
Effective Retrieval Techniques for Arabic Text

A thesis submitted for the degree of

Doctor of Philosophy

Abdusalam F Ahmed Nwesri

B.Sci., M.Soft.Eng.,

School of Computer Science and Information Technology

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia.

May, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15614817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; any

editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics

procedures and guidelines have been followed.

Abdusalam F Ahmed Nwesri

School of Computer Science and Information Technology

RMIT University

May, 2008

ii

Acknowledgments

First, I thank Allah the Almighty for giving me the strength and the ability to complete

this thesis. Many thanks to my parents who are patiently waiting for me to come home to

support them for the rest of their life. I am also grateful to my wife and family for their

support, understanding and constant encouragements.

I thank Saied Tahaghoghi and Falk Scholer for their support and patience. Without

their guidance and advice this thesis would not exist. My thanks go to Hugh Williams for

his initial support when I first started this thesis and to Justin Zobel for his comments on

Chapter 7.

Many thanks to those contributed to this research either directly or indirectly. I warmly

thank those participated in annotating the AGW corpus: Ahmad Omran, Ashraf Gadri,

Anwar Al-Eisawy, Aiman Attarhony, Rabee Swisse, Mohamed Abushhiwa, Abdulkareem

Elbaz, Mansor Moftah, Abdul-Fatah Khorwat, Abdurrahman Ertep, Abdurrazag Mezughi,

Miluod Asarat, Salem Aburrema, Khaled Abdulgader, Eltaher alshagamany, Abdulmajeed

Abaza, Redha Omran, Maher bin Abdul-Muhsen, Bushra Zawaydeh, and Abdul-Minem

Sanallah. I thank Timo Volkmer for his help in aligning ASR text with video shots in

the TRECVID 2005 collection. I also thank those who participated in reading my thesis:

Wigdan Mohamed, Abeer Ajlouni, Yussuf Hart, Philip Crooks, Fawziya Abderrahim, Rafig

Annabulsi, Yohannes Tsegay, Nadim Rafehi, Wasim Wardak, and Fatmir Badali.

For four years, I was part of the Search Engine Group at RMIT University. I would like

to thank all the members of the group specifically, Jelita Asian, Sarvnaz Karimi, Yohannes

Tsegay, Iman Suyoto, Dayang Iskandar, Steven Burrows, Jonathan Yu, Nikolas Askitis, and

Halil Ali.

I also want to thank James Thom for giving me feedback on this thesis; Chin Scott, Beti

Dimitrievska, and Nyree Freeman for their support as research programs administrator at

our school.

I would like to thank Microsoft Corporation for providing me with a copy of the Microsoft

Office Proofing Tools 2003. This research is supported by the Libyan government scholarship

through its Bureau in Canberra. Many thanks go to them.

iii

Credits

Portions of the material in this thesis have previously appeared in the following publications:

• Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, and Falk Scholer. Stemming Arabic

conjunctions and prepositions. In M. Consens and G. Navarro, editors, Proceedings

of String Processing and Information Retrieval, 12th International Conference, SPIRE

2005, pages 206–217, Buenos Aires, Argentina, 2–4 November 2005. Springer, Heidel-

berg, Germany. ISBN 3-540-29740-5.

• Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, and Falk Scholer. Capturing out-of-

vocabulary words in Arabic text. In Proceedings of the 2006 Conference on Empirical

Methods in Natural Language Processing (EMNLP 2006), pages 258–266, Sydney, Aus-

tralia, 22–23 July 2006. Association for Computational Linguistics.

• Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, and Falk Scholer. Arabic text processing

for indexing and retrieval. In Proceedings of the International Colloquium on Arabic

Language Processing, Rabat, Morocco, 18–19 June 2007. In Arabic.

• Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, and Falk Scholer. Finding variants of

out-of-vocabulary words in Arabic. In Proceedings of the 2007 Workshop on Computa-

tional Approaches to Semitic Languages: Common Issues and Resources, pages 49–56,

Prague, Czech Republic, June 2007. Association for Computational Linguistics.

• Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, and Falk Scholer. Answering English

queries in automatically transcribed Arabic speech. In Proceedings of the 6th An-

nual IEEE/ACIS International Conference on Computer and Information Science (ICIS

2007), pages 11–16. IEEE Computer Society, 11–13 July 2007.

The thesis was written in the WinEdt 5.5 editor on Windows 2000, and typeset using the

MiKTeX 2.5 document preparation system.

All Arabic scripts are written using the ArabTeX package written by Klaus Lagally at the

Institut fuer Formale Konzepte der Informatik, University of Stuttgart, Stuttgart, Germany.

All transliterations are represented using the International Phonetic Association (IPA) con-

ventions.

All trademarks are the property of their respective owners.

Contents

1 Introduction 3

1.1 How reliable is light stemming with morphological rules? 5

1.2 What are the effects of corpus size on AIR systems? 7

1.3 How effectively can foreign words be identified in Arabic text? 8

1.4 What is the effect of normalising foreign word variants? 9

1.5 Thesis Overview . 10

2 Background 11

2.1 The Arabic Language . 11

2.1.1 Character sets . 12

2.1.2 Grammar . 14

2.1.3 Morphology . 15

2.1.4 Arabic Affixes . 17

Common Affixes: . 18

Noun Affixes: . 19

Verb Affixes . 21

2.1.5 Foreign Words in Arabic Text . 22

2.1.6 Summary . 24

2.2 Information Retrieval . 24

2.2.1 Parsing . 25

Term Extraction . 25

Normalisation . 27

Stopping . 27

Stemming . 29

N-gram Tokenisation . 31

iv

CONTENTS v

2.2.2 Indexing . 31

2.2.3 Searching . 33

Boolean Queries . 33

Ranked Queries . 34

Vector Space Model . 35

Probabilistic Model . 35

Language Models . 38

The Bayesian Inference Networks Probabilistic Model 38

String and Phonetic Similarities . 40

2.2.4 Relevance Feedback . 45

2.2.5 Cross-Lingual Information Retrieval 46

2.2.6 An Application Example: Video Retrieval 47

2.2.7 Summary . 48

2.3 Evaluation of IR Systems . 49

2.3.1 Test Collections and Evaluation Forums 50

Building Test Collections . 50

2.3.2 Arabic TREC 2001 and 2002 testbed 52

2.3.3 Measuring Effectiveness . 53

Recall . 53

Precision . 54

Probability of Relevance . 55

Combining Precision and Recall . 58

2.3.4 Measuring Efficiency . 58

2.3.5 How Effective are New Algorithms? 58

2.3.6 Tools used in IR Evaluation . 59

2.3.7 Summary . 60

2.4 Chapter Summary . 60

3 Arabic Information Retrieval 62

3.1 Arabic Information Retrieval Systems . 62

3.1.1 Morphological Analysers . 62

3.1.2 Light Stemmers . 69

3.1.3 Statistical Approaches to Arabic Stemming 72

3.2 Retrieval of Foreign Words . 73

CONTENTS vi

3.3 Identification of Foreign Words . 78

3.4 Chapter Summary . 79

4 Stemming Arabic 81

4.1 Evaluation of Existing AIR Stemmers . 82

4.1.1 Stemmers . 82

4.1.2 Other Experimental Settings . 82

4.1.3 Results . 83

4.1.4 Discussion . 85

4.2 Improving Light Stemming . 86

4.2.1 The Baseline . 86

4.2.2 Arabic Text Normalisation . 87

Arabic Text Pre-processing . 87

Compound Words . 88

Arabic Text Post-processing . 89

Overall Normalisation Approach . 89

4.2.3 Removing Highly Frequent Words . 91

4.2.4 Stemming Conjunctions and Prepositions 93

Classification of Current Particle Removal Approaches 93

Evaluation of Particle Removal Approaches 94

New Approaches to Particle Removal 96

Evaluation of Our Particle Removal Approaches 99

4.2.5 Stemming the Prefix “�Ë @” . 102

4.2.6 Stemming Verb Prefixes . 103

4.2.7 Overall Prefix Removal Approach . 105

4.2.8 Possessive Pronouns Suffixes . 106

4.2.9 The Dual Suffix “ 	à@” . 107

4.2.10 The Suffix “ �H@” . 108

4.2.11 The Suffixes “ 	àð” and “ 	áK
” . 110

4.2.12 The Single Letter Suffixes “ �é�” and “ø
 ” 110

4.2.13 Overall Suffix Removal . 112

4.2.14 Our New Stemmers . 112

Rule-based Light Stemmers . 113

More Light Stemmers . 114

CONTENTS vii

4.2.15 Using the Collection as a Lexicon . 116

Using the Extracted Office Lexicon . 116

Using the Corpus as a Lexicon . 116

4.2.16 Concluding Remarks . 118

4.3 AIR Experiments on ASR Generated Text . 120

4.3.1 Resources . 120

Collection Description . 120

4.3.2 Automatic Translation Tools . 122

4.3.3 Stemmers and Retrieval Engines . 122

4.3.4 Experiments . 122

4.3.5 Results and Discussion . 124

4.4 Chapter Summary . 127

5 Corpus Size Effects on AIR Systems 130

5.1 Building a Test Collection . 131

5.1.1 The Document Collection . 131

The Arabic Gigaword Document Collection 131

5.1.2 The Task . 132

5.1.3 Annotation System . 133

5.1.4 Annotation Methodology . 133

5.1.5 Annotations . 136

5.2 Performance of AIR Stemmers on The AGW Test Collection 137

5.2.1 Performance of Existing AIR Stemmers Using The AGW Test Collection137

5.2.2 Performance of our Stemmers on The AGW Test Collection 140

5.3 Discussion . 143

5.4 Tuning Okapi BM25 Ranking Parameters . 144

5.4.1 The b Parameter Value . 145

5.4.2 The k1 Parameter Value . 147

5.4.3 The k3 Parameter Value . 148

5.4.4 Parameters with No Stemming . 148

5.5 Tuning TREC 2001 and TREC 2002 Okapi Parameters 149

5.6 Chapter Summary . 150

CONTENTS viii

6 Foreign Word Identification 152

6.1 Foreign Word Variants . 153

6.2 Identifying Foreign Words . 154

6.2.1 Arabic Lexicons . 154

6.2.2 The Arabic Pattern System . 154

6.2.3 The n-grams Approach . 155

6.3 Training Experiments . 157

6.3.1 Data . 157

6.3.2 Measures of Evaluation . 158

6.3.3 Initial Results . 159

6.4 Improving Results . 160

6.4.1 Enhanced Rules . 160

6.4.2 Improving the n-gram Approach . 163

Improving the n-gram Approach Using Stemming 166

6.5 Word Frequency and Stemming . 167

6.6 Combining Approaches . 170

6.7 Verification Experiments . 172

6.8 Effects of not Stemming Foreign Words. 173

6.9 Discussion . 174

6.10 Chapter Summary . 175

7 Dealing with Foreign Words in Arabic 177

7.1 Data . 178

7.1.1 Crawled Data . 178

Generation of Variants . 178

7.1.2 Transliterated Data . 179

7.2 Algorithms . 180

7.2.1 Static Algorithms . 180

The NORM Algorithm . 180

The Soutex Algorithm . 182

7.2.2 Dynamic Algorithms . 183

Arabic Editex . 183

Ranked AEditex . 184

7.3 Evaluation . 186

CONTENTS ix

7.3.1 Results and Discussion . 187

7.4 IR Evaluation . 188

7.4.1 Experimental Setup . 189

7.4.2 IR Results . 190

7.4.3 Using Query Expansion . 195

7.5 Chapter Summary . 198

8 Conclusions and Future Work 201

8.1 Improving Light Stemming Using Morphological Rules 201

8.2 The Effects of Large Text Collections on AIR 203

8.3 Identification of Foreign Words in Arabic Text 205

8.4 Conflation of Foreign Word Variants in Arabic Text 205

8.5 Concluding Remarks . 207

A AGW Topics 208

B Foreign Words Expansion Results 240

Bibliography 247

List of Figures

1.1 Language growth on the Internet between 2000 and 2007. 4

2.1 Document retrieval inference network model. 39

2.2 An example of calculating Edit Distance. 41

2.3 An example of calculating Editex distance. 45

2.4 A sample document from the TREC 2001 collection. 49

2.5 A sample TREC 2001 topic and relevance judgements. 51

2.6 An example of ranked results. 54

4.1 Performance of AIR stemmers using TREC collections. 84

4.2 Performance of AIR stemmers using TREC collections and relevance feedback. 86

4.3 Effects of normalisation and prefix removal on light10. 118

4.4 Arabic and non-Arabic relevant documents in TRECVID collection. 121

4.5 Performance of different approaches using queries translated with AlMisbar. . 123

4.6 Performance of different approaches using queries translated with Google Trans-

late. 124

4.7 Performance of different approaches using queries translated with Systran. . . 125

4.8 Performance of the light10 stemmer across translation systems. 126

5.1 Our AGW annotation system. 133

5.2 Performance of AIR stemmers using the AGW collection. 138

5.3 The performance of the light10 stemmer on AGW individual queries. 144

5.4 Effects of Okapi BM25 b parameter values on AGW results. 147

5.5 Effects of Okapi BM25 k1 parameter values on AGW results. 149

6.1 An example of using n-grams to identify foreign words. 157

x

LIST OF FIGURES xi

6.2 Effects of our rules on foreign word identification. 163

6.3 The effects of changing profiles size and depth. 165

6.4 Distribution of Arabic and foreign word distances. 167

6.5 Effects of cutoff values on identifying foreign words. 168

7.1 An example of calculating AEditex and REditex. 186

7.2 Results of static and dynamic algorithm on the crawled data. 187

7.3 Results of static and dynamic algorithm on the transliterated data. 188

7.4 Static and dynamic algorithms integrated within the light11 stemmer. 191

7.5 The effects of foreign word normalisation on the light11 stemmer using the

NORM and AEditex algorithms. 193

7.6 Queries affected by the integration of the NORM algorithm in the light11

stemmer. 195

List of Tables

1.1 Effects of light stemming on Arabic words. Affixes are highlighted in red.

Light stemmers remove such affixes without validation resulting in another

stems with different meanings. 6

2.1 Different shapes of Arabic letters and IPA representations. 13

2.2 Inflected forms of the noun “Õ
��
Î �ª�Ó”. 17

2.3 Common pronoun suffixes can appear with nouns or verbs. 19

2.4 Diacritics or long vowels used to disambiguate pronunciation for “Milosevic”. 23

2.5 An example document collection. 25

2.6 Effects of term extraction and normalisation on the sample collection. 26

2.7 Effects of stopping and stemming on the sample collection. 28

2.8 An example of an inverted list for the stemmed sample document collection. . 32

2.9 Distribution of term t over the relevant and non-relevant documents in the

collection. 36

2.10 Phonetic groups and their codes for English phonetic similarity algorithms. . 43

2.11 An example of weak ordering. 56

3.1 Prefixes and suffixes removed by the Arabic light stemmers. 70

4.1 Performance of AIR stemmers using TREC collections. 83

4.2 Performance of AIR stemmers using TREC collections and relevance feedback. 85

4.3 Effects of normalisation techniques on light10. 90

4.4 Effects of stopword removal on light10. 92

4.5 Results of removing particles using current approaches. 95

4.6 Results of removing particles using our new approaches. 99

4.7 Words with different meaning when stemmed by RPR and RR. 100

xii

LIST OF TABLES xiii

4.8 Performance of particle removal algorithms. 101

4.9 Effects of removing “�Ë @”. 104

4.10 Effects of stemming verb prefixes on light10. 104

4.11 Effects of using our normalisation and prefix removal techniques on light10. . 106

4.12 Effects of stemming pronoun suffixes. 108

4.13 Effects of stemming the suffix “ 	à@”. 109

4.14 Effects of stemming “ �H@. 109

4.15 Effects of stemming “ 	àð” and “ 	áK
”. 110

4.16 Effects of stemming single character suffixes. 111

4.17 Effects of stemming All suffixes. 112

4.18 Performance of our new algorithms. 114

4.19 Affixes removed by light10, light11, light12, and light13 stemmers. 115

4.20 Results of the light11, light12 and light13 stemmers. 115

4.21 Performance of Restrict2 using extracted Office 2003 lexicon words. 116

4.22 Effects of using the unique terms of the corpus as a lexicon. 117

4.23 Effects of different algorithms on the index size of TREC collection. 119

4.24 Effects of different techniques on MAP. 127

5.1 Variants of topic number 13 entered by a user to annotate relevant documents. 135

5.2 Performance of AIR stemmers using the AGW collection. 137

5.3 Performance of our stemmers using the AGW collection. 140

5.4 Performance of our stemmers using the AGW collection and relevance feedback.141

5.5 Effects of different algorithms on the index size of the AGW collection. 142

5.6 Effects of Okapi BM25 b parameter values on AGW results. 146

5.7 Best results of changing the parameter k1 in the Okapi BM25 equation. . . . 148

5.8 Best results of changing tuning Okapi BM25 parameters using unstemmed

collection. 150

5.9 The effects of changing the parameter k3 in the Okapi BM25 equation. 151

6.1 Different spelling versions for the name Milosevic. 154

6.2 Patterns added to the Khoja modified stemmer. 155

6.3 Initial results of foreign word identification. 159

6.4 Frequency of Arabic letters in a sample of 3 046 foreign words. 161

6.5 Improvements added using our rules. 162

LIST OF TABLES xiv

6.6 Best profiles size and depth. 164

6.7 Improvements in precision by choosing the best cutoff value. 166

6.8 Effects of stemming on the n-gram approach. 166

6.9 Arabic and foreign word frequencies before and after stemming. 169

6.10 Arabic and foreign word frequencies before and after stemming using the

TREC collection. 170

6.11 Combining n-grams and lexicon approaches. 171

6.12 Identification of foreign words on the test set: initial results. 171

6.13 Identification of foreign words on the test set: results after using the new rules.172

6.14 Combining n-grams and lexicon approaches using the second data set. 173

6.15 Results using combined approaches of n-grams and OLA approach using the

third data set. 173

6.16 Effects of not stemming foreign words on retrieval performance. 174

7.1 Variants of the word “Beckham” generated by adding vowels. 178

7.2 NORM algorithm development. 181

7.3 Normalisation of equivalent consonants to a single form. 181

7.4 Mappings for our phonetic approach. 182

7.5 AEditex letter groups. 184

7.6 Comparison of AEditex and REditex ranking. 185

7.7 Results of finding variants using all algorithms. 189

7.8 Performance of light11 stemmer with our static and dynamic algorithms. . . . 192

7.9 Baseline results using the INQUERY retrieval model. 196

7.10 Effects of expanding automatically identified foreign words on MAP. 197

7.11 Effects of expanding manually identified foreign words on MAP. 199

A.1 Topic numbers and their respective number of annotated documents. 239

B.1 Effects of expanding automatically identified foreign words on P@10. 241

B.2 Effects of expanding automatically identified foreign words on Recall. 242

B.3 Effects of expanding automatically identified foreign words on R-Precision. . 243

B.4 Effects of expanding manually identified foreign words on P@10. 244

B.5 Effects of expanding manually identified foreign words on Recall. 245

B.6 Effects of expanding manually identified foreign words on R-Precision. 246

Abstract

Arabic is a major international language, spoken in more than 23 countries, and the lin-

gua franca of the Islamic world. The number of Arabic-speaking Internet users has grown

over nine-fold in the Middle East between the year 2000 and 2007, yet research in Arabic

Information Retrieval (AIR) has not advanced as in other languages such as English. Most

techniques used by most current search engines are still limited to the use of word as a search

unit, despite the fact that Arabic is a highly inflected language. In this thesis, we explore

techniques that improve the performance of AIR systems.

Stemming is the process of reducing words to their roots or stems. In highly inflected lan-

guages such as Arabic, stemming is considered one of the most important factors to improve

retrieval effectiveness of AIR systems. Most current stemmers remove affixes without check-

ing whether the removed letters are actually affixes. We propose lexicon-based improvements

to light stemming that distinguish core letters from proper Arabic affixes. We devise rules

to stem most affixes and show the effects of each individual rule on retrieval effectiveness as

well as using all rules together. Using the TREC 2001 test collection, we show that applying

relevance feedback with our rules produces significantly better results than light stemming.

Techniques for Arabic information retrieval have been studied in depth on clean collec-

tions of newswire dispatches. However, the effectiveness of such techniques is not known

on other noisy collections such as transcribed news collections in which text is generated

using automatic speech recognition (ASR) systems and queries are generated using machine

translations (MT). Using noisy collections, we show that normalisation, stopping and light

stemming improve results as in normal text collections but that n-grams and root stemming

decrease performance.

Test collections play a major role in evaluating alternative IR approaches. Most recent

AIR research has been undertaken using collections that are far smaller than the collections

used for English text retrieval; consequently, the significance of some published results is

2

debatable. Using the LDC Arabic GigaWord collection that contains more than 1 500 000

documents, we create a test collection of 90 topics with their relevance judgements. We

use this test collection to test the effectiveness of several techniques including our lexicon-

based light stemming, and show empirically that for a large collection, root stemming is

not competitive. Of the approaches we have studied, lexicon-based stemming approaches

perform better than light stemming approaches alone.

Arabic text commonly includes foreign words transliterated into Arabic characters. Sev-

eral transliterated forms may be in common use for a single foreign word, but users rarely use

more than one variant during search tasks. We explore two issues in this area: identification,

and retrieval.

We test the effectiveness of lexicons, Arabic patterns, and n-grams in distinguishing

foreign words from native Arabic words. We introduce rules that help filter foreign words

and improve the n-gram approach used in language identification by determining the best

n-grams size to construct word and language profiles. Our combined n-grams and lexicon

approach successfully identifies 80% of all foreign words with a precision of 93%.

To find variants of a specific foreign word, we apply phonetic and string similarity tech-

niques and introduce novel algorithms to normalise them in Arabic text. We modify phonetic

techniques used for English to suit the Arabic language, and compare several techniques to

determine their effectiveness in finding foreign word variants. We test the effectiveness of

using such techniques in AIR systems, and show that our algorithms significantly improve

recall. We also show that expanding queries using variants identified by our Soutex4 phonetic

algorithm results in a significant improvement in precision and recall.

Together, the approaches described in this thesis represent an important step towards

realising highly effective retrieval of Arabic text.

Chapter 1

Introduction

The Web has become a major source of information, with billions of documents available for

search and more added daily. According to the Netcraft April 2008 survey, there are more

than 165 000 000 distinct domain names on the Internet.1 Given the volume of information

available, users increasingly rely on search and filtering tools to find the information they

require.

Search engines provide an interface through which people can find information easily in

a text collection such as the Web. They collect and index information and employ various

techniques to find documents relevant to a user’s query.

Few search engines were initially available that support searching documents written

in non-Latin characters. However, with the rapid growth of computer use in non-English-

speaking regions, search engines have gradually added support for other languages.

While the number of the Internet users in the Middle East increased by 920% between

2000 and 2007, the number of Internet users who use the Arabic language reached 46 359 140

by November 2007, indicating a 1 575.9% growth over the year 2000 (see Figure 1.1).2

Search engines employ techniques such as term matching and document ranking that

work across most languages. However, application of techniques specific to a target language

can help retrieval effectiveness.

Arabic is a highly inflected language. Its words are derived from root words and extended

with prefixes, infixes and suffixes; resulting in as many as 2 552 different versions for a verb

word and as many as 519 versions for a noun [Attia, 2006]. Moreover, unlike English, prefixes

and suffixes in Arabic include pronouns, prepositions, and conjunctions. Most of these affixes
1http://news.netcraft.com/archives/2008/04/14/april 2008 web server survey.html
2http://www.internetworldstats.com/stats7.htm

CHAPTER 1. INTRODUCTION 4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

O
th

er
s

Ita
lia

n

K
or

ea
n

A
ra

bi
c

P
or

tu
gu

es
e

G
er

m
an

F
re

nc
h

Ja
pa

ne
se

S
pa

ni
sh

C
hi

ne
se

E
ng

lis
h

La
ng

ua
ge

 G
ro

w
th

 %
 (

20
00

 -
 2

00
7)

Language

Figure 1.1: Language growth in the Internet between 2000 and 2007. Source: Internet World

Stats [Miniwatts International, 2007].

do not appear in a separate form as in English, but are attached to the word. Identification

of these affixes is complicated by the fact that they are sometimes identical to core characters

of Arabic words. The simple truncation techniques that can be applied to remove English

suffixes cannot be used for Arabic, and so we must devise new identification approaches.

Arabic is a highly inflected language; however, even with the rapid increase in Arabic-

speaking users, most search engines limit their searches to non-inflected, surface forms of

words. Whilst a few dedicated Arabic search engines such as Ayna3 and Araby4 are available,

most users still rely on major search engines such as Google,5 Live Search,6 and Yahoo7.

Wheeler [2004] surveyed 200 Internet users in Jordan and found that Google was the most
3http://www.ayna.com/
4http://www.araby.com/
5http://google.com
6http://live.com
7http://yahoo.com

CHAPTER 1. INTRODUCTION 5

commonly visited web site. However, in another survey, satisfaction rates amongst 26 Arabic

users using Google was found to be as low as 32% [Al-Maskari et al., 2007].

Research on Arabic Information Retrieval (AIR) started in earnest in the early 1990s with

a few small experiments carried out using small collections of text. Most studies focused on

extracting roots and comparing the effectiveness of indexing Arabic text using roots, stems

or words. It was only in 2001 that the Text REtrieval Conference (TREC) first dedicated a

track to test the effectiveness of techniques in Arabic monolingual and cross-lingual retrieval.

Despite the fact that TREC has boosted AIR research, the underlying text collection used

for testing is relatively small compared with those used in English. The effectiveness of AIR

systems has only been tested using 75 queries which cover a tiny proportion of all Arabic

terms.

Compounding these difficulties is the fact that Arabic is a living language which regularly

acquires new words from other languages. Such words are problematic in that they do not

follow normal Arabic word structure, with many different versions of the same word being

used by different people. Existing search engines look for the version submitted in the user

query and do not attempt to find other variants in their text collection.

Motivated by the need to enhance monolingual Arabic searching, we investigate tech-

niques that improve AIR effectiveness. We test supporting light stemming with morphological

and grammatical rules to avoid removing core letters; test whether techniques used for clean

newswire text can also aid retrieval effectiveness for a different collection of automatically

transcribed TV news soundtrack; build ground truth for a larger document collection and

use it to evaluate existing AIR systems, including the ability to identify foreign words within

Arabic text, and the effects of normalising such words on retrieval effectiveness. Specifically,

we aim to address the following questions in this thesis.

1.1 How reliable is light stemming with morphological rules?

Arabic is a derivational language in which words are derived from roots and inflected using

prefixes, infixes, and suffixes. Versions derived from the same root or stem and sharing the

same meaning should be grouped together in one class in the search index. Stemming is the

process of returning common inflected words to their stem or root, usually by removing affixes.

Removing affixes correctly results in a proper conflation. However, affixes are not distinct in

most languages, and stemming often results in an incorrect stem due to mistakes in removing

affixes. Such errors conflate incompatible words together in the index, resulting in over-

CHAPTER 1. INTRODUCTION 6

Before Stemming After Stemming

ÐA�ð /wisaam/ 〈proper noun〉 ÐA� /saam/ 〈poisonous〉
ÐAê��Ë @ /Plhaam/ 〈inspiration〉 ÐAë /haam/ 〈important〉

PñÒJ
�J��ËAK. /balt”jmwr/ 〈Baltimore〉 PñÒJ
�K /t”jmwr/ 〈East Timor〉
	àA�� 	KY« /Qd”nan/ 〈Adnan〉 	àY« /Qd”n/ 〈Aden port in Yemen〉

Table 1.1: Effects of light stemming on Arabic words. Affixes are highlighted in red. Light

stemmers remove such affixes without validation resulting in another stems with different

meanings.

stemming [Paice, 1996]. Despite stemming mistakes, it has been empirically demonstrated

that stemming improves retrieval in many languages [Hull, 1996; Popovic̆ and Willett, 1992;

Savoy, 1999; Asian, 2007], including Arabic [Larkey et al., 2002; Aljlayl, 2002].

Many experiments have been carried out to test the effectiveness of indexing Arabic text

using roots, stems and words. Early experiments have shown that using root forms as the in-

dex terms is superior to using stems or the unstemmed words [Al-Kharashi, 1991; Al-Kharashi

and Evens, 1994; Abu-Salem, 1992; Abu-Salem et al., 1999; Hmeidi et al., 1997]. These ex-

periments have been carried out on a small collection of abstracts and short documents using

manually judged stems and roots.

Automated stemming approaches return words to their stems by removing letters that

correspond to Arabic prefixes or suffixes (this is known as light stemming), and may further

return stems to roots using patterns (root stemming). Such automatic techniques often fail

to produce the exact stem due to ambiguity in Arabic text and due to similarity between

affixes and core letters in Arabic words. Light stemmers remove a pre-prepared list of pre-

fixes and suffixes. They compare initial and ending letters of Arabic words with their list

and remove matching sequences that pass possible additional criteria, such as that the re-

maining string should contain at least three characters. Despite the fact that this approach

results in many wrong stems (see Table 1.1), it is efficient and improves retrieval effectiveness

significantly [Aljlayl and Frieder, 2002; Darwish and Oard, 2003b; Larkey et al., 2007]. In

contrast, morphological analysers use lexicons and morphological rules to remove the proper

affixes. They analyse all possible combinations of initial and final letters of a word and use

rules to validate the combination between these letters and the remaining stem for a given

word. Whilst such systems produce more accurate stems, they commonly return more than

one possible stem for the same word, making it very difficult to determine the best stem

CHAPTER 1. INTRODUCTION 7

that represents the word. Such systems are also less efficient than light stemmers, despite

sometimes returning results very similar to those of light stemmers [Larkey et al., 2007].

In this thesis, we use an approach that combines light stemming and morphology to

produce more effective and efficient results. We compare the effectiveness of existing AIR

systems and show that the light stemming techniques are superior to existing systems. We use

the light10 stemmer developed by [Larkey and Connell, 2005] as our underlying framework

to test the effects of several techniques we propose to remove proper affixes and avoid core

letters. Our rules use morphological rules and an Arabic lexicon. We verify whether letters

constitute an affix not only by checking whether the word with and without that affix exists

in our lexicon, but also by replacing that affix with other equivalent ones and checking the

new instances against the lexicon. Our final stemmers achieve results comparable to those

of the light10 stemmer, but significantly exceed them when used together with relevance

feedback; notably, our lexicon-based stemmers that use the unique terms as a underlying

lexicon are three times more efficient than the best morphological analyser.

We explore whether techniques developed on clean data also apply to noisy collections.

Using a collection of text generated through automatic speech recognition of TV news sound-

track, and machine translations of English queries, we show that most AIR techniques, with

the exception of root-word indexing and n-grams, also apply to the new collection.

1.2 What are the effects of corpus size on the performance of AIR systems?

Test collections play a core role in improving IR systems, as they allow different strategies

to be tested. For Arabic, the few available test collections are small compared to those

used for English. For example, while the biggest test collections developed for Arabic —

the TREC 2001 and TREC 2002 text collections — contain only 383 872 documents (some

800MB of data), the English TREC WT10g collection contains 1.6 million documents (10GB

of data), and the English TREC GOV2 text collection contains 25 million documents (420GB

of data).

Published results of experiments on small document collections indicate that indexing

collections using the word roots is more effective than indexing the stems, or the unstemmed

words themselves [Al-Kharashi, 1991; Al-Kharashi and Evens, 1994; Abu-Salem, 1992; Abu-

Salem et al., 1999; Hmeidi et al., 1997]. However, other published research that uses the

mid-sized TREC 2001 collection shows conflicting results [Aljlayl and Frieder, 2002; Darwish

and Oard, 2003b; Larkey et al., 2007]. Using Arabic GigaWord Second Edition (AGW)

CHAPTER 1. INTRODUCTION 8

corpus, a collection of over 1 500 000 text documents, we created a testbed using 90 queries

and used them to test AIR effectiveness. Our results show that different AIR systems perform

almost equally, but that effectiveness is lower overall than reported results using a smaller

text collection. We also confirm that root stemming does not aid retrieval effectiveness with

such a large collection, and that using stems as index terms is significantly better than using

roots or words.

Among the techniques we investigate to improve retrieval is the choice of parameters

for the Okapi BM25 similarity measure. Initial values optimised for the TREC-8 English

collection have been used by researchers on TREC 2001 and TREC 2002 Arabic collec-

tions [El-Khair, 2003; Darwish and Oard, 2003a; Darwish et al., 2005]. We show that these

values are not the best choice for the Arabic TREC collections and the Arabic AGW collec-

tion. We determine that these values differ across collections and should be determined for

every individual collection, and that when using short queries, the b parameter has the most

effect on retrieval performance and should be determined.

1.3 How effectively can foreign words be identified in Arabic text?

Another category of words in Arabic text that have different spelling variants are foreign

words. Foreign words are words that are borrowed from other languages and transliterated

into Arabic as they are pronounced by different Arabic speakers, with some segmental and

vowel changes. Such words are increasingly common due to the inflow of information from

foreign sources, and include terms that are either new and have yet to be translated into

native equivalents, or proper nouns that have had their phonemes replaced by Arabic ones.

This process often results in different Arabic spellings for the same word. Current AIR

systems do not handle the problem of retrieving the different versions of the same foreign

word [Abdelali et al., 2004], and instead typically retrieve only the documents containing

the same spelling of the word as used in the query. Stemming is not beneficial with such

words, as they have no clear affixes. In fact, stemming would be harmful, since core letters

that match Arabic affixes would be removed, resulting in the word being mapped to another

index term. Before dealing with such variants in Arabic, an essential first step is to identify

them. We manually extract a list of foreign words from a large collection of Arabic text,

and evaluate three techniques to identify these: lexicons, patterns and n-grams. We enhance

the lexicon-based technique using rules based on the structure of Arabic words and letter

frequency in both Arabic and foreign words. We also improve the n-gram technique originally

CHAPTER 1. INTRODUCTION 9

used in language-identification applications, and use it along with the lexicon approach to

identify 80% of all the foreign words with a precision of 93%.

1.4 What is the effect of normalising foreign word variants?

Techniques other than stemming are required to group variants of a foreign word under one

index term. Normalising different variants under one encoding form, and computing simi-

larity based on n-grams, are often used to find different versions of names in English [Zobel

and Dart, 1995; 1996; Christen, 2006a].

Finding variants of names in languages such as English is a problem that has been long

recognised in information retrieval, and has been addressed in great depth by the database

community [Raghavan and Allan, 2005]. Most experiments have been carried out using

name databases [Zobel and Dart, 1995; 1996; Pfeifer et al., 1995; 1996; Pirkola et al., 2002;

Holmes and McCabe, 2002; Holmes et al., 2004; Ruibin and Yun, 2005; Christen, 2006a;b].

Results reported using such databases are not reliable for finding name variants within a text

environment, as other words found in the text would affect results. For example, words such

as “better” and “patter” would be considered similar to the proper noun “Peter” by some

phonetic-matching algorithms such as the Soundex or Phonix. Few studies have tested the

retrieval of name variants in the context of IR where names are to be located within text

documents rather than from a list of names [Raghavan and Allan, 2004; 2005]; moreover,

there is only one study that tests the effects of finding Arabic name variants within a list of

modified Arabic names [Aqeel et al., 2006]. We test the effects of using string and phonetic

similarity techniques to find variants of foreign words in an IR context.

We evaluate the major approaches and introduce others with the aim of identifying vari-

ants of foreign words in two collections of Arabic text. We also test the effectiveness of

converting variants to a single normalised form. We show that normalising foreign word vari-

ants using our algorithms increases recall significantly by 5.04% and increases precision by

9.64% but not significantly. Using query expansion, we show that our phonetic Soutex4 al-

gorithm is the best candidate to expand queries with foreign word variants, with significantly

improved precision and recall.

CHAPTER 1. INTRODUCTION 10

1.5 Thesis Overview

We organise our thesis as follows:

In Chapter 2, we present an overview of the Arabic language, describe the fundamental

elements of information retrieval (IR) research.

In Chapter 3, we review prior work on Arabic information retrieval systems, focusing on

morphological analysers, light stemmers, and statistical approaches. We also review potential

approaches that can be used to match foreign word variants, and those that can be used to

distinguish foreign words from native words in the text.

In Chapter 4, we focus on the effects of stemming on AIR. We compare existing AIR

systems and propose techniques that avoid stemming core letters in Arabic words. We also

investigate the use of language morphological rules to improve stemming. We demonstrate

that our rules are more effective using the list of unique words in the collection. We investigate

whether the effectiveness of applying techniques used to improve Arabic retrieval using clean

text documents applies to text documents generated automatically from an audio soundtrack

and using queries translated from English.

In Chapter 5, we build a new test collection using a document collection that contains

over 1 500 000 documents. We build 90 queries and draw up associated relevance judgments,

and use this collection in testing the effectiveness of AIR systems. We determine the best

parameters of the Okapi BM25 function that lead to the highest results with TREC 2001

and 2002 collections as well as our new larger AGW collection.

In Chapter 6, we explore approaches to identify foreign words in Arabic text. We test

using lexicons, Arabic patterns and n-grams to distinguish foreign words from Arabic ones.

We show that a combined n-grams and lexicon technique is highly effective for this purpose.

In Chapter 7, we test the effects of string- and phonetic-similarity techniques in finding

foreign word variants in Arabic text. We empirically show that normalising such words in

Arabic text increases precision and recall.

We conclude the thesis in Chapter 8 with a review of the contributions of our research,

and a discussion of future research directions.

Chapter 2

Background

The main objective of an Information Retrieval (IR) system is to retrieve documents most

relevant to the user’s query, and the best IR system best ranks the more relevant documents

above less relevant ones. Documents are usually ranked based on terms in the query and

terms in the retrieved documents. In many cases, queries do not contain enough terms to

disambiguate the user’s information need, so the IR system may return irrelevant documents.

Many of the techniques developed to improve IR systems retrieval effectiveness in other

languages can also be applied for Arabic Information Retrieval (AIR) systems; however,

techniques specifically tailored for Arabic are also required. In this chapter, we introduce the

Arabic language and explain its structure, and review techniques applied to improve both

IR systems in general and AIR systems in particular.

2.1 The Arabic Language

Arabic is the official language of 23 countries, and one of the official languages of the United

Nations. It is estimated that with approximately 422 million native speakers, Arabic is the

most widely spoken language after Chinese.1 Arabic is a Semitic language, and a descen-

dant of Proto-Semitic [Bishop, 1998]. The language record goes back to the fourth century

BC [Ostler, 2005]. It was developed in the Arabian peninsula and spread out in the seventh

century when Islam spread to Asia, Africa and Europe [Jiyad, 2005].

Classical Arabic “új��	̄” /fusQèa/ — is also formally called modern standard Arabic

(MSA) — is the formal language in the Arabic world for reading and writing, and is viewed

as the only true version of the language by all Arabs [DeYoung, 1999]. MSA is used to
1http://encarta.msn.com/encyclopedia 761570647 4/Language.html

11

CHAPTER 2. BACKGROUND 12

write all books, newspapers, magazines, and media text. However, MSA is not spoken in any

country; rather colloquial languages with different dialects are used in each country. Each

dialect has its own new terms such as those borrowed from other languages [Bishop, 1998].

2.1.1 Character sets

Arabic is written from right to left in a cursive, consonantal script that has 28 characters.

Arabic characters change shape based on their position within words. This extends the

Arabic alphabet to ninety different character representations [Tayli and Al-Salamah, 1990].

An Arabic letter might have four different shapes: isolated, initial, medial, and final. In

computer encoding systems, the different representations of a character are often mapped

to a single base code. for example, the letters “Ñ�”, “�Ó”, “�Ò�”, and “Ð” are four different

shapes of the same letter /mijm/. The computer user does not have to think about these

codes as they are generally represented by one code — although different shapes — “E3”

in the CP1256 windows coding and “U+0645” in the UTF8 coding.2 Table 2.1 shows the

Arabic alphabet along with their international phonetic association (IPA) symbols that we

use to represent the pronunciation of Arabic words [IPA, 1999]. Diacritics are used to clarify

the pronunciation of characters within an Arabic word; some can appear with any characters,

while others appear only with a limited subset. For example the diacritic hamza “Z” /P/ is

used by itself and is also used with the letters “ @”, “ð”, and “ø”. Three diacritics are used

to represent short vowels that can be used with every consonant character. They mark the

consonant to clarify its pronunciation. For example, the consonant “
	¬” /f/ with the diacritic

fatha “
�	¬”, is pronounced /fa/, with the diacritic damma “

�	¬”, is pronounced /fu/, and with

the diacritic kasra “
	¬�” is pronounced /fi/. Two identical diacritics when placed above or

below the last letter of an Arabic noun indicate the sound /n/; this is called tanween. For

example the word “
��é ���̄

�” 〈story〉 is pronounced /qisQat”un/, “
��é ���̄

�” is pronounced /qisQat”an/,

and “ �é�
���̄

�” is pronounced /qisQat”in/. The diacritic shadda as in “
�	¬” /ff/ is used to marks

the gemination (doubling) of a consonant. For example, in the word “ �X �P” (/rad”d”/〈returned〉),
the diacritic shadda indicates that the letter “X” is found twice in this word and should be

stressed. The diacritic sukoon is a small circle that is placed above the letter, as in “
�	¬”,

indicating a vowel-less consonant. It is used to close an Arabic syllable by marking the closing

consonant. This is usually used in unvocalised text to clarify ambiguity of pronouncing Arabic

words. For example the words “ �� �P �X” /d”arasa/ means 〈studied〉, but “� �P �X” /d”ars/ means 〈a
2http://www.microsoft.com/globaldev/reference/sbcs/1256.mspx

CHAPTER 2. BACKGROUND 13

I F M L IPA I F M L IPA I F M L IPA

Z – – – /P/ P P Q� Q� /r/
	¬ � 	̄ � 	®� 	� /f/

@ @ A� A� /aa/ 	P 	P 	Q� 	Q� /z/ �� ��̄ � �®� ��� /q/

H. �K. �J. � I. � /b/ � �� ��� �� /s/ ¼ �» �º� ½� /k/
�H ��K ��J� �I� /t”/ �� � �� � ��� ��� /S/ È �Ë �Ê� É� /l/
�H ��K ��J� �I� /T/ � �� ��� �� /sQ/ Ð �Ó �Ò� Ñ� /m/

h. �k. �j. � i. � /Z/ 	� � 	� � 	�� 	�� /d”Q/ 	à � 	K � 	J� 	á� /n/

i� �j� �j� i� /è/ �£ �¢� ¡� /t”Q/ è �ë �ê� é� /h/

p � 	k � 	j� q� /x/ 	 � 	£ � 	¢� 	¡� /D”Q/ ð ð ñ� ñ� /w/

X X Y� Y� /d”/ ¨ �« �ª� ©� /Q/ ø
 �K
 �J
� ù
 � /j/
	X 	X 	Y� 	Y� /D”/

	̈ � 	« � 	ª� 	©� /G/ ø – – ù� /aa/
�è – – �é� /t”/ – – – – – – – – –

Table 2.1: Different shapes of Arabic letters when they come isolated, “I”; as a first letter,

“F”; in the middle of the word, “M”; or as a last letter, “L”. The IPA column shows their

international phonetic representation. The first letter “Z” can come with other characters

such as “ @”, “ð” and “ø
 ”. The letter �è can also be pronounced as the letter è.

lesson〉. Without the diacritics, a reader might mistake the two forms.

In general, diacritics are not indicated; readers must rely on context to determine implicit

diacritics, and how the word should be pronounced. For example, some of the variants of the

word “I. �J»” are “ �I.
��J
�
»” (/kataba/〈he wrote〉), “I.

��J
�
»” (/kutub/〈books〉), or “ �I. �J�

�
»” (/kutiba/〈is

written〉).
The tatweel (also known as kashida), “�”, is a special character that is commonly used

in typeset Arabic text. This character is not an actual letter, as it is used only for cosmetic

purposes [Goweder and Roeck, 2001]. It can be inserted between any two concatenating

letters. For example, the word “ÈA�̄” (/qaala/〈said〉) can be written as “ÈA���̄”, “ÈA�����̄”, and

even “ÈA������������̄”. Notice that in this word the kashida can only come between the letters

“��̄” and “ A�”, as they are the only two letters that change shape when connected to each

other. Letters that do not change shape when connected to other letters are “ @”, ” “X”, “ 	X”,

“P”, “ 	P”, “ð”, and “ø”.

Unlike English, Arabic has no capital letters, and most proper nouns contain no ortho-

graphic signs to distinguish them from other words.

CHAPTER 2. BACKGROUND 14

2.1.2 Grammar

In this section we introduce concepts of Arabic grammar that are not found in English and

that may have an impact on information retrieval.

Arabic words are categorised into three categories: nouns, verbs and particles. A noun

is a word that has a meaning without any association with time. Nouns are either defi-

nite or indefinite. Definite nouns are proper nouns; nouns preceded by the definite article

“�Ë @” (/al/〈the〉); personal pronouns such as “A�	K
�
@” (/Panaa/〈I〉), and “

��I	K
�
@” (/Pant”a/〈you〉);

demonstrative pronouns such as “ @
�	Y �ë” (/haD”aa/〈this〉), and “ è�

	Y�
�ë” (/haD”ihi/〈this -feminine-

〉); relative pronouns such as “ø

	Y� Ë @” (/alD”ij/〈which -masculine-〉), and “ú

�æ�Ë @” (/alt”ij/〈which

-feminine-)〉); and the genitive construct, where one noun is determined by another, as

in “Õ�
�
Î �ª�ÜÏ @ �H. A��J»� ” (/kit”aabu lmuQllmi/〈the book of the teacher〉), where the noun “H. A��J»� ”

(/kit”aab/〈a book〉) is made definite by its relationship to the definite noun “�Õ
��
Îª�ÜÏ @”

(/PlmuQllimu/〈the teacher〉).
A verb is a word that indicates an action at a certain time. Verbs are either perfect or

imperfect (present or future tense). Perfect verbs denote completed events, while imperfect

verbs denote uncompleted actions. Verbs are inflected and morphologically marked according

to person, number, and voice (active and passive). Imperfect verbs are also inflected according

to mood (indicative, subjective, jussive, and imperative) [Yagoub, 1988].

Any word that is not a noun or a verb is categorised as a particle. Particles are words

that have no meaning by themselves, for example prepositions and conjunctions.

Arabic has two types of sentences: nominal, and verbal. A nominal sentence is a sentence

that starts with a noun, while a verbal sentence is a sentence that starts with a verb. In

both sentences there should be an agreement in number and gender between the verb and

the subject.

Arabic has two genders, usually referred to as masculine and feminine. The suffix marker

for the feminine gender is a “ �è”. The feminine form of the word is usually formed by adding

this suffixes to the masculine singular form. For example, “� �P �Y�Ó” (/mud”arris/〈a teacher〉)
is a masculine singular word, “ �é� �P �Y�Ó” (/mud”arrisah/〈a teacher〉) is the female form. Al-

though most feminine forms are formed the same way, there are exceptions where feminine

words do not actually end with the feminine suffix as in “�Ò ���Ë@” (/aSSams/〈the sun〉) and

“Z @Qj ��Ë@” (/alsQaèraP/〈the desert〉).
Arabic has singular, dual, and plural forms, each with its own pronouns and suffixes.

The dual form is usually formed by adding the suffix “ 	àA�” to the singular form. For exam-

CHAPTER 2. BACKGROUND 15

ple, “� �P �Y�Ó” (/mud”arris/〈a teacher〉) is a singular form from which the dual form “ 	àA� �P �Y�Ó”
(/mud”arrisaan/〈two teachers〉) is generated by adding the dual suffix. There are two types of

plurals in Arabic: regular plurals — known as sound plurals — and irregular or “broken” plu-

rals. The regular plural is formed by adding a specific suffix to the singular form of the noun.

The masculine sound plural is formed by adding the suffix “ 	àñ�” to the singular form, while

the feminine sound plural is formed by replacing the singular feminine suffix “ �é�” with “ �HA�”.

For example, “ 	àñ� �P �Y�Ó” (/mud”arriswn/〈teachers〉), and “ �HA� �P �Y�Ó” (/mud”arrisaat”/〈teachers

-feminine-〉) are the masculine sound plural and the feminine sound plurals for the singu-

lar “� �P �Y�Ó” (/mud”arris/〈a teacher〉) respectively. Irregular plural are formed using patterns

rather than the regular suffixes. For example, the word “ÐC«@” (/PQlaam/〈flags〉) is the plu-

ral form of the word “Õ
�
Î �«” (/Qalam/〈a flag〉), the word “I.

��J
�
»” (/kut”ub/〈books〉) is the plural

form of the word “H. A��J»� ” (/kit”aab/〈a book〉), and the word “É �� �P” (/rusul/〈messengers〉) is

the plural form of the word “Èñ� �P” (/raswl/〈a messenger〉).
There are different pronouns to address each gender and number for the first, the second

and the third person. We discuss pronouns further in the following section.

2.1.3 Morphology

In this section we introduce the morphology of the Arabic language, and lay the groundwork

for our discussion of techniques to improve the effectiveness of AIR systems.

Arabic has a rich morphology that cannot be fully described in one chapter. We only

describe issues related to the word structure that we can apply in removing affixes and

returning words to their root or stem. For a detailed treatment of Arabic grammar, we

recommend the works of Yagoub [1988] and Wright [1874].

As in other Semitic languages, Arabic words are formed by applying vowel patterns to

roots that have three or four — and in rare cases five — letters. Roots are the basic form of

Arabic words. They cannot be derived from any Arabic words and usually describe the basic

lexical meaning of the word. There are 6,350 triliteral roots and 2,500 quadrilateral ones listed

in “H. QªË@ 	àA�Ë” /lisaanu lÝrab/, one of the most respected Arabic dictionaries [Moukdad,

2006], but Beesley [1996] reported that there are around 5,000 roots used in modern standard

Arabic.

Stems are roots combined with derivational morphemes — generally using patterns —

that attach to a word at the beginning (prefix), the middle (infix), or the end (suffix).

Stems are the basic form of a surface word that can be inflected using other morphemes.

CHAPTER 2. BACKGROUND 16

For example, the word “�ð �P �X” (/d”uruws/〈lessons〉) is a stem comprises the root“ �� �P �X”
(/d”arasa/〈studied〉) and the infix “ð”.

Surface forms of Arabic words comprise two or more morphemes: a root with a seman-

tic meaning, and a pattern with syntactic information [Aljlayl, 2002]. There are around

400 distinct patterns in Arabic [Beesley, 1996]. The most well-known pattern is “É��ª�� 	̄”
(/faÝla/〈he did〉), which is often used to generically represent three-letter root words. For

example: the root “I. ���J��»” (/kat”aba/〈wrote〉) can be represented by the pattern “É��ª�� 	̄”
by mapping “�»” to “� 	̄”, “��J�” to “�ª�”, and “I. �” to “É�”. Characters are added at the

beginning, the middle, or end of the root, but the base characters that match the pattern

remain unchanged. For instance, “ÈA��ª�� 	̄”, “É��«A�� 	̄”, and “É��ª�� 	®��K
” are three patterns

to respectively form the singular noun, the active participle, and the present tense verb

out of the pattern “É��ª�� 	̄”. By fixing the core letters and adding additional letters to

each pattern, we can generate “H. A���J��»” (/kit”ab/〈a book〉), “I. ���KA��»” (/kat”ib/〈writer〉),
“I. ���J��º��K
” “I.

��JºK
” (/jkt”ub/〈he writes〉) respectively. Note that all derived forms are re-

lated to the concept of writing contained in the root word. Similarly, many words can be

formed from the root “ �©�	J ��” (/sQanaQa/〈he made〉) that relate to the concept of making;

for example, “ é«A 	J�� ” (/sQinaQh/〈Manufacturing〉) , “©	K� A�” (/sQaniQ/〈a handcraft man〉), and

“©�	J��
” (/jsQnaQ/〈he makes〉).
A lemma is similar to the root. It represents a set of surface forms that share the same

meaning. However, the root is broader in that it might also represent words with different

meaning. For example, the word “Qm.
�	̄
” (/faZr/〈Dawn〉) and “PAj. 	®� 	K @” (/infiZaar/〈explosion〉)

share the same root “Qm.
	̄
” /fZr/ [Kamir et al., 2002]. In fact, in the absence of diacritics, It is

hard to differentiate between the lemma and the root in Arabic.

Nouns are inflected and morphologically marked according to gender (masculine or fem-

inine); case (nominative, genitive, or accusative); number (singular, dual, or plural); and

determination (definite or indefinite) [Yagoub, 1988]. An example of inflecting the noun

“Õ
��
Î �ª�Ó” (/muQallim/〈a teacher〉) is shown in Table 2.2. Foreign words are nouns that do not

follow these inflection rules.

Arabic words accept prefixes and suffixes. In contrast to English, most connectors, con-

junctions, prepositions, pronouns, and possessive pronouns are attached directly to the Arabic

word, forming more complicated derivations. Infixes are added to nouns by applying pat-

terns, often to form broken plurals. A combination of these affixes results in many different

forms for the same word. For instance, Chen and Gey [2002] presented 86 different forms

for the word “É 	®£� ” (/t”Qifl/〈a child〉), and more can be formed. Attia [2005] generated 1,800

CHAPTER 2. BACKGROUND 17

Masculine Feminine

Nominative Genitive Accusative Nominative Genitive Accusative

Singular �ÕÎªÓ Õ
�
ÎªÓ A �ÒÊªÓ ��éÒÊªÓ �é�ÒÊªÓ ��éÒÊªÓ

Dual 	àAÒÊªÓ 	á�
 �ÒÊªÓ 	á�
 �ÒÊªÓ 	àA�JÒÊªÓ 	á�
�JÒÊªÓ 	á�
�JÒÊªÓ
Plural 	àñÒÊªÓ 	á�
Ò� ÊªÓ 	á�
Ò� ÊªÓ ��HAÒÊªÓ �H� AÒÊªÓ �H� AÒÊªÓ

Table 2.2: Inflected forms of the noun “Õ
��
Î �ª�Ó”: all words accept the definite article for determi-

nation, other prefixes such as prepositions and conjunctions, and suffixes such as possessive

pronouns. In the absence of diacritics, only 9 unique forms remain.

sound versions of the verb “ �Q
�
º ���” (/Sakara/〈to thank〉) and 519 sound versions of the noun

“ÕÎªÓ”(/muQallim/〈a teacher〉).
Particles can also accept affixes. They form a clitic when they are expanded with af-

fixes [Attia, 2007]. For example, “ éË” 〈his〉 is a clitic composed of the preposition “�Ë” and the

personal pronoun “ é�”. Some particles can appear on their own, while others — known as

inseparable particles — can only be used attached to other words. Prepositions are an impor-

tant type of particle; there are twenty prepositions in Arabic, five of which are inseparable.

These are “ð”, “�»”, “�Ë”, “�K.”, and “��K”.

2.1.4 Arabic Affixes

As presented in the previous section, all Arabic words are generated from root words. This

is usually done by adding vowels to the root words to form the stem. The stem is inflected

by adding prefixes, infixes and suffixes. As Arabic is written from right to left, prefixes are

added to words from the right side and suffixes are added at the left side. For example, the

word “ 	àAJ. Ë� A¢Ë@ð” (/walt”Qaalibaan/〈and the two students〉) has the prefix “�Ë @ð” on the right

and the suffix “ 	àA�” on the left. Generally, ten letters are used in Arabic affixes: “�”, “

@”,

“È”, “ �H”, “ð”, “Ð”, “ 	à”, “ø
 ”, and “ è”; these are grouped in the acronym “AîD
	KñÒ�JËA�”. Some

prefixes and suffixes may be used in combination with both nouns or suffixes, while others

are used exclusively with nouns or with verbs. We follow with a discussion of these three

types of affixes.

CHAPTER 2. BACKGROUND 18

Common Affixes:

Common prefixes and suffixes can attach to nouns and verbs. In some cases, they can also

attach to some particles. We present these affixes and present exceptions where appropriate.

Common Prefixes: Conjunctions are the only type of common prefix in Arabic, and

can be added to any word. The most frequent conjunctions are “ð” 〈waw〉 and “� 	̄” 〈faa〉.
These two conjunctions attach to any word directly. There are many words that contain

these characters in their core (not as affixes); for example the word “ú

	̄
�

�ð” (/wafij/〈sincere〉)
starts with “ð” as a core letter. In systems where surface words are usually extracted, this

creates ambiguity. If the first letter is removed the word becomes “ú

	̄”(/fij/〈in〉), which is a

preposition. Such ambiguity occurs frequently in Arabic. The letter lam “�Ë” can be used for

different types of particles. In addition to its purpose as a preposition, which makes it a noun

prefix, it can also be used with verbs as the “lam of command”. Here, it is usually prefixed

to the third person to give it an imperative sense, for example A�êÊ ��®��JË� (/lit”aqulhaa/〈say it〉).
It is also used to indicate the purpose for which an action is performed [Wright, 1874]. As

a particle, it can also be combined with pronouns to form a clitic. This prefix is even more

frequent than the conjunction “� 	̄” [Chen and Gey, 2002]. An AIR system must handle each

type of particle — and letters that falsely appear to be particles — appropriately.

Common Suffixes: First-, second-, and third-person pronouns are common suffixes and

can be attached to nouns, verbs, and some particles. Table 2.3 shows how these suffixes are

used with the word “ÕÎ�̄
”. Third-person pronouns are more frequent than the first and the

second personal pronouns in written Arabic text, as the last two are mostly used in speech.

This is clearly shown by Chen and Gey [2002] in the most frequent one, two, and three

suffixes in the TREC 2001 corpus.

Another suffix common to both nouns and verbs is the suffix “ 	àð”, which is added to the

masculine singular form to indicate the nominative masculine sound plural. For example,

“ 	àñÒÊ� �ª�Ó” (/muQalimwn/〈teachers〉) is the sound plural of the singular “ÕÎ� �ª�Ó” (/muQalim/〈a
teacher〉). Masculine sound plurals are similarly formed by adding the suffix “ 	á�
�” (Table 2.2).

This suffix also attaches to present tense verbs to indicate the plurality of the sentence

subject. For example “©�Ò���
” (/jasmaQ/〈listens〉) turns to “ 	àñª �Ò���
” (/jasmaQwn/〈they

-masculine- listen〉). If the present tense verb is used in the jussive mood, this prefix is

replaced with “ @ñ�”, which also used when the verb is in the imperative or the past tense.

CHAPTER 2. BACKGROUND 19

1st Person 2nd Person 3rd Person

Word Meaning Word Meaning Word Meaning

Singular
Mascu. ù
 � �ÒÊ�̄ 〈my pen〉

�
½� �ÒÊ�̄ 〈your pen〉 é� �ÒÊ�̄ 〈his pen〉

Femin. ù
 � �ÒÊ�̄ 〈my pen〉 ½� � �ÒÊ�̄ 〈your pen〉 Aê� �ÒÊ�̄ 〈her pen〉

Dual
Mascu. A 	J� �ÒÊ�̄ 〈our pen〉 AÒº� �ÒÊ�̄ 〈your pen〉 AÒê� �ÒÊ�̄ 〈their pen〉
Femin. A 	J� �ÒÊ�̄ 〈our pen〉 AÒº� �ÒÊ�̄ 〈your pen〉 AÒê� �ÒÊ�̄ 〈their pen〉

Plural
Mascu. A 	J� �ÒÊ�̄ 〈our pen〉 Õº� �ÒÊ�̄ 〈your pen〉 Ñê� �ÒÊ�̄ 〈their pen〉
Femin. A 	J� �ÒÊ�̄ 〈our pen〉 	áº� �ÒÊ�̄ 〈your pen〉 	áê� �ÒÊ�̄ 〈their pen〉

Table 2.3: Common pronoun suffixes can appear with nouns or verbs; in this example, we

show the word “�ÒÊ�̄” 〈pen〉. This word can be replaced by other nouns and verbs. When using

verbs, the singular suffix “ù
 �” under the 1st person should be changed to “ú

	æ�” 〈me - object〉,

and all English possessive adjectives should be replaced with object pronouns.

Noun Affixes:

Nouns can have prefixes, infixes and suffixes. Prefixes and suffixes attach to a noun without

changing its structure, while infixes are added irregularly using construction patterns.

Noun Prefixes: The most common noun prefix is the definite article “�Ë @” /al/. This prefix

— like the English “the” — comes before nouns only. It can be preceded by conjunctions and

prepositions. The frequency of this prefix in Arabic text is very high. Chen and Gey [2002]

reported this prefix to be the most frequent initial two- or three-character sequence in the

TREC 2001 collection. When this prefix is preceded by the preposition “�Ë”, they combine

to form the prefix “�Ê�Ë” /ll/. For example, the noun “ �I�
�J. Ë @” (/albajt”/〈the house〉) becomes

“ �I�
�J. Ê�Ë” (/llbajt”/〈to the house〉).
Prepositions are another category of prefixes that are specific to nouns only. Separable

or isolated prepositions are words written independently, while inseparable ones such as “ð”,

“�Ë”, “�»”, “�K.”, and “��K” are attached directly to Arabic nouns. As discussed previously, the

particle “�Ë” can appear with verbs but not as a preposition. Similarly, the particle “ð” can be

a conjunction that precedes any word. The preposition “��K” is rarely used in modern Arabic,

but appears very commonly as a verb prefix. The remaining inseparable prepositions “�K.”
and “�»” can only be used with nouns. Based on the TREC 2001 corpus statistics, the most

frequent particle in Arabic is “ð”, followed by “�K.”, “�Ë”, and ‘�»” [Chen and Gey, 2002].

CHAPTER 2. BACKGROUND 20

Noun Infixes: In addition to the sound masculine and sound feminine plural forms, the

broken plural form of Arabic nouns is formed irregularly from singular nouns using patterns.

There are no fixed prefixes, or suffixes. Instead, most additional letters are infixes, usually

vowels. In some cases, the singular form does not change, and only the diacritics change,

causing the plural form to be pronounced differently. In other cases, some letters are removed

from the singular form to obtain the plural. Some examples of broken plurals are: “ÈA �g. P�”
(/riZaal/〈men〉) from the singular “É �g. �P” (/raZul/〈a man〉), “ÐC

� �̄
@” (/Pqlaam/〈pens〉) from

the singular “Õ
�
Î
��̄
” (/qalam/〈a pen〉), and “

	¬�Q �	«” (/Guraf/〈rooms〉) from the singular form

“ �é�	̄Q �	«” (/Gurfat”/〈a room〉). Broken plurals are generated using patterns, and it is generally

possible to return the plural to the singular form by reversing the process. However, there

is some ambiguity associated with this process, since the clarifying diacritics are generally

absent in Arabic text. Broken plurals constitute about 10% of all words in large Arabic

corpora [Goweder et al., 2004].

Noun Suffixes: The dual suffix “ 	àA�” comes only with nouns. This suffix is added to

the singular form of the noun to form the dual form. For example, the word “I. Ë�A �¢Ë@”
(/alt”Qaalib/〈the student〉) is in the singular form, while the word “ 	àA�J. Ë� A �¢Ë@” (/alt”Qaalibaan/〈the

two students〉) is the dual form. When changing the feminine singular form to the dual form,

the last letter, used to indicate feminity “ �é�”, is usually changed to “��J�” before adding the

suffix “ 	àA�”. For example, the word “ �é�J. Ë� A �¢Ë@” (/alt”Qaalibat”/〈the female student〉) is in the

singular form, while the word “ 	àA��J�J. Ë� A �¢Ë@” (/alt”Qaalibat”aan/〈the two female students〉) is in the

dual form. This suffix is usually replaced by the suffix “ 	á�
�” if the noun comes in the genitive

or the accusative mood.

