This complex stiffness will result in absorption of energy by the material. For suffi-

ciently low frequencies this loss will be negligible, and the term jωηIJ can be neglected.

It should be noted that these loss coefficients for solids are generally more difficult to

determine than the stiffness constants, and are not commonly available in the litera-

ture.

To include liquid media in the model, a constitutive relationship for it must also

be derived. A viscous liquid is commonly represented using the Newtonian model

with negligible bulk viscosity[60, 120, 125], which allows for the propagation of both

longitudinal and shear waves. To allow the constitutive equation to be incorporated

with existing models, it is expressed in terms of the stress and strain tensors:

Tij =

(
K − jω

2

3
η

) 3∑

k=1

Skkδij + 2jωηSij. (3.20)

Here K is the bulk modulus of the liquid and η is its shear viscosity.

By converting equation 3.20 to matrix form, it can be seen that the symmetry of the

equations is identical to that for an isotropic solid. The most important differences are

the presence of the time dependant viscosity terms jωη, and that for the shear com-

ponent there is no real term of the material parameters. This is because shear stresses

are not supported by a non-viscous liquid. To account for such a case the numerical

techniques used need to be modified [110], however this case is not of interest in this

thesis. As the liquids in this model are isotropic, they can be given equivalent stiffness

constants [119]:

c′11 = K +
4

3
jωη. (3.21a)

c′44 = jωη. (3.21b)

By substituting these appropriate c′ elements into the equations of Section 3.2.1,

the analysis undertaken in this and subsequent chapters can be applied to liquids,

viscoelastic materials, and lossy elastic solids. The most important difference which
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needs to be taken into consideration is that for these materials, the stiffness matrix

is frequency dependant, which will introduce a frequency dependency into several

quantities which would otherwise be frequency independent.

The final class of media which must be considered is the gaseous media surround-

ing a SAW device. For high precision oscillator applications the SAW device may be

contained within a sealed evacuated package, in order to eliminate the influence of gas

on the device response and aging. These effects are of no significance for the work un-

dertaken in this thesis, since they many orders of magnitude weaker than the effects of

interest. Therefore, no distinction is made between the performance of the device oper-

ating in vacuum, or in gas media. A vacuum is much simpler to model than gas media,

since it supports no acoustic wave propagation and has a well-known permittivity of

ε0 = 8.854×10−12. In this thesis the analysis conducted for devices in vacuum media

should be understood to be applicable to the case of gas media which has negligible

influence on the device performance.

3.2.3 Bulk Waves in Infinite Media

It was shown in Section 3.2.2 that the piezoelectric constitutive and governing equa-

tions can represent the behaviour of materials composing a SAW sensor and its liquid

environment. However, direct solution of these equations is usually impractical, since

in the most general cases analytical solutions do not exist.

If the solution is assumed to be an infinite plane wave of the form exp (jωt− k · x),

the piezoelectric constitutive equations can be reduced to the piezoelectric Christoffel

equation [36]:

1

ρ


KiN



cE

NM +

[
eNj k̂j

] [
k̂ieiM

]

k̂i, εS
ij k̂j



KMj


 vj =

(
ω

|k|
)2

vi, (3.22)

where the unit wave-vector k̂ defined as:

k̂ =
k

|k| , (3.23)

gives the propagation direction. The tensor divergence operator results in the quantity

K, defined as:

K = k̂1N1 + k̂2N2 + k̂3N3. (3.24)
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Equation (3.22) converts the complicated system of equations (3.13) to an algebraic

eigenvalue problem. Each eigenvalue (ω/|k|)2 is the square of the propagation velocity,

with the corresponding eigenvector v being the particle velocities (or polarisation) of

the mode. There will be 3 eigenvalues corresponding to the 3 different polarisations

possible, although it is quite common to have degenerate solutions (e.g. the two shear

modes in an isotropic solid).

These solutions correspond to the partial modes discussed in Section 2.4.2. It is

important to note that |k| and ω only appear as a ratio in equation (3.22), unless ω ap-

pears in the material constants as described in Section 3.2.2. This is a property of non-

dispersive media and structures, where the phase velocity is independent of frequency.

In such cases the wavenumber k can be expressed in normalised form as s = k/ω,

where s is termed the slowness, since it has dimensions of inverse velocity. For con-

venience this notation is retained even in situations where the material properties or

device geometry result in dispersive behaviour.

3.2.4 Spectral Domain Green’s Function

The solution presented in Section 3.2.3 is adequate for modelling structures such as

thickness shear mode (TSM) resonators, where the wave propagation is well described

by a single plane wave. However, it is not directly applicable to guided-wave struc-

tures such as SAW devices, so the necessary modifications will be presented in this

section. They are based on the partial mode analysis described in Section 2.4.2, and

will be extended to develop the spectral domain Green’s function. For simplicity the

non-layered case will be presented first, with the modifications for the layered case

being presented in Section 3.2.5.

When modelling the propagation in a non-layered SAW device, the structure con-

sidered is a semi-infinite half space occupying the region x3 < 0. The coordinate con-

vention used throughout this thesis is given in Figure 1.3. The material constants c, ε

and e can be rotated to give the correct alignment of crystal axes relative to the device

coordinates. The wave propagation is taken to be in the positive x1-direction, and it is

assumed that there is no variation along the x2-direction, so that:

∂

∂x2

≡ 0. (3.25)
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This means that diffraction and wave-guiding effects in the (x1, x2)-plane are ignored.

In the co-ordinate system used here, the field variables of interest can be composed

into a vector ψ(n) for each partial mode as:

ψ(n) =
[

v
(n)
1 v

(n)
2 v

(n)
3 jωϕ(n) T

(n)

13 T
(n)

23 T
(n)

33 D
(n)

3

]T

.

=
[

v(n)T jωϕ(n) τ (n)T D(n)
]T

.

(3.26)

Superscript (n) refers to the partial mode. These elements are chosen because any

boundary normal to the x3 direction will place continuity conditions on these vari-

ables. Additionally, for frequency-independent material constants, this column vector

will be frequency independent. Equation (3.26) also shows the short-hand notation

which will be used subsequently. In cases where the frequency dependance has been

explicitly introduced, the variables u and ϕ will be used instead of v and jωϕ.

In Section 3.2.3 the wave vector magnitude |k| and direction k̂ were treated sepa-

rately. In the analysis used here, it is more convenient to use the propagation compo-

nent of the slowness vector s1 as an independent variable, and to find the correspond-

ing partial modes. The complete solution for each value of s1 is a sum of these partial

modes, and can be expressed as:

ψ (s1, x3) =
8∑

n=1

w(n)ψ(n) exp jω
(
t− s1x1 − s

(n)
3 x3

)
. (3.27)

Each partial mode is weighted by a factor w(n) which is determined by boundary condi-

tions. The depth slowness component s
(n)
3 and corresponding polarisation vector ψ(n)

are calculated by reformulating the Christoffel equation (3.22). Instead of specifying

propagation direction of the partial mode by the vector k̂, the propagation component

s1 is specified a priori and the depth components s
(n)
3 are determined.

The equation to perform this operation is well known [102, 126]. However, to allow

easy generalisation to later results, an alternate form [124] is chosen:


 L11 L12

L21 L22







u

ϕ

τ

D




=
∂

∂x3




u

ϕ

τ

D




. (3.28)

This is a more general approach, since it can be used in a full 3-dimensional analysis,

and allows inhomogeneous material constants to be used. The 3-dimensional case is
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not considered in this thesis, and the case of inhomogeneous material constants will

considered in Chapter 4. Adapting this operator to the 2-dimensional case where ∂
∂x2

≡
0 results in:

L11 = −M−1
33 M31

∂

∂x1

. (3.29a)

L12 = M−1
33 . (3.29b)

L21 = −ρω2 − ∂

∂x1

[
M11 −M13M

−1
33 M31

] ∂

∂x1

. (3.29c)

L22 = − ∂

∂x1

M13M
−1
33 . (3.29d)

The matrix ρ is defined as:

ρ =




ρ 0 0 0

0 ρ 0 0

0 0 ρ 0

0 0 0 0




. (3.30)

Matrices Mij are based on the material constants:

Mij =


 NT

i cNj NT
i enj

nT
i eT Nj −nT

i εnj


 . (3.31)

Each matrix ni represents a column vector with a 1 in component i, and the matrices

Ni were defined in equation (3.12). A solution of the form exp (−jk1x1 − jk3x3) is sub-

stituted into equation (3.28), assuming that the material constants are independent of

x. By changing the choice of variables and scaling the equations, the following matrix

eigenvalue problem results:

 −s1M

−1
33 M31 −M−1

33

s2
1

(
−ρ + M11 −M13M

−1
33 M31

)
−s1M13M

−1
33


 ψ(n) = s

(n)
3 ψ(n). (3.32)

The eigenvectors ψ(n) give the polarisation of the partial modes, and the eigenvalues

s
(n)
3 describe their propagation or decay in the x3-direction.

The eight partial modes can be divided into radiating modes having purely real s3,

and evanescent modes with imaginary or complex s3. The Poynting vector component

P
(n)
3 [36] of the radiating partial modes must be analysed to determine whether radi-

ating modes propagate in the positive or negative x3 direction. For evanescent modes,
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the sign of the imaginary component of s3 determines whether the mode decays in the

positive or negative x3 direction. For a non-layered, semi-infinite substrate occupying

the region x3 < 0, partial modes should be selected to decay or propagate in the −x3

direction. For calculations made to characterise PSAW velocity and attenuation, com-

plex values of s1 are used, and different partial mode selection rules should be applied

as discussed in Section 2.4.2.

Once the partial modes have been selected, the spectral dyadic Green’s function

(defined in Equation (2.7)) can be calculated as [104]:

G(s1) =
1

jω


 v(d)

jωϕ(d)





 τ (d)

q(d)



−1

. (3.33)

The superscript (d) indicates the column-wise arrangement of partial modes which de-

cay or propagate in the “downward” −x3 direction. Surface charge q is calculated for

each partial mode from the discontinuity in electrical flux:

q(n) = −D(n) − jε0s1

(
jωϕ(n)

)
. (3.34)

An important feature of the Green’s function for non-layered structures consisting of

non-dispersive media is that it has trivial dependance on frequency. Thus it only needs to

be calculated once and scaled appropriately for each frequency. The Green’s function

can be symbolically partitioned as follows:

 u

ϕ


 =


 Guτ Guq

Gϕτ Gϕq





 τ

q


 , (3.35)

where Guτ has size 3×3, Guq has size 3×1, Gϕτ has size 1×3 and Gϕq is a scalar.

Having developed the spectral domain Green’s function of a piezoelectric half-

space, the next task is to extend it to the case of a layered structure.

3.2.5 Extension to Layered Media

As was discussed in Section 2.6, a number of techniques exist for numerically calcu-

lating the dyadic Green’s function of a layered structure. It is well established that

the transfer matrix approach can become numerically unstable for thick layers at high

frequency, so the scattering matrix approach [107] has been used in this work.
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Figure 3.1: Layered configuration to be modelled by Green’s function

At the interface between layers, it is always assumed that all components of ψ are

continuous, so that rigid coupling occurs, and there is no charge. This model is almost

always used for solids [36], and for liquids it is equivalent to assuming that slip effects

are negligible. The device consists of an arbitrary number of layers M underneath a

reference plane x3 = xM
3 . The reference is the location where the Green’s function is

calculated; usually this would be the location of the IDTs. Non-zero charge is allowed

for at this interface. The case where there is material both above and below the refer-

ence plane will be discussed later in this section. Within each layer m the partial modes

ψ(n)
m are distinct from those in other layers, and are calculated as discussed in Section

3.2.4:

ψ(n)
m =

[
v(n)

m

T
jωϕ(n)

m τ (n)
m

T D(n)

m

]T

. (3.36)

Using the criteria discussed in Section 3.2.4, they are divided into upward and down-

ward bounded partial modes, labelled with a superscript (u) and (d) respectively. It

should be noted that from here on subscripts will be used to indicate layer number,

thus D1 indicates D3 evaluated at x3 = x1
3.

Next a diagonal matrix Pm(h) is defined representing the propagation or decay of

partial modes in layer m over distance hm in the x3 direction :

Pm(hm) = diag
([

e−jk
(1)
3,mhm . . . e−jk

(8)
3,mhm

])
. (3.37)

For each layer m a vector of partial mode weighting coefficients Wm at the top of the
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layer can be calculated:

Wm(xm
3 ) =

[
Pm(xm

3 )
] [

w
(1)
m . . . w

(8)
m

]T

. (3.38)

These weighting coefficients can also be divided into those belonging to upward and

downward bounded modes. The scattering matrix algorithm works by iteratively con-

structing a reflection matrix Rm,m−1 at the interface between layers m and m − 1. This

reflection matrix relates the upward and downward propagating modes in layer m:

W (u)
m = Rm,m−1W

(d)
m (3.39)

The recursive process is initiated by considering the bottom layer interface at x3 = x1
3,

and constructing a reflection matrix R1,0, which accounts for all the material below

(but not including) the interface. There are two possible cases for this bottom layer.

If it is semi-infinite, then there will be no reflection, so R1,0 = 0. For a layer of finite

thickness bordered by a vacuum, the reflection coefficient can be calculated by impos-

ing the boundary condition of normal stress τ and the discontinuity in normal flux D
vanishing at the interface:

R1,0 = −P(u)
1 (h1)


 τ

(u)
1

D(u)

1 − js1ε0(jωϕ)





 τ

(d)
1

D(d)

1 − js1ε0(jωϕ)



−1

P(d)
1 (−h1) . (3.40)

Once the reflection coefficient has been calculated at the top of a layer (x3 = xm−1
3 ),

it can be calculated at the top of the next layer (x3 = xm
3 ) by applying the following

recursive formula:

Rm,m−1 =
[
P(u)

m (hm) 0
] [

−ψ
(u)
m ψ

(u)
m−1Rm−1,m−2 + ψ

(d)
m−1

]−1 [
ψ

(d)
m P(d)

m (−hm)
]
.

(3.41)

At the reference plane (x3 = xM
3 ) the Green’s function for the structure below the ref-

erence interface can be calculated based on the partial modes and the reflection coeffi-

cient:

G
b
=

1

jω





 v

(u,M)
M

jωϕ
(u)
M


 RM,M−1 +


 v

(d)
M

jωϕ
(d)
M











 τ

(u)
M

D(u)

M


 RM,M−1 +


 τ

(d)
M

D(d)

M






−1

=
1

jω


 v b

jωϕ b





 τ b

D b



−1

.

(3.42)
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It can be seen for a non-layered structure RM,M−1 = 0, and the spectral domain Green’s

function is similar to that given in equation (3.33).

If a structure is present above the reference plane then its Green’s function can be

calculated in a similar way by swapping upward and downward bounded quantities

in the algorithm to yield Ga. Here a and b indicate quantities in the region above and

below the reference interface respectively. Alternatively, if there is a vacuum above the

the reference plane, it’s dielectric effect should be included for accurate representation

of charge at an interface. It should be noted that equation (3.42) is expressed in terms

of electrical flux component D, instead of charge. However, the following procedure

results in a Green’s function in terms of charge q.

For a configuration with material above and below the reference plane, use of the

quantities ∆τ = τ a − τ b and q = D a − D b
simplifies the analysis. It is assumed that

there is rigid contact between the materials, so that v a = v b and φ
a

= φ
b
. For the

regions above and below the reference interface, instead of solving equation (3.42), the

following equation is solved for Z
a

and Z
b
:

Z
a,b

= jω


 τ a,b

D a,b





 v a,b

jωϕ a,b



−1

. (3.43)

The quantity Z is known as the surface impedance, and is the inverse of the dyadic

Green’s function. It will sometimes be more convenient to refer to this quantity in

frequency independent form as Z ′ = 1
jω

Z. Therefore q and ∆τ can be found from:


 ∆τ

q


 =

(
Z

a − Z
b
)


 v

jωϕ


 . (3.44)

This result is then inverted to form the Green’s function of the complete structure:

G =
(
Z

a − Z
b
)−1

. (3.45)

To apply this model directly to a layered SAW device requires the assumption of in-

finitely thin electrodes causing no mechanical perturbation. The author’s novel ap-

proach which more accurately models buried electrodes within layered media will be

presented in Chapter 4.
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Having calculated the spectral domain Green’s function of a layered SAW structure,

device analysis using this function will be undertaken in Section 3.3. This function will

also be used in the periodic analysis developed in Chapter 4.

3.3 Device Analysis Using the Spectral Domain Green’s

Function

The spectral domain Green’s function was developed as a means of calculating the

spatial domain Green’s function, which is used to directly solve for the electrical and

mechanical fields within a SAW device. However, since it encapsulates the solution

to the piezoelectric waveguide problem excluding electrode interactions, the spectral

domain Green’s function also serves as an excellent analytical tool in its own right. The

quantity k1Gϕq (s1) is typically considered since it remains constant with frequency

for a non-layered device, and shows all the important behaviour in the absence of

mechanical interactions at the surface. For a layered SAW device this function will

change with angular frequency ω and layer thickness h. Examining equation (3.37),

and substituting k3 = ωs3, it can be seen that the product ωh determines the frequency

dependance. This dependance is discussed further in Section 3.3.3, and is compared

with experimental results. Firstly the important features of the spectral domain Green’s

function will be discussed in Section 3.3.1. This will be followed in Section 3.3.2 by the

calculation and experimental verification of phase velocity, electromechanical coupling

and mass sensitivity as a function of layer thickness.

3.3.1 Parameter Extraction

To illustrate the techniques used, examples will be given for the ZnO/LiTaO3 device

configuration [127]. Figure 3.2 shows k1Gϕq for a 1µm ZnO layer on a 36◦-YX LiTaO3

substrate, calculated at 100MHz. The most important features are the pole and zero

at approximately 2.4×10−4s/m. These correspond respectively to the free surface and

metallised surface phase velocities of the PSAW mode. There is also a pole-zero pair at

3.2×10−4s/m corresponding to the phase velocities of the Rayleigh mode.
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Figure 3.2: Green’s function for 1µm ZnO on 36◦-YX LiTaO3 substrate at 100MHz

Recalling the definition of the spectral domain electrical Green’s function in equa-

tion (2.4), it can be seen that for the surface charge q to be zero whilst voltage ϕ remains

finite, a singularity must occur. In the region of the singularity, the electrical Green’s

function is well approximated by [67]:

k1Gϕq (s1) =
1

εeff (∞)

s2
1 − s2

m

s2
1 − s2

f

. (3.46)

With reference to equation (3.33), it can be seen that the matrix containing τ and q of

the partial modes will become singular when the free-surface boundary conditions are

satisfied. When considering wave propagation at the interface between two materials

using the surface impedance approach, values of s1 are sought which satisfy the con-

tinuity requirement of ψ at the interface between materials. Both these cases can be

catered for by solving:

det
[
Z (sf )

]
= 0. (3.47)

In practice a numerical search is performed to find a minimum in the absolute value
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of this determinant [63]. The function | det Z
′
(s1)| is shown in Figure 3.3 (a boundary

determinant scan), corresponding to the spectral domain Green’s function in Figure

3.2. The minima corresponding to the propagating modes are much easier to find with

a search algorithm than poles of the Gϕq, since their shape does not depend on the

electromechanical coupling.
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Figure 3.3: Determinant scan for 1µm ZnO on 36◦-YX LiTaO3 substrate at 100MHz

The free surface velocity of the acoustic mode is then found from vf = 1/Re(sf ),

where Re indicates that the real part is taken. The determinant scan may also reveal

singularities which do not appear in the electrical part Gϕq. This indicates a mode

which cannot be excited piezoelectrically (i.e. K2 = 0). However, mode conversion

due to mechanical discontinuities at an electrode may cause such a mode to be excited

in a device.

To find the metallised surface velocities, the surface impedance Z ′ must be modi-
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fied, to yield Z ′
met:

Z
′
met =


 v

q





 ∆τ

jωϕ



−1

=
1

Z
′
qϕ


 Z

′
τuZ

′
qϕ − Z

′
quZ

′
τϕ Z

′
qu

−Z
′
τϕ 1


 . (3.48)

The zeros of det Z
′
met(s1) can be searched for to yield the metallised surface velocities.

In these examples the free or metallised condition is at the interface between the sub-

strate and the layer, where an IDT is most likely to be placed in a layered SAW sensor.

Once the free surface and metallised surface phase velocities have been found, the

electromechanical coupling coefficient K2 can be estimated from K2 = 2 (vf − vm) /vm.

Although more accurate methods can be used to calculate K2, this definition is accept-

able for the analysis performed here. A more precise picture of electromechanical cou-

pling is given in Section 4.2.3 using the COM model, which expresses acousto-electric

transduction using a different parameter, and which also includes the influence of elec-

trode geometry.

An important difference between the Rayleigh SAW and PSAW modes is that for

PSAW modes the values of sf and sm will be complex. Thus for the PSAW mode, once

the minimum has been found along the real axis, the determinant must then be min-

imised along the negative imaginary axis (which corresponds to wave attenuation).

Viscoelastic and liquid media will result in losses, as discussed in Section 3.2.2, so if

these materials are included in the model a similar search must be performed. It is

simple to show that the attenuation α expressed in dB/wavelength can be found from:

αf,m = 40π log10(e)
Im(sf,m)

Re(sf,m)
, (3.49)

where Re and Im indicate the real and imaginary parts respectively. As well as the

poles corresponding to SAW modes, another feature can be seen in Figures 3.2 and 3.3

at 1.8×10−4s/m. This is a branch point singularity [72], corresponding to the limiting

velocity of a bulk wave. This limiting velocity corresponds to the lowest frequency at

which a bulk wave can be generated by surface sources. In this example the mode is a

longitudinal bulk wave, having polarisation predominantly in the x1 direction.

If the influence of the BAW, SAW and PSAW modes were to be subtracted from

Figure 3.2, the remaining part would correspond to the electrostatic response of the

structure. Recalling from (2.5) that Gϕq is closely related to the effective permittivity,
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the quantity:

εeff (∞) = lim
k1→∞

1

|k1|Gϕq (k1/ω)
(3.50)

can be used for calculating capacitance of an electrode structure. In a layered structure

the dielectric contribution varies with k1, so this parameter is not as meaningful.

When performing the determinant scan for non-layered media, the quantity plotted

is | det(Z ′(s1))|. For a layered structure, the quantity s1 = k1/ω is no longer a constant.

Z ′ now depends on both k1 and ω independently, so the complete SAW solution can-

not be shown by a 2-dimensional figure. When analysing a dispersive structure, it is

normally desirable to know the centre frequency at which the IDT will generate acous-

tic waves. For an IDT of period λ0 per electrode pair, the centre frequency will occur

when:

k1 =
2π

λ0

. (3.51)

By enforcing equation (3.51), the function |Z ′(s1)| can now by unambiguously defined.

A zero of the determinant now corresponds to the phase velocity at centre frequency,

allowing both quantities to be calculated.

3.3.2 Sensitivity Analysis

The techniques presented in Section 3.3.1 allow phase velocity and electromechanical

coupling coefficient to be extracted from the spectral domain Green’s function analysis.

In this section, it will be shown how these techniques can be extended to calculate mass

sensitivity.

As discussed in Section 2.7, analytical techniques are normally used to characterise

the mass sensitivity of a SAW sensor. Equation (2.15) is considered the definition of

mass sensitivity, however it makes no reference to the parameters of the mass be-

ing measured. The expression for sensitivity based on perturbation theory (equation

(2.18)) indicates the conditions under which the mass will dominate the response. To

reiterate, these conditions are that the mass layer is much thinner than the acoustic

wavelength, and that it’s acoustic velocity is much lower than that of the substrate.

To measure mass sensitivity, the velocity is calculated for the structure, then it is

calculated for the structure with an additional isotropic layer on the device surface, to

represent the perturbing mass. Mass sensitivity can then be calculated by numerically
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evaluating equation (2.17). This is preferable to the perturbation approach because it

can be applied to leaky SAW eigenmodes which become unbounded as x3→−∞, and

can also be combined with the electrode models which will be presented in Chapter 4.

However, the disadvantage of this technique is the difficulty in correctly choosing the

material constants and thickness.

Table 3.2: Parameters of mass loading layer

c11 106 N/m2

c44 3×106 N/m2

ρ 106 kg/m3

ε ε0

hmass 10−12m

The constants chosen for this work are listed in Table 3.2, where hmass is the thick-

ness of the mass loading layer. In order to validate this choice of material constants,

sensitivity calculations were performed and compared with the results of a simpler

analytical method [112] for the case of a gold layer on a silica substrate. The results

are shown in Figure 3.4 as a function of normalised gold layer thickness. This is not

an interesting configuration in itself, since it is non-piezoelectric, but the isotropic na-

ture of the materials allows the simple analytical theory to be used. The solid curve

in this figure shows the results when using the chosen material parameters, and is vi-

sually indistinguishable from the analytical result at the this scale of the graph. For

comparison purposes results are shown with a higher thickness layer, which shows an

additional contribution due to finite thickness effects. In addition, results are shown

for a lower density, which has resulted in a very small relative frequency shift, and

hence is corrupted by numerical error.

It is assumed here that the mass of the perturbing layer is the complete cause of

the device response. This assumption is made, not because experiments necessarily

satisfy the conditions, but rather because it serves as a useful benchmark. It allows

for a comparison of SAW devices based on different materials or geometries without

having to understand the mechanical properties of the analyte.
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Figure 3.4: Influence of mass layer properties on mass sensitivity simulation for Au

layer on SiO2 substrate (height in metres, density in kg/m3)

Sensitivity examples will be given in the next section, since for layered SAW devices

it is most useful to study these parameters as a function of layer thickness.

3.3.3 Parameter Variation with Layer Thickness

The techniques discussed in Sections 3.3.1 and 3.3.2 allow the spectral domain Green’s

function to be used for the analysis of a SAW sensor. For layered SAW sensors, it

is important to know how these properties vary with layer thickness. In this section

extracted results will be presented for devices fabricated with a ZnO layer on a LiTaO3

substrate.

In a layered device the Green’s function is frequency (and hence wavelength) de-

pendant, and it will be most useful to consider parameters as a function of normalised

layer thickness h/λ0, where λ0 is this period of the IDT electrode pairs. The reference
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Figure 3.5: SEM image of ZnO growth on bare LiTaO3 (left) and metallised region

(right)

plane used is the substrate-layer interface, which corresponds to the location of the

IDT.

3.3.3.1 Delay-Line Device Configuration

Devices were fabricated on 36◦-YX LiTaO3 wafers, using an Al metallisation layer and

Cr adhesion layer deposited by electron beam evaporation. IDTs with a period λ0

of 40µm were fabricated using a wet-etch process to create delay line devices. ZnO

films were deposited by RF magnetron sputtering. Devices were fabricated with film

thickness h ranging from 0 to 8µm, with corresponding operating frequencies between

101.5MHz and 78.5MHz. The full details of the device fabrication techniques can be

found in Chapter 5.

Figure 3.5 shows an SEM micrograph of the thin film ZnO grown on 36◦-YX LiTaO3.

As was previously reported [128, 129], the grain growth and corresponding crystal ori-

entation of ZnO is (001) on the metallised region and (110) on the bare substrate. This

implies that acoustic wave properties will also differ. Thus separate Green’s functions

are required for the (001) and (110) ZnO orientations. The examples given in Section

3.3.1 were for the (110) ZnO orientation.
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3.3.3.2 Phase Velocity

Figure 3.6 shows the theoretically derived phase velocity for a ZnO layer on a LiTaO3

substrate. Velocity was experimentally determined by measuring the frequency of the

peak of the radiation conductance, which is the real part of the input admittance of the

device. It was found that the measured propagation velocity was almost identical to

the velocity calculated for metallised regions. The slight discrepancy may be attributed

to the mechanical loading by the electrodes of the IDT, which is not accounted for in

these calculations.

3000

3200

3400

3600

3800

4000

4200

0 0.05 0.1 0.15 0.2

v p
(m

/s
)

Film thickness (h/λ0)

Free Surface
Metallised Surface

Measured

Figure 3.6: Measured and calculated phase velocity

3.3.3.3 Electromechanical Coupling

The electromechanical coupling coefficient was measured via the radiation conduc-

tance. According to the crossed-field model, the radiation conductance Ga, at centre
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frequency f0, can be expressed as [130]:

Ga(f0) = 8k2f0CN, (3.52)

where N is the number of electrode pairs in the IDT, and C is the input capacitance,

which was measured using a 1MHz capacitance meter. Figure 3.7 shows the mea-

sured coupling coefficient, which achieves a maximum of ∼7.5% for h/λ0 = 0.05. As

with propagation velocity, the modelled values for (001) ZnO on the metallised surface

show best agreement with the experimental results. This suggests that the properties

of delay-line structures on a LiTaO3 substrate can be easily predicted by analysing the

parameters in the metallised surface case.
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Figure 3.7: Measured and calculated electromechanical coupling coefficient

3.3.3.4 Mass Sensitivity

Figure 3.8 shows both the theoretically derived and experimentally measured mass

sensitivity of the devices. Calculation was based on the metallised surface velocity
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shift determined by the Green’s function analysis. The additional mass was modelled

using the procedure outlined in Section 3.3.2.

To verify these results experimentally, a 150nm SiO2 layer was sputter-deposited

onto the surface of the devices, to act as a perturbing mass layer. The frequency shift in

the maximum radiation conductance was measured and from this the mass sensitivity

shown in Figure 3.8 was derived. It is useful to compare this LiTaO3 substrate/ZnO

layer device with the previously reported LiTaO3 substrate/ZnO layer device [131]. It

can be seen that the ZnO device has higher mass sensitivity for h/λ0 up to 0.2, and that

this range of layer thickness is of most interest due to difficulties in depositing thicker

films.
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Figure 3.8: Measured and calculated mass sensitivity

It can be seen that the measured sensitivity of the LiTaO3/ZnO devices is much less

than that predicted. This is due to the relatively high shear velocity of the SiO2 layer

(2800m/s), which violates the assumptions made when selecting the modelled mass
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layer, resulting in an additional elasticity effect.

The dotted curve in Figure 3.8, allows a comparison of the measurements with a

simulation including the elastic constants of thin film SiO2 (see Appendix A). It can be

seen that sensitivity is somewhat higher than predicted, but that agreement is much

better than when the idealised mass layer was modelled. Further improvement could

be achieved by assuming a reduced shear stiffness of the deposited SiO2 perturbing

layer, however this would need to be independently verified. Some discrepancy may

also be attributed to the effect of the measurement probes, as well as the approximation

of modelling poly-crystalline ZnO as a homogeneous layer with a flat surface.

The effect of the elasticity of the sputtered SiO2 layers is similar to that due to viscos-

ity occurring in practical bio-sensing measurements [132]. This suggests that mass sen-

sitivity does not necessarily correspond to the response observed in an experimental

situation. Ogilvy [18] also describes difficulties in reconciling the theoretically derived

mass sensitivity of SiO2/quartz devices with that obtained by experimental deposition

of a thin perturbing film.

3.4 Conclusion

In this chapter the spectral domain Green’s function was described, based on the piezo-

electric equations in the quasi-static approximation. It was shown that this technique is

applicable to layered devices and to elastic, piezoelectric, viscoelastic and liquid media.

It was also demonstrated that the spectral domain Green’s function is able to yield a

great deal of useful information regarding the propagation properties of surface acous-

tic waves, and the sensitivity of SAW sensors. An example was presented comparing

calculated results with measurements of a ZnO/LiTaO3 layered SAW configuration.