The feminine suffixes “ �é�” and “ �HA�” are used to represent the feminine singular and

the plural respectively. As discussed in the previous paragraph, the feminine sound plu-

ral is formed by changing the suffix “ �é�” to “ �HA�”. For example, the word “ �HA�J. Ë� A �¢Ë@”
(/alt”Qaalibaat”/〈the female students〉) is the plural form of the word “ �éJ. Ë A¢Ë@”.

The possessive pronoun “ù
 �”, can also be an attributive pronoun which attaches only

to nouns. For example, the word “ú
G.�
�Q �«” (/Qarabij/〈Arabic〉) is an adjective from the word

“H. �Q �«” (/Qarab/〈Arab〉), and attributes the subject being described, such as a person or

language, to the word “Arab”.

CHAPTER 2. BACKGROUND 21

Verb Affixes

Verbs can have both prefixes and suffixes. Most suffixes such as pronouns are common

between verbs and nouns, which we have presented in the common affixes (Section 2.1.4).

However, there are some affixes specific to verbs.

Verb Prefixes: These are prefixes that can only appear before verbs, and usually indicate

that the word is a present-tense verb. The most common of these prefixes are represented in

the acronym “ �I�
 	K @”. The prefixes “ @”, and “� 	K” are used to refer to the first-person singular

and plural forms respectively, as in “
�

É
�
¿

�
@” (/Pakulu/〈I eat〉), and “

�
É

�
¿

�
A 	K” (/nPakulu/〈we eat〉);

while the prefix “�K
” is used to refer to the masculine third person as in “ �H. �Qå����
” (/jaSrabu/〈he

drinks〉); and the prefix “��K” is used to refer to the feminine third person as in “ �H. �Qå�����”
(/taSrabu/〈she drinks〉). To indicate future tense, the prefix “��” is added before these

prefixes. For example “ �H. �Qå���J
 ��” (/sajaSrabu/〈he will drink〉). These prefixes are usually

added to the past tense verbs to form the present tense verbs without any changes in the

original form. However, in some cases, where the past tense of the verb has the letter “ @”,

“ð”, or “ø
 ” (called weak letters), the structure of the original verb changes. For example,

the present tense verb “H. Qå���
” is a result of combining the prefix “�K
” with the past tense

verb “H. Qå��” 〈drank〉, but the present tense verb “
�

Èñ ��®�K
” (/jaquwlu/〈he says〉) is a result of

combining the prefix “�K
” with the past tense verb “
�

ÈA��̄” (/qaala/〈he said〉). Note that the

middle letter “ A�” is changed to “ñ�” in the present tense form after adding the prefix “�K
”.

Verb Suffixes: Some suffixes are used only with verbs, and never with nouns or particles;

one of these is “ �I�”, which is appended to a past-tense verb to refer to the subject (actor)

that made the action. This could refer to the first-person as in the word “
��IÊ

�
¿

�
@” (/Pakalt”u/〈I

ate〉), to the second-person as in “
��IÊ

�
¿

�
@” (/Pakalt”a/〈you ate〉), or the third-person feminine

as in “
��IÊ

�
¿

�
@” (/Pakalt”/〈she ate〉). The only difference between the last three words is the

diacritic over this prefix. In the absence of diacritics, the three look exactly the same. This

suffix can also be followed by a third person pronoun as an object, to form a complete

sentence. For example, “Ñî ��DÊ
�
¿

�
@” (/Pakalt”uhum/〈I ate them〉), “Ñî ��DÊ

�
¿

�
@” (/Pakalt”ahum/〈you ate

them〉), “Ñî ��DÊ
�
¿

�
@” (/Pakalt”hum/〈she ate them〉). More complex forms can be formed especially

when the “ �H” suffix refers to the second person.

Another suffix that appears only with verbs is the second-person feminine pronoun “ø
 ”,

CHAPTER 2. BACKGROUND 22

as in the word “ú
Î�
�
¿

A��K” (/t”aPkulij/〈you are eating -feminine-〉); object suffixes can further be

added.

The suffix “ @ð” is used to refer to the masculine plural. This can come with the imperative,

past tense, or present tense verbs. It refers to the second-person when it comes after an

imperative verb, while it refers to the third-person when it comes after the present or past

tense verbs. In the present tense, this suffix replaces the sound plural suffix “ 	àñ�” if the

mood of the verb changes to jussive.

2.1.5 Foreign Words in Arabic Text

Words are translated between languages, and many words that appear in one language are

acquired by another. Translated words are usually modelled to conform to the conventions of

the target language. However, some words such as proper nouns and technical terms are not

easily or usefully translated, and are instead transliterated into the characters of the target

language. To do so, the pronunciation of the original word is converted into the phonemes of

the target language through transliteration. However, phonetics can differ across languages

and not all the phonemes of the source language may exist in the target language [Alghamdi,

2005], so some approximation is often necessary. Transliteration often results in multiple

spellings for the same word. This is an issue even across languages that use substantially

the same character set; simple examples would be “colour” and “color” across British and

American usage, and “ambience” and “ambiance” across French and English. A change

in character sets compounds the problem [Alghamdi, 2005; Halpern, 2007; Kashani et al.,

2007; Stalls and Knight, 1998]. For instance, Arbabi et al. [1994] reported that the name

“ 	àAÒJ

�
Ê ��” (/sulajman/〈Sulayman〉), which has only one form in Arabic, is written in as many

as 40 different forms in English, among them are “Sulyman”, “Soliman”, and “Sullaiman”.

Words translated into Arabic — sometimes referred to as Arabised words [Aljlayl and

Frieder, 2002] — are foreign words that are modified or remodelled to conform to Arabic

word paradigms, and are well assimilated into the language. The assimilation process includes

changes in the structure of the borrowed word, such as segmental and vowel changes, addition

or deletion of syllables, and modification of stress patterns [Al-Qinal, 2002]. For example,

the words “�ðQ�
 	̄” 〈virus〉, “ 	J
 ��P@” 〈archive〉, and “ñK
X@P” 〈radio〉 are originated from

other languages, but have a single version in Arabic. Where equivalent native terms are not

available early enough for widespread adoption, foreign terms are used directly with their

original pronunciation represented using Arabic letters. These do not appear in standard

CHAPTER 2. BACKGROUND 23

���� 	®�ÊÓ /mlsftS/ no diacritics; pronunciation unclear
���� 	®� ��

�
ÊÓ� /milusufitS/ diacritics clarify the correct pronunciation

���� 	̄ñ�ñÊJ
Ó /mijluwsuwfitS/ long vowels clarify the correct pronunciation

Table 2.4: Diacritics or long vowels used to disambiguate pronunciation for “Milosevic”.

Arabic lexicons, and are considered to be Out-Of-Vocabulary (OOV) words.

It should be made clear that not all OOV words are foreign words, nor are all foreign

words OOV words. There are many proper nouns that originate from Arabic and follow the

Arabic word structure but are not found in Arabic dictionaries. On the other hand, some

foreign words have been adopted and are included in Arabic dictionaries. Our main concern

in this thesis is foreign words that are characterised by different forms and have no clear

standard in writing.

Faced with the need to use new foreign terms, native speakers often cannot wait for

formal equivalents to be defined. This is particularly true for news agencies, which encounter

new foreign nouns and technical terms daily. This urgency leads to more transliteration than

translation, with the associated problem of multiple spellings. In Arabic, short vowels are

only indicated using diacritics, but these are rarely used in general text. Context does not

help in predicting diacritics for foreign words such as proper nouns or technical terms, and

consequently long vowels are often used to make the pronunciation explicit in the spelling of

the word without relying on diacritics. This, too, is subject to variation; some transliterators

add a long vowel after each consonant in the word, while others add just enough long vowels

to clarify word segments with ambiguous pronunciation. Table 2.4 shows how diacritics or

long vowels may be used to clarify and specify the pronunciation of the word “Milosevic”.

The absence of diacritics in typical written text also creates disambiguation problems in

other languages; for example, in Persian, the word “ é 	K” /nh/ can be either é�	K (/nuh/〈the

number nine〉) or “ é�	K” (/nah/〈no〉).
The absence of certain sounds in Arabic, and varying pronunciations across dialects,

also contributes to the multiplicity of spellings. Alghamdi [2005] reported that there are

21 phonemes in Arabic that have no equivalent phonemes in English, and the American

speech-language-hearing association reported that English phonemes that are not found in

Arabic include /p/, /r/, /Z/, /g/, and /N/.3 This causes multiple transliterations for the
3http://www.asha.org/nr/rdonlyres/8ac103f3-f7eb-44bd-adb2-afa8aa389327/0/arabicphonemicinventory.

pdf accessed on 20th April 2008.

CHAPTER 2. BACKGROUND 24

same English phoneme. For example, the phoneme /g/ has no standard equivalent in Ara-

bic; it is at times mapped to the Arabic letters “� 	«” /G/, “��̄” /q/, or “�k. ” /Z/ [Ab-

duljaleel and Larkey, 2003]; we have also observed it mapped to the letter “�»” /k/:

“
	¬ñ ����AK. Pñ 	«”, “

	¬ñ ����AK. Pñ�̄”, “
	¬ñ ����AK. Pñk. ”, and “

	¬ñ ����AK. Pñ»” are among the transliterations

of the name “Gorbachev” that we have found on the Web.

Similarly, the interpretation of character combinations varies between transliterators.

Moreover, typographical and phonetic errors during transliteration may add even more vari-

ants [Borgman and Siegfried, 1992]. The education and the experience of the actual translit-

erator also contributes to the transliteration result [Arbabi et al., 1994].

2.1.6 Summary

We have introduced the Arabic language and explained its morphology. We have presented

the characters used in Arabic and their different representations in Arabic text. We have

also explained the different categories of Arabic grammar, and the possible affixes that an

Arabic word may take. We classified affixes into three categories: common, noun and verb

affixes. Our intention is to return the different forms of an Arabic word to its stem. We

will describe how we approach this problem in Chapter 4. We have defined foreign words

in Arabic and explained that their structure does not follow any standard, which results in

different versions of the same word appearing in Arabic text. We deal with this category of

text later in this thesis by presenting algorithms to identify them in Arabic text in Chapter 6,

and presenting algorithms to conflate different variants of the same foreign word to one form

in Chapter 7. We continue with a review of text retrieval systems in general, and Arabic

text retrieval systems in particular.

2.2 Information Retrieval

Information retrieval (IR) is a way to organise, represent and store information items so that

the user can access them easily [Baeza-Yates and Ribeiro-Neto, 1999]. Web search engines are

a widely used form of information retrieval systems; they collect information by crawling web

pages and parsing and indexing their contents. Users typically convey their information need

to the search engine in the form of one or more query keywords. The search engine matches

these query terms with terms from documents in the collection, and returns documents

from the collection in decreasing order of estimated relevance to the query. Information

retrieval systems are distinct from data retrieval systems [Zobel et al., 1998; Baeza-Yates

CHAPTER 2. BACKGROUND 25

Doc. ID Document Text

1 The word “ �é �¢�®� Ë @” means “the female cat”

2 To get rid of the rat, introduce the cat.

3 The sentence “¡��̄P
�
@ ��¡�̄” means “a dotted male cat”.

4 We feed the cats to the rats, the rats to the cats, and get

the skins for free.

Table 2.5: An example document collection. We use this document collection throughout this

chapter to explain different aspects of IR.

and Ribeiro-Neto, 1999]; the latter are used to find data that satisfies clear criteria, while the

former estimate likelihood that data is relevant to the query, and rank the data accordingly.

In this thesis, we focus on developing and improving IR techniques for retrieval from

collections of Arabic text, although many of the methods we describe are also suitable for

data retrieval applications.

In the following subsections, we describe some of the fundamental techniques used by IR

systems: parsing, where raw documents are split into proper terms for indexing; indexing,

where terms are indexed to facilitate searching; and finally, searching, where user queries

are matched against indexed terms and results are ranked. Table 2.5 shows a small sample

collection that we use in the next sections to explain internal components of IR systems.

2.2.1 Parsing

Parsing in IR systems involves extracting terms from documents by identifying tokens based

on boundary rules, and removing punctuation. During this process many other operations

can be applied to the extracted tokens; common operations include spelling correction, nor-

malisation, stopping and stemming.

Term Extraction

Text documents are composed of tokens, separated by spaces or punctuation marks. An

IR system must identify and extract these tokens; some tokens may be valid words, while

others may be markup, such as HTML tags. In this thesis, we use “word”, “term”, “token”

interchangeably; these are not necessarily valid words in a particular natural language.

CHAPTER 2. BACKGROUND 26

Doc. ID Term Extraction Normalisation

1 The word �é �¢�®� Ë @ means the female cat the word é¢�®Ë@ means the female cat

2 to get rid of the rat introduce the

cat

to get rid of the rat introduce the

cat

3 The sentence ¡��̄P

@ �¡�̄ means a dot-

ted male cat

the sentence ¡�̄P@ �¡�̄ means a dotted

male cat

4 We feed the cats to the rats the rats

to the cats and get the skins for free

we feed the cats to the rats the rats

to the cats and get the skins for free

Table 2.6: Effects of term extraction and normalisation on the sample collection shown in

Table 2.5. Terms are extracted based on word boundaries — spaces and punctuation. Nor-

malisation — shown in the third column — is performed by changing capital case English

letters to lower case, removing diacritics, and replacing the letters “ �é�” with “ é�” and “

@”

with “ @”.

Grune and Jacobs [1994] define parsing as “the process of structuring a linear represen-

tation in accordance with a given grammar”. The two main parts of this definition are the

“linear structure” and the “grammar”. To the linguist, the linear structure is the sentence

and the grammar can be a set of rules that govern the sentence structure. However, in the IR

context, the linear structure could be the document and the grammar could be the rules to

split up the text into its component parts. These rules differ between parsers and collections.

Most parsers remove text components that do not contribute to the document content.

Such components could be mark-up tags and punctuation. Word and sentence boundaries

are determined from punctuation. However, punctuation is language-dependent; for example,

question sentences are ended with the symbol “?” in English, but with the symbol “?” in

Arabic. Some languages such as Chinese, Japanese, and Korean (CJK) have no clear word

boundaries. These languages are parsed differently using morphemes and n-grams [Vines

and Zobel, 1999].

In Arabic, we parse the text based on the sequence of Arabic letters. Spaces and punc-

tuation are used as word boundaries and are usually removed during parsing, as are other

characters such as diacritics and the tatweel. The second column of Table 2.6 shows an

example of extracting terms from the original sample collection presented in Table 2.5.

After token extraction, many operations might be carried out by a parser; these are

explained in the following subsections.

CHAPTER 2. BACKGROUND 27

Normalisation

Words can be written in different forms; in English, a word may appear capitalised at the

start of a sentence, and in lower case elsewhere. For such related words to be associated for

retrieval, they must be normalised. In our example, case folding [Witten et al., 1999] can be

used to represent the words in a uniform manner.

In Arabic, characters have different shapes, and additional variation is added by differing

writing conventions. For example, when the letter “ø
 ” appears at the end of a word, it is

usually replaced by the identically-pronounced letter “ø”. Another example is the letter “ @”,

which can be written as “ @”, “

@”, “ @”, or “

�
@”; many writers write a bare alef, while others

write it with the proper diacritic. This causes the same word to look different, and critically,

to have a different set of character encodings. For example, “H. Qå��

@” (/PSrb/〈I drink〉), and

“H. Qå�� @” (/PSrb/〈I drink〉) are the same word, but with a different spelling. Yet another

example is the letter “ �é�”, which is sometimes written as “ é�”. Diacritics are used sparingly

in general Arabic text, and so we remove them to unify the vocalised and unvocalised forms.

The third column of Table 2.6 shows the effects of normalisation on our sample collection.

Other variations are caused by the lack of writing standards and by differences in dialects;

a notable instance of this occurs in the way foreign words are written. We explore this issue

in depth in Chapter 7.

Stopping

Words that appear very frequently in a document collection are considered to add little

document-specific information. To avoid the noise that is likely to arise from such generic

terms, as well as to reduce the size of the index, they are often omitted during the indexing

stage [Baeza-Yates and Ribeiro-Neto, 1999]. For example, the articles “a”, “an” and “the” in

English contribute no information specific to the document topic, as they appear in almost

every document in the collection. Removing such words would decrease the index size and

improve the search results by leaving words that are more specific to each document. Sim-

ilarly, the word “ú

	̄
�” (/fij/〈in〉) in Arabic occurs frequently in every document. Generally,

particles, pronouns, and function words contribute little information to an Arabic document.

Stopword lists drawn up for Arabic [AlShehri, 2002; Khoja and Garside, 1999] contain

well-known pronouns, prepositions and function words. However, these lists differ substan-

tially, and no single widely accepted list exists. Critically, most lists include a single version

of each word, despite the fact that Arabic words have different forms. For example, the word

CHAPTER 2. BACKGROUND 28

Doc. ID Stopping Stemming

1 word é¢�®Ë@ means female cat word ¡�̄ mean female cat

2 get rid rat introduce cat get rid rat introduce cat

3 sentence ¡�̄P@ ¡�̄ means dotted male

cat

sentence ¡�̄P@ ¡�̄ mean dotted male

cat

4 feed cats rats rats cats get skins free feed cat rat rat cat get skin free

Table 2.7: Effects of stopping and stemming on the sample collection shown in Table 2.5.

The English words “the”, “to”, “a”, “we”, “of”, “and”, “for” are considered stopwords.

Stemming is done by removing the plural suffix “s” from English words and the prefix “�Ë @”
and the suffix “ é�” from Arabic words.

“ú

	̄
�” (/fij/〈in〉) is a stopword in almost all Arabic information systems, even though this

word occurs in many other forms such as “ é� J
 	̄
�” (/fijhi/〈in it -masculine-〉), “ A�îD
	̄�” (/fijhaa/〈in

it -feminine-〉), “ A �Ò�îD

	̄
�” (/fijhumaa/〈in them -dual-〉), and so on.

El-Khair [2003] studied this approach and proposed three lists; a general stopword list

containing 1,377 words, a corpus-based stoplist with 235 words, and a combination of the

previous two with 1,529 words. Chen and Gey [2002] describe a stoplist created by translat-

ing 541,681 unique Arabic words to English and then capturing all words that translate to

English stopwords. Their list had 3,447 words. Despite this disagreement on the appropriate

stopword list size and content, there is an agreement that removing them from Arabic text

improves retrieval precision.

Stopwords have to be chosen carefully as they affect retrieval. In English for example,

some queries might contain only stopwords, for instance, “to be or not to be”. In Arabic,

some function words can be spelt identically to proper nouns. The absence of diacritics makes

it difficult to distinguish between such words unless we consider the context. For example,

the word “úÎ«” could be (/Qalaa/〈above〉), and it could be the proper noun (/Qalij/〈Ali〉), the

word “ú 	æÓ” could be (/mnni/〈from me〉) and it could be the proper noun (/muna/〈Muna〉),
and the word “ é� J
 	̄

�” (/fijhi/〈in him〉) could be a preposition attached to the third-person

pronoun “ é�”, and it could be 〈his mouth〉, although they are identical in pronunciation and

writing.

In Chapter 4, we test how removing automatically expanded versions of stopwords can

affect retrieval effectiveness for Arabic text collections.

CHAPTER 2. BACKGROUND 29

Stemming

Stemming algorithms are used in information retrieval to reduce different variants of the same

word with different endings to a common stem [Paice, 1996]. Stemmers can help information

retrieval systems by unifying vocabulary, reducing term variants, reducing storage space, and

increasing the likelihood of matching documents [Salton, 1989].

Table lookup and affix removal are two different types of stemming [Frakes and Baeza-

Yates, 1992]. In the table lookup approach, words and their stems are stored in a table; each

word with an entry in the table is replaced by its corresponding stem. This approach is fast,

as it does not require word analysis, but it requires space and some overhead in preparing

the table. In contrast, affix removal uses morphological rules to strip off suffixes. Some

English stemming algorithms such as the S stemmer, strip off only the suffix “s” to conflate

plural and singular forms, and others, such as the one described by Lovins [1986], removes

the longest possible suffix, leaving at least two or more characters in the stem. Rather than

remove only the longest possible suffix or the plural “s”, Porter [1980] identifies and removes

multiple suffixes. Table 2.7 shows the effects of both stopping and stemming on our sample

collections.

The effectiveness of stemming on English information retrieval has been evaluated in

several studies. In an IR experiment, Harman [1991] evaluated the S, Porter and Lovins

stemmers using three text collections: the Cranfield collection of 225 queries and 1,400 doc-

uments, the Medlars collection of 30 queries and 1,033 documents, and the CACM collection

of 64 queries and 3,204 documents. She concluded that the three stemmers did not have any

significant improvement in precision and recall. Krovetz [1993] enhanced the Porter stemmer

by using a machine-readable dictionary. He modified the stemmer to check words against

the dictionary before removing suffixes. His experiment showed that stemming increases the

effectiveness of English retrieval systems. Hull [1996] compared a lexical-based stemmer with

some other English stemmers including the S, Porter and Lovins stemmers and concluded

that the S stemmer is not as effective as other stemmers, and that the lexical-based system

is not significantly better than other stemmers, but that it could be successful if it were opti-

mised. He also concluded that prefix removal has a negative impact on retrieval effectiveness

in terms of precision and recall.

Popovic̆ and Willett [1992] adapted the Porter stemmer to strip suffixes in the Slovene

language, which has a more complex morphology than English. Their experiment showed

significant improvements in precision. They also made a comparison using the same stemmer

CHAPTER 2. BACKGROUND 30

on the English versions of the queries and collection. Results using the English collection

showed that stemming has no effects on retrieval performance. They related the success of

the same stemmer on Slovene to its complex morphology.

Savoy [1999] tested the effects of stemming on French text retrieval. He found that stem-

ming and stopword removal significantly improve precision; stopping only improves precision

when using the Okapi retrieval model, while stemming improves precision in collections that

have more shorter documents than longer ones. He also concluded that a simpler stemmer

is more suited to the morphology of the French language than a complex one.

Asian [2007] tested the effects of five stemming algorithms on Indonesian text retrieval.

Four of these algorithms use a dictionary, while one does not. She showed that the dictionary-

based stemming algorithms performed significantly better than the one that did not use a

dictionary. She attributed some of the success of the best-performing algorithm to the use

of Indonesian morphological rules.

Stemming has been shown to be more effective for Arabic retrieval than for English.

Early research in this area was performed using small collections, and it was not until the

TREC 2001 Arabic track that a large data set — albeit far smaller than those at hand for

English — became available. Several studies on Arabic retrieval have shown that stemming

improves retrieval significantly [Aljlayl and Frieder, 2002; Larkey et al., 2002; Chen and Gey,

2002; Darwish and Oard, 2003b; Taghva et al., 2005]. This is an unsurprising result as Arabic

is characterised by a high inflection ratio [Goweder and Roeck, 2001].

The exact affixes removed vary between stemmers [Aljlayl and Frieder, 2002; Larkey

et al., 2002; Chen and Gey, 2002; Darwish and Oard, 2003b; Khoja and Garside, 1999;

Taghva et al., 2005], but most stemmers remove affixes by looking up the beginning and the

ending of a word in a pre-prepared list of affixes. Most of the current stemmers apply no

rules on removing affixes, except to restrict the length of the remaining stem. We present a

review of several Arabic stemmers in Section 3.1.

The above studies on non-Arabic stemming suggest that using lexicons and morphological

rules improves retrieval performance. There has been little published research on using

comprehensive morphological rules to improve Arabic stemming. We believe that stemming

Arabic could be improved using morphological rules. In Chapter 4 we test supporting affix

removal in light stemming by both morphological rules and lexicons.

Stemming is not always perfect, and can have undesirable results, such as conflating

unrelated words together. It is not a viable means for standardising proper nouns, since

there is the risk of incorrect conflation [Paik et al., 1993].

CHAPTER 2. BACKGROUND 31

N-gram Tokenisation

Tokenisation — through using n-grams — is the process of parsing text using overlapping

windows of a fixed size n. Instead of identifying word boundaries in the text, the whole

text is split into overlapping tokens of size n, and then indexed. When a user searches the

collections, the query is also tokenised using the same window size, and matched against the

index. This technique is language independent and robust against spelling mistakes. Using

a window of size three, the sentence “This is a book” is parsed into “Thi”, “his”, “is ”, “s

a”,“ a ”, “a b”,“ bo”, “boo”, “ook”. This technique is particularly useful for languages with

indistinguishable word boundaries such as the CJK languages.

The n-grams technique can also be used to compare words to determine similarity. In this

case, the beginning and the end of the word might be indicated with an additional character

added before and after the original string. For example, the trigrams of the word “Arabic”

are “Ara”, “rab”, “abi”, “bic”; and the tailed trigrams for the word “Arabic” are “*Ar”,

“Ara”, “rab”, “abi”, “bic”, “ic*” when using the character “*” to mark the beginning and

the end of the word [Pirkola et al., 2002].

The n-grams technique is effective in many applications such as spelling error detec-

tion and correction, query expansion, inverted and signature files, dictionary look-up, text

compression, and language identification [Robertson and Willett, 1998]. It is also useful in

parsing and retrieving documents that have non-textual content, such as images [Rickman

and Rosin, 1996], text images [Harding et al., 1997], and music [Doraisamy and Rüger, 2003].

We use n-grams in Chapter 4 to retrieve transcribed Arabic text, in Chapter 6 to identify

foreign words in Arabic and in Chapter 7 to match foreign words variants.

2.2.2 Indexing

The result of the parsing stage is a list of terms that represent documents in the collection.

In order to facilitate searching these terms in an efficient way, an index is created. The index

of a book lists the important terms that appear in the book, and the locations where they

appear. In information retrieval, we similarly create an index for a collection of documents by

identifying the documents that contain key terms that a user might query for. It is possible

to index every term in the collection and even rebuild an approximate collection using that

index, if we keep locations along with every term [Witten et al., 1999]. This might be useful,

but it is costly in terms of space required by the index.

Many techniques are used to compress the index. Stopping and stemming reduce the

CHAPTER 2. BACKGROUND 32

Term (Doc ID,Term Frequency)

cat <(1,1),(2,1),(3,1),(4,2)>

dotted <(3,1)>

feed <(4,1)>

female <(1,1)>

free <(3,1)>

get <(2,1),(4,1)>

introduce <(2,1)>

male <(3,1)>

mean <(1,1),(3,1)>

rat <(2,1),(4,2)>

rid <(2,1)>

sentence <(3,1)>

skin <(4,1)>

word <(1,1)>

¡�̄
<(1,1),(3,1)>

¡�̄P@ <(3,1)>

Table 2.8: An example of an inverted list for the stemmed document collection shown in

Table 2.7.

number of terms used in the index, and thus reduce the index size. According to Zobel and

Moffat [2006], the most efficient index structure for general-purpose querying is the inverted

file index. In this structure, every distinct term in the collection has a list containing the

identifiers of documents that contain the term. An inverted index for the stemmed and

stopped collection of Table 2.5 is shown in Table 2.8.

The index contains all the terms in the collection — in our case the stopped and stemmed

collection — and is ordered alphabetically. Each term addresses a list of pairs that include

the document identifier in which the term is found, and the frequency of the term in that

document.

Another indexing option is the use of signature files. Each document is allocated a

signature or a descriptor — usually a number of bits that represents the content of the

document [Witten et al., 1999]. This is usually generated by hashing every term in the

document several times and setting the bits corresponding to the hashing values to one.

CHAPTER 2. BACKGROUND 33

When a user enters a query, a signature is generated by hashing the terms in the query, and

comparing the result with the document signatures in the index. When a potential match

is found, terms in the query are checked against the potential document to confirm that

these terms exist, as bits might be falsely set by other terms in the document. Zobel et al.

[1998] found that inverted files are superior to signature files in terms of speed, space, and

functionality.

We use the inverted file index in our retrieval experiments in the following chapters.

2.2.3 Searching

The main objective of any IR system is to retrieve the right documents for any specific

query. While retrieving the exact documents that meet the user needs is difficult, IR systems

estimate the likelihood that a document is relevant to the query, and rank the documents

in the collection by decreasing likelihood of relevance. To do this, similarity measures are

used to compare the query with documents in the collections. There are two common types

of query evaluation: Boolean and ranked query evaluation. In the following subsections, we

review these retrieval models.

Boolean Queries

Boolean query evaluation uses logical operators to combine terms in the user query [Witten

et al., 1999]. The operators “AND”, “OR”, and “NOT” are combined with the query terms

to form a Boolean expression. The relevance of a document to the query is determined using

the Boolean expression formed by the query terms and the logical operators. For example,

if a user types the query “rats AND cats”, the IR system will retrieve all documents in the

collections that contain both words. Documents that only contain one of the words without

the other will not be retrieved. Using the index shown in Table 2.8, and assuming that the IR

system will normalise and stem the query, only document numbers 2 and 4 will be returned,

as they are the only documents that contain both the words “rat” and “cat”. If the query

is “cats OR rats”, the same system should retrieve all the documents as they all contain

the word “cat”. If the user is interested in documents that contain the word “rats” but not

documents that contain the word “cats” then the Boolean query should be “rats AND NOT

cats”. If no logical operators are used, an implicit conjunction (AND) is typically assumed.

Boolean querying uses a binary term weighting, which means that the weights are either “0”

(not found in the document) or “1” (found in the document).

CHAPTER 2. BACKGROUND 34

Untrained users, especially those from non-English-speaking backgrounds, are rarely

aware of the Boolean logic used in some search engines. Salton [1998] states that Boolean

logic remains inaccessible to many untrained users, and Spink et al. [2001] reported that less

than 5% of internet users use logical operators. Chowdhury [2004] notes that the results of

the Boolean queries depend on how well users form their queries, with a high probability that

the results will be too general or too narrow. Furthermore, a small variation in the query

can lead to very different results [Witten et al., 1999].

Ranked Queries

Ranked queries are more natural than Boolean queries. The user does not have to worry

about the complex logical structures as in the Boolean queries. Instead, all documents that

contain any of the query terms are retrieved, but ranked according to similarity criteria

between the terms in the query and the terms in each document. Documents with more

matching terms are usually ranked higher than those with fewer matching terms [Witten

et al., 1999]. Users can specify which words are not desired in the query, whereby documents

with the specified unwanted terms will be discounted. Documents with very low ranking can

be removed from the retrieved documents by setting a threshold [Baeza-Yates and Ribeiro-

Neto, 1999]. Ranked querying uses a non-binary term weighting; these weights are used by

the similarity measure to determine the overall relevance between the document and the user

query. IR systems assign weights to query terms by considering two factors: term frequency

in the document (fd,t), and document frequency or number of documents in the collection

that contain the term (ft).

Term frequency favours longer documents as they naturally contain more terms than

shorter documents. This can be normalised by dividing the term frequency by the document

length [Zobel et al., 1998]. Document frequency is useful in limiting the search to only

documents that contain terms in the query. According to Zobel and Moffat [2006], the

weight of a term t in a document d and a query q can be calculated as:

wd,t = 1 + ln fd,t (2.1)

and

wq,t = ln
(

1 +
N

ft

)
(2.2)

where N is the number of documents in the collection.

CHAPTER 2. BACKGROUND 35

Vector Space Model

First introduced by Salton and Lesk [1968], this model measures the similarity between the

query and the documents in the collection by considering the distinct query terms and the

distinct terms in each document to occupy n-dimensional vectors, where n is the number of

unique terms in the collection. The query vector contains the weights of the distinct terms in

the query, and every document vector contains weights of distinct terms in that document.

The similarity between two vectors can be simply measured using the dot product. For

example, given the query vector q =< wq,1, wq,1, wq,1, . . . , wq,n > and the document vector

d =< wd,1, wd,1, wd,1, . . . , wd,n >, the similarity between the document and the query (Sq,d)

can be computed using the dot product as:

Sq,d = q • d =
n∑

t=1

wq,t × wd,t (2.3)

where wq,t is the weight of a term t in the query q, and wd,t is the weight of term t in the

document d. As described earlier, we avoid bias towards longer documents by dividing the

dot product by the Euclidean length of the query vector |q| and the document vector |d|,
which defines the cosine angle between the query and the document vectors. This measure

is called the cosine similarity measure.

Sq,d =
q • d

|q||d| =

n∑

t=1

wq,t × wd,t

√∑n
t=1 w2

q,t ×
∑n

t=1 w2
d,t

(2.4)

The cosine of an angle determines the similarity between the query and the document vector.

If they are completely aligned, then the angle is zero, and thus, the similarity is one; con-

versely, if the angle is 90 degrees, then the query and the document are completely unrelated

(at least from the perspective of the query terms). Values in between give the degree of

similarity between the two vectors. These values are used to provide the user with a ranked

list of results.

Probabilistic Model

The probabilistic model attempts to estimate the likelihood that a given document is rel-

evant to the user’s query, and rank the collection documents by decreasing likelihood of

relevance [Robertson and Jones, 1976].

CHAPTER 2. BACKGROUND 36

Relevant Documents (R) Non-relevant Documents (Ŕ) Total

Term t present (t) rt ft − rt ft

Term t absent(t́) R− r N − ft − (R− rt) N − ft

Total R N −R N

Table 2.9: Distribution of term t over the relevant and non-relevant documents in the col-

lection. N represents the number of documents in the collection, rt represents the number of

relevant documents containing term t, ft represents all documents containing t, and R is the

total number of relevant documents.

Consider Table 2.9; the conditional probability that a document R is relevant if it contains

a term t is given by

P (R|t) =
rt

ft

and the probability that a document R is not relevant if it contains term t is given by

P (Ŕ|t) =
ft − rt

ft

Similarly, the probability that a term t is present in a relevant document is given by

P (t|R) =
rt

R

and the probability that a term t is present in a non-relevant document is given by

P (t|Ŕ) =
ft − rt

N −R

Using Bayes’ theorem, the weight of term t, wt can be calculated as:

wt =
rt/(R− rt)

(ft − rt)/(N − ft − (R− rt))
(2.5)

Having calculated the term weight and assuming that terms are independent of each

other, the weight for a document d is calculated by the product of its term weights

wd =
∏

t∈d

wt

The main objective is to order documents by estimated relevance according to their weights,

not the specific result of the above equation. Therefore, it is often possible to simply express

this as a sum of logarithms [Witten et al., 1999]:
∑

t∈d

log wt

CHAPTER 2. BACKGROUND 37

The main problem with this model is its dependency on relevance judgements. An en-

hancement to this model has been proposed by Sparck Jones et al. [2000] that does not need

pre-judged documents. Their Okapi BM25 measure considers the document frequency (ft),

the number of the documents in the collection (N), the frequency of a term in the docu-

ment (fd,t) and it normalises document length. The equation used to compute the similarity

between a document d and a query q is:

BM25(d, q) =
∑
t∈q

log
(

N − ft + 0.5
ft + 0.5

)
×

∑
t∈q

(k1 + 1)fd,t

k1 ×
(
((1− b) + b× |d|

(avgdl)

)
+ fd,t

× (k3 + 1)fq,t

k3 + fq,t

(2.6)

where |d| is the document length, avgdl is the average document length in the collection,

k1, k3, and b are constants used for tuning. The k1 parameter affects the term weight. If it

is 0, then the term weight is reduced to its actual presence, meaning that the term weight

is not affected by its frequency in the document, and if it is set to a larger value, the term

weight increases as its frequency increases in the document. The tuning constant k3 affects

the number of term instances that contribute to the ranking. For example, if k3 is set to

0, then only one instance of each query term contributes to the ranking. The constant b

is used to control the document length normalisation. If it is set to 0, no normalisation

will take place; if it is set to 1, then normalisation is in full effect. In TREC 6, the value

of k3 was 1.2, the value for k3 was in the range from 0 to 1000 and the value of the b

parameter was 0.75 [Walker et al., 1997]. These values have also been used in TREC 7 and

TREC 8. Chowdhury et al. [2002] determined different values for the b parameter and showed

significant improvements when setting this value to 0.25. He and Ounis [2005] proposed a

method for tuning the term frequency normalisation parameter that is independent of any

collection, and showed that their new tuning method achieves results that are at least as

good as or significantly outperform the default settings of Okapi BM25 parameters. El-

Khair [2003] conducted several unofficial runs to tune these parameters for the TREC 2001

Arabic collection, but his attempts did not improve the results over the initial parameters

set for English. It is not clear what parameters he examined, nor what range of values were

tested.

In our retrieval experiments in Chapter 4, we use the Okapi BM25 weighting model with

default values determined for English (k1= 1.2, k3= 7, and b= 0.75). We determine new

values for our Arabic text collections in Chapter 5.

CHAPTER 2. BACKGROUND 38

Language Models

Liu and Croft [2005] define language modelling (LM) as “the task of estimating a probability

distribution that captures statistical regularities of natural language use”. Language mod-

elling assumes that the query and the documents relevant to it are generated using the same

language model. It has been used successfully in many applications, including speech recog-

nition, machine translation, and spelling correction, and has been used in IR experiments

by Ponte and Croft [1998]. In this retrieval model, documents are ranked by the likelihood

that a document is ideal to generate the query. A statistical language model (SLM) computes

the probability of all linguistic units (grams) in a language [Rosenfeld, 2000]. The aim of

the SLM is to determine the likelihood that a gram would occur in the document, given the

preceding gram in the document. Suppose that d represents a document that has n words

w, then the probability of the document d is given by:

P (d) = P (w1)P (w2|w1)P (w3|w1w2)...P (wn|w1w2w3 . . . wn−1) =
n∏

i=1

P (wi|w1...wi−1) (2.7)

In the n-gram language model, probability is usually estimated using n-gram frequencies in a

training data set. Some grams might not exist in the training data, and would cause a problem

in estimating the probability of new unseen grams, since their probability would be zero, and

the document probability is computed as a product of the n-gram probabilities (Equation 2.7).

To address this problem, smoothing is used. This is usually done by increasing the lower

probabilities and reducing the higher probabilities to make the overall probability equal to

one [Liu and Croft, 2005].

Three different approaches are followed in LM. The first model assumes that the document

model generates the query; the second model assigns probabilities to documents based on

the likelihood that the query model generates the document; and in the third approach,

a language model is developed for the query and compared with each document language

model in the collection. Details of each approach are given by Liu and Croft [2005].

The Bayesian Inference Networks Probabilistic Model

This model is a directed acyclic graph built of nodes and edges. Nodes are either prepositional

variables or constants, while edges are dependencies between nodes. A direct edge (arc) is

drawn between two nodes if a proposition represented by one node implies another. The

belief in a proposition between two nodes is represented by a value on the arc. The Bayesian

model enables this value to be computed given the belief in its parent node. Given a set of

CHAPTER 2. BACKGROUND 39

d1 d2
d

3 d
4

d
n

r
1

r
2

r
3 r

k

c1 c 2
c

3 c
t

. . .

. . .

. . .

.

q

D o c u m e n t
N e t w o r k

Q u e r y
N e t w o r k

Figure 2.1: Document retrieval inference network model. The document network is com-

posed of n documents with k content representations. The query model has one query with t

concepts. Figure derived from [Callan et al., 1992].

values of prior probability assigned to the roots of this graph, the belief of other nodes in the

graph can be computed [Turtle and Croft, 1990; 1991].

The Document Retrieval Inference Network: This is an instance of the Bayesian

inference model that represents both the document collection and the query using two com-

ponent networks. Figure 2.1 shows an example of this model with a document network that

has two abstract levels, the document text level and the content representation level; and a

query network with two abstract levels, the query level and the concept level [Callan et al.,

1992].

In the document level, di nodes are roots with one or more content representation nodes

rk. Every document node is assigned a prior probability. This is usually 1
n , where n is the

number of documents in the collection. The dependency between the content representation

nodes and document nodes is calculated using the conditional probability P (rk|di). The

content representation nodes represent a proposition that a concept is seen. These nodes are

connected with the query concept nodes in the query network.

The query network represents the user information needs. In our example, the query

CHAPTER 2. BACKGROUND 40

node q represents a proposition that a user information need is met, and the concept node

represents a proposition that a document contains the concept c. Nodes in the graph are

either true or false except for the document and the query nodes, which are assigned the

value true.

The INQUERY Retrieval System [Callan et al., 1992] constructs document networks using

a straightforward mapping between documents and content representation nodes; this map-

ping is stored in an inverted file index to facilitate retrieval. Query networks are constructed

by converting the natural language queries to structured queries. The system evaluates the

root node of the query network and returns a list of documents and the value of the belief

that they meet the query. INQUERY uses 9 operators to structure queries. For example, the

#sum operator returns the average belief value for terms in its scope, while the #syn opera-

tor considers terms included in its scope as synonyms [Callan et al., 1992]. In Chapter 7, we

use the INQUERY retrieval method to expand foreign words in queries using their variants.

We use the INQUERY retrieval model in testing query expansion in Chapter 7.

String and Phonetic Similarities

In the above section, we showed how to find similar documents to a user query. We now

discuss similarity measures that can be used to compare strings.

One of the main issues in IR is to find proper nouns. Many writing conventions are used

to write proper nouns, usually resulting in different spellings, but the same pronunciation.

The problem becomes worse when names are transliterated from one language to another.

For example, “ahmed”, “ahmmed”, and “ahmad” are three different versions for the Arabic

name “Y�Ôg@” /Pèmad”/. If one version is written in the query, search engines would fail to

retrieve other versions without using some sort of weighting. In this section, we present

techniques used to identify similar words based on their pronunciation and spelling.

Approaches to identify similar-sounding but differently-spelt words have been heavily

investigated in English; among these are techniques that make use of string or phonetic

similarity.

String similarity approaches include the Edit Distance [Hall and Dowling, 1980], used to

measure the similarity of two strings by counting the minimal number of character insertions,

deletions, or replacements needed to transform one string into another. To transpose a string

s of length n into a string t of length m, edit(n,m) computes the minimal steps required as

CHAPTER 2. BACKGROUND 41

a h m m e d

0 1 2 3 4 5 6
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

a 1 0 1 2 3 4 5
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

h 2 1 0 1 2 3 4
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

m 3 2 1 0 1 2 3
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

e 4 3 2 1 1 1 2
(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

d 5 4 3 2 2 2 1
(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

k h a l e d

0 1 2 3 4 5 6
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

k 1 0 1 2 3 4 5
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

a 2 1 1 1 2 3 4
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

l 3 2 2 2 1 2 3
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

i 4 3 3 3 2 2 3
(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

d 5 4 4 4 3 3 2
(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

Figure 2.2: Calculating Edit Distance between the strings “ahmed” and “ahmmed” (left) and

“kalid” and “khaled” (right). The final computed distances between the string pairs are the

values in the bottom-right corner of the alignment matrix.

follows:

edit(0, 0) = 0

edit(i, 0) = i

edit(0, j) = j

edit(i, j) = min[edit(i− 1, j) + 1,

edit(i, j − 1) + 1,

edit(i− 1, j − 1) + d(si, tj)]
(2.8)

where i indexes string s and ranges from 0 to n, and j indexes string t and ranges from 1

to m; and d(si, tj) = 0 if si = tj , and equals 1 otherwise. The algorithm starts by assigning

the value 0 to the first position in the matrix (edit[0,0]), the ith value to elements in the first

row, and the jth value to elements in the first column. Starting at position edit[1, 1] and

ending at position edit[m,n] the algorithm first computes the function d(i, j) by comparing

the ith character in string s with the jth character in string t. If they are equal, d(si, tj)

equals 0, otherwise it is 1. The value of edit[i, j] is computed by examining the elements to

the top, left, and top-left according to Equation 2.8. For example, d(s1, t1) = 0 as s[1]=“a”,

and t[1]=“a”. Accordingly edit[1, 1] = min(edit[0, 1] + 1, edit[1, 0] + 1, edit[0, 0] + 0) = 0.

The similarity (distance) between “ahmed” and “ahmmed” is 1, while it is 2 between the

two words “khaled” and “kalid” (see Figure 2.2).

CHAPTER 2. BACKGROUND 42

Another candidate approach that can be used to identify similar words is n-grams [Hall

and Dowling, 1980]. This approach is language-independent; the strings are divided into

grams (substrings) of length n, and the similarity of the strings is computed on the basis of

the similarity of their n-grams.

Pfeifer et al. [1996] compute the similarity as the number of shared grams divided by the

total number of distinct grams in the two strings,

gramCount = sim(s, t) =
| Gs ∩Gt |
| Gs ∪Gt | (2.9)

where Gs is the set of grams in string s, and Gt is the set of grams in string t. For example,

with n=2, the similarity of “ahmed” and “ahmmed” using this measure is 0.8 because both

strings contain the four 2-grams “ah”, “hm”, “me”, and “ed”, while there are five distinct

2-grams across the two strings.

Pirkola et al. [2002] tested the concept of skip grams (s-grams). These are formed by

combining characters based on the number of skipped characters. For a word with n char-

acters, the possible Character Combination Index (CCI) of skipped characters can be 0, 1,

2, . . . , n-m where m is the gram size. For example, when using bigrams, the CCI=(0)

for the word “grams” represents the set of bigrams with 0 skipped characters, which is

{“gr”,“ra”,“am”,“ms”}. If CCI=(1), then the set of s-bigrams is {“ga”,“rm”,“as”}, and if

CCI=(0,1), then set of s-bigrams is a combination of the previous two sets. Pirkola et al.

[2002] used the same n-gram similarity measure used by Pfeifer et al. [1996] to compare words

and their variants in English, Finish, German, and Swedish. They found that for short words,

s-grams are more effective than conventional n-grams. In Chapter 7, we describe experiments

using s-grams with CCI=(0,1), to match foreign word variants in Arabic.

Gram distance [Ukkonen, 1992] is another string similarity technique. When grams are

not frequently repeated — which is the case in short strings such as names — the similarity

is computed as [Zobel and Dart, 1996]:

gramDist(s, t) =| Gs | + | Gt | −2 | Gs ∩Gt | (2.10)

According to this measure, the distance between “ahmed” and “ahmmed” is 1.

With the Dice measure [Dice, 1945], the similarity of strings s and t is computed as twice

the number of common n-grams between s and t, divided by the total number of n-grams in

the two strings:

Dice(s, t) =
2× | Gs ∩Gt |
| Gs | + | Gt | (2.11)

CHAPTER 2. BACKGROUND 43

Code 0 1 2 3 4 5 6 7 8 9

Soundex a e i o u y h w b f p v c g j k q s x z d t l m n r

Phonix a e i o u y h w b p c g j k q d t l m n r f v s x z

Editex a e i o u y b p c k q d t l r m n g j f p v s x z c s z

Table 2.10: Phonetic groups and their codes for English phonetic similarity algorithms.

The similarity between “ahmed” and “ahmmed” when using this measure is 8
9 = 0.89.

The longest common subsequence (LCS) algorithm measures the similarity between two

strings based characters common to both strings [Wagner and Fischer, 1974; Stephen, 1992].

Similarity is normalised by dividing the length of the common subsequence by the length

of the longer string [Melamed, 1995]. The similarity between “ahmed” and “ahmmed” is

(5
6 = 0.833).

Phonetic approaches to determine similarity between two words include the well-known

Soundex algorithm developed by Odell and Russell, patented in 1918 and 1922 [Hall and

Dowling, 1980]. This has predefined codes for the sounds in a language, with similar-sounding

letters grouped under one code (see Table 2.10). During comparisons, all letters in a word

bar the first are encoded, and the resulting representation is truncated to be at most four

characters long. For example, “tareg”, “tareq” and “tarek” are encoded to “T620”. However,

the algorithm has some flaws; some dissimilar-sounding strings, such as “catherine” and

“cotroneo”, are mapped to the same code, while some similar-sounding strings, such as

“knight” and “night”, are mapped to different codes [Zobel and Dart, 1996].

Enhancements to the Soundex algorithm have been made by manipulating strings before

encoding, and by altering codes after encoding. Celko [2005] encoded strings using letters

instead of numbers and used n-grams to substitute letters depending on their n-grams. For

example, the letter “t” is replaced with “s” if it is found in the “nst” trigram. Letter

substitution also depends on the position of the n-gram in the word. There are specific

letter substitutions for prefixes, such as replacing the prefix “Mac” with “Mcc”, and for

suffixes such as replacing “nst” with “ns”. The algorithm removes the letter “h” if it is

preceded by “a” and delimits the new code using spaces. Holmes and McCabe [2002] used

a similar n-grams substitution algorithm to replace letters in their n-grams. They used 25

rules to substitute the word n-grams. The new version of the word is then encoded using

numbers as in the Russell Soundex, but different codes and groups are used. The algorithm

is called Fuzzy Soundex. To address insertion and deletion errors that happen near the end

CHAPTER 2. BACKGROUND 44

of the name, they used multiple phonetic codes generated by the Soundex algorithms, and

to address the errors near the beginning of the name, they used the concept of code shift

that removes the second letter of the five-bytes encoded strings. They also used the Dice

measure to fuse results of different Soundex algorithms, and showed that integrating different

algorithms increases recall to 96% with a precision of 70%.

A variant of Soundex is the Phonix algorithm [Gadd, 1990], which transforms letter groups

to letters and then to codes; the actual groups are different from Soundex (see Table 2.10).

Phonix applies a set of about 160 transformation rules to reduce strings to their canonical

forms before encoding them. For example, the letters “cu” are replaced by “ku”. Both

Soundex and Phonix have been reported to have poorer precision in identifying variants of

English names than both Edit Distance and n-grams [Zobel and Dart, 1995].

Editex, developed by Zobel and Dart [1996], enhances the Edit Distance technique by

incorporating the letter-grouping strategy used by Soundex and Phonix. These groups are

shown in Table 2.10. The algorithm has been shown to have better performance than Soundex

and Phonix algorithms, as well as Edit Distance, on a collection of 30,000 distinct English

names. The distance between two strings s and t is computed as:

edit(0, 0) = 0

edit(i, 0) = edit(i− 1, 0) + d(si − 1, s1)

edit(0.j) = edit(0, j − 1) + d(tj − 1, tj)

edit(i.j) = min[edit(i− 1, j) + d(si − 1, si),

edit(i, j − 1) + d(tj − 1, tj),

edit(i− 1, j − 1) + r(si, tj)]
(2.12)

where i indexes string s and ranges from 0 to n, and j indexes string t and ranges from 1 to

m; r(si, tj) is 0 if si=tj , 1 if group(si)=group(tj), and 2 otherwise; and d(si, tj) is 1 if si 6= tj

and si is “h” or “w”, and r(si, tj) otherwise. Figure 2.3 shows how the distance between the

string pairs “ahmed” and “ahmmed”, and “kalid” and “khaled” is calculated using the Editex

algorithm. The calculation is similar to Edit Distance. However, the algorithm uses another

function that calculates the similarity between two characters based on their phonetic groups

— r(si, tj). If a character at the ith column from the s string and a character at jth row from

the t string are identical, then r(si, tj) = 0, if they belong to the same phonetic group, then

r(si, tj) = 1, and it equals 2 otherwise. The algorithm considers the letters “h” and “w” as

silent using the function d(si, tj) as shown in the recurrence relation in Equation 2.12.

CHAPTER 2. BACKGROUND 45

a h m m e d

0 2 4 5 5 7 9
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

a 2 0 2 3 3 5 7
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

h 4 2 0 1 1 3 5
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

m 5 3 1 0 0 2 4
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

e 7 5 3 2 2 0 2
(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

d 9 7 5 4 4 2 0
(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

k h a l e d

0 2 4 5 7 9 11
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)

k 2 0 2 3 5 7 9
(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)

a 4 2 2 2 4 6 8
(0,2) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)

l 6 4 4 4 2 4 6
(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)

e 8 6 6 6 4 2 4
(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

d 10 8 8 8 6 4 2
(0,5) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5)

Figure 2.3: Calculating Editex distance between the strings “ahmed” and “ahmmed” (left)

and “kalid” and “khaled” (right). The final computed distances between the string pairs are

the values in the bottom-right corner of the alignment matrix.

In Chapter 7, we use the Edit Distance, Gram Count, Gram Distance, Dice, LCS and s-

gram algorithms; and modify the Soundex, and Editex algorithms to accommodate matching

transliterated foreign words in Arabic text.

2.2.4 Relevance Feedback

Relevance feedback, first described by Rocchio [1971], is a well-known technique to improve

retrieval effectiveness in monolingual information retrieval [Salton and Buckley, 1990]. The

idea behind relevance feedback is to expand user query with terms from relevant documents

returned by running the initial query. In the first round, the user specifies which returned

documents are relevant. Terms in those documents are then used by the retrieval system to

expand the original query. This process can be repeated more than once until the user feels

satisfied with the returned results. While Buckley et al. [1994] show that such an approach

leads to a 19% to 38% increase in effectiveness depending on the number of relevant docu-

ments used, users are generally reluctant to provide feedback on returned documents [Dennis

et al., 1998].

Another approach where queries are expanded automatically without the need for user

intervention is called pseudo relevance feedback (also called automatic, blind or ad-hod rel-

evance feedback). In this approach, queries are expanded using terms from the top-ranked

retrieved documents, which the retrieval system usually assumes to be relevant.

CHAPTER 2. BACKGROUND 46

Aljlayl [2002] used relevance feedback to test the effectiveness of light stemming for re-

trieving Arabic documents. The relevance feedback resulted in a 16% increase in the light

stemming effectiveness, and a 71% increase over the baseline (no stemming). Using the

TREC 2001 dataset, he determined that using the top 10 terms from the top 15 retrieved

documents gives the best result. He suggested that the number of terms that give effective

performance ranges from 10 to 20. Darwish et al. [2005] also used pseudo relevance feedback

combined with a light stemmer, a morphological analyser, and context-based morphological

analysers and showed that this resulted in a 6% increase in mean average precision. We use

pseudo relevance feedback in Chapters 4 and 5 to evaluate its effects on light stemming when

using morphological rules.

2.2.5 Cross-Lingual Information Retrieval

The growth in internet users worldwide has been accompanied by an increasing proportion

of content in languages other than English. For example, according the Internet world

statistics,4 the number of Internet users in regions such as the Middle East, Africa, Asia,

and Latin America has grown significantly more than the worldwide average. The need to

search general Internet content, not only the portion in one’s native language, led to the

introduction of Cross-Lingual Information retrieval (CLIR) research. CLIR aims to bridge

the gap between users and content by allowing queries in one language to be used to retrieve

content in another. CLIR was first defined under Multilingual Information Retrieval (MLIR)

by Hull and Grefenstette [1996]. In the same year, TREC initiated a CLIR track for English

and other languages such as German, French, Spanish, and Dutch [Voorhees and Harman,

1997]. One of the newer fora is the Japanese National Institute of Informatics (NII) workshop

on Japanese CLIR, which provide the NII Test Collection for IR Systems (NTCIR);5 this

collection includes data for the Chinese and Korean languages. In the year 2000, the Cross-

Language Evaluation Forum (CLEF)6 has also started a CLIR track on European languages,

and later included other languages such as Amharic, Hindi, Indonesian and Arabic.

Measuring the performance of IR systems in CLIR tasks is similar to the normal IR

retrieval tasks. Results are expected to be lower than typical for monolingual retrieval. We

discuss evaluating IR in Section 2.3.

To search documents that are not in the same language as the query, we translate either
4http://www.internetworldstats.com
5http://research.nii.ac.jp/ntcir/index-en.html
6http://www.clef-campaign.org

CHAPTER 2. BACKGROUND 47

the query or the entire collection. Translating documents is costly in terms of time and space,

but the quality of translation is far better than when translating queries due to the greater

amount of context available [Hull and Grefenstette, 1996]. Nevertheless, it is more tractable

to translate the queries, and so it is the norm in CLIR.

With static collections, it is conceivable that documents be translated manually, how-

ever tedious that may be. However, in large, fast-growing, and dynamic collections such

as the Web, such manual translation is infeasible, and we must rely on automated trans-

lation. Machine translation (MT) is the simplest form of automatic translation. A system

accepts words in one language and produces a translation in the target language. Language-

dependent rules are applied to produce syntactic sentences. OOV words such as proper nouns

are usually transliterated using phonetic matching across the languages. Other automatic

machine translation approaches use parallel corpora and statistical methods. Statistical

Machine Translation (SMT) is a rapidly growing area of research that has resulted in sys-

tems that outperform commercial systems for some languages pairs such Arabic-English and

Chinese-English [Koehn and Monz, 2006].

There are several automatic machine translation engines available on the Web. Some

of these, particularly those capable of translating English to Arabic, are AlMisbar,7 Google

Translate,8 and Systran.9 In Chapter 4, we describe experiments that use these tools to

translate queries.

As our focus in this thesis is neither CLIR nor MT, we do not explore this topic in further

depth.

2.2.6 An Application Example: Video Retrieval

Finding videos has become one of the most popular search activities on the Web. In 2006

for example, the BBC reported that the word “video” was the seventh most-common search

term entered into the Google search engine [BBC News, 2006]. For this reason, video retrieval

has become a concern for commercial video companies and search engines.

TREC started a track on video retrieval in 2001. The focus of the track was to pro-

mote research in automatic segmentation, indexing, and content-based retrieval of digital

video [Voorhees, 2001]. In 2003, the track became an independent evaluation under the

name TRECVID. The main tasks initiated in TRECVID include shot-boundary detection,
7http://www.almisbar.com
8http://translate.google.com
9http://www.systransoft.com

CHAPTER 2. BACKGROUND 48

that has been discontinued in 2008; and video segment retrieval. While the former task

requires analysis of the visual content of the video, the latter can be approached using text

generated by an Automatic Speech Recognition (ASR) system; these transcripts are aligned

with the corresponding shots in the video stream, perhaps including one or two shots on

either side to allow for gaps in speech and speed variations [Volkmer and Tahaghoghi, 2005].

Systems return a list of shots relevant to a particular information need.

Video retrieval performance is evaluated using normal IR techniques, such as the precision

and recall techniques we describe in Section 2.3.

The TRECVID 2005 data set contains recorded television broadcast news in three lan-

guages — Arabic, Chinese, and English — with the associated ASR transcripts available [Over

et al., 2006]. Of the 169 hours of footage, 43 hours are in Arabic, 52 hours are in Chinese,

and 74 hours are in US English. Arabic and Chinese ASR collections are automatically trans-

lated to English to allow searching the whole collection in English. The collection has 24

English-language queries to be used to find specific video footage in the entire collection.

The queries all begin with the phrase, “find shots of”, and aim to find scenes containing a

specific person, place or object, or a general view, building, or action.

In Chapter 4, we use the TRECVID 2005 collection to check the effectiveness of techniques

used in normal AIR systems on ASR text.

2.2.7 Summary

In this section, we have described how information retrieval systems parse and index doc-

uments, and how they retrieve relevant documents in response to a query. During parsing

many techniques are employed in order to extract the proper tokens from text. Words are

normalised and highly frequent words are removed. Extracted terms are then indexed in

a way that reflects their position and frequency in the text collection. To search the text

collection, queries are parsed to extract terms that are then compared to information in the

index about every document in the collection. We have explained several models proposed

for this comparison, each with a different way of computing the similarity of a document to

a query, and therefore to the user’s information need. We have also introduced cross-lingual

information retrieval (CLIR), and noted one application of Arabic CLIR explored by the

research community. We follow with a discussion of techniques to evaluate the effectiveness

of competing information retrieval approaches.

CHAPTER 2. BACKGROUND 49

<DOC>

<DOCNO>19940520 AFP ARB.0013</DOCNO>

<HEADER>

ÐY�̄ �èQ» 44 	Y 	¢�JJ. 	̄ @/ �Q�. �̄ 9700 0027 @P@
</HEADER>

<BODY>

<HEADLINE>

Q 	®�Q 	®� 	à@ðQ�
�®Ë@ �éJ. J
�. ��ð 		KB@ ÐAÔg ÈXAª�K : �	�ñ�K �éËñ¢�.
</HEADLINE>

<TEXT>

. ÐY�®Ë@ �èQ» ú

	̄ �	�ñ�K �éËñ¢�. 	áÖÞ 	� �èQ 	kA�JÓ �è @PAJ.Ó ú 	̄ ��
Ò	mÌ'@ �Ó@ ZA�Ó Q 	®�Q 	®� 	à@ðQ�
�®Ë @ �éJ. J
�. ��ð 		KB@ ÐAÔg ÈXAª�K 02-5 �	�ñ�K

	á�
ÓñK
 ÉJ. �̄ I.
�®
�
ÊË @ 	P @Qk@ 	áÖÞ 	� �é¢�® 	K 73 ú
æ� 	�ñ�JË @ ú
k.

Q��Ë @ 	àA¿ð . �è @PAJ.Ó 32 	áÓ �é¢�® 	K 91 AÒî 	DÓ É¾Ëð ©�A�JË @ 	Q»QÖÏ @ 	àA�®K
Q 	®Ë @ É�Jm�'
ð
. Ég@QÓ �HC�JK. �é�®K. A�ÖÏ @ Õ ��æ	m��' 	à@ ÉJ. �̄ A�® 	K ©J.� ��PA 	®K. ú
æ��̄ A 	®�Ë@ ø
 XA 	JË @ Qå��AJ. ÖÏ @ é� 	̄ A 	JÓ úÎ« ÐY�®�JK
 é 	KB
</TEXT>

<FOOTER>

I.
	̄ @ I. � 	̄ Ð/ Yª�/Ê« ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ

</FOOTER>

</BODY>

<TRAILER>

ø
 AÓ �IÔg. 49 209002
</TRAILER>

</DOC>

Figure 2.4: A sample document from the TREC 2001 collection [Gey and Oard, 2001].

2.3 Evaluation of IR Systems

The performance of an IR system is usually measured by its ability to find documents relevant

to a query posed by a user (effectiveness), and how fast it is in doing so (efficiency). In this

section, we describe how IR systems are measured using test collections and measures.

While some researchers have evaluated the effectiveness of IR systems by measuring user

satisfaction [Spink, 2002; Al-Maskari et al., 2007], it is more common to examine how well

a system performs on queries with known relevant answers (the ground truth). A set of

queries with known relevant documents in a collection are run against the same collection

using different systems. Results of each system are compared with the manually judged

results and retrieval effectiveness is determined using measures such as those we describe

below.

CHAPTER 2. BACKGROUND 50

2.3.1 Test Collections and Evaluation Forums

To evaluate an IR system, we require a testbed with three main components: a data collection,

comprising the text, image, or other documents to be searched; a set of queries that prescribe

information needs that must be met; and a set of relevance judgments that lists the set of

documents relevant to each query.

Some of the more widely used test collections used in IR research have been developed

as part of the NIST Text Retrieval Conference (TREC) series.10 Since 1992, the TREC

series has explored different aspects of IR in various tracks, and has provided appropriate

test collections and recommended evaluation methods [Voorhees, 2001]. Long-running tracks

include the ad hoc search track, where the performance of a system is tested using a static

set of documents and new search topics; the question-answering track, where systems must

find answers to set questions [Voorhees, 2003]; and the cross-lingual track, where systems

are provided queries in one language, and must return relevant documents in another lan-

guage [Voorhees, 2001]. A detailed overview of the TREC tracks appears elsewhere [Voorhees,

2001].

As noted in Section 2.2.5, CLEF also explores collections and metrics for monolingual

and cross-lingual information retrieval, though it focuses primarily on European languages;

and NTCIR explores similar collections for Asian languages.

Building Test Collections

As mentioned earlier, a test collection has three main parts: a set of documents, a set of

queries, and relevance judgements.

To evaluate Arabic text retrieval approaches, we collect text documents from sources such

as web pages or newswire dispatches. Each document is associated with a unique identifier,

and may be marked up using HTML or SGML tags. Figure 2.4 shows an Arabic document

from the TREC 2001 collection; here, the DOC tags indicate the limits of the document, while

the DOCNO tags enclose the unique document identifier. Many document collections have been

used by TREC. These include newswire document collections such as Agence France Press

(AFP) Arabic Newswire [Gey and Oard, 2001], and documents crawled from the Web such

as WT10g collections used in the web track in TREC 9 [Voorhees and Harman, 2000].