However, the analysis presented here is not able to take into account the electrode

interactions which are fundamental to the operation of SAW resonator devices. As

discussed in Chapter 2 there is a need for an improved periodic model, and this will

be presented in Chapter 4. The mathematical form of the analysis undertaken in this

chapter has been carefully chosen to be readily extensible to the the author’s novel

developments made on the periodic model.
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Chapter 4

Periodic Green’s Function Model

4.1 Introduction

In this chapter techniques based on the formulation of a periodic Green’s function will

be developed and described in detail. The basis for the author’s novel approach will

be presented. This approach combines existing work with the author’s novel develop-

ments and applies them to a new problem - characterising the performance of layered SAW

resonators operating in liquid media.

In Section 4.2 a description of the calculation of the periodic Green’s function will be

given. This will begin with the approximate model for infinitesimally thin electrodes in

Section 4.2.1, which allows for very efficient computation. The author’s novel model

which accounts for the mechanical interactions between the acoustic wave and elec-

trodes buried within layered media will be derived in Section 4.2.2. In Section 4.2.3 it

will be shown how the results of these periodic models can be used to calculate param-

eters for the Coupling-of-Modes (COM) model.

Having rigourously derived parameters for the COM model, this will be used for

the analysis of SAW resonator sensors in Section 4.3. The first part of this analysis,

presented in Section 4.3.1, considers the change in the COM parameters due to choice

of layer thickness, including the effects of liquid loading. This represents a new appli-

cation of the COM model. Calculations of the mass sensitivity of an electrode grating

are also presented, and compared with the results obtained for a delay lines structure,

as was presented in Section 3.3.3. In Section 4.3.2 the COM parameters will be used to
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calculate the complete 2-port response of a SAW resonator based sensor.

The techniques presented here will be used for the design of SAW resonator sensors,

which will be presented in Chapter 5. This will be followed in Chapter 6 by an analysis

of the variation of sensitivity across the surface of the device, which will also be based

on the work of this chapter.

4.2 Development of Periodic Model

As discussed in Section 2.4.4, periodic models are the most efficient for dealing with

structures having a large number of electrodes. There are a number of techniques

which may be used to model such structures. The method used here is based on the for-

mulation of a periodic Green’s function. This is chosen because it is rigourous, flexible

and can be readily extended to the problem of mechanical interactions with electrodes

buried within layered media.

Figure 4.1 shows the basic periodic structure to be modelled. It consists of an elec-

trode sandwiched between a guiding layer and a substrate. Parameters p, l and he

indicate the electrode period, width and thickness respectively, whilst h is the guiding

layer thickness. The theory developed in Section 3.2.5 allows for an arbitrary number

of layers to be considered, and this also applies to the work of this chapter. However,

the focus of this chapter will be on resonator devices with a single guiding layer, which

is the most commonly employed configuration.

It should be noted that in this analysis, the periodic cell is considered to be that of

a single electrode. Thus the geometry is periodic in p = λ0/2, whereas in the analysis

in Chapter 3 the quantity λ0 was used. The fact that electrodes are connected with

opposite polarity can be accounted for in the parameter β, which will be introduced

shortly. For convenience, when considering the height of the guiding layer, parameter

h refers to the height of the layer above the electrode region, rather than the complete

layer height. For the electrode thickness range considered in this work, this difference

is negligible.
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l

Electrode

Substrate

p

Guiding Layer

Free Space

he

h

Figure 4.1: Basic periodic structure to be modelled

4.2.1 Boundary Element Model with Electrical Approximation

In this section the existing electrical Green’s function model is considered, which has

the limitation that the electrode height he must be approximated as being zero. An

additional consideration is that, depending on the deposition technique used, the top

of the guiding layer may not be perfectly flat, but may instead be conformal with the

underlying electrode shape. This effect is not included in this thesis. The charge is as-

sumed to be concentrated at the bottom surface of the electrode, as it greatly simplifies

the computation with a minimal loss of accuracy. Thus the solution can be based on a

Green’s function calculated with the reference plane (x3 = 0) set to the bottom of the

electrodes.

In a system with period p in the x1 direction, Floquet’s theorem dictates that the

field quantities obey the following relationship [52]:

ψ (x1, x3) = ψ (x1 + np, x3) exp (jβnp) , (4.1)

where n is an integer, and a β is a phase shift between periods which may be unknown.

A solution to this equation must be of the form:

ψ (x1, x3) = ψ0 (x1, x3) exp (jβx1) , (4.2)

where ψ0 is periodic with period p, and the phase shift between periods due to the term

exp(jβx1) corresponds to the propagation of a wave in the structure with wavenumber

β.
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Figure 4.2 illustrates the so called “Floquet-periodic” distribution of field variables

for the case of charge distribution. There are an infinite number of charge distributions

q0 (nonzero only in the range−p/2 < x1 < p/2), periodically arrayed at the surface with

phase shift β between periods. The periodic Green’s function represents the response

of a periodic system to excitation of this form.

q0e
jβp

x3

p
2

−p
2

−3p
2

x1

3p
2

q0e
−jβp q0

Figure 4.2: Floquet-periodic charge distribution

The most straightforward way of deriving the periodic Green’s function is to per-

form the calculations in the spectral domain [73]. Since the charge distribution obeys

equation 4.1, it can be represented in the following form:

q(x1, β, ω) = exp(jβx1)
∞∑

n=−∞
q0(x1 − np, β, ω), (4.3)

where in contrast with equation (4.2) the periodic component is explicitly represented

as a sum over all periods. The periodic component of this function can be represented

by a Fourier series:

q(x1, β, ω) = exp(jβx1)
∞∑

l=−∞
ql(β, ω) exp(jlQx1) (4.4a)

=
∞∑

l=0

ql(β, ω) exp(jβlQx1), (4.4b)

where the following symbols have been introduced:

Q =
2π

p
(4.5)

βl = β + lQ. (4.6)

The constant Q can be considered to be the characteristic wavenumber of the structure,

and depends only on the period. It will be shown that the relationship between the
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wavenumber of the propagating wave and this parameter Q is critical in determining

the behaviour of the wave. Each value of βl represents one of the spatial harmonics

of the propagating wave, and the relative amplitude of these harmonics ql is used to

describe the field distribution within the periodic array.

The inverse Fourier series relationship for the charge distribution is:

ql(β, ω) =
1

p

∫ p/2

−p/2

q0(x1, β, ω) exp(−jβlx1)dx1. (4.7)

A Fourier representation also exists for the voltage:

ϕ(x1, β, ω) =
∞∑

l=−∞
ϕl(β, ω) exp(jβlQx1). (4.8)

Combining equation (4.8) with the Green’s function of equation (3.35) and neglecting

mechanical interactions, the voltage can be expressed in the spatial domain as a func-

tion of the Fourier coefficients of the charge distribution:

ϕ(x1, β, ω) =
∞∑

l=−∞
Gϕq(βl, ω) exp(jβlQx1)ql(β, ω). (4.9)

With reference to equations (4.9) and (4.7), the case where the charge distribution

within the each period is an impulse function can be considered:

q0(β, ω) = δ(x1 − x′). (4.10)

ϕ(x1, β, ω)) =
1

p

∞∑

l=−∞
Gϕq(βl, ω) exp (jβlQ (x1 − x′)) . (4.11)

The right hand side of equation (4.11) is known as the periodic Green’s function, and is

the response of the system to a periodic array of phase shifted impulse functions. It can

be used in a convolution operation in a similar way to the spatial domain Green’s func-

tion defined in equation (2.2). In practice it is much more convenient to use equation

(4.9) directly in the spectral domain.

Having developed a relationship between charge and voltage at the plane x3 = 0

for a periodic problem, the boundary conditions must be applied and the problem

discretised. This will allow an equation of the form of (2.3) to be obtained, describing

the relationship between voltage and current on a single period of the structure, which

can then be solved using standard matrix inversion algorithms.
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The boundary conditions which must be applied to this problem are that the volt-

age V is specified on the electrodes and charge q is zero outside the electrodes. To

apply these boundary conditions, basis and weighting functions are used which can

easily satisfy these conditions. Pulse function are chosen since they are the simplest

orthogonal functions, they are flexible and do not enforce any particular shape on the

solution. It should be emphasised that the author’s novel developments made in this

chapter are not contingent on the choice of basis functions. The pulse functions are

of unit area and of width wm, each located at position xm. They are non-overlapping

with no gaps between them to ensure orthogonality and completeness. The normalised

pulse function is defined as:

Πm =





1

2wm

, |x1 − xm| < wm.

0, otherwise.

(4.12)

The pulses representation of charge is is illustrated in Figure 4.3, and can be written

as:

q0(x1, β, ω) =
M∑

m=1

qm(β, ω)Πm, (4.13)

where M is the number of pulse basis functions. Multiplying this equation by exp(−jβx1)

and taking a Fourier integral results in:

1

p

p/2∫

−p/2

q0(x1, β, ω)e−jβlx1dx1 =
1

p

p/2∫

−p/2

M∑
m=1

qm(β, ω)Πme−jβlx1dx1. (4.14)

ql(β, ω) =
M∑

m=1

qm(β, ω)
1

p

p/2∫

−p/2

Πme−jβlx1dx1. (4.15)

ql(β, ω) =
1

p

M∑
m=1

qm(β, ω)e−jβlxm
sin (βlwm)

βlwm

. (4.16)

Substituting equation (4.16) into equation (4.9) and limiting the summation over l to

the range [−L,L] results in:

ϕ(x1, β, ω) =
1

p

L∑

l=−L

Gϕq(βl, ω)
M∑

m=1

qm(β, ω)
sin (βlwm)

βlwm

ejβl(x1−xm). (4.17)

For finite values of L and M it is not possible to exactly satisfy the boundary condi-

tions for ϕ, so some finite error is inevitable. Using the method of weighted residuals
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2

Figure 4.3: Pulse representation of charge distribution at x3 = 0

[133] it is possible to minimise the error averaged over some weighting function. Using

pulse weighting functions, the result is as follows:

p/2∫

−p/2

Πnϕ(x1, β, ω)dx1 =

p/2∫

−p/2

Πn
1

p

L∑

l=−L

Gϕq(βl, ω)
M∑

m=1

qm(β, ω)
sin (βlwm)

βlwm

ejβl(x1−xm)dx1.

(4.18)

ϕn(β, ω) =
1

p

L∑

l=−L

Gϕq(βl, ω)
M∑

m=1

sin (βlwm)

βlwm

sin (βlwn)

βlwn

ejβl(xn−xm)qm(β, ω).

(4.19)

The coefficient ϕn is just the average value of the voltage across pulse n. It can be

seen that if pulses of equal width are taken (wm = wn = w), (4.19) will become greatly

simplified. Jakoby showed that in this case the computational burden of evaluating

equation (4.19) can be reduced by using a Fast Fourier Transform (FFT)-based method

[93]. This has the minor disadvantage of reducing the flexibility of computation by

fixing the number of harmonics used in the integration for a given number of pulse

function. By retaining pulses of differing width, it is possible to use wider pulses to-

wards the middle of the electrode, where there is less variation, and smaller pulses at

the edges where singular behaviour is observed, thus reducing the number of pulses

required for a given level of accuracy [85].

It is also worth noting that the procedure resulting in equation (4.19) can be applied

to any of the 16 elements of the dyadic Green’s function. This forms the basis of the

FEM/BEM methods discussed in Section 2.4.3. More complicated periodic electrode

configurations can also be included with no change to the form of equation (4.19),

however only a single electrode per period is considered here.



92 Chapter 4. Periodic Green’s Function Model

Using equation (4.19) the charge distribution can be solved for any choice of β and

ω, by setting ϕn = V , where V is the applied voltage. The current flowing into each

electrode can be calculated by integrating the charge over the electrode width, and

differentiating with respect to time:

I(β, ω) = jω

∫ l/2

−l/2

q(x1, β, ω)dx1. (4.20)

= jω

M∑
m=1

qm(β, ω). (4.21)

Since no account is taken of the electrode width in the x2-direction, I must be inter-

preted as current per unit aperture width. The aperture width of the device will be

introduced into the analysis in Section 4.2.3. As discussed in Section 2.4.4, the applied

voltage and the resultant current yield the harmonic admittance, which is the most

convenient way to express the solution to the periodic problem:

Y (β, ω) = I(β, ω)/V (β, ω). (4.22)

The harmonic admittance function will be discussed in detail in Section 4.2.3, where it

will be used for the extraction of COM parameters.

4.2.2 Extension of Model to Mechanical Interactions with Electrodes

In order to improve accuracy in the case where the height or mass of the electrodes

makes a significant contribution to the device performance, a model which includes

these effects must be developed. Since the problem with electrodes sandwiched be-

tween the substrate and guiding layer is quite different from the well known problem

of electrodes upon the device surface, a new technique developed by the author is de-

scribed here. This is based on the matrix eigen-operator previously utilised in Section

3.2.4, which is known to be valid for inhomogeneous media [124].

4.2.2.1 Matrix Eigen-Operator for Periodic Media

For the approach presented here to be valid, it is necessary to assume that the electrode

shape is perfectly rectangular. This is because in the electrode region, this eliminates

the x3 dependence of the material constants. The assumption that charge is restricted to
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the reference plane x3 = 0 will be retained for simplicity. Abandoning this assumption

would significantly complicate the model but would grant negligible improvement in

accuracy.

Referring to Figure 4.4, the aim is to create a model for region (ii), which contains

the electrodes, since regions (i) and (iii) can already be accounted for in the existing

model. This model will yield a matrix relating the values of stress and displacement

at x3 = 0 (substrate surface) to those at x3 = he. This matrix will then be incorporated

into a periodic model similar to that developed in Section 4.2.1.

Substrate

x3

x1

Guiding Layer(ii)

Guiding Layer(i)

(iii) − l
2

x3 = 0

x3 = he

l
2

p
2−p

2

Guiding Layer Electrode

Figure 4.4: Division of periodic structure for electrode model

The acoustic and electrical fields in the electrode region obey the eigenvalue oper-

ator equation (3.28), so this will form the basis for this approach. The most significant

change is that the matrices Mij and ρ now exhibit a periodic dependance on x1. Defin-

ing the following material matrices simplifies the subsequent analysis:

M11 = M−1
33 M31. (4.23a)

M12 = M−1
33 . (4.23b)

M21 = M11 −M13M
−1
33 M31. (4.23c)

M22 = M13M
−1
33 . (4.23d)

Each of these matrices depends only on the material constants. In order to represent

material constants which are inhomogeneous along the x1 direction, a Fourier expan-
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sion is used:

Mkl (x1) =
∞∑

n=−∞
Mkl

n ejnQx1 . (4.24)

ρ (x1) =
∞∑

n=−∞
ρ ne

jnQx1 . (4.25)

Referring to Figure 4.4, the region −l/2 < x1 < l/2 of each period in region (ii) is

considered to consist of the electrode material, the remainder to consist of the guiding

layer material. This can be illustrated by considering the generalised density matrix

ρ, which has a constant values ρ(e) and ρ(g) in the electrode and guiding layer regions.

Each Fourier coefficient ρ n can be calculated from:

ρ n =
1

p

p/2∫

−p/2

ρ(x1)e
−jn2π/px1 .

=
1

p

−l/2∫

−p/2

ρ(g)e−jn2π/px1 +
1

p

l/2∫

−l/2

ρ(e)e−jn2π/px1 +
1

p

p/2∫

l/2

ρ(g)e−jn2π/px1 .

(4.26)

The result of these integrals is:

ρ n =





l

p
ρ(e) +

(
1− l

p

)
ρ(g), n = 0.

(
ρ(e) − ρ(g)

) sin

(
πn

l

p

)

πn
, n 6= 0.

(4.27)

For the field variables ψ(x1, x3), the Floquet solution given in equation (4.2) applies.

In this case the value of the field variables must be considered throughout the range

0 < x3 < he, rather than only at x3 = 0 as was assumed for the thin electrode model.

Again a phase-shifted Fourier series representation is used:

ψ (x1, x3, β, ω) =
∞∑

n=−∞
ψn (x3, β, ω) exp (jnQx1) exp (jβx1) . (4.28)

The x3 dependency can be accounted for by making the substitution:

ψn (x3, β, ω) = ψn (0, β, ω) exp(−jkn
3 (β, ω)x3). (4.29)

At this stage it will be convenient to consider only the non-piezoelectric case, which

decouples the electrical and mechanical solutions. The most significant difference be-
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tween the full electrode model considered here and the infinitesimal electrode approx-

imation discussed in Section 4.2.1 is the influence of mechanical properties. Consider-

ing also that the dielectric tensor of a metal layer is not well-defined, it is a justifiable

simplification to consider the dielectric problem separately and to ignore the electrical

inhomogeneity. The electrical part of the problem will be discussed later in this sec-

tion. Substituting equations (4.24), (4.28) and (4.29) into the eigen-operator equation

(3.28), and truncating the Fourier series representations to the range from [−N,N ], an

algebraic form L results:

N∑
n=−N


 L11

mn L12
mn

L21
mn L22

mn





 un

τ n


 = (−jk3)


 um

τm


 . (4.30)

The elements of L have the following equivalent algebraic forms:

L11
mn = − (jβn)M11

m−n, (4.31a)

L12
mn = M12

m−n, (4.31b)

L21
mn = −ω2ρ m−n +

[
βn (m−n) Q + β2

n

]M21
m−n, (4.31c)

L22
mn = [−j (m−n) Q− jβn]M22

m−n, (4.31d)

where matrices M were defined in equation (4.23). Expanding equation (4.30) explic-

itly in terms of all harmonics, the following algebraic eigenvalue problem results:



L11
−N,−N . . . L11

−N,N L12
−N,−N . . . L12

−N,N

...
...

...
...

L11
N,−N . . . L11

N,N L12
N,−N . . . L12

N,N

L21
−N,−N . . . L21

−N,N L22
−N,−N . . . L22

−N,N

...
...

...
...

L21
N,−N . . . L21

N,N L22
N,−N . . . L22

N,N







u−N

...

uN

τ−N

...

τN




= (−jk3)




u−N

...

uN

τ−N

...

τN




, (4.32)

where −jk3 are the eigenvalues, and give the x3 dependance of the eigenvectors as

shown in equation (4.29). This equation is analogous to equation (3.32), which was

derived for the case of homogeneous material constants. In the inhomogeneous non-

piezoelectric case there are 6(2N + 1) eigenvalues, whereas the homogeneous piezo-

electric case results in only 8. The extra capability of equation (4.32) in dealing with

periodically varying media comes at the expense of having coupling between all har-

monics, thus greatly increasing the computational complexity.
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For this thesis only isotropic media will be considered for the inhomogeneous re-

gion, however this technique is equally valid for anisotropic and piezoelectric media.

Substituting stiffness matrix c for an isotropic material into equations (3.31) and (4.23),

and removing the components corresponding to the dielectric and piezoelectric inter-

action, it turns out that most of the components of Mkl are zero:

M11 =




0 0 1

0 0 0
c12

c44

0 0


 M12 =




1

c44

0 0

0
1

c44

0

0 0
1

c11




(4.33a)

M21 =




c11− c2
12

c11

0 0

0 c44 0

0 0 0




M22 =




0 0
c12

c44

0 0 0

1 0 0


 . (4.33b)

In addition, it can be seen that the shear component (column 2 and row 2) decouples

from the sagittal components (columns 1 and 3 and rows 1 and 3), thus further sim-

plifying calculation. By substituting equation (4.33) into equation (4.31), a simplified

equation in the form of (4.32) is derived. Equation (4.32) can be rewritten as:

L


 u(x3, β, ω)

τ (x3, β, ω)


 = (−jk3)


 u(x3, β, ω)

τ (x3, β, ω)


 . (4.34)

The solution of this equation is:

 u(x3, β, ω)

τ (x3, β, ω)


 = Φmech(β, ω, he)


 u(x3 + he, β, ω)

τ (x3 + he, β, ω)


 . (4.35)

Φmech(β, ω, he) = exp (−Lhe) . (4.36)

The matrix exponentiation is most readily carried out by an eigenvalue decomposition

of the matrix L:

L = VDV−1, (4.37)

exp(−Lhe) = V exp(−Dhe)V
−1, (4.38)

where V is the column-wise arrangement of eigenvectors, and D contains the corre-

sponding eigenvalues on the main diagonal. This operation can be regarded as a map-

ping the space harmonics to a sum of eigenmodes. These eigenmodes each propagate
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over distance he in the x3 direction at a different rate, as given by the exp(−Dhe) oper-

ation, and are then mapped back to a sum of space harmonics.

This is equivalent to Adler’s chain-matrix formulation which was discussed in Sec-

tion 2.6, but has been extended to cover the case of inhomogeneous media. As with the

case of homogeneous media, it is possible to use impedance, admittance and reflection

matrix forms. Since electrode thicknesses in practical devices are much less than the

acoustic wavelength, numerical instability is not a significant problem and the simpler

chain-matrix technique is adequate.

In order to complete the analysis, the electrical transmission across the inhomoge-

neous region must also be characterised. Since it is difficult to define a dielectric con-

stant for the electrode region, the region is assumed to be homogeneous and to have

the same dielectric constant as the layer material. Simplifying the results from [134]

for isotropic media and the invariance of fields in the x2 direction, the matrix operator

form for this problem can be written:


 L11 L12

L21 L22





 ϕ

D


 =

∂

∂x3


 ϕ

D


 , (4.39)

where

L11 = 0 L12 = −1

ε
L21 =

∂

∂x1

ε
∂

∂x1

L22 = 0. (4.40)

Unlike equation (4.36), the matrix exponential corresponding to equation (4.39) can be

solved analytically, yielding a transmission matrix:

Φelec(β, he) =


 Φϕϕ ΦϕD

ΦDϕ ΦDD


 (4.41)

= δnm




cosh [(β + nQ) he]
1

(β + nQ)ε
sinh [(β + nQ) he]

(β + nQ)ε sinh [(β + nQ)he] cosh [(β + nQ)he]


 .

(4.42)

The matrices Φmech and Φelec are partitioned and combined, in order to gain a com-

plete description of electrical and mechanical field transmission across the layer. The

following equation is obtained, where the subscripts k and l refer to the harmonic
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number:



uk(x3)

ϕk(x3)

τ k(x3)

Dk(x3)




=
∑

l




Φuu
kl 0 Φuτ

kl 0

0 Φϕϕ
kl 0 ΦϕD

kl

Φτu
kl 0 Φττ

kl 0

0 ΦDϕ
kl 0 ΦDD

kl







ul(x3 + he)

ϕl(x3 + he)

τ l(x3 + he)

Dl(x3 + he)




. (4.43)

It should be noted that if the electrodes consist of multiple metal layers, then this tech-

nique can be applied for each layer. It can be seen that equation (4.43) can be iteratively

applied for an arbitrary number of layers, with the transmission matrix calculated sep-

arately for each layer. These transmission matrices are cascaded to form a single trans-

mission matrix, so no change is required in the analysis.

4.2.2.2 Incorporation with Periodic Green’s Function

The mechanical and electrical behaviour of region (ii) having been characterised by

transfer matrices Φmech and Φelec, the problem remains to integrate these into a Green’s

function based analysis. To proceed further, the concept of the spectral domain Green’s

function must be generalised. In the case of homogeneous media, equation (4.9) allows

the structure to be characterised by a sum of weighting coefficients, each having the

following form:

ϕ(β + kQ, ω) = G(β + kQ, ω)q(β + kQ, ω). (4.44)

The inhomogeneous nature of the layer containing buried electrodes means that a re-

lationship of the following form exists:

ϕ(β + kQ, ω) =
∑

l

Gkl(β, ω)q(β + lQ, ω). (4.45)

ϕk(β, ω) =
∑

l

Gkl(β, ω)ql(β, ω). (4.46)

The matrix containing these elements shall be denoted as G(β, ω), the multi-spectral

Green’s function, and as with the spectral domain Green’s function it has an inverse

Z(β, ω). Obviously (4.44) can be included in equation (4.46) by making the substitu-

tion:

Gkl = δklG(β + lQ, ω). (4.47)
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Referring to Figure 4.4, the substrate and homogeneous layer can be described by

this means, and will be represented by multi-spectral impedance matrices Z(iii) and

Z(i) respectively. Combining equation (4.43) with Z(i)(β, ω), the impedance matrix of

the region above the reference plane, Z(a)(β, ω), is calculated from the expression:

Z(a) =





 Φτu 0

0 ΦDϕ


 +


 Φττ 0

0 ΦDD


Z(i)








 Φuu 0

0 Φϕϕ


 +


 Φuτ 0

0 ΦϕD


Z(i)



−1

. (4.48)

The multi-spectral impedance matrix of the complete structure can now be calcu-

lated by:

Z(β, ω) =
[Z(a)(β, ω)−Z(iii)(β, ω)

]
. (4.49)

Since all mechanical interactions are already included in this formulation, the problem

can be reduced to a purely electrical one. From the inverse of a partitioned matrix

[135], the multi-spectral electrical Green’s function can be calculated as:

Gϕq(β, ω) =
(Zqϕ −Zqu (Zτu)−1Zτϕ

)−1
. (4.50)

Substituting equation (4.16) into equation (4.46) and summing over all harmonics:

ϕ(x, β, ω) =
1

p

∑

k

∑

l

G
ϕq

kl (β, ω)
∑
m

qm(β, ω)e−jβlxm
sin (βlwm)

βlwm

ejβkx1 . (4.51)

Utilising the method of weighted residuals and following a similar procedure to that

outlined in Section 4.2.1, the resulting matrix equation is:

ϕn(β, ω) =
1

p

L∑

k=−L

ejβkxn
sin (βkwn)

βkwn

L∑

l=−L

Gkl(β, ω)
N∑

m=−N

e−jβlxm
sin (βlwm)

βlwm

qm(β, ω).

(4.52)

It can be seen that if equation (4.47) is substituted directly into equation (4.52), the re-

sult is identical to equation (4.19), showing that this technique simplifies to the existing

BEM formulation in case of homogeneous material constants.

As with the case of the infinitesimal electrode approximation, the charge distribu-

tion as a function of β and ω can be used to calculate the harmonic admittance. In the

next section, the harmonic admittance function will be discussed further, along with

the technique used to extract the COM parameters
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4.2.3 Harmonic Admittance and COM Parameterisation

In Sections 4.2.1 and 4.2.2, the rigourous solution of the wave propagation problem

in periodic media was shown to be represented by the harmonic admittance function

Y (β, ω). Figure 4.5 shows the harmonic admittance for an electrode array with p =

20µm, l = 10µm and he = 0, calculated using the simplified electrical Green’s function

model. The materials of the structure consist of a 1µm SiO2 film on a 36◦-YX LiTaO3

substrate.

0 Q/2

Y
(β

,ω
)

(S
)

β (rad/m)

Re
Im

Figure 4.5: Harmonic admittance of a SiO2/36◦-YX LiTaO3 SAW device at 60MHz

This plot is calculated for a fixed frequency of 60MHz, which was chosen as it

clearly shows all the relevant features. The range of wavenumber β shown is [0, Q/2],

which is called the first Brillouin zone. The harmonic admittance in the second Bril-

louin zone [Q/2, Q] is a reflection of the first Brillouin zone about β = Q/2, and the

harmonic admittance repeats with period Q. Thus all the information available from

the function can be obtained from the first Brillouin zone.
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In Section 3.3.1 it was shown that the poles and zeros of the spectral domain Green’s

function could be used to find the propagating eigenmodes of the combination of sub-

strate and layers. It will be shown here that a similar procedure can be performed for

the harmonic admittance function in order to find the eigenmodes of such a configura-

tion including the influence of an electrode array.

Wave propagation in an infinite electrode array can be characterised by two impor-

tant eigenmodes, having short circuit and open circuit connections between the elec-

trodes. In the short circuit case the voltage on each electrode is considered to be zero,

thus according to equation (4.22) the harmonic admittance will become infinite. Simi-

lar to the case of the spectral domain Green’s function, a singularity will be observed.

The opposite case occurs for an open circuit electrode grating, where the current flow-

ing into each electrode must be zero, so a zero of the harmonic admittance occurs. In

Figure 4.5 the influence of these singularities can be observed, although their actual

location will occur at a complex value of β. As with the case of the spectral domain

Green’s function, singularities with non-zero imaginary parts indicate that the wave

amplitude is reducing. This may be caused by the same attenuation phenomena as

were discussed in Section 2.2.2. However, an additional effect in a grating is the reflec-

tion from electrodes, which will manifest itself as an imaginary component of β.

By searching for the singularities at each frequency, open circuit and short circuit

dispersion curves can be calculated. For illustrative purposes, Figure 4.6 shows an

idealised dispersion curve, where the real and imaginary parts of β are on separate

vertical scales. Over a range of frequencies known as the stop band, the imaginary

part of the wavenumber is non-zero, corresponding to the decay in wave amplitude

caused by Bragg reflection. In a practical SAW device other features may be observed

in this curve due to bulk wave and leakage effects. Propagation losses will cause the

imaginary component of β to be non-zero at all frequencies, except for bulk wave radi-

ation which only occurs above a certain cut-off frequency. Calculation of the complete

dispersion curve is not undertaken in this work, as it requires a large computational

effort, and as will be shown shortly, is not required to characterise the electrode array.

To avoid the computationally intensive and error-prone process of searching for

singularities at each frequency, the harmonic admittance can be calculated for each fre-
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Figure 4.6: Idealised short circuit dispersion curve of an electrode array

quency at β = Q/2, and one additional wavenumber near this point. This corresponds

to the admittance per electrode of an infinite length IDT, since for β = Q/2 the electrode

voltages alternate in polarity. An example curve of this type is shown in Figure 4.7 for

the same device configuration as was used to calculate Figure 4.5. Also shown are

the curves produced by fitting a COM model, which will be discussed subsequently.

The most important characteristic of this curve is the resonant peak, where the real

part of the admittance reaches a maximum. For a lossless device this peak will be in-

finitely narrow, however the resonant frequency can be tracked via the minimum of

the boundary determinant. The other important feature is the anti-resonant frequency,

where the imaginary part of the admittance becomes zero.

The admittance of an infinite transducer is advantageous to use because it requires

only two admittance calculations per frequency, but this does mean that it contains less

information than the dispersion curve. This lack of information can be problematic if



Chapter 4. Periodic Green’s Function Model 103

-1

-0.5

0

0.5

1

1.5

2

100 101 102 103 104 105 106 107 108

Y
(S

/m
)

f (MHz)

Re(Y ) (BEM)
Im(Y ) (BEM)
Re(Y ) (COM)
Im(Y ) (COM)

Figure 4.7: Harmonic admittance of 36◦-YX LiTaO3 for β = Q/2, p = 20µm, l = 10µm

and he = 0.

the interaction of SH SAW and BAW modes needs to be parameterised, which is not

important for this work.

Before discussing the COM parameterisation algorithm, a brief overview will be

given of the COM model in its most common form. The characteristics of an electrode

array are represented by three coupled differential equations:

dw+

dx1

= −jδw+ − jκ∗w− + jαV. (4.53a)

dw−
dx1

= −jκw+ − jδw− − jα∗V. (4.53b)

dI

dx1

= −2jα∗w+ − 2jαw− + jωCV. (4.53c)

The quantities w+ and wi represent the intensity of waves travelling in the positive and

negative x1 directions respectively, V represents the bus-bar voltage and I is the current

flow into the IDT. Table 4.1 gives a list of the COM parameters and their meaning. It
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should be noted that in some literature the parameter κ is referred to as the coupling

between spatial harmonics propagating in the positive and negative x1 directions. This

notation will not be used here to avoid confusion with the electromechanical coupling.