Queries — also called “topics” in TREC — have special SGML markup tags. The left

side of Figure 2.5 shows a sample query from the TREC 2001 Arabic collection. As with
10http://trec.nist.gov

CHAPTER 2. BACKGROUND 51

<top>

<num> Number: 8

<title> Qå�Ó ú

	̄ hQå�ÖÏ @

<desc> Description:

Qå�Ó ú

	̄ hQå�ÖÏ @ 	á« 	j�Ë@ �IËA�̄ @ 	XAÓ

<narr> Narrative:
�ékA�Ë@ 	á« �HYm�

��' ú

�æË@ �HBA�®ÖÏ @ É¿ ¨ñ 	�ñÖÏAK. ��Êª�JK

Qå 	�AmÌ'@ ú

	̄ ð ú
æ

	�AÖÏ @ ú

	̄ Qå�Ó ú

	̄ �éJ
kQå�ÖÏ @
</top>

QID DocID Rel

1 0 19940515 AFP ARB.0095 0

1 0 19940519 AFP ARB.0085 0

1 0 19940526 AFP ARB.0068 1

. . .

2 0 19950518 AFP ARB.0134 1

2 0 19950521 AFP ARB.0048 0

. . .

3 0 19950115 AFP ARB.0215 1

. . .

Figure 2.5: A sample topic taken from the TREC 2001 collection (left), and a sample rel-

evance judgements (right), “QID” stands for query number, “DocID” stands for document

identifier, and “Rel” stands for relevance. Note that tags are not necessarily paired.

documents, queries have unique identifiers. This is indicated using the tag <num>. Three

tags are used in TREC queries to indicate the user information need. The <title> text

represents a short query that might be typed in by a user. The <desc> text clarifies the

information need; for example, a query title may be “cats”, which is rather broad, but the

description “where is the musical Cats playing?” clarifies the specific information need. The

<narr> text gives a longer explanation than the <desc> field. The aim of including both

the description and the narrative is to test the effectiveness of longer queries and to clarify

the user information need. They also serve as constant guidelines for assessors who judge the

relevance of documents to a particular topic. The third part of a test collection is relevance

judgements. In fact, this is what turns the set of documents and the set of queries into a

test collection [Voorhees, 2001]. For every query, each document in the collection is either

marked as relevant or not relevant. The right side of Figure 2.5 shows a sample of relevance

judgements. The first column is the topic ID, the second is an unused field usually set

to 0, the third is the document ID, and the last is the relevance column; 0 indicates that

a document is not relevant to a topic, while 1 indicates relevance. Drawing up relevance

judgments for a collection requires human input, and is both tedious and costly.

With small collections, it is possible to form thorough judgments for all (query, document)

pairs [Zobel, 1998]; however, this is infeasible with the much larger collections used in IR

research today. For example, a collection with 800,000 documents requires over 6,500 hours

to completely judge all documents for one query, assuming that 30 seconds are required to

judge a single document [Voorhees, 2001]. To minimise the effort needed to judge large

collections, some techniques have been developed, the best-known of which is pooling [Jones

CHAPTER 2. BACKGROUND 52

and van Rijsbergen, 1975], which operates on the premise that almost all relevant documents

will be ranked highly by one or another of multiple IR systems, and that we can approximate

complete relevance judgments by simply pooling the N top-ranked results from each system

and assessing these alone. In TREC, the first 100 documents of each run are added to the

pool [Voorhees, 2001]. Zobel [1998] reports that pooling captures some 50-70% of all relevant

documents, and that it is a reliable technique; Sanderson and Zobel [2005] add that shallow

pools lead to more reliable judgments.

An alternative technique used to create the ground truth with minimal human effort is

Interactive Searching and Judging (ISJ) [Cormack et al., 1998]. The aim of this technique

is to produce relevance judgements with minimal human effort. In this techniques, assessors

aim to find as many relevant documents as possible for a query, and can reformulate queries

as required until they conclude that further relevant documents are unlikely to be returned

by the system. Cormack et al. [1998] showed that this method produces similar results to

pooling for the TREC 6 collection.

Using 121 search results submitted to the first NTCIR Workshop, Kuriyama et al. [2002]

showed that pooling with top 100 documents (P100) captures 89.2% of relevant documents

for topics with 50 or fewer relevant documents. In an attempt to capture documents relevant

to topics with more than 100 relevant documents, they showed that ISJ is more effective than

P100 and automatic runs. Sanderson and Joho [2004] have considered TREC 5, 6, 7, and 8

manual runs as ISJ runs and compared their performance with TREC relevance judgements.

They concluded that the method is “broadly applicable regardless of retrieval system used

or people employed to conduct the searching process”, and that this method can be used to

form a test collection quickly and with limited resources.

In Chapter 5 we use this method for building a new test collection for Arabic.

2.3.2 Arabic TREC 2001 and 2002 testbed

A collection specifically designed to evaluate Arabic text information retrieval systems was

created as part of TREC 2001. The collection has 383,872 Arabic documents, mainly

newswire dispatches published by Agence France Press (AFP) between 1994 and 2000. Stan-

dard TREC queries and ground truth have been generated for this collection: 25 queries were

defined as part of TREC 2001, and 50 additional queries were developed for TREC 2002.

Both sets of queries have corresponding relevance judgements created using the pooling tech-

nique. In TREC 2001 the pool was formed using the top 70 ranked documents of 30 runs

CHAPTER 2. BACKGROUND 53

submitted by ten research teams: 15 cross-lingual runs with English queries, 1 cross-lingual

run with French queries, and 14 monolingual runs with Arabic queries. Duplicate documents

were removed from the pool, and documents were ordered in their canonical order to allow

fair judgement by the user who originally wrote each topic. The average number of relevant

documents per topic is 165. There has been some criticism of bias in these judgments. Gey

and Oard [2001] point out that the topics have unusually long titles; that for 7 topics out

of the 25, most relevant documents — more than half — were retrieved by only one par-

ticipating system; and that for another 6 topics, 40 to 50% of the relevant documents were

retrieved in the top 70 by only one system. They conclude that while this collection can be

used for tuning, it is less useful for comparative studies.

TREC 2002 avoided the first problem by ensuring that no one group contributed more

than 6% of the relevant judgments. Based on the results obtained by participants in

TREC 2002, Oard and Gey [2002] suggest that the TREC 2002 topic are suitable for post-hoc

use by automatic systems that did not contribute to the pool; they also recommend that the

TREC 2002 topics be kept distinct from the TREC 2001 ones.

2.3.3 Measuring Effectiveness

To evaluate the effectiveness of an IR system, we assess how well it ranks documents relevant

to a set of queries above documents that are not relevant. In this section we review the main

measures used to evaluate IR systems.

Figure 2.6(a) shows the first fifteen documents returned by an IR system for the query

Q8. The corresponding relevance judgments for Q8 are shown in Figure 2.6 (b). We continue

with an explanation of the most common measures used for IR retrieval performance: recall,

and precision [Witten et al., 1999].

Recall

Recall measures the ability of a system in retrieving all documents relevant to a query [van

Rijsbergen, 1975]:

Recall =
Number of relevant documents retrieved

Total number of relevant documents in the collection
(2.13)

In Figure 2.6 (b), eleven documents have been judged a priori to be relevant to this query,

but the system “S” has retrieved only six of these in its first fifteen results. The resulting

CHAPTER 2. BACKGROUND 54

Rank DocID Score

1 ARB20 92.8605 0

2 ARB15 92.0397 1

3 ARB28 82.9158 0

4 ARB01 77.7094 0

5 ARB04 77.0358 0

6 ARB17 75.1238 0

7 ARB23 73.6085 1

8 ARB29 72.9937 0

9 ARB27 72.8858 0

10 ARB03 70.6121 1

11 ARB22 68.0985 1

12 ARB16 67.6973 1

13 ARB11 67.0887 1

14 ARB10 64.0923 0

15 ARB18 63.8482 0

(a) Results for Query “Q8”

QID DocID Rel QID DocID Rel

Q8 ARB01 0 Q8 ARB16 1

Q8 ARB02 1 Q8 ARB17 0

Q8 ARB03 1 Q8 ARB18 0

Q8 ARB04 0 Q8 ARB19 0

Q8 ARB05 0 Q8 ARB20 0

Q8 ARB06 0 Q8 ARB21 0

Q8 ARB07 1 Q8 ARB22 1

Q8 ARB08 0 Q8 ARB23 1

Q8 ARB09 0 Q8 ARB24 0

Q8 ARB10 0 Q8 ARB25 1

Q8 ARB11 1 Q8 ARB26 0

Q8 ARB12 1 Q8 ARB27 0

Q8 ARB13 1 Q8 ARB28 0

Q8 ARB14 0 Q8 ARB29 0

Q8 ARB15 1 Q8 ARB30 0

(b) Relevance for Query “Q8”

Figure 2.6: Retrieved document ranked by their relevance to query “Q8”. “0” indicates that

a document is not relevant, and “1” indicates relevance. The ranking is taken from a real IR

experiment, but relevance is hypothetical.

recall at fifteen documents returned is 6
11 = 0.545. Similarly, the recall at ten documents

returned is 3
11 = 0.273. Overall recall is typically measured at 1000 documents returned.

Precision

Precision is the fraction of the retrieved documents that are relevant to the query [van

Rijsbergen, 1975]:

Precision =
Number of relevant documents retrieved
Total number of retrieved documents

(2.14)

Back to our example, the precision of the system “S” at the cutoff value 15 is 6
15 = 0.4, and

at cutoff 10 it is 3
10 = 0.333. Precision of IR systems is typically reported for cutoff values 5,

10, 20, or 100. Precision at ten results returned is very important as 85% of users examine

only one page of results (typically the top ten retrieved documents) [Henzinger, 2000]. This

CHAPTER 2. BACKGROUND 55

indicates the importance of precision at cutoff value 10, represented as “P@10”, that we

report throughout the thesis.

A variant of this measure is R-Precision, which is precision at rank R, where R is the

number of relevant documents in the collection. In our example, we have 11 relevant doc-

uments, thus R-Precision is 4
11 = 0.364. The problem with R-Precision is that its typical

value does not indicate the actual value of recall, as since some of the relevant documents

may exist after the Rth rank.

Average precision (AP) is used to compute the average precision over all ranks in the

answer set. Precision is calculated after every relevant document is found. Based on our

example, relevant documents are found in ranks 2, 7, 10, 11, 12, and 13, therefore the

precision values at these points are, 1
2 , 2

7 , 3
10 , 4

11 , 5
12 , 6

13 respectively. The average precision

is calculated by dividing the sum of the precisions at the different points by the number of

relevant documents as follows:

AP =
0.5 + 0.286 + 0.333 + 0.364 + 0.417 + 0.462

11
= 0.215

This measure is more useful with ranked results than the previous measures. For example,

in our running example, the P@10 would remain unchanged at 3
10 whether the three relevant

documents are the top three or bottom three. However, AP would drop from 0.273 to 0.101.

Mean Average Precision (MAP) is the average AP score over set of queries. We use MAP to

evaluate all our retrieval experiments.

Another measure, used to evaluate the precision when the first relevant document is

retrieved, is mean reciprocal rank (MRR). In our example, the reciprocal rank is 1
2 as the

first relevant document is found in rank 2. The reciprocal rank is calculated for all queries,

then they are averaged to obtain the mean. This measure is also sensitive to ranking and

used mainly to evaluate systems that are required to retrieve one answer to a particular

query, such as question-answering tasks [Corrada-Emmanuel and Croft, 2004].

Probability of Relevance

Results of IR systems are usually ordered by a similarity value called Retrieval Status Value

(RSV), shown in the second column of Figure 2.6 (a). This is usually calculated by ranking

algorithms such as the cosine or probabilistic models discussed in the previous section. If the

ranking algorithm is perfect, it produces a linear ordering — each document has a unique

RSV. However, in the frequent case that two documents are assigned equal RSVs, they are

arbitrarily placed one after another in a weak ordering [Raghavan et al., 1989]. Precision and

CHAPTER 2. BACKGROUND 56

Doc ID Score Rank

ARB20 92

R1

0

ARB15 92 1

ARB28 92 0

ARB01 77
}

R2

0

ARB04 77 0

ARB17 75 R3
0

ARB23 72

R4

1

ARB29 72 0

ARB27 72 0

ARB03 70 R5
1

ARB08 68 R6
0

ARB16 67

R7

1

ARB02 67 0

ARB10 67 0

ARB18 63 R8
0

Table 2.11: An example of weak ordering, where some documents have identical similarity

scores. Normal precision and recall measures are not reliable with this ordering as it is

possible for a relevant document to be retrieved in another position in the same rank.

recall are not reliable measures for weak ordering, due to the many possible permutations of

documents that have equal RSVs. Raghavan et al. [1989] propose that the precision instead

be represented by the probability that a retrieved document (ret) is relevant (rel):

P (rel|ret) =
P (rel ∩ ret)

P (ret)
(2.15)

The probability that a document is retrieved in a rank with n documents is calculated as:

P (ret) =
n∑

i=0

P (rel|arrangementi)P (arrangementi) (2.16)

Let r be the number of retrieved documents across all ranks, and let nr be the number of

non-relevant documents retrieved in an arrangementv in order to get t relevant documents.

Thus, the probability of retrieving documents in that particular arrangement is given by:

P (ret) = P (rel|arrangementi) =
nr + t

r
(2.17)

CHAPTER 2. BACKGROUND 57

The precision of retrieving one relevant document from the whole list in Table 2.11 is 1
15 ,

and since the probability of retrieving one document from the first rank in all arrangements

is 1
3 , therefore,

P (ret|arrangement0)P (arrangement0) =
0 + 1
15

· 1
3

=
1
45

,

P (ret|arrangement1)P (arrangement1) =
1 + 1
15

· 1
3

=
2
45

,

and

P (ret|arrangement2)P (arrangement2) =
2 + 1
15

· 1
3

=
3
45

.

Based on the above calculation, then

P (ret) =
1
45

+
2
45

+
3
45

=
6
45

The final precision is then calculated by substituting these values in Equation 2.15

P (rel|ret) =
1
15
6
45

= 0.5

This measure is called the probability of relevance (PRR).

Assume that we want to retrieve NR relevant documents. We start at the first rank and

go down until we find the last relevant document NRth document at rank k. To calculate

the PRR at a particular NRth relevant document (recall), Raghavan et al. [1989] derived the

following equation:

PRR =
NR

NR + j + (i.s)/(r + 1)
(2.18)

where NR is the number of relevant documents required, j is the number of non-relevant

documents found in ranks before k, s is the number of remaining relevant documents still

to be retrieved in rank k, i is the number of non-relevant documents in rank k, and r is the

number of relevant documents in rank k.

To smooth results and average multiple queries, interpolation is used. Different queries

have different numbers of relevant documents. This results in different recall points for

different queries. For example, in Table 2.11, normal recall points are 1/11, 2/11,. . . 11/11.

However, these points might not be the same for a query which has 20 relevant documents

(1/20, 2/20, . . . 20/20). To solve this problem, PRR is calculated at fixed recall points

for all queries, and then interpolated to fixed recall points. Raghavan et al. [1989] have

CHAPTER 2. BACKGROUND 58

also proposed two other measures: Expected Precision (EP) and PRECALL. Each produces

different values than the PRR. Raghavan et al. [1989] showed that results produced by PRR

and EP are more consistent than PRECALL.

Another approach to evaluate weak ordering is suggested by Zobel and Dart [1996], in

which they shuffle weak ranks to generate random permutations and then calculate the

average precision over ten permutations. Holmes and McCabe [2002] re-rank weak-ordered

ranks using the Dice co-efficient to produce a linear ranking and then calculate precision and

recall values.

We use PRR to evaluate algorithms that return weak ordering results in Chapter 7.

Combining Precision and Recall

In cases where one system achieves better recall than another but has lower precision, or

vice versa, a harmonic measure that combines these two measures into one single value

might provide a better evaluation. The F-measure is one of these measures which combines

precision and recall [Jardine and van Rijsbergen, 1971]. A balanced version is called the

F1-measure (also known as the harmonic F -measure), and is computed as:

F1(recall, precision) =
2× precision× recall

precision + recall
(2.19)

We use this measure in Chapter 6 to compare the effectiveness of identifying foreign words

in Arabic text.

2.3.4 Measuring Efficiency

The efficiency of IR systems is usually measured in terms of processing time and memory

requirements. Stemmers conflate terms, and so reduce index size; the degree of reduction

is dependent on how aggressive the stemmer is. We report index size and processing time

in Chapters 4, 5, and 7 when investigating different stemming and similarity matching tech-

niques.

2.3.5 How Effective are New Algorithms?

Zobel [1998] stated that in many cases a system that shows an improvement over an-

other system is not necessarily better, and recommended that the Wilcoxon signed-rank

test [Wilcoxon, 1945] is a reliable indicator of significance for information retrieval. How-

ever, Smucker et al. [2007] report that the Wilcoxon signed-rank test and the sign test incor-

CHAPTER 2. BACKGROUND 59

rectly predict significance, and that IR researchers should avoid using these tests; they also

conclude that the t-test [Hull, 1993] can be used to evaluate the significance of differences in

means. Accordingly, we use the t-test to evaluate significance in our experiments. Therefore,

all p-values reported in this thesis are calculated using the t-test. We indicate significance

in our results using the sign “↑” if an improvement above the baseline is at the confidence

level of 95% (p < 0.05), “⇑” if it is at the 99% confidence level (p < 0.01), and “↓” if it is

significantly worse than the baseline at the 95% confidence level (p < 0.05).

2.3.6 Tools used in IR Evaluation

To facilitate research on IR, many tools have been developed to conduct IR experiments and

evaluate systems. In this section, we briefly describe tools the we use throughout the thesis

to evaluate IR experiments.

The Lemur Toolkit is an open-source toolkit designed to facilitate research in language

modeling and information retrieval.11 It supports indexing and searching several types of

text collections including text documents written in Arabic CP1256 encoding. Latter releases

include a search engine called “Indri” that is capable of indexing UTF-8 text documents. We

use this toolkit to run all our retrieval experiments.

The toolkit indexes text collections and facilitates searching them using a list of topics.

Using several retrieval models such as the vector space model and the BM25 Okapi model,

the toolkit compares topics with documents and retrieves a list of ranked documents for every

topic.

To evaluate precision and recall for every topic, another tools are used. We use the NIST

trec eval application to evaluate the returned lists against the relevance judgements for the

text collection2. The application accepts both the relevance judgement file — called qrels —

and the Lemur result files and outputs the precision and recall measures.

To calculate the PRR measure, we used a perl script developed by Norbert Gövert3. This

script has been used by participants in the “INitiative for the Evaluation of XML Retrieval

(INEX)” in 2004 to evaluate their systems.

All statistical significance tests are evaluated using the R statistical package.4 The pack-

age is an open-source that has the capability for statistical computing and graphics. It is
11http://www.lemurproject.org
2http://trec.nist.gov/trec eval/
3http://search.cpan.org/∼goevert/RePrec-0.032/lib/RePrec/PRR.pm
4http://www.r-project.org/

CHAPTER 2. BACKGROUND 60

developed at Bell Laboratories by John Chambers and colleagues. The package runs on

different platforms including windows and unix.

2.3.7 Summary

In the preceding section, we have presented common approaches to evaluating IR systems,

including creating static document collections and developing ground truth using human

judgements. We have described the pooling and ISJ methods for reducing the judgment load,

and noted that while the latter has not been as widely used in IR experiments, it is reported

to lead to judgments as reliable as those obtained through pooling. We also described metrics

for evaluating the effectiveness and efficiency of an IR system, and discussed how the PRR

measure can be used for weakly-ordered results where the traditional measures of precision

and recall may produce unreliable results.

2.4 Chapter Summary

In this chapter, we have presented background information about the Arabic language, its

morphology and grammar. We have also described techniques used in the IR community

to improve and test retrieval effectiveness, and presented a review of major contributions to

Arabic Information Retrieval (AIR) research.

In Section 2.1 we have described the Arabic language, orthography, grammar, and mor-

phology. Arabic uses a different style of writing than English and other Latin languages.

The language has 28 letters and eight short vowels indicated using diacritics. It is written

from right to left, and letters are usually attached to each other to form words. Letters can

have up to four different shapes according to their position in the word. Arabic words are

either nouns, verbs, or particles. Arabic words are also coined based on the concept of dual

and femininity — concepts that are not found in English. Arabic affixes are categorised as

common, noun, or verbal affixes. We have presented rules that govern how affixes may be

attached to words. We have also described how foreign words may take on different variants

when transliterated into Arabic script.

In Section 2.2, we have described information retrieval systems, and how competing IR

systems can be evaluated. We have explained how terms are parsed, normalised, stopped,

stemmed, tokenised, and indexed. We have described the theory of IR in general and how

IR systems are evaluated. Parsing has been explained and an example has been given to

illustrate term extraction, normalisation, stopping, stemming, and tokenisation.

CHAPTER 2. BACKGROUND 61

We have also explained the way IR systems search indexing terms, and how these systems

determine similarity between the query and the documents. Phonetic and string similarity

techniques used to measure similarity between strings are also presented.

In Section 2.3, we have described how IR systems are evaluated, and how the ground

truth for test collections can be derived using pooling or ISJ. We have explained the different

measures used by the IR community to evaluate both retrieval effectiveness and efficiency.

We defined precision as the proportion of relevant documents among the documents retrieved,

and recall as the proportion of relevant documents in the collection that are retrieved by the

system. If IR systems retrieve documents in the same rank, a weak ordering occurs. In such

a case, precision and recall give unreliable results and another measure called PRR can be

used. We have also presented the efficiency measures used in IR, and statistical tests used

to determine the significance of improvements in IR systems.

We continue with a review of prior work in the field of Arabic text information retrieval.

Chapter 3

Arabic Information Retrieval

In this chapter we review Arabic Information Retrieval (AIR) systems, techniques used to

find name variants, and possible approaches that can be used to distinguish foreign words

from native words.

3.1 Arabic Information Retrieval Systems

We describe AIR systems under three broad categories: morphological analysers, light stem-

mers, and statistical approaches. Morphological analysers attempt to identify the affixes,

stem, and root of a given word, and are primarily used for natural language processing

(NLP) tasks such as part-of-speech tagging. In contrast, light stemmers focus on removing

affixes to improve retrieval effectiveness, and do not attempt to identify grammatically cor-

rect stems. Finally, statistical approaches extract n-grams for indexing and retrieval, and

operate independently of any language-specific rules.

3.1.1 Morphological Analysers

Early researchers were influenced by the traditional way of indexing Arabic text using root

words, and developed systems based on morphological analysis and root extraction. Most of

these systems have not been tested using standard IR evaluation techniques [Larkey et al.,

2007].

El-Sadany and Hashish [1989] developed a morphological analyser that deals with vow-

elised, semi-vowelised, and fully vowelised text. The system accepts a word and returns its

different morphological characteristics, such as the vowelised version, the root, and the pat-

tern. The system has also the capability to accept a sentence typed by a user and to provide

62

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 63

vowelised versions of the words in that sentence; it also allows the user to clarify ambiguity

in the sentences. No evaluation has been provided for this system.

Al-Fedaghi and Al-Anzi [1989] developed a system to find the triliteral root of Arabic

words. The system has two lists: a list of Arabic patterns and a list of valid triliteral

Arabic roots. The pattern list contains not only the basic Arabic patterns, but also patterns

with valid affixes attached to them. Rather than remove affixes, the system compares input

words with patterns of the same length, and returns the corresponding root if it exists in

the valid root-word list. The authors report that their algorithm successfully extracts roots

for up to 80% of the words in a small text collection; however, no accuracy figures are

reported [Khoja and Garside, 1999].

Al-Shalabi and Evens [1998] extended the algorithm of Al-Fedaghi and Al-Anzi [1989] to

find the quadrilateral roots for an Arabic word. They enhanced the efficiency of the algorithm

by removing the longest possible prefix and looking for the root in the remaining first five

characters by comparing patterns with the combination of the first character with two other

characters from the second, third and fourth positions. They used the new algorithm to find

both triliteral and quadrilateral roots. The algorithm was tested for accuracy and efficiency,

but not using IR experiments. It is also not known how the algorithm deals with weak

letters [Khoja and Garside, 1999].

Khoja and Garside [1999] introduced a new algorithm that extracts roots from Arabic

words. The algorithm is different from the previous morphological analysers in that it uses

stopwords and considers weak letters when returning roots. The algorithm uses lists of valid

Arabic roots and patterns. After every prefix or suffix removal, the algorithm compares the

remaining stem with the patterns. Whenever a pattern matches a stem, the root is extracted

and validated against the list of valid roots. If no root is found, the original word is returned

untouched. The algorithm is efficient and accurate, but falsely stems proper names and

foreign words [Larkey et al., 2007]. It has been evaluated in standard IR experiments and

been shown to produce results comparable to light stemming. For example, Larkey et al.

[2002] show that mean average precision is improved by 75.77% using the Khoja stemmer.

We use this stemmer to test the effectiveness of root stemming in indexing Arabic text in

Chapters 4 and 5. We also test the effects of not stemming foreign words on root stemming

in Chapter 6.

Al-Kharashi [1991] and Al-Kharashi and Evens [1994] compared the effectiveness of in-

dexing Arabic text with their Micro-AIRS system using roots, words and stems. Using 355

bibliography records, they manually created a dictionary of 1,126 words, 725 stems and 526

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 64

roots which they used to identify roots, words and stems. Using a set of 29 queries and

corresponding relevance judgements, they reported that the root-word index outperformed

both the stem and the word index, with the word index being the least effective.

Similar experiments were conducted by Abu-Salem [1992] who conducted a series of ex-

periments on using words, stems, and roots as index terms. His experiments on a collection

of 120 documents and 32 queries confirmed the conclusions of Al-Kharashi [1991] that root-

based indexing outperforms both stem-based and word-based indexing. Abu-Salem used

a test collection of 32 queries and a collection of 120 documents. Abu-Salem and Omari

used the same system in 1995 to investigate the effects of the inverse-document frequency

idf weighting function on retrieval performance. These experiments showed that stem-based

retrieval is superior to word-based retrieval; they also showed that root-based retrieval is sig-

nificantly better than word-based retrieval, and significantly better than stem-based retrieval

at higher recall levels.

Abu-Salem et al. [1999] tested the effects of three weighting schemes on the performance of

the three different retrieval methods. They used the cosine similarity coefficient with a binary

weighting scheme, the tf.idf weighting scheme, and a mixed stemming method between the

query and the document. In the mixed stemming method they used a dictionary of stems,

words, and roots along with their respective average weights across all documents to find the

best weight for terms in the query. They decide how to index each term based on the best

weight of its root, word, or stem. Their results show that the mixed method outperforms the

binary weighting method; that the tf.idf weighting scheme with the root and stem indexing

methods is superior to other methods; and that the root indexing method is the best of the

methods they used.

Hmeidi et al. [1997] compared automatic and manual indexing using words, roots, and

stems. They used a test collection of 242 abstracts and 60 queries with relevance judgements,

and concluded that automatic indexing performs better than manual indexing when using

words as index terms, and when using stems and roots as index terms it is only better than

manual indexing at higher recall levels, above 0.3 and 0.5 respectively. Their results show

that manual indexing using roots as index terms gives better results than using words and

stems. They also concluded that automatic indexing using roots as index terms gives better

results than using words.

Finite-State Transducers have been used to analyse morphology of many languages in-

cluding Arabic [Narayanan and Hashem, 1993]. Morphological analysers use a finite-state

transducer to analyse words based on rules that govern the combination of morphemes and

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 65

on rules of word structure. A two-level finite-state transducer has been proposed for Ara-

bic by Beesley et al. [1989] in which a lexicon and a set of parallel rules are used. This

transducer was implemented by Beesley [1991] for the ALPNET project, and later converted

to the Xerox Finite-State Morphology format to overcome limitations such as manual rule

compilations and lack of speed [Beesley, 1991]. The new system [Beesley, 1998] uses a root

lexicon that includes about 4,930 entries. The system combines these roots with a list of

hand-coded patterns to generate stems. It uses a pattern lexicon of about 400 phonologically

distinct patterns, and other lexicons of prefixes, suffixes, and non-root-based stems. Using

these lexicons, the analyser generates about 72,000,000 words that can be analysed to their

possible spellings. Beesley speculates that the system could be improved by adding proper

nouns.

According to Darwish and Oard [2002], finite state analysers have been criticised for the

excessive manual rule setup, and their restriction to words found in their Arabic dictionaries.

They also fail to resolve morphological ambiguity caused by the absence of short vowels in

Arabic text [Kiraz, 1998].

Buckwalter [2002] developed an Arabic morphological analyser that returns the possi-

ble segmentations of an Arabic word. The analyser uses three lexicons of possible Arabic

prefixes, stems and suffixes, and uses three compatibility tables to validate the prefix-stem,

stem-suffix, and prefix-suffix combinations. It accepts an Arabic word and provides its pos-

sible segmentations — represented using English characters. The underlying lexicons and

rules of this system were later updated [Buckwalter, 2004]. The morphological analyser

cannot be used directly in IR experiments as it provides more than one possible solution for

the same word. Larkey et al. [2007] derived two versions of the analyser and used them in IR

experiments using the TREC 2001 and TREC 2002 test collections. In the first version, the

analyser is modified to return the normalised stem based on the light10 stemmer normalisa-

tion scheme (to be explained in Section 3.1.2). If the analyser fails to analyse the input word

or returns more than one distinct stem after normalisation, the normalised version of the

input word is used instead. In the second version, such returned input words are stemmed

using the light10 stemmer. The analyser performs more poorly than the light stemmer when

using the topic titles, but performs comparably when using query expansion.

We modify both versions of Buckwalter analysers to return the first stem of an Arabic

word and test their effectiveness and efficiency in stemming Arabic text in Chapters 4, and 5.

Darwish and Oard [2002] developed a morphological analyser called “Sebawai”. The sys-

tem uses the ALPNET lexicons to estimate the occurrence probabilities of patterns, prefixes,

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 66

and suffixes. The aim of this system is to increase coverage by automatically constructing

lexicons. The system uses a list of (word, root) pairs that is automatically extracted using the

ALPNET morphological analyser. Two lists of Arabic words were passed to the ALPNET

analyser, and the successfully analysed pairs — 280,074 in all — were captured. These pairs

were then used to estimate the probability of occurrence of prefixes, suffixes, and patterns.

The analyser detects roots by analysing a word to determine its possible prefix-stem-suffix

structure. It compares the stem with its pattern list and extracts the root which is checked

against a list of 10,000 roots to confirm that the root is correct. In case more than one root is

determined for an input word, Sebawai ranks results according to estimated probability that

a prefix, or a suffix would be observed and that a pattern would be used. Named entities

and foreign words cannot be analysed since they do not have roots. The system cannot

return one-letter words to their roots, and cannot analyse complex Arabic words that form

a complete sentence. Sebawai was successful in analysing 93% of words that ALPNET was

able to analyse, and 21% of the words on which ALPNET failed.

Darwish et al. [2005] used both roots and stems returned by Sebawai to index the same

collection and compared it with another analyser that considers context [Lee et al., 2003].

The outcome showed that the roots returned by Sebawai lead to lower results than the

context-based analyser. Results show that Sebawai’s stem-based and root-based indexing

methods perform comparably.

Darwish and Oard [2007] showed that indexing the TREC 2001 collection using the roots

returned by Sebawai is comparable to word-level indexing, but inferior to indexing stems.

They suggest that this divergence from previous published results may be due to the size of

the test collection or the insufficient accuracy of the analyser.

Taghva et al. [2005] present the ISRI11 algorithm that extracts roots similar to the stem-

mer of Khoja and Garside [1999], but that does not use a root dictionary. This algorithm

uses a list of patterns that return three-letter or four-letter roots. These patterns are clas-

sified according to their length (4, 5, or 6). It also uses a list of prefixes and suffixes that

range in length from 1 to 3. The process of extracting roots starts by removing diacritics and

normalising the different forms of hamza “Z , ð , ø”. The algorithm then removes the three-

letter and two-letter prefixes in their relevant order, removes the prefix “ð”, and normalises

the different forms of alef to a bare alef “ @”. At this point, words left with three or fewer

characters are returned as roots. Words longer than three characters are compared with
11Information Science Research Institute.

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 67

patterns. A four-letter word is compared with four-character patterns to extract the root.

If no match is found, a one-character prefix or suffix is removed and three-character stems

is returned as a root. If a word is five characters long, it is compared with five-character

patterns that return three-character roots, and then those that return four-character roots.

If no match is found, prefixes and suffixes are removed and a root is extracted using four-

character patterns. If the remaining stem is six-characters long, the algorithm attempts to

extract three-character roots using the corresponding patterns. If no root is extracted, it

removes affixes and uses five-character patterns and then four-character patterns to extract

the root. Taghva et al. [2005] report that the ISRI approach performed comparably to the

Khoja stemmer and to a light stemmer that removes the same affixes but without pattern

matching on the TREC 2001 collection.

Attia [2006] stated that both the Xerox Arabic Finite-State Morphology and the Buck-

walter Arabic morphological analyser have significant problems in design and coverage. Attia

[2006] stated that in both analysers, the inclusion of a large number of classical entries that

do not feature in MSA, the use of spelling relaxation rules, the absence of rules that combine

words with clitics and affixes, and the use of verb-inflection rules in the passive and the im-

perative mood contribute to increased ambiguity. Attia attempted to avoid these problems

in the course of developing another system using a corpus of 4.5 million words. This system

uses the word stem as a base form, and contains 9,741 lemmas, and 2,826 multi-word ex-

pression to effectively cover the domain of news articles. The system uses a set of alteration

rules to generate the different forms of the word using the stem. The author stated that the

system coverage is limited.

Lee et al. [2003] developed an Arabic morphology system that segments words within a

sentences to prefix-stem-suffix form. The system adopts a trigram language model and a

list of valid prefixes and suffixes. The language model has been estimated from a manually

segmented Arabic corpus and re-estimated based on unsupervised acquisition of new stems

from a large unsegmented corpus. The system achieved 97% accuracy on a test corpus of

28,440 words. The system does not handle Arabic infixes. Darwish et al. [2005] showed that

this system outperforms the Sebawai morphological analyser and the Al-Stem light stemmer

(described in 3.1.2) in an IR experiment due to its improved morphological analysis.

Diab et al. [2004] developed a system that uses a support vector machine (SVM) to

tokenise words, assigns part-of-speech (POS) tags to words, and annotates phrases in Ara-

bic text. In tokenisation, the system segments clitics (conjunctions, prepositions, and pro-

nouns) from stems; in POS tagging, the system assigns tags to the segmented clitics and

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 68

stems with 24 parts-of-speech tags derived from 135 tags used in the Arabic TreeBank POS

tagset [Maamouri et al., 2003]; and in the phrase annotation stage, the system chunks Arabic

text to non-recursive phrases such as noun, adjectival, and verb phrases. The system has been

trained on a sample of the Arabic TreeBank; this contains text from Agence France Presse

(AFP) dispatches annotated using the Buckwalter morphological analyser; the annotations

are then hand-corrected. The system is reported to achieve 99.77% accuracy on tokenisation

and 95.49% accuracy on POS tagging. The system cannot be directly used in IR experiments

and needs to be modified to return stems instead of words and tags. Nevertheless, since the

text is already annotated, stems can be extracted from it. Larkey et al. [2007] modified this

system to generate four different versions and compared their effectiveness in IR using the

TREC 2001 and TREC 2002 test collections. They included two modified versions of the

Buckwalter analyser and their light10 stemmer. The four versions of the Diab tokeniser per-

form significantly worse than the light10 stemmer and the two versions of the Buckwalter

analyser.

Aragen [Habash, 2004] is a lexeme-based Arabic morphological generator and analyser

that uses Buckwalter lexicons and rules in analysing words. However, instead of using a

sequence of strings to represent the output, the system uses a set of feature keys mapped

to stems, prefixes and suffixes. Feature keys are used to build the feature set in the form

of lexeme-and-feature rather than prefix-stem-suffix. Habash and Rambow [2005]; Habash

[2007] produced a derivative of this system, called Almorgeana, to annotate Arabic dialects

for machine translation applications. With the help of morphological disambiguation, the

system is reported to exhibit an accuracy of up to 98.1% in tagging Arabic words correctly

using the Arabic TreeBank text.

Morphology aids in distinguishing affixes in Arabic words. Intensive analysis of Arabic

words, however, has been shown to be unhelpful for AIR; it also requires comprehensive lists

of prefixes, suffixes, stems, roots, and rules to be prepared in advance. Such lists are usually

incomplete due to ambiguity and exceptions in the language. For example, broken plural

construction has no regular rules, and instead applies patterns. In the absence of diacritics,

most analysers would fail to precisely extract roots. We use morphological rules to support

stemming in Chapter 4. We use a different approach that relies on terms in existing lexicons

or text corpora to predict stems and distinguish affixes from core letters in Arabic words.

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 69

3.1.2 Light Stemmers

The idea of Arabic light-stemming was initiated by Aljlayl [2002] who implemented a novel

light stemmer that aims to remove the most frequent prefixes and suffixes, rather than to

find the exact root of an Arabic word.

The stemmer starts by removing diacritics from Arabic words. It then normalises the

leading alef with a bare alef. This step is repeated after any prefix removal. The stemmer

replaces the final “ø” with “ø
 ”; the sequence “Zø” with “ ø”; the sequence “Zø
 ” with

“ ø”; and the final “ �è” with “ è”. It is a requirement that a word has to have three or more

characters in order to remove prefixes or suffixes. The first step in removing affixes is to

remove the leading conjunction “ð”, then removing the definite article with any preceding

prepositions and conjunctions. The stemmer removes the most common suffixes starting

with the longest ones. The stemmer then removes prefixes such as the prepositions “�Ë”;

and “�K.”, and the leading “�K
” if the second character is “��J�”. The stemmer uses a list of

Arabised — or foreign — words to avoid stemming them. It is not clear when the checking is

done. There is no complete list of affixes removed by the algorithm, nor is there any mention

of using stopping. The stemmer participated in the TREC 2001 evaluation and was the

second-best stemmer out of seven stemmers used in the evaluation. The performance of this

stemmer was compared with performance of the Khoja root stemmer, and was reported to

add 24.3%, and 19.6% improvement to the root stemmer with and without relevance feedback

respectively.

Larkey and Connell [2005] extended the stemmer variants they used in TREC2001 —

the light1, light2, light3, and light8 stemmers — to develop their light10 stemmer. All

algorithms share the same preliminary normalisation step, where punctuation, diacritics,

and non-letters are removed; “
�
@”, “

@”, and “ @” are replaced with “ @”; the final “ø” is replaced

with “ø
 ”; and the final “ �è” is replaced with “ è”. The first version, “light1”, removes only the

definite article with all possible preceding single particles except the preposition “�Ë”, with

the condition that the remaining stem has to have two or more letters. The second version,

“light2”, removes an additional prefix “ð”. The third version, “light3”, extends light2 to

remove the suffixes “ �è” and “ è”. Further suffixes are removed in the fourth version, “light8”.

The light10 stemmer comprises light8 with the additional removal of the prefix “�Ê�Ë” (see

Table 3.1). All these stemmers remove suffixes in the same order from right to left as long

as the remaining stem has three or more letters. In experiments using the TREC 2001

collection and the first four stemmer variants [Larkey et al., 2002], and using the TREC 2001

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 70

Stemmer Prefixes Removed Suffixes Removed

Aljalyal �Ë @ , �
�
ÊË , �K
 , ��K , �K. , �Ë , �J
� , ��J� , �ËA¿ , �Ë @ð , �Ë @ ,ð 	áë , Ñë , ø
 , 	à@ , �è , �H@ , 	àð , 	áK

light10 ð , �ËA 	̄ , �Ë A¿ , �Ë AK. , �Ë @ð , �Ë @ , �
�
ÊË ø
 , �è , è , �éK
 , éK
 , 	áK
 , 	àð , �H@ , 	à@ , Aë

Al-Stem , �Öß. , �Ò�Ë , ��J� , ��Kð , ��JÓ , ��JË , ��JK
 , ��JK. , �Ë AK. , �Ë A 	̄ , �Ë @ð , Ñë , Õ» , Õç�' , é�K , ú

�G , 	à@ , èð , 	àð , @ð , �H@

AK. , B , A 	̄ , @ð , �J
 	̄ , �J
Ë , �K
ð , �
�
ÊË , �Ë @ , �Ô 	̄ , �Ò» , �Óð , ��J 	K @ , ø
 , é� , �é� , éK
 , 	áK
 , A 	K , ½�K , �éK
 , Aë , 	áë

Chen , �ËB , �ËA� , �Ë @ @ , �Ë AÓ , �
�
ÊËð , �ËA¿ , �Ë A 	̄ , �Ë AK. , �Ë @ð , AK
 , ú

	G , AK
 ,ð , AÓ , 	à , Ñë , �éK
 , Aë
AK. , �

�
ÊË , �Óð , ��Kð , �K. ð , B , �J
� , ��ð , �K
ð , �Ëð , A¿ , A 	̄ 	àð , �HA� , 	à@ , 	áK
 , 	á�K , Õç�' , 	á» , Õ» , è

È , H. , ð �H , ø
 , è , �è

Table 3.1: Prefixes and suffixes removed by the Arabic light stemmers described in Sec-

tion 3.1.2.

and TREC 2002 collections and all five stemmer variants [Larkey and Connell, 2005; Larkey

et al., 2007], each variant was shown to be better than its predecessor, with the exception of

light10 compared to light8, where the improvement was not significant. The same collection

was stemmed using the Khoja root stemmer. The light10 stemmer significantly outperformed

the Khoja stemmer, but the light8 stemmer did not exhibit any significant difference. The

stemmer also compared favourably to the Buckwalter analyser and Diab tokeniser, except

when the Buckwalter analyser was used with query expansion. The light10 stemmer is

publicly available as part of the Lemur Toolkit.12

We use the light10 stemmer as a baseline to test improving light stemming using mor-

phological rules to avoid stemming core letters in Arabic words in Chapter 4.

The Al-Stem light stemmer of Darwish and Oard [2003b] removes punctuation and dia-

critics, with two normalisation options. In the first option, only the different forms of alef

are normalised to the bare alef. In the second option, the characters “ ð”,“ ø”, and “Z” are

normalised to “ @”. The stemmer removes 24 prefixes and 21 suffixes (see Table 3.1). No

stopwords are removed. This stemmer has been compared with the light8 and a modified

version of it. In experiments using the TREC 2001 and TREC 2002 collections, the modified

stemmer was shown to be significantly better than both light8 and Al-Stem [Darwish and

Oard, 2003b].

Al Ameed et al. [2005] have developed five light stemmers to enhance the Al-Stem light

stemmer developed by Darwish and Oard [2003b]. They used more affixes and proposed two

ways to remove prefixes and suffixes. They evaluated their algorithms using a list of more
12http://www.lemurproject.org

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 71

than 1,450 words. They measured algorithms by their ability to return meaningful words,

and by how frequently affixes were removed. They concluded that their algorithms produced

more meaningful results than Al-Stem.

Chen and Gey [2002] described two stemming algorithms. The first is an MT-based

stemmer that clusters Arabic words based on their English translation. Arabic words are

translated into English using an Arabic-English dictionary, words that map to English stop-

words are removed, and Arabic words that translate to the same English word are replaced

with the shortest Arabic version. The second is a light stemmer — referred to as Chen —

that removes prefixes and suffixes from Arabic words. They derived their list of prefixes and

suffixes according to their grammatical functions and their frequency of occurrence in the

unique words of the TREC 2001 corpus. In total, the stemmer non-recursively removes 26

prefixes and recursively removes 22 suffixes (see Table 3.1). The stemmer starts by removing

the three-letter prefixes if the Arabic word is at least five letters long, then the two-letter

prefixes and the “ð” prefix if the word is at least four characters long. It removes the prepo-

sitions “�Ë” and “�K.” only if the word is at least four characters long and the remaining string

exists as a separate word in the document collection. Two-character suffixes are then re-

moved recursively. Finally the single-letter suffixes are removed recursively as long as the

word is at least three characters long. The stemmer uses a stopword list created by trans-

lating the unique words of the TREC 2002 collection to English and then considering those

words that translate only to English stopwords to be Arabic stopwords. While the list of

English stopwords contains 360 entries, the list of Arabic stopwords derived in this manner

contains 3,447 words.

Kadri and Nie [2006] compared linguistic-based stemming with light stemming. For

linguistic-based stemming, they used corpus statistics to resolve ambiguity about whether a

letter sequence is a proper prefix or suffix. They used the TREC 2001 corpus to construct

all possible stems and their frequency of occurrence in the corpus. To stem a word, they

decomposed it to its possible stems and selected the most likely candidate based on its

statistics in the corpus. In the light stemming approach, they built a stemmer that truncates

the most frequent prefixes and suffixes in the same corpus. They constructed a list of 413

Arabic stopwords and normalised the text using a similar approach to Aljlayl [2002]. From

a comparison of the two systems using the TREC 2001 and TREC 2002 test collections

they concluded that using linguistic-based stemming produces better results than the light

stemming, and that the light stemming “is not the best approach for Arabic IR”.

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 72

3.1.3 Statistical Approaches to Arabic Stemming

Statistical methods have also been used to stem Arabic words. These approaches involve

the use of n-grams, where a word is segmented into a number of overlapping equal size text

fragments of n characters. Similarity measures are used to group similar words based on the

similarity of their n-grams.

AlShehri [2002] studied the statistical characteristics of Arabic words and their overlap-

ping n-grams using six Arabic corpora. He recommended that the optimal n-gram size for

indexing and retrieving Arabic text is 3. He compared the effectiveness of using tri-grams

and a mix of 3, 4, and 5-grams as index terms to the word indexing approach. He reported

experiments using two test collections: one containing 242 Arabic scientific abstracts and 60

queries, and the second containing 187 full newspaper articles from the Al-Raya newspaper

and 30 queries. He showed that both n-gram indexing methods significantly outperform the

word indexing method on the first collection but not on the second.

Xu et al. [2002] tested using 2, 3 and 4-grams to index words and stems produced by

the Buckwalter morphological analyser. The stem-based n-grams generally outperformed

the word-based n-grams. When using stem-based indexing, 3-grams outperformed 2-grams

and 4-grams by 5%, although this margin was not statistically significant.

From initial experiments using a text collection of 4,000 documents and 25 queries, Dar-

wish et al. [2001] concluded that using different gram sizes from words and roots results in

improved retrieval. Indexing grams of size 3 to 5 for words, and of size 2 to 4 for roots,

outperforms the root, word and stem indexing, but not the combination of word and root

indexing. They showed that indexing text using a combination of words, roots and their

possible grams is superior to all indexing techniques involved in the comparison. Using the

TREC 2001 test collection, they formulated queries from the title and the description fields

and indexed the text as in the initial experiments, but added another index that uses a com-

bination of roots, stems, and words. Their results on monolingual and cross-lingual retrieval

show that indexing word trigrams outperforms all other techniques. The authors used the

root as the index term in subsequent monolingual experiments and found that the mean

average precision is significantly better than other indexing techniques.

Larkey et al. [2002] used a statistical approach to Arabic stemming that does not involve

n-grams. Their approach is based on the analysis of the co-occurrence of terms in Arabic

text. They first stemmed Arabic text using their light stemmers and the Khoja stemmer.

They then removed vowels from the remaining strings to form large classes of words. They

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 73

refined these classes by calculating word co-occurrences for all words in every class, and then

repartitioned classes according to word co-occurrences. They used a variant measure called

em “to calculate the proportion of word co-occurrences that are over and above what would

be expected by chance” and to repartition word classes. This approach adds a significant

improvement over their light stemmer including light2, and light8 stemmers, but not over

the Khoja stemmer.

Mustafa and Al-Radaideh [2004] explored searching Arabic text using n-grams. They

used bigrams and trigrams to search a set of 6,000 distinct words selected from several text

documents. They formed 50 queries and used the Dice similarity measure to find variants

in the list. They considered words with a similarity value above 0.6 to be related. They

concluded that the use of infixes in Arabic caused word variants to exhibit low similarity using

the Dice measure, and recommended against the use of n-grams for Arabic text retrieval.

3.2 Retrieval of Foreign Words

Finding variants of names is a problem that has been long recognised in information retrieval

and has been addressed in great depth by the database community [Raghavan and Allan,

2005]. Few studies have tested the retrieval of name variants in the context of IR where

names are to be located within text documents rather than from a name databases. In this

section, we report experiments conducted to find name variants.

Zobel and Dart [1995] used two lists of English words to test the effectiveness of phono-

logical and string similarity techniques in retrieving wrongly-spelt words and name variants,

and evaluated efficiency using another list. The first list contains 113,212 words and 117 mis-

spelled words as queries. Results of these queries are the correct respective words in the list.

The second data set contains 31,763 distinct English personal names extracted from student

names with 48 randomly-chosen names used as queries. Results are evaluated manually based

on the top 200 answers returned by the different techniques. The third set contains 1,073,727

distinct words extracted from the TREC text collection; this set does not contain relevance

judgements, and is used to evaluate computation time and space requirements using the 48

names from the second data set as queries. The study compared 9 techniques including Edit

Distance, gramCount, gramDist, Soundex, Phonix, and agrep. Their results show that Edit

Distance retrieves name variants with a precision of 63.7%, followed by gram-dist (61.5%),

gramCount (55.9%), and agrep (32.8%); the phonetic techniques are shown to be the weakest

in the experiment.

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 74

Zobel and Dart [1996] used a list of over than 30,000 distinct English names extracted from

the Web to test the performance of phonetic and string similarity techniques in identifying

names. They created 100 queries by randomly selecting surnames from the White Pages

telephone directory for Melbourne, Australia, and used pooling to draw up their relevance

judgments. To ensure that judgements are based on the similarity of sounds; the judgements

were created using two assessors, where one reads aloud each query and its potential match,

and the other judges whether they sound similar. Using three sets of judgments, Zobel

and Dart compared the performance of nine similarity techniques: Editex, Edit Distance,

Ipadist, Tapered Editex, Tapered Edit Distance, Q-grams, Best agrep, Phonix+, Phonix,

and Soundex. In order to evaluate such techniques and avoid the problem of weak ordering,

they computed average recall and precision over ten random permutations. Their results

show that the Editex technique outperforms other techniques. It is followed in turn by

the Ipadist, Tapered Editex, Edit Distance and then Q-grams algorithms. The phonetic

techniques performed weaker than the baseline — finding strings that are different from the

query string at most by one character.

Pfeifer et al. [1995; 1996] created their COMPLETE test collection that contains 14,972

distinct names from different sources and 90 names chosen at random from the collection for

use as queries. The relevant names are determined manually for each query. There are a

total of 1,187 relevant names for the 90 queries. This test collection is used to test the effec-

tiveness of finding name variants using phonetic and string similarity techniques including

Soundex, Phonix, bigrams, and trigrams. They have also modified the Phonix algorithm to

encode the first 4 characters (Phonix4), to encode the first 8 characters (Phonix8), and to

encode the first 4 characters plus 4-byte ending sound (PhonixE). Their results show that all

similarity techniques are significantly better than the exact-match technique, and that the

tailed bigrams perform better than other techniques. They also report that the combination

of the tailed bigrams and PhonixE is better than the performance of any single technique.

are have differentPirkola et al. [2002] introduced the targeted s-gram technique to find

variants of names in English, German and Swedish in a list of 199,000 OOV Finish words.

They show that this technique is more effective than conventional n-gram matching in finding

similar short names.

Holmes and McCabe [2002] used the COMPLETE test collection of [Pfeifer et al., 1996] to

test the effectiveness of the Russell and Celko Soundex algorithms, their own fuzzy Soundex,

fusion, and code shifting in finding name variants. Their findings show that Soundex has

the worst average precision while the combination of all the techniques produced the best

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 75

results, finding 96% of all relevant names with a precision of 70%.

Holmes et al. [2004] used n-grams to enhance finding transliterated Arabic names in

English. The algorithm uses 45 transformation rules to normalise the transliterated names,

and then generates n-grams from the enhanced versions of the names. Similarity is computed

based on the shared n-grams using the Dice coefficient. Results show that this algorithm

achieves an average precision of 90% with a recall of 100%. The evaluation is carried out

using a collection of 5,819 Arabic first names with 150 queries that have variants in the

collection.

Ruibin and Yun [2005] and Gong and Chan [2006] used the COMPLETE test collection

and the test collection of Zobel and Dart [1996] to evaluate a new technique based on syllable

alignment. The algorithm segments phonetic strings into syllables and compares strings based

on syllables rather than letters. The algorithm performs better than the Edit Distance and

Editex algorithms using the COMPLETE test collection, but not when using the collection

of Zobel and Dart.

Christen [2006a;b] used four name corpora to compare approximate-matching algorithms.

Three of these corpora were formed by extracting unique names from healthcare records

and generating random new name pairs, while the fourth was the COMPLETE collection

of Pfeifer et al. [1996]. After evaluating 24 techniques, Christen concludes that “there is no

single best name matching technique” and that techniques should be chosen based on the

data in hand.

Aqeel et al. [2006] compared the effectiveness of finding Arabic name variants and mis-

spelled words using two new algorithms and other language-independent similarity techniques

such as Edit Distance and n-grams. They formed a test set of 7,939 names along with two

sets of queries that were created by altering some of these names by adding, deleting, or

inserting characters. The first algorithm is based on the Russell Soundex and the second

is based on n-grams. Their phonetic “ASoundex-final” algorithm encodes Arabic characters

including long vowels into 11 groups. Unlike the Russell Soundex, this algorithm does not

restrict the encoding to four characters. The final version of the algorithm “ASoundex” uses

ASoundex-final to generate multiple encoded versions of length 2 to 9, and then employs fu-

sion to generate the best possible result. Their “Tanween-aware n-grams” approach considers

only the diacritics used for tanween and shadda in the generation of n-grams. Their results

show that the ASoundex algorithm significantly outperforms the n-gram approach and Edit

Distance, and that the combination of ASoundex and Edit Distance leads to the best results.

We check the effectiveness of using the ASoundex-final algorithm in grouping variants

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 76

of foreign words in Arabic in Chapter 7, as this is the only phonetic algorithm available for

Arabic.

The effectiveness of using different spelling name variants to improve document retrieval

performance has been explored by the CLIR community. This often involves the use of a

bilingual dictionary to translate words and transliterate OOV words in the query to the

target language.

Larkey et al. [2003] demonstrated the importance of handling translating proper names

in CLIR experiments. They tested the effectiveness of using several translation and translit-

eration sources in improving retrieval in the context of a CLIR task. They expanded English

queries and then translated them into Arabic using different dictionaries. In total they

identified 241 proper names in the English queries. Not transliterating names in the queries

resulted in performance around 57% lower than when the names were transliterated. Expand-

ing Arabic queries with the top 20 transliterations scores the best average precision. They

show that retrieval effectiveness is affected by the quality of the dictionary, and recommend

that unknown proper nouns be transliterated for improved effectiveness.

Abduljaleel and Larkey [2002] implemented an n-gram technique to transliterate English

words into Arabic. The effectiveness of this technique in an IR context was tested by Ab-

duljaleel and Larkey [2003] and compared to a hand-crafted transliteration model. The task

was to use English queries to search an Arabic text collection. To test the effectiveness of

transliteration on retrieval performance, they translated queries using the bilingual dictio-

nary of Larkey and Connell [2001] and expanding queries by automatically transliterating

all names; only names that are not found in the dictionary; and all unknown words in the

query. Only the first twenty transliterations are included. Their results show that expanding

queries using different transliterations generally increases the performance over the baseline,

and that the hand-crafted model produced a significant improvement in all three cases. The

n-gram model results in a significant improvement when transliterating names and words

that are not found in the dictionary.

Raghavan and Allan [2004] took a different approach to test approximate string matching

to normalise English name variants across all ASR documents by replacing variants with

their Soundex code, and then computed the similarity between documents using the cosine

similarity measure to determine whether they are related to the same story as part of the

Story Link Detection task of the Topic Detection and Tracking (TDT) forum.13 They used
13http://www.nist.gov/speech/tests/tdt

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 77

the TDT3 test collection that contains 67,111 broadcast news from Arabic, English and

Chinese. For the broadcast news, the ASR output is provided along with its machine-

translation version in English. The collection has 60 topics, each with the relevant documents

annotated. The similarity between two documents is calculated using the cosine metrics

before and after name variant replacement using the Soundex codes. Their results showed

a degraded performance due to the poor performance of named entity recognition on the

poorly structured ASR text. They tested the same technique on a newswire text collection

that contains 4,752 pairs of stories. Using this collection, they achieved 10% improvement

suggesting that this technique can improve retrieval.

Raghavan and Allan [2005] tested Edit Distance and four models trained to find name

variants using a parallel ASR text and manual transcripts. They formed a baseline by

obtaining 296 OOV words and enlisted students to generate 35 groups containing variants of

these words. They evaluated all other techniques based on the concept of overstemming and

understemming used by Paice [1996] to evaluate stemming algorithms. Their results show

that their models are better than Edit Distance in conflating names. They also concluded

that using one step as a threshold in the Edit Distance technique to determine similarity

between names is better than using two, three, four, or five steps. To test the retrieval of

name variants within documents, they used the 35 manually generated name variants, and

the TDT3 corpus for testing. They removed any names that did not exist in corpus from

the 35 groups, leaving 76 names in total. They considered any document containing at least

one of the names or name variants to be relevant. They found that using their algorithms

and the Edit Distance algorithm add a significant improvement over the baseline, and that

the Edit Distance algorithm produced the best F1 value. They reported that using their

techniques on the TDT3 spoken retrieval task increased MAP significantly over a baseline

that used string Edit Distance.

Virga and Khudanpur [2003] tested transliteration to improve retrieval on ASR docu-

ments. They indexed words from the TDT2 Chinese collection, and used Mandarin text

documents as queries for their baseline approach. Using the character-bigram improves

the retrieval significantly. They tested retrieval using English documents as queries. They

first translated English documents without transliterating proper names and then included

transliterated names, which improved results slightly - albeit not significantly.

A related area of research is personal name resolution, which aims to disambiguate name

variants, and to identify other names that are not variants but that refer to a particular

individual. In recent work on Arabic, Magdy et al. [2007] use a support vector machine to

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 78

classify and normalise personal names across documents. Their classification approach cal-

culates similarity between names using different rules including Edit Distance and a phonetic

Edit Distance approach — similar to the English Editex. They evaluated their technique

based on purity, entropy and show that their technique produces accurate clusters.

There has been only limited research on conflating variants of names in Arabic languages.

This is due to the fact that Arabic names are distinct and have no variants except in writing

styles. Most of these errors can be handled by removing diacritics. This can be clearly seen

in the work of Aqeel et al. [2006], who generated a data set for their ASoundex algorithm by

altering Arabic names and including diacritics. We believe that handling foreign words in

Arabic would benefit from such techniques as it is the only category of Arabic words that is

characterised by different versions. We test techniques to normalise foreign words in Arabic

in Chapter 7.

3.3 Identification of Foreign Words

Identifying names in text has been studied and shown to improve the performance of IR

systems. Named Entity Recognition is concerned with identifying names of people, places,

and organisations within text. Many systems have been developed to identify named entities

within English text, but only a few have been developed for Arabic [Florian et al., 2004;

Shaalan and Raza, 2007; Benajiba et al., 2007]. Arabic names rarely have variants, and

most variants that do exist typically vary only in diacritics or the letters used, which can

be addressed through normalisation. In this thesis, we explore a more challenging problem:

how to identify foreign words in Arabic text.

Perhaps the easiest way to identify foreign words is to use dictionaries. Abduljaleel and

Larkey [2003] for example, used this method to identify OOV words in English queries and

transliterate them into probable Arabic forms. In contrast, we aim to identify foreign words

as a broader general class of terms, distinct from Arabic words.

Stalls and Knight [1998] describe research to determine the original word from its Arabic

version; this is known as back transliteration. However, rather than using automatic meth-

ods to identify foreign words, they used a list of 2,800 names to test the accuracy of back

transliteration algorithm. Of these, only 900 names were successfully transliterated to their

original form. While this approach can be used to identify transliterated foreign words, its

effectiveness is not known on normal Arabic words, as only names were used to test the

algorithm.

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 79

Jeong et al. [1999] used statistical differences in syllable unigram and bigram patterns

between pure Korean words and foreign words to identify foreign words in Korean documents.

This approach was later enhanced by Kang and Choi [2002] to incorporate word segmentation.

A related area is language identification, where statistics derived from a language model

are used to automatically identify languages. Dunning [1994] used n-gram statistics to identify

several languages. In their approach, they constructed a language profile by generating

overlapping n-grams of text written in each of the language under study. The frequency of

every n-gram is calculated and the final language profile is built by ordering its n-grams in

order of decreasing frequency. To classify a document language, they generate an n-gram

profile for that document in a similar way, and compute the total distance between the n-

grams in the document profile and the profile for each language by subtracting the positions

of similar n-grams in both lists. The language with the profile closest to that of the document

is considered to be the correct language. The authors used the 300 most frequent n-grams

to build each language profile, and concluded that this produces good accuracy for strings

with fifty or more characters, and works moderately well with strings of ten characters.

Recently Goldberg and Elhadad [2008] have used a statistical model based on a Näıve

Bayes classifier to identify foreign words in Hebrew. They used old Hebrew scripts to train

their statistical model to learn native Hebrew words, and used an automatic list of translit-

erated words to train the model to learn the pattern of foreign words. They report a recall

of 82% at a precision of 80% in identifying 368 foreign words in a collection of 4,044 words.

By combining the statistical model with a Hebrew lexicon, they achieved a recall of 70% with

a precision of 91%. Time constraints prevented us from evaluating and applying this recent

work for Arabic text.

In Chapter 6, we use the n-grams approach used in language identification to identify

foreign words in Arabic text. We also use lexicons, patterns and morphological rules to

enhance foreign words identification in Arabic text.

3.4 Chapter Summary

Due to the nature of the language, most published work on Arabic Information Retrieval

(AIR) grapples with Arabic morphology. Almost all systems described before the introduc-

tion of the Arabic track in TREC 2001 include morphological analysers. The main objective

of these systems is to extract the root of an Arabic word. Experiments using small col-

lections have indicated that root indexing is more effective than both stem-indexing and

CHAPTER 3. ARABIC INFORMATION RETRIEVAL 80

word-indexing. Light stemmers are a more recent development, and have been shown — on

large test collections — to be more effective than root stemming. However, few improve-

ments to stemming approaches have been published in the last five years. Some statistical

approaches to AIR have been tested, and trigrams have been reported to be the best gram

size for indexing Arabic text. Recent work on AIR systems applies language morphology

for part-of-speech tagging for collections in Arabic, and increasingly for the various Arabic

dialects.

Many approximate string-matching techniques — including phonological-matching and

string-matching approaches — have been developed for English and other European lan-

guages; however, these have mostly been tested using a list of names, rather than on a text

corpus where other words greatly affect retrieval effectiveness.

The expansion of Out-of-Vocabulary (OOV) words to their variants in a CLIR English-

Arabic task has proven that this technique is effective and improves retrieval. Experiments

on normalising name variants across ASR documents for retrieval have shown that accurate

identification of name variants is critical. Foreign words in Arabic have different variants,

identification of such words is crucial to allow unifying them for effective searching; however,

there is a dearth of published empirical results on this topic. In Chapter 6, we explore

identification of foreign words, and in Chapter 7, we explore techniques to unify their variants.