Table 4.1: COM parameters

v effective wave velocity in the grating

α transduction between acoustic and electrical energy per unit length

κ reflection per unit length

γ propagation loss per unit length

C capacitance per unit length

Normalised frequency deviation δ and normalised wavenumber q̂ are usually used

because they simplify the form of equations (4.53), and are defined as:

δ =
ω

v
− π

p
− jγ. (4.54a)

q̂ =

√
δ2 − |κ|2 . (4.54b)

To be physically consistent, the branch of the square root is chosen to ensure that the

imaginary part of q is zero. For unidirectional configurations of material or electrode

geometry, the parameters α and κ can be complex. In this work they are assumed to

be real, and this assumption can be verified by inspection of the harmonic admittance

curves, which will exhibit multiple resonances for unidirectional configurations [40].

The algorithm used here was developed by Koskela et al. [97]. The COM param-

eters are extracted from Y (Q/2, ω) and Y (Q/2 + ∆β, ω), where ∆β ¿ Q/2. Both of

these curves are calculated at a sparse range of points over a frequency region which

includes the resonance peak.

A numerical search is performed to find the resonant frequency fr, the correspond-

ing resonant peak Yr = Re(Y (fr)), the half-maximum width of the resonance ∆f and

the anti-resonant frequency far. The upper and lower stop-band edges fu and fl (see

Figure 4.6) can also be determined without calculating the complete dispersion curve.

From these parameters, it is possible to determine normalised versions of the COM
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parameters. These are given as:

κp = κλ0. (4.55a)

αn = α
√

λ0/W. (4.55b)

γp = γλ0. (4.55c)

Cn = Cλ0/W. (4.55d)

The normalised capacitance Cn is obtained from imaginary part of admittance at low

frequency, where the contribution of any acoustic resonance to the admittance will be

negligible. From the relationships given in equation (4.55), these normalised parame-

ters are then scaled for the device geometry of interest. This algorithm only gives the

magnitude of κp, but it’s sign is also important. If the resonant frequency fr coincides

with fl, then κp will be negative, whereas if it coincides with fu then κp will be positive.

For non-layered devices with infinitesimally thin electrodes, by scaling the COM

parameters they can be used for any devices using the same substrate and having the

same metallisation ratio l/p. For layered devices with infinitesimal electrode thickness,

the COM parameters will depend on the ratio h/λ0, as well as the metallisation ratio.

Similarly, for non-layered devices with electrodes of finite thickness, there will be a

dependency on h/he, the electrode cross-sectional shape (assumed rectangular in this

work) and the electrode material. In the case of buried electrodes of finite thickness,

the COM parameters will depend on all of these factors. As discussed in Section 3.2.2,

for media such as viscous liquids there will be an explicit frequency dependance which

cannot be normalised by scaling.

To check the accuracy of the COM fitting procedure, the admittance curve can be

reconstructed from the extracted parameters. An example of this is given in Figure 4.7.

It can be seen that overall the fit is very good, but that there is some discrepancy be-

tween the calculated (BEM) and fitted admittance (COM) curves. There is a non-zero

real part of the admittance at high frequencies which is not included in the fitted curve.

This corresponds to the launching of bulk waves into the substrate, which is excluded

from this COM model. These effects could be included by the use of a more compli-

cated version of the COM model, as discussed in Section 2.3. However, the behaviour

of the device anti-resonance is only important for signal processing structures such as

ladder filters, so it is not necessary to characterise this behaviour here.
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Figure 4.8: Harmonic admittance of SiO2 on 36◦-YX LiTaO3 for β = Q/2, p = 20µm,

l = 10µm, he = 0 and h = 3µm

In Figure 4.8 the admittance has been plotted for the same structure with a 3µm

SiO2 guiding layer above the electrodes. It can be seen that the resonant frequency is

greatly reduced, which is consistent the results reported in Section 3.3.3. This means

that the bulk wave generation is less problematic, since the mechanical loading has

reduced the resonant and anti-resonant frequencies to be below the bulk wave cut-off

frequency. A similar effect would also be observed where electrodes cause significant

mechanical loading. It can be seen that the agreement around the resonant peak is

slightly worse than in the non-layered case. This is because the layered device has

some additional dispersion. To characterise this dispersion, it would be necessary to

make the COM parameters (particularly v) dependent on frequency. However, since

the agreement between the curves is still very good, it indicates that this dependency

is very weak, and can be safely neglected.
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In the paper by Koskela et al. describing this extraction technique [97], the capac-

itance was extracted in such a manner to give an accurate value for the anti-resonant

frequency. However, it was found that this had the effect of degrading the match be-

tween the fitted and numerically calculated curves in the region of the admittance

peak. For this reason the capacitance was calculated from the admittance at a very low

frequency, where negligible acoustic wave generation will occur.

Having developed the rigourous periodic model and extracted the COM parame-

ters, the next step is to use them for the analysis of SAW sensors. This will be under-

taken in Section 4.3.

4.3 Device Analysis Using Periodic Model

The outcome of Section 4.2 was a set of COM parameters which are able to encap-

sulate much of the important behaviour of a SAW propagating in an electrode array.

The question remains as to how these parameters can be utilised for sensors, and the

answer will be presented here. In Section 4.3.1 the change in COM parameters with

guiding layer thickness will be examined under mass-loading and liquid loading con-

ditions. In Section 4.3.2 the COM parameters will be used to create a 2-port matrix

representation of the SAW device, which gives the complete frequency response.

4.3.1 Sensitivity Analysis Using COM Model

The analysis presented in Section 3.3.3 showed that the spectral domain Green’s func-

tion can be used for the characterisation of delay line SAW sensors. Whilst the results

of this analysis may be applied to resonator structures, it does not take any account of

the electrode interactions which are very important in determining the behaviour of

these structures. In addition, the effects of liquid loading must be considered, as it is

expected that these devices should be capable of operating in liquid media.

As discussed in Section 3.3.2, the perturbing mass is modelled by the addition of a

thin layer, and the liquid is modelled as being in rigid contact with the sensor surface.

Using the COM fitting model, the parameters were calculated as a function of layer

thickness, both with and without liquid loading. The COM extraction technique given
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in Section 4.2.3 is based on the admittance curve of an infinite length IDT. This means

that the calculations presented in this section do not take into account the finite size of

the device surface area. Such considerations will be deferred to Chapter 6.

The technique was applied to the configuration of a 36◦-YX LiTaO3 substrate with

a SiO2 guiding layer of varying thickness. The IDT period λ0 was 40µm and metalli-

sation ratio was 0.5, yielding a resonant frequency of 103.7MHz for the non-layered

configuration. All configurations were analysed with both vacuum and water above

the guiding layer. To understand the influence of finite electrode height, calculations

were made using both the infinitely thin electrode approximation given in Section 4.2.1

and the novel mechanical model developed in Section 4.2.2. The electrode height was

set to 0.1µm (0.0025λ0) and the electrode material was gold for the full electrode model.

All calculations were performed with N = 15 expansion functions and 2L + 1 = 35

harmonics. These values were determined empirically to provide sufficient conver-

gence. By increasing these to 24 and 53 respectively, there was negligible change in the

appearance of these graphs. Given the completeness property of the pulse expansion

functions, it can be stated with confidence that the results presented here are suffi-

ciently accurate.

Figure 4.9 gives the COM velocity parameter v as a function of guiding layer thick-

ness. It can be seen that it is not perturbed greatly by the presence of a liquid, however

the layer significantly reduces the propagation velocity. The mechanical influence of

the thick electrodes reduces the velocity by an amount which shows weak dependence

on guiding layer thickness.

Figure 4.10 shows the normalised electromechanical transduction coefficient αn as

a function of SiO2 thickness. This curve follows the general trend reported in the litera-

ture for the device insertion loss as a function of layer thickness [19]. For low thickness

the layer increases the degree of electromechanical coupling. However, for h/λ0 > 0.12,

the thicker layer is electrically isolating the IDT from the wave at the device surface,

thus decreasing the coupling coefficient.

This can be understood by referring to Figure 4.11, which illustrates the degree

of energy confinement as a function of layer thickness. It shows that as the guiding

layer thickness increases, the degree of energy confinement towards the surface will
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Figure 4.9: Variation of propagation velocity v with layer thickness
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increase, which allows for greater interaction between the acoustic and electrical fields

in the vicinity of the IDT. Eventually the device will reach a point where the energy

is confined to the surface and away from the IDT. For this reason the effects of thick

electrodes are greatly reduced at higher guiding layer thickness. The decreasing effect

of liquid loading with increasing layer thickness can be explained by the electrical

shielding effect of the guiding layer.

(iii)

|P1| |P1| |P1|x3 x3 x3

(i) (ii)

Figure 4.11: A sketch of the variation of surface energy confinement with layer thick-

ness: (i) low thickness, moderate coupling (ii) optimal thickness, maximum coupling

(iii) increased thickness, reducing coupling

Figure 4.12 shows the magnitude of the reflection per electrode κp. This indicates

that the addition of a layer can increase the reflection coefficient, as well as reducing the

sensitivity of the reflection coefficient to liquid loading. The increase in reflection due

to the mechanical interactions with electrodes is dependant on the layer thickness, with

the difference at h/λ0 = 0.25 being about half that at h/λ0 = 0. Again, this difference

with layer thickness can be attributed to the wave being concentrated near the surface,

which is further away from the electrodes for thicker layers. It can also be seen that

liquid loading causes a dramatic reduction in the reflection coefficient, however this

difference disappears at high layer thickness.

Figure 4.13 shows the normalised capacitance Cn as a function of guiding layer

thickness. The capacitance in vacuum increases with layer thickness, due to additional

dielectric material in the region near the electrodes. However, the change is very slight

for this material combination, and asymptotically approaches a limit. The difference
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between the thick and thin electrode models is not significant, and can be attributed to

the thick electrode model having effectively higher layer thickness. On the other hand,

liquid loading can be seen to have an enormous impact on the capacitance of a non-

layered device. As the layer thickness is increased a greater shielding effect is observed,

and the capacitance approaches the same asymptotic limit as the case without liquid

loading.
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Figure 4.13: Variation of normalised capacitance Cn with layer thickness

Figure 4.14 shows attenuation parameter γp as a function of layer thickness. The

calculations used to derive this figure include attenuation due to PSAW leakage and

viscous losses in liquid, however attenuation due to scattering or absorption losses in

the guiding layer is not included. Electrode resistivity is also neglected, however it

can be calculated separately and included in an extended COM/P-matrix model (see

Section 4.3.2), or approximated by a lumped resistance.

It can be seen from Figure 4.14 that a thicker guiding layer and thick electrodes both



114 Chapter 4. Periodic Green’s Function Model

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.05 0.1 0.15 0.2 0.25

γ
p

(d
B/

λ
)

h/λ0

he = 0, vacuum
he = 0.0025λ0, vacuum
he = 0, water
he = 0.0025λ0, water

Figure 4.14: Variation of normalised propagation loss γp with layer thickness



Chapter 4. Periodic Green’s Function Model 115

increase attenuation, with a maximum around h/λ0 = 0.2. This is due to the nature of

the PSAW mode which propagates on LiTaO3. The 36◦-Y cut with X-axis propagation

is commonly used because at this particular orientation the leakage of energy into the

substrate is at a minimum. The guiding layer and electrodes disturb the boundary con-

ditions, thus perturbing the structure from this minimum loss state. However, under

liquid loading conditions there are much more significant attenuation mechanisms due

to viscous losses. As the PSAW mode propagating has quasi-SH polarisation, some at-

tenuation will also be due to radiation into the liquid. It can be seen that these losses

also increase dramatically with increasing layer thickness. As was discussed in Sec-

tion 2.7.3, higher mass sensitivity is strongly correlated with viscosity sensitivity. By

comparison with the mass sensitivity shown in Figure 4.15, it can be seen that this

correlation exists here.

Figure 4.15 shows the mass sensitivity as a function of guiding layer thickness. The

sensitivity of the free and metallised surface velocities are calculated using the pro-

cedure given in Section 3.3.3. It can be seen that the mass sensitivity of the free and

metallised surface velocities differ significantly. At low layer thickness the metallisa-

tion has a sensitivity enhancing effect, as it attracts the wave towards the top surface

(x3 = h + he). For large thicknesses the the wave is attracted towards the substrate-

layer interface and away from the top surface, thus the sensitivity is higher in the free

surface case.

The sensitivity of the resonant frequency is calculated from the change in fr with

mass loading, using the techniques developed in this chapter. Both the thin electrode

approximation and the author’s novel technique for dealing with mechanical electrode

interactions are used in the calculations. These results show that the sensitivity of the

metallised surface velocity to mass loading is an excellent measure of the sensitivity of

the resonant frequency as calculated by the COM model. The result is that the mass

sensitivity analysis which was performed in Section 3.3.3 for delay line devices is also

applicable to resonator sensors.

The change in sensitivity between the thick electrode model and thin electrode

model is not large for this electrode thickness. This might suggest that the periodic

model developed in this chapter provides no extra information about the sensor per-
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formance. However, it will be shown in Section 4.3.2 that this periodic analysis is an

excellent tool for calculating the device frequency response, which cannot be calcu-

lated via the techniques outlined in Chapter 3. In Chapter 6, when the question of

inhomogeneous mass-loading of the device surface is considered, it will be shown that

the periodic analysis developed here is an essential tool.

It was found that the mass sensitivity showed little variation with the number of

pulse functions and harmonics used. However, the same number of functions needed

to be used for the case with and without mass, otherwise quite spurious results were

produced.

Figure 4.16 compares the mass sensitivity in liquid with the mass sensitivity in vac-

uum. The technique is identical to the case for vacuum, except that the dielectric con-

stant of the mass loading layer is set to that of the liquid, to ensure that there is no

dielectric contribution to the sensitivity. This analysis is conducted for both the free

surface velocity and for the resonant frequency of the array using the full electrode

model. It can be seen that the results are generally similar between vacuum and liquid

media. The strongest difference is in the sensitivity of the free surface velocity at low

thickness. This difference is not observed in the metallised surface velocity sensitivity

(which has been omitted for clarity) or in the sensitivity of the resonant frequency.

As was discussed in Section 3.3.2, the parameters of the perturbing layer were care-

fully chosen in order to yield the same results as the analytical solution. However,

the most important reason for taking this approach is because no analytical solution

is available for the quasi-SH polarised PSAW mode. In the case of vacuum media, it

was shown that if the additional layer has properties which differ from the idealised

case, then the sensitivity will differ, and these considerations also apply to the liquid

media case. In addition, there is a factor described in equation (2.25) which indicates

that the properties of the guiding layer, mass loading layer and liquid media interact

in a nonlinear fashion to influence mass sensitivity in liquid media.

Finally, the properties of the analyte itself need to be considered, since for many

liquid media sensing applications large, complex molecules are being detected. These

materials are not necessarily well represented by a continuum model as used here. In

particular, viscous wave penetration depth into the surrounding liquid medium [136]



118 Chapter 4. Periodic Green’s Function Model

-35

-30

-25

-20

-15

-10

-5

0

0 0.05 0.1 0.15 0.2 0.25

S
m

(c
m

2
/g

)

h/λ0

Free Surface Velocity (vacuum)
Free Surface Velocity (liquid)
Resonant Frequency (vacuum)
Resonant Frequency (liquid)
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means that the mass is not rigidly coupled to the device surface, as assumed here. The

result of all these effects is that mass sensitivity in liquid media should be understood as a

purely qualitative tool for comparing between acoustic wave sensors, and yields only limited

information regarding the response observed in a real experiment. In light of this statement,

and the observed similarity of the mass sensitivity curves for the vacuum and liquid

media cases, it would be valid to consider the mass sensitivity calculated in vacuum

media as being applicable to both gas and liquid media.

4.3.2 Frequency Response of SAW Sensors

In the previous sections, a COM model was developed for layered SAW resonator

sensors, and the change in the COM parameters due to a guiding layer and liquid has

been characterised. Once the parameters of the COM model are have been found, they

can be used to calculate 2-port parameters of an acoustic wave device. The first step is

to convert the COM parameters into a P-matrix form, since this allows device sections

with differing properties (e.g. IDTs and reflective arrays) to be cascaded to form a

complete device response. Referring to Figure 4.17, a P-matrix is a 3-port description

relating voltage, current and acoustic wave amplitude:




wr1

wr2

I


 =




P11 P12 P13

P21 P22 P23

P31 P32 P33







wi1

wi2

V


 , (4.56)

where wi are the incident acoustic wave amplitudes at ports 1 and 2, V is the bus-bar

voltage, wr are the reflected acoustic wave amplitudes at each port and I is the bus-bar

current. A P-matrix is created for each homogeneous section of the device, such as an

IDT, short circuit grating or gap. For structures other than IDTs port 3 does not exist,

thus the P-matrix will be 2× 2 for reflective gratings and gaps.

For an IDT of length L (which must be an integer multiple of λ0) the following
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Figure 4.17: P-matrix basic block

equations are used to determine the elements of the P-matrix [40]:

P11 =
jκ sin (q̂L)

q̂ cos (q̂L) + jδ sin (q̂L)
. (4.57a)

P12 =
(−1)N q̂

q̂ cos (q̂L) + jδ sin (q̂L)
. (4.57b)

P13 = −αL
sin (q̂L/2)

q̂L/2

(δ + κ) sin (q̂L/2)− jαq̂ cos (q̂L/2)

q̂ cos (q̂L) + jδ sin (q̂L)
. (4.57c)

P33 = −4α2 (δ + κ)

q̂3

(δ + κ) [1− cos (q̂L)]− jq̂ sin (q̂L)

q̂ cos (q̂L) + jδ sin (q̂L)
− j

4α2

δ − κ
L + jωCL. (4.57d)

The COM parameters used here are de-normalised, so they take into account the aper-

ture width of the device. In addition, there are a number of simple relationships to

determine the other elements:

P21 = P12. P22 = P11. (4.58a)

P23 = (−1)N P13. P31 = −2P13. P32 = −2P23. (4.58b)

A short circuit grating has identical elements, except only elements P11, P12, P21 and

P22 are used. For an open circuit grating, the following parameters are used:

δoc = δ − 2α2

ωC
. (4.59a)

κoc = κ +
2α2

ωC
. (4.59b)

These are then substituted for δ and κ in equation (4.57), and the P-matrix parameters

are calculated as for the short circuit grating. For a free surface or metallised surface

gap of length L (which need not be a multiple of the electrode period), only the follow-

ing elements of the P-matrix are non-zero:

P12 = P21 = exp (jωsf,mL) . (4.60)
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Once all these P-matrix elements have been calculated, they can be combined to

give the complete device response. Figure 4.18 shows a configuration which is general

enough to include any device configuration of interest in this thesis, particularly 2-port

resonators. Using techniques described in [137], the IDT and reflective grating can be

Grating

V1

I1

V2

I2

IDTGrating Grating Spacer IDT

Figure 4.18: Combination of P-matrix elements to simulate complete device

combined into a single transmission matrix. All other elements can be converted into

transmission matrix form, and cascaded analytically to yield transmission, admittance,

impedance or scattering parameters of the structure as desired.

Since the periodic Green’s function model does not include electromagnetic par-

asitic elements, these need to be included by some other model. The value of these

elements can be calculated using electromagnetic packages based on methods such as

FEM, FDTD or MOM. However, it is likely that there will be effects in the complete sys-

tem such as the micro-fluidics and packaging which cannot be easily included. Thus

for most purposes it is adequate to empirically add external circuit elements to match

the observed response. This approach will be discussed further in Chapter 5. A noted

exception is the case of electrode resistance, which can be calculated if the sheet resis-

tance Rs of the electrode material is known. In this case the following substitutions can

be made [40]:

r =
2W

3l
Rsλ0. (4.61a)

α′ =
α

1 + jωCr
. (4.61b)

δ′ = δ − 2jr|α|2
1 + jωCr

. (4.61c)

κ′ = κ +
2jrα2

1 + jωCr
. (4.61d)

C ′ =
C

1 + jωCr
. (4.61e)
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These values are then substituted into the P-matrix elements of equations (4.57) and

(4.58). This COM/P-matrix based analysis will be applied in Chapter 5 to the resonator

devices designed by the author. The frequency response of the designed devices will

be calculated and compared with measured values.

4.4 Conclusion

In this chapter a model based on the periodic Green’s function was presented for lay-

ered SAW resonators operating in liquid media. New developments were made by

the author to account for the mechanical influence of electrodes buried within layered

media, and results were compared with a simpler model assuming infinitesimally thin

electrodes. The two approaches were shown to yield significantly different results for

reflection, and to a lesser extent for other parameters. Much of this difference dimin-

ished for large layer thickness, however such large thicknesses are typically impractical

for large scale fabrication. Thus, the technique developed by the author advances the

understanding of layered SAW resonator structures in liquid media, and is important

for achieving high accuracy.

It was shown that the spectral domain Green’s function presented in Chapter 3 is

an essential building block for this periodic Green’s function. The admittance curve

resulting from this periodic Green’s function can be expressed in terms of a few ana-

lytical parameters from the COM model, using an extraction technique. It was shown

how the COM parameters may be combined to yield a complete device response. In

Chapter 5, these techniques will be applied to the design of a layered SAW resonator

sensor, and the fabrication of this device will be described.
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Chapter 5

Design and Fabrication of SAW

Resonator Sensor

5.1 Introduction

In this chapter the processes used to design and fabricate the layered SAW resonator

sensors are described. Firstly, in Section 5.2 it will be shown how the techniques devel-

oped in Chapter 4 can be applied to the design of a SAW device. This will be followed

in Section 5.3 by a description of the processes used in fabrication of this device. This

device will be utilised in Chapter 6 for experiments on the variation of mass sensitivity

across the device surface.

5.2 Design of Resonator

The basic device layout is that presented by Avramov [7], however the analysis used

in this thesis differs because of the need to take into account the layered media. The

structure used is presented in Figure 5.1. The basic elements of this structure are the re-

flective gratings, which form the resonant cavity by reflecting acoustic waves, the IDTs,

which are responsible for launching and detecting acoustic waves, and the trapping

grating, which ensure that acoustic energy in the cavity is well confined to the surface.

The trapping grating has a different period to the IDTs and reflectors to ensure that

energy is not substantially reflected at centre frequency. Between the trapping grating
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Trapping
Reflective Grating Reflective GratingGrating

IDT IDT

Spacer

Figure 5.1: Layout of 2 port resonator

and one of the IDTs there is a small spacer (less than the period of the IDT), which is

adjusted to give fine control over the location of the main resonant peak within the

stop-band.

In selecting the design of the SAW resonator, the following criteria are used:

• There must be sufficient electrodes in the grating to reflect the majority of acoustic

energy, thus ensuring that insertion loss is minimised and Q-factor is maximised.

• The total device size should be small enough to fit into the pre-existing liquid cell

of approximately 5× 13mm.

• There is a limit on the useful number of reflective electrodes, as acoustic losses in

the array mean that the reflectivity cannot be made arbitrarily close to unity.

• There should be a single dominant resonant mode at which the device will os-

cillate, to prevent the possibility of mode-hopping causing random jumps in the

frequency output signal

• The input admittance should be sufficient to ensure low insertion loss, without

being too high so as to cause the loaded Q-factor of the device to be heavily

reduced in circuit

• Device design should be applicable to a variety of layer thickness choices and

layer materials
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Table 5.1: Parameters of SAW resonator design

IDT electrodes 16

Reflector electrodes 120

Grating electrodes 20

Spacer Length 9.25µm

IDT Period 20µm

Grating Period 18.5µm

Metallisation Ratio 0.5

Aperture Width 350µm

Since all these criteria are inter-related, and a change in design parameters can affect

any of them, it is not possible to define a specific procedure to design the device layout.

Instead, engineering judgement has been used to find a compromise between all these

requirements. Table 5.1 summarises the design parameters which were chosen for the

device in order to meet the above criteria. Note that the periods quoted are for λ0 = 2p,

and that the number of electrodes is quoted, not the number of electrode pairs. The

IDT period of 20µm was chosen to yield a centre frequency of approximately 200MHz,

with 16 electrodes found to provide a good compromise between loaded Q-factor and

insertion loss.

The S-parameters are calculated for the designed device in the non-layered case.

Some care needs to be taken in applying the author’s full electrode model to the case

where the material between electrodes is a vacuum with c = [0] and ρ = 0. Examining

equation (4.33), it can be seen that in this case the elements of matrix M12 become

infinite, and unlike the other M matrices this behaviour cannot be corrected by taking

a limit as the elements of c approach zero.

However, by taking numerical values for the elements of c which are much less than

those of the electrodes, it is expected that the results would be sufficiently accurate. To

verify this, the variational electrode model presented by Biryukov (see reference [82]

and Section 2.4.3) was also used. For comparison the response predicted by using the

thin electrode approximation is also included. The magnitude of all three modelled
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Figure 5.2: Transmission response of SAW resonator design

versions of S21 are given in Figure 5.2. It can be seen that the agreement between

the author’s approach and the variational model is very good, whilst the electrical

approximation differs significantly in the location of the resonant frequency, and the

relative position of the nearby peaks.

5.3 Fabrication of Devices

In this section the process used to fabricate the layered SAW resonator structures is

described. The designs developed here were implemented using CAD layout tools,

and the mask was fabricated by external contractors using electron beam lithography.

The devices were fabricated in a dual configuration to allow viscosity, temperature and

non-specific interactions with the sensor surface to be compensated for. The layout of

the pads was designed for compatibility with an existing SAW measurement jig.
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All fabrication performed by the author was undertaken within the Microelectron-

ics and Materials Technology Centre (MMTC) clean-room and vacuum laboratory fa-

cilities at RMIT University. In this work, samples were diced before fabrication to allow

the greatest flexibility in utilising the wafers. However, this has the disadvantage of in-

creasing misalignment error, where the propagation direction of the fabricated device

differs slightly from the desired crystal axis. Devices without a guiding layer were also

fabricated in larger scale by an external contractor for use in the work of the Microtech-

nology CRC. These devices were used for the work in this and the next chapter, since

the repeatability between devices was found to be better.

5.3.1 Deposition and Patterning of Electrodes

The gold electrodes were deposited by MMTC staff using electron beam evaporation,

having thickness of 0.8µm. A 0.2µm Ti layer was deposited first in order to obtain

good adhesion to the substrate. Gold was chosen as it is highly inert, which greatly

enhances its usefulness in a sensing environment where the device cannot be isolated

from potentially damaging liquids.

To pattern the electrodes, a layer of AZ1512 photo-resist was first spin-coated over

the device surface, then baked at 100◦ C. A difficulty which occurs during this proce-

dure is the pyroelectric charging which can occur when LiTaO3 samples are raised to

high temperature. This can cause a discharge, which can damage the electrodes. Al-

though this is not usually sufficient to prevent the device from functioning, it can have

a great impact on the repeatability of device performance.

The photo-resist coated devices were then exposed to ultra-violet radiation using

a mask aligner, and developed in 1:4 AZ400K:H2O solution for 15 seconds. After a

20 minute post-bake, the gold layer was etched using a 94:6 H2O:“Technistrip” solu-

tion (17% Potassium Cyanide), followed by a thorough rinsing under water. The Ti

adhesion layer was then etched using a 1.5:98.5 HF:H2O solution. Photo-resist was

then stripped by immersion in heated AZ100 for 20 minutes, followed by a rinse in

de-ionised water.
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5.3.2 Deposition of Guiding Layer

The guiding layer materials SiO2 and ZnO were deposited by the author using RF

magnetron sputtering. The sputtering parameters used for the ZnO layer are given in

Table 5.2, and those for SiO2 are given in Table 5.3.

Table 5.2: Sputtering parameters for ZnO layer

RF Power 140W

Sputtering Gas 40% O2, Ar Balance

Sputtering Pressure 1×10−2 Torr

Base Pressure ∼ 1×10−5 Torr

Sample Distance 50mm

Substrate Temperature 270◦ C

Table 5.3: Sputtering parameters for SiO2 layer

RF Power 140W

Sputtering Gas 10% O2, Ar Balance

Sputtering Pressure 1×10−2 Torr

Base Pressure ∼ 1×10−5 Torr

Sample Distance 50mm

Substrate Temperature 180◦ C

Sputter deposition was performed by the author using parameters obtained from

standard procedures used by other researchers working in the MMTC facilities. The

temperature given in the tables is the temperature to which the sample was raised be-

fore sputtering commenced, and which the temperature controller was set to during

sputtering. In the case of SiO2 deposition the temperature increased due to the sput-

tering process. The system uses a ceramic target with diameter of 100mm.

Layers of ZnO were deposited on delay line structures for the analysis described in

Section 3.3.3. For the verification of the author’s model for resonator structures, it was
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decided to use SiO2 instead, as it’s isotropic nature simplifies the analysis. In addition,

it is a highly inert and well-studied material.

Following the deposition of guiding layer, it was necessary to pattern it in order

to expose the electrical contact pads for connection to an external circuit. The pho-

tolithography process was performed in a similar manner to that used for the electrode

patterning. To etch the ZnO layer, a solution of 1:10 HNO3:H2O was used, whereas for

the SiO2 layer a solution of 1:19 HF:H2O was used.

5.4 Comparison of Measured and Calculated Frequency

Response

Having fabricated the device, it is necessary to check whether its frequency response

matches the predictions of the model. For the calculation of COM parameters, the

periodic Green’s function analysis was performed with M = 15 pulse function and

2L + 1 = 35 harmonics. These numbers were determined by modifying them until no

significant change was observable in the frequency response of the device.

5.4.1 Non-Layered Device

Since the guiding layer represents an additional source of uncertainty, the comparison

is first made for a non-layered device. By examining the device under a microscope, it

was found that the metallisation ratio of the fabricated was in fact 0.55, instead of the

designed value of 0.5. As the device has both Ti and Au metal layers, their transmission

matrices were cascaded, as discussed in Section 4.2.2.

The layout of the measurement jig resulted in some electromagnetic feed-through.

A procedure was used during the measurements which calibrated the S-parameter

measurements up to the SAW device, using custom-built open circuit, short circuit,

matched 50Ω and through-line components. However, using such a calibration pro-

cedure it is not possible to eliminate the feed-through signal from the measurements.

Instead, the S-parameters of the empty jig were measured after calibration, and con-

verted into Y-parameters. These Y-parameters were added to the calculated Y-parameters
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of the SAW resonator, thus placing the feed-through response in parallel with the SAW

device’s response.
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Figure 5.3: Transmission response of non-layered SAW resonator

Another parameter which was not included in the original design was the resis-

tance of the electrodes. This can be included into the COM model using equation

(4.61), however it requires that the value of the sheet resistance of the metal layer is

known. Using 4-point probe measurements of thin film samples, the gold layer was

found to have a sheet resistance of 0.45Ω. Incorporating all of these adjustments into

the model, the S-parameters are compared with measured values in Figure 5.3. Simi-

larly, the real part of the short circuit input admittance Y11 is plotted in Figure 5.4, and

the imaginary part in Figure 5.5.

It can be seen that the agreement is generally good, but fails on a number of points.