We continue in the next chapter with a discussion of our work on stemming Arabic words.

Chapter 4

Stemming Arabic

Stemming is the process of merging different forms of the same word that are semantically

equivalent and share the same stem [Paice, 1996]. For IR systems, stemming is used to

conflate words together in order to increase performance and reduce index space.

Arabic words have many forms. For example, a noun can have up to 519 different

forms, while a verb can have up to 2 552 [Attia, 2006]. To convert words to their root

or stem, additional letters that attach to the word either at the beginning (prefix), middle

(infix), or at the end (suffix) have to be removed by stemming. For instance, the words

“I. �JºK
” (/jkt”b/〈writes〉), “ �é�J.
��JºÓ” (/mkt”aba/〈a library〉), and “I.

��JºÓ” (/mkt”ab/〈an office〉)
reduce to “ �I.

��J
�
»” (/kat”aba/〈wrote〉) after stemming.

As described in Section 3.1, Arabic stemmers range from deep morphological analysers

to light prefix-suffix removers. Stemmers generally remove affixes by comparing the specific

parts of the word with a pre-prepared list of affixes [Al-Sughaiyer and Al-Kharashi, 2004].

These lists are usually built based on the language morphology and statistical analysis of

Arabic text [Aljlayl and Frieder, 2002]. Using such a fixed list to match the beginning or the

end of the word is effective [Larkey et al., 2002; Aljlayl and Frieder, 2002] but also affects

core letters. This can happen in any language, but is a major problem for Arabic, where

pronouns conjunctions, prepositions, and particles are attached directly to words. The same

character sequence may also be core characters, and removing such core characters leads to

incorrect results.

In this chapter, we examine approaches for the proper removal of affixes using lexical

Arabic grammar rules. We empirically compare approaches to normal affix removal, and

show that our technique increases text retrieval effectiveness. We explore using the corpus as

81

CHAPTER 4. STEMMING ARABIC 82

a lexicon, and show that it is possible to satisfactorily stem Arabic without a comprehensive

lexicon. We also check whether the techniques developed using normal Arabic text also apply

to Arabic text extracted automatically from recorded speech.

4.1 Evaluation of Existing AIR Stemmers

In this section, we compare most of the existing AIR stemmers described in Section 3.1. In

order to evaluate existing stemmers, we implemented some of them and modified some others

to be used directly in IR experiments.

4.1.1 Stemmers

We used the following stemmers:

Khoja: our implementation of the Khoja stemmer that supports stemming text in large

document collections.

B.Stem: Buckwalter 1.0 stemmer [Buckwalter, 2002], modified to return only the first re-

turned stem for each given word.

B.Stem2: As above, for the Buckwalter 2.0 stemmer [Buckwalter, 2004].

B.Lemma: Buckwalter 1.0 stemmer modified to return the lemma for a given word.

light10: Larkey light10 stemmer [Larkey et al., 2007], which is part of the Lemur toolkit.1

Al-Stem: Al-Stem stemmer developed by [Darwish and Oard, 2003a].

Al-StemN: As above, but omitting numbers.

noStemming: Removing diacritics and punctuation.

All stemmers, except for Al-Stem, are modified to remove the same stopwords removed by

the Khoja stemmer. This has been used by the light10 stemmer and it is available with the

Lemur toolkit.

4.1.2 Other Experimental Settings

For the baseline, we used the original 25 TREC 2001 and 50 TREC 2002 queries in a single

75-query set, following the practice of Larkey et al. [2007] and Darwish and Oard [2003b] in
1http://www.lemurproject.org

CHAPTER 4. STEMMING ARABIC 83

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

noStemming 0.188 0.440 0.430 0.200 0.284 0.650 0.196 0.336 0.559

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

B.Lemma 0.333 0.572 0.561 0.282 0.374 0.716 0.299 0.440 0.652

B.Stem 0.357 0.592 0.614 0.280 0.380 0.706 0.306 0.451 0.668

B.Stem2 0.311 0.528 0.609 0.284 0.396 0.731 0.293 0.440 0.681

Al-Stem 0.362 0.560 0.606 0.251 0.352 0.674 0.288 0.421 0.646

Al-StemN 0.371 0.564 0.628 0.254 0.368 0.695 0.293 0.433 0.668

Khoja 0.264 0.472 0.555 0.237 0.332 0.671 0.246 0.379 0.623

Table 4.1: Performance of existing Arabic stemmers on the TREC 2001 and TREC 2002

collections. All stemmers add significant improvement over the noStemming approach. The

light10 stemmer is the best performer, while the Khoja stemmer is the worst.

combining the queries across the two sets. All results in this chapter are drawn up based on

the combined set. We use the short queries only represented in the title field in the query set.

This has been decided as to imitate the real web search carried out by users as less than 4%

of queries submitted by typical internet users have more than 6 terms [Jansen et al., 1998].

We use the Lemur toolkit (described in Section 2.3.6) to run all IR experiments as it

supports indexing Arabic text documents. We set the retrieval parameters to use the Okapi

BM25 weighting scheme with default values determined for English (k1= 1.2, k3= 7, and

b= 0.75) (refer to Section 2.2.3). To investigate the effectiveness of relevance feedback, we

set the Lemur toolkit to use the top 20 terms from the first 15 returned documents. This was

set based on the conclusions reached by Aljlayl [2002] using the TREC 2001 test collection

(refer to Section 2.2.4 for more details).

4.1.3 Results

We show results in Table 4.1 and Figure 4.1. All stemmers add a significant improvement

in the mean average precision over the noStemming approach. All Stemmers, except Khoja,

add significant improvement in all measures [t-test, p < 0.001]. The Khoja stemmer adds a

significant improvement in only MAP [t-test, p = 0.019].

The light10 stemmer MAP is significantly better than the Khoja stemmer [t-test, p <

0.001], Al-Stem [t-test, p = 0.001], Al-StemN [t-test, p = 0.003], B.Stem2 [t-test, p = 0.013],

CHAPTER 4. STEMMING ARABIC 84

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

light10
B.Stem

B.Stem2
B.Lemma
Al-StemN

Al-Stem
Khoja

noStemming

Figure 4.1: Performance of the existing AIR stemmers using the TREC 2001 and TREC 2002

test collections.

B.Lemma [t-test, p = 0.021], and B.Stem [t-test, p = 0.053]. Although light10 shows a better

P@10 value than other stemmers, it is significantly better than only the noStemming and

the Khoja stemmer. The stemmer has the highest recall, but it is not significantly better

than the Buckwalter stemmers or the Khoja stemmer.

The Buckwalter stemmer, B.Stem, is significantly better than only the Khoja stemmer [t-

test, p = 0.001] and the noStemming approach.

As described in Section 2.2.4, automatic query expansion and pseudo relevance feedback

have been shown to improve Arabic information retrieval [Larkey et al., 2007; Aljlayl, 2002;

Darwish et al., 2005]. In our experiments, we also use pseudo relevance feedback using the

top 20 terms from the top 15 retrieved documents. The effects of relevance feedback are

shown in Table 4.2 and Figure 4.2. The relevance feedback affects the Buckwalter stemmers

B.Stem and B.Stem2 the most. The effectiveness of both stemmers is increased by over 24%,

while the effectiveness of B.Lemma, Khoja, Al-Stem, and Al-StemN is increased by over 21%.

CHAPTER 4. STEMMING ARABIC 85

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

noStemming 0.272 0.504 0.499 0.269 0.338 0.773 0.270 0.393 0.660

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

B.Lemma 0.403 0.636 0.677 0.344 0.404 0.837 0.364 0.481 0.771

B.Stem 0.440 0.668 0.708 0.351 0.430 0.836 0.380 0.509 0.783

B.Stem2 0.400 0.620 0.709 0.348 0.428 0.834 0.365 0.492 0.783

Al-Stem 0.391 0.592 0.582 0.329 0.380 0.798 0.350 0.451 0.709

Al-StemN 0.399 0.608 0.583 0.336 0.398 0.809 0.357 0.468 0.716

Khoja 0.273 0.504 0.480 0.314 0.398 0.809 0.300 0.433 0.674

Table 4.2: Performance of existing Arabic stemmers on the TREC 2001 and TREC 2002

collections using relevance feedback. Relevance feedback aids morphological stemmers more

than light stemmers.

The light10 effectiveness is increased by only 14%, while the baseline is improved by over

37%.

The B.Stem stemmer produces the best results. It significantly outperforms the Khoja,

Al-Stem, Al-StemN, and noStemming approaches, but not the light10 stemmer.

In general, relevance feedback improves results significantly. For example, relevance feed-

back improves the effectiveness of the light10 stemmer significantly in MAP [t-test, p < 0.001],

P@10 [t-test, p = 0.004], and recall [t-test, p = 0.006]. The one exception is seen for the Khoja

stemmer, which is not significantly better than the improved baseline results for relevance

feedback.

4.1.4 Discussion

It is clear that the light10 stemmer outperforms other stemmers when no expansion is per-

formed. Similar results have also been reported elsewhere [Larkey et al., 2007]. In con-

trast, the Buckwalter morphological analyser is the best when expansion is performed. Light

stemming aggressively removes affixes without validation, while the morphological analysers

assure that the removed affixes are valid.

The light10 stemmer is almost 4.25 times faster than B.Stem in stemming the TREC 2001

collection. However, B.Stem has an advantage in saving about 10MB of disk space compared

to the light10 stemmer (index size 476MB versus 486MB). In the following sections, we test

CHAPTER 4. STEMMING ARABIC 86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

B.Stem
light10

B.Stem2
B.Lemma

Al-Stem
Al-StemN

Khoja
NoStemming

Figure 4.2: Performance of the existing AIR stemmers using the TREC 2001 and TREC 2002

test collections using relevance feedback.

an approach that combines these two approaches and maintains or improves effectiveness

and efficiency. We use morphological rules that assure removing affixes, while maintaining

or improving effectiveness and efficiency.

4.2 Improving Light Stemming

In this section, we test improving the light stemming using new techniques and supporting

affix-removal using morphological rules.

4.2.1 The Baseline

We use the Larkey light10 stemmer as the underlying framework to evaluate the effectiveness

of new stemming techniques. We choose the light10 stemmer as it is the best light stemmer

publicly available.

CHAPTER 4. STEMMING ARABIC 87

To perform stemming that requires lexical validation, we use an Arabic lexicon to validate

affixes. We use the Microsoft Office 2003 lexicon [Microsoft Corporation, 2002], which is

designed for validating words in Microsoft Office documents. Before removing affixes, we

verify that the suspected affixes are not in fact core letters by checking the possible alternative

valid morphological forms of the word in our lexicon.

For all techniques used in the light10 stemmer, we test the effects of having that technique

in the light10 stemmer, the effects of not using that technique, and the effects of replacing

that technique with our new one. Techniques and rules that improve the stemmer or have no

negative effects on it are integrated in the final versions of our stemmers. As a convention in

this chapter, we show results without relevance feedback in the top part of the result tables,

and show results with relevance feedback in the bottom part.

4.2.2 Arabic Text Normalisation

Most AIR stemmers pre-process or normalise Arabic text to unify the different styles of

writing Arabic text. A detailed review of many approaches are explained in Section 2.2.1.

The first step in the normalisation process is to remove diacritics, punctuation, and other

non-Arabic letters. The next step is to normalise the different typographical errors in Arabic

writing. To achieve this, we process Arabic text before and after stemming as described in

the next subsections.

Arabic Text Pre-processing

Arabic text exhibits different styles of writing, and common mistakes (presented in Sec-

tion 2.2.1). We have identified several additional variations:

• The combination of both waw “ð”, and hamza “Z” is written differently by different

writers. For example, in the TREC 2001 collection, 88% of the variants of the word

“È ñ�ÖÏ @” (/almsPul/〈the one responsible〉) are written with the diacritic hamza above

the letter waw, as “ ð”, and 12% of cases appear with the diacritic hamza as a separate

character after the letter waw, as “Zð” in “ÈZñ�ÖÏ @”.

• The combination of “ø” and hamza “Z” is written differently by different writers. In

some words, they are written as one letter “ ø”, and in others as two separate letters

“Zø”.

CHAPTER 4. STEMMING ARABIC 88

• The letter alef “ @” is repeated at the beginning of the word. In some cases it is repeated

more than twice which contradicts Arabic writing and morphological rules. We replace

two or more consecutive “ @” letters with one letter “ @”.

• The letter “ �è” can appear only at the end of a word. If the space between a word

ending with this letter and the next word is omitted — often deliberately, as the letter

“ �è” does not affect the following letter — it appears that the letter “ �è” is mid-word.

For instance the string “ �è �QK
 	Q�m.Ì'@ ��èA�	J��̄” (/qanaat”ualZazjra/〈Al Jazeera channel〉) is in fact

a compound of two words, the first word terminating at the letter “ �è”. Similarly, the

letters, “P”, “ð”,“ 	P”, “ø”, “X”, and “ 	X” frequently adjoin the following word without

any space. For example “ÐA �ªË@QK
Y� �ÜÏ @” (/almud”ijrulQaam/〈the general administrator〉)
is correctly two words, “ÐAªË@ QK
YÖÏ @”.3 Human readers can generally distinguish such

words without problems, but automated stemmers must be adapted to recognise these

strings. To correct such mistakes, we propose three techniques:

– Split any string that has one of the above combinations whenever that combination

occurs anywhere in the string after the fourth character, leaving at least three

characters in the second string. We call this technique NormSplit.

– Split any string that has one of the above combinations whenever the combination

occurs anywhere in the string after the fourth character, leaving two correct strings

with at least three characters. We name this technique CorrectSplit.

– Split any string that has the character “ �è” or the character “ø” anywhere in the

word as these two characters do not appear in the middle of Arabic words. We

name this technique SureSplit.

Compound Words

In Arabic, some compound names have a distinct form, and are typically written as one

word, albeit one that does not comply with grammar rules. For example, the proper noun

“ 	àX� B 	áK.” (/bnlad”in/〈Bin Ladin〉) is a compound name that has two words which are usually

written separately. If the space between words were omitted, the proper noun would become

“ 	àXC	JK.”, which has a substantially different appearance. Consequently, the space is never

omitted. In contrast, compound names such as “ é�<Ë @ �YJ. �«” (/Qabd”uallah/〈Abdu Allah〉) and

3 – represents a blank space

CHAPTER 4. STEMMING ARABIC 89

“ú
Î�
�« ñK. @” (/PbwQalij/〈Abu Ali〉) are sometimes written attached “ é�<Ë @YJ.«” and “ú
Î«ñK. @” re-

spectively, as the letters of the two words do not change shape when connected. Such variants

exist frequently in Arabic, and we must cater for them for satisfactory retrieval performance.

For example, the word “YJ.«” is among the top 100 most frequent words in the TREC 2001

corpus. Leaving such compound nouns unattached when indexing results in the second part

— which is usually one of the descriptive names of Allah 〈God〉 — being processed as a sepa-

rate word. For example, the proper noun “ÐC ���Ë@ �YJ. �«” /Qabd”ussalam/ meaning 〈worshipper of

the peaceful〉 becomes “YJ.«” 〈worshipper〉 and “ÐC ��Ë@” 〈the peaceful〉, the latter word would

then be stemmed to “ÐC�” (/slaam/〈peace〉), or to the root “�Õ
�
Î ��” (/salama/〈survived〉).

This would create more than one reference to such proper nouns.

Before we start stemming we deal with such cases by replacing “�Ë @ YJ.«” with “�Ë @YJ.«” and

“ ñK. @” with “ñK. @”. This allows us to form a single reference to such proper nouns.

Arabic Text Post-processing

Stemmed words may end with the wrong letter form. For example, stemming the suffix “Aê�”
(/ha/〈the feminine pronoun “her”〉) from the word “ Aî ��D �� �PY�Ó” (/mad”rasat”uha/〈her school〉)
leaves the word “��J�PYÓ”, which is not a correct Arabic word. Although correctness is not

an objective of stemming, leaving such words without any normalisation creates new index

terms, and will not group similar words together. In our example, the stem result “ �I�PYÓ”
should be recoded to “ �é�PYÓ”, or further stemmed to “�PYÓ”. Other instances that need to

be normalised include stemming results that end in the letters “ ø” or “ ð”; these may need

to be replaced with a hamza “Z”. An example is stemming the suffix “ �éK
” from the word

“ �éJ
KA 	� 	̄” (/fad”QaaPija/〈space -adjective-〉) to result in “ øA 	� 	̄”; this word should be recoded

to “ZA 	� 	̄” (/fad”QaaP/〈space〉).

Overall Normalisation Approach

As our proposed techniques are based on word validation when removing affixes, we defer

some steps of normalisation until the conclusion of affix removal. Before stemming affixes,

we

• remove punctuation,

• split words using the SureSplit technique, and

• join compound nouns.

CHAPTER 4. STEMMING ARABIC 90

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

NormSplit 0.395 0.568 0.682 0.291 0.382 0.757 0.325 0.444 0.727

SureSplit 0.395 0.568 0.683 0.291 0.380 0.757 0.325 0.443 0.727

CorrectSplit 0.395 0.568 0.683 0.291 0.380 0.757 0.325 0.443 0.727

CompoundS 0.395 0.572 0.682 0.295 0.382 0.757 0.325 0.445 0.727

CompoundJ 0.395 0.568 0.682 0.295 0.386 0.757 0.325 0.447 0.727

light10Nor 0.376 0.584 0.640 0.289 0.388 0.754 0.318 0.453 0.707↓
light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

SureSplit 0.426 0.640 0.658 0.346 0.442 0.835 0.372 0.508 0.763

NormSplit 0.425 0.640 0.658 0.345 0.440 0.835 0.372 0.507 0.762

CorrectSplit 0.425 0.640 0.658 0.345 0.442 0.835 0.372 0.508 0.762

CompoundS 0.426 0.648 0.677 0.345 0.436 0.835 0.372 0.507 0.770

CompoundJ 0.425 0.640 0.658 0.345 0.440 0.835 0.372 0.507 0.762

light10Nor 0.442 0.688 0.697 0.349 0.428 0.835 0.377 0.497 0.776

Table 4.3: Effects of normalisation techniques used with light10; the top part of the table

shows results without relevance feedback, while the bottom part shows results with relevance

feedback. While our individual normalisation techniques add consistent slight improvement

with and without relevance feedback, combining them has a negative effect when relevance

feedback is not used. ↓ represents significantly different results at the 95% confidence level

than the light10 performance.

While parsing, we split incorrect strings using CorrectSplit, and while stemming suffixes, we

check the final letter of the word and

• replace a final “ ð” with “Z” if doing so results in a correct word,

• replace a final “ ø” with “Z” if doing so results, and in a correct word.

• replace a final “ �I�” with “ �é�” if doing so results in a correct word, and if removing this

letter leaves an incorrect word.

After stemming a word, we

• replace “

@ ”, “ @ ”, or “

�
@ ” with “ @”,

• replace “ø ” with “ø
 ”,

CHAPTER 4. STEMMING ARABIC 91

• replace “ �é� ” with “ é�”,

• replace “Zð” with “ ð”,

• replace “Zø” with “ ø”, and

• replace “ @ @” with “ @”.

Table 4.3shows the effects of adding the individual techniques discussed in this section to

the light10 stemmer. CompoundS refers to splitting compound proper nouns, CompoundJ

refers to joining compound proper nouns, and lightNor refers to integrating our combined

normalisation technique in the light10 stemmer.

Results show that normalising typographical errors improves results. All three techniques

slightly improve recall. Joining compound nouns is better than splitting joined ones, and

also better than not performing any processing on compound names. The overall recall

increases from 0.757 to 0.770 when joining such words and MAP improves slightly, while

P@10 decreases slightly.

Our combined approach affects the performance of the light10 stemmer negatively when

used without relevance feedback, significantly decreasing recall [t-test, p = 0.004], and preci-

sion [t-test, p = 0.073] but slightly improving P@10. However, with relevance feedback, our

combined normalisation technique exhibits better MAP and recall than the light10 stemmer,

but lower P@10.

4.2.3 Removing Highly Frequent Words

Stopping is the process of removing highly frequent words in the text in order to increase

retrieval effectiveness and reduce index size. We constructed a list of stopwords based on

the language structure and characteristics. Our list differs from previously proposed lists

(described in Section 2.2.1) in that stopword variants are generated algorithmically based on

our classification; this assures that most versions of the stopword are catered for.

We used the El-Khair corpus-based and the light10 stopword lists described in Sec-

tion 2.2.1, and built a third stopword list by manually extracting well-known pronouns,

prepositions and function words from the top 100 most frequent words in the TREC 2001

collection. We normalised words using the light10 normalisation algorithm and kept the

unique words after normalisation in each list. We removed variants of the same stopword,

keeping only surface forms and classifying words into three different categories: words that

can be inflected using suffixes “ è”, “Ñë”, “¼”, and “ Aë”; words that can be inflected with

CHAPTER 4. STEMMING ARABIC 92

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

light10ESW 0.391 0.568 0.674 0.280 0.384 0.717 0.317 0.445 0.700

light10NSWR 0.230 0.472 0.570 0.275 0.362 0.751 0.284 0.399 0.676

El-KhairSW 0.380 0.592 0.666 0.289 0.382 0.757 0.319 0.452 0.719

El-KhairESW 0.286 0.520 0.588 0.234 0.372 0.685 0.251 0.421 0.645

top100SW 0.380 0.596 0.669 0.289 0.378 0.756 0.320 0.451 0.720

top100ESW 0.382 0.596 0.670 0.278 0.376 0.716 0.313 0.449 0.697

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

light10ESW 0.413 0.644 0.633 0.333 0.414 0.796 0.360 0.491 0.729

light10NSWR 0.369 0.624 0.591 0.270 0.362 0.686 0.303 0.449 0.647

El-KhairSW 0.410 0.636 0.631 0.346 0.414 0.833 0.367 0.488 0.750

El-KhairESW 0.411 0.628 0.634 0.337 0.416 0.806 0.362 0.487 0.735

top100SW 0.408 0.648 0.617 0.334 0.410 0.818 0.358 0.489 0.735

top100ESW 0.411 0.628 0.630 0.338 0.416 0.818 0.363 0.487 0.741

Table 4.4: Effects of stopword removal on retrieval effectiveness; automatic expansion of

stopwords decreases precision and recall of the baseline. The top part of the table shows

results without relevance feedback, while the lower part shows results with relevance feedback.

suffixes “ �H”, “ @ð”, and “ @”; and words that do not accept any suffixes. We also add pre-

fixes “ð” and “
	¬” to every word in the list after adding suffixes. For example, the word

“ú

	̄” (/fj/〈in〉) is in the first category that inflects to 18 variants including “ éJ
 	̄” (/fjhi/〈in

him, or in it〉), “ AîD

	̄” (/fjha/〈in her, or in it〉), “ÑîD

	̄” (/fjhim/〈in them〉), “½J
 	̄” (/fjika/〈in
you〉), and “ú

	̄ ð” (/wafj/〈and in〉). From the remaining 109 stopwords in the light10 stoplist,

our automatically expanded list produced 672 stopword variants. For each stopword list, we

used the original list and the expanded list with the light10 stemmer. Table 4.4 shows the

effects of using these three lists and their expanded versions. El-KhairSW and El-KhairESW

refer to the light10 stemmer with the El-Khair corpus-based list and the light10 stemmer

with the expanded corpus-based list respectively, top100SW refers to the extracted stop-

words list from the top 100 most frequent words in the collection, while top100ESW refers

to the expanded version of top100SW list, light10ESW refers to the light10 stemmer with

the expanded list, and light10NSWR refers to not using any stopwords list with the light10

stemmer.

CHAPTER 4. STEMMING ARABIC 93

None of these lists improve light10 performance. In fact they decrease performance. Our

attempt to improve stopword removal in Arabic was not successful. Based on these results,

we decided to use the default light10 stopword list in our later experiments.

4.2.4 Stemming Conjunctions and Prepositions

Conjunctions and prepositions are widely used in Arabic text, and are difficult to remove

without affecting the text. In this section, we classify current approaches to remove particles

and then propose three techniques to remove them safely without affecting the core letters

of Arabic words in the text.

Classification of Current Particle Removal Approaches

As described in Section 3.1, current AIR stemmers remove particles, but none can remove

all particles. Some particles, such as “ð” waw, are removed by all existing stemmers; other

particles, such as “¼” kaf, have never been considered on their own in existing stemming

approaches. We classify the manner that existing stemmers deal with particles into three

general categories:

• Matching the first letter with a pre-prepared list of particles. If a match is found,

the first letter is removed as long as the remaining word consists of three or more

letters. This approach is used by most current stemmers to deal with a small subset

of particles [Chen and Gey, 2002; Darwish and Oard, 2002; Khoja and Garside, 1999;

Larkey et al., 2002]. We call this approach Match and Truncate (MT).

• Matching the first letter with a list of particles. If a particle is found, the remainder of

the word is checked against the list of all words that occur in the document collection.

If the stemmed word occurs in the collection, the first letter is considered a particle

and removed. This approach was used by Chen and Gey [2002] in conjunction with the

other two approaches. We call this approach Remove and Check (RC).

• Removing particles with other letters. Certain combinations are generally removed

whenever they occur at the beginning of any word. For example, removing a combi-

nation of particles and the definite article “�Ë @” 〈the〉, particularly, “�Ë @ð” wal, “�ËA 	̄” fal,

“�ËAK.” bal, and “�ËA¿” kal. this approach is used by most current stemmers. We call this

approach Remove With Other Letters (RW).

CHAPTER 4. STEMMING ARABIC 94

Existing stemmers often use a combination of these approaches. They usually start by using

the third technique, then continue by removing other particles, particularly “ð” waw and “�Ë”
lam.

Evaluation of Particle Removal Approaches

To check the effectiveness of current approaches for particle removal, we extracted all correct

words that start with a possible particle from the TREC 2001 collection.

Words that start with a possible particle constitute 24.4% of this collection. To ensure

that we extract only correct words, we check them using the Microsoft Office 2003 Arabic

lexicon, and then remove stopwords such as pronouns and separable articles. This procedure

results in a list of 152 549 unique correct words that start with a possible particle.

We use three measures to evaluate the effectiveness of the particle removal approaches:

• The number of incorrect words produced; although correct words are not the main

target of stemming, an incorrect stem can have a completely different meaning and

corresponds to a wrong index cluster. This is particularly true when a core letter is

removed from an Arabic word.

• The number of words that remain with an initial letter that could be a particle. This

indicates how many possible particles remain after an approach is applied. In Arabic,

the second character may be a particle if the first character is a conjunction.

• The number of words actually changed; this measures the strength of each approach by

counting the number of words that change during stemming [Frakes and Fox, 2003].

Using the assumption that a correct Arabic word with a particle should also be correct

without that particle, we experimentally applied the MT, RC, and RW approaches to every

word in our collection of unique correct words. The results are shown in Table 4.5.

It can be seen that the MT approach produces a large number of incorrect words (3.39%

of all correct words). The results also show that when the MT approach truncates the first

letter as a particle, there is a chance that the second letter is also a particle. The proportion

of words that still start with letters that could be particles constitutes 14.39% of the total

number of correct words. Manual examination of the stemmed list showed that many words

have another particle that should be removed, and that many words have their first letter

removed despite this letter not being a particle.

CHAPTER 4. STEMMING ARABIC 95

Approach Incorrect words Possible particles Altered words

MT 5 164 21 945 151 040

RC 220 41 599 133 163

RW 724 122 878 33 847

Table 4.5: Results of removing particles using current approaches. The number of correct

words increased as a result of removing particles indicating the introduction of new incorrect

terms in the collection. The MT approach results in the largest number of incorrect words.

The RC approach produces fewer incorrect words. This is because no prefix removal is

carried out when the remaining word is not found in the collection. The incorrect words

we obtain are due to the collection itself containing many incorrect words. Approximately

twice as many words still start with possible particles with RC than MT. This implies that

the RC approach leaves the first letter of many words unchanged. This might be desirable,

since these might be valid words that do not actually start with a particle. Indeed, manual

examination of the result list revealed that many words with particles have been recognised,

and particles have been removed correctly. However, the result list also contained a large

proportion of words that still start with particles as their first letter.

The RW approach produces a smaller number of incorrect words than the first approach,

but generates a very large number of words still starting with possible particles (80.55% of

the list of correct words). Moreover, many words are left entirely unchanged.

To conclude, the first approach is too aggressive. It affects Arabic words by removing

their first letter, regardless of whether this letter is actually a particle. The second approach,

while better at recognising particles in the text, leaves a considerable proportion of words with

real particles untouched. More importantly, in many cases one word is modified to another

with completely different meaning. The third approach leaves many words unchanged, and

deals with only a small subset of particles in the text. It also affects words that start with

a combination of particles and other letters, especially proper nouns and foreign words such

as “ �ék. ñËA 	̄” (/falwZa/〈the Iraqi city of Fallujah〉) and “PñÒJ
�JËAK.” (/balt”jmwr/〈the US city of

Baltimore〉). It is also very hard to recognise such combinations if they are preceded by

another particle (conjunction) such as “ 	�PBAK. ð” (/wbalPrd”Q/〈and by the land〉).

CHAPTER 4. STEMMING ARABIC 96

New Approaches to Particle Removal

Given the incomplete way in which particles have been dealt with in previous approaches, we

have investigated techniques to identify and remove inseparable conjunctions and prepositions

from core words in a principled manner. Our methods are based on removing particles using

grammatical rules, aiming to decrease the number of incorrect words that are produced by

the stemming process, and increasing the completeness of the process by reducing the number

of words that still start with a particle after stemming.

We introduce four rules, based on consideration of Arabic grammar, to identify particles

in Arabic text. Let L be an Arabic lexicon, P be the set of prepositions {“�»”, “�K.”, “�Ë”}, C

be the set of two conjunctions {“ð”, “� 	̄”}, c be a letter in C, p be a letter in P, and w be

any word in L. Then:

• Rule 1: Based on grammatical rules of the Arabic language, a correct Arabic word that

is prefixed by a particle is also a correct word after that particle is removed. More

formally:

∀(p + w) ∈ L ⇒ w ∈ L (4.1)

and

∀(c + w) ∈ L ⇒ w ∈ L

• Rule 2: Any correct Arabic word should be correct if prefixed by either of the conjunc-

tions “ð” or “� 	̄”:

∀w ∈ L ⇒ (c + w) ∈ L (4.2)

• Rule 3: Based on the above two rules, any correct word with a particle prefix should

be correct if we replace that prefix with “ð” or “� 	̄”:

∀(p + w) ∈ L ⇒ (c + w) ∈ L (4.3)

• Rule 4: Any correct Arabic word that is prefixed by a particle should not be correct

if prefixed by the same particle twice, except the particle “�Ë” lam which can occur

twice at the beginning of the word. Let p1 and p2 be two particles in (P ∪ C), and

p1 = p2 6= lam, then

∀(p1 + w) ∈ L ⇒ (p2 + p1 + w) /∈ L (4.4)

Based on these rules, we define three new algorithms: Remove and Check in Lexicon (RCL);

Replace and Remove (RR); and Replicate and Remove (RPR).

CHAPTER 4. STEMMING ARABIC 97

Stemming the Particle “�Ë” lam. Due to the peculiarities of the letter “�Ë” lam, we deal

with this letter as a common first step before applying any of our algorithms. Removing the

particle “�Ë” lam from words that start with the combination “�ÊË” results in some incorrect

words. We therefore deal with this prefix before we deal with the particle “�Ë” lam by itself.

The prefix “�ÊË” is a result of adding the particle “�Ë” lam to one of the following:

• A noun that starts with the definite article. When the particle “�Ë” is added to a

word with the definite article “�Ë @” as the first two letters, the first letter “ @” is usually

replaced with the letter “�Ë” lam. For example, “ �é �ªÓ� A�m.Ì'@” (/alZaamiQa/〈the university〉)
becomes “ �é �ªÓ� A �j. ÊË” (/lilZaamiQa/〈for the university〉). However, if the letter following

the definite article is also the letter “�Ë” lam — as in “I.
�®
�
ÊË @” 〈the surname〉 — the next

case applies.

• A noun that starts with the letter “�Ë” lam. For example, “I.
��®
�
Ë”

(/laqab/〈surname, championship〉) becomes “I.
��®
��
ÊË�” (/lillaqab/〈to the surname〉) when

prefixed by the particle “�Ë” lam.

• A verb that starts with the letter “�Ë” lam. For example,
�	
�
Ë (/laff/〈wrapped〉) becomes

“
�	
�
ÊË�” (/lilaff/〈to wrap〉) when prefixed by the particle “�Ë” lam.

To stem this combination, we first check whether removing the prefix “�ÊË” produces a correct

word. If so, we remove the prefix; if not, we try adding the letter “ @” before this word. If the

new word is correct, we drop one “�Ë” lam from the original word.

To remove the particle “�Ë” lam from words that originally start with the definite article,

we replace the first “�Ë” lam with the letter “ @” and check whether the word exists in the

lexicon. If so, we can stem the prefix “�ÊË” without needing to check whether the remaining

part is correct. If not, we remove the first letter and check whether we can drop the first

“�Ë” lam. This algorithm is used before we start dealing with any other particles in the three

following algorithms.

Remove and Check in Lexicon (RCL). In our first algorithm we start by checking

the first letter of the word. If it is a possible particle — that is, it is a member of the set

P or C — we remove it and check the remaining word in our lexicon. If the remainder is

a valid word, the first letter is considered to be a particle, and is removed. Otherwise, the

original word is returned unchanged. For example, consider the word “YK
Pð” (/wrjd”/〈a blood

vein〉). It starts with the letter “ð” as a core letter. Removing this letter from the word

CHAPTER 4. STEMMING ARABIC 98

leaves the string “YK
P”. If the underlying used lexicon contains this word, the first letter is

considered as a conjunction and the latter string is returned. This approach differs from the

RC approach in that we check the remaining word against a lexicon, rather than against all

words occurring in the collection. We expect that this will allow us to better avoid invalid

words.

Replace and Remove (RR). Our second algorithm is based on Rule 4.3. If the first

letter of the word is a possible particle, we first test whether the remaining string appears

in our lexicon. If it does, we replace the first letter of the original string with “ð” waw

and “� 	̄” faa in turn, and test whether the new string is also a valid word. If both of the

new instances are correct, the evidence suggests that the original first letter was a particle,

and it is removed, with the remainder of the string being returned. The string is returned

unchanged if any of the new strings is incorrect. For instance, the word “H. A�JºË” (/b-kt”ab/〈to
the book〉) starts with the letter “�Ë”, which belongs to the set of particles. Removing this

letter leaves the word “H. A�J»” (/kt”ab/〈book〉). Adding both “ð” and “� 	̄” to this word results

in two valid instances, suggesting that the first letter is a particle.

Replicate and Remove (RPR). Our third algorithm performs two independent tests on

a candidate string. First, the initial letter is removed, and the remaining word is checked

against the lexicon. if it is not found, the original word is returned. Second, based on

Rule 4.4 above, the initial letter is duplicated, and the result is tested for correctness against

the lexicon. If test succeeds, the unchanged original word is returned (no stemming takes

place).

We have noticed that if the word is a verb starting with “�K.” baa or “�»” kaa, the first

letter is removed whether it is a particle or not, since these are particles that cannot precede

verbs. Duplicating them in verbs produces incorrect words, and causes the first letter of the

original word to be removed. We can use the letter “�Ë” lam to recognise verbs that start

with such particles. Accordingly, we introduce a new step where we add the letter “�Ë” lam

to the word and check it for correctness. If the word is incorrect with the letter “�Ë” lam, and

also incorrect with the first letter replicated, then we conclude that the word is not a verb,

and we remove the first letter.

For words starting with the letter “�Ë” lam, we add both “�K.” baa and “�»” kaf instead

of replicating it, since replication might result in a correct word, and lead to the particle

“�Ë” lam being preserved. If both new instances are incorrect, we remove the first “�Ë” lam.

CHAPTER 4. STEMMING ARABIC 99

Approach Incorrect words Possible particles Altered words

RCL 82 17 037 146 032

RR 82 15 907 146 779

RPR 82 20 869 142 082

Table 4.6: Results of the new approaches, showing markedly fewer incorrect words, fewer

possible particles, and comparable strength to the baseline in Table 4.5

For example, to remove the first particle from the word “H. A�J»” (/kt”ab/〈book〉) using RPR,

we first check the string “H. A�K” (/t”ab/〈rebent〉) against the lexicon, which exists with totally

different meaning. We duplicate the first letter and check the new word “H. A�Jº�»” (/kkt”ab/〈as

the book of〉) against the lexicon. As this word exists, no particle removal happens and we

return the original word unchanged.

The above algorithms may be applied repeatedly. In particular, if stemming a word

starting with either “ð” waw or “� 	̄” faa results in a new word of three or more characters

that has either “ð” waw, “�»” kaf, “�K.” baa, or “�Ë” lam as its first character, the particle

removal operation can be repeated; such repeated RPR is indicated as DRPR. Approaches

may be combined; for example RC or RCL may be used with RPR, as many proper nouns

and out-of-vocabulary-words start with particles that RPR and RR fail to remove.

Evaluation of Our Particle Removal Approaches

We have evaluated our new algorithms using the same data set described in Section 4.2.4.

As seen from Table 4.6, all three algorithms result in a low number of incorrect words after

stemming, with similar strength. However, they differ in the number of words with possible

particles that remain after stemming. The RPR approach leaves many words with possible

particles (around 5 000 more than the RR approach and 3 000 more than the RCL approach).

Our algorithms result in 82 incorrect words, compared to 5 164 using MT, 724 using RW,

and 220 using RC. The number of words that start with possible particles drops dramatically

with both RCL and RR. Although a fairer comparison of correctness could be carried out

using a lexicon other than the one used to stem particles, our main objective of showing

mistakes is to highlight the effects of removing particles without validating the remaining

string, rather than the correctness of the stemmed words.

Using the RPR approach we extracted all unique words that have not been stemmed

(words still having a first letter as a possible particle); these numbered 10 476 unique words.

CHAPTER 4. STEMMING ARABIC 100

Stemmed using RPR Stemmed using RR

Word Stem Meaning Stem Meaning

ú

�æ�̄ A¢�. ð ú

�æ�̄ A¢�. my ID card ú

�æ�̄ A£ my power

Ñî �D��KA 	̄ Ñî �D��KA 	̄ they missed it Ñî �D��K @ it came to them
�èXA�ñK. �èXA�ð pillow �èXA� masters

ù

	®J
Ëð ù

	®J
Ëð my mate ù

	®K
 made his promise

Aî 	D 	®»ð Aî 	D 	®» her coffin Aî 	D 	̄ her art

Aî�EA 	®�ñK. Aî�EA 	®�ð her recipes Aî�EA 	®� her characterstics

Table 4.7: Words with different meaning when stemmed by RPR and RR.

To check algorithm accuracy, we randomly selected 250 of these and examined them. We

found that only 12 words included particles that we believe should be stemmed; this indicates

an accuracy of around 95%.

As stemming particles can result in correct but completely different words, we decided to

pass the list we extracted using the RPR approach to other approaches, and to check whether

the stemmed words would be correct. We counted the number of correctly stemmed words

changed by each approach. Of the 10 476 words, RR produced 4 864 new correct stems.

Manual examination of the output list of the RR algorithm shows some interesting trends.

The algorithm achieves highly accurate particle recognition (few false positives). However,

it often fails to recognise that the first letter is an actual particle, because replacing the first

letter with “� 	̄” faa and “ð ”waw will often produce valid new words. For example, consider

the word “¨PAK.” (/baariQ/〈clever〉). Applying the RR algorithm results in two valid words:

“¨P@ð” (/wPrQa/〈and look after〉), and “¨PA 	̄” (/faPrQa/〈and look after〉). The first letter of

the original word is therefore removed, giving the word “¨P@” (/PrQa/〈look after〉), instead

of the original word “¨PAK.”.

We observe that about 90% of these are ambiguous, where the first character could be

interpreted as a particle or a main character of the stemmed word; the meaning is differ-

ent in the two cases. For example, the word “ÕÎJ

	̄
” (/fjlm/〈film〉) could also be read as

“Õ
�
Î�J

�	̄
” (/fajalum/〈and he collects〉), with the first letter read as a particle. MT, and RCL

generated 3 950 similar stems, while RC returned 2 706 stems. Examples are shown in Ta-

ble 4.7.

RPR keeps any letter that is possibly a core part of the word, even though it might also

CHAPTER 4. STEMMING ARABIC 101

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

wMT 0.391 0.576 0.656 0.284 0.364 0.656 0.320 0.435↓ 0.656

wRR 0.390 0.560 0.657 0.288 0.382 0.657 0.322 0.441 0.657

wRCL 0.372 0.564 0.622 0.280 0.372 0.622 0.311↓ 0.436 0.622

wRC 0.375 0.568 0.620 0.278 0.370 0.620 0.310↓ 0.436 0.620

wRPR 0.397 0.564 0.685 0.287 0.380 0.685 0.323 0.441 0.685

wDRPR 0.396 0.564 0.685 0.287 0.380 0.685 0.323 0.441 0.685

wRPRRC 0.393 0.588 0.672 0.288 0.372 0.672 0.323 0.444 0.672

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

wMT 0.425 0.640 0.628 0.350 0.440 0.836 0.375 0.507 0.751

wRR 0.414 0.628 0.623 0.351 0.434 0.840 0.372 0.499 0.751

wRCL 0.386 0.620 0.568 0.336 0.408 0.826 0.352 0.479 0.720

wRC 0.414 0.652 0.620 0.336 0.418 0.826 0.362 0.496 0.741

wRPR 0.425 0.648 0.655 0.351 0.434 0.840 0.376 0.505 0.764

wDRPR 0.425 0.640 0.655 0.350 0.432 0.840 0.375 0.501 0.764

wRPRRC 0.433 0.672 0.660 0.353 0.428 0.843 0.380↑ 0.509 0.768

Table 4.8: Performance of particle removal algorithms: the top part shows results of integrat-

ing algorithms with the light10 stemmer without using relevance feedback, while the bottom

part shows results of running the same algorithms along with relevance feedback. ↓ shows re-

sults significantly lower than the light10 stemmer, while ↑ shows results that are significantly

better than those of light10 stemmer at the 95% confidence level.

be considered as a particle. In contrast, RR removes such letters. In most cases, keeping the

letter appears to be the best choice.

Information Retrieval Evaluation While the ability to stem particles into valid Ara-

bic words is valuable for tasks such as machine translation, document summarisation, and

information extraction, stemming is usually applied with the intention of increasing the ef-

fectiveness of an information retrieval system. We therefore evaluate our approaches in the

context of an ad-hoc retrieval experiment.

Table 4.8 shows the results recorded for each approach. Rows show the results of actuat-

ing individual particle removal techniques in the light10 stemmer. DRPR is repeated RPR,

and RPRRC is RPR combined with RC. Results show that removing all particles decreases

CHAPTER 4. STEMMING ARABIC 102

the performance of the light10 stemmer. The MT technique results in a significant decrease

in P@10 [t-test, p = 0.032], while RCL and RC result in a significant decrease in MAP [t-

test, p = 0.038, and p = 0.033 respectively]. RPR, DRPR, and RPRRC slightly decrease

P@10 and recall but not significantly. In contrast, when using relevance feedback, MT, RPR,

DRPR, and RPRRC improve the light10 results; however, only RPRRC adds a significant

improvement in MAP [t-test, p = 0.040]. RPR and DRPR add a weakly significant improve-

ment in terms of recall [t-test, p = 0.067, and p = 0.072 respectively]. RC, RR, and RCL

perform below the baseline, but not significantly so.

In conclusion, uncontrolled removal of Arabic particles should be avoided, as this decreases

precision. The best alternative is to use a combination of RPR for removing particles from

Arabic words, and to use RC for removing particles from words that do not exist in the lexicon

(for example, proper nouns and foreign words). RCL and RR work the same; however, RCL

is recommended as RR introduces more stemming errors than RCL.

Arabic has more prefixes than particles. We continue in the next two subsections with a

discussion of how to stem the definite article and verb prefixes.

4.2.5 Stemming the Prefix “�Ë @”

The most well-known prefix for nouns is the definite article “�Ë @” (/Pl/〈the〉). All existing

retrieval stemmers stem this prefix in a similar manner [Khoja and Garside, 1999; Darwish

and Oard, 2002; Larkey et al., 2002], by comparing the first letters of the word with this prefix

without any validation. Since particles can be removed using one of the above approaches,

removing “�Ë @” would be generally straightforward; however, we need to be careful about

proper nouns and words that start with “�Ë @” as core letters.

Words with the patterns “ÈA �ª 	̄ @�” and “ÈA �ª�J�
	̄ @�”, such as “ÐA�êË @�” (/Pilhaam/〈inspiration〉)

and “H. A�î �D�Ë @�” (/Pilt”ihaab/〈infection〉) should not be stemmed, since the letters “�Ë @” are a core

part of such words. Stemming these letters would cause the words to change in meaning,

placing them under different index references, and in some cases leaving them meaningless.

For example, removing this prefix from these two words leaves “ÐA �ë” (/haam/〈important〉)
and “H. A�î�E�” (/t”ihaab/〈meaningless〉).

In Arabic a noun that accepts the definite article should not accept another definite article

as another prefix. Formally, based on the assumptions presented in Section 4.2.4, let al be

the Arabic definite article, and w be any word in L. Then:

CHAPTER 4. STEMMING ARABIC 103

• Rule 5: A word that starts with the definite articles as a prefix should not accept

another definite article.

∀(al + w) ∈ L ⇒ (al + (al + w)) /∈ L (4.5)

Based on this rule, we remove the first “�Ë @” al only if adding another “�Ë @” to a valid Arabic

word that starts with al forms an invalid Arabic word. We call this rule “Strict AL “�Ë @”
Removal (SAL)”. This approach therefore avoids the incorrect removal of the core “�Ë @” letters.

Another category of words that might have an “�Ë @” at their beginning are proper nouns.

Most AIR stemmers stem the combination “�ËA¿”, “�ËA 	̄”, “�Ë @ð”, “�ÊË”, and “�ËAK.”. There are

many proper nouns, especially foreign words, that start with this combination. We remove

such a prefix by verifying that the remaining string exists in the lexicon before removing such

a combination. We name this rule “Remove al Combinations (RalC)”. Table 4.9 shows the

result of both techniques compared to the baseline; noAL refers to light10 without stemming

the definite article “�Ë @”.

It is clear that stemming “�Ë @” improves retrieval effectiveness; noAl is significantly worse

than light10 used with any technique to stem the definite article. Adding RalC to light10

does not significantly affect effectiveness, with or without relevance feedback. Combining

SAL with light10 does not help effectiveness, and leads to poorer results with relevance

feedback.

4.2.6 Stemming Verb Prefixes

We introduce rules to stem verb prefixes based on the Arabic grammar as follows:

Let L be an Arabic lexicon, P be the set of the two prepositions {“�»”, “�K.”}, VP be the

set of verb prefixes {“ @”, “� 	K”, “�K
”, “��K”, “��”}, N be the set of nouns in the lexicon, V be

the set of verbs, p be a preposition in P, al be the Arabic definite article, and w be any word

in L. Then:

• Rule 6: Only a noun accepts the definite article and prepositions.

∀(w ∈ L) ∧ (al + w ∈ L) ⇒ w ∈ N (4.6)

and

∀(w ∈ L) ∧ (p + w ∈ L) ⇒ w ∈ N

CHAPTER 4. STEMMING ARABIC 104

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noAL 0.327 0.556 0.581 0.244 0.304 0.710 0.272↓ 0.388↓ 0.657↓
wSAL 0.393 0.568 0.680 0.289 0.376 0.758 0.324 0.440 0.726

wRalC 0.395 0.572 0.681 0.291 0.384 0.757 0.325 0.447 0.726

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noAL 0.405 0.680 0.647 0.295 0.352 0.799 0.332↓ 0.461↓ 0.737↓
wSAL 0.404 0.648 0.612 0.352 0.432 0.839 0.369 0.504 0.746

wRalC 0.416 0.648 0.640 0.351 0.436 0.840 0.373 0.507 0.758

Table 4.9: Effects of removing “�Ë @”. Removing “�Ë @” is better than not removing it at all.

RaLC improves stemming better than the SAL technique. ↓ represents significantly different

results at the 95% confidence level than the light10 performance.

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noVerbs 0.391 0.580 0.677 0.241 0.332 0.654 0.291 0.415 0.664

wVerbsToPast 0.386 0.560 0.670 0.292 0.382 0.758 0.323 0.441 0.722

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noVerbs 0.425 0.628 0.670 0.302 0.370 0.729 0.343 0.456 0.705

wVerbsToPast 0.421 0.648 0.645 0.351 0.428 0.835 0.374 0.501 0.757

Table 4.10: Effects of stemming verb prefixes on retrieval; stemming verb prefixes is better

than not stemming them.

CHAPTER 4. STEMMING ARABIC 105

• Rule 7: Based on Rule 6, a word is not a noun (and might be a verb) if it does not

accept either a preposition or the definite article “�Ë @”:

∀(w ∈ L) ∧ (p + w) /∈ L ⇒ (w /∈ N) (4.7)

and

∀(w ∈ L) ∧ (al + w) /∈ L ⇒ (w /∈ N)

• Rule 8: We conclude that a word is a verb if it is not a noun as in Rule 7 and starts

with verb prefixes:

∀w /∈ N ∧ w1 ∈ V P ⇒ w ∈ V (4.8)

Based on these rules, we stem words like “ �è �PAJ
��” (/sijaraa/〈a car〉), “ �è �PA�J��” (/sit”araa/〈a
curtain〉), and “ �è �PA�” (/saraa/〈the proper noun Sarah〉) by checking whether they are verbs

before removing the prefixes “�J
�”, “��J�” and “ A�” respectively. Removing verb prefixes

causes most verbs revert to the past tense. There is one category, known as the hollow

verbs, that instead reverts to the infinitive form. These contain verbs with long vowels in the

middle of the three-letter past tense verb. When stemming verbs, these should be treated

separately and returned to their past form by replacing the middle vowel with the vowel alef

“ @”. Examples of this class are: “Èñ�®K
” (/jqwl/〈says〉), and “ �HñÖß
” (/jmwt”/〈kills〉). Stemming

the prefix “�K
” in those verbs would leave “Èñ��̄” (/qawl/〈a say〉), and “ �Hñ�Ó” (/mawt”/〈death〉)
respectively. Replacing the middle vowel with “ @” would leave “

�
ÈA��̄” (/qaala/〈said〉) and

“
��HAÓ” (/mat”a/〈died〉), which are the past tense forms.

We checked the effects of both removing verbs completely from the collection and the

queries, and stemming verbs on retrieval. The light10 stemmer does not stem any verb

prefixes. Results are shown in Table 4.10. In this table, noVerbs stands for not indexing

verbs at all, and wVerbsToPast stands for stemming verbs and returning and modifying

hollow verbs. We see that stemming verbs adds some improvements to precision over the

light10 stemmer. Not indexing verbs at all negatively affects the retrieval performance.

4.2.7 Overall Prefix Removal Approach

The above prefix removal techniques are added altogether to the light10 stemmer in the

following order,

• Remove the prepositions using the RPRRC technique.

CHAPTER 4. STEMMING ARABIC 106

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

wPrfxR 0.389 0.568 0.671 0.291 0.368 0.761 0.323 0.435 0.724

wNorPrfxR 0.371 0.588 0.627 0.293 0.372 0.766 0.319 0.444 0.709

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

wPrfxR 0.402 0.636 0.588 0.351 0.426 0.837 0.368 0.496 0.735

wNorPrfxR 0.442 0.688 0.697 0.355 0.422 0.840 0.384↑ 0.511 0.782

Table 4.11: Effects of adding our normalisation and prefix removal techniques to the light10

stemmer. Prefix removal alone has a negative effect on retrieval effectiveness, but the reverse

is true when it is used in conjunction with normalisation and relevance feedback.

• Remove the definite article using the SaL and RalC techniques.

• Remove suffixes as in the light10 stemmer.

• Remove verb prefixes.

We refer to this technique as “wPrfxR”. Table 4.11 shows the results of running the light10

stemmer with our prefix removal techniques. This prefix removal technique has a negative

impact. Combining this prefix removal and normalisation (wNorPrfxR) also reduces the per-

formance of the light10 stemmer. In contrast, using relevance feedback results in a significant

improvement in MAP [t-test, p = 0.043], and also improves P@10 and recall.

Arabic has more suffixes than prefixes. Some suffixes are easily recognised and rarely oc-

cur as core letters of Arabic words. Longer suffixes are easier to stem than shorter ones [Aljlayl

and Frieder, 2002]. We stem suffixes differently and use different rules based on the suffix

type. In the following subsections, we present how to stem these suffixes and their individual

effect on stemming using light10 as a baseline, and then present the effect on stemming of

using a combined approach.

4.2.8 Possessive Pronouns Suffixes

We start by removing personal and possessive pronouns suffixes that are longer than one char-

acter; these are “Ñê�” (/hm/〈their〉), “ Aê�” (/haa/〈her〉), and “ AÒê�” (/huma/〈their -dual-〉).
We do not stem the second-person pronouns as their frequency in written text is very low. In

CHAPTER 4. STEMMING ARABIC 107

the TREC 2001 collection, 158 647 words found with the pronouns “Õ»” (/kum/〈yours -plural-

〉) and “ AÒ»” (/kuma/〈yours -dual-〉); indeed, “Õ»” (/kam/〈as or and〉); appears far more fre-

quently, 71 076 words, followed by 60 373 words with the sequence “Õ
�
º �k” (/èukum/〈ruling〉)

as core letters. Removing such suffixes might affect other words that originally end with

these suffixes. Third-person suffixes occur more frequently in written text and should all be

removed. To check whether a suffix is a pronoun, we replace it with other pronouns and

check whether the resultant word is correct. A valid word that ends with the suffix “Aë”

should be also valid when this suffix is replaced with “ è”, “Ñë”, or “ 	áë”. Let PS be the set

of personal and possessive pronouns, and ps1 and ps2 be a suffix in PS. We remove these

suffixes based on the following rule.

• Rule 9: A word that accepts a personal or a pronoun suffix, should accept other personal

and pronoun suffixes.

∀(w ∈ L) ∧ (w + ps1) ∈ L ⇒ (w + ps2) ∈ L (4.9)

The light10 stemmer removes only the pronoun suffix “Aë” and “ é�”. Table 4.12 shows

the effects of stemming these suffixes on the light10 stemmer. The label “wPP” refers to

stemming the third-person pronouns mentioned above, and “noPP” refers to not stemming

pronouns at all. Results show that stemming these suffixes does not produce a major effect

on retrieval results with or without relevance feedback. It does increase recall, but not

significantly. Similar performance is obtained using noPP with a slight improvement in

precision and recall.

4.2.9 The Dual Suffix “ 	à@”

The suffix “ 	à@” occurs frequently in Arabic words, but these letters may also be a core part

of a word, for example in the word “ 	àA��J���.” (/bust”aan/〈garden〉). To stem this suffix while

avoiding stemming core letters, we use the grammatical rule that a dual terminates with

“ 	à@” when it is in the nominative mode, and in “ 	áK
” or “ @” when it is in the accusative and

genitive moods. We replace the last “ 	à@” with “ 	áK
” or “ @” and check the new word in the

Arabic lexicon; we stem this suffix only if the new instance of the word exists.

If the above rules fail to remove this suffix, the prefix should be checked to see whether

“ 	à@” is a verb suffix. We remove it if the prefix is either “�K
” or “�J
�” (verb prefixes). The

suffix could also be removed by checking for the remaining string in the lexicon. If the

CHAPTER 4. STEMMING ARABIC 108

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noPP 0.396 0.572 0.684 0.292 0.382 0.757 0.326 0.445 0.727

wPP 0.395 0.564 0.682 0.292 0.386 0.758 0.326 0.445 0.727

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noPP 0.426 0.648 0.666 0.345 0.432 0.838 0.372 0.504 0.768

wPP 0.426 0.640 0.666 0.345 0.440 0.834 0.372 0.507 0.765

Table 4.12: Effects of stemming pronoun suffixes. Stemming pronoun suffixes has no affect

on light10 retrieval performance.

remaining string is not found we retain it. The latter rule sometimes fails as there are cases

where removal of this suffix from some non-dual words creates a valid word. For example,

stemming the proper noun “ 	àAÒª�	K” /nuQman/ results in “Ñª	K” (/nQm/〈yes〉). These two rules

can be formalised based on the previous assumptions and having DS as the set of dual suffixes

{“ 	à@”,“ 	áK
”, “ @”} and letting ds1, ds2 be any two elements in DS then:

• Rule 10: A valid dual word that ends with “ 	à@” should also be valid when it ends with

“ 	áK
” or “ A�”.

∀(w + ds1) ∈ L ⇒ (w + ds2) ∈ L (4.10)

The light10 stemmer removes this suffix without any checking. As seen from Table 4.13,

not stemming this suffix (noAN), or stemming the suffix using our rules (wAN) are both

more effective than the light10 approach.

4.2.10 The Suffix “ �H@”

This suffix indicates the feminine sound plural as described in Section 2.1.4. It is usually an

extension to the final taa marbuta “ �è”, and can be stemmed if the remaining string exists in

the lexicon. If the remaining string is not a valid Arabic word, further checking after replacing

it with taa Marbuta “ �è” assures that the suffix is the feminine sound plural. Formally, let at

represent the suffix “ �H@”; st represent the suffix “ �è”, then we can derive Rule 11 as:

CHAPTER 4. STEMMING ARABIC 109

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noAN 0.393 0.560 0.677 0.295 0.380 0.759 0.328 0.440 0.725

wAN 0.395 0.568 0.682 0.293 0.386 0.757 0.327 0.447 0.727

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noAN 0.422 0.648 0.650 0.347 0.426 0.834 0.372 0.500 0.759

wAN 0.426 0.640 0.658 0.345 0.438 0.832 0.372 0.505 0.761

Table 4.13: Effects of stemming the suffix “ 	à@”. Stemming this suffix using our rules, or not

stemming it at all, is better than stemming it without validation.

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noAT 0.365 0.556 0.682 0.281 0.376 0.755 0.309 0.436 0.725

wAT 0.395 0.568 0.682 0.291 0.382 0.757 0.325 0.444 0.727

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noAT 0.384 0.632 0.655 0.327 0.410 0.831 0.346 0.484 0.759

wAT 0.425 0.640 0.656 0.346 0.440 0.835 0.372 0.507 0.762

Table 4.14: Effects of stemming “ �H@. Stemming the suffix “ �H@” with or without rules has

similar effects on retrieval, but not stemming it negatively affects retrieval performance.

• Rule 11: A valid Arabic word that ends with the two letters “ �H@” as the feminine sound

plural suffix should also be valid when replacing “ �H@” with the feminine singular suffix

“ �è”.

∀(w + at) ∈ L ∧ (w + st) ∈ L ⇒ w ∈ L (4.11)

Based on this rule, the suffix “ �H@” can be removed if the word exists in the normal singular

feminine form with the suffix “ �é�”.

Table 4.14 shows that stemming this suffix using our rules does not have an effect on

the stemming result, indicating that stemming this suffix without any rules does not have

negative effects on retrieval. At the same time, removing this suffix is shown to be better

than leaving it in place.

CHAPTER 4. STEMMING ARABIC 110

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noWNYN 0.399 0.572 0.680 0.289 0.378 0.750 0.326 0.443 0.721

wWNYN 0.397 0.576 0.684 0.295 0.386 0.763 0.329 0.449 0.731

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noWNYN 0.431 0.644 0.676 0.342 0.422 0.835 0.371 0.496 0.770

wWNYN 0.425 0.648 0.657 0.349 0.436 0.836 0.374 0.507 0.762

Table 4.15: Effects of stemming “ 	àð” and “ 	áK
”; the light10 stemmer stems these suffixes

without any verification rules. Using the light10 stemmer without stemming these suffixes

(noWNYN), or using the light10 stemmer and applying our rules to stem these suffixes, both

produce better results than the default light10 stemmer.

4.2.11 The Suffixes “ 	àð” and “ 	áK
”

These suffixes are added to the singular form of the noun to indicate the masculine sound

plural. The same rule used to stem the “ 	à@” suffix can be applied to these suffixes. The

suffix “ 	àð” can be recognised by replacing it with “ 	áK
”, and stemming only if this yields a

valid word. The suffix “ 	àð” is also a suffix of the imperfect verbs “ �é�Ò	mÌ'@ ÈAª 	̄ B@”. In cases

where replacing the suffix “ 	àð” with “ 	áK
” results in an incorrect word in the lexicon, the

word prefixes can be checked; if the word starts with either “ø
 ” or “�J
�” (verb prefixes),

then this suffix can be safely removed. Likewise, the suffix “ 	áK
” can be removed if replacing

it with either “ 	àð” or “ 	à@” results in a correct word in the lexicon.

Table 4.15 shows the results obtained by stemming these two suffixes using our rules.

Using our rules, the result shows a slight improvement over the light10 stemmer, which stems

them without any validation. The increase is similar with and without relevance feedback.

4.2.12 The Single Letter Suffixes “ �é�” and “ø
 ”

The suffix “ �è” is very common. In the titles fields of TREC 2001 and TREC 2002 queries,

52 (20%) words out of 208 unique words end with this suffix. Before stemming this suffix,

we must check whether the remaining string is correct, while avoiding conflating words that

differ in meaning. For example, the word “ �é �ªÓ� Am.Ì'@” (/alZamiQaa/〈the university〉) would be

stemmed to “©Ó� Am.Ì'@” (/alZamiQ/〈the mosque〉), which is naturally a valid Arabic word. We do

CHAPTER 4. STEMMING ARABIC 111

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noSingle 0.321 0.556 0.623 0.259 0.354 0.720 0.280↓ 0.421 0.680

wSingle 0.372 0.572 0.647 0.288 0.382 0.745 0.316 0.445 0.705

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noSingle 0.386 0.652 0.698 0.317 0.384 0.821 0.340 0.473 0.771

wSingle 0.405 0.648 0.650 0.345 0.422 0.833 0.365 0.497 0.758

Table 4.16: Effects of stemming single character suffixes. noSingle shows the results of light10

stemmer without stemming suffixes “ �è” and “ø
 ”, wSingle shows results of stemming using

light10 with our new rules. Stemming this suffixes using rules decreases the performance

of the light10 stemmer, but leaving it without stemming results in a significant decrease in

results.

not handle such cases as these need techniques such as word disambiguation and considering

other words in the sentence. We minimise stemming mistakes by returning the letter “ �H”

to its origin letter “ �è” after stemming. We either stem the new “ �è” suffix, or leave it if the

remaining string is not a valid word.

The suffix “ø
 ” could be the relative suffix or the subject (first person) possessive pro-

noun, as in the words “ú
æ. J
Ë�” (/lijbj/〈Libyan〉) and “ú
G. A
�J»� ” (/kit”abj/〈my book〉) respectively.

Stemming the suffix in the first case will not bring the word to its class terms in many cases,

for example, removing the suffix in the word “ú
æ. J
Ë” will leave the string “I. J
Ë” which is not

among the terms that reference words that relate to Libya. As such, the suffix should be

removed only if the remaining word is valid. In the second case, the suffix can be properly

removed be replacing it with one of the third-person possessive pronouns “Aë” 〈her〉 and “ è”
〈his〉, and ensuring that the two new instances are correct words in the lexicon.

Table 4.16 shows the results of stemming these suffixes with the light10 stemmer. Both

precision and recall are negatively affected by removing these suffixes (indicated by “wS-

ingle”), indicating the difficulty of stemming these suffixes. Leaving these suffixes without

stemming (indicated by “noSingle”) worsens the results, suggesting that stemming is better.