Firstly, the measured insertion loss at the resonant frequency is 2dB below the calcu-

lated value, and the real part of the measured input admittance at this frequency is



Chapter 5. Design and Fabrication of SAW Resonator Sensor 131

0

0.005

0.01

0.015

0.02

0.025

0.03

200 202.5 205 207.5 210 212.5 215

R
e(

Y
1
1
)(

S)

f (MHz)

Measured
Simulated

Figure 5.4: Real part of input admittance of non-layered SAW resonator

reduced by a factor of 2.5. This suggests that there are several loss mechanisms which

have not been included in the model, as was discussed in Section 2.2.2. It is important

to note that the excess attenuation observed experimentally cannot be modelled by

simply increasing the COM attenuation parameter γ, since this reduces the agreement

at all other frequencies. This suggests that acoustic losses in the gold layer are unlikely

to be the cause, since this mechanism would not be so specific to a single resonant peak.

A possible explanation is the conversion of surface trapped modes to SSBW, which is

known to depend strongly on the location of the resonant peak within the stop-band

[7]. It is possible that the lateral leakage of energy due to diffraction effects may have

some influence, however with only a 2-dimensional model it is not possible to calculate

the influence of this effect.

In addition, it can be seen that bulk-wave generation occurs at frequencies above

208MHz, which is not included in the COM model. However, since this is well above
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Figure 5.5: Imaginary part of input admittance of non-layered SAW resonator

the resonant frequency, the simplification of neglecting this bulk wave contribution is

justified. At frequencies below resonance, some additional ripple is observed. This

may be due to a combination of electromagnetic feed-through and reflections from the

side and bottom of the SAW substrate. There is also disagreement in the region be-

tween the main resonance peak, and the next lowest peak, as well as between the res-

onant and anti-resonant frequencies. This is almost certainly due to the simple means

of including the electromagnetic feed-through influence of the jig, since by comparison

with Figure 5.2 it can be seen that these regions change the most when feed-through is

included.

Finally, there was a disagreement in the imaginary component of Y11, whereby it

was lower than the measured value by an approximately constant factor across the

whole measured bandwidth. This was rectified by adding an empirically determined

capacitance of 2.2pF in parallel with the IDTs. This may be due to the influence of or
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interaction between the measurement jig, tracks from the pads to the IDTs and the IDT

bus-bars.

5.4.2 Layered Device

For the layered device, the agreement between theory and measurement was examined

for a 0.4µm SiO2 layer, since this is used for the measurements in chapter 6. For a

layered device it is expected that the agreement would not be as good, because material

constants for thin films tend to differ significantly from those of the bulk form. The

values used for SiO2 and ZnO are given in Appendix A and have been taken from

other sources using similar deposition techniques. However this does not guarantee

that identical results will be obtained, since the deposition conditions and apparatus

are not identical.
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Figure 5.6: Transmission response of layered SAW resonator
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Figure 5.7: Real part of input admittance of layered SAW resonator

As with the non-layered devices, the influence of the measurement jig was included

in the simulation, 2.2pF was added in parallel with each input IDT, the metallisation

ratio was increased to 0.55 and the sheet resistance of the gold layer was included.

The resulting S21 is plotted in Figure 5.6, while the real and imaginary parts of Y11 are

plotted in Figures 5.7 and 5.8 respectively.

For the layered device it can be seen that the agreement is not as good as for the non-

layered device. In particular, there is some error in the location of the main resonant

peak, although the remaining features appear to be at the correct frequencies. The

agreement of the height of the peaks is much poorer, as is the region between peaks.

There is always some uncertainty of the parameters of thin film layer. However, this

cannot explain the majority of the discrepancy, since changing the parameters of the

layer changes the centre frequency, but has little effect on the shape and magnitude of

the response. It should also be noted that in a layered device there is greater velocity
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Figure 5.8: Imaginary part of input admittance of layered SAW resonator

dispersion, which is not included in the COM model used here. Finally, the possibility

must be considered that some form of damage may be occurring to the layers during

the fabrication process due to effects such as pyroelectric discharge.

5.5 Conclusion

In this chapter surface acoustic wave resonator sensors were designed using the tools

developed in Chapters 3 and 4. The fabrication procedure used was described in de-

tail. The scattering and admittance parameters of the devices were measured, and

compared with the results of the author’s modelling work. For non-layered devices

the agreement was found to be good, with the sources of disagreement being under-

stood. In the case of the layered devices there is less agreement between theory and

measurement. The causes of this disagreement are less certain than in the non-layered
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case. Possible causes include the influences of the measurement jig, errors in the mate-

rial constants, the main resonant peak having some bulk wave characteristics and the

influence of the tracks and pads.

However, despite the discrepancies, the technique is able to give a reasonable agree-

ment as to the location of the resonant frequency. This is the most important factor in

determining device sensitivity, thus it is expected to be sufficient for the analysis un-

dertaken in Chapter 6. This analysis will be of the mass sensitivity of the fabricated

devices, and how it varies across their surface.



137

Chapter 6

Sensitivity Distribution Across Device

Surface

6.1 Introduction

As was shown in Chapter 2, existing models of the mass sensitivity of SAW sensors

are based on the assumption that the response is due to the mass loading caused by a

layer uniformly coating the device surface.

For delay line type SAW devices, there should be negligible reflections at points

between input and output transducers, thus the delay is simply the accumulated phase

change across the device surface due to the wave propagation. This means that the

response should be independent of the location of mass loading. In [25] this was found

to be true for mass loading in the region between the IDTs. However, in the same

paper it was also shown that the mass sensitivity in the electrode regions can differ

substantially from that in the region between electrodes. Since resonator structures are

more complex than delay line structures, greater variation in mass sensitivity across

the device surface would be expected. In particular, the acoustic energy is confined

towards the centre of the device, thus it would be expected that mass loading at regions

away from the device centre would have a reduced effect on the response.

It has been reported that most of the sensitivity of a SAW resonator can be attributed

to a small region at the centre [138], and that a sample delivery system which concen-

trates the analyte on this small region in the centre can improve overall sensitivity of
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the system [139]. However, no quantitative analysis was performed to characterise the

sensitivity variation across the surface. The periodic techniques described in Chapter

4 will be employed to study this effect. The results of the author’s novel model for

mechanical electrode interactions in layered media will be compared with those from

the simpler infinitesimal electrode approximation.

The implications of this surface sensitivity variation are particularly important in

cases where only a small quantity of selective material is available, so that it can be

placed on the most sensitive region of the SAW device. Similar considerations also

apply when a limited amount of analyte is available. For example, in immuno-sensing

applications expensive antibodies or antigens are immobilised onto the device surface.

By the use of a resonator structure with carefully selected sensitive region, greater re-

sponse could be observed in many practical sensing applications. In this chapter, the

mass sensitivity variation over the surface of a resonator will be investigated, and the

use in this task of the modelling techniques presented in previous chapters will be

explained in detail.

6.2 Model

The model used to calculate the device’s 2-port characteristics is described in Chapter

4. This needs to be modified to take into account the mass loading of specific regions of

the device. Consider Figure 6.1, where the equivalent network of the IDT is replaced by

3 networks IDT1, IDT2 and IDT3, with their acoustic ports cascaded, and their electrical

ports in parallel. Network IDT2 represents the region subject to mass loading. If this

region extends to one of the edges of the IDT, then either network IDT1 or IDT3 will be

absent.

To implement this model, the COM parameters are calculated separately for the

case with and without mass loading, as discussed in Section 4.3.1. These COM pa-

rameters can be used to create P-matrices of the sub-elements of the IDT, using the

techniques outlined in Section 4.3.2. However, it was discovered that direct imple-

mentation of this procedure can produce spurious results. If the operation described

by Figure 6.1 is implemented with network IDT2 having the COM parameters for the

non mass-loaded case, then it would be expected that the combined network would
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IDT

IDT1 IDT2 IDT3

Figure 6.1: Partitioning of P-matrix elements to include inhomogeneous mass loading

be identical to the original network. In fact, it was found that some slight difference

occurred. To eliminate these effects, the P-matrix was calculated for a single electrode

pair, both with and without mass loading. These were then cascaded analytically us-

ing the expressions given in [140] to form the networks IDT1, IDT2, and IDT3. Since

the IDT is always split into the maximum number of P-matrices, no further error can

occur due to the splitting of IDT networks into sub-networks.

Mass sensitivity is calculated along the length (x1) of the device. Variation of the

mass sensitivity across the width (x2) of the device has been neglected in this model.

This effect can be assumed to be insignificant since the device geometry is constant

across its width, which is much greater than the acoustic wavelength.

Using the P-matrix model, the complete 2-port parameters of the SAW device can

be calculated and the resonant frequency fr determined. For the device with no mass

loading, the resonant frequency was determined by finding the maximum amplitude

of the transfer characteristic S21. At this frequency the phase response will have a

corresponding value of θr. When the device is subject to mass loading, the transfer

response will change to Sm
21. The perturbed resonant frequency fm

r is determined from

the frequency where the phase response is θr, as illustrated in Figure 6.2. It should be
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Figure 6.2: Determination of device response when modelling mass loading

noted that the perturbed resonant frequency fm
r does not necessarily correspond to the

maximum magnitude of the perturbed transmission response Sm
21. This model gives

the response of a SAW sensor when placed in a feedback loop to create an oscillator

circuit, neglecting the phase delay across other circuit elements.

For each region of the device, the mass sensitivity defined as:

Sf
m =

fm
r − fr

m
, (6.1)

where m is the total mass of the perturbing material. This differs from the definition

given in Section 2.17, since it is for a finite quantity of mass rather than mass loading

per unit area and for absolute rather than relative frequency change. This is a more

appropriate measure, since in this chapter calculations are being made of finite regions

of a device, rather than for an idealised infinite case. This results in an expression with

SI units of (Hz/kg), however it is more practical to express it in units of (Hz/ng).

6.3 Measurements

The 2-port resonator sensors were fabricated on a 36◦-YX LiTaO3 substrate, using the

design outlined in Chapter 5. A 0.4µm layer of SiO2 was deposited on the device

surface by RF magnetron sputtering, in order to protect the electrodes. The resultant
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devices had resonant frequencies in the range of 205-206MHz. It should be noted that

for many sensing applications of these devices a thicker layer would be used, how-

ever a thinner layer was chosen because it results in less process variation between the

devices.

Figure 6.3 shows a schematic representation of the 2-port resonator SAW structure

(not to scale). Regions B-C and D-E represent the input and output interdigital trans-

ducers which are connected to the external circuit. Regions A-B and E-F are short

circuited electrode gratings of the same period as the IDTs. Region C-D is a grating

with a different period to that of the IDTs, and at point D there is a small spacer.

x1

A B DC E F

x2

Figure 6.3: Layout of 2-port resonator SAW sensor in (x1, x2)-plane

Sensitivity measurements were performed by placing the SAW devices in the os-

cillator circuit before and after the addition of a perturbing mass, and measuring the

change in oscillation frequency. The system was designed to ensure that the pressure

placed on the SAW device by measurement probes was repeatable. The added mass

was AZ5206E photo-resist, of thickness 0.6µm. This relatively thick layer was chosen

to ensure that a strong response was observed. Because the photo-resist is a soft ma-

terial the response should be mainly attributable to its mass, although some viscosity

influence would also be expected. Each measurement was repeated simultaneously on

5 different devices, which were fabricated in the same batch.

Figure 6.4 shows the results of the measurement. The horizontal axis of the graph

gives the location along the x1-axis as shown in Figure 6.3, with the corresponding

points A through F being marked out. Each horizontal line represents the region over
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Figure 6.4: Measured sensitivity distribution

which the additional mass has been deposited. The nearby crosses represent the mea-

sured values of sensitivity. In all cases the mass has been deposited over the complete

width of the device in the x2-direction. These measurements shows how a local change

in mass loading over a region on the device surface affects the resonant frequency of

the device.

6.4 Comparison between Modelled and Measured Results

6.4.1 Infinitesimal Electrode Approximation

Provided that the electrodes are of negligible thickness compared with the acoustic

wavelength, and are made from a light material, their mechanical properties do not

need to be taken into account and they can be considered as being infinitely thin.
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In Section 4.2 it was shown that this assumption greatly simplifies the analysis, and

speeds up the computation. Figure 6.5 shows the measured and theoretical sensitivity

distribution of the test device based on this assumption. The measured values are rep-

resented by crosses, whilst the theoretical values are represented by the circles at the

centre of the horizontal bars. It can be seen that, as expected, the sensitivity is great-

est at the centre of the device. The region B-E will be denoted the optimum region,

although this region is arbitrarily selected, and may be chosen differently for another

device geometry. This region accounts for the majority of the total device response.
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Figure 6.5: Sensitivity distribution with electrical approximation model

The qualitative agreement in shape is quite good, however the measured sensitiv-

ity is more confined to the centre than the model predicts, and the average sensitivity

over the complete device is also greater. This disagreement can be attributed to the me-

chanical influence of the electrodes which was not included in the model. The heavy

electrodes enhance the acoustic reflection, thus confining the acoustic energy to the
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centre of the device. They also trap acoustic energy to the surface, thus further increas-

ing the average mass sensitivity of the device.

6.4.2 Full Electrode Model

The results of Section 6.4.1 indicate that mechanical electrode interactions have a signif-

icant influence on the performance of the device. To improve the agreement between

the calculated and experimental results, the novel model developed in Section 4.2.2

was applied to the problem.
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Figure 6.6: Sensitivity distribution with full electrode model

With the mechanical electrode model incorporated into the periodic Green’s func-

tion analysis the sensitivity was calculated as before. The results are shown in Figure

6.6. The sensitivity shows better agreement with measurements in the case where com-

plete device is mass loaded, as does the sensitivity in the optimum region. It is likely

that the causes of inaccuracy cited in Section 5.4 would also come into play here as
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well. These results are in contrast with those in Section 4.3.1, where it was found that

there was a minimal difference in sensitivity for thin and thick electrode models.
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Figure 6.7: Sensitivity distribution considering only velocity change

As was discussed in Section 2.7.1, the change in velocity v is generally considered

to be responsible for the device sensitivity to mass loading. However, since the COM

parameters α, κ, C and γ influence the frequency response of the device, a change in

these parameters may be contributing to the results presented in Figure 6.6. To deter-

mine the relative importance of velocity in determining sensitivity compared to these

other parameters, all parameters except velocity have all been held constant during

mass loading. The resulting sensitivity distribution is shown in Figure 6.7, being com-

pared with the measured values. It can be seen that the results do not differ greatly

from those in Figure 6.6, which indicates that in this case the velocity change is pre-

dominant.
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6.4.3 Discussion

It is of interest to compare the sensitivity of the complete device (A-F), of the optimum

region (B-E) and of an idealised infinite length IDT. Table 6.1 shows a comparison of

these sensitivity calculations. To compare with the sensitivity of an infinite electrode

array, mass loading per unit area must be considered. This shows that the optimum re-

gion accounts for 84% of the complete device response, despite the fact that it accounts

for 34% of the active device area.

It can be seen that the response of the complete device is noticeably less than that of

an ideal infinite length electrode array. A complicating feature of this design is that it

has 2 different electrode periods, and the spacer, which moves the resonant frequency

away from the resonant frequency of the infinite grating. Thus it is not surprising that

the mass sensing behaviour of the complete structure differs from that of an infinite

electrode array.

Table 6.1: Sensitivity comparison

Structure Sensitivity cm2/g

Infinite Electrode Array −114.3

Complete Resonator −99.3

Optimum Region −83.5

The model suggests that for bio-sensing applications with a limited quantity of

available selective material, to achieve maximum response this material should only be

immobilised over the optimum region of the SAW device. It must be stressed that there

are other factors which also need to be taken into account including mass transport,

optimum receptor concentration and whether a flow-through or static cell has been

used [136].

On the other hand, in situations such as environmental gas monitoring, it is more

reasonable to assume that there is an unlimited quantity of analyte interacting with the

complete device surface. A comparison of delay line and resonator structures has been

made under these assumptions, resulting in quite different conclusions [8].