CHAPTER 4. STEMMING ARABIC 112

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

noSfxR 0.289 0.564 0.568 0.238 0.330 0.683 0.255↓ 0.408 0.636↓
wSfxR 0.360 0.600 0.628 0.275 0.364 0.739 0.303 0.443 0.693

NorPrfxRSfxR 0.384 0.588 0.647 0.297 0.368 0.768 0.326 0.441 0.718

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

noSfxR 0.354 0.636 0.652 0.290 0.378 0.794 0.312↓ 0.464 0.736↓
wSfxR 0.417 0.656 0.688 0.333 0.422 0.829 0.361 0.500 0.771

NorPrfxRSfxR 0.429 0.676 0.687 0.358 0.444 0.839 0.382 0.521 0.776

Table 4.17: Effects of stemming All suffixes; leaving suffixes without removal “noSfxR” signif-

icantly reduces retrieval performance; while adding our new suffix removal techniques reduces

the effectiveness of the light10 stemmer. Adding our normalisation, prefix removal techniques,

and suffix removal techniques improves the performance of the light10 stemmer. ↓ represents

significantly different results at the 95% confidence level than the light10 performance.

4.2.13 Overall Suffix Removal

Table 4.17 shows the effects of adding all the above suffix removal techniques to the light10

stemmer. Results show that adding suffix removal techniques only “light10SfxR” reduces

retrieval performance. This is as expected, since removing all suffixes without any reference

to prefixes is inadvisable. The light10 stemmer removes only the particle “ð” and the definite

articles, and leaves other prefixes such as verb prefixes and other inseparable particles. When

adding other prefix removal techniques to the light10 stemmer “NorPrfxRSfxR”, results

improve. However, the differences are not statistically significant.

4.2.14 Our New Stemmers

We present our stemmers based on our experiments in the previous subsections. We introduce

two types of algorithms: a rule-based stemmer where we use our rules to validate stemming

affixes, and light stemmers where we modify the number of affixes removed in the light10

stemmer.

CHAPTER 4. STEMMING ARABIC 113

Rule-based Light Stemmers

We integrate all our techniques into the light10 stemmer to explore their impact on retrieval

performance.

We call our algorithms, “Restrict”, “Restrict1”, and ”Restrict2”.

In the “Restrict” algorithm we:

• normalise the text as in Section 4.2.2 except that we do not join compound nouns.

• remove stopwords as in the light10 stemmer,

• remove prepositions and conjunctions using the RPR technique,

• remove the definite article if the remaining string contains three or more characters,

• remove the verb prefixes,

• remove pronoun suffixes “ Aë”, “Ñë”, “ AÒë”, and “ 	áë”,

• remove the suffixes “ �H@”, “ 	àð”, “ 	à@”, “ 	áK
” using our rules,

• remove the suffix “ è”, “ éK
”, and “ @ð”, and

• remove the single suffix “ø
 ” if replacing it with “ è” or “ Aë” results in a correct word.

In the “Restrict1” algorithm we:

• normalise the collection fully as described in Section 4.2.2,

• remove prepositions and conjunctions using our RPRRC technique,

• remove the definite articles using our SAL and RalC techniques,

• remove verb prefixes, and

• remove suffixes as in the light10 stemmer.

In the “Restrict2” algorithm we replace the original light10 suffix removal techniques in

“Restrict1” with our new suffix removal techniques.

Results of these three algorithms are shown in Table 4.18. Restrict and Restrict2 slightly

increase the performance of the light10 stemmer, while Restrict1 decreases the performance

of this stemmer.

CHAPTER 4. STEMMING ARABIC 114

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

Restrict 0.401 0.576 0.685 0.290 0.376 0.762 0.327 0.443 0.730

Restrict1 0.371 0.588 0.627 0.293 0.372 0.766 0.319 0.444 0.709

Restrict2 0.384 0.588 0.647 0.297 0.368 0.768 0.326 0.441 0.718

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

Restrict 0.445 0.676 0.713 0.352 0.442 0.835 0.383 0.520 0.784↑
Restrict1 0.442 0.688 0.697 0.355 0.422 0.840 0.384↑ 0.511 0.782↑
Restrict2 0.429 0.676 0.687 0.358 0.444 0.839 0.382 0.521 0.776

Table 4.18: Performance of our three algorithms. The upper half shows performance without

the relevance feedback, while the lower half shows the performance with relevance feedback.

While our algorithms show similar performance to the baseline without using relevance feed-

back, they show significant improvement with relevance feedback.

When using relevance feedback (at the lower half of Table 4.18), our algorithms outper-

form the light10 stemmer. The increase in recall by Restrict and Restrict1 is statistically

significant [t-test, p = 0.039, and p = 0.012 respectively]. In terms of MAP, Restrict is

significantly better [t-test, p = 0.043], while the improvement for Restrict1 is weakly sig-

nificant [t-test, p = 0.071]. Restrict2 performs better than the light10 stemmer, but the

improvement is not significant for MAP, P@10, or recall.

More Light Stemmers

Based on the results in the previous section, we also draw up three lighter stemmers out of

the light10 stemmer that we call “light11”, “light12”, and “light13”.

In the “light11” stemmer, we omit pronoun suffix stemming, as well as the unnecessary

steps in the light10 stemmer where the suffixes “ �è” and “ �éK
” are stemmed after normalisation.

We also reduced the stopword list by removing non-normalised words, as the light10 stemmer

normalises words before matching words with the stopword list. This results in 122 stopwords

instead of 168 words.

In the “light12” stemmer, we omit more suffixes and remove only “ �H@”,“ è”, “ø
 ”, and

“ éK
”. We also normalise words before stemming using our normalisation techniques without

CHAPTER 4. STEMMING ARABIC 115

Prefixes Removed Suffixes Removed

light10 ð , �ËA 	̄ , �Ë A¿ , �Ë AK. , �Ë @ð , �Ë @ , �ÊË ø
 , �è , è , �éK
 , éK
 , 	áK
 , 	àð , �H@ , 	à@ , Aë
light11 ð , �ËA 	̄ , �Ë A¿ , �Ë AK. , �Ë @ð , �Ë @ , �ÊË ø
 , è , éK
 , 	áK
 , 	àð , �H@ , 	à@
light12 ð , �ËA 	̄ , �Ë A¿ , �Ë AK. , �Ë @ð , �Ë @ , �ÊË ø
 , è , éK
 , �H@
light13 �Ë @ , �ÊË , �Ë , � 	̄ , �» , �K. , ð ø
 , è , éK
 , �H@

Table 4.19: Affixes removed by light10, light11, light12, and light13 stemmers.

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

light11 0.396 0.572 0.684 0.292 0.382 0.757 0.326 0.445 0.727

light12 0.399 0.584 0.680 0.294 0.380 0.753 0.329 0.448 0.723

light13 0.401 0.596 0.680 0.290 0.374 0.753 0.327 0.448 0.723

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

light11 0.426 0.648 0.666 0.345 0.432 0.838 0.372 0.504 0.768

light12 0.431 0.648 0.678 0.350 0.436 0.833 0.377 0.507 0.769

light13 0.430 0.644 0.668 0.352 0.440 0.846 0.378 0.508 0.773↑

Table 4.20: Results of the light11, light12 and light13 stemmers compared to light10 stemmers.

The new light stemmer perform better than the light10 stemmer with and without relevance

feedback. ↑ shows values that are significantly better than the light10 stemmer at the 95%

confidence level.

splitting words.

In the “light13” stemmer, we remove all prepositions and conjunctions using the RPRRC

technique, and then we remove the definite article “�Ë @” as well as removing the same suffixes

removed by the light12 stemmer.

Table 4.19 shows the prefixes and suffixes removed by the original light10, light11, light12,

and light13 stemmers.

As can be seen from Table 4.20, the new stemmers perform better than the light10

baseline; light13 adds a significant improvement in recall [t-test, p = 0.029] when using

relevance feedback; and light11 adds a weakly significant improvement in recall [t-test, p =

0.076]. None of the algorithms lead to a significant improvement in MAP or P@10.

CHAPTER 4. STEMMING ARABIC 116

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

Restrict2 0.384 0.588 0.647 0.297 0.368 0.768 0.326 0.441 0.718

Restrict2E 0.380 0.576 0.646 0.291 0.368 0.758 0.320↓ 0.437 0.712↓
Restrict2 0.429 0.676 0.687 0.358 0.444 0.839 0.382 0.521 0.776

Restrict2E 0.424 0.668 0.681 0.346 0.426 0.824 0.372↓ 0.507 0.765

Table 4.21: Performance of Restrict2 using extracted Office 2003 lexicon words.

4.2.15 Using the Collection as a Lexicon

Our approach depends on validation before removing affixes. This requires a comprehensive

Arabic lexicon that contains the different forms of Arabic words. In the above stemmers we

used the Microsoft Office 2003 lexicon. This affects the efficiency and the portability of our

stemmers, since stemming the whole collection takes over 100 minutes and cannot be carried

out on machines that do not run Microsoft Windows with the Office 2003 application suit

installed. In this section we describe two alternative options.

Using the Extracted Office Lexicon

One option is to extract a list of words from the Microsoft Office lexicon. To do this,

we passed all combinations of one to seven Arabic letters to the lexicon, and determined

which words were valid; 2 976 645 words remained. We did not process words larger than 7

characters to maintain tractability. We minimised the number of words to test by excluding

character sequences that are not valid in Arabic. For example, we eliminated sequences of

three identical characters.

Table 4.21 shows the results obtained using this extracted lexicon. Restrict2 with the

extracted lexicon — which we name Restrict2E — performs significantly worse than the

original Restrict2, which uses the full Microsoft Office 2003 lexicon. This result is expected,

as many Arabic words inflect to more than seven characters. Such words are not stemmed

as they are considered OOV, and most of our rules will not apply to them.

Using the Corpus as a Lexicon

Corpora usually have the different forms of words used regularly, and we believe that using

corpora terms as a lexicon would be sufficient for our stemmer. To generate the corpus

CHAPTER 4. STEMMING ARABIC 117

TREC 2001 TREC 2002 TREC 2001 and 2002

MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

light10 0.391 0.576 0.674 0.291 0.388 0.758 0.324 0.451 0.724

Restrictc 0.388 0.564 0.662 0.296 0.388 0.768 0.327 0.447 0.724

Restrict1c 0.384 0.552 0.663 0.292 0.378 0.762 0.322 0.436 0.721

Restrict2c 0.384 0.620 0.642 0.300 0.390 0.772 0.328 0.467 0.719

light10 0.416 0.644 0.641 0.350 0.438 0.838 0.372 0.507 0.757

Restrictc 0.407 0.628 0.583 0.296 0.388 0.769 0.373 0.497 0.737

Restrict1c 0.437 0.668 0.684 0.361 0.438 0.843 0.386↑ 0.515 0.778

Restrict2c 0.444 0.680 0.721 0.362 0.450 0.844 0.390↑ 0.527 0.793↑

Table 4.22: Effects of using the unique terms of the corpus as a lexicon. Stemming results

are better than when using the Microsoft Office 2003 lexicon.

lexicon, we extracted all unique words of the TREC 2001 corpus, and repeated the Restrict,

Restrict1 and Restrict2 experiments using this new lexicon rather than the Microsoft Office

2003.

Table 4.22 shows results obtained using this lexicon. Our algorithms are as good as

the light10 stemmer, with Restrictc and Restrict2c performing slightly better. In contrast,

when using relevance feedback, Restrict1c improves MAP significantly [t-test, p = 0.017];

and Restrict2c improves recall and MAP [t-test, p = 0.036, and p = 0.040 respectively].

The success of using the corpus with our rules is due to the fact that our techniques remove

affixes better when using the actual terms of the corpus. An example that does not work

when using professionally prepared Arabic lexicons is stripping prefixes from words that are

not in that lexicon, such as foreign words. By using the corpus as lexicon, our approaches —

such as the preposition removal techniques described in 4.2.4 — are more effective even with

proper nouns and foreign words. For example, the technique RPR that strips conjunctions

and prepositions from Arabic words works only when the remaining string after the first

character is found in the lexicon. Such proper nouns and foreign words frequently do exist

in the corpus, but may not exist in the professional lexicon. This enables the technique

to correctly strip the first letter if it is a conjunction or a preposition. For instance, the

word “ AJ
 	KPñ 	®J
ËA¿ð” (/wkaljfwrnja/〈and California〉) is a foreign word with the conjunction “ð”.

Using our RPR technique with the Microsoft Office 2003 lexicon leaves the word untouched,

as the proper noun “ AJ
 	KPñ 	®J
ËA¿” does not exist in that lexicon. However, when using the

CHAPTER 4. STEMMING ARABIC 118

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

light10
Restrict1c
Restrict2c

Figure 4.3: Performance of the light10 plus the normalisation and the prefix removal tech-

niques on the 11 recall points.

corpus terms lexicon, the stemmer correctly returns “AJ
 	KPñ 	®J
ËA¿” without the conjunction “ð”,

as the proper noun alone does exist in the corpus. Using the corpus improves not only

retrieval performance for our rule-base light stemmers, but also improves their efficiency.

The Restrict1c algorithm stems the collection in 11 minutes. It is about 5.5 times faster than

using the Microsoft Office 2003 lexicon (61 minutes), 3 times faster than the Buckwalter

stemmer (36 minutes), and only 1.5 times slower than the light10 stemmer (7.5 minutes).

Figure 4.3 shows the performance of these two algorithms along with the baseline light10

stemmer. Our algorithms conflate Arabic terms better than algorithms that do not use

morphological rules. Table 4.23 shows the number of terms, unique terms and index size for

all stemming algorithms described.

4.2.16 Concluding Remarks

The experiments carried out in the last section show that light stemming in general can

CHAPTER 4. STEMMING ARABIC 119

Index

Terms Unique terms Size (Kilobytes)

Khoja 59 279 415 193 932 482 376

B.Lemma 57 247 663 206 370 477 348

Restrict1 57 475 134 230 919 487 032

Restrict1c 57 478 755 233 062 488 096

Restrict2c 57 465 279 247 515 488 672

Al-StemN 57 525 479 252 526 492 580

Restrictc 59 098 485 254 705 502 468

B.Stem 57 521 776 258 059 487 336

Restrict2 57 450 603 273 620 491 364

light13 57 566 788 277 601 497 296

light10 57 621 607 279 194 496 812

Restrict 55 821 287 285 306 480 568

B.Stem2 57 662 918 292 763 495 908

light11 55 820 872 295 544 484 652

light12 57 568 036 321 810 502 960

noStemming 71 769 922 523 727 644 120

Al-Stem 71 977 278 624 809 640 952

Table 4.23: Number of terms, unique terms, and index size of each algorithm. Algorithms

that use rules produce fewer unique terms than those that do not use rules in stemming.

Stemmers are ordered by their unique terms.

be improved further. Our results show that retrieval using the TREC 2001 test collection

is more susceptible to improvements when using morphological rules than the TREC 2002

collection. This could be to related to:

• The number of queries used in each collection: TREC 2002 has more queries than

TREC 2001 (50 and 25, respectively).

• The difference in the way that relevance judgements were created, as discussed in

Section 2.3.2.

• The nature of queries in both collections. TREC 2001 queries contain few proper nouns

or foreign names, while TREC 2002 queries contain these more frequently. Morpholog-

CHAPTER 4. STEMMING ARABIC 120

ical rules fail to stem proper nouns in most cases, while uncontrolled light stemming

removes prefixes in these categories of words, collating the same proper nouns together.

Based on our experience with both collections, neither TREC 2001 nor TREC 2002 could

be used alone as a development collection. We suggest that in order to achieve better results,

that a development collection be formed from topics in both collections rather than using

TREC 2001 as a development collection and TREC 2002 as test collection.

4.3 AIR Experiments on Automatic Speech Recognition Generated Text

Techniques such as normalisation, stopping, tokenisation, root stemming, and light stemming

have been shown to increase effectiveness on newswire text [Larkey et al., 2002; Aljlayl and

Frieder, 2001]. In this section, we explore a different data set comprising text automatically

transcribed from broadcast television news. We use this collection for cross-lingual queries,

where queries in English are translated into Arabic, then searched against the collection.

This is a very different environment from pure written Arabic monolingual search.

4.3.1 Resources

In this section we describe the collections, translation tools, and stemming algorithms that

we use in our experiments.

Collection Description

The TRECVID 2005 data set contains recorded television broadcast news in three languages

— Arabic, Chinese, and English — with the associated ASR transcripts available [Over et al.,

2006]. Of the total of 169 hours of footage, 43 hours are in Arabic, 52 hours are in Chinese,

and 74 hours are in US English. The collection has 24 English-language queries to be used

to find specific video footage in the entire collection. The queries all begin with the phrase,

“find shots of”, and aim to find scenes containing a specific person, place or object, or a

general view, building, or action.

The TRECVID ground truth for measurement of retrieval performance is prepared by

manually identifying video shots — sections of video footage that correspond to a single

camera operation — that satisfy the information need of the user based on the visual content.

To create a text-based test set, we aligned the ASR text with the corresponding shots in

the video stream. To allow for speed variations and gaps in speech, the text for each shot is

CHAPTER 4. STEMMING ARABIC 121

 0

 500

 1000

 1500

 2000

 2500

17
2

17
1

17
0

16
9

16
8

16
7

16
6

16
5

16
4

16
3

16
2

16
1

16
0

15
9

15
8

15
7

15
6

15
5

15
4

15
3

15
2

15
1

15
0

14
9

N
um

be
r

of
 R

el
ev

an
t D

oc
um

en
ts

Queries

Non-Arabic
Arabic

Figure 4.4: The number of documents relevant to each query for the Arabic and non-Arabic

documents in the collection

the ASR text that temporally corresponds with that shot and the two shots on either side.

The text corresponding to each shot is considered an independent document that is then

indexed using a text search engine. A reasonable alternative would be to use story-aligned

text [Hsu and Chang, 2005; Hsu et al., 2005], rather than shot-aligned text, as the unit of

retrieval; we do not explore story alignment in this work.

We interpret the relevance judgments in the context of this alignment; a document is

relevant to the query if its corresponding shot has been indicated as being relevant in the

ground truth.

For the work described in this chapter, we focus on only the Arabic data, comprising 26%

of the entire TRECVID 2005 collection. The distribution of relevant documents shows that

of 13 945 relevant documents, only 3 475 are Arabic. Similarly, the collection-wide average

CHAPTER 4. STEMMING ARABIC 122

number of relevant documents per query is 581.0, while for the Arabic subset, the average

number of relevant documents per query is 144.8. Figure 4.4 shows the number of relevant

Arabic and non-Arabic documents for each query. Naturally, the smaller pool of relevant

answers will lead to lower retrieval performance than that reported for work that uses the

entire collection. Since we use only the Arabic text, we extracted the relevance judgements

for only the Arabic documents in the pool.

4.3.2 Automatic Translation Tools

To evaluate the English queries against the Arabic text, we use three different online au-

tomatic translation tools to render the queries into Arabic. These are AlMisbar,4 Google

Translate,5 and Systran.6 We expect that the choice of translation tool can affect the quality

of the translation, and hence the retrieval effectiveness.

4.3.3 Stemmers and Retrieval Engines

We used the Lemur toolkit to index the collection, and to evaluate the queries against the

collection. Lemur incorporates the light10 Arabic stemmer [Larkey et al., 2002] and supports

most of the techniques we have described for Arabic search: normalisation, stopword removal,

and light stemming.

We have used the Khoja stemmer [Khoja and Garside, 1999] to test the effectiveness of

root stemming on this collection. This stemmer removes prefixes and suffixes, and checks for

pattern matches after each affix removal; it extracts and returns the root if a match is found

in the root-word dictionary, and returns the original word otherwise.

To test tokenisation, where the text in both queries and the collection is split into over-

lapping tokens of size n and indexed using those tokens instead of complete words, we chose

to use n-grams of size three, which have been reported to produce good results for Arabic

retrieval [Xu et al., 2002].

4.3.4 Experiments

To evaluate the effectiveness of different techniques used in AIR, we designed five different

runs using the translated queries:
4http://www.almisbar.com
5http://translate.google.com
6http://www.systransoft.com

CHAPTER 4. STEMMING ARABIC 123

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Baseline
Normalisation

Stopwords removal
The light10 stemmer

The Khoja root stemmer
Trigrams

Figure 4.5: Recall-Precision curves for the ASR collection using the different approaches;

queries translated with AlMisbar.

1. normalise the queries and run them against the normalised ASR text;

2. stop the queries and run them against the ASR text;

3. stem the queries using the light10 stemmer, and run them against the similarly-stemmed

ASR text;

4. stem the queries using the Khoja root stemmer, and run them against the similarly-

stemmed ASR text; and

5. tokenise the queries into 3-grams and run them against the similarly-tokenised ASR

text.

As a baseline for comparison, we run the translated queries directly against the ASR text.

CHAPTER 4. STEMMING ARABIC 124

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Baseline
Normalisation

Stopwords removal
The light10 stemmer

The Khoja root stemmer
Trigrams

Figure 4.6: Recall-Precision curves for the ASR collection using the different approaches;

queries translated with Google Translate.

4.3.5 Results and Discussion

The results for each run are shown in Table 4.24. The techniques have a clear impact

on retrieval performance: with the exception of root stemming and trigrams, all produce

improved performance over the baseline. As can be seen from Figures 4.5, 4.6, and 4.7, this

improvement is consistent across all three translation systems.

This is an important finding, confirming that the approaches are useful even for noisy

data such as that used in these experiments. Light stemming appears to produce the most

improvement, followed by stopword removal, and then normalisation. Surprisingly, trigrams

performed poorer than the baseline.

In contrast to previous reported results [Larkey et al., 2002], root stemming actually leads

to poor results on this noisy data.

It is also clear that the choice of machine translation tool has great impact on the results.

For instance, the best precision result achieved using Systran is 0.048, which is below the

CHAPTER 4. STEMMING ARABIC 125

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Baseline
Normalisation

Stopwords removal
The light10 stemmer

The Khoja root stemmer
Trigrams

Figure 4.7: Recall-Precision curves for the ASR collection using the different approaches;

queries translated with Systran.

baseline result for Google and AlMisbar. Overall, AlMisbar is the best of the three transla-

tion systems, producing the highest precision when using light stemming. Figure 4.8 shows

the impact of the translation system choice on retrieval performance when applying light

stemming.

We observe that root stemming is the only technique that is significantly worse than

the baseline when Systran [t-test, p = 0.049]. Results produced by the AlMisbar translation

system with light stemming are better than the baseline, but the difference is not statistically

significant. We note that it is difficult to achieve significant differences based on the relatively

small number (24) of available queries.

No automatic translation system is perfect, and, as expected, all three of the translation

tools we used had difficulty in finding correct Arabic equivalents for some of the English words

in the queries. For instance, the word “court” appears in two English queries, both times in

the sense of an open space for games. None of the translation systems produced the correct

CHAPTER 4. STEMMING ARABIC 126

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

The ligth10 Stemmer with Almisbar
The light10 Stemmer with Google
The ligth10 Stemmer with Systran

Figure 4.8: Recall-Precision curves for the light10 stemmer across translation systems.

Arabic meaning “I. �ªÊ�Ó” /malQab/; instead they all translated it to “ �é �Ò
�
ºm �×” (/maèkamaa/〈law

court〉), despite the fact that English queries also contained the word “player”.

AlMisbar and Google were both successful in translating most proper nouns in the queries,

while Systran transliterated such words inconsistently. Surprisingly, all three translation

systems failed to translate the proper noun “Baghdad” to its Arabic equivalent. In addition,

Google Translate frequently incorrectly spells words containing the hamza character “Z”; for

example, the word “airplane” is translated to the correct meaning but with the incorrect

spelling “ �èPZA �£” /t”QaaPra/ rather than “ �èQKA£” /t”QaaPra/.

The noisy data produced by the ASR subsystem is another source of errors, with proper

nouns frequently transcribed incorrectly. For instance, the name “Condoleeza Rice” is tran-

scribed completely into one word “��
@PA��
ËðY	Kñ»” /kwnd”wljsarajs/ instead of two separate

ones, and so this this single word is indexed. Since the AlMisbar and Google Translate sys-

tems translate the English name into the correct two Arabic equivalents, no match will be

found for these terms in the search engine index.

CHAPTER 4. STEMMING ARABIC 127

Machine Translation

AlMisbar Google Systran

Baseline 0.067 0.069 0.032

Normalisation 0.075 0.075 0.041

Stopword removal 0.075 0.071 0.033

light10 Stemmer 0.081 0.065 0.048

Khoja Root Stemmer 0.003 0.005 0.005

Trigrams 0.053 0.041 0.032

Table 4.24: Effects of different techniques on MAP.

Apart from the use of noisy ASR data and machine translation, our experiments depart

from typical information retrieval research in that the underlying relevance assessments are

based on the visual content of the shots, and not on the spoken text. Thus, while the com-

parison of approaches is correct, our absolute results are not directly comparable with other

work on Arabic text retrieval. However, the results are comparable to other retrieval results

undertaken as part of TRECVID, with the qualification that we use only the Arabic subset

of the entire collection of Arabic, Chinese, and English ASR data. Reported results using the

full collection of English, Chinese, and Arabic text full collection of English, Chinese, and

Arabic text show lower MAP than our results. For example, Foley et al. [2005] reported a

MAP of 0.046, and Chang et al. [2005] reported a MAP of 0.039. The MAP that we observed

when using the light10 stemmer and AlMisbar translation engine is 0.081.

4.4 Chapter Summary

In this chapter, we have compared the performance of current AIR systems and have shown

that the light10 stemmer performs better than other stemmers (except the Buckwalter stem-

mer when using relevance feedback). We have introduced new stemming techniques that

minimise stemming mistakes in light stemming and lead to improved retrieval results. We

have used the light10 stemmer as our underlying framework to evaluate techniques that we

have developed. We have extended word normalisation for improved retrieval effectiveness,

although the difference is not statistically significant. We have also modified automatic gen-

eration of stopword variants, with limited success on the three techniques we tried. We

have then introduced new techniques to remove single character prefixes: prepositions and

CHAPTER 4. STEMMING ARABIC 128

conjunctions. Our empirical results show that these techniques accurately remove prefixes,

and so aid retrieval effectiveness. Of the techniques we introduced — RPR, RR, RC, RCL,

and RPRRC — RPRRC, in which we remove particles by duplicating the first character and

remove the second character if it is a particle by checking the remaining string in the lexicon,

performed the best.

We have introduced two new techniques to stem the definite article while avoiding stem-

ming proper nouns. While these techniques are effective, they add no improvement in re-

trieval performance over the baseline.

We have presented new stemmers for verb prefix removal based on Arabic grammar rules.

Our techniques add slight improvements in MAP at the cost of slightly decreased recall. We

have also shown that not indexing verbs has a negative effect on retrieval effectiveness.

Using our normalisation approach without joining compound nouns, our conjunction and

preposition removal technique RPR, our strict definite article removal technique, our verb

prefixes removal technique, and our suffix removal technique with no restriction on stemming

some suffixes, we developed the first version of our stemmer “Restrict”. When using relevance

feedback, this stemmer produces significantly better recall than light10, with an insignificant

3% increase in MAP. Combining our normalisation and prefix removal techniques to create

the “Restrict1” stemmer led to a weakly significant improvement in MAP over the baseline

when using relevance feedback.

We have demonstrated how to remove suffixes based on Arabic grammar rules; overall,

suffix removal did not improve retrieval effectiveness over the baseline. Combining our prefix

removal and suffixes removal techniques in the form of the “Restrict2” stemmer improved

retrieval performance over the baseline, but the improvement was not statistically significant.

We have developed three improved versions of the light10 stemmer that we refer to as

light11, light12, and light13. In the light11 stemmer, we have reduced the number of suffixes

and stopwords removed by the original light10 stemmer. In the light12 stemmer, we reduced

the list of suffixes to be stemmed to four suffixes. In light13, we remove the same suffixes as

light12, and also remove the definite article and prepositions and conjunctions using our rules.

We have empirically found that while light11 and light12 do not significantly improve retrieval

performance, light13 exhibits significantly better precision than the baseline in conjunction

with relevance feedback.

To maximise the portability and the efficiency of our system, we extracted all possible

words with seven or fewer characters from the lexicon used in our experiments, and used it

instead of the Microsoft Office 2003 lexicon. The extracted lexicon is incomplete, as it does

CHAPTER 4. STEMMING ARABIC 129

not include words with eight or more characters. This resulted in reduced performance.

Using the unique terms of the collection instead of using the Microsoft Office 2003 lexicon

to validate stemming operations resulted in improved performance, with two of our stemmers

performing better than the baseline, and significantly better when using relevance feedback.

We ended the chapter by evaluating the effect of several pre-processing and translation

approaches for a noisy data set of Arabic text. Our results show that stopping, light stem-

ming, and tokenisation improve retrieval effectiveness, but that root stemming and trigrams

have a negative impact. We have also shown that the choice of the machine translation

engine has a large impact on measured performance in such experiments.

In the next chapter, we explore the effects of using a larger text collection on the AIR

stemmers we have reviewed here.

Chapter 5

Corpus Size Effects on AIR

Systems

Test collections play a core role in improving IR systems, as they allow different strategies

to be tested. For Arabic, the few available test collections are small compared to those

used for English. For example, while the largest test collections developed for Arabic —

the TREC 2001 and TREC 2002 text collections — contain only 383 872 documents (some

800MB of data), the English TREC WT10g collection contains 1.6 million documents (10GB

of data), and the English TREC GOV2 text collection contains 25 million documents (420GB

of data).

There are only 25 queries in the TREC 2001 collection and 50 queries in the TREC 2002

collection. As pointed out in Section 2.3.2, the TREC 2001 topics have been reported to lead

to unreliable results due to forming the pool with a large number of documents retrieved by

only one participant system. Our results in the previous chapter show that the two collections

often give incompatible or contradictory results. We have found that using the TREC 2001

collection as a training collection leads to far better improvements than using the TREC 2002

collection.

Our intention is to test techniques to find variants of foreign words within an IR context.

The TREC 2001 and TREC 2002 queries have only 15 foreign words in total, which is not

sufficient to test algorithms developed to unify different forms of foreign words.

In this chapter we use a larger text collection, and build a larger set of queries with

associated relevance judgements, with the aim of testing the effects of larger corpus size on

AIR systems, and the effects of foreign words in Arabic queries.

130

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 131

5.1 Building a Test Collection

As described in Section 2.3.1, in order to build a test collection, three components are re-

quired, namely a document collection, queries and corresponding relevance judgements. In

the following subsections we describe the document collection, the task, participants, and

the annotation process.

5.1.1 The Document Collection

There are several options available to obtain a larg text collection. These include crawling

Arabic pages from the Web, or using available text collections.

The first option requires much time and effort to build the document collection, the

topics, and the relevance judgements. To produce a homogenous text collection from the

Web, Arabic web pages need to be crawled, different encodings need to be unified, and noisy

unrelated links and text need to be removed. Since creating a collection is not central to this

thesis, we adopted the second approach, where we use large text collections prepared by IR

or NLP specialists. Such text collections are usually collected from news agency dispatches

over a period of time. The TREC 2001 and TREC 2002 collections are examples of such

corpora.

The Arabic Gigaword Document Collection

We settled on the second edition of the Arabic Gigaword collection [Graff et al., 2006] pro-

duced by the Linguistic Data Consortium (LDC).1 This contains documents acquired between

1994 and 2004 from several news agencies: Agence France Presse, Al-Hayat, An-Nahar,

Ummah Press, and Xinhua.

The collection has 1 591 987 documents in over 5GB of uncompressed data. Documents

are tagged using SGML tags similar to the TREC 2001 collection described in Section 2.3.2.

Two additional tags are “type” and “dateline”. The “type” tag classifies a document as a

“story”, “multi”, or “other”. A document that is categorised as a “story” describes a coherent

report on a particular topic or event, a document that is categorised as “multi” describes

unrelated events such as news headlines, and a document that is categorised as “other” is

a document that does not fall in the previous two categories. Each document is assigned

a unique ID, a language code (in our case, “ARB”, as all the documents are in Arabic),
1http://www.ldc.upenn.edu/

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 132

a date, and a four-digit sequence number for that date. For example, the document ID

“AFP ARB 20020522.0097” implies that this document is from the AFP newswire, written

in Arabic on 22nd May 2002, and is document number 97 in that collection for that date.

We have found some 344 documents that do not completely follow this labelling conven-

tion — but this does not affect our experiments, and we did not modify them.

As this document collection does not have any queries or relevance judgements, we have

decided to build such queries and their relevance judgements using native Arabic speakers.

5.1.2 The Task

To help Arabic native speakers in creating topics and the relevance judgements, we prepared

a document in Arabic explaining the task and the objectives of our experiment. We described

the content of the AGW corpus and the task required of the participants in simple language,

and exemplified the task as using the Google search engine. We asked the participants to

perform two main tasks:

• Come up with a list of queries.

• Search our news collection and annotate relevant documents to their queries.

Each query has to include: a title, a small statement that the user usually types in the

search engine; a description, a longer statement that explains the user information needs;

and a narrative field, that details exactly what is related and not related to the user query.

Since the documents all date between 1994 and 2004, we provided participants with a list

of events from that period translated from Wikipedia year reports.2 Foreign proper nouns

were left untransliterated so that participants would themselves transliterate any words they

needed. We also included the original English description of the event. The Arabic and

English summaries for each year are available online at:

http://www.cs.rmit.edu.au/∼nwesri/Research/Events.

Twenty participants, all male, were involved in the annotation process. They were all

university students. At the time of the experiment, seven of them held a master degree

and were pursuing PhD degrees, while the rest held undergraduate degrees in science and

engineering. Two of the participants were from Saudi Arabia, one was from Iraq and the

rest were Libyans.
2http://en.wikipedia.org/wiki/YEAR. Replace the “YEAR” with 1994 to 2004.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 133

Figure 5.1: Our AGW annotation system. Users can enter new versions of their query and

mark relevant documents.

5.1.3 Annotation System

Every participant was given a list of events that happened in a particular year and was asked

to provide at least seven topics of his interest. At least three of these topics had to include

foreign terms. Examples from the TREC 2001 topics were given. Participants used an online

system to read the guidelines and documents. The topic definition stage produced a total of

122 topics; we removed duplicates except in cases where the information need was different.

5.1.4 Annotation Methodology

We choose to use the ISJ technique described in Section 2.3.1 to create the relevance judge-

ments. We decided to use this technique for the following reasons:

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 134

• Participants are all typical internet users and are are familiar with the search process.

• The lack of different techniques that consider foreign words in retrieval. We believe that

using pooling with the existing AIR systems would fail to capture variants of foreign

terms in our queries within the entire collection.

• To save time and effort for unpaid annotators.

• ISJ allows the users to modify their queries and annotate relevant documents that in

some cases do not include any terms they initially wrote in their queries but satisfy

their needs. This is also good in our case as participants are made aware of the problem

of foreign word variants and Arabic word variations.

We implemented a web-based system that allows users to search the AGW collection.

The AGW text collection was indexed using the Indri search engine, which supports indexing

text encoded in the UTF-8 format. We developed a user interface using the API application

provided with the Lemur toolkit. All participants were given an account from which they

were able to view their topics and search the document collection. Initially the collection

is searched with the original version of the query, with the ability to modify the query and

search the collection as many times as the participant wants. Participants can view the

documents and mark those that they consider to be relevant. The system provides some

visual cues to help the user identify whether a document is relevant or not. These include

colouring the keywords in the query within the document that the user is viewing. Different

colours are used for each term in the query that appears in both the query and the document.

Participants reported that this feature was very helpful. Figure 5.1 shows a screenshot of the

annotation page of our system. The system retrieves documents with keywords matching the

query, and lets the user annotate them. To increase the efficiency and minimise the time of

loading web pages while the annotation is in progress, the system prefetches the top hundred

retrieved documents from the server to the user’s computer. For every annotation, we store

the document ID, the topic number, the topic version that the user types, and the timestamp

of that transaction.

Once the user saves his work, the system fetches the next hundred unannotated docu-

ments, excluding the already annotated documents for that particular topic. To facilitate

using variants of foreign words, the system is fed with possible variants for all foreign words

found in the list of events, plus topics written by the users. Variants are determined using us-

ing the top five unique words returned by the ten approximate string- and phonetic-matching

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 135

Query Variant Not Relevant Relevant Total
	á�
�k Ð@Y� ÈA�®�J«@ 7 1 8

	á�
�k Ð@Y� ÈA�®�J«@ ÐñK
 26 2 28
	á�
�k Ð@Y� úÎ« 	�J. �®Ë @ 54 8 62

	á�
�k Ð@Y� �éK
Aî 	E 25 2 27
	á�
�k Ð@Y� P@Q 	̄ 81 0 81

Qå� @ 	á�
�k Ð@Y� 25 0 25

ñJ. �̄ 	á�
�k Ð@Y� 26 17 43

P@ðYË@ 	á�
�k Ð@Y� 10 2 12
	á�
�k Ð@Y� èQ 	®k 53 27 80

AJ�. �J 	m× 	á�
�k Ð@Y� 23 2 25
	á�
�k Ð@Y� �IÊ�®�J«@ 52 10 62

	á�
�k Ð@Y� ÈA�®�J«@ �éJ
 	®J
» 91 0 91
	á�
�k Ð@Y� ÈA�®�J«@ �éJ
 	®J
» 81 9 90

Total annotations 554 80 634

Table 5.1: Variants of topic number 13 “ 	á�
�k Ð@Y� ÈA�®�J«@�” 〈The capture of Sad-

dam Hussein〉; entered by a user to annotate relevant documents. Most relevant doc-

uments are captured when typing the word “ �èQ 	® �k” (/èufra/〈a hole〉) and the word

“ñ�J.
��̄” (/qabuw/〈Cellar〉). Both words are not found in the original query.

techniques described in Section 7.2, and indexed using the version of foreign words found in

events and topics. If the user selects a topic with a particular foreign word, the system

displays the list of possible variants at the top and the user is free to use any version. Not

all the variants will necessarily be correct, nor do we manually refine them.

Annotators were also told to pick any terms that they think will improve retrieval from

the documents that they view. They were allowed to update the description and the narrative

fields, but not the title field. In practice, none did so, except to correct spelling mistakes.

Users were made aware of the effects of Arabic word variants on retrieval results. We

explained the way search engines search Arabic text, and showed the difference between

searching the document using the different versions of Arabic words and the effects of Arabic

affixes on retrieval. For example, we told participants that a word with the definite article in

the query might return different documents than the same word without the definite article.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 136

5.1.5 Annotations

Over six 2-hour sessions, the participants were able to annotate more than 26 000 documents

for a total of 122 topics. In the first session, we explained the systems to participants, and

demonstrated how to search the collection. They were also briefed about possible variations

of Arabic and foreign words. They initially searched the collection using their own topics that

we had fed to the system. Every participant could view his own topics, select, and search

them in the AGW collection. In about two hours, participants were able to annotate over

3 000 documents. In the second session, we normalised the text using techniques described

in Section 2.2.1. By the end of this session, the total number of annotated documents was

around 7 000. In session three, we automatically expanded queries using variants of foreign

words identified automatically as described in the previous subsection. We included all

variants as synonyms to the original foreign words in the query. This technique was not

successful as participants were not satisfied with the retrieval results and so, we stopped this

in the following sessions and only maintained the index where text is normalised. By the

end of session three, the number of annotations reached 12 915, and by the sixth session, we

had collected 26 493 annotations. Out of the 122 topics submitted we decided to use only 90

topics and their relevant annotations. We dropped topics that had no relevant documents in

the collection or where all the annotated documents were relevant. We also dropped topics

with fewer than 100 annotations. Several similar topics, annotated by different annotators,

were retained due to the fact that their information needs and the overlap in the annotated

relevant documents are different. For example, queries 20 and 65, and queries 24 and 76 are

almost identical; however they differ in the number of keywords, the number of annotated

documents, and the number of relevant documents. For example, query 20 has 7 keywords

while query 65 has only 3. Both queries have a similar number of annotations, with a similar

relevance ratio, but while the overlap between the total annotations from both queries is 75

documents, only 4 documents are annotated as relevant to both queries.

The final 90 topics have 25 782 annotations with 4 036 relevant documents. The topics

and their respective statistics are shown in Appendix A. Table 5.1 shows an example of

query variants typed by a participant and their corresponding annotations.

The final relevance judgements are formulated in the 4-column TREC format (see Ta-

ble 2.5 in Section 2.3.1). This format allows us to use tools such as trec eval3 to easily

compute precision and recall measures.
3http://trec.nist.gov/trec eval/

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 137

Technique MAP P@10 R-Precision Recall

noStemming 0.1414 0.2267 0.1676 0.5572

light10 0.1747 0.2567 0.2015 0.6080

B.Stem 0.1795 0.2656 0.2103 0.6162

B.Stem2 0.1684 0.2511 0.2005 0.5864

B.Lemma 0.1712 0.2622 0.2004 0.6305

Al-StemN 0.1785 0.2622 0.2117 0.6181

Al-Stem 0.1740 0.2567 0.2011 0.6139

Khoja 0.1491 0.2189 0.1847 0.5594

noStemming 0.1521 0.2300 0.1789 0.6300

light10 0.2063 0.2878 0.2214 0.7009

B.Stem 0.2026 0.2878 0.2316 0.7175

B.Stem2 0.1910 0.2744 0.2140 0.6959

B.Lemma 0.1822 0.2589 0.2064 0.7232

Al-Stem 0.1960 0.2767 0.2186 0.7118

Al-StemN 0.1947 0.2878 0.2192 0.7244

Khoja 0.1561 0.2356 0.1790 0.6315

Table 5.2: Performance of existing Arabic stemmers using the AGW test collection. The top

half of the table shows results without using relevance feedback, while the bottom half shows

results with relevance feedback.

5.2 Performance of AIR Stemmers on The AGW Test Collection

In this section, we report results of running the AIR stemmers used in the previous chapter on

the new test collection. We first show the results of running existing AIR stemmers, then we

run our new stemmers and compare them with the baseline. We use the same experimental

settings described in Section 4.1.2, and show results with and without query expansion using

pseudo relevance feedback.

5.2.1 Performance of Existing AIR Stemmers Using The AGW Test Collection

Table 5.2 shows results of running the Larkey light10 stemmer, the Buckwalter stemmers,

the Al-Stem stemmers, and the Khoja root stemmer.

All AIR stemmers — except the Khoja stemmer — add significant improvement in both

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 138

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Al-StemN
Al-Stem

B.Lemmaa
B.Stem2
B.Stem

Khoja
light10

noStemming

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Al-StemN
Al-Stem

B.Lemma
B.Stem2
B.Stem

Khoja
light10

noStemming

Figure 5.2: Performance of AIR stemmers using the AGW test collection. Performance

without using relevance feedback (top), and with relevance feedback (bottom).

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 139

MAP, and R-Precision to the noStemming approach. Only the B.Stem and B.Lemma add

significant improvement in P@10 [t-test, p = 0.045, and p = 0.056 respectively]. No stemmer

is significantly distinguished in terms of recall.

All stemmers except B.Lemma and B.Stem2, outperform the Khoja root stemmer signif-

icantly. The B.stem, and Al-StemN stemmers are significantly better at the 99% confidence

level [t-test, p = 0.007, and p = 0.009 respectively]; and Al-Stem and light10 stemmers are

significantly better at the 95% confidence level [t-test, p = 0.028, and p = 0.011 respectively].

The Larkey light10 stemmer performs poorer than the B.Stem or the Al-StemN, but the

difference is not statistically significant.

Among the Buckwalter stemmers, the B.Stem approach, where the first returned stem

is used, is the best. Despite the fact that the stemmer has the second best MAP, it is

significantly better only than the B.Stem2 and the Khoja stemmers [t-test, p = 0.027, and

p = 0.007 respectively].

Al-StemN shows better performance than the original Al-Stem. This is due to the effects

of removing stopwords and non-letters. The improvement in MAP and R-Precision is statis-

tically significant [t-test, p = 0.007, and p = 0.004 respectively]. The top half of Figure 5.2

shows the performance of these AIR stemmers over the 11 standard recall points.

To show the effects of query expansion using pseudo relevance feedback on retrieval, we

used the same parameters as in the previous chapter and set the relevance feedback parame-

ters in the Lemur toolkit to use the top 20 terms returned in the top 15 retrieved documents

to expand queries. Overall results improved significantly. Table 5.2 shows improvements over

the original stemmers.

All stemmers improve with relevance feedback; notably, it significantly increases the MAP

of the light10 [t-test, p = 0.004], B.Stem [t-test, p = 0.027], B.Stem2 [t-test, p = 0.022], and

Al-Stem [t-test, p = 0.045] stemmers.

Stemmers also show a significant improvement over the noStemming and the Khoja root

stemmer except the B.Lemma, which is better than the Khoja stemmer only at the 93%

confidence level [t-test, p = 0.071].

The light10, and the Buckwalter stemmers perform the best. There are no other signifi-

cant differences between the performance of these stemmers on this collection.

In terms of recall, the best stemmers are Al-StemN and B.Lemma. The Al-StemN app-

roach is significantly better than B.Stem2 and B.Lemma is not significantly better than other

stemmers. The bottom half of Figure 5.2 shows the performance of AIR stemmers when using

relevance feedback.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 140

Technique MAP P@10 R-Precision Recall

light10 0.1747 0.2567 0.2015 0.6080

B.Stem 0.1795 0.2656 0.2103 0.6162

Restrict 0.1752 0.2644 0.2017 0.6015

Restrictc 0.1828 0.2678 0.2122 0.6214

Restrict1 0.1805 0.2722 0.2114 0.6105

Restrict1c 0.1830 0.2578 0.2131 0.6204

Restrict2 0.1739 0.2611 0.2025 0.6258

Restrict2c 0.1825 0.2567 0.2107 0.6263

light11 0.1803 0.2622 0.2059 0.6100

light12 0.1785 0.2600 0.2008 0.6276

light13 0.1820 0.2556 0.2087 0.6305

Table 5.3: Results of our new stemmers compared with the light10 stemmer and the B.Stem

stemmer. Our stemmers show better performance over the two stemmers, although the dif-

ference is not significant.

5.2.2 Performance of our Stemmers on The AGW Test Collection

In this section we compare the results of our stemmers with the light10 stemmer and the

B.Stem stemmer. To test our Restrictc, Restrict1c, and Restrict2c algorithms, we formed

our lexicon using the unique words in the AGW corpus.

In a similar way, we have run our new stemmers with and without relevance feedback.

Results of running stemmers without relevance feedback are shown in Table 5.3, and results

of running stemmers with relevance feedback are shown in Table 5.4

Restrictc, Restrict1c, and Restrict2c outperform both the light10 and B.Stem stemmers.

Restrictc has a weakly significant improvement in MAP over the light10 stemmer [t-test,

p = 0.064]. It is clear that our stemmers have a better recall rate than the baseline stem-

mers. Among our new light stemmers, the light12 stemmer performs below B.Stem, but not

significantly so. The light13 stemmer shows higher recall than all stemmers, but the P@10

is lower. Overall, all stemmers perform almost equally with no major change in any of the

measures.

With relevance feedback, however, both B.Stem and the light10 show better performance

than all other stemmers. The recall rate of the light10 stemmer is significantly better than

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 141

Technique MAP P@10 R-Precision Recall

light10 0.2063 0.2878 0.2214 0.7009

B.Stem 0.2026 0.2878 0.2316 0.7175

Restrict 0.1926 0.2744 0.2142 0.7004

Restrictc 0.2047 0.2789 0.2238 0.6888

Restrict1 0.1962 0.2822 0.2136 0.6684↓
Restrict1c 0.1988 0.2622 0.2217 0.6764

Restrict2 0.1865 0.2678 0.2065 0.6989↓
Restrict2c 0.1984 0.2856 0.2194 0.6724

light11 0.2034 0.2778 0.2215 0.7001

light12 0.1980 0.2833 0.2158 0.7036

light13 0.1987 0.2700 0.2193 0.7031

Table 5.4: Results of running our new stemmers using pseudo relevance feedback. None of

our stemmers show better performance than the light10 stemmer or the B.Stem stemmer. ↓
shows values that are significantly worse than the B.Stem

Restrict1 [t-test, p = 0.040] and Restrict2 [t-test, p = 0.040], and weakly significantly better

than Restrict2c [t-test, p = 0.085]. B.Stem has significantly better recall than Restrict2 [t-

test, p = 0.045]. The stemmer is also weakly significantly better in terms of R-Precision [t-

test, p = 0.072]. Our light stemmers has similar recall to the light10 stemmer.

Compared with other stemmers, Al-StemN has significantly better recall than Restrict1,

Restrict2, and Restrict2c [t-test, p = 0.038, p = 0.023, and p = 0.039 respectively]. In terms

of other measures, no significant changes are seen by any other stemmers.

By looking at the number of terms, the number of unique terms, and the index size pro-

duced by each algorithm (presented in Table 5.5), our algorithms that use rules to stem the

collection produce the lowest number of unique terms, indicating that they conflate words

better than the other algorithms. The numbers also show that using the corpus as an under-

lying lexicon in our stemmers conflates words better than using the Microsoft Offices 2003

lexicon (Restrict1 verses Restrict1c). This improves not only retrieval effectiveness but also

efficiency, as the number of index entries is reduced. Our corpus-based-lexicon algorithms

stem the AGW collection in about 68 minutes compared to over 700 minutes using the same

algorithms with the Office 2003 lexicon, over 500 minutes using the Buckwalter stemmer,

and 50 minutes using the light10 stemmer.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 142

Index

Terms Unique terms Size (Kilobytes)

Restrict1c 373 024 424 751 975 3 074 176

B.Lemma 371 689 003 757 859 3 002 652

Restrict1 372 997 651 770 496 3 066 112

Khoja 376 957 637 775 526 2 941 852

Restrictc 372 935 539 822 554 3 077 384

Restrict2c 372 806 110 843 417 3 079 320

Al-StemN 359 212 138 864 300 2 986 332

light13 373 044 083 875 193 3 115 972

light10 375 495 701 920 744 3 130 328

Restrict 374 437 914 934 763 3 102 336

B.Stem 371 996 493 957 215 3 040 956

light11 373 421 304 994 558 3 132 716

Restrict2 372 814 421 989 199 3 083 468

Al-Stem 431 337 555 1 003 733 3 536 860

light12 373 050 416 1 025 464 3 144 592

B.Stem2 373 127 231 1 034 282 3 099 628

noStemming 479 010 563 1 956 315 4 202 384

Table 5.5: Number of terms, unique terms, and index size of each algorithm. Algorithms that

use rules produce fewer unique terms than those that do not use rules in stemming. Stemmers

are ordered according to the number of unique terms they return.

The difference in the number of terms returned by the different algorithms is due to the

difference in parsing strategies. In our stemmers, we split words that are joined by mistake,

join compound nouns, and remove the one-character terms from the stemmed text. This

results in different term numbers. The fewest terms are produced by Al-StemN, possibly due

to the uncontrolled affix removal followed by the stemmer. The stemmer does not imply a

limit on the remaining stems and removes a large number of prefixes and suffixes, resulting

in many zero-length stems.

We expected that the Khoja stemmer would produce the lowest number of unique terms

as it conflates words to roots. However, this is not the case when using the AGW collection.

The stemmer produces more unique terms than the Restrict1, B.Lemma, and Restrict1c

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 143

stemmers. However, the index size of this stemmer is the smallest as most of the returned

stems are roots with three characters, whereas the other stemmers do not process words to

the three-letter stem.

5.3 Discussion

Results with the new data set — with more queries and a larger collection — show that our

stemmers work better than other stemmers when no relevance feedback is used. But this is

not the case when using relevance feedback.

As our stemmers use the unique terms in the collection as an underlying lexicon, they

will not achieve optimal performance if the lexicon is not comprehensive, or if it includes

misspelled words. When using the AGW corpus unique terms as a lexicon, we discovered

many misspelled words in the AGW corpus, making it problematic to use unique terms

from this corpus for the lexicon. For example, the technique Strict al (SAL), described

in Section 4.9, stems the prefix “�Ë @” only if adding another al results in incorrect word.

This technique fails to remove the definite article from the word “ 	K
Qå��Ë @” (/alSrjf/〈the

honorable〉) due to the fact that the word “ 	K
Qå��ËB@” /alalSrjf/(misspelled form of word

“ 	K
Qå��Ë @”) is found within the corpus terms. Another example is stemming the proper noun

“ 	á�
�k” (/èsjn/〈Husain〉) to “�k�” (/èis/〈feeling〉) as replacing the last two letters “ 	á�
�”
with “ 	àñ�” yields the proper noun “ 	àñ�k” /èswn/ and replacing them with “ 	àA�” produces

another proper noun “ 	àA�k” /èsan/ which satisfies rule 4.10 (described in Section 4.13).

Results also suggest that simple light stemming approaches are still an effective option

to increase the retrieval effectiveness — regardless of stemming mistakes — as they are more

efficient and produce similar results. With the light12 stemmer, we have demonstrated that

stemming only four suffixes and seven prefixes, without any rules, is as effective as all other

rule-based algorithms, where extensive word analysis is carried out.

Our results show that improvement in search effectiveness over the baseline with large col-

lections does not mirror those reported using the relatively small TREC 2001 and TREC 2002

collections. Larkey et al. [2007] reported a 100% improvement, and Aljlayl and Frieder [2002]

reported an improvement of 87.7%. However, with the AGW collection, we find that the

improvement for the light10 stemmer is only 23.6%. We believe that this is due to the dif-

ference in the sizes of the collections, the number of queries, and the nature of words in

the queries. More than half of the AGW queries contain foreign terms that require special

attention compared to normal stemming. The performance of the light10 stemmer on the

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 144

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

90888684828078767472706866646260585654525048464442403836343230282624222018161412108642

A
ve

ra
ge

 P
re

ci
si

on

AGW Topics

light10 performance

Figure 5.3: The performance of the light10 stemmer on the individual queries. 57 queries

score less than 0.2 in average precision (AP).

individual queries shows that 60 queries score less than 0.2 in AP, including 43 queries that

score less than 0.1; this is shown in Figure 5.3.

Finally, we find that root stemming produces the poorest retrieval results on the large

AGW collection. Using a much smaller collection, [Al-Kharashi, 1991] showed that root stem-

ming produced better results than light stemming. On mid-sized collections, root stemming

has been both shown to be almost equal [Larkey et al., 2002] and worse than light stem-

ming [Aljlayl and Frieder, 2002; Darwish and Oard, 2003a]. We conclude that this approach

is sensitive to corpus size.

5.4 Tuning Okapi BM25 Ranking Parameters

The Okapi BM25 ranking function (see Equation 2.6) has three adjustable parameters: b, k1

and k3. As discussed in 2.6, the b parameter is used to normalise the document length and

takes values between 0 and 1, where 0 specifies that no document length normalisation be

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 145

performed, and 1 specifies full normalisation. The parameter k1 affects the term weight in

the document, If it is set to 0, then the term weight is not affected by its frequency in the

document. The third parameter, k3, is related to the term frequency in the query. If it is set

to 0, then only one instance of the term in the query is used in the ranking.

The optimal values of these parameters for English collections were determined in the

TREC 8 ad hoc experiments by Robertson and Walker [1999], who recommended that b be

set to 0.75, k1 be set to 1.2, and k3 be set to values between 7 to 1 000 for long queries.

These values are the default values in the Okapi retrieval model in the Lemur toolkit. El-

Khair [2003] reported that he could not determine any betters values for Arabic using the

TREC 2001 collection. We use these parameters and check the effects of using other values

on retrieval using our new collection.

To determine the best value for the different parameters, we used the result of running

the light11 stemmer on both the queries and the collection using the TREC default values

as our baseline. We use the light11 stemmer as it was found to be effective in Chapter 4.

5.4.1 The b Parameter Value

To determine the best value for document length normalisation in the AGW collection (b),

we test all values from 0 to 1 with an interval of 0.05. Each time we change the b value, we

run queries against the collection index and record results. Figure 5.4 shows the effects of

changing the value of this parameter, and results are shown in Table 5.6.

It is clear that when b is set to 0.0 or values that are greater than the default value, the

performance of the light11 stemmer decreases significantly. Values in the range 0.05 to 0.7

increase the MAP measure significantly with a confidence level of 99%. The same values

have similar effects on the R-Precision measure except for the values 0.05, 0.1, 0.15 and 0.7,

which result in insignificant improvements; and the value 0.65, which improved the light11

significantly but only at the 95% confidence level [t-test, p = 0.030]. The same range of values

has also affected the P@10 measure. Values 0.15 and 0.2 have also significantly improved

performance but at the 95% confidence level [t-test, p = 0.022, and p = 0.010 respectively].

The best performance is seen when the parameter b is set to 0.25. This value produces

the best values in MAP, P@10, R-Precision and Recall. It improves MAP, P@10, and R-

Precision at the 99% confidence level [t-test, p < 0.01], and improves recall, although not

significantly so at the 99% nor the 95% confidence levels [t-test, p = 0.090].

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 146

Value of b MAP P@10 R-Precision Recall

0.0 0.1770↓ 0.2689 0.2047 0.6278

0.05 0.1886⇑ 0.2833⇑ 0.2162 0.6397

0.1 0.1971⇑ 0.2900 0.2216 0.6449

0.15 0.2010⇑ 0.2956↑ 0.2262 0.6484

0.2 0.2045⇑ 0.2967↑ 0.2324⇑ 0.6484

0.25 0.2051⇑ 0.2978⇑ 0.2341⇑ 0.6499

0.3 0.2048⇑ 0.2978⇑ 0.2301⇑ 0.6486

0.35 0.2047⇑ 0.2933⇑ 0.2300⇑ 0.6446

0.4 0.2022⇑ 0.2911⇑ 0.2273⇑ 0.6402

0.45 0.2005⇑ 0.2911⇑ 0.2259⇑ 0.6375

0.5 0.1988⇑ 0.2900⇑ 0.2254⇑ 0.6357

0.55 0.1959⇑ 0.2922⇑ 0.2210⇑ 0.6318

0.6 0.1924⇑ 0.2900⇑ 0.2216⇑ 0.6290

0.65 0.1884⇑ 0.2833⇑ 0.2124↑ 0.6233

0.7 0.1844⇑ 0.2800⇑ 0.2113 0.6174

0.75 0.1803 0.2622 0.2059 0.6100

0.8 0.1742↓ 0.2556 0.2016 0.6057

0.85 0.1670↓ 0.2378↓ 0.1957↓ 0.5976

0.9 0.1598↓ 0.2211↓ 0.1904↓ 0.5874↓
0.95 0.1539↓ 0.2133↓ 0.1818↓ 0.5805↓
1.0 0.1468↓ 0.1978↓ 0.1700↓ 0.5730↓

Table 5.6: The results of changing the Okapi b parameter. Values range from 0 to 1 at

constant increase with 0.05. ↑ indicates values that are significantly better than the default

value (0.75) at the 95% confidence level, ⇑ indicates those significantly better at the 99%

confidence level, while ↓ indicates values the are significantly worse than the default value.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 147

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

S
co

re

Okapi BM25 b value

MAP
Precision at 10

R-Precision
Recall

Figure 5.4: The effects of changing the b value while fixing the other two parameters to their

default values. The best values are observed when b equals 0.25.

5.4.2 The k1 Parameter Value

The k1 parameter has an effect on the term frequency in the document. To determine the

best value for k1, we start by fixing the default parameters (b=0.75, k3=7) and changing the

value of this parameter using possible values that can be used with this parameter according

to Robertson and Walker [1999]. We used values between 0 and 7 with an interval of 0.2, and

compared results with those obtained using the default value (1.2). The best performance in

MAP and R-Precision is seen using values 0.6, 0.4, 0.8, and 1.0. However, this improvement

is not significant, and the new values caused a similar reduction in P@10 and Recall. Results

are shown in the upper part of Table 5.7.

To check whether this parameter increases performance when using the best value that we

previously determined for the parameter b, we investigated values of k1 with the parameter b

set to 0.25. We have also increased the range of values from 7 to 12. Figure 5.5 shows changes

in the performance using these values. Overall, all values decrease performance except the

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 148

k3 b k1 MAP P@10 R-Precision Recall

7 0.75 1.2 0.1803 0.2622 0.2059 0.6100

7 0.75

0.4 0.1825 0.2533 0.2120 0.5953

0.6 0.1830 0.2556 0.2076 0.6065

0.8 0.1818 0.2578 0.2091 0.6090

1.0 0.1810 0.2656 0.2072 0.6085

7 0.25 1.2 0.2051 0.2978 0.2341 0.6499

7 0.25

0.8 0.2048 0.2944 0.2382 0.6397

1.0 0.2053 0.2978 0.2378 0.6456

1.4 0.2047 0.2978 0.2347 0.6523

Table 5.7: Best results of changing the parameter k1 in the Okapi BM25 equation. The upper

part of the table shows the best results of changing the k1 value using the default Okapi BM25

b value of 0.75, while the lower part shows the best results obtained by changing the k1 values

while setting the value of the parameter b to 0.25.

value 1 which results in a slight increase. The lower part of Table 5.7 shows the best results

recorded using these combinations.

5.4.3 The k3 Parameter Value

The k3 parameter controls the impact of term instances appearing in the query. Since we

use the titles in our runs, this parameter has no much effects on retrieval. We tried values

between 1 and 10 with an interval of 1, and also tried the range of values between 10 and 1000

with an interval of 10, but no improvements are seen either when using the default parameters

or using the new b and k1 values suggested by our earlier experiments.

5.4.4 Parameters with No Stemming

To confirm these results, and to avoid bias to any stemmer or stemming technique, we

repeated the same experiments without stemming the collections or the queries. Table 5.8

shows the best values that we obtained. Best results using the default parameters with

different b values are shown in the top half of the table, while the bottom part shows the

results of tuning the k1 parameter using the best b value that we determine from the top

part (0.2). Results confirm that the best value for the parameter b is at 0.2 and not 0.75.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 149

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

S
co

re

Okapi BM25 K1-value

MAP
Precision at 10

R-Precision
Recall

Figure 5.5: The effects of changing the k1 value using the best b value and the default k3.

Values range from 0 to 12 with an interval of 0.02.

For the unstemmed collection, best performance is obtained for k1=1.2, but performance is

still good at k1=1.0.

5.5 Tuning TREC 2001 and TREC 2002 Okapi Parameters

We have also explored tuning these parameters for the TREC 2001 and TREC 2002 Arabic

collection. In similar experiments, we found that the best value for the parameter b is 0.4, and

that the best MAP value is seen when k1=1.6, and the best P@10 value is seen when k1=4.4.

Table 5.9 shows the best values obtained for the TREC 2001 and TREC 2002 collections.

The difference in values between the TREC and AGW collections is due to different collection

sizes and different average document lengths. The average document length returned by the

Lemur parser when indexing the TREC 2001 and AGW collections without stemming are 168

and 300 terms respectively.

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 150

K3 k1 b MAP P@10 R-Precision Recall

7 1.2 0.75 0.1414 0.2267 0.1676 0.5572

7 1.2

0.1 0.1724⇑ 0.2544⇑ 0.2044⇑ 0.5961⇑
0.15 0.1743⇑ 0.2656⇑ 0.2069⇑ 0.5986⇑
0.2 0.1752⇑ 0.2700⇑ 0.2061⇑ 0.5986⇑
0.25 0.1741⇑ 0.2689⇑ 0.2088⇑ 0.5973⇑

7 1.2 0.2 0.1752 0.2700 0.2061 0.5986

7

1.0

0.2

0.1748 0.2711 0.2061 0.5934

1.4 0.1750 0.2667 0.2052 0.6005

1.6 0.1737 0.2633 0.2074 0.6008

Table 5.8: Best results of changing the Okapi BM25 equation parameters using the unstemmed

collection. The upper part of the table shows the best results of changing the b value using the

default Okapi BM25 values, while the lower part shows the best results obtained by changing

the k1 values while setting the value of the parameter b to 0.2. ⇑ indicates values that are

significantly better than the default value (0.75) at the 99% confidence level

5.6 Chapter Summary

In this chapter, two main objectives have been achieved. We have built a new test collection

of 90 topics with their respective relevance judgements using the AGW document collection.

We have used 20 assessors to propose topics and then mark relevant documents in the col-

lection using the ISJ method. Assessors have successfully annotated 122 topics of which we

selected 90 topics with their associated relevance judgements.

We used the new test collection to evaluate existing AIR approaches and our proposed

techniques. Our results are consistent with those obtained using the TREC 2001 and

TREC 2002 topics, with the B.Stem, Al-StemN and light10 stemmers performing the best,

and the Khoja heavy stemmer performing the poorest. However, the B.Stem, and Al-StemN

perform slightly better than light10 stemmer, but not significantly. When using relevance

feedback, the B.Stem and light10 stemmers produce the highest MAP, while Al-StemN and

B.Lemma produce the highest recall. Our stemmers show better performance than other

stemmers; with relevance feedback, they show lower performance than the light10 and B.Stem

algorithms. The difference in MAP, P@10, and R-Precision is not statistically significant.

We have also shown that our corpus-based-lexicon stemmers conflate terms in the corpus

CHAPTER 5. CORPUS SIZE EFFECTS ON AIR SYSTEMS 151

TREC 2001 TREC 2002 TREC 2001 and 2002

b k1 MAP P@10 Recall MAP P@10 Recall MAP P@10 Recall

0.75 1.2 0.390 0.564 0.670 0.296 0.384 0.760 0.327 0.444 0.723

0.4

1.6 0.400 0.624 0.675 0.308 0.410 0.774 0.338⇑ 0.481⇑ 0.734↑
2.0 0.400 0.632 0.673 0.307 0.410 0.776 0.338⇑ 0.484⇑ 0.734↑
4.4 0.371 0.684 0.641 0.296 0.426 0.768 0.321 0.512⇑ 0.716

Table 5.9: Best Okapi BM25 parameters we determined for the TREC 2001 and TREC 2002

collections. k3 is set to the default value 7. ↑ indicates values that are significantly better

than the default value at the 95% confidence level, ⇑ indicates those significantly better at

the 99% confidence level, while ↓ indicates values the are significantly worse than the default

value.

more effectively than other algorithms, and that using the corpus as a background lexi-

con improves both the effectiveness and the efficiency of stemmers that use a professionally

prepared lexicon.

The second achievement we have achieved is identifying the best Okapi BM25 parameters

for the AGW collection. We have shown that the best value for the b parameter is 0.25, that

the best value for the k1 parameter is 1, and that changing k3 has no effects on retrieval

performance. With the new parameters, performance increased significantly over the default

values determined for English documents from the TREC 8 corpus. We have also determined

the parameter values that work best for the TREC 2001 and TREC 2002 collections. Our

results show that using the default values used for English collections is not the best choice

and that the b parameter value affects retrieval effectiveness more than other parameters

when using short queries.

We use these parameters in our retrieval experiments in Chapters 6 and 7.

Chapter 6

Foreign Word Identification

The increasing flow of information between languages has led to a rise in the frequency of non-

native or loan words, where terms of one language appear transliterated in another. Dealing

with such out-of-vocabulary (OOV) words is essential for successful information retrieval. For

example, techniques such as stemming should not be applied indiscriminately to all words

in a collection, and so before any stemming, foreign words need to be identified. However,

in Arabic, foreign words do not follow any consistent format and are written inconsistently,

with many versions for the same word appearing in the same document collection [Abduljaleel

and Larkey, 2003]. These versions need to be indexed under one term in order to capture

documents related to the same term. We must apply special processing on such foreign,

non-native Arabic words.

Most of the foreign words that appear in Arabic text are proper nouns. Proper nouns

are reported to constitute between 39% and 68% of news queries [Thompson and Dozier,

1997]. Stemming is not a viable means for conflating proper names [Paik et al., 1993].

In some languages such as Indonesian, stemming such words causes around 13% of stem-

ming errors [Asian, 2007]. Orengo and Huyck [2001] stated that stemming proper names in

Portuguese is not advisable as recognising proper nouns in Portuguese is not easy due to am-

biguity between names and other words. Pfeifer et al. [1996] have also stated that stemming

is useful when applied to normal words, but not when applied to proper name searching.

We identify foreign words in the text in order to avoid stemming them, and to apply tech-

niques to identify similar variants of the same word. In this chapter, we describe methods of

identifying foreign terms in Arabic text.

152

CHAPTER 6. FOREIGN WORD IDENTIFICATION 153

6.1 Foreign Word Variants

Words borrowed from other languages usually have a different style in writing and construc-

tion, and Arabic linguists have drawn up rules to identify them. For example, any root

Arabic word that has four or more characters should have one or more of the liquid letters

“ �é�̄B
�	YË@ 	¬�Qk@” (

	¬ /f/, P /r/, Ð /m/, 	à /n/, È /l/, H. /b/). Those that have no such letters

are considered foreign [Al-Shanti, 1996]. However, while such rules could be useful for lin-

guistic purposes, they have limited application in Information Retrieval (IR); based on these

rules, many foreign words that have long been absorbed into the language and are spelled

consistently would be considered to be foreign. From the IR perspective, we classify foreign

words into two general categories: translated and transliterated.

Translated: These are foreign words that are modified or remodelled to conform to Arabic

word paradigms; they are well assimilated into Arabic, and are sometimes referred to as

Arabicised words [Aljlayl and Frieder, 2002]. This process includes changes in the struc-

ture of the borrowed word, including segmental and vowel changes, and the addition,

deletion, and modification of stress patterns [Al-Qinal, 2002]. This category of foreign

words usually has a single spelling version that is used consistently. Examples include

words such as 	àA��J���. (/bust”aan/〈garden〉), h. Q�K. (/burZ/〈tower〉), ñ�K
X@ �P (/raad”juw/〈radio〉),
and �é

�
Ê�J. 	J

��̄ (/qunbulat”/〈bomb〉).

Transliterated: Words in this category are transliterated into Arabic by replacing phonemes

with their nearest Arabic equivalents. Although the Arabic language has a broad sound

system that contains most phonemes used in other languages, not all phonemes have

Arabic equivalents. In practice, such phonemes may be represented in different ways

by different persons, resulting in several spelling versions for the same foreign word.

For example, we have observed 28 transliterated versions for the name of the former

Serbian leader (Milosevic) in the TREC 2002 Arabic collection; these are shown in

Table 6.1.

Transliteration has become more common than translation due to the need for instant

access to new foreign terms. It can take considerable time for a new foreign term to be

included in reference dictionaries. However, users often need to immediately use a particular

term, and cannot wait until a standard form of the word is created; news agencies form

an important category of such users. This transliteration process often results in multiple

spellings in common usage.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 154

����J
 	̄ñ��
ÊJ
Ó ���
�JJ
 	®J
�ñÊJ
Ó ����J
 	® ��ñÊJ
Ó
����J
 	®J
�ñJ
ÊÓ ����J
 	®J
��
ÊJ
Ó ����J
 	®J
 ��ñÊJ
Ó

����J
 	®��
ñÊJ
Ó ����J
 	®J
�ÊJ
Ó ����J
 	®J
 ���
ÊÓ
����J
 	̄ñ�ÊJ
Ó ����J
 	̄ñJ
�ñÊJ
Ó ����J
 	® ���
ÊJ
Ó

����J
 	®J
�ñJ
ÊJ
Ó ���J
 	®J
�ñÊJ
Ó ���� 	®J
 ���
ÊJ
Ó
����J
 	̄ñ�ñJ
ÊÓ ���J
 	̄ñ�ñÊJ
Ó ����J
 	®K
 	PñÊJ
Ó
����J
 	®�ñJ
ÊÓ ���J
 	®J
 ��ñÊJ
Ó ����J
 	̄ 	PñÊJ
Ó

����J
 	̄ñ�ñÊJ
Ó ���
�J 	®J
�ñÊJ
Ó ����J
 	®J
�ñÊJ
Ó
���
�JJ
 	®�ñÊJ
Ó ����J
 	®�ñÊJ
Ó ���� 	®J
�ñÊJ
Ó

���
�J 	®�ñÊJ
Ó

Table 6.1: Different spelling versions for the name Milosevic observed in the TREC 2001

Arabic corpus.

6.2 Identifying Foreign Words

We categorise three general approaches for recognising foreign words in Arabic text:

6.2.1 Arabic Lexicons

OOV words can be easily captured by checking whether they exist in an Arabic lexicon.

However, the lexicon is unlikely to include all Arabic words, while at the same time it could

contain some foreign words. Moreover, this approach will identify misspelled Arabic words

as foreign.

We evaluate three approaches that each uses a different dictionary: the Khoja root lexi-

con [Khoja and Garside, 1999] approach (KLA), the Buckwalter lexicon [Buckwalter, 2002]

approach (BLA), and the Microsoft Office 2003 lexicon [Microsoft Corporation, 2002] app-

roach (OLA).

6.2.2 The Arabic Pattern System

We can recognise whether a word is a native Arabic word or a foreign word by comparing

it against different patterns. If, after all possible affixes have been removed, the remaining

stem matches an Arabic pattern, the word is likely to be an Arabic word. For example,

to check whether the word �Ik� A�J. Ë @ �ð (/walbaaèiT/〈and the researcher〉) is a foreign word, we

first remove the prefixes ð and �Ë @ to get the stem
��Ik� A�K. ; we find that this word matches

CHAPTER 6. FOREIGN WORD IDENTIFICATION 155

�
Éª 	̄ @ ZCª 	̄ @ ÈCª 	̄ @ �éÊª 	̄ @ É«ñª 	̄ @�

Èñª 	̄ @ ÉJ
ª 	̄ @ Éª 	®�J��� ÉJ
«A 	®�K ÈAª 	®�K
�éÊª 	®�K

�
Éª 	®�K �éÊ«A 	̄ Èñ«A 	̄ BAª 	̄

�
ÈAª 	̄ úÍAª 	̄ ÉJ
ËAª 	̄ �éÊª 	̄ �é

�
Êª 	̄

CJ
ª 	̄ �éÊJ
ª 	̄ ÉJ
«@ñ 	̄ É«AJ
 	̄ ÉJ
«AJ
 	̄
�éÊ«A 	®Ó �éËAª 	®Ó Cª 	®Ó �éÊª 	®Ó

�
Éª 	®Ó

Éª 	®�K Èñª 	̄ @ �éËAª 	̄ �éËñª 	̄ �
Éª 	®�JÓ

ÉJ
ª 	®Ó CJ
ª 	®Ó

Table 6.2: Patterns added to the Khoja modified stemmer to implement the KPA approach.

the pattern
�

É«� A�	̄ — it has the same length, and the letter A� is in the same position — and

conclude that it is therefore an Arabic word. Note that we must perform this determination

without relying on diacritics.

To use Arabic patterns, we modified the Khoja stemmer to check whether there is a match

between a word and a list of patterns after stemming without further checking against the

root dictionary. If there is no match, the word is considered a foreign word. We adopted the

patterns of the Khoja stemmer and added 37 patterns compiled from Arabic grammar books,

these are shown in Table 6.2. We call these approaches the Khoja Pattern Approach (KPA),

and Modified Khoja Pattern Approach (MKP) respectively. A word is also considered to be

an Arabic word if the remaining stem has three or fewer letters.

We believe that this approach is not perfect, as general Arabic text does not include

explicit diacritics; if parts of a foreign word match a pattern, it will be marked as being

Arabic. Similarly, misspelled words may be classified as foreign words if no matching pattern

is found. Furthermore, pattern matching algorithms are not perfect and falsely extract roots

from proper names — including foreign words. This often happens [Larkey et al., 2002].

6.2.3 The n-grams Approach

Transliterated foreign words exhibit construction patterns that are often different from Arabic

patterns. By counting the n-grams of a sample of foreign words, a profile can be constructed

to identify similar words. This approach has been used in language identification, although

it is reported to have only moderate effectiveness in identifying short strings [Cavnar and

Trenkle, 1994; Dunning, 1994].

CHAPTER 6. FOREIGN WORD IDENTIFICATION 156

We evaluate the effectiveness of the n-gram method in two ways. First, we extend the

n-gram text categorisation method presented by Cavnar and Trenkle [1994]. The method

uses language profiles where, for each language, all n-grams that occur in a training corpus

are sorted in order of decreasing frequency of occurrence, for n ranging from 1 to 5. To

classify a word w, we build its n-gram frequency profile, and compute the distance between

each n-gram in the word profile and in each language profile. The total distance is computed

by summing up all differences between the position of the n-gram in the word profile and

the position of the same n-gram in the language profile. The distance between a word (w)

and the Arabic language profile (ALP) is computed as:

DALP =
Ni∑

i=1

| rank(gi, w)− rank(gi, ALP) | (6.1)

where Ni is the number of n-grams in the word w; and rank is the position of gram gi in the

frequency-sorted list of all n-grams for either the word or language profile.

Similarly, the distance between the word (w) and the foreign language profile (FLP) is

computed as:

DFLP =
Ni∑

i=1

| rank(gi, w)− rank(gi, FLP) | (6.2)

In our work, we build two language profiles, one for native Arabic words and another for

foreign words. We compare the n-grams in each word in our list against these two profiles.

If the total distance between the word and the foreign language profile is smaller than the

total distance between the word and the Arabic language profile, then it is classified as a

foreign word. Formally, we determine if a word is foreign if:

DALP −DFLP > 0 (6.3)

As the two language profiles are not of the same size, we compute the relative position of

each n-gram by dividing its position in the list by the number of the n-grams in the language

profile. Figure 6.1 shows the classification process based on this approach. We call this

approach the n-gram approach (NGR).

We also try a simpler approach based on the construction of two trigram models: one

from Arabic words, and another from foreign words. The probability that a string is a foreign

word is determined by comparing the frequency of its trigrams with each language model. A

word is considered foreign if the sum of the relative frequency of its trigrams in the foreign

words profile is higher than the sum of the relative frequency of its trigrams in the Arabic

words profile. We call this approach the trigram approach (TRG).

CHAPTER 6. FOREIGN WORD IDENTIFICATION 157

ALP WP FLP

fr PA |Pw − PA| fr Pw |Pw − PF | fr PF

20300 w 0 0-1 1 b 0 0-2 40025 w 0

20000 b 1 1-0 1 w 1 1-0 39000 f 1

19000 l 2 2-2 1 l 2 2-40 37251 b 2

. 3-50 1 bw 3 3-1000 . . .

9000 wl 23 4-23 1 wl 4 4-1300 25315 l 40

. 5-1000 1 wbl 5 5-41 20012 bwl 41

7000 bw 50 18122 tawl 42

. DALP = 1063 DALF = 2370 . . .

1000 bwl 1000 5252 bw 1000

.

1023 wl 1300

Figure 6.1: Using n-grams to identify foreign words. The word “ÈñK.” (/bwl/〈Paul〉) is

categorised as Arabic as DALP −DFLP < 0. ALP is the Arabic language profile, FLP is the

foreign words profile, and the WP is the words profile. Profiles are built using the decreasing

order of frequency of all grams of size 1 to 5. PA refers to the position of grams in the Arabic

words profile, PF refers to the position of grams in the foreign words profile, and PW refers

to the position of grams in the word.

6.3 Training Experiments

In this section, we describe how we formed a development data set using Arabic text from

the Web, and how we evaluated and improved techniques for identification of foreign words.

6.3.1 Data

To form our development data set, we crawled the Arabic web sites of the Al-Jazeera news

channel,1 the Al-Anwar2 and El-Akhbar3 newspapers. A list of 285 482 Arabic words was

extracted. After removing Arabic stopwords such as pronouns and prepositions, the list

had 246 281 Arabic words with 25 492 unique words.
1http://www.aljazeera.net
2http://www.alanwar.com
3http://www.elkhabar.com

CHAPTER 6. FOREIGN WORD IDENTIFICATION 158

In the absence of diacritics, we decided to remove words with three or fewer characters,

as these words could be interpreted as being either Arabic or foreign in different situations.

For example, the word ú
G.� /bij/ could be interpreted as the Arabic word meaning 〈in me or

by me〉, or the English letter 〈B〉. After this step, 24 218 unique words remained.

We examined these words and categorised each of them as either an Arabic word (AW), or

a transliterated foreign word (FW). We also had to classify some terms as misspelled Arabic

words (MW). We used the Microsoft Office 2003 lexicon as a first-pass filter to identify

misspelled words, and then manually inspected each word to identify any that were actually

correct; the lexicon does not contain some Arabic words, especially those with some complex

affixes. The list also had some local Arabic dialect spellings that we chose to classify as

misspelled.

The final list had three categories: 22 295 correct Arabic words, 1 218 foreign words and

705 misspelled words.

To build language models for the n-gram approaches (NGR and TRG), we used the

TREC 2001 Arabic collection [Gey and Oard, 2001]. We manually selected 3 046 foreign words

out of the OOV words extracted from the collection using the Microsoft Office 2003 lexicon.

We built the Arabic language model using 100 000 words extracted from the TREC 2001

collection using the same lexicon. We listed all unique words in the collection, and excluded

any OOV words, including valid words that do not exist in the lexicon after adding the

suffix “ é�” haa to them. Unlike most Arabic words, transliterated proper nouns do not

appear with this suffix, and so this step guarantees that transliterated proper nouns —

even those appearing in the lexicon — will be removed. For example, the proper noun

“Q 	̄ñ�J��
Q»” (/krjst”wfr/〈Christopher〉) exists in the lexicon, but “ èQ 	̄ñ�J��
Q»” does not, while

“H. A�J»” (/kt”ab/〈a book〉) exists in the lexicon, as does “ éK. A�J»” (/kt”abhu/〈his book〉).

6.3.2 Measures of Evaluation

We measure the accuracy of each approach by examining the number of foreign words cor-

rectly identified, and the number of incorrect classifications. Based on these numbers, we

calculate the precision and recall of each approach. To avoid situations where approaches

show better recall than others but have lower precision or vice versa, we use the F1-measure

described in Section 2.3.3 to present the overall performance of each approach. We have also

included the MW count to illustrate the effects of misspelled words on each approach

CHAPTER 6. FOREIGN WORD IDENTIFICATION 159

AW MW FW

Approach # # # R P F

OLA 614 698 1 017 0.834 0.437 0.573

BLA 384 404 628 0.515 0.443 0.477

KLA 1 732 215 745 0.612 0.277 0.381

KPA 1 034 135 590 0.480 0.340 0.396

MKP 940 126 573 0.470 0.350 0.401

NGR 718 95 726 0.596 0.471 0.527

TRG 1 591 118 737 0.605 0.301 0.402

Table 6.3: Initial results of foreign word identification using the Microsoft Office 2003 lexicon

(OLA), Buckwalter lexicon (BLA), Khoja root lexicon (KLA), Khoja patterns (KPA), mod-

ified Khoja patterns (MKP), n-grams (NGR), and trigrams (TRG). All approaches produce

poor precision, with BLA achieving the best precision. OLA has the best recall and is the best

performer overall. The # columns indicate the number of items in this category; R is recall;

P is precision; and F is the F1-measure.

6.3.3 Initial Results

Table 6.3 shows results of exposing all words in our list to the different algorithms described

in the previous section. We capture all words identified as foreign using each algorithm and

then judge them against the actual lists and compute precision, recall and the F1-measure.

The results show that the n-gram approach (NGR) has the highest precision, while the

lexicon-based (OLA) approach gives the highest recall. The KPA and MKP pattern-based

approaches perform perform well compared to the combination of patterns and the root

lexicon (KLA), although the latter produces higher recall. There is a slight improvement

in precision when adding more patterns, but recall is sightly reduced. The KLA approach

produces the poorest precision, but has a better recall rate than the NGR approach.

The results show that many Arabic native words are identified as foreign words. This

is due to two factors: first, a large number of Arabic words is not found in the lexicons we

used in the evaluation. This includes Arabic proper nouns and regular Arabic words with

complex affixes. Second, n-grams seem to capture a large number of Arabic words due to the

lack of diacritics. Some Arabic words are similar in spelling to foreign words but different

in pronunciation. Only diacritics would solve the problem of identifying them properly. Our

CHAPTER 6. FOREIGN WORD IDENTIFICATION 160

intention is to conflate different versions of foreign words. Therefore, we try to avoid Arabic

words even if they are included in the OOV category as they have, in most cases, unique

versions in Arabic text.

Retrieval precision will be negatively affected by incorrect classification of native and

foreign words. Consequently, we consider that keeping the proportion of false positives —

correct Arabic words identified as foreign (precision) — low to be more important than

correctly identifying a higher number of foreign words (recall).

Some of the Arabic words categorised as foreign are in fact misspelled; we believe that

these have little effect on retrieval precision, and there is limited value in identifying such

words in a query. These may be better handled by a spelling correction stage in the retrieval

system.

6.4 Improving Results

With the current results, none of the above approaches are suitable for identifying foreign

words, and therefore, improvement is essential. We used Arabic grammar rules, Arabic letters

and words frequency, n-gram profile size, and a combination of these approaches to improve

results. In this section we present improvements to these approaches.

6.4.1 Enhanced Rules

To reduce the false identification rate for foreign words, we analysed the lists of foreign words,

correct Arabic words identified as foreign, and misspelled words identified as foreign. We

noticed that some Arabic characters rarely exist in transliterated foreign words, and used

these to distinguish Arabic words — correctly or incorrectly spelled — from true foreign

words. Table 6.4 shows the count of each character in the sample of 3 046 foreign words;

foreign words tend to have vowels inserted between consonants to maintain the CVCV4

paradigm. We also noticed that most of transliterated foreign words do not start with the

definite article “�Ë @”, or end with the Taa Marbuta “ �é�”. Foreign words also rarely end with

two Arabic suffixes.

We also noticed that lexicon-based approaches fail to recognise some correct Arabic words

for the following reasons:

• Words with the letter alef (“ @”) with or without the diacritics hamza (“

@”, “ @”), or the

4“C” stands for a consonant, and “V” stands for a vowel.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 161

Letter count letter count letter count

ø
 3 839 Ð 632 h 2

@ 3 599 X 559 ¨ 2

ð 2 453 �� 514 � 1
	à 1 660 h. 458 Z 0

� 1 587 	P 334 Zð 0
�H 1 544 è 171

@ 0

P 1 244 p 84 @ 0

¼ 1 070 �H 23
�
@ 0

H. 900 �� 20 	� 0

È 863 12 	 0
	¬ 769 Zø
 7 ø 0

	̈
728 	X 3 �è 0

Table 6.4: Frequency of Arabic letters in a sample of 3 046 foreign words.

diacritic madda (“
�
@”) are not recognised as correct in many cases. Many words are also

categorised incorrectly if the hamza is wrongly placed above or below the initial alef

or if the madda is absent. In modern Arabic text, the alef often appears without the

hamza diacritic, and the madda is sometimes dropped.

• Correct Arabic words are not recognised with particular suffixes. For example, words

that have the object suffix, such as the suffix “Aê�” in A�ê
�
º�	KñÒÊ� �ª�K
 (/juQallimwnakahaa/〈they

teach it to you〉).

• As described in Section 4.2.2, some Arabic words are compound words, written attached

to each other most of the time. For example, compound nouns composed of two words

that are individually identified as being correct, such as PX� A ��®Ë @ �YJ. �«
(/Qabd”ualqaad”ir/〈Abdulqader〉), are flagged as incorrect when combined.

• Some common typographical shortcuts result in words being written without whites-

pace between them. Where a character that always terminates a word (for example “ �è”)

is found in the apparent middle of a word, it is clear that this problem has occurred.

From these observations, we constructed the following rules. Whenever one of the follow-

CHAPTER 6. FOREIGN WORD IDENTIFICATION 162

AW MW FW

Approach # # # R P F

OLA 145 248 866 0.711 0.687 0.699

BLA 88 149 534 0.438 0.693 0.537

KLA 420 83 642 0.527 0.508 0.543

KPA 302 52 520 0.427 0.595 0.497

MKP 269 51 507 0.416 0.613 0.496

NGR 411 69 669 0.549 0.582 0.565

TRG 928 85 642 0.527 0.387 0.447

Table 6.5: Improvements added using our rules: identification is increased on all approaches.

The OLA approach outperforms all other approaches. The # columns indicate the number

of items in this category; R is recall; P is precision; and F is the F1-measure.

ing conditions is met, a word is not classified as foreign:

1. the word contains any of the Arabic characters:

Zø
 , Z, 	X, h, �, ð

@,

@, @,

�
@, 	 , 	�, ø, or �è;

2. the word starts with the definite article (�Ë @);

3. the word has more than one Arabic suffix (pronouns attached at the end of the word);

4. the word has no vowels between the second and penultimate characters (inclusive); or

5. the word contains one of the strings:
�è, ø, Z, @ @, ÈAK
, È@P, È@ 	P, È@X, È@ 	X, È@ð, or È@@;
and when split into two parts at the first character of any sequence, the first part

contains three or more characters, and the second part contains four or more characters.

Table 6.5 shows the improvement achieved using these rules. It can be seen that they

have a large positive impact. Overall, OLA was the best approach with precision at 69% and

recall at 71%. Figure 6.2 shows the precision obtained before and after applying these rules.

Improvement is consistent across all approaches, with an increase in precision between 10%

and 25%.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 163

 0

 0.2

 0.4

 0.6

 0.8

 1

 TRG NGR MKP KPA KLA BLA OLA

F
-S

co
re

Approaches

Without rules
With the new rules

Figure 6.2: Precision of different approaches with and without our new rules. Improvements

are consistent across all approaches

6.4.2 Improving the n-gram Approach

In the preceding section we used the n-gram approach without checking the best profile

length for Arabic, nor did we test different word profile sizes. To avoid confusion, we use the

term “profile size” to represent the size of grams used to build the language profile, and we

use the term “profile depth” to represent the total number of grams included in the language

profile, usually the most n frequent grams. For example, a profile size of 4-grams includes

all grams from 1 to 4 ordered by decreasing frequency, and a profile depth of 500 consists of

the first 500 grams of that profile. In the previous section, we used the complete language

profile for both foreign words and Arabic words and computed the distance by subtracting

the position of the gram in the word from the relative position — the gram position divided

by the profile length — of the same gram in the language profiles. This differs from the

approach of Cavnar and Trenle, who used the top 300 ranked n-grams of each profile. They

stated that around that rank, n-grams are more specific to the subject of the document and

represent terms that occur very frequently in the document around the subject, (in our case

foreign words). By inspecting the language profile, they concluded that a better cutoff can

be chosen.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 164

AW MW FW

Word Profile Size Language Profile Depth # # # R P F

5-grams All 718 95 726 0.596 0.471 0.527

2-grams 2 500 1 243 139 873 0.717 0.387 0.503

3-grams 1 700 1 315 156 1 017 0.835 0.409 0.548

4-grams 1 200 1 449 157 1 000 0.821 0.384 0.523

5-grams 900 1 546 158 1 002 0.823 0.370 0.511

Table 6.6: Best word profile size and the language profile depth at which the best results are

recorded. The # columns indicate the number of items in this category; R is recall; P is

precision; and F is the F1-measure.

In this section we aim to determine the most appropriate language profile size and depth

that can be used to identify foreign words. We also determine the cutoff value that leads

to the best result in identifying foreign words. For each word in the list we generate grams

from 1 to n where n ranges from 1 to 6, and rank them by frequency. We compute distance

as before. To decide on the best depth that can be used to generate word profiles, we

run the algorithm with different depths starting at the most frequent gram and stopping

at the mth gram in the language profile. We run experiments with m ranging from 100 to

16000. Figure 6.3 shows the F1-measure recorded across the language profile depths using

the development data set. Table 6.6 shows the best results achieved by the different language

profile depths, compared to using the full language profile as a baseline. The optimal cutoff

value for determining foreign words appears to depend on the number of grams used to build

the word profile. Results show that while the profile size increases, the profile depth that

produces the best result decreases. The best results produced by different profile sizes were

similar, with grams of size 1 to 3 achieving the best results. With these results, in order to

achieve efficiency, a profile size of 1 to 5-grams is the best option. However, as our objective

is effectiveness, we choose to build the word profile using grams of size 1 to 3 and limit the

language profiles depth to the first 1 700 most frequent grams. This option outperforms the

initial result obtained using the whole language profiles, and is used as the baseline of our

next experiment to improve the cutoff value at which we determine that a word is foreign.

In the previous section, we decided that a word is foreign if its distance from the foreign

language profile is shorter than its distance from the Arabic profile. For instance, if an Arabic

word has a distance of 300 to the Arabic profile and a distance of 299 to the foreign profile, it

CHAPTER 6. FOREIGN WORD IDENTIFICATION 165

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

F
-s

co
re

 (
%

)

Language Profile Depth

2-grams word profile
3-grams word profile
4-grams word profile
5-grams word profile

Figure 6.3: The effects of number of grams used in the word profile and the depth of language

profile on foreign word identification. Word profile built using grams from 1 to 3 gives the

best results when the language profile depth is 1 700.

is classified as foreign. To avoid such borderline cases and to increase precision by minimising

the number of Arabic words being identified as foreign, we increase the threshold required

for a word to be considered foreign. The optimal cutoff value needs to be determined. With

equal-sized language profiles, we calculate the distance between a word w and the Arabic

profile and the distance of the same word and the foreign profile as shown in Equations 6.1

and 6.2 respectively, and classify a word as foreign only when:

DALP −DFLP > c (6.4)

where c is the cutoff value between the two profiles. Using language profiles of depth 1 700,

and building word profiles with grams of size 1 to 3, we calculate the distance between words

in our list and both language profiles using different cutoff values. We determine that the

best cutoff value for this data set is 2 000. Table 6.7 shows the number of Arabic, misspelled,

and foreign words identified using this threshold. Choosing the right profile size, depth, and

CHAPTER 6. FOREIGN WORD IDENTIFICATION 166

AW MW FW

R P F

NGR 718 95 726 0.596 0.471 0.527

1700LP c=0 1 315 156 1 017 0.835 0.409 0.549

1700LP c=2000 437 84 810 0.665 0.609 0.636

Table 6.7: Improvements in precision by choosing the best cutoff value. NGR is the initial

n-gram approach using the complete language profiles where n ranges from 1 to 5, 1700LP

stands for using a profile of depth 1 700 with a profile size 3, and c is the cutoff value. The

columns indicate the number of items in this category; R is recall; P is precision; and F

is the F1-measure. 1700LP c=0 is the optimal approach from Table 6.6.

AW MW FW

R P F

1700LP c=0 2198 170 1120 0.921 0.321 0.476

1700LP c=2000 556 65 803 0.659 0.564 0.608

Table 6.8: Effects of stemming on the n-gram approach. Stemming increases recall of the

n-gram approach at cutoff 0, but decreases precision. The # columns indicate the number of

items in this category; R is recall; P is precision; and F is the F1-measure.

cutoff value increased precision over the initial n-gram approach.

Figure 6.4 shows the difference between the distance of words to the Arabic language

profile and their distance to the foreign language profile. The figure shows that most foreign

words are above the 0 line (c=0). The best precision is observed for c=2 000. Figure 6.5

shows the effect of changing the cutoff value on results of the first data set.

Improving the n-gram Approach Using Stemming

Native Arabic words exhibit a different gram profile from stemmed Arabic words. The most

frequent grams in the language profile usually contain the language letters, and the most

frequent affixes of the language [Cavnar and Trenkle, 1994]. With stemming, we remove

affixes from words, thus removing the top-ranked grams in the language profile. This would

result in building a language profile based on the language roots or stems. To check the

effects of stemming on the n-grams identification technique, we stemmed the collections and

CHAPTER 6. FOREIGN WORD IDENTIFICATION 167

-10000

-7500

-5000

-2500

 0

 2500

 5000

 7500

 10000

 12500

 15000

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

D
A

LP
 -

 D
F

LP

First 1300 words

Foreign Words
Arabic Words

Cutoff at 0
Cutoff at 2000

Figure 6.4: The difference between the distance from a word profile to the Arabic language

profile (DALP) and the distance from the same word to the foreign language profile (DFLP).

The cutoff that captures the most foreign words is 0, and the cutoff that gives the best precision

is at 2000.

built language profiles using the stemmed collections. We also stemmed the three lists that

we classified in our data set, and generated the unique list from these. Table 6.8 shows

results of using the n-gram approach on the stemmed collection. The precision of the n-gram

approach decreases when stemming the collection, but recall increases.

6.5 Using Word Frequency and Stemming to Identify Foreign Words

Word frequency can be used as an indicator to determine foreign words in Arabic text.

Foreign words generally appear less frequently than native words in Arabic text, although

naturally there are some very common foreign words, and some very rarely-used native words,

particularly in the context of news. We believe that word frequency can be used to filter out

very frequent words before we examine whether a word is foreign.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 168

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

F
-s

co
re

 (
%

)

Cutoff Value

Cutoff value for 3-grams profile

Figure 6.5: Effects of cutoff values on identifying foreign words. The best F-score value is

seen at cutoff 2000, when building words profile using grams from 1 to 3 and using the most

1 700 frequent grams in language profile.

To determine the effects of using word frequency in identifying foreign words, we count

occurrences of Arabic, foreign, and misspelled words in their original crawled collection (de-

scribed in 6.3.1) using a frequency threshold from 1 to 600. The left side of Table 6.9 shows

the numbers of words in our data set that occur at different frequencies; there is a large over-

lap in the frequency of both Arabic and foreign words. As we expected, 75% (912) of foreign

words occur fewer than four times in our data set. However, the number of Arabic native

words below this threshold is also high (15 254). Considering the threshold where all foreign

words can be captured — that is, which words occur fewer than 500 times — the number

of Arabic words would increase to 22 266. As Arabic words are highly inflected, and foreign

words are usually nouns that do not accept most Arabic affixes, stemming should increase

the frequency of Arabic words, and consequently enable the identification of foreign words

at lower frequency levels. We stemmed the whole data set (Arabic words, foreign words and

CHAPTER 6. FOREIGN WORD IDENTIFICATION 169

Frequency Occurrences

Threshold AW FW MW

1 8257 579 339

2 13 277 832 547

3 15 254 912 595

4 16 650 964 631

5 17 639 1 003 642

6 18 303 1 033 653

7 18 749 1 045 656

8 19 117 1 058 662

9 19 391 1 062 665

10 19 653 1 066 668

20 20 809 1 099 678

30 21 247 1 172 684

40 21 520 1 192 687

50 21 653 1 196 688

100 21 883 1 206 689

200 22 168 1 212 705

300 22 206 1 216 706

400 22 245 1 217 706

500 22 266 1 218 706

600 22 273 1 218 706

Frequency Occurrences

Threshold AW FW MW

1 3 844 488 261

2 6 257 719 425

3 7 347 804 487

4 8 105 849 527

5 8 649 886 539

6 9 031 923 554

7 9 335 938 563

8 9 603 954 570

9 9 756 959 575

10 9 936 965 582

20 10 833 1 009 602

30 11 212 1 075 612

40 11 466 1 107 620

50 11 611 1 115 623

100 11 910 1 127 629

200 12 195 1 134 662

300 12 270 1 138 667

400 12 311 1 139 671

500 12 331 1 140 672

600 12 348 1 140 673

Table 6.9: Arabic and foreign word frequencies: Occurrences before stemming (left) and after

stemming (right). Stemming affects 44.40% of Arabic words, while affecting only 6.40% of

foreign words.

misspelled words), generated the unique list after stemming, and computed word frequency

again. This process left 123 96 Arabic words, 1 140 foreign words, and 675 misspelled words.

The right side of Table 6.9 shows word frequencies after stemming. While stemming slightly

increases frequency statistics for Arabic words, and does not affect the corresponding statis-

tics for foreign words, we find that for this data set, word frequency alone does not help to

distinguish foreign words.

To confirm these results, we tested our scheme on a bigger collection. We counted the

frequency of our word lists in the TREC 2001 Arabic collection. We first extracted Arabic,

foreign, and misspelled words that exist in the TREC 2001 collection from our three lists.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 170

Frequency Occurrences

Threshold AW FW MW

1000 16 235 758 390

2000 18 000 829 399

3000 18 852 863 402

4000 19 304 889 405

5000 19 569 899 405

6000 19 758 906 405

7000 19 913 911 406

8000 20 026 913 406

9000 20 118 916 406

10000 20 193 918 406

11000 20 257 919 406

12000 20 315 920 406

13000 20 346 921 406

14000 20 379 921 406

15000 20 407 921 406

Frequency Occurrences

Threshold AW FW MW

1000 6 789 669 414

2000 8 088 763 446

3000 8 756 828 463

4000 9 157 864 471

5000 9 447 884 474

6000 9 659 901 479

7000 9 818 912 481

8000 9 965 916 483

9000 10 070 920 486

10000 10 164 922 488

11000 10 244 925 489

12000 10 309 931 492

13000 10 365 932 493

14000 10 418 935 494

15000 10 460 936 495

Table 6.10: Arabic and foreign word frequencies using TREC 2001 collection: Occurrences

before stemming (left) and after stemming (right).

Using our list of 22 295 Arabic words, 1 218 foreign words, and 705 misspelled words; we

found 20 730 Arabic words, 930 foreign words, and 406 misspelled words in the TREC 2001

collection. We use these frequencies to help distinguish foreign words. We also stemmed the

collections and the new lists and counted the word frequencies after stemming. Table 6.10

shows the word frequency for Arabic, foreign and misspelled words before and after stemming.

These results show that word frequency cannot be used by itself to identify foreign words in

Arabic. However, they do show that stemming greatly helps in distinguishing Arabic words,

and can therefore be used to improve precision when identifying foreign words. Results on

the first data set show that stemming reduces the number of Arabic words from 22 295 to

12 396; stemming affects 44.40% of Arabic words, but only 6.40% (78) of foreign words.

6.6 Combining Approaches

In this section, we apply a combination of the above approaches to identify foreign words.

We used approaches that produce high recall to minimise Arabic words and pass results to

CHAPTER 6. FOREIGN WORD IDENTIFICATION 171

AW MW FW

R P F

n-grams0 and OLA 72 156 872 0.716 0.793 0.752

n-grams2000 OLA plus rules 59 123 804 0.660 0.815 0.729

n-grams2000 and OLA 42 83 713 0.585 0.851 0.694

n-grams0 and BLA 43 88 534 0.438 0.803 0.567

Table 6.11: Combining n-grams and lexicon approaches: n-grams0 refers to the n-gram app-

roach with a cutoff value 0, and n-grams2000 refers to the n-gram approach with a cutoff

value 2000. The n-grams0 technique combined with the Microsoft Office 2003 lexicon pro-

duces the best result.

AW MW FW

Approach # # # R P F

OLA 1 189 112 417 0.777 0.242 0.370

BLA 780 96 267 0.498 0.234 0.318

KLA 1 684 55 312 0.582 0.152 0.241

KPA 992 29 238 0.440 0.189 0.265

MKP 901 26 231 0.431 0.199 0.273

NGR 740 22 286 0.533 0.272 0.361

TRG 1655 19 308 0.575 0.155 0.245

Table 6.12: Identification of foreign words on the test set: initial results.

approaches that produce high precision in distinguishing foreign words.

We passed foreign words identified by the n-gram approach with cutoff values 0 and 2000

to the Microsoft Office 2003 lexicon, and Buckwalter lexicons. We also combined the n-gram

approach with the OLA approach after using our enhancement rules. Table 6.11 presents

results of these combinations. The n-gram approach plus the Microsoft Office 2003 lexi-

con captures about 71% of foreign words at a precision of 79%. This result is even better

than using the Microsoft Office 2003 lexicon with our enhanced rules, or using OLA alone

(Table 6.3).

CHAPTER 6. FOREIGN WORD IDENTIFICATION 172

AW MW FW

Approach # # # R P F

OLA 302 38 307 0.572 0.474 0.519

BLA 149 33 184 0.343 0.502 0.408

KLA 350 16 216 0.403 0.371 0.386

KPA 238 9 166 0.310 0.402 0.350

MKP 202 8 162 0.302 0.435 0.357

NGR 401 8 245 0.457 0.374 0.412

TRG 972 11 235 0.438 0.193 0.268

Table 6.13: Identification of foreign words on the test set: results after using the new rules.

6.7 Verification Experiments

To verify our results, we used two other data sets. We collected a list of 23 466 unique words

from the Dar-al-Hayat newspaper.5 We classified and marked words in the same way as for

the first data set (described in Section 6.3.1). We determined this new set to comprise 22 800

Arabic words (AW), 536 Foreign words (FW), and 130 Misspelled words (MW). Table 6.12

and Table 6.13 show the initial results and improvements using the enhanced rules obtained

by each approach using this data set. The results on this unseen data are relatively consistent

with the previous experiment, but precision in this sample is lower. Using this data set, we

confirmed that the best language profile depth at which this approach produces the highest

F1-measure value is 1 700 when using a word profile of size 3, and the best cutoff value at

which it produces the best result is 2 000. The best recall value is observed at a cutoff value

of zero.

Combining the n-gram approach and the Microsoft Office 2003 lexicon approach produced

the best precision and recall values. Table 6.14 shows results of running both the n-gram

and OLA on the collection.

To form our third data set, we used 3 925 manually transliterated foreign words. The

transliteration process is described in Section 7.1.2. We mixed these words with the Arabic

and misspelled words from the second data set and evaluated the approaches on this larger

— albeit not completely independent — data set. Table 6.15 shows results of running the

n-gram and OLA approaches. Using the n-gram approach with a cut-off 0 and OLA, we
5http://www.daralhayat.com

CHAPTER 6. FOREIGN WORD IDENTIFICATION 173

AW MW FW

R P F

n-grams0 and OLA 99 24 337 0.629 0.733 0.677

n-grams2000 and OLA 43 4 256 0.478 0.845 0.610

Table 6.14: Combining n-grams and lexicon approaches using the second data set: n-grams0

refers to the n-gram approach with a cutoff value 0, and n-grams2000 refers to the n-gram

approach with a cutoff value 2000. The n-grams0 technique combined with the Microsoft

Office 2003 lexicon produces the best result.

AW MW FW

R P F

n-grams0 1 298 155 3 534 0.900 0.709 0.793

n-grams2000 426 84 2 834 0.722 0.848 0.780

n-grams0 and OLA 70 155 3 169 0.807 0.934 0.866

n-grams2000 and OLA 40 84 2 593 0.660 0.954 0.781

Table 6.15: Results using combined approaches of n-grams and OLA approach using the third

data set: n-grams0 refers to the n-gram approach with a cutoff value 0, and n-grams2000

refers to the n-gram approach with a cutoff value 2000. The n-grams0 technique combined

with the Microsoft Office 2003 lexicon produces the best result.

identified 80% of foreign words with a precision of 93%.

6.8 Effects of Foreign Word Identification on Retrieval Performance

To check whether identification of foreign words has an effect on retrieval performance, we

extracted all words identified as foreign out of the list of unique words of the AGW collection

using both OLA and the n-grams approach with a cutoff valued-zero. To minimise the

misspelled words identified as foreign, we used our normalisation and SureSplit techniques

described in Section 4.2.2 for both the queries and the collection. We used the identified

foreign words list as an “unstemmable” word list with both the light11 algorithm and the

Khoja root stemmer. A word that exists in that list is returned without stemming. Words

in the queries are also stemmed the same way. Table 6.16 shows results of running both

algorithms with and without the unstemmable list of foreign words.

CHAPTER 6. FOREIGN WORD IDENTIFICATION 174

Technique MAP P@10 RP RECALL

light11 0.2053 0.2978 0.2378 0.6456

light11 with FW unstemmed 0.2039 0.2956 0.2371 0.6454

light11 with FW initial prefix removed 0.2086 0.3022 0.2399 0.6627

Khoja 0.1654 0.2544 0.1988 0.5773

Khoja With FW unstemmed 0.1645 0.2533 0.1945 0.5502

Khoja with FW initial prefix removed 0.1707 0.2633 0.2030 0.5939

Table 6.16: Effects of not stemming foreign words on retrieval performance based on our

combined OLA and n-grams0 identification approach. Not stemming foreign words decreases

the performance of both root and light stemmers. However, removing the first prefix from

foreign words, improved both stemmers but not significantly.

Results show that excluding foreign words from stemming did not improve retrieval. In

fact, the performance of both stemmers is affected slightly negatively. As most frequent

affixes in foreign words are conjunctions and prepositions, which occur at the beginning of

the word, we conducted another experiment where we returned the remaining string after

the first letter if it existed in the foreign words list, and returned the whole foreign word

otherwise. We did this with both stemmers for the whole collection and the queries. Results

show that removing the first letter improves both the light stemming and the root stemming.

The improvement is insignificant for both stemmers.

6.9 Discussion

We have seen that foreign words are not easily recognised in Arabic text, and a large number

of Arabic words are affected when we try to identify foreign words and exclude them from

further morphological operations such as stemming.

We found the lexicon approach to be the best in identifying foreign words. However,

current lexicons are relatively small, and the variety of Arabic inflection makes it very difficult

to include all correct word forms. Furthermore, current lexicons include many foreign words;

for example when using the OLA approach on the first data set, 1 017 foreign words out

of 1 218 are OOV, indicating that about 200 foreign words are present in that lexicon. The

pattern approach is more efficient, but the lack of diacritics in general written Arabic makes

it very difficult to precisely match a pattern with a word; this results in many foreign words

CHAPTER 6. FOREIGN WORD IDENTIFICATION 175

being incorrectly identified as Arabic. When passing the list of all 3 046 manually judged

foreign words to the pattern approach, some 2 017 words of this list were correctly judged

as foreign, and about one third (1 029) were incorrectly judged to be Arabic. The n-gram

method produced reasonable precision compared to the lexicon-based methods. In contrast,

TRG had the worst results. This could be due to the limited size of the training corpus.

However, we expect that improvements to this approach will remain limited due to the fact

that many Arabic and foreign words share the same trigrams.

All the approaches are improved dramatically when applying the enhancement rules.

The improvement was less marked for the NGR approach, since it does apply some of the

rules such as letter counts implicitly. The lack of diacritics also makes it very difficult to

distinguish between certain foreign and Arabic words. For example, without diacritics, the

word 	á�
�J 	�J
Ê¿ could be 	á��� 	JJ
Ê�¿ (/klijnt”un/〈Clinton〉), or 	á�

��J�	�J
Ê�

�
¿ (/kalijnat”ajn/〈as two date trees〉).

The pronunciation is different in the two cases, but only context or diacritics can distinguish

the word.

By determining the best language profile depth and using a word profile of size 3, we

improved the identification using the n-gram ranked approach. By combining the OLA

approach with the n-grams approach, we achieved a recall of 80% with a precision of 93%

when using a manually transliterated word list embedded within typical Arabic text. This

result is even better than results with OLA and our enhancement rules. We relate this

improvement to the fact that many Arabic words are filtered out by the n-grams approach

before we check them with the OLA approach. This minimises the number of Arabic words

that OLA incorrectly distinguishes as foreign.

Identifying foreign words allows us to avoid stemming them along with native Arabic

words. Results show that not stemming foreign words results in a slight reduction in precision

for the light11 stemmer and the Khoja stemmer. When removing the first letter from foreign

words that exist in the list without that letter, results improved, although this improvement

is not significant for the light stemmer and the root stemmer.

6.10 Chapter Summary

Identifying foreign words in Arabic text is an important issue in information retrieval, hence

commonly-used techniques such as stemming should not be applied indiscriminately to all

words in a collection.

We have examined three approaches for identifying foreign words in Arabic text: lexicons,

CHAPTER 6. FOREIGN WORD IDENTIFICATION 176

patterns, and n-grams. We have presented results that show that the lexicon approach out-

performs the other approaches, and have described rules to minimise the false identification

of foreign words. These rules result in improved precision, but have a small negative impact

on recall.

We have shown that the word frequency cannot be used by itself to identify foreign

words in Arabic text even after stemming, but that it can be used to reduce the number

of Arabic words involved in the checking process. We have explored how to improve the

n-gram approach by determining the best language profile depth and size. We have formed

the best language profile from the 1 700 most frequent n-grams for grams of size 1 to 6;

and have improved the identification effectiveness of the original n-gram approach used in

language identification. By increasing the threshold at which we decide a word is foreign

from 0 to 2 000, we have improved precision, but at the cost of recall.

We have combined approaches to improve results. We selected approaches that have

higher recall values and precision. The n-gram approach, in conjunction with the Microsoft

Office 2003 lexicon, OLA, and a cutoff of 0 produces results better than even our rule-based

approach.

We combined the OLA and the n-gram approaches to capture the list of foreign words

in the AGW collection and used this list as an unstemmable list with both the light11 light

stemmer, and the Khoja root stemmer. Any word found in that list is returned without

removing affixes. We found that not stemming foreign words does negatively affect the

precision of light and root stemmers, suggesting that removing affixes such as conjunctions

and prepositions is essential. We further removed the first letter from foreign words if the

remaining strings exist in the identified foreign word list. This improves the performance of

both light and root stemmers but not significantly.

Since foreign words may have several variants, algorithms that collapse those versions to

one form could be useful in identifying foreign words. Given a foreign word in the query,

algorithms such as string- and phonetic-similarity techniques could be used to identify vari-

ants of the word in the query and either replace them with the version found in the query

or normalise them to one form in the collection. We present such techniques in the following

chapter and show how identifying foreign words and normalising all variants in the collection

can aid retrieval effectiveness.

Chapter 7

Dealing with Foreign Words in

Arabic

Due to inconsistent transliteration, foreign words frequently have many variants in Arabic

text. As explained in the previous chapter, transliterated foreign words are increasingly

common in Arabic text, and there is little published research on how to deal with them.

Typical search engine users are unlikely to recognise the problem, and rarely use variants in

their queries. Currently, major search engines such as Google, Yahoo, and Microsoft Live

Search use exact match for Arabic search, and no publicly available AIR system has been

reported to retrieve different spelling variants [Abdelali et al., 2004].

In this chapter, we explore how the different variants of a foreign word may be captured

and conflated together. We test existing similarity techniques described in Section 2.2.3,

and introduce three techniques to search for variants of foreign words in Arabic. In the

first technique, we convert different variants to a single normalised form by removing vowels

and conflating homophones. In the second technique, we extend the well-known Soundex

technique — commonly used to identify variants of names in English — to the foreign words

problem in Arabic. In the third technique, we modify the English Editex algorithm to identify

similar foreign words in Arabic. We use these techniques in an IR experiment and show that

our novel algorithms improve results.

177

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 178

ÕºK. Õ» AK. Õ»ñK. ÕºJ
K.
ÐñºK. Ðñ» AK. Ðñ»ñK. ÐñºJ
K.
ÐA¾K. ÐA¿ AK. ÐA¿ñK. ÐA¾J
K.
Õæ
ºK. Õæ
» AK. Õæ
»ñK. Õæ
ºJ
K.

Table 7.1: Variants of the word “Beckham” generated by adding vowels.

7.1 Data

To test the effectiveness of our algorithms, we use two different data sets. The first set is gen-

erated from text crawled from the Web, and the second is prepared by manual transliteration

of foreign words from English to Arabic.

7.1.1 Crawled Data

This set is derived from a one-gigabyte crawl of Arabic web pages from twelve different online

news sites. From this data we extracted 18 873 073 Arabic words, 383 649 of them unique.

We used the Microsoft Office 2003 Arabic lexicon to build a reference list of OOV words.

To avoid duplicates in the 40 514 OOV words returned by the lexicon, we remove the first

character if it is an Arabic preposition and the string remaining after that character exists

in the collection. We also removed the definite article “�Ë @” to obtain a list of 32 583 words.

Through manual inspection, we identified 2 039 unique foreign words.

To evaluate alternative techniques, we use a reference list of foreign words and their

variants. To identify variants, we generate all possible spelling variants of each word according

to the patterns we described in Section 2.1.5, and kept only the patterns that exist in our

collection; 556 clusters of foreign words remain.

Generation of Variants

To generate foreign words variants, we first remove any vowels and then reinsert vowel com-

binations of the three long vowels {ð ø
 @} between the consonants that remain. For a word

of length n, this process generates 4(n−1) variants. Consider the word ÐA¾J
K. 〈Beckham〉. We

remove vowels to obtain ÕºK. , and then add all possible vowels to obtain the variants shown

in Table 7.1.1.

As discussed in Section 2.1.5, inconsistent representation of sounds between transliterators

adds to the variations in spelling. Thus, the number of possible transliterations for a foreign

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 179

word is given by 4(n−1) multiplied by the number of possible transliterations for each of its

consonants. In our example, the letter � �®� /q/ may also be used in place of �º� /k/, and so

we generate another set using that letter.

We validate the generated variants against our collection and keep only those that ap-

pear in the crawled text. For our example word “Beckham”, we found only two correct

variants: ÐA¾J
K. and ÕºJ
K. . Some of the generated variants could be correct Arabic words that

would be valid when checked against the collection. Many of the generated clusters were

found to be noisy – that is, they included many native Arabic words. We manually corrected

these clusters by removing unrelated Arabic words. The average cluster length is 2.8 words;

the smallest cluster has two variants, and the largest has nine, with a total of 1 718 words.

7.1.2 Transliterated Data

Our second collection reflects one pattern in which OOV words are introduced by ordinary

users transliterating English words into Arabic. We extracted a list of 1 134 foreign words

from the TREC 2002 Arabic collection, and passed these to the Google translation engine

to obtain their English equivalents. We manually inspected these and corrected any incor-

rect translations. We also removed the 57 words mapped by Google to multiple English

words. These are usually a word and a possible conjunction or preposition. For example the

word h. Q�.Ò�»ñË 〈Luxembourg〉 is incorrectly translated to 〈for June〉. We passed the English

list to seven native Arabic speakers and asked them to transliterate each word in the list back

into Arabic, even if the word has an Arabic equivalent. At the time of the experiment, four

were PhD students and had finished an advanced-level English course, three were enrolled in

an intermediate-level English course. Participants were asked to type in their transliteration

next to each English word. We noticed that some transliterators had only basic computing

skills, and made many spelling mistakes. For example, instead of typing the letter Alef “ @”,

we found that transliterators sometimes mistakenly type the letter Lam “�Ë”; this is analogous

to users mistakenly interchanging ”0” and ”O”, and ”1” and ”l” in English.

We clustered transliterations by the original English words, removed duplicates from each

cluster, and also removed 103 clusters where all transliterators agreed on the same version

of transliteration. This left 3 582 words in 207 clusters of size 2; 252 clusters of size 3; 192

clusters of size 4; 149 clusters of size 5; 93 clusters of size 6; and 47 clusters of size 7. Finally,

we incorporated these transliterations into a list with 35 949 unique Arabic native words that

we used in the previous chapter (Sections 6.3.1 and 6.7).

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 180

7.2 Algorithms

There are two types of algorithms that we can use to find variants of a foreign word that

appears in the user query: techniques that can be used at the indexing time — known as static

techniques — and techniques that can be used at search time, known as dynamic techniques.

In static techniques, we normalise all foreign words in the Arabic text using rules that bring

similar words together. Techniques such as Soundex and Phonix, described in Section 2.2.3,

normalise words by replacing characters with codes based on their phonemes. Words in

the query are similarly converted into phonetic forms for lookup in the index. In dynamic

techniques, words in the query are compared to words in the index at search time; the

similarity between two words is estimated using techniques such as n-grams, Edit Distance,

or Editex (described in Section 2.2.3).

7.2.1 Static Algorithms

We propose two new algorithms that deal with foreign words at indexing time: NORM and

Soutex.

The NORM Algorithm

Our first algorithm to deal with foreign word variants is called “NORM”. This normalises

words by removing vowels and keeping the first and the last characters, replacing translit-

erated characters that originate from one English character to a single Arabic character; we

consider diphthongs and double vowels in this mapping. To develop this algorithm we run

different versions and test them on the first data set. Table 7.2 shows the different versions

and their descriptions.

In our initial version (NORM1), we only remove vowels from every foreign term. In

the second version (NORM2), we keep vowels unchanged if they are the first or the last

characters of the word, since they are generally pronounced in Arabic. The long vowel letters

are sometimes used as consonants, and these may be followed immediately by another long

vowel. For example, the vowel letter“ø
 ” /j/ may be followed by the long vowel“ð” /w/

to form “ñK
” /jw/. For such cases, we keep the first vowel and remove the second. Two

vowels can also be used together as diphthongs, as in “ð@” /aw/ and “ø
 @” /aj/, where

the diphthongs are caused by not vocalising the second vowel. We retain vowels that are

followed by another vowel or preceded by a vowel that forms a diphthong. This forms the

third version of our algorithm (NORM3). We also conflate similar consonants based on

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 181

Algorithm Description

NORM1 Remove all vowels

NORM2 NORM1 + Do not remove vowels at position 1 and n in an n-character word

NORM3 NORM2 + Keep vowels if they are followed by another vowel or form a diph-

thong

NORM NORM3 + Replace characters originated from the same English character

with one character

Table 7.2: NORM algorithm development.

Original Normalised

� �� 	P � �
�H
h.

	̈ ¼ �� 	̈
�H �H

Table 7.3: Normalisation of equivalent consonants to a single form.

statistical analysis of letter mappings between English and Arabic [Abduljaleel and Larkey,

2003; Stalls and Knight, 1998], and confirming through a web search that these consonants

are used interchangeably in web documents. Table 7.3 shows all consonants we consider to

be equivalent. Our process may lead to ambiguity where a similar native word exists; for

instance, the spelling variants Y	KCK
@ and Y	JÊK
 @ for 〈island〉 are normalised to Y	JË @, which is

identical to the Arabic word (/annid”/〈equivalent〉). Adding a custom prefix (not found in

Arabic text) to the normalised form is one way to address this issue; we choose to add the

letter “ �è” to the beginning of each normalised word. For example, variants for “island” are

thus normalised to Y	JË @ �è. Since the letter “ �è” never occurs at the beginning of any Arabic

word, no ambiguity remains.

To evaluate the effectiveness of our approaches, we consider each word in the list to be a

query, and pose this to the entire collection. The query result should be other words in the

same cluster. We measure the effectiveness using average precision and average recall over

all queries.

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 182

Characters Code

@ ð ø
 0
�è �H �H 	 	� 1

� �� 	P � 2

X 	X 3

h.
	̈ ¼ �� 4

¨ è h 5
	à 6

Ð 7
	¬ 8

È 9

H. A

P B

p C

Table 7.4: Mappings for our phonetic approach.

The Soutex Algorithm

Using the letter groups identified on the previous section, we also developed an algorithm

similar to Soundex to conflate transliterated foreign words in Arabic. We did not consider all

sounds in Arabic; instead, we addressed only those sounds that are found in transliterated

foreign words. We group sounds based on statistical analysis of letter mappings between En-

glish and Arabic [Abduljaleel and Larkey, 2003; Stalls and Knight, 1998], and after using the

Google search engine to confirm that these consonants are used interchangeably in practice.

For example, a search for the transliteration variants
	¬ñ ����AK. Pñ 	«,

	¬ñ ����AK. Pñ�̄, 	¬ñ ����AK. Pñk. ,
and

	¬ñ ����AK. Pñ» for “Gorbachev” confirmed that the English sound /g/ can be mapped to �k.
/Z/, � 	« /G/, ��̄ /q/, or �» /k/ in Arabic, and so we map these letters to the same code 4. Our

phonetic algorithm aims to replace similar transliterated sounds with a single code. As noted

earlier, we do not envisage that this algorithm has use for native Arabic words, as these are

usually distinct, and pronunciation is rarely ambiguous. Table 7.4 shows Arabic letters and

their corresponding codes. To normalise a foreign word, we replace each letter but the first

by its phonetic code, and drop any vowels. We call this version “Soutex”.1 In this version,
1This name is a play on the Arabic word �Hñ� (/sQwt”/〈sound〉).

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 183

we do not limit encoding to a specific number of characters as it has been empirically shown

that this is neither effective for English [Zobel and Dart, 1996] nor for Arabic [Aqeel et al.,

2006]. However, as our task is different, we also test the effectiveness of limiting encoding to

four characters as in the English Soundex. Therefore, we use another version in which we

only encode the first four characters in the word. We call this version “Soutex4”.

7.2.2 Dynamic Algorithms

We apply most of the string similarity techniques discussed in Seacion 2.2.3 to Arabic and

check their effectiveness in capturing variants of foreign words. We specifically test the gram

count (gramCount), gram distance (gramDist), dice (Dice), edit distance (Edit Distance),

longest common subsequence (LCS), and skip grams (Sgrams). We also extend the Editex

technique to Arabic by replacing the character groups used for English with Arabic character

groups. We then modify this technique and improve its ranking. In this thesis, we use the

term “dynamic algorithms” when referring to only the algorithms listed here, and do not

imply that our conclusions apply to dynamic algorithms in general.

Arabic Editex

Based on groups identified in Table 7.5, we have modified the Editex algorithm of Zobel

and Dart [1996] explained in Section 2.2.3. This works in the same manner as in English

except that we drop the functionality used to consider the two silent characters in the English

version, since silent characters in Arabic are rare and usually occur at the beginning or at

the end of the word. More specifically, we replace d(si, tj) by r(si, tj). We call the Arabic

version of this algorithm “AEditex”. The distance between two strings s and t is computed as:

edit(0, 0) = 0

edit(i, 0) = edit(i− 1, 0) + d(si − 1, s1)

edit(0.j) = edit(0, j − 1) + d(tj − 1, tj)

edit(i.j) = min[edit(i− 1, j) + d(si − 1, si),

edit(i, j − 1) + r(si, tj),

edit(i− 1, j − 1) + r(si, tj)]
(7.1)

where r(si, tj) is 0 if si=tj , 1 if group(si)=group(tj), and 2 otherwise.

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 184

Characters Group

@ ð ø
 0
�H �H 1
�H 2
	 	� 3

� �� 4

� � 5
	P � 6

X 	X 7

h.
	̈ ¼ �� 8

Table 7.5: AEditex letter groups.

Ranked AEditex

Edit Distance ranks words by the number of steps required to transpose one word to another.

This generates integer ranks, and so many words may have the same rank. For example,

given the word 	á�
ÊJ
��K
 @ 〈Ethylene〉 as a query, Edit Distance ranks the words 	áÊJ
��K
 @ 〈a variant

of Ethylene〉, and 	á�
ÊJ
 	®K
 @ 〈Evelynne〉 equally, as only one step is needed to change each one

to the query word. The word 	áÊJ
��K
 @ is a variant of the query, and differs only in spelling; the

other word however, differs in both spelling and pronunciation. AEditex resolves this problem

by grouping similar sounds and assigning words with similar pronunciation lower distance

than those with same distance but having different pronunciation. AEditex, however, still

produces weak ordered ranks, and more fine-grained ranking may improve results.

To differentiate between words and to reduce the size of ranks, we introduce the concept

of real-valued distance. In AEditex, words with the same characters have a distance of

zero, words with one different character have a distance of two, and words with only one

different character that is similar in pronunciation to its counterpart in the second word have

a distance of 1. AEditex thus has two ranks for cases where characters are not identical.

We believe that the rank of words with different characters but similar pronunciation can be

further improved.