Although mass sensitivity is investigated here the mechanism for varying sensitiv-
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ity across the device surface is not specific to mass loading. The principal is primarily

the means by which the device structure translates a local velocity change ∆v/v to an

overall change in the oscillation frequency of the device ∆f/f . Thus similar results

would be expected for sensors based on changes in other parameters such as viscosity

or conductivity and for other types of SAW mode.

6.5 Conclusion

In this chapter, the layered SAW resonator structure has been subject to a new type of

analysis devised by the author. The purpose of this analysis is to find the most sensitive

region of the device’s surface. This was undertaken by utilising the P-matrix resulting

from the analysis performed in Chapter 4. It was found that the simplified model based

on the thin electrode approximation was inadequate for describing the behaviour of

the electrode grating, thus justifying the use of the author’s novel technique.

A fixed quantity of analyte was shown to have a greater effect on the device re-

sponse when immobilised or adsorbed onto a small region at the centre of the device.

The sensitivity in this region was found to be around four times larger than the av-

erage sensitivity across the complete device. This could be of great importance for

applications where maximum response is desired from a limited quantity of sensitive

material.
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Chapter 7

Conclusion

In this thesis, novel techniques were developed for the modelling of layered surface

acoustic wave resonator sensors operating in liquid media. The major achievements

were:

• Development of a new model for the mechanical influence of electrodes buried

within layered media

• Combination of the periodic Green’s function and COM models applied to the

study of layered SAW resonator sensors operating in liquid media

• Development of a model for the distribution of mass sensitivity across the surface

of a SAW resonator sensor, showing that it is only necessary for the sensitive

material to be placed in a small region of the device

• Design, fabrication and testing of a SAW resonator which confirmed the results

of the author’s theoretical developments

In Section 7.1 an overview of these achievements will be given, following the se-

quence used in the main thesis body. Section 7.2 will list the author’s publications,

some of which were not included in the body of this thesis. The author’s suggestions

for future research directions are detailed in Section 7.3.



150 Chapter 7. Conclusion

7.1 Thesis Overview

In the critical literature review undertaken in Chapter 2 it was shown that the most

accurate and universally applicable techniques for SAW device modelling are those

based on the boundary element method, which requires the development of a Green’s

function. It was also shown that the combination of the periodic Green’s function and

the coupling of modes models gives excellent accuracy and computation speed.

Although models for the mechanical interaction between acoustic waves and elec-

trodes are abundant in the literature, almost all of these models assume that the elec-

trodes are placed on the device surface, whereas in many sensing applications they

are placed between the substrate and guiding layer. This means that in order to avoid

making unwarranted simplifications to the device model, there is a requirement for

an approach which describes the mechanical interaction with electrodes buried within

layered media.

Existing models to calculate the sensitivity of SAW devices towards mass loading

were also evaluated. A significant inadequacy of these models is that they assume

that mass loading occurs evenly over the surface. Thus, they are unable to yield infor-

mation on the variation of sensitivity across the surface of the device. The variation

of mass sensitivity across the surface of a SAW resonator is an important problem to

study because it dictates where the sensitive material should be placed. In immuno-

sensing applications, this sensitive material is usually antibodies or antigens, which

may only be available in limited quantities and should thus be placed optimally on the

surface of the device. If they are placed on a region of very low sensitivity then they

may be detrimental to the response, since they would immobilise analyte and prevent

it from interacting with the more sensitive regions.

The mathematical foundations for the Green’s function based analysis were pre-

sented in Chapter 3. It was shown that as well as forming the basis for the bound-

ary element method, the spectral domain Green’s function also serves as an excellent

analytical tool in its own right. It can be used to calculate the phase velocity, elec-

tromechanical coupling factor and mass sensitivity of SAW structures in the absence of

electrode interactions. Examples were presented comparing these theoretical predic-

tions with measurements made on delay line structures fabricated on lithium tantalate
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with a zinc oxide guiding layer, and were shown to be in good agreement.

The periodic Green’s function analysis was presented in Chapter 4, including the

author’s novel modifications. By considering an infinite length array, only a single pe-

riod of the electrodes needs to be modelled, greatly reducing the computational cost.

A technique was developed which accounts for the mechanical influence of electrodes

buried within layered media. This model is based on the formulation of a matrix-eigen

operator for periodic media, and is much less cumbersome than existing solutions for

this problem based on the finite element method. It was also compared with the sim-

pler and faster technique based on and electrical Green’s function approximation.

It was then shown how the COM parameters could be extracted from this periodic

Green’s function model, and used to calculate the frequency response of the SAW res-

onator. COM parameters were studied as a function of guiding layer thickness for the

SiO2 on 36◦-YX LiTaO3 layered structure. It was shown that particularly for the re-

flection of acoustic waves, the electrical Green’s function approximation is inadequate,

and the author’s novel approach is required to fully account for the electrode interac-

tions.

This was followed in Chapter 5 by the author’s design of a 2-port resonator struc-

ture. The frequency response of this device was analysed using the author’s method,

which was found to yield almost identical results as other methods in the literature for

the case with no layer above the electrodes. This serves as a convincing verification

of the author’s technique. The fabrication procedure was described and the frequency

response of the fabricated device was compared with the theoretical response. For the

non-layered case this agreement was found to be good, with only a minimal number of

adjustments required to achieve this agreement. For the non-layered case agreement

was poorer, but most importantly, the model is able to give quite accurate predictions

of resonant frequency. This implies accurate modelling of the propagation velocity,

which is the most important part of the sensor response. The result is that this new tool

can confidently be used to model acoustic interactions with electrodes buried within

layered media.

In Chapter 6 the sensitivity of the designed device was analysed, with particular

regard to the variation of mass sensitivity across its surface. This analysis was under-
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taken using the previously developed modelling techniques and was compared with

experimental measurements. It was shown experimentally that sensitivity is greatest

towards the centre of the device, and decreases strongly with increasing distance away

from the centre. The electrical Green’s function approximation was found to give very

poor agreement with measurements, since it does not take full account of the increased

reflection and surface trapping effects of heavy electrodes. The model developed by

the author for electrodes buried within layered media was found to yield much better

agreement, since it accounts for these effects.

The result of this analysis is that SAW resonator sensors are able to achieve almost

complete sensitivity by having a selective layer only in the centre of the device. This

is expected to be highly beneficial in cases where the selective material is expensive,

so that it’s use must be minimised. This allows an extra degree of design freedom

for SAW resonator sensors, where the benefits of large Q-factor available from large

device length can be achieved without having to coat the complete device in selective

material.

7.2 Author’s Publication Record

The following papers have been published based on the work undertaken in this thesis,

in the proceedings of international conferences and in refereed international journals:

• D. A. Powell, K. Kalantar-zadeh, W. Wlodarski, and S. J. Ippolito, “Layered sur-

face acoustic wave chemical and bio-sensors,” in Encyclopedia of Sensors, C. Grimes,

E. Dickey, and M. V. Pishko, Eds. American Scientific, 2006, vol. 5, pp. 245–262.

• D. A. Powell, K. Kalantar-zadeh, and W. Wlodarski, “Spatial sensitivity distribu-

tion of surface acoustic wave resonator chemical and bio-sensors,” IEEE Sensors

J., 2006, (accepted for publication).

• D. A. Powell, K. Kalantar-zadeh, and W. Wlodarski, “Numerical calculation of

SAW sensitivity: Application to ZnO/LiTaO3 transducers,” Sens. Act. A: Phys.,

vol. 115, pp. 456–461, 2004.
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• D. A. Powell, K. Kalantar-zadeh, and W. Wlodarski, “Comprehensive analysis of

SAW sensor performance in liquid media by Green’s function method,” in Proc.

IEEE Ultrason. Symp., Oct. 2003, pp. 146–149.

• D. A. Powell, K. Kalantar-zadeh, S. Ippolito, and W. Wlodarski, “A layered SAW

device based on ZnO/LiTaO3 for liquid media sensing applications,” in Proc.

IEEE Ultrason. Symp., 2002, pp. 493–496.

In addition, the following research publications were carried out, during the course of

study whilst collaborating with other researchers from the Sensor Technology Group

at RMIT University, and from the materials science group at University of Perugia.

Although not directly relevant to the objectives of this thesis, the work in these pub-

lications makes use of some of the concepts and modelling techniques which were

presented:

• D. A. Powell, L. Valentini, I. Armentano, W. Wlodarski, K. Kalantar-zadeh, and

J. M. Kenny, “Langasite SAW gas sensor with self-assembled carbon nanotube

functional layer,” in Proc. Eurosensors XIX, 2005.

• D. A. Powell, K. Kalantar-zadeh, S. Ippolito, and W. Wlodarski, “Comparison of

conductometric gas sensitivity of surface acoustic wave modes in layered struc-

tures,” Sensor Letters, vol. 3, no. 1, pp. 66–70, Mar. 2005.

• K. Kalantar-zadeh, D. A. Powell, S. Ippolito, and W. Wlodarski, “Study of layered

SAW devices operating at different modes for gas sensing applications,” in Proc.

IEEE Ultrason. Symp., 2004, pp. 191–194.

7.3 Directions for Further Work

This thesis has presented advancements in the field of modelling SAW resonator sen-

sors. In this section some proposals will be made and possible future developments

will be considered. Firstly, improvements to the modelling technique will be sug-

gested, then suggestions will be made regarding the most promising future directions

of acoustic wave sensor research.
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7.3.1 Modelling

Although the work undertaken in this thesis is specific to the area of acoustic wave de-

vices, the periodic matrix eigen-operator technique applied here has previously been

applied to electromagnetic problems [141], and in combination with finite difference

techniques to photonic crystals [142]. This is possible because both the electromag-

netic and acoustic wave equations are partial differential equations which can be diag-

onalised to form a matrix eigen-operator. It would thus be expected that the technique

could find further useful application in the study of optical fibre gratings, photonic

and phononic crystals, microwave and optical meta-materials and lasers.

Whilst modelling techniques developed in this thesis are adequate for the task, they

involve a number of approximations, particularly that the field distribution can be well

approximated as being Floquet-periodic in the propagation direction x1, with infinite

extent in the lateral dimension x2. For improved accuracy, or as a final check for a

design optimised using these techniques, it is desirable to have a model which does

not use these approximations. For this work it would have been desirable to have such

a model to verify that the use of the 2-dimensional approximation was fully justified.

The problem of a 3-dimensional Green’s function based SAW analysis has been

studied (e.g. [143]), and 3-dimensional analysis has also been undertaken using the

finite element method (e.g. [144], in which the author had some involvement). How-

ever, to the best of the author’s knowledge a full 3-dimensional simulation of wave

propagation on an anisotropic piezoelectric substrate has not been presented in the

literature for a device of realistic size.

Perhaps the greatest problem in performing a full 3-dimensional BEM analysis is

the extremely high computational expense which would be involved. Since the BEM

relates each discretised region to every other, its computational cost increases as N3,

where N is the number basis functions used to model the device. The result is that

solving the 3-dimensional BEM equations for practical sized devices is cannot be per-

formed without the utilisation of enormous computational resources. It is unlikely that

such an enterprise would produce sufficient benefits to justify the required time and

expense. However, by utilising a more advanced approach to the BEM, this situation

may be remedied.
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The Fast Multi-pole Method (FMM) and it’s variants are a group of powerful tech-

niques which greatly reduce the computational burden of large scale linear partial dif-

ferential equations. These techniques have typically been applied to problems having

a Green’s function of the form 1/|r| [145] or exp(jk|r|)/|r| [146], where r is the vector

between source and observation points, and k is the wave number of a propagating

wave. However, in the analysis of piezoelectric devices Green’s functions having such

simple forms do not occur, due to the anisotropic nature of piezoelectric materials.

Recent theoretical developments [147] indicate that these techniques can be ap-

plied to Green’s functions of any form, including those which arise in the study of

anisotropic media. Thus it should be possible to combine these techniques with the es-

tablished Green’s function based methods for SAW devices to enable highly accurate

simulations to be performed within a practically useful computation time. It should be

noted that such a technique would be equally applicable to any linear piezoelectric de-

vice, including SAW and BAW devices for sensing and signal processing applications.

7.3.2 Acoustic Wave Sensors

SAW resonator sensors are only one class of device amongst the variety of piezoelectric

and acoustic resonant sensors. This area of sensors is strongly influenced by develop-

ments in devices for signal processing and communications applications, although as

discussed in Section 2.2 there are specific requirements for sensors. SAW and QCM

technology are both quite mature, so it is the author’s opinion that only incremental

changes are likely to occur in these areas. Thus, when considering new developments

which may have a significant impact in the sensor field, it is most likely that other

structures will provide the greatest impetus for significant new advances.

Recent developments in the field of acoustic wave devices are film bulk acoustic

resonator (FBAR) and solidly mounted resonator (SMR) structures [148]. These de-

vices are similar in principal to the QCM, but offer much higher operational frequency,

which may be in the GHz range. They consist of a thin film which resonates in its thick-

ness dimension. They are either free standing films (FBAR) or fabricated on top of a

Bragg mirror (SMR) in order to minimise acoustic losses into the surrounding medium.

Originally developed for RF frequency stabilisation and filtering applications, these
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structures have been successfully applied as gas sensors [149].

As they operate in a longitudinally polarised mode, these devices suffer from sig-

nificant attenuation when operated in liquid media. More recently, shear-horizontally

polarised variants have been developed which are suitable for operation in liquid me-

dia [150, 151]. It is not entirely clear that such devices offer any performance advantage

over a QCM, since acoustic losses, are much higher at the GHz frequency range than

the MHz range in which QCM sensors typically operate, thus reducing the device Q

and the signal to noise ratio. However, there are other advantages regarding the device

size and ease of integration with other components that make these devices appealing.

It also unclear to what extent these devices will be seen as replacing, rather than com-

plementing SAW sensor technology. SAW devices have a much simpler planar struc-

ture, and unlike FBARs do not require bulk micro-machining techniques. However

thin film resonators can be much more readily fabricated on commonly used substrates

such as silicon.
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Appendix A

Material Constants

To enable work such as that presented in this thesis to be reproduced, it is essential that

the material constants used are consistent. For this reason, Table A.1 lists the material

constants used in this thesis, and the sources from which they were obtained. Only

independent constants are listed, the others are obtained according to the relationships

given in [36], which depend on the material’s symmetry class. The value ”-” indicates

that the constant is not independent, which does not mean that it is zero. For piezo-

electric materials, the stiffness at constant electric field cE and dielectric constant at

constant strain εS are given, since these are the values required for the analysis used in

this thesis. For non-piezoelectric materials, this distinction does not need to be made.

The permittivity is normalised to the permittivity of free space ε0 = 8.854×10−12F/M.

The full dielectric properties of a metal are not well represented by a single constant,

and are not used in this thesis.
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Table A.1: Material constants

Material Source Symmetry Density Stiffness (1010 N/m2)

Class (kg/m3) cE
11 cE

12 cE
13 cE

14 cE
33 cE

44

LiTaO3 [152] 3m 7454 23.28 4.65 8.36 -1.05 27.59 9.49

ZnO [153] 6mm 5720 15.7 8.9 8.3 - 20.8 3.8

SiO2 [16] Isotropic 2200 7.85 - - - - 1.74

Au [36] Isotropic 19300 20.7 - - - - 2.85

Ti [36] Isotropic 4500 16.59 - - - - 4.4

Water [119] Isotropic 997 κ = 2.24×109N/m2, η = 8.9×10−4Ns/m2

Material Piezoelectric Constants (C/m2) Permittivity

e15 e22 e31 e33 εS
11/ε0 εS

33/ε0

LiTaO3 2.64 1.86 -0.22 1.71 40.9 42.5

ZnO -0.48 - -0.573 1.32 8.55 10.2

SiO2 0 3.75 -

Au 0 - -

Ti 0 - -

Water 0 80 -
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