Consider the two pairs “ÉK
�QK.� Ag. ” /Gabirjil/ and “ÉK
�QK.� A
	«” /Gabirjil/ 〈transliterations of

the proper noun “Gabriel”〉, and “ú

	Gñ�K” /t”wnj/ and “ú

	Gñ£” /t”Qwnj/ 〈transliterations of the

proper noun “Tony”〉. Using AEditex, the similarity between the first pair is equal to the

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 185

AEditex Ranking REditex Ranking

Word Distance Words Distance Word Distance Word Distance
	á�
ÊJ
��K
 @ 0 	á�
ÊK
 @ 4 	á�
ÊJ
��K
 @ 0.00 	á�
Ëñ�JK
ð 1.83
	á�
ÊJ
��K
 @ 1 	á�
ÊJ
�@ 4 	á�
ÊJ
��K
 @ 0.50 	á��
ÊJ
�JÖ

�ß 2.00
	á�
ÊJ
�K @ 2 ÉJ
��K
 @ 4 	á�
ÊJ
�K @ 0.66 ñJ
ÊK
 	QK
 @ 2.00
	áÊJ
��K
 @ 2 é�J
ÊJ
Öß
@ 4 	á�
Ê�JK
 @ 1.00 	á�
ÊJ
��
 	̄ 2.00

	á�
ÊJ
 	®K
 @ 2 	á�
Ê�K @ 4 	áÊJ
��K
 @ 1.00 é�J
ÊJ
Öß
@ 2.00
	á�
Ê�JK
 @ 2 	áK
Q�
�K @ 4 	á�
ÊJ
 	®K
 @ 1.00 ÉJ
��K
 @ 2.00
	á�
ÊJ
�K @ 3 	á��
ÊJ
�JÖ

�ß 4 	á�
ÊJ
�K @ 1.17 	á��
ÊJ
m.�
	' @ 2.00

ú
ÎJ
Öß
@ 4 	á�
Ê 	®K
 @ 4 	á�
ÊJ
�@ 1.67 	á�K
YK
 	QK
 @ 2.00

	á�
ÊK
ñJ
Ë 4 	á�
ÊJ
��
 	̄ 4 	àñJ
�®J
��K
 @ 1.67 ú
ÎK
QK
@ 2.00

	àñJ
�®J
��K
 @ 4 	á��
ËA¢�
@ 4 	á��
ËA¢�
@ 1.67 	á�
Ê 	®K
 @ 2.00

ú
ÎK
QK
 @ 4 ñJ
ÊK
 	QK
 @ 4 	á�
ÊK
 @ 1.67 	á�
ËQK
 @ 2.00

	á�K
YK
 	QK
 @ 4 	á��
ÊJ
m.�
	' @ 4 	áK
Q�
�K @ 1.67 	á�
ÊK
ñJ
Ë 2.00

	á�
ËQK
 @ 4 	á��
�J 	K @ 4 	á�
Ê�K @ 1.67 	á��
�J 	K @ 2.00

Table 7.6: Comparison of AEditex and REditex ranking. Words retrieved as variants for the

word “ 	á�
ÊJ
��K
 @”. Words are ranked based on values of both AEditex, and REditex.

second pair. With the phonetic groups used in AEditex, the probability of transliterating

the source character “G” to “h. ” or “
	̈
” is 1

4 , whereas the probability of transliterating the

character “T” to “ �H” or “ ” is 1
2 . Based on this, we introduce another new rule to AEditex.

If two characters are the same, the function r(si, tj) returns 0, if they are not the same but

belong to the same group, it returns 1− 1
the group length , and if they are not the same and

do not belong to the same group, it returns 1. Using groups identified in Table 7.5 the

probability is either 1− 1
2 , 1− 1

3 , or 1− 1
4 . Under this scheme, the similarity between the

first pair is 0.75, while the similarity between the second pair is 0.50. We believe that this is

more realistic than with AEditex. We call our modified algorithm “REditex”.

Table 7.6 shows an example of ranking the seven variants of the word “ 	á�
ÊJ
��K
 @” (“ 	á�
ÊJ
��K
 @”,

“ 	á�
ÊJ
��K
 @”, “ 	á�
ÊJ
�K @”, “ 	áÊJ
��K
 @”, “ 	á�
Ê�JK
 @”, “ 	á�
ÊJ
�K @”, and “ 	á�
Ê�K @”) among words retrieved using AEditex

and REditex algorithms. Both algorithms retrieve the seven variants, but REditex produces

much better ranking. The last rank in AEditex (Rank 4) is divided by REditex into three

ranks.

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 186

@ ø

�H ø
 È ø

	à
a y t y l y n

0 2 4 6 8 10 12 14

@ a 2 0 2 4 6 8 10 12

ø
 y 4 2 0 2 4 6 8 10
�H th 6 4 2 1 3 5 7 9

ø
 y 8 6 4 3 1 3 5 7

È l 10 8 6 5 3 1 3 5

ø
 y 12 10 8 7 5 3 1 3
	à n 14 12 10 9 7 5 3 1

@ ø

�H ø
 È ø

	à
a y t y l y n

0.00 1.00 1.67 2.67 3.67 4.67 5.67 6.67

@ a 1.00 0.00 0.67 1.67 2.67 3.67 4.67 5.67

ø
 y 1.67 0.67 0.00 1.00 1.67 2.67 3.67 4.67
�H th 2.67 1.67 1.00 0.501.50 2.50 3.50 4.50

ø
 y 3.67 2.67 1.67 1.50 0.50 1.50 2.50 3.50

È l 4.67 3.67 2.67 2.50 1.50 0.50 1.50 2.50

ø
 y 5.67 4.67 3.67 3.50 2.50 1.50 0.50 1.50
	à n 6.67 5.67 4.67 4.50 3.50 2.50 1.50 0.50

Figure 7.1: Calculating Editex: AEditex (left) and REditex (right). Change in results is

indicated in bold and the final distance is underlined.

REditex ranks the last variant “ 	á�
Ê�K @” in the sixth position in rank 4. As this is a weak

rank — all words have distance value 1.67 — that starts at the eighth position and ends

at the thirteenth position, this result is the worst possible result that REditex can produce.

In contrast, AEditex ranks the same variant at the 18th position, with the possibility that

this variant falls in the 26th position. Using the probability of relevance measure (PRR)

described in Section 2.3.3, the precision of AEditex is 0.412, while for REditex it is 0.667.

Figure 7.1 shows how AEditex and REditex are calculated. Latin characters are used

to represent the two words involved in the calculation. Both algorithms follow the same

strategy in comparing the two words. They only differ when reaching position (3,3) at which

the two characters are not the same but belong to a two-letter group. REditex returns 0.5

while AEditex returns 2. Since all other letters are the same, this is the final distance.

7.3 Evaluation

As discussed in Section 2.3.3, results returned by the static algorithms and the dynamic

algorithms discussed in the past section are not directly comparable, as dynamic algorithms

return ranked results and static ones return unranked results. Both techniques result in

a weak-ordered ranking. As such, in this section we use the PRR measure described in

Section 2.3.3 to compare these approaches. We present results on the crawled and the

transliterated data sets in the recall-precision graph over the 11-recall points.

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 187

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

REditex
Sgrams
NORM
Soutex

LCS
AEditex

Edit Distance
gramCount

Dice
Asoundex-Final

gramDist
Exact match

Figure 7.2: Results of static and dynamic algorithm on the crawled data.

7.3.1 Results and Discussion

Results obtained from running algorithms using queries in both data sets against their re-

spective collection are shown in Figure 7.2 and Figure 7.3. The average precision (average

PRR in our case) for each algorithm is shown in Table 7.7. Algorithms produce results that

are significantly better than exact match [t-test, p < 0.001].

On the first data set, NORM performs the best. REditex is the second-best algorithm,

followed by LCS, AEditex and Edit Distance. Soutex shows better performance than all

other algorithms except NORM after 50% recall, but performs poorly at lower recall levels.

Both the gramCount and Dice algorithms have similar performance with average precision at

around 46%. Asoundex-final and gramDist show poorer performance than other algorithms,

with average precision at 38%.

Results from the transliterated data set generally favour the string similarity algorithms.

REditex outperforms all other techniques with an average precision of 82%, followed by LCS

at 78%, Sgrams at 76%, Edit Distance at 70%, and then AEditex at 62%. Soutex performs

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 188

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

REditex
Sgrams
NORM
Soutex

LCS
AEditex

Edit Distance
gramCount

Dice
Asoundex-Final

gramDist
Exact match

Figure 7.3: Results of static and dynamic algorithm on the transliterated data.

better than both the gramCount and Dice algorithms. It also performs better than AEditex

at recall levels of 50% and higher. NORM performs better than the Asoundex-final and

gramDist algorithms. The gramDist algorithm is again the worst. All algorithms showed

significant improvement above the baseline [t-test, p < 0.001].

Although the NORM and Soutex algorithms do not produce the best performance, they

have the advantage of generating encodings for later use in retrieval. Dynamic algorithms

are more computationally expensive and can only be used at query time. In the next section

we show how these algorithms can be used in a real IR environment.

7.4 IR Evaluation

In this section we use the above algorithms to find foreign words in Arabic text. Algorithms

classified as static are easily implemented and can be integrated with any AIR systems when

processing text for indexing. However, algorithms classified as dynamic are more difficult to

integrate into AIR systems, they need to be run concurrently as the user types a query to

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 189

Data set

Algorithm First Second

Exact Match 0.300 0.261

REditex 0.656 0.820

LCS 0.619 0.782

Sgrams 0.586 0.759

Edit Distance 0.572 0.700

AEditex 0.576 0.624

NORM1 0.548 0.534

NORM2 0.575 0.463

NORM3 0.549 0.459

NORM 0.660 0.536

Soutex 0.530 0.590

gramCount 0.451 0.595

Dice 0.457 0.568

Asoundex-final 0.368 0.446

gramDist 0.376 0.401

Table 7.7: Average precision for all algorithms. All show significant improvement over the

baseline with REditex performs the best. Exact Match is the baseline.

compare words in the query with words in the collection index.

7.4.1 Experimental Setup

With dynamic algorithms, foreign words in the user’s query are compared at query time to

words in the collection index. We can decide whether a query word is sufficiently similar

— using a threshold that we empirically determine — to a word in the index to warrant

replacement of the query word with the corresponding word that appears in the index.

We use the AGW collection with 90 queries along with their relevance judgements. Most

queries (64 of 90) contain foreign words. To minimise the time required to check words in

the collection against foreign words in the query, we use the most effective identification

technique presented in the past chapter (N-grams with cutoff value 0, combined with the

Microsoft Office 2003 lexicon) to filter out foreign words from both the collection and the

queries. This step resulted in identification of 64 unique foreign words in the query title,

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 190

description, and narrative fields. Similarly, of the 2 209 850 unique words in the collection,

we determined 594 139 of these (26.9%) to be foreign. By applying algorithms to only the

foreign words, we achieve two objectives: first, we avoid applying algorithms specifically

developed for foreign words to Arabic words, which might cause Arabic words to be reformed

and indexed under the wrong reference term in the index. Second, we limit comparison of

words in the query to 26.9% of the words in the collection rather than comparing with all

the words in the collection, representing substantial efficiency gain for dynamic algorithms.

We run both static and dynamic algorithms to search the collection for variants of foreign

words appearing in the query. If a word is judged as a variant, we replace it with the variant

of the word found in the query. In such cases, all identified variants in the collection will be

replaced with the same variant.

As dynamic algorithms return a ranked list of variants with the best match at the top,

we run every algorithm with its different possible thresholds starting at the top rank and

increasing the threshold to gradually include other ranks. We report the best result for every

algorithm with its respective threshold. We have determined that for this task, the best

result is usually achieved when using variants returned at the top rank.

We use the light11 stemmer to stem both the collection and the queries. We extend the

stemmer with our algorithms to return the appropriate version of the word if it is found in the

list of filtered foreign words. This stemmer is used as it was the best variant demonstrated

in Chapter 5.

The light11 algorithm starts by normalising words, then removes the particle “ð”, the

definite article, and suffixes. We check whether a word is foreign after the second step —

after removing the particle “ð”. Figure 7.4 shows how both static and dynamic algorithms

work with the light11 stemmer. When using a static algorithm, a word is encoded only if it is

a foreign word. In contrast, when using a dynamic algorithm the version of word in the query

is used to replace words in the collection found to be sufficiently similar to it. We use the

Okapi BM25 weighting scheme with the best values that we determined in Chapter 5 (b=0.25,

K1=1, and K3=7). We did not use any relevance feedback technique in this experiment.

7.4.2 IR Results

Table 7.8 shows results of indexing the collection using static and dynamic algorithms. None

of the algorithms add significant improvement to the light11 stemmer when using the MAP

measure. NORM1, NORM, and AEditex algorithms have the best improvement in MAP,

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 191

Require: length(w) > 0

w ⇐ RemovePunctuation(w)

w ⇐ Normalise(w)

if w[i] =’ð’ then

w ⇐ copy(w, 2, length(w)−1)

end if

if IsAForeignWord(w) then

w ⇐ encode(w)

return w

end if

w ⇐ RemoveAlPrefixes(w)

w ⇐ RemoveSuffixes(w)

return w

Require: length(w) > 0

w ⇐ RemovePunctuation(w)

w ⇐ Normalise(w)

if w[i] = ’ð’ then

w ⇐ copy(w, 2, length(w)− 1)

end if

if IsAForeignWord(w) then

for i = 1 to NoFWinQuery do

if (dynamic(w,FWinQuery[i]) lop threshold)

then

return FWinQuery[i]

end if

end for

end if

w ⇐ RemoveAlPrefixes(w)

w ⇐ RemoveSuffixes(w)

return w

(a) Static algorithms within light11. (b) Dynamic algorithms within light11.

Figure 7.4: Static and dynamic algorithms integrated within the light11 stemmer: “encode”

represents a static algorithm; “dynamic” represents a dynamic algorithm; “lop” represents a

logical operator and is either “>,<,=, >=, or <=”; and IsAForeignWord(w) is a function

that searches a word w in the identified foreign words list.

but this is only weakly significant [t-test, p = 0.078, p = 0.079, and p = 0.075 respec-

tively]. NORM1 improves the MAP measure by 9.64%, followed by AEditex (8.96%), NORM

(8.53%), and NORM3 (7.93%). Recall also increases significantly with NORM1, NORM and

AEditex [t-test, p = 0.043, p = 0.020, and p = 0.041 respectively]. NORM2, and NORM3

improve recall, but improvement is only weakly significant [t-test, p = 0.070, and p = 0.072

respectively].

The phonetic algorithms, along with gramDist, decrease the performance of the light11

stemmer significantly in all measures.

The AEditex algorithm adds the second best increase to the light11 stemmer, resulting

in a weakly significant improvement in P@10 [t-test, p = 0.063]. In contrast to our previous

results with the list of foreign words variants, integrating AEditex in the light11 algorithm

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 192

Technique Threshold MAP P@10 RP RECALL

light11 - 0.2053 0.2978 0.2378 0.6456

wNORM1 - 0.2251 0.3200 0.2508 0.6791↑
wNORM2 - 0.2217 0.3111 0.2467 0.6655↑
wNORM3 - 0.2216 0.3111 0.2471 0.6652↑
wNORM - 0.2228 0.3111 0.2527 0.6712↑
wSoutex4 - 0.1639↓ 0.2433↓ 0.1930↓ 0.6008↓
wSoutex - 0.1630↓ 0.2433↓ 0.1930↓ 0.5981↓
wAsoundex-Final - 0.1492↓ 0.2233↓ 0.1742↓ 0.5593↓
wDice > 0.5 0.2049 0.2911 0.2327 0.6496

wgramCount > 0.8 0.2063 0.2933 0.2329 0.6518

wgramDist ≤2.0 0.1275↓ 0.1922↓ 0.1544↓ 0.5213↓
wSgrams > 0.8 0.2052 0.2922 0.2325 0.6496

wLCS > 0.8 0.2083 0.2967 0.2345 0.6511

wEditDistance ≤1.0 0.2066 0.2922 0.2337 0.6508

wAEditex < 3.0 0.2237 0.3244 0.2539 ↑0.6617

wREditex ≤1.0 0.2058 0.2911 0.2334 0.6506

Table 7.8: Performance of light11 stemmer with our static and dynamic algorithms. AEditex

and NORM algorithms produce the best results. ↑ indicates values that are significantly

better than the light11 stemmer at the 95% confidence level, while ↓ indicates values that are

significantly worse than the light11 stemmer.

outperformed the integration of REditex. It is significantly better than REditex in MAP [t-

test, p = 0.058], P@10 [t-test, p = 0.006], and R-Precision [t-test, p = 0.038]. It is also

significantly better than integrating the Edit Distance algorithm in P@10 and R-Precision [t-

test, p = 0.008, and p = 0.041 respectively].

Comparing the NORM algorithms with REditex, only NORM adds significant improve-

ment in both recall and R-Precision [t-test, p = 0.027, and p = 0.044 respectively]. NORM1,

NORM2, and NORM3 add only weakly significant gains over REditex. The performance of

the best-performing algorithms is shown in Figure 7.5.

To investigate the effects of our introduced algorithms in more detail, we show retrieval

results for individual queries. Due to the large number of queries, we only show those af-

fected by incorporating our algorithm (NORM) into the light11 stemmer. If the absolute

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 193

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

light11
light11 with NORM1
light11 with NORM2
light11 with NORM3
light11 with NORM
light11 with AEditex

Figure 7.5: The effects of foreign word normalisation on the light11 stemmer using the NORM

and AEditex algorithms. Algorithms perform equally and enhance the light11 retrieval per-

formance.

value of the difference between the average precision before and after integrating NORM in

the light11 stemmer is less than 0.01, we exclude the query. Figure 7.6 shows the effects of

our NORM algorithm on the light11 stemmer with performance measured by average preci-

sion. The graph shows that 21 queries have been improved by adding the NORM algorithm;

the increase is quite marked for some queries; for example, queries 8, 51, and 84 achieve 0 in

MAP when using the light11 stemmer alone, but score 0.0174, 0.3540 and 0.1232 respectively

when integrating the NORM algorithm. Similarly we observe 0.4762, 0, and 0 Recall when

using the light11 alone, but score 0.7619, 0.7778, and 0.8571 respectively when applying the

NORM algorithm. This is due to the fact that using the light11 stemmer alone failed to

conflate foreign word variants in the document collection with the variants of foreign words

used in the queries. For example, Query 44 “ 	á�
�ËAK. ñ» C	J� PA�«@” 〈the typhoon Sinlaku in

China〉, scores a MAP of 0.3403 when using the light11 stemmer alone, but scores 1.000

when applying the NORM algorithm. There are 7 documents relevant to this query. Recall

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 194

is 100% in both cases, but the ranking is different. The light11 stemmer alone ranks only 4

documents within the top 10 retrieved documents (P@10=0.4000). These documents con-

tain the same query variant “ñ» C	J�” (/snlakw/〈the typhoon Sinlaku〉). The other relevant

documents that contain the second variant “ñ» C	J�
�” /sinlakw/ are ranked after the top 30

retrieved documents (P@30= 4
30=0.1333), with the last relevant document retrieved beyond

the top 200 retrieved documents (P@200= 6
200=0.0300). Applying the NORM algorithm re-

sults in ranking all 7 relevant documents at the top 10 retrieved documents (P@10=0.7000),

indicating that the two variants are conflated together.

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 195

 0

 0.2

 0.4

 0.6

 0.8

 1

898784797774706766595554535147464443403837363534322423191210984

A
ve

ra
ge

 P
re

ci
si

on

Queries

ligth11 with NORM
light11

Figure 7.6: Queries affected by the integration of the NORM algorithm in the light11 stemmer.

21 queries are positively affected, while 12 are negatively affected. Improvement is more

substantial than loss.

Despite the improvement that the NORM algorithm has on some queries, it negatively

affects 12 other queries. Queries 10, 40, and 87 are the most affected.

7.4.3 Using Query Expansion

In this section we test query expansion by replacing the original foreign word in the query

by different variants returned by the different algorithms.

We use the INQUERY’s structured query language [Callan et al., 1995] to expand foreign

words with their variants. The INQUERY retrieval method accepts a query and returns a

belief list that contains a list of documents and their corresponding probabilities of satisfying

the query. The query is structured using several operators that determine the final belief,

using beliefs generated from different terms in the query [Callan et al., 1992].

We first convert queries (titles only) by applying the #sum operator to include all terms

in the query, then we expand foreign words by enclosing all variants returned by individual

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 196

MAP P@10 RP RECALL

light11 0.1736 0.2533 0.2003 0.6102

Table 7.9: Results of running the light11 stemmer on the AGW collection using the INQUERY

retrieval model. Query terms are grouped using the operator #sum.

algorithms within the #syn operator. This allows variants to contribute equally to the belief

of the foreign word in the query. The final query belief is generated by the #sum operator

which calculates the mean of beliefs of all terms in the query. An example of an expanded

query is #sum(á�
�ËAK. #syn(ñ» C	J�
� ñ» C	J�) PA�«@). In this example, the word ñ» C	J� is

expanded with two variants.

Our main objective in this section is to test the effects of query expansion using the

different variants of a foreign word. As the retrieval model is different from the one used

previously (Okapi BM25), scores reported in this section are not directly comparable with

the previous ones. Table 7.9 shows the baseline results using the INQUERY retrieval model,

running the light11 stemmer without any expansion.

To expand queries using variants returned by different algorithms, there are two main

issues that need to be considered: first, the number of variants used to expand the query;

and second, the process of choosing variants from the returned unranked lists.

The algorithms return different number of variants, with the phonetic similarity algo-

rithms generally returning fewer variants than the string similarity algorithms. Using a fixed

number of variants might favour one algorithm over another. Therefore, we use different

numbers of variants, starting with as few as three variants up to 100 returned variants.

The second issue is related to selecting variants from unranked lists such as those returned

by Soutex, and the NORM algorithms. To overcome this issue, we rank variants in unranked

lists using the Dice measure (Section 2.2.3). This approach has been used by Holmes and

McCabe [2002] to overcome the problem of evaluating weak-ranked results returned by the

Soundex algorithm. We rank variants returned by the Soutex, Soutex4, Asoundex-Final,

NORM1, NORM2, and NORM3 algorithms based on their similarity with the foreign word

in the query. After ranking, we choose the first n variants to replace the foreign word in the

query within the #syn operator. We test the expansion using the top 3, 5, 10, 20, 30, 40, 50,

and 100 ranked variants.

To test the effects of expanding all foreign words in queries and not only those identified

by our identification algorithm, we have manually inspected the AGW topics and identified

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 197

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM1 0.1785 0.1843 0.1876 0.1927↑ 0.1910 0.1891 0.1890 0.1893

NORM2 0.1791 0.1853 0.1845 0.1844 0.1844 0.1844 0.1844 0.1844

NORM3 0.1791 0.1853 0.1845 0.1844 0.1844 0.1844 0.1844 0.1844

NROM 0.1821 0.1874 0.1886 0.1874 0.1883 0.1883 0.1883 0.1883

Soutex4 0.1771 0.1811 0.1845 0.1939↑ 0.1924↑ 0.1924↑ 0.1965↑ 0.1927

Soutex 0.1758 0.1758 0.1821 0.1857 0.1851 0.1840 0.1840 0.1823

Asoundex-Final 0.1820 0.1827 0.1831 0.1827 0.1827 0.1827 0.1827 0.1827

Dice 0.1712 0.1690 0.1685 0.1709 0.1738 0.1711 0.1698 0.1612

gramCount 0.1716 0.1690 0.1685 0.1710 0.1739 0.1731 0.1719 0.1722

gramDist 0.1646 0.1633 0.1619 0.1710 0.1673 0.1655 0.1622 0.1558

Sgrams 0.1624 0.1624 0.1650 0.1690 0.1696 0.1689 0.1682 0.1656

LCS 0.1722 0.1761 0.1824 0.1825 0.1811 0.1869 0.1864 0.1830

EditDistance 0.1655 0.1764 0.1800 0.1789 0.1809 0.1844 0.1830 0.1809

AEditex 0.1677 0.1760 0.1832 0.1780 0.1828 0.1839 0.1829 0.1786

REditex 0.1770 0.1841 0.1827 0.1828 0.1813 0.1841 0.1840 0.1801

Table 7.10: The MAP scores of the light11 stemmer when expanding queries using the first

3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms. Soutex4

adds significant improvement over the non-expanded baseline (MAP=0.1736). Foreign words

expanded are only those automatically identified as foreign in the queries. ↑ indicates values

that are significantly better than the light11 stemmer at the 95% confidence level.

114 foreign words, 50 more than the 64 detected by the foreign word identification algorithm

described in Section 6.4.2. We experimented with both foreign word sets. Having 15 different

algorithms and 8 different expansion sets for both manually and automatically identified

foreign words, we have 240 different runs in total. In each run, we stemmed the queries

using the light11 stemmer, expanded foreign words in queries using the appropriate number

of variants, and ran them against the collection index. Results of expanding the automatic

identified foreign words in the AGW queries are shown in Table 7.10 and those returned by

expanding all manually identified foreign words are shown in Table 7.11. We show only the

MAP measure. Results for other measures are shown in Appendix B.

Two algorithms result in a significant increase in MAP. These are the NORM1 and the

Soutex4 algorithms. The increase that the NORM1 algorithm adds is only significant when

using the top 20 variants [t-test, p = 0.039], and weakly significant when using the top 30, 40,

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 198

and 100 variants [t-test, p = 0.061, p = 0.097, and p = 0.093 respectively]. Soutex4 adds

significant improvement when expanding queries with the top 20, 30, 40, and 50 variants [t-

test, p = 0.030, p = 0.042, p = 0.041, and p = 0.022 respectively]. When expanding the

queries with the top 100 variants, the improvement is significant at the 94% confidence

level [t-test, p = 0.055]. The Soutex algorithm results in a weakly significant improvement

when using the top 20 [t-test, p = 0.055], 30 [t-test, p = 0.068], 40 [t-test, p = 0.091], and 50

[t-test, p = 0.085].

Phonetic similarity algorithms retrieve fewer variants. For example, NORM2, NORM3,

and Asoundex-Final return less than 10 variants, while the Soutex algorithm returns up

to 30 variants. Soutex4 benefited from the large number of variants and the ordering of these

variants using the Dice algorithm.

Although Sgrams and gramDist reduce the performance of the light11 stemmer at all

expansion levels, the decrease is only weakly significant when using the top 3 and 5 variants

of the Sgram algorithm [t-test, p = 0.060, and p = 0.066 respectively], and the top 10 variants

of the gramDist algorithm [t-test, p = 0.062].

Considering the performance of the same algorithms when expanding all manually identi-

fied foreign words in the queries, none add a significant improvement to the light11 stemmer.

In fact, results are worse than using the automatic expansion. We relate this to the vague-

ness of some words identified as foreign. Humans rely on context to determine whether a

word is foreign. As explained in Section 2.1.5, a foreign word may be spelt identically to

a native Arabic word, but with different (normally omitted) diacritics. Moreover, our iden-

tification algorithms avoid classifying words that have three or fewer characters. In most

cases, such words are interpreted differently. For example, the words “ø

@” (/Pj/〈which〉),

“ÐAK.” (/biPumm/〈with the mother of〉), and “ÈñK.” (/bawl/〈urine〉) are in fact foreign words

with the meaning “A”, “BAM”, and “Paul” respectively. In general, the phonetic similarity

algorithms outperform string similarity algorithms in both experiments.

7.5 Chapter Summary

Foreign words transliterated into Arabic can appear with multiple spellings, hindering ef-

fective recall in a text-retrieval system. We have examined nine techniques to find such

variants. Edit Distance, Gram Count, Dice, Gram Distance, and Longest Common Subse-

quence are language-independent techniques used to find variant names in other languages;

Asoundex-Final, Soutex, AEditex, and REditex are extended techniques to accommodate

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 199

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM1 0.1733 0.1824 0.1878 0.1886 0.1868 0.1844 0.1838 0.1817

NORM2 0.1699 0.1720 0.1700 0.1702 0.1702 0.1702 0.1702 0.1702

NORM3 0.1687 0.1707 0.1687 0.1689 0.1689 0.1689 0.1689 0.1689

NORM 0.1702 0.1720 0.1719 0.1713 0.1715 0.1711 0.1703 0.1705

Soutex4 0.1665 0.1708 0.1826 0.1885 0.1901 0.1891 0.1849 0.1769

Soutex 0.1708 0.1747 0.1788 0.1819 0.1816 0.1813 0.1821 0.1799

Asoundex-Final 0.1681 0.1675 0.1654 0.1652 0.1641 0.1639 0.1638 0.1638

Dice 0.1673 0.1648 0.1648 0.1686 0.1717 0.1690 0.1663 0.1568

gramCount 0.1664 0.1639 0.1684 0.1684 0.1728 0.1685 0.1678 0.1658

gramDist 0.1635 0.1598↓ 0.1664 0.1743 0.1658 0.1643 0.1606 0.1556

Sgrams 0.1550↓ 0.1549↓ 0.1577↓ 0.1639↓ 0.1616↓ 0.1623↓ 0.1627↓ 0.1586↓
LCS 0.1715 0.1753 0.1822 0.1816 0.1800 0.1857 0.1851 0.1784

EditDistance 0.1738 0.1738 0.1738 0.1738 0.1738 0.1738 0.1738 0.1738

AEditex 0.1614 0.1723 0.1822 0.1757 0.1799 0.1817 0.1809 0.1740

REditex 0.1740 0.1824 0.1831 0.1831 0.1801 0.1829 0.1834 0.1767

Table 7.11: The MAP scores of the light11 stemmer when expanding queries using the

top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms. Soutex4

adds significant improvement to the non-expanded baseline (MAP=0.1736). Foreign words

expanded are those manually identified as foreign in queries. ↓ indicates results that are

significantly worse than the light11 stemmer.

Arabic Words; and NORM is a novel technique to find foreign word variants in Arabic. We

have shown that these techniques are effective in finding foreign word variants.

We have developed different versions of the NORM algorithm to normalise foreign words

in Arabic. We first remove vowels from foreign words, keeping the first and last characters,

insert a one-character replacement for multiple Arabic characters that represent a single

English character, and consider vowels as diphthongs.

Using a generated data set, we have found the NORM algorithm to be superior to all

other algorithms, and REditext to be the second best, followed by LCS and Sgrams.

When using a manually transliterated data set, string similarity algorithms outperform

the phonetic algorithms and our NORM algorithm. However, the REditex algorithm has

been shown to be superior to all algorithms. LCS performed well in this data set, followed

by Sgrams, Edit distance and AEditex.

CHAPTER 7. DEALING WITH FOREIGN WORDS IN ARABIC 200

We tested all algorithms in an IR experiment to investigate their effectiveness in capturing

foreign words within a large collection of text. AEditex, NORM1, NORM2, NORM3, and

NORM algorithms improved the recall of the light11 stemmer significantly, and improved

MAP by over 7%. The improvement in MAP is weakly significant when using the AEditex,

NORM1, and NORM algorithms.

String similarity algorithms performed well only for very high similarity thresholds (close

to exact match). Phonetic algorithms and Gram Distance were the worst in this experiment,

significantly decreasing the performance of the light11 stemmer.

We expanded foreign words in queries with their variants using the same algorithms

to capture variants of words identified to be foreign in queries, both automatically and

manually. Unranked lists of variants returned by phonetic algorithms were ordered using

the Dice measure and then the top 3, 5, 10, 20, 30, 40, 50, or 100 words from the list of

variants returned by each algorithm were used to replace their equivalent foreign word in the

query. The best results were achieved by the normalisation and phonetic algorithms, with

the best result recorded by the Soutex4 algorithm when expanding queries with the top 50

words returned as variants to foreign words in queries. The algorithm improved the light11

stemmer by 13.19% in the MAP measure, which is a statistically significant improvement at

the 95% confidence level.

Our results show that normalising or expanding queries that have foreign words can

enhance Arabic retrieval and that AIR systems must cater for common spelling variants; our

results help understand how to find these in Arabic text.

Chapter 8

Conclusions and Future Work

In this thesis, we have investigated several techniques to improve Arabic text retrieval. We

have improved light stemming by introducing rules that use the lexicon to distinguish core

letters from actual prefixes and suffixes, tested the effectiveness of AIR systems on a large

text collection, introduced algorithms that distinguish foreign words from native ones, and

developed algorithms that conflate their variants in Arabic text. This chapter presents our

conclusions, summarises our key contributions, and discusses possible directions for future

work.

8.1 Improving Light Stemming Using Morphological Rules

In Chapter 4, we compared the performance of existing AIR systems and showed that the

light10 stemmer is more effective than other stemmers. However, it is not as effective as

the Buckwalter stemmer when using relevance feedback. We introduced new stemming tech-

niques that minimised stemming mistakes in light stemming and led to improved retrieval

results in some cases. We used the light10 stemmer as our underlying framework to evaluate

the techniques that we developed. We extended word normalisation for improved retrieval

effectiveness, and showed that automatic generation of stopword variants led to a reduction

in precision and recall. We then introduced new techniques to remove the single-character

prefixes: prepositions and conjunctions. We empirically showed that these techniques ac-

curately remove prefixes, and as a result, aid retrieval effectiveness. Of the techniques we

introduced — RPR, RR, RC, RCL, and RPRRC — RPRRC, in which we remove particles

by duplicating the first character and removing the second character if it is a particle by

checking the remaining string in the lexicon, performed the best.

201

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 202

Most morphological analysers use a list of pre-prepared stems, prefixes, suffixes, rules

and patterns [Beesley, 1991; Khoja and Garside, 1999; Buckwalter, 2002]. Our affix-removal

technique using a lexicon differs from previous techniques. It is concise and uses the different

forms of Arabic words that exist in an Arabic lexicon to validate affixes before stemming. We

use grammatical and morphological rules of Arabic words to validate affixes. Our approach

is also different from light stemming in that it distinguishes core letters from actual affixes

in Arabic words.

We showed that using a list of unique words found in an Arabic collection not only leads

to better results, but also efficiently outperforms using professionally prepared lexicons. We

presented novel techniques to remove different prefixes and suffixes, and showed that these

techniques improve retrieval effectiveness.

Based on our observations on the effects of removing different prefixes and suffixes, we

modified the light10 stemmer and developed three new versions: light11, light12 and light13.

The three versions perform slightly better than the light10 stemmer, with light13 improving

recall significantly when using relevance feedback.

In another experiment, we have tested the effectiveness of techniques used to improve

Arabic text retrieval on a noisy data set. Using text automatically generated from a TV news

soundtrack and machine-translated queries, we showed that using normalisation, stopping

and light stemming improves retrieval effectiveness, but that n-grams and root stemming are

not helpful.

Future Work

Despite the fact that morphology produces better correct stems than light stemming, stems

are not always perfect in indexing Arabic words, as they are ambiguous without diacritics

or considering context. Such ambiguity leads to conflation of similarly spelled words with

different meanings under one indexing term. For example, consider the word “I. ËA£” in

the two sentences “ é�®m�'. YÒm× I. ËA£” (/t”Qalaba muèmmad”un bièaqihi/〈Mohammed demanded

his right〉) and “ú
»
	X I. ËA£ YÒm×” (/muèammad”un t”Qalibun D”akijun/〈Mohammed is a clever

student〉). While this word is a verb with the meaning “demand” in the first sentence, it is

a noun with a different meaning “student” in the second. Such words, although spelt the

same, should be indexed differently using two index terms. We plan to investigate techniques

such as word disambiguation to distinguish such words while stemming Arabic.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 203

8.2 The Effects of Large Text Collections on AIR

In Chapter 5, we investigated the effects of using a larger text collection. We built a new test

collection of 90 topics with their respective relevance judgements using the AGW document

collection. We used 20 assessors to propose topics and then identify relevant documents in the

collection using the interactive searching and judging (ISJ) approach. This collection is far

larger than those previously available for AIR, and our query set and ground truth judgments

are valuable resources for future research. The topics and their relevance judgement are

publicly available at http://goanna.cs.rmit.edu.au/∼nwesri/Research/AGW/.

We used the new test collection to evaluate existing AIR approaches. Our results are

consistent with those obtained using the TREC 2001 and TREC 2002 topics. The B.Stem,

Al-StemN and light10 stemmers performed the best, while the Khoja root stemmer performed

the poorest. Although the B.Stem and Al-StemN approaches perform slightly better than

the light10 stemmer, the difference is not significant. When using relevance feedback, the

B.Stem and light10 stemmers produce the highest MAP, while Al-StemN and B.Lemma

produce the highest recall. We compared the performance of our approaches to the best

existing AIR approaches (light10 and B.Stem), and showed that our approaches produce

better precision and recall without relevance feedback. When using relevance feedback, our

approaches showed slightly lower precision and recall than the light10 and B.Stem algorithms.

We showed that our proposed approaches conflate terms in the corpus better than other

algorithms, and that using the corpus as a background lexicon gives better results than using

a professionally prepared lexicon.

Values for the parameters in the Okapi BM25 similarity function affect the effectiveness of

IR systems by varying the impact of terms in document collections and queries. The optimal

values for these parameters determined for English text collections have been used in AIR

experiments [El-Khair, 2003; Darwish and Oard, 2003a; Darwish et al., 2005]. We have found

that these values are not the best for the TREC 2001 Arabic collections. We have shown that

when using the AGW Arabic collection, the best value for the b parameter is 0.25, the best

value for the k1 parameter is 1, and that changing k3 has no effect on retrieval performance.

With the new parameter values, performance increased significantly over the default values

determined for English documents from the TREC 8 corpus. Similarly, we determined the

parameter values that work best for the TREC 2001 and TREC 2002 collections which are

not the same as those determined for the AGW collection, nor those determined for the

TREC 8 English collection. Our findings show that the parameters that work better for

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 204

English collections do not necessarily work-well for Arabic collections. Our results indicate

that these parameters differ across collections and should be determined for every individual

collection, and that when using short queries, the b parameter has the most effect on retrieval

performance.

Using the AGW collection, we showed that stemming improves effectiveness, but high-

lighted that the improvement is smaller than when using a smaller collection, such as the

TREC 2001 collection (23.6% versus 100%). This is an important finding that indicates the

need to improve stemming in Arabic. Experiments using this collection also indicate that

root stemming is not a good option for indexing large collections of Arabic text documents.

Our conclusion based on our experiments using the TREC and AGW collections is that

supporting light stemming with morphological rules aids retrieval effectiveness. This resulted

in performance comparable to light stemming. We found that adding relevance feedback sig-

nificantly improves the morphological rule results for the TREC collections, but that the

corresponding results for the AGW collection are better without relevance feedback. In-

tensive morphological analysis — performed using the Buckwalter stemmer — aid retrieval

effectiveness; however, the time required for this is unacceptably high compared to our ap-

proaches and light stemming.

Future Work

Our new test collection was created using the ISJ method. One of the main reasons behind

using such a method is the lack of algorithms that capture different variants of foreign

words. Since we have developed several such algorithms, we can now explore using pooling to

identify documents to be judged. Another important direction to our research is developing a

collection from an crawl of Arabic web documents, not constrained to news agency dispatches

or news outlet web sites.

Arabic-language documents that are published on the Web differ both in style and in

noisiness from the newswire dispatches used in most AIR research, and are likely to behave

differently with many of the algorithms we have described in this thesis. Several issues

we need to consider when building a web-based text collection include the different Arabic

character encodings, the different styles of writing used by individuals, and detection of

content in languages such as Persian and Urdu that share a same core alphabet with Arabic.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 205

8.3 Identification of Foreign Words in Arabic Text

In Chapter 6, we showed that foreign words in Arabic text can be identified. We investigated

the effectiveness of using lexicons, patterns, and n-grams for this purpose. We showed that the

lexicon approach outperforms the other approaches, and described improvements to minimise

false positives. These rules result in improved precision, but have a negative impact on recall.

We showed that word frequency alone cannot be used to identify foreign words in Arabic text,

but that it can be used to filter out most Arabic words prior to the foreign-word identification

process. We improved the n-gram approach that uses language profiles generated from foreign

words and Arabic native words. We determined that using the 1 700 most frequent n-grams

from grams of size 1, 2, 3, 4, and 5 in each language is the best option. We also determined

the best threshold for deciding whether a word is foreign. We combined the lexicon approach

and the n-gram approach to improve identification, resulting in 80% recall and 93% precision

for our target list of foreign words.

We determined that not stemming foreign words in Arabic text negatively affects retrieval

effectiveness in both light stemming and root stemming. In contrast, removing the first letter

if the remaining string exists within the list of foreign words results in improved performance,

but not significantly.

Future Work

To improve identification of foreign words in Arabic, we plan to test several techniques.

We plan to improve the n-gram technique by including not only the most frequent n-grams

in language profiles, but also including the least frequent n-grams. We also plan to test

the approach followed recently by Goldberg and Elhadad [2008] to identify foreign words in

Hebrew. In this approach, we plan to use a pure native Arabic text collection and a list

of transliterated words to train a statistical model to learn the pattern of foreign words in

Arabic text.

8.4 Conflation of Foreign Word Variants in Arabic Text

Foreign words in Arabic are characterised by multiple spellings. Conflating such words is not

possible using stemming as they have different morphological structure than Arabic native

words. In Chapter 7 we investigated conflating the different versions of transliterated foreign

words in Arabic text. We developed different versions of the NORM algorithm to normalise

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 206

foreign words in Arabic. We started by removing vowels from foreign words (NORM1),

then kept the first and the last characters of the word (NORM2), replaced multiple Arabic

characters that correspond to a single English character with a single normalised equivalent

(NORM3), and considered vowels and diphthongs (NORM). We developed the Soutex algor-

ithm, a Soundex-like algorithm specifically developed to collapse variants of foreign words

in Arabic, extended the English Editex algorithm to Arabic in the AEditex algorithm, and

further enhanced this to produce better ranking in the REditex algorithm. We compared the

performance of these algorithms with major alternatives developed for English and Arabic:

gram count (gramCount), gram distance (gramDist), Dice, edit distance (Edit Distance),

longest common subsequence (LCS), and skip grams (Sgrams), and Asoundex-Final.

Using a generated data set, we found the NORM algorithm to produce the best average

precision (66%), followed by REditex (65%), LCS (61%), and Sgrams (59%). When using

a manually transliterated data set, string similarity algorithms outperformed the phonetic

algorithms and our NORM algorithm. However, the REditex algorithm was superior to all

other algorithms, achieving an average precision of 82%. LCS was the second best (78%),

followed by Sgrams (76%), Edit Distance (70%)and AEditex (62%).

We tested all algorithms in an IR context to investigate their effectiveness in supporting

AIR systems in finding documents relevant to queries containing transliterated foreign words.

We found that the AEditex, NORM1, NORM2, NORM3, and NORM algorithms improved

the recall of the light11 significantly, contributed a weakly significant improvement in MAP,

and improved P@10 and R-Precision. These algorithms increased MAP by more than 8%.

We used the same algorithm to expand foreign words in Arabic queries with their variants.

Unranked lists of variants returned by phonetic algorithms were ordered using the Dice

measure. We selected in turn the top 3, 5, 10, 20, 30, 40, 50, and 100 words from the list of

variants returned by each algorithm to use alongside the foreign word in the query. The best

results were achieved by the normalisation and phonetic algorithms, with the best result

recorded by the Soutex4 algorithm when expanding queries with the top 50 words. The

Soutex4 algorithm improved the light11 stemmer by 13.19% in the MAP measure, which is

a statistically significant improvement at the 95% confidence level.

Future Work

There are several additional algorithms that could be used to find variants of foreign words in

Arabic. These include the Damerau-Levenshtein Distance [Damerau, 1964], which is similar

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 207

to Edit Distance but considers a transposition operation as equal to a deletion, insertion, or

substitution operation with a cost of 1; and the Jaro and Winkler similarity measures [Win-

kler, 1990] that compute the similarity between two strings by comparing the common charac-

ters in the first half of the two strings and considering the number of transpositions. Another

direction that we intend to investigate is considering the words surrounding a possible foreign

word. In general, foreign names appear in full, with first and last names appearing together

when they first are mentioned in text, but the last name is used often by itself within the text.

For example, “ 	àñ�J 	�J
Ê¿ ÉJ
K.” (/bjlkljnt”wn/〈Bill Clinton〉) and “ 	àñ�J 	�J
Ê¿” (/kljnt”wn/〈Clinton〉)
are used interchangeably to represent the same person. Techniques that identify person names

such as named entity recognition can be utilised to normalise names correctly. Moreover, in

many instances transliterated words are joined together, while appearing as two independent

words in others. For example, the name “Condoleeza Rice” is sometimes found as one word

“��
@PA��
ËðY	Kñ»” /kwnd”wljsarajs/ as well as two separate words as “A��
ËðY	Kñ»” /kwnd”wljsa/

and “��
@P” /rajs/. We plan to deal with such cases following the same approach we used to

deal with Arabic compound nouns.

8.5 Concluding Remarks

We have presented the first in-depth empirical comparison of stemming, indexing, and foreign

word identification and normalisation for Arabic using a range of collections, including a new

collection that is much larger than those used previously in this domain. We believe that

this thesis contributes greatly to the understanding of IR for a language spoken by people in

more than 23 countries, and familiar to over 1 billion people around the world.

Appendix A

AGW Topics

In this Appendix, we show the AGW Arabic topics used in our experiments in Chapters 5, 6,

and 7. Table A.1 on page 239 shows the number of relevant and non-relevant documents for

each query (topic).

208

APPENDIX A. AGW TOPICS 209

<top>

<numb> Number: 1

<title>H. Q 	ªÖÏ @ ú

	̄ �Iª�̄ð ú

�æË@ È 	PB 	QË@
<desc> Description:

H. Q 	ªÖÏ @ �IK. Qå 	� ú

�æË @ È 	PB 	QË@

<narr> Narrative:

ú

�æË@ð H. Q 	ªÖÏ @ �IK. Qå 	� ú

�æË @ È 	PB 	QË@ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @

. H. Q 	ªÖÏ @ H. ñ 	Jk. ú

	̄ ÉJ
�J�̄ 100 �I 	®Ê 	g ú

�æË@ ½Ë 	Y» . úk. B 1000 PQå	��� ú

	̄ �IJ.�.���

</top>

<top>

<numb> Number: 2

<title>ñ�KA 	JË @ ú
æ�Ê£

B@ ÈAÖÞ�� 	Êg

<desc> Description:
�éÒ 	¢	JÒÊË @Q�
 	g@ �éÒ 	�	JÖÏ @ ÈðYË@ XY«
<narr> Narrative:

AK
PA 	ªÊK. Ñî 	DÓ AK. ðPð@ ��Qå�� 	áÓ ÈðX 5 ÐAÒ 	�	� @ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @

5000 ÈA�P@ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ ½Ë 	Y» ,ñ�KA 	JË @ 	Êg úÍ@ AJ
 	K @ñ�JËð

. ÈAJ
�J 	«@
�éJ
ÊÔ« ú

	̄ ñ�KA 	JË @ 	áÓ ø
 Qº�« 100 É�J�®Ó ð �é 	J�ñJ. Ë @ úÍ@ ñ�KA 	JË @ 	Êg 	áÓ ø
 Y	Jk.
</top>

<top>

<numb> Number: 3

<title> AJ
�. J
Ë úÎ« PA�mÌ'@
<desc> Description:

AJ
�. J
Ë úÎ« PA�mÌ'@ © 	̄P
<narr> Narrative:

½Ë 	Y» , AJ
�. J
Ë úÎ« PA�mÌ'@ © 	̄QK. �èYj�JÖÏ @ Õ×B@ P@Q�̄ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @

.P@Q�®Ë@ @ 	YêË AJ
�. J
Ë 	� 	̄Pð AJ
�. J
Ë úÎ« ø
 XA��J�̄ @ PA�k 	�Q 	®K. 	áÓB@ �Êm.× P@Q�̄

. PA�mÌ'@ Z @Qk. 	áÓ AJ
�. J
Ë Aî�EYJ.º�K ú

�æË @ QKA�	mÌ'@ ½Ë 	Y»

</top>

APPENDIX A. AGW TOPICS 210

<top>

<numb> Number: 4

<title> �éJ
�ðQË@ 	àC��
K. �é�PYÓ �H@Yg

@

<desc> Description:

? 	àC��
K. �é�QÓ �H@Yg

@ Z @Pð 	áÓ

<narr> Narrative:
�é�PYÓ ú

	̄ AJ. Ë A£ 1000 �H 	Qj. �Jk@ ú

�æË @ �é«AÒm.Ì'@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
�éJ
�� 	JÓB@ �H@Z@Qk. B@ ù
 ë AÓð . 	áKAëQË@ ZC 	gAK. �éJ
�ðQË@ �HA¢Ê�Ë@ �IÓA�̄ 	J
»ð 	àC��
K.
. ÈA �®�J«B@ �H@Yg@ YªK. �é�PYÖÏ @ è 	Yë Aî�E 	Y	m��' @ ú

�æË@
</top>

<top>

<numb> Number: 5

<title> �éJ
�̄ @QªË@ ÉÓA ��Ë@ PAÓYË@ �éjÊ�

@

<desc> Description:

? �éJ
�̄ @QªË@ ÉÓA ��Ë@ PAÓYË@ �éjÊ�

@ �èPñ¢ 	k øYÓ AÓ

<narr> Narrative:

ú
æ�Ë@ QK
Q�®�Kð �éJ
�̄ @QªË@ ÉÓA ��Ë@ PAÓYË@ �éjÊ�

@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
�éJ
�̄ @QªË@ �èP@XB@ 	� 	̄P 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ ½Ë 	Y» . �ñ�	mÌ'@ @ 	YîE. éK
 @ ø
�
@

�èPAK
 	P 	á« A 	��
@ �HYj�J�K ú

�æË@ð , �éJ
�̄ @QªË@ ©�̄ @ñÒÊË �èYj�JÖÏ @ Õ×B@ ú
æ

���J 	®Ó Èñ 	kYË
. ��@QªË@ úÍ@

�éJ
ËðYË@ �é�̄ A¢Ë@ �éÒ 	¢	JÓ 	áÓ Y 	̄ð
</top>

<top>

<numb> Number: 6

<title> ��@QªË@ ú

	̄ ÈðQ��J. Ë @ 	àð 	Q	m×

<desc> Description:

? ù
 ÖÏ AªË @ 	àð 	Q 	jÖÏ @ 	áÓ é�J�. �	� ù
 ë Õ»ð ÈðQ��J. Ë @ 	áÓ ��@QªË@ 	àð 	Q	m× 	©ÊJ. K
 Õ»
<narr> Narrative:

. ù
 ÖÏ AªË @ 	àð 	Q 	jÖÏ @ 	áÓ é�J�.�	�ð ¡ 	® 	JË @ 	áÓ ��@QªË@ 	àð 	Q	m× 	á« �HYj�J�K �HBA�®Ó ð@ PAJ. 	k@ ø
 @

. �é�̄C« AêË ��
Ë ÈðYË@ 	áÓ AëQ�
 	«ð �éJ
ºK
QÓB@ �èYj�JÖÏ @ �HAK
BñË@ 	àð 	Q	m× 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @

</top>

APPENDIX A. AGW TOPICS 211

<top>

<numb> Number: 7

<title>Q�®J. Ë @ 	àñ 	Jk. 	�QÓ
<desc> Description:

? Q�®J. Ë @ 	àñ 	Jk. 	�QÓ H. AJ.�@ ù
 ë AÓ
<narr> Narrative:
�éK
XA��J�̄B@ P@Qå 	�B@ð Q�®J. Ë @ 	àñ 	Jk. 	�QÓ H. AJ.�@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
é 	̄ A ����» @ ð@ �éÓA« �èPñ��. Q�®J. Ë @ 	àñ 	Jk. 	�QÓ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ . AîD.J.� ú

�æË@

. ¨ñ 	�ñÖÏAK. �é�̄C« éË ��
Ë �é 	®Ê�J 	jÖÏ @ ÈðYË@ ú

	̄

</top>

<top>

<numb> Number: 8

<title>Q�
ÓQK. ÈñK. ú

	GYÖÏ @ Õ» AmÌ'@

<desc> Description:

? é	m�'
PA�K ñë AÓð ñë 	áÓ
<narr> Narrative:

ù
 ë AÓð èQÔ« ñë AÓ . é	m�'
PA�Kð Q�
ÓQK. ÈñK. ú

	GYÖÏ @ Õ» AmÌ'@ �éJ
�	m��� 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
Õ» AmÌ'@ �HAm�'
Qå��� 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ . ��@QªÊË ú

	GYÓ Õ» Am» 	á�
ªK
 	à@ ÉJ. �̄ �é�®K. A�Ë@ é�J 	®J
 	£ð

	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿ ½Ë 	Y» . ¨ñ 	�ñÖÏAK. �é�̄C« AêË ��
Ë ��@QªË@ ú

	̄ Q�
ÓQK. ÈñK.
. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ��
Ë ��@QªË@ ú

	̄ AîE. ÐA�̄ ú

�æË @ �éK
P@XB@ �H@Z@Qk. B@

</top>

<top>

<numb> Number: 9

<title> ��@QªË@ H. Qk ú

	̄ ÈðAK. 	áËñ» PðX

<desc> Description:

? �éJ
�̄ @QªË@ �éJ
ºK
QÓB@ H. QmÌ'@ ú

	̄ èPðX ñë AÓð ÈðAK. 	áËñ» ñë 	áÓ

<narr> Narrative:

. �éJ
�̄ @QªË@ �éJ
ºK
QÓB@ H. QmÌ'@ ú

	̄ ÈðAK. 	áËñ» PðX �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿
�HBA�®ÖÏ @ ½Ë 	Y» . �é�̄C« AêË ��
Ë ÈðAK. 	áËñ» �éJ
�	m��� 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @
. �é�̄C« AêË ��
Ë �éJ
ºK
QÓB@ �é�AJ
�Ë@ ú

	̄ èPðX 	á« �HYj�J�K ú

�æË @

</top>

APPENDIX A. AGW TOPICS 212

<top>

<numb> Number: 10

<title> 	àA�J�» AJ. Ë @ ú

	̄ ø
 ðA�ñë YÔg@ ù 	®¢�Óð YÒm× qJ
 �� YËA 	g ÈA�®�J«@

<desc> Description:
	àA�J�» AJ. Ë @ ú

	̄ ø
 ðA�ñë YÔg@ ù 	®¢�Óð YÒm× qJ
 �� YËA 	g 	áÓ É¿ ÈA�®�J«@ Õç�' 	J
»
<narr> Narrative:

ú

�æË@ ��KA�KñË@ . AÒîD
Ê« 	�J. �®Ë @ �éJ
 	®J
» 	á« �HYj�J�K ú

�æË@ ù
 ë �éK. ñÊ¢ÖÏ @ ��KA�KñË@
. �éK. ñÊ¢Ó Q�
 	« 	àAJ. Ë A£ �é»Qkð �èY«A�®Ë @ 	á« ÕÎ¾�J�K
</top>

<top>

<numb> Number: 11

<title>Y	KCK
A�K - ¼ñº	KAK. ú

	̄ ú
ÎJ. 	Jk 	áK
YË@ ÐA�« 	à@ñ 	�P ÈA�®�J«@

<desc> Description:

? ú
ÎJ. 	Jm�'. I.
�®ÊÖÏ @ 	áK
YË@ ÐA�« 	à@ñ 	�P ñë 	áÓð Y	KCK
A�K ú

	̄ �éJ
ÓC�B@ �é«AÒm.Ì'@ ù
 ë AÓ
<narr> Narrative:

. Aî�EXA�̄ð Y	KCK
A�K ú

	̄ �éJ
ÓC�B @ �é«AÒm.Ì'@ 	á« �éÓA« �èQº 	̄ ù
 ¢ª�K ú

�æË @ �HBA�®ÖÏ @
. �éK. ñÊ¢Ó Q�
 	« ø
 Q 	k

B@ ÈðYË@ ú

	̄ �éJ
ÓC�B@ �HA«AÒm.Ì'@ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @

</top>

<top>

<numb> Number: 12

<title>XPñº	KñºË@ �èQKA¢Ë �éÊgP Q 	k

@

<desc> Description:

. �éK
ñm.Ì'@ �HCgQË@ ú

	̄ XPñº	KñºË@ ÈAÒª�J�@ 	�̄ð H. AJ.�@ �é 	̄QªÓ

<narr> Narrative:

. AîE. ÉÒªË@ 	�̄ð H. AJ.�@ð �éJ
 	KYÖÏ @ �H@QKA¢Ë@ 	áÓ ¨ñ	JË @ @ 	Yë H. ñJ
« 	á« �HYj�J�K ú

�æË @ ��KA�KñË@

. AîE. H. ñ 	«QÓ Q�
 	« XPñº	KñºË@ �é«A 	J� �éJ
 	®J
» 	á« �HYj�J�K ú

�æË@ ��KA�KñË@

</top>

APPENDIX A. AGW TOPICS 213

<top>

<numb> Number: 13

<title> 	á�
�k Ð@Y� ÈA�®�J«@
<desc> Description:

? 	á�
�k Ð@Y� ��K. A�Ë@ ú

�̄ @QªË@ ��
KQË@ ÈA�®�J«@ Õç�' 	J
»

<narr> Narrative:
��KA�KñË@ . 	á�
�k Ð@Y� ÈA�®�J«@ �éJ
 	®J
» 	á« �HYj�J�K ú

�æË@ ½Ê�K ù
 ë �éK. ñÊ¢ÖÏ @ ��KA�KñË@
. ¨ñ 	�ñÖÏAK. �é�̄C« AêË ��
Ë éÒºk �èQ�� 	̄ ÈC 	g 	á�
�k Ð@Y� �HA�PAÜØ 	á« �HYj�J�K ú

�æË@
</top>

<top>

<numb> Number: 14

<title> 	à@QK
 @ ú

	̄ ÐAK. �é 	JK
YÓ È@ 	QË 	P

<desc> Description:

? 	à@QK
 @ ú

	̄ ÐAK. �é 	JK
YÓ È@ 	QË 	P 	á« l .�

�'A 	JË @ PAÓYË@ ø
 YÓ AÓ
<narr> Narrative:

. �éK. ñÊ¢ÖÏ @ ù
 ë È@ 	QË 	QË @ @ 	Yë 	á« l .�
�'A 	JË @ PAÓYË@ 	á« �HYj�J�K ú

�æË @ ��KA�KñË@
. �éK. ñÊ¢Ó Q�
 	« �éÓ 	PB@ è 	Yë ú

	̄ 	à@QK
 @ ©Ó ú
ÍðYË@ ©Ò�Jj. ÖÏ @ 	àðAª�K ø
 YÓ l� 	�ñ�K ú

�æË @ ��KA�KñË@ AÓ@

</top>

<top>

<numb> Number: 15

<title>�A�º�K �é 	JK
YÓ ��ñ 	̄ AJ
J.ÓñËñ» ZA 	� 	®Ë @ �éJ.»QÓ PAj. 	® 	K @
<desc> Description:

? AJ
J.ÓñËñ» ZA 	� 	®Ë@ �éJ.»QÓ PAj. 	® 	K @ H. AJ.�@ ù
 ë AÓ
<narr> Narrative:

PAj. 	® 	K @ úÍ@ �HX@ ú

�æË@ H. AJ.�

B@ 	á« �HYj�J�K ú

�æË@ ½Ê�K �éK. ñÊ¢ÖÏ @ ��KA�KñË@
	á«ð ¼ñºÖÏ @ @ 	Yë �é«A 	J� �é 	®Ê¿ 	á« �HYj�J�K ú

�æË @ ��KA�KñË@ AÓ@ . ¼ñºÖÏ @ @ 	Yë
. �éK. ñÊ¢Ó Q�
 	« �éÊgQË@ ÉJ
�A 	®�K
</top>

APPENDIX A. AGW TOPICS 214

<top>

<numb> Number: 16

<title> �éJ
�	�A�	�B@ Y 	� Õç' @Qm.Ì ú
G. Qk YKA�̄ 21 �Ë �èYj�JÖÏ @ Õ×CË �éªK. A�K �éÒºm× ÐAî�E@
<desc> Description:

? ÑîD
Ê« 	�J. �®Ë @ð ÑîEA 	��̄ Cª 	̄ Õç�' Éëð �èXA�®Ë @ ZB ñë Ñë 	áÓ
<narr> Narrative:
�HBA�®ÖÏ @ð �H@YgB@ . �éK. ñÊ¢ÖÏ @ ù
 ë Ñî �DÒ» Am× YJ
«@ñÓð �èXA�®Ë @ ZB ñë ZAÖÞ� @ úÎ« ø
 ñ�Jm��' ú

�æË@ ��KA�KñË@
�éJ
 	K A�	�B@ Y 	� Õç' @Qm.�'. ø
 Q 	k@ �HAÒ» Am× 	á« �HYj�J�K ú

�æË@ð �é 	J�ñJ. Ë @ ú

	̄ H. QmÌ'@ 	á« �HYm��' ú

�æË @
. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ��
Ë �èYj�JÖÏ @ Õ×B@ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ ½Ë 	Y»ð
</top>

<top>

<numb> Number: 17

<title> AJ
 	̄ AÖÏ AK. ú

�GñK
PY	K @ ñJ
ËñJ
k. ú
ÍA¢�
B@ Z @P 	PñË@ ��
KP �é�̄C«

<desc> Description:

? AJ
 	̄ AÖÏ @ �éK. A�ªK. ú

�GñK
PY	K @ ñJ
ËñJ
k. ú
ÍA¢�
B@ Z @P 	PñË@ ��
KP �é 	̄ C« ¨ñ	K ù
 ë AÓ

<narr> Narrative:

AJ
 	̄ AÖÏ AK. ú

�GñK
PY	K @ ú
ÍA¢�
B@ Z @P 	PñË@ ��
KP 	á�
K. �é�̄C« Xñk. ð 	áëQ�. �K Pñ�ð �H@Y	J���Ó úÎ« ø
 ñ�Jm��' ú

�æË@ QK
PA�®�JË @
. �éK. ñÊ¢ÖÏ @ ù
 ë �éJ
ËA¢�
B@ �éÓñºmÌ'@ ú

	̄ ÕºmÌ'@ �é�AKP úÍ@ ú

�GñK
PY	K @ Èñ�ð ú

	̄ AJ
 	̄ AÖÏ @ PðX Y»ñ�K ú

�æË @ QK
PA�®�JË @ð

. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ��
Ë ¡�® 	̄ AJ
 	̄ AÖÏ @ ð@ èYgñË ñJ
ËñJ
k. ú
ÍA¢�
B@ Z @P 	PñË@ ��
KP 	á« �HYj�J�K ú

�æË@ QK
PA�®�JË @

</top>

<top>

<numb> Number: 18

<title>1995 �é 	J� �èYj�JÖÏ @ �HAK
BñÊË ¡�ðB@ H. Q 	ªËAK. QmÌ'@ �HAg. ñÓ AK
Am� 	�
<desc> Description:

29/6/1995 ú

	̄ �éJ
ºK
QÓB@ �èYj�JÖÏ @ �HAK
BñÊË ¡�ðB@ H. Q 	ªËAK. QmÌ'@ �HAg. ñÓ AK
Am� 	� XY« ñë AÓ

? AîD
	̄ �èP@QmÌ'@ �HAg. PX �I 	ªÊK. Õ»ð
<narr> Narrative:
�èPA ��B@ ©Ó AK
Aj 	�ÊË ú
ÍAÔg. B@ XYªË@ 	á�
J. �K ú

�æË @ ù
 ë ¨ñ 	�ñÖÏ @ @ 	YîE. �é 	̄ C« AêË ú

�æË@ �HBA�®ÖÏ @

�éJ
 	kA 	JÖÏ @ �H@Q�
 	ª�JË @ Q�
�K

A�K 	á�
J. �K ú

�æË@ �éK
PAJ. 	kB@ �HBA�®ÖÏ @ . �èP@QmÌ'@ I. �. ��. @PQå	��� 	àYÖÏ @ Q��» @ úÍ@
. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C«AêË ��
Ë �èQ�K

A�JÖÏ @ ��£A 	JÖÏ @ 	�ªJ. Ë �èQå��AJ.Ó �éÊ�JÓ@ ©Ó ÕËAªËAK.

</top>

APPENDIX A. AGW TOPICS 215

<top>

<numb> Number: 19

<title>
	¬ñ» AJ
ËñK. ø
 QËñ 	̄ ú
æ�ðQË@ ZA 	� 	®Ë @ YK @P

<desc> Description:

? ú
k. PA	mÌ'@ Z A 	� 	®Ë@ ú

	̄ 	¬ñ» AJ
ËñK. ø
 QËñ 	̄ ú
æ�ðQË@ YK@QË @ AëA 	��̄ ú

�æË@ �èYÖÏ @ ù
 ë AÓ
<narr> Narrative:

éÔ�̄ A£ ©Ó 	¬ñ» AJ
ËñK. ø
 QËñ 	̄ ú
æ�ðQË@ ZA 	� 	®Ë@ YK @QË �èXñªË@ t�'
PA�Kð �èPXA 	ªÖÏ @ t�'
PA�K 	á�
J. �K ú

�æË@ �HBA�®ÖÏ @

	á�
J. �K ú

�æË@ �HBA�®ÖÏ @ ñë �é�̄C« éË ��
Ë AÓ . ú
æ�ðQË@ YK @QË @ �Iêk@ð ú

�æË @ I. «A�ÖÏ @ . Z A 	� 	®Ë @ ú

	̄ AëA�®K. ú

�æË@ �èYÖÏ @ð
	¬ñ» AJ
ËñJ. Ë I.

�®ÊË @ � 	® 	K ÉÒm��' ø
 Q 	k@ �HAJ
�	m��� 	á« �HYj�J�K ú

�æË@ð ZA 	� 	®Ë 	¬A ����» @ ú

	̄ ú
æ�ðQË@ PðYË@
</top>

<top>

<numb> Number: 20

<title>¼@Q�
 �� ¼Ag.
<desc> Description:

? A�	�Q 	®Ë ��
KQ» ¼@Q�
 �� ¼Ag. H. A 	j�J 	K @ Õç�' ú �æÓ
<narr> Narrative:

, A�	�Q 	̄ �éËðYË ��
KQ» ¼@Q�
 �� ¼Ag. ú
æ� 	�Q 	®Ë @ ��
KQË @ H. A 	j�J 	K @ t�'
PA�K úÎ« ø
 ñ�Jm��' ú

�æË @ �HBA�®ÖÏ @

	á« �HAÓñÊªÓ ñë ¨ñ 	�ñÖÏAK. �é�̄C« éË ��
Ë AÓ . ¼@Q�
 �� ¼Ag. ú
æ� 	�Q 	®Ë @ ��
KQË@ 	á« �HAÓñÊªÓð
. i. J
Ê	mÌ'@ H. Qm» �éJ
ÖÏ AªË @ �H@YgB@ ú

	̄ ¼@Q�
 �� ¼Ag. PðXð A�	�Q 	̄ ú

	̄ �HAK. A 	j�J 	KB@

</top>

<top>

<numb> Number: 21

<title> A�	�Q 	̄ ú

	̄ ÐC�B @

<desc> Description:

A�	�Q 	̄ ú

	̄ H. Aj. mÌ'@ Z @Y�KP@ © 	JÓ Z @ 	P@

�éJ
�	�Q 	®Ë @ �éÓñºmÌ'@ Aî�E 	Y	m��'@ ú

�æË@ 	á�
 	K @ñ�®Ë@ð �H@Z@Qk. B @

<narr> Narrative:

¼Ag. ú
æ� 	�Q 	®Ë @ ��
KQË@ ø

@PAÓð . �èñ¢	mÌ'@ è 	Yë 	Y 	j�J�K �éJ
�	�Q 	®Ë @ �éÓñºmÌ'@ �IÊªk. ú

�æË @ H. AJ.�

B@

. ú
×C�B@ ÕËAªË @ ú

	̄ Éª 	®Ë @ XðXP ù
 ëAÓð .QÓ

B@ @ 	Yë ú

	̄ ¼@Q�
 ��
</top>

APPENDIX A. AGW TOPICS 216

<top>

<numb> Number: 22

<title>ú¾J
 	KñÓð 	àñ�J 	�J
Ê¿ ÉJ
K.
<desc> Description:
	àñ�J 	�J
Ê¿ ÉJ
K. ú
¾K
QÓ

B@ ��
KQË@ð ú¾� 	�K
ñË ú¾J
 	KñÓ 	á�
K. �HQk. ú

�æË @ �H@Yg

B@

<narr> Narrative:

? ø
 PñêÒm.Ì'@ H. 	QmÌ'@ 	áÓ �éÊª�J 	®Ó �éJ
 	��̄ ù
 ë Éëð . ú
¾K
QÓ

B@ �Pñ�® 	JºË@ Éª 	̄ XPð �éJ
 	��®Ë@ ÉJ
�A 	®�K

</top>

<top>

<numb> Number: 23

<title>ú
G. Q»ñËð ú
kQ�®ÖÏ @
<desc> Description:

. �éK
Y 	JÊ�Jº�

B@ ú
G. Q»ñË �éK
Q�̄ ��ñ 	̄ð �éJ
ºK
QÓ

B@ ÐA 	JJ. Ë @ �èQKA£ Q�
j. 	®�JK. AJ
�. J
Ë AîE. �IÒî�E@ ú

�æË@ �éJ
 	��®Ë@
<narr> Narrative:

? �éJ
KA 	Jk. Ð@ �éJ
�AJ
� �éJ
 	��̄ ù
 ë Éëð , �éJ
 	��®Ë@ è 	Yë ©Ó AJ
�. J
Ë ÉÓAª�K �é�®K
Q£ð AêËñ�k �éJ
 	®J
»
</top>

<top>

<numb> Number: 24

<title> �HA 	K @ñJ
mÌ'@ pA� 	��J�@
<desc> Description:

? ú
ÎËðX �éj. ª 	JË @ pA� 	��J�@ Õç�' 	áK
@ð 	J
»
<narr> Narrative:

q� 	��J�Ó 	à@ñJ
k Èð@ ú
ÎËðX �éj. ª 	JË @ pA� 	��J�@ 	á« �HYj�J�K ú

�æË @ ù
 ë �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @

ú

�æË@ ½Ê�K ù
 ë �é�̄C« AêË ��
Ë ú

�æË @ �HBA�®ÖÏ @ . AÓñÔ« �HA 	K @ñJ
mÌ'@ð �éJ
Ò�k. �éJ
Ê 	g 	áÓ
. ú
ÎËðX �éj. ª 	JË @ �ñ�	m�'. ÈAmÌ'@ ñë AÒ» �é 	j� 	��J�ÖÏ @ �HA 	K @ñJ
mÌ'@ ú

	̄ �èQºJ. ÖÏ @ �é 	kñ 	jJ
 ��Ë@ úÎ« ø
 ñ�Jm��'
</top>

APPENDIX A. AGW TOPICS 217

<top>

<numb> Number: 25

<title> 	á�
�Ë@ ú

	̄ 	áK
QKA�JË @

<desc> Description:

. �èPñ�JË @ è 	Yë �I	KA¿ ú �æÓð 	àñ	J�
 	J�
�Ë@ P@ñ�JË @ Ñë 	áÓ
<narr> Narrative:

. �I�KYg ú

�æÓð 	á�
�Ë@ ú

	̄ �èPñ�JË @ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿

</top>

<top>

<numb> Number: 26

<title>i. mÌ'@ �HP@ñ»
<desc> Description:

? i. mÌ'@ �HP@ñ» ø
 XA 	®�JË �éK
Xñª�Ë@ X@Yª�J�@ øYÓ AÓ
<narr> Narrative:

t�'
P@ñ�JË @ð ÐA�̄P

BAK. i. mÌ'@ �HP@ñ» 	á« �HYj�J�K ú

�æË@ ½Ê�K ù
 ë �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @
½Ê�K ù
 ë �éª�̄ñ�JÓ Q�
 	ªË @ �HBA�®ÖÏ @ . i. mÌ'@ �HP@ñ» ø
 XA 	®�JË �éK
Xñª�Ë@ Yª�J��� 	J
»ð
. �éÓA« �èPñ��. i. mÌ'@ 	á« �HYj�J�K ú

�æË @
</top>

<top>

<numb> Number: 27

<title>ú

�æ��
Ô

	g ��ñk �èP 	Qm.×
<desc> Description:

? ú

�æ��
Ô

	g ��ñk �èP 	Qm.× �Iª�̄ð ú �æÓ
<narr> Narrative:
�HBA�®ÖÏ @ �èP 	Qj. ÖÏ @ ú

	̄ úÎ�J�®Ë@ XY« �èP 	Qj. ÖÏ @ ¨ñ�̄ð t�'
PA�K : �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @
QK @ 	Qm.Ì'@ P 	PAm.× Z @Pð 	áÓ : �éª�̄ñ�JÓ Q�
 	ªË @
</top>

APPENDIX A. AGW TOPICS 218

<top>

<numb> Number: 28

<title>Q�
K @ 	Pð A�	�Q 	̄

<desc> Description:
Q�
K @ 	P ú

	̄ ú
æ� 	�Q 	®Ë @ PðYË@
<narr> Narrative:

XA��J�̄B@ ú

	̄ A�	�Q 	̄ PðX : �èYK
Ym.Ì'@ Q�
K @ 	P �éÓñºmÌ A�	�Q 	̄ Ñ«X : �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @

Ñj. 	JË @ : �éª�̄ñ�JÓ Q�
 	ªË @ �HBA�®ÖÏ @ . �éJ
ÓñºmÌ'@ ú
æ� 	�Q 	®Ë @ ø
 Qº�ªË@ Ñ«YË@ øYÓ : ø
 Q�
K @ 	QË @
Q�
K @ 	P ú

	̄ XñËñÖÏ @ ú
æ� 	�Q 	®Ë @ ú
æ
	�AK
QË @

</top>

<top>

<numb> Number: 29

<title> �éK
Qº�ªË@ �HAK. C�® 	KB@ð 	àñJ
Ë @Q�
�
<desc> Description:
	àñJ
Ë @Q�
� ú

	̄ �éJ
K. C�® 	KB@ �HA¿QmÌ'@
<narr> Narrative:
	àñJ
Ë @Q�
� ø
 XQÒ�JÓ : , �HAK. C�® 	KB@ XYª�Kð 	àñJ
Ë @Q�
� ú

	̄ �èPñ�JË @ : �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @
�H@ñ	J� Qå��« I.

�®« ÐC�Ë@ 	QK
 	Qª�K ñm� 	' 	àñJ
Ë @Q�
�: �éª�̄ñ�JÓ Q�
 	ªË @ �HBA�®ÖÏ @ �HAK. C�® 	KB@ð
. �HAK. C�® 	KB @ ð �éJ
 ��kñË@ �éJ
Êë

B@ H. QmÌ'@ 	áÓ AJ. K
Q�®�K

</top>

<top>

<numb> Number: 30

<title> A¾K
QÓ

@ ú

	̄ Q�.Ò�JJ
�. � 	áÓ Qå��« ø
 XAmÌ'@ �H@Q�
j. 	®�K
<desc> Description:

. A¿Q�.Ó @ ú

	̄ Q�.Ò�J�.� 	áÓ Qå��« ø
 XAmÌ'@ �H@Q�
j. 	®�K ú

	̄ �éK
Qå��J. Ë @ QKA�	mÌ'@ XY«
<narr> Narrative:

. úkQm.Ì'@ XY«ð �H@Q�
j. 	®�JË @ è 	Yë AK
Am� 	� XY« úÎ« ø
 ñ�Jm��' ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿

. ¨ñ 	�ñÖÏAK. �éÊ� AêË ��
Ë Aê«@ñ 	K @ É¾K. �éK
XAÖÏ @ QKA�	mÌ'@ úÎ« ø
 ñ�Jm��' ú

�æË @ ��KA�KñË@

</top>

APPENDIX A. AGW TOPICS 219

<top>

<numb> Number: 31

<title> 	PYK
B@ �ðQ�
 	®K. AJ
�. J
Ë ÈA 	®£

@ 	á�®k

<desc> Description:

AJ
�. J
Ë ú

	̄ 	PYK
B@ �ðQ�
 	®K. 	á�
 	Kñ�®jÖÏ @ ÈA 	®£

B@ XY«

<narr> Narrative:

. 	PYK
B@ �ðQ�
 	®K. 	á�
K. A�ÖÏ @ ÈA 	®£B@ XY« úÎ« ø
 ñ�Jm��' ú

�æË @ ù
 ë �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @

. A 	Jë �éÒêÓ �I��
Ë ÑêË �ðQ�
 	®Ë @ É�® 	K �éJ
Ë
�
@ ð@ �ðQ�
 	®Ë @ 	á�®k úÎ« 	á�
Ëð ñ�ÖÏ @ AÓ@

</top>

<top>

<numb> Number: 32

<title>ñº�Cg. ú

	̄ AJ
ÊªË @ �éÒºjÖÏ @ Õºkð ú
G. Q»ñË �éJ
 	��̄

<desc> Description:

ú
G. Q»ñË �éJ
 	��̄ 	à

A ���. ñº�Cg. ú

	̄ AJ
ÊªË @ �éÒºjÖÏ @ Õºk AÓ
<narr> Narrative:

ÕºmÌ'@ �	� úÎ« ø
 ñ�Jm��' ú

�æË@ ½Ê�K ù
 ë �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ú

�æË@ �HBA�®ÖÏ @
. ¡�® 	̄ ú
G. Q»ñË �éJ
 	��̄ ú

	̄ ú
æ. J
ÊË @ úÎ«
</top>

<top>

<numb> Number: 33

<title> 	á�	�Aë �HQK. ðP 	 	£ñÖÏ @ ÈA�®�J«@
<desc> Description:

��j. �JË @ �éJ
 	��̄ ú

	̄ 	á�	�Aë �HQK. ðP 	 	£ñÖÏ @ ÈA�®�J«@ úÍ@ �HX@ ú

�æË@ 	á�
ë@Q�. Ë @
<narr> Narrative:

	 	£ñÖÏ @ AëQ�K@ úÎ« 	�J. �̄ ú

�æË@ ÉKBYË@ ú
Î« ø
 ñ�Jm��' ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿
. �éJ
 	��®Ë@ �HAK
Qm.× úÎ« ø
 ñ�Jm��' ú

�æË @ ½Ë 	Y» . 	á�	�Aë �HQK. ðP
. ¨ñ 	�ñÖÏAK. �é�̄C« éË ��
Ë AÓñÔ« �èXPAJ. Ë @ H. QmÌ'@ð ��j. �JË @ AK
A 	��̄ úÎ« ø
 ñ�Jj��K
 AÓ
</top>

APPENDIX A. AGW TOPICS 220

<top>

<numb> Number: 34

<title> ���� 	®J
�ñÊJ
Ó 	à@XñK. ñÊ� �éÒ» Am×
<desc> Description:
�éÒ» AjÖÏ @ Z A 	J�K @ ���� 	®J
�ñÊJ
Ó 	à@XñK. ñÊ� úÍ@ �Iêk. ð ú

�æË @ Ñî �DË @ XY«
<narr> Narrative:

t�'
PA�JË @ , �éJ
 	��®ÊË �éJ
ÓC«@ �éJ
¢ 	ª�K , éJ
Ë @ �éêk. ñÖÏ @ Ñî �DÊË ÉJ
� 	®�Kð XQå�
. ���� 	®J
�ñÊJ
Ó 	à@XñK. ñÊ� È ú
æ�AJ
�Ë@
</top>

<top>

<numb> Number: 35

<title>½ÊÖÏ @ èYË@ñË @PY 	J�. K
X Q�
Ó

B@ É�J�̄

<desc> Description:

½ÊÖÏ @ èYË@ð É�J�®Ë @PY 	J�. K
X Q�
Ó

B@ �Iª 	̄ X ú

�æË @ H. AJ.�

B@

<narr> Narrative:

, ½ÊÖÏ @ É�J�®Ë �éª�̄ñ�JÖÏ @ �HAJ.�

B@ 	�ªK. �IËðA 	J�K ú

�æË@ ù
 ë �éK. ñÊ¢ÖÏ @ �HBA 	®ÖÏ @
. ½ÊÖÏ @ É�J�̄ �H@Yg

@ ð �éJ
ËAJ. �
 	JË @ �éºËAÖÏ @ �éÊKAªË @ �èQ�
� úÎ« ø
 ñ�Jm��' ú

�æË @ ½Ë 	Y»
</top>

<top>

<numb> Number: 36

<title>½K
A 	K @P@Y 	KAK. PA¢Ó úÎ« Ðñj. êË @
<desc> Description:

½K
A 	K @P@Y 	KAK. PA¢Ó úÎ« Ðñj. êË @ Q�K @
�éK
Qå��J. Ë @ QKA�	mÌ'@ Ñm.k ù
 ë AÓ

<narr> Narrative:

. Ðñj. êË @ �éJ
ÊÒªË �éJ
ÓC«@ �éJ
¢ 	ª�K , Ðñj. êË @ H. AJ.�

@ , Ðñj. êÊË �éK
Qå��J. Ë @ð �éK
XAÖÏ @ QKA�	mÌ'@

</top>

APPENDIX A. AGW TOPICS 221

<top>

<numb> Number: 37

<title>½�Q�
J. �
�ñ 	̄ñ 	K ú
Í@ �éêk. ñ�JÖÏ @ �éJ
�ðQË@ �èQKA¢Ë@ Ñ¢m��'
<desc> Description:

½�Q�
J. �
�ñ 	̄ñ 	K úÍ@ �éêk. ñ�JÖÏ @ �éJ
�ðQË@ �èQKA¢Ë@ AK
Am� 	� ú
ÍAë@ 	��
ñª�K Õç�' Éë
<narr> Narrative:
�HA 	��
ñª�JË @ Ñm.k , �I�Jm.Ì'@ ÈA ���� 	K @ �éJ
ÊÔ« , AK
Aj 	�Ë@ XY« , �èQKA¢Ë@ Ñ¢m��'
�éJ
�ðQË@ �é»Qå��Ë @ ÉJ. �̄ 	áÓ �Iª 	̄ X ú

�æË@
</top>

<top>

<numb> Number: 38

<title>ðYJ
Ëñ�K ðPY	KAj. J
Ë

@ ��
KQË @ H. A 	j�J 	K @

<desc> Description:
�HAK. A 	j�J 	KB@ ú

	̄ ðYJ
Ëñ�K ðPY	KAj. J
Ë

@ ��
KQË @ AîD
Ê« É�m��' ú

�æË @ �H@ñ�

B@ XY«

<narr> Narrative:

, �éÊÒmÌ'@ ú

	̄ �I 	̄Qå� ú

�æË@ È@ñÓ

B@ Ñm.k , �éJ
K. A 	j�J 	KB@ �éÊÒjÊË �éJ
ÓC«@ �éJ
¢ 	ª�K

. 	á�
J. 	j�� 	JÖÏ @ AîD
Ê« É�m��' ú

�æË@ �H@ñ�

B@ �éJ.�	� , ��
KQÊË Pñ�

</top>

<top>

<numb> Number: 39

<title>ú
×A 	Kñ���
<desc> Description:

AJ
�@ ��Qå�� H. ñ	Jk. ÈðX H. Qå	��
 ú
×A 	Kñ��� È@ 	QË 	P
<narr> Narrative:

, È@ 	QË 	QË @ �HðYg H. AJ.�@ , AJ
�
�
@ ��Qå�� H. ñ	Jk. úÎ« ú
×A 	Kñ��� È@ 	QË 	P P@Qå 	�@

. È@ 	QË 	QÊË �é 	�QªÖÏ @ ÈðYË@ , È@ 	PB 	QË @ AK
Aj 	�Ë@ X@Y«@ , È@ 	QË 	QË @ �HA 	®Ê	m×
</top>

APPENDIX A. AGW TOPICS 222

<top>

<numb> Number: 40

<title> t�'
QÖÏ @ i¢� úÎ« ZAÖÏ @ 	¬A ����» @ð ú

�æJ
 	KñJ
�KPñK. @ð �IK
Q�
J.�

<desc> Description:

? 	¬A ����» B@ @ 	Yë úÎ« A�A 	K Éª 	̄ XP 	àA¿ 	J
»
<narr> Narrative:

YK
Y« � 	̄ A 	J�K , �éÊgQË@ è 	Yë I. «A�Ó , �éÊgQË@ è 	Yë l .�
'A�J 	K , A�A 	K QK
PA�®�K

. �éJ
KA 	� 	®Ë @ �ékAJ
�Ë@ 	à@YJ
Ó Èñ 	kX Èñk �HA¿Qå��Ë @ 	áÓ
</top>

<top>

<numb> Number: 41

<title>�Y�®ËAK. 	K
Qå��Ë @ ÐQjÊË 	àðPA �� ÉJ
K
P@ Èñ 	kX
<desc> Description:

? �Y�®ËAK. 	K
Qå��Ë @ ÐQmÌ'@ �èPAK
 	QK. 	àðPA �� ÉJ
K
P@ ÐA�̄ @ 	XAÖÏ
<narr> Narrative:

ÐQjÊË 	àðPA �� ÉJ
K
PB �èYÒª�JÖÏ @ �èPAK
 	QË @ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿

. Aî 	DÓ 	¬YêË@ ñë AÓð �èPAK
 	QË @ è 	Yë l .�
'A�J 	K ù
 ë AÓ . �Y�®ËAK. ú
æ��̄B@ Yj. �ÖÏAK. 	K
Qå��Ë @

.PA� 	®�J�BAK. �é�̄C« AêË ��
Ë é 	JÓ 	àðPA �� ÉJ
K
P@ 	�̄ñÓð 	K
Qå��Ë @ ÐQmÌ'@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @

</top>

<top>

<numb> Number: 42

<title>½�QêË@ð �é 	J�ñJ. Ë @ ú

	̄ A¿ñË Am.�

	' AK. ú

	̄ AK
XAëQ 	̄ Yj. �Ó

<desc> Description:

? è ðA 	JK. �èXA«@ Õç�' 	J
»ð ½�QêË@ �é 	J�ñJ. Ë @ ú

	̄ AK
XAëQ 	̄ Yj. �Ó Õç'
Yî�E Õç�' 	J
»

<narr> Narrative:
	J
»ð éÖß
Yî�E Õç�' 	J
»ð ©�®K
 	áK
@ . Yj. �ÖÏ @ @ 	Yë 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
. B Ð@ éKA 	JK. �èXA«@ Õç�' Éëð éKA 	JK. �èXA«@ �éËðAm× AîD.J.� ú

�æË@ l .�
'A�J 	JË @ ù
 ë AÓð è ðA 	JK. �éËðAm× Õç�'

</top>

APPENDIX A. AGW TOPICS 223

<top>

<numb> Number: 43

<title>YêÖÏ @ �é��
 	J» PA�k
<desc> Description:

. AêÊ 	g@YK. 	á�
 	JJ
¢�Ê 	®Ë @ 	áÓ XY« ZAÒ�Jk@ YªK. YêÖÏ @ �é��
 	JºË ú
ÎJ
K @Qå�B@ PA�mÌ'@ �H@Yg@
<narr> Narrative:

Õç�' 	J
»ð AîD
Ë @ 	á�
 	JJ
¢�Ê 	®Ë @ Zñm.Ì 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿

�HA�PAÒÖÏ @ ð@ �é��
 	JºË@ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ . éº 	̄ Õç�' 	J
»ð PA�mÌ'@

. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ��
Ë 	á�
 	JJ
¢�Ê 	®Ë @ Y 	� �éJ
 	KñJ
îD�Ë@
</top>

<top>

<numb> Number: 44

<title> 	á�
�ËAK. ñ» C	J� PA�«@
<desc> Description:

? �éJ
J.ª ��Ë@ 	á�
�ËAK. ñ» C	J� PA�«@ �HYm�'
 ú �æÓð 	áK
@
<narr> Narrative:
	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ .PA�«B@ @ 	Yë 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿

. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ��
Ë øQ 	k

B@ Q�
�A«B@

</top>

<top>

<numb> Number: 45

<title> AK. ðPð@ ú

	̄ �èP@QmÌ'@ �HAg. ñÓ

<desc> Description:

. AK. ðPðAK. �HQÓ ú

�æË@ �éK
P@QmÌ'@ �HAg. ñÖÏ @

<narr> Narrative:
�éJ
K. PðB@ ÈðYË@ �IK. Qå 	� ú

�æË@ �èP@QmÌ'@ �HAg. ñÓ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿

AêË ��
Ë Q 	kB@ ÕËAªË @ ÈðX ú

	̄ �éK
P@QmÌ'@ �HAg. ñÖÏ @ . Aî �D 	®Ê 	g ú

�æË@ P@Qå 	�B@ð
. ø
 P@QmÌ'@ �AJ. �JkB@ �èQëA 	£ð ñ	J�
 	JË @ ½Ë 	Y» �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C«
</top>

APPENDIX A. AGW TOPICS 224

<top>

<numb> Number: 46

<title> 	àAÒJ. �
 �� YËðPAë ÐQj. ÖÏ @
<desc> Description:

. AîD.º�KP@ ú

�æË@ Õç' @Qm.Ì'@ ù
 ë AÓð 	àAÒJ. �
 �� YËðPAë ÐQj. ÖÏ @ ñë 	áÓ

<narr> Narrative:

YËðPAë ÐQj. ÖÏ @ AîD.º�KP@ ú

�æË@ Õç' @Qm.Ì'@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
. é�J 	K @ 	Q 	K 	P ú

	̄ é�KñÓ �éJ
 	��̄ �HA��. CÓð 	àAÒJ. �
 ��
</top>

<top>

<numb> Number: 47

<title>Y�JK
A 	KñK
 Q��� ��	�AÓð ÈA 	J�P@ �HAK
PAJ.Ó
<desc> Description:

Y�JK
A 	KñK
 Q��� ��	�AÓð ÈA 	J�P@ 	áÓ É¿ �H@ZA �®Ë �éJ.j. J
�� 	K �I	KA¿ Õ»ð ú

�æÓ

<narr> Narrative:

©Ó ¡�® 	̄ 	á�
�®K
Q 	®Ë @ 	áK

	Yë 	á�
K. �HAK
 @PAJ. ÖÏ @ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿
�éK
Y 	KB@ YgAK. ��Êª�JK
 AÓ . �è @PAJ.Ó É¾K. �é�A	mÌ'@ l .�

'A�J 	JË @
. ¨ñ 	�ñÖÏAK. �é�̄C« éË ��
Ë Q 	kB@ 	àðX
</top>

<top>

<numb> Number: 48

<title>ZA 	� 	®Ë @ úÍ@ Èñ�ñË@ 	áÓ �I	JºÖ �ß ú

�æË@ ÈðYË@

<desc> Description:

? ú
k. PA	mÌ'@ Z A 	� 	®Ë@ úÍ@ l�'
P@ñ� ��C£@ 	áÓ �I	JºÖ �ß ú

�æË @ ÈðYË@ ù
 ë AÓ

<narr> Narrative:

úÍ@ t�'
P@ñ� �I�®Ê£@ ú

�æË@ ÈðYË@ ZAÖÞ� @ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿
�HCgQË@ ð@ t�'
P@ñ�Ë@ ¨ñk. P . AJ
�ðPð AJ
ºK
QÓ@ @Y« ZA 	� 	®Ë @

. �éÒêÓ �I��
Ë �éJ
�ðQË@ð �éJ
ºK
QÓB@ �éJ
»ñºÖÏ @
</top>

APPENDIX A. AGW TOPICS 225

<top>

<numb> Number: 49

<title> ��@QªË@ ú

	̄ �ék. ñÊ 	®Ë @ �é»QªÓ

<desc> Description:

? 	á�
ºK
QÓB@ð 	áK
YëAj. ÖÏ @ 	á�
K. �ék. ñÊ 	®Ë @ �é»QªÓ �H@Yg@ ù
 ë AÓ
<narr> Narrative:
	áK
YëAj. ÖÏ @ 	á�
K. �ék. ñÊ 	®Ë @ �é»QªÓ �H@Yg@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
ZCJ
���B@ Õç�' 	J
»ð 	áK
YëAj. ÖÏ @ úÎ« ZA 	��®Ë@ Õç�' 	J
» . 	á�
J
ºK
QÓB@ð
. �é»QªÖÏ @ è 	Yë ú

	̄ �éJ
ºK
QÓB@ QKA�	mÌ'@ ù
 ë AÓð 	á�
J
ºK
QÓB@ ÉJ. �̄ 	áÓ �é 	JK
YÖÏ @ úÎ«
</top>

<top>

<numb> Number: 50

<title> AJ
 �� 	�K
QK. Qå� �ém�'.
	YÓ

<desc> Description:

? Èð ñ�ÖÏ @ 	áÓð ½�QêË@ð �é 	J�ñJ. Ë @ ú

	̄ AJ
 �� 	�K
QK. Qå� �ém�'.

	YÓ �Iª�̄ð ú �æÓð 	áK
@
<narr> Narrative:

. Aî 	D« Èð ñ�ÖÏ @ 	áÓð AîE. AJ.�@ð ú
Î
�J�®Ë @ XY«ð �ém�'.

	YÖÏ @ è 	Yë �H@Yg@
</top>

<top>

<numb> Number: 51

<title> 	àCJ. 	KðX �èP 	Qm.×
<desc> Description:

? 	àCJ. 	KðX �é�PYÓ ú

	̄ AJ. Ë A£ 16 É�J�®K. 	àñ�JÊÓAë �AÓñ�K ÐA�̄ @ 	XAÖÏ

<narr> Narrative:
	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ð �é�KXAmÌ'@ 	á« ÕÎ¾�J�K ú

�æË @ �HBA�®ÖÏ @ �é 	̄ A¿

ú

	̄ AJ. Ë A£ 16 É�J�®K. Ðñ�®K
 	àñ�JÊÓAë �AÓñ�K �IÊªk. ú

�æË@ H. AJ.�B@
@Y 	JÊ�Jº�@ ú

	̄ 	àCJ. 	KðX �é�PYÓ
</top>

APPENDIX A. AGW TOPICS 226

<top>

<numb> Number: 52

<title>Q�KP@ ZA 	JJ
Ó �èP 	Qm.×
<desc> Description:

? AJ
 	K AÓ 	Q��K. Q�KP@ ZA 	JJ
Ó ú

	̄ 35 É�J�®K. �I	KAK
 @QK. 	á�
�KPAÓ ÕËA�̄ @ 	XAÖÏ

<narr> Narrative:

. �I	KAK
 @QK. 	á�
�KPAÓ Q�
�Ó ½Ë 	Y» AîE. AJ.�@ð �é�KXAmÌ'@ �HA��. CÓ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @

. �èP 	Qj. ÖÏ @ è 	YîE. Ðñ�®K
 � 	j ��Ë@ @ 	Yë �IÊªk. ú

�æË @ H. AJ.�B@ 	á« �HYj�J�K ú

�æË @ð
</top>

<top>

<numb> Number: 53

<title> 	àXPñk. É¾K
AÓ Ñj. 	JË @ Y«A�®�K
<desc> Description:
	àXPñk. É¾K
AÓ I. «CË@ Y«A�®�K AëQ�K@ úÎ« ú

�æË@ 	¬ðQ 	¢Ë@ ù
 ë AÓð , 	àXPñk. É¾K
AÓ Ñj. 	JË @ Y«A�®�K ú �æÓ
<narr> Narrative:

. ½Ë 	X úÍ@ �HX@ ú

�æË @ H. AJ.�B@ ù
 ë AÓð 	àXPñk. É¾K
AÓ Ñj. 	JË @ È@ 	Q��«@ ð

@ Y«A�®�JK. ��Êª�J�K ú

�æË @ �HBA�®ÖÏ @
</top>

<top>

<numb> Number: 54

<title> �éJ
 	KXPB@ �éºÊÒÖÏ @ ½ÊÓ 	á�
�k ½ÊÖÏ @ �èA 	̄ð
<desc> Description:
	àXP

B@ ½ÊÓ 	á�
�k ½ÊÖÏ @ ú 	̄ ñ�K 	J
»

<narr> Narrative:

. �è A 	̄ñË @ H. AJ.�

AK. �é�®Êª�JÖÏ @ð 	àXPB@ ½ÊÓ 	á�
�k ½ÊÖÏ @ �èA 	̄ñK. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @

</top>

APPENDIX A. AGW TOPICS 227

<top>

<numb> Number: 55

<title>1986 ÐA 	KAK. �é»Qå��Ë 103 Õ�̄P �éÊgQË@ �éJ
 	��̄

<desc> Description:

. �éK
Y 	JÊ�Jº�B@ �HA¢Ê�ÊË ÐA 	K AK. �éJ
 	��̄ ú

	̄ ú
æ. J
ÊË @ éJ. �� ��ÖÏ @ Õæ
Ê�

�� Õç�' �IÓ
<narr> Narrative:

. �éK
Y 	JÊ�Jº�B@ �HA¢Ê�ÊË ÐA 	K AK. �éJ
 	��̄ ú

	̄ ú
æ. J
ÊË @ éK. éJ. �� ��ÖÏ @ Õæ
Ê�

��K. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @
</top>

<top>

<numb> Number: 56

<title> �éÓAªË@ �HAK. Aj�J 	KB@ ú

	̄ I. �JºÖß. 	Pñ 	®K
 ÉÒªË@ H. 	Qk

<desc> Description:
�éÓAªË@ �HAK. A 	j�J 	KB@ ú

	̄ I. �JºÖß. 	Pñ 	®K
 	á�
ÊJ
ë �éÓA« 	QK. @Y 	JÊK
 	PñJ
 	K ú

	̄ ÉÒªË@ H. 	Qk

<narr> Narrative:
	á�
ÊJ
ë �éÓA« 	QK. ø
 Y	KCK
 	PñJ
 	JË @ ÉÒªË@ H. 	Qk 	Pñ 	®K. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @ �é 	̄ A¿

. �éK. ñÊ¢Ó �I��
Ë 	á�
ÊJ
êË �éJ
k. PA	mÌ'@ �é�AJ
�Ë@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ . �éÓAªË@ �HAK. A 	j�J 	KB@ I. �JºÖß.

</top>

<top>

<numb> Number: 57

<title> AÒ 	JK. �èA 	J�̄ úÎ« �èQ¢J
�Ë@
<desc> Description:
	á�
J
Ò 	JJ. ÊË AÒ 	JK. �èA 	J�̄ úÎ« �èQ¢J
�Ë@ ÉK
ñm��' Õç�' 	J
»ð ú �æÓ
<narr> Narrative:

AÒ 	JK. �èA 	J�̄ úÎ« �èQ¢J
�Ë@ ÉK
ñm��' �éJ
 	®J
» 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿

. �é�̄C« AêË ��
Ë ¡�® 	̄ AÒ 	JK. �èA 	J�̄ Ð @Y 	j�J�@ 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ . 	á�
J
Ò 	JJ. Ë @ úÍ@

</top>

APPENDIX A. AGW TOPICS 228

<top>

<numb> Number: 58

<title> 	àY 	JË ú

	̄ ����ð 	áK
Q» ú

	̄ �é�JËA�JË @ �éJ
 	®Ë

B@ �HBA 	®�Jk@

<desc> Description:
	àY 	JË ú

	̄ ����ð 	áK
Q» ú

	̄ �éJ
 	®Ë

B@ �éJ. �®ÊË �éJ
 	K A�JË @ �IK. 	Q�
Ë @

�éºÊÖÏ @ hA�J�J 	̄ AK.
�é�JËA�JË @ �éJ
 	®Ë

BAK. ÈA 	®�JkB@ Õç�' ú �æÓ

<narr> Narrative:
�é�®Êª�JÖÏ @ �HBA�®ÖÏ @ð �é�JËA�JË @ �éJ
 	®Ë

BAK. ÈA 	®�JkBAK. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @ �é 	̄ A¿

. 	àY	JË ú

	̄ ����ð 	áK
Q» ú

	̄ �éJ
 	®Ë

B@ �éJ. �®ÊË �éJ
 	K A�JË @ �IK. 	Q�
Ë @

�éºÊÖÏ @ hA�J�J 	̄ AK.
</top>

<top>

<numb> Number: 59

<title>ðPñJ
Ë @ �éJ
K. ðPðB@ �éÊÒªËAK. ÉÒªË@ �éK
 @YK.
<desc> Description:

ðPñJ
Ë @ �éJ
K. ðPð

B@ �éÊÒªË@ Èð@Y�JK. ÉÒªË@ @YK. ú �æÓ

<narr> Narrative:

.ðPñJ
Ë @ �èYK
Ym.Ì'@ �éJ
K. Pð

B@ �éÊÒªËAK. ÉÒªË@ �éK
 @YJ. K. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @ �é 	̄ A¿

. �é�̄C« AêË ��
Ë ðPñJ
Ë @ ½Ë 	X ú

	̄ AÖß. �HCÒÊªË@ PAª�@ úÎ« ø
 ñ�Jm��' ú

�æË @ �HBA�®Ë@
</top>

<top>

<numb> Number: 60

<title> 	PYK
B@ �ðQ�
 	̄

<desc> Description:
	PYK
B@ �ðQ�
 	̄ É�®�J 	�K
 	J
»
<narr> Narrative:

, �ðQ�
 	®Ë @ I. J
»Q�K 	á« �HAÓñÊªÓ (á�®mÌ'@ - ÐYË@) �ðQ�
 	®Ë @ ÈA�®�J 	K @ �é�®K
Q£
. ÕËAªË @ ú

	̄ èPA ���� 	K @ , é 	JÓ �éK
A�̄ñË@ �é�®K
Q£ , é�J
 	j ���� �é�®K
Q£
</top>

APPENDIX A. AGW TOPICS 229

<top>

<numb> Number: 61

<title> AJ
Ë @Q���@ ú

	̄ ú

	GA¾�Ë@ X@Yª�JË @
<desc> Description:

? AJ
Ë @Q���@ ú

	̄ 	àA¾�Ë@ XY« Õ»

<narr> Narrative:

.2006 úÍ@ 2001 �é 	J� 	áÓ C�JÓ �é 	®Ê�J	m× �H@ñ	J� �èY« ÈC 	g �èXYª�JÓ �HAJ
KA�k@

. �é�̄C« éË ��
Ë ø
 Q 	kB@ ÈðYÊË �éJ
 	K A¾�Ë@ �HAJ
KA�kB@ . 	àA¾�Ë@ XY« �èXAK
 	P I. �.�
</top>

<top>

<numb> Number: 62

<title> �éK
Xñª�Ë@ ú

	̄ �éJ
ºK
QÓB@ Y«@ñ�®Ë@

<desc> Description:
�éK
Xñª�Ë@ ú

	̄ �éJ
ºK
QÓB@ Y«@ñ�®Ë@ © 	�ð I. �.�
<narr> Narrative:
�éK
Xñª�Ë@ ú

	̄ �éJ
ºK
QÓB@ Y«@ñ�®Ë@ © 	�ð H. AJ.�@ 	á« �HYj�J�K ú

�æË@ ��KA�KñË@

i. J
Ê	mÌ'@ H. Qk ð �IK
ñºË@ ©Ó ��@QªË@ H. Qkð AJ
ºK
QÓ@ ©Ó ��@QªË@ H. Qk É�JÓ
. AJ
ºK
QÓ@ 	áÓ 	àñªË@ H. QªË@ ÐA¾mÌ'@ I. Ê£ð �éJ
 	KA�JË @ð úÍðB@
</top>

<top>

<numb> Number: 63

<title> A 	K A�̄ �èP 	Qm.×
<desc> Description:

A 	K A�̄ ú

	̄ ú
Î

�J�®Ë @ XY« Õ»
<narr> Narrative:

. �éÖß
Qm.Ì'@ è 	Yë I. º�KP@ 	áÓ ð , úÎ�J�®Ë @ XY« , �èP 	Qj. ÖÏ @ è 	Yë t�'
PA�Kð 	àA¾Ó 	á« �éÓA« �HAÓñÊªÓ
</top>

APPENDIX A. AGW TOPICS 230

<top>

<numb> Number: 64

<title>Ðñº�	�ñK

<desc> Description:

ú

�̄ @QªË@ hC�Ë@ ¨ 	Q 	K I. �.�

<narr> Narrative:

úÍðB@ i. J
Ê	mÌ'@ H. Qk , ø
 ðñ	JË @ hC�Ë@ AêºÊÒ�JK. ��@QªË@ ÐAî�E@ , ¡ 	® 	JË @ ÉK. A �®Ó Z@ 	Y 	ªË@ , ��@QªË@ úÎ« PA�mÌ'@
</top>

<top>

<numb> Number: 65

<title>¼@Q�
 �� ¼Ag. H. A 	j�J 	K @
<desc> Description:

A�	�Q 	̄ �éK
PñêÒm.Ì A��
KP ¼@Q�
 �� ¼Ag. H. A 	j�J 	K @ Õç�' ú �æÓ
<narr> Narrative:

A�	�Q 	̄ �éK
PñêÒm.Ì A��
KP ¼@Q�
 �� ¼Ag. ��
KQË@ H. A 	j�J 	KAK. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @ �é 	̄ A¿
</top>

<top>

<numb> Number: 66

<title>Pñj. J
Ó 	àñk. Z@P 	PñË@ ��
KP 	Pñ 	̄

<desc> Description:

. 	á�
 	¢ 	̄ AjÖÏ @ H. 	Qk Õæ
« 	P ù�®J. J
Ë é�J»QªÖß. Pñj. J
Ó 	àñk. Z@P 	PñË@ ��
KP 	PA 	̄ ú �æÓ
<narr> Narrative:
	á�
 	¢ 	̄ AjÖÏ @ H. 	Qk ��
KP ù�®J. J
Ë Pñj. J
Ó 	àñk. Z@P 	PñË@ ��
KP 	Pñ 	®K. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @ �é 	̄ A¿
</top>

APPENDIX A. AGW TOPICS 231

<top>

<numb> Number: 67

<title> 	àñËPAK. Õæ
ÊK
ð ð �HQ�
J. Ë @X YJ
 	®K
X 	á« h. @Q 	̄ B @
<desc> Description:
��@QªË@ ú

	̄ 	àñËPAK. Õæ
ÊK
ð ð �HQ�
J. Ë @X YJ
 	®K
X 	á« h. @Q 	̄ B@ Õç�' ú �æÓ
<narr> Narrative:
	á�
�ñ�Am.Ì'@ 	á« 	á�
�k Ð@Y� ú

�̄ @QªË@ ��
KQË@ h. @Q 	̄ AK.
�é�®Êª�JÖÏ @ �HBA�®ÖÏ @

Qå� @ �éJ
 	®J
» 	á« �HYj�J�K ú

�æË @ ��KA�KñË@ . 	àñËPAK. Õæ
ÊK
ð ð �HQ�
J. Ë @X YJ
 	®K
X

½Ë 	Y»ð 	áj. �Ë@ ú

	̄ AÒî�EPAK
 	P 	áÓ AÒîD
�JJ
k. ð 	P 	áºÖ �ß ð@ 	á�
�ñ�Am.Ì'@ 	áK

	Yë
AÒîD�ñ�	m�'.

�éJ
ºK
QÓB@ �éÓñºmÌ'@ �HAm�'
Qå��� úÎ« ø
 ñ�Jm��' ú

�æË@ ��KA�KñË@

. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« AêË ��
Ë
</top>

<top>

<numb> Number: 68

<title>ú
G. Pð

B@ XAm��'CË YK
ñ�Ë@ð @Y 	JÊ 	J 	̄ð A�Ò	JË @ Èñ 	kX

<desc> Description:

ú
G. ðPð

B@ XAm��'C Ë YK
ñ�Ë@ð @Y 	JÊ 	J 	̄ð A�Ò	JË @ Èñ 	kX Õç�' ú �æÓ

<narr> Narrative:

. ú
G. ðPðB@ XAm��'B@ ú

	̄ ÈðYË@ è 	Yë Èñ 	kYK. �é�®Êª�JÖÏ @ �HBA�®ÖÏ @

</top>

<top>

<numb> Number: 69

<title>Y	JêË @ ú

	̄ �éK
ðñ	K H. PAm.�

�' Z @Qk. @
<desc> Description:

? Y	JêË @ AîE. �IÓA�̄ ú

�æË@ �éK
ðñ	JË @ H. PAj. �JË @ ù
 ë AÓ

<narr> Narrative:
�éJ
ËðYË@ Éª 	®Ë @ XðXP , Y 	JêË @ AîE. �IÓA�̄ ú

�æË@ �éK
ðñ	JË @ H. PAj. �JË @ l .�
'A�J 	K

, H. PAj. �JË @ è 	Yë �éÓA�̄B Y 	JêË @ AîE. �IÓA�̄ ú

�æË @ �H@ 	Q�
êj. �JË @ , H. PAj. �JË @ è 	Yë Z@ 	P@

. H. PAj. �JË @ è 	Yë �éÓA�̄B
�é 	� 	̄ @QË @ �éJ
ÓC«B@ �éj. 	�Ë@

</top>

APPENDIX A. AGW TOPICS 232

<top>

<numb> Number: 70

<title> AÓñëC¿ð@ Q�
j. 	®�K ú

	̄ �ËñºJ
 	K ø
 Q�
�K úÎ« YK. ñÖÏ @ 	áj. �ËAK. Õºk

<desc> Description:

? AÓñëC¿ð@ �é 	JK
YÓ Q�
j. 	®�K ú

	̄ é«ñÊ 	�Ë �ËñºJ
 	K ø
 Q�
�K úÎ« PY�

@ ø

	YË@ ÕºmÌ'@ AÓ
<narr> Narrative:
Q�
j. 	®�JË @ I.

�®« �Iª�̄ð ú

�æË@ �H@YgB@ ,Q�
j. 	®�JË @ 	á« �ém.�

�'A 	JË @ QKA�	mÌ'@ , �ËñºJ
 	K ø
 Q�
�K úÎ« ÕºmÌ'@ �	�
</top>

<top>

<numb> Number: 71

<title>XPñë 	àñk. H. A 	j�J 	K @
<desc> Description:

? AJ
Ë @Q���B ��
KQ» XPñë 	àñk. H. A 	j�J 	K @ Õç�' 	J
»
<narr> Narrative:
�éJ
KA«YË@ �HCÒmÌ'@ . �èYK
Yg. �éJ
 	̄ C�JK @ �éÓñºmÌ XPñë 	àñk. H. A 	j�J 	K @ �èXA«@
øQ 	kB@ ÈðYÊË XPñë 	àñk. �H@PAK
 	P 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ . XPñë 	àñk. H. A 	j�J 	KB
. �é�̄C« AêË ��
Ë �éJ
k. PA	mÌ'@ �é�AJ
�Ë@ ð@ ��@QªË@ 	àA ���. é�KAm�'
Qå���ð
</top>

<top>

<numb> Number: 72

<title> ����J
Ó PA�«@ �H@Q�
�K

A�K

<desc> Description:

? ù¢�ñË@ A¾K
QÓ

B ����J
Ó PA�«@ �éK. A�@ 	á« �éJ ��A 	JË @ P@Qå 	�B@ ù
 ë AÓ

<narr> Narrative:

. ù¢�ñË@ A¾K
QÓ@ ú

	̄ Q�
�A«

B@ Q�
�K

A�K ,PA�«B@ PðQÓ �é¢�
Q 	k ,PA�«B@ 	á« �éÔg. A 	JË @ �H@Q�
�K

A�JË @

</top>

APPENDIX A. AGW TOPICS 233

<top>

<numb> Number: 73

<title> t�'
QÖÏ @ úÍ@ ú

	GAK. AK
 ù

KA 	� 	̄ ¼ñºÓ ��C£@
<desc> Description:

? t�'
QÖÏ @ úÍ@ ú

	GAK. AJ
Ë @ ù

KA 	� 	®Ë@ ¼ñºÖÏ @ ��C£@ Z @Pð 	�Q 	ªË@ AÓ
<narr> Narrative:

	�ð , ú
k. PA	mÌ'@ Z A 	��®Ë@ �H@PA�Ó . ú

	GAK. AK
 ¼ñºÖß. ú
k. PA	mÌ'@ Z A 	� 	®Ë@ 	¬A ��º�J�@

. t�'
QÖÏ @ úÍ@ �éÊgQË@ �H@Yg@ð 	�ð , 	�Q 	ªË@ @ 	YêË YªÖÏ @ ù

KA 	� 	®Ë @ ¼ñºÖÏ @

</top>

<top>

<numb> Number: 74

<title> 	á ���
A�J� ø
 CK.
<desc> Description:
�é 	kñ� 	�ÖÏ @ H. AªË

B@ - ÕËAªË @ ÈðX ú

	̄ �HAªJ
J. ÖÏ @ .PAª�B@ - �HAÒJ
Êª�JË @ - �é 	K AJ
�Ë@ - �HA 	®�@ñÖÏ @
<narr> Narrative:

- ��@ñ�B@ - PAª�B@ - ú

	Gñ�Ë@ H. AªËB@ �é�	JÓ 	áÓ ú

	GA�JË @ ÉJ
m.Ì'@
I. J
ËA�@ - �HA 	®�@ñÖÏ @ð AK
 @ 	QÖÏ @ - ÈðYË@ ú

	̄ �HC¿ñË@ - �HA 	®�@ñÖÏ @
. H. AªËB@ð �é 	kñ� 	�ÖÏ @ l .× @Q�. Ë @ - �éJ
KA«YË@ �HA£AJ. �KPB@ ©J
Ôg. ÊÒªË@ð �é 	KAJ
�Ë@
</top>

<top>

<numb> Number: 75

<title> @XñÓQK. �IÊ�JÓ
<desc> Description:

@XñÓQK. �IÊ�JÓ Qå� ñë AÓ
<narr> Narrative:
�H@QKA¢Ë@ ZA 	®�J 	k@ ���̄ . @XñÓQK. �IÊ�JÓ 	á« �HAÓñÊªÓ ú
Î« ø
 ñ�Jm��' ú

�æË@ ��KA�KñË@
. ¨ñ 	�ñÖÏAK. �é�̄C« AêË ��
Ë @XñÓQK. �èQK
 	Qk. 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ . �IÊ�JÖÏ @ 	Yë ú

	̄ 	á 	®�Ë@ð

</top>

APPENDIX A. AGW TOPICS 234

<top>

<numb> Number: 76

<title>ú
ÍðX �éj. ª 	JË @ pA� 	��J�@ �éJ
 	��̄

<desc> Description:

ú
ÍðX �éj. ª 	JË @ pA� 	��J�@ �éJ
 	®J
»
<narr> Narrative:

. ú
ÍðX �éj. ª 	JË @ ©Ó �éJ
ÊÒªË@ è 	Yë hAm.�
	' Èñk �HAÓñÊªÓð pA� 	��J�B@ �éJ
ÊÔ« �H@ñ¢ 	k

. øQ 	k@ �HA 	K @ñJ
k pA� 	��J�@ ð 	áK
YË@ ZAÒÊ« ø
 @Pð AÓñÔ« pA� 	��J�B@ 	á« �HYj�JK
 AÓ ñë �é�̄C« éË ��
Ë AÓ
</top>

<top>

<numb> Number: 77

<title> 	á� 	�ë �HQK. ðP ø

�
@ ú
G.

	¬B@ 	 	£ñÓ ÈA�®�J«@ �éJ
 	��̄

<desc> Description:

ø

�
@ ú
G.

	¬B@ ú

	̄ �ñ�Am.» 	á� 	�ë �HQ�
K. ðP 	¬A ����» @ Õç�' 	J
»

<narr> Narrative:

. �éJ
�ðQË@ �H@QK. A 	jÒÊË �ñ�Am.» 	á� 	�ë �HQK. ðP 	¬A ����» AK. ��Êª�JK
 AÓ É¿
¨ñ 	�ñÖÏAK. �é�̄C« AêË ��
Ë �é�®K. A�Ë@ �H@ñ	J�Ë@ ú

	̄ AJ
ºK
QÓ@ð AJ
�ðP 	á�
K. �èXPAJ. Ë @ H. QmÌ'AK. ��Êª�JK
 AÓ
</top>

<top>

<numb> Number: 78

<title> 	á�
¢�Ê 	̄ ú

	̄ I. �
K. @ É�K ú

	̄ ñº��
X Qj. 	®�K �AÔg
<desc> Description:

�AÔg 	áÓ XQ 	̄ �é¢�@ñK. ñº��
YË@ Q�
j. 	®�Kð ú
ÎJ
K @Qå�B@ ú

	æÓB@ 	Qk. AmÌ'@ ��@Q�� 	g@ Õç�' 	J
»

<narr> Narrative:
	YJ
 	® 	J�Kð ú

	æÓB@ 	Qk. AmÌ'@ ��@Q�� 	g@ © 	JÖÏ ÉJ
K @Qå� @ Aêêk. @ñ�K ú

�æË@ �HAK. ñª�Ë@

ú
Î
�J�®Ë @ XY« . �éÊ�JjÖÏ @ ú
æ

	�@PB@ ú

	̄ �éK
XAîD���J�B@ ð@ �éK
PAj�J 	KB@ �HAJ
ÊÒªË@

øQ 	kB@ �HA¿QmÌ'@ 	�ªK. AîE. Ðñ�®�K ú

�æË@ �HAJ
ÊÒªË@ .ñº��
YË@ @ 	Yë ú

	̄ úkQm.Ì'@ð
. �IjJ. Ë @ ¨ñ 	�ñÖß. �é�̄C« éË ��
Ë �éJ
 	�J
¢�Ê 	®Ë @ ú
æ

	�@PB@ H. Qå	��. �éJ
ÊJ
K @Qå�B@ Éª 	®Ë @ XðXPð 	á�
¢�Ê 	̄ ú

	̄

</top>

APPENDIX A. AGW TOPICS 235

<top>

<numb> Number: 79

<title>2001 PðXA 	®Ê�Ë@ È@ 	QË 	P
<desc> Description:

PðXA 	®Ê�Ë@ È@ 	QË 	P Aê 	®Ê 	g ú

�æË @ QKA�	mÌ'@ð P@Qå 	�B@ Ñm.k

<narr> Narrative:

ú

	GAJ. ÖÏ @ , È@ 	QË 	QË @ �éj. J
�� 	K øð

AÓ 	àðYK. @ñjJ.�@ 	áK

	YË@ð ú�GñÖÏ @ XY«
AêË �I 	�Qª�K ú

�æË@ È 	PB 	QË @ð È@ 	QË 	QË @ �èñ�̄ . È@ 	QË 	QË @ AëQÓX ú

�æË @ ��Q¢Ë@ð

. éJ
 	̄ �IjJ. Ë @ YK
P@ AÖÏ �éJ
 	̄ A 	�@ l .�
'A�J 	K �éJ. �®mÌ'@ è 	Yë ú

	̄ øQ 	kB@ ÈðYË@ ½Ë 	Y» A�®K. A� PðXA 	®Ê�Ë@
</top>

<top>

<numb> Number: 80

<title> èPAJ
î 	E @ YªK. ¼PñK
ñJ
 	K ú

	̄ ù
 ÖÏ AªË @ �èPAj. �JË @ ú 	æJ.Ó ú

	̄ �	m��� 3000 ú
Í@ñk É�J�®Ó
<desc> Description:

ú

	æJ. ÖÏ AK. �H@QKA¢Ë@ ÐA¢��P@ YªK. ù
 ÖÏ AªË @ �èPAj. �JË @ ú 	æJ.Ó PAJ
î 	E @ H. AJ.�@

<narr> Narrative:

. ú 	æJ. ÖÏ @ PAJ
î 	E @ H. AJ.�@ 	á« �HYj�J�K ú

�æË@ ½Ê�K ù
 ë AîE. H. ñ 	«QÖÏ @ ��KA�KñË@

, �H@Q�
j. 	®�JË @ è 	Yë 	Y 	® 	JÓ É�JÓ ¨ñ 	�ñÖÏAK. �é�̄C« AêË ��
Ë ú

�æË @ l .�

'A�J 	JË @
. 	àAJ. Ë A£ �é»Qk H. Qå	��. �é�A 	g �éJ
ºK
QÓB@ð �éÓA« �éJ
ÖÏ AªË @ Éª 	®Ë @ XðXP
</top>

<top>

<numb> Number: 81

<title> 	PYK
B@ �ðQ�
 	®K. 	àñK. A�ÖÏ @ 	á�
J. J
ÊË @ ÈA 	®£B@ �éJ
 	��̄

<desc> Description:

Éª 	®Ë@ @ 	Yë 	áÓ YJ
 	®�J�ÖÏ @ 	áÓð , �ðQ�
 	®ËAK. ÈA 	®£B@ ZB ñë 	á�®k Õç�' 	J
»ð ú �æÓ
<narr> Narrative:

. �éJ
ÊÒªË@ è 	Yë 	áÓ YJ
 	®�J�ÖÏ @ 	áÓð . 	PYK
B@ �ðQ�
 	®K. ÈA 	®£B@ 	á�®k Õç�' 	J
» 	á« �HYj�J�K ú

�æË@ ��KA�KñË@

</top>

APPENDIX A. AGW TOPICS 236

<top>

<numb> Number: 82

<title>ú
G. Pñ»ñË �éJ
 	��̄ ú

	̄ ÕºmÌ'@

<desc> Description:

.103 ÐA 	KAJ. Ë @ �éJ
 	��̄ ú

	̄ 	á�
J. J
ÊË @ 	á�
Òî �DÖÏ @ Yg@ �é 	K @X @ 	áÓ �éJ
K. QªË@ Éª 	®Ë@ XðXP �I	KA¿ 	J
»

<narr> Narrative:
�é 	K @X @ Èñk �éJ
K. QªË@ ÈðYË@ ÉJ. �̄ 	áÓ �éJ
J. Ê�Ë@ð �éJ
K. Am.�'
B@ Éª 	®Ë @ XðXP
ÉJ
�A 	®�K 	á« �HYj�J�K ú

�æË@ �HBA�®ÖÏ @ . ú
G. Q»ñË �éJ
 	��̄ ú

	̄ 	á�
J
�. J
ÊË @ Yg@

AîD

	̄ H. ñ 	«QÓ Q�
 	« 1986 ú

	̄ �é�KXAmÌ'@
</top>

<top>

<numb> Number: 83

<title>�Ò ��Ë@ 	¬ñ�»
<desc> Description:

? �Ò ��Ë@ 	¬ñ�» �HYm�'
 	J
»
<narr> Narrative:

�Ò ��Ë@ 	¬ñ�» �HðYg t�'
P@ñ�K , �Ò ��Ë@ 	¬ñ�» ¨@ñ	K @ , �Ò ��Ë@ 	¬ñ�» H. AJ.�@
</top>

<top>

<numb> Number: 84

<title> A¾K
Q���ñ» ú

	̄ �éJ
 	K AÖÏQ�. Ë @ �HAK. A 	j�J 	KB@

<desc> Description:
	QKA 	®Ë @ H. 	QmÌ'@ ñë 	áÓ
<narr> Narrative:
	áÓð , A¾K
Q���ñ» ú

	̄ H. @ 	QkB@ 	á« �HYj�JK
 AÓ É¿ ù
 ë �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @
�éJ
ËðYË@ Éª 	®Ë @ XðXP 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @ . Õ» AmÌ'@ H. 	QmÌ'@ ñë
AîD
	̄ H. ñ 	«QÓ Q�
 	« �HAK. A 	j�J 	KB@ l .�

'A�J 	K Èñk �éJ
ÊjÖÏ @ð
</top>

APPENDIX A. AGW TOPICS 237

<top>

<numb> Number: 85

<title> �éJ
 	K AÖÏB@ �HAK. A 	j�J 	KB@
<desc> Description:
�éJ
 	K AÖÏB@ �HAK. A 	j�J 	KB@ l .�

'A�J 	K
<narr> Narrative:

. �éJ
 	K AÖÏB@ �HAK. A 	j�J 	KB@ ú

	̄ PYK
ðQå�� PXAëQ�.g. ��K. A�Ë@ PA �����ÖÏ @ 	Pñ 	̄ 	á« �HYj�J�K ú

�æË @ ½Ê�K ù
 ë �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @
</top>

<top>

<numb> Number: 86

<title> AK. ðPð@ �éÊÔ«
<desc> Description:
�èYg@ñË@ �éJ
K. PðB@ �éÊÒªË@ ù
 ë AÓ
<narr> Narrative:
��ñ�Ë@ Èñk �HYj�JK
 AÓ . AK. Pð@ �éÊÒª» ðPñJ
Ë @ 	àC«@ 	á« �HYj�JK
 AÓ É¿
��Êª�JK
 AÓ ½Ë 	Y» ¨ñ 	�ñÖÏAK. �é�̄C« éË ��
Ë �H@Y	J�Ë@ð ÑîD�B@ð �éJ
ËAÖÏ @

½ 	KQ 	̄ , ú

	æJ
ËQ���@ , PBðX , 	áK
 øQ 	kB@ �HCÒªËAK.

</top>

<top>

<numb> Number: 87

<title>ø
 ðñ	JË @ ��@QªË@ hC�
<desc> Description:

ø
 ðñ	JË @ ��@QªË@ hC� úÎ« 	 ��ºË@ �é 	Jm.Ì ��
KP ñë 	áÓ
<narr> Narrative:

YÒm× �é 	Jj. ÊË @ ��
KP Õæ� @ úÎ« ø
 ñ�Jm��' ú

�æË@ ùë �éª�̄ñ�JÖÏ @ �HBA�®ÖÏ @

. AÒî 	D« �HAÓñÊªÓð �ºJ
ÊK. 	Q 	KAë , ú
«X@Q�. Ë @
</top>

APPENDIX A. AGW TOPICS 238

<top>

<numb> Number: 88

<title>ñ» A 	KñÓð A�	�Q 	̄

<desc> Description:

?ñ» A 	KñÓ �éJ
 	��̄ 	áÓ A�	�Q 	̄ 	�̄ñÓ ñë AÓ
<narr> Narrative:

. �éËðY» ñ» A 	KñÓð A�	�Q 	̄ 	á�
K. ¨@Qå�Ë@ 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @

.ñ» A 	KñÓ �éJ
 	��̄ 	áÓ A�	�Q 	̄ 	�̄ñÓ . ÈC�®�J�BAK. ñ» A 	KñÓ �éJ. Ë A¢Ó 	áÓ A�	�Q 	̄ Éª 	̄ XP
</top>

<top>

<numb> Number: 89

<title>I. K
Q 	«ñK. @ �éjJ
 	� 	̄

<desc> Description:

? Aê 	® ��» Õç�' 	J
»ð I. K
Q 	«ñK. @ 	ám.�� �éjJ
 	� 	̄ Z @Pð 	áÓ
<narr> Narrative:

Xñ	Jm.Ì'@ AîE. ÐA�̄ ú

�æË@ �éJ 	£A	mÌ'@ �HA�PAÒÖÏ @ 	��� ú

�æË@ �HBA�®ÖÏ @ �é 	̄ A¿
. �HA�PAÒÖÏ @ è 	Yë 	 ��» 	áÓð Aî 	D« Èð ñ�ÖÏ @ 	áÓð . I. K
Q 	«ñK. @ 	ám.�� ú

	̄ 	àA¾K
QÓB@
	á�
Ëð ñ�ÖÏ @ �HAm�'
Qå���ð Éª 	®Ë @ XðXP 	á« �HYj�J�K ú

�æË @ �HBA�®ÖÏ @
. �é�̄C« AêË ��
Ë �é�KXAmÌ'@ Èñk 	á�
J
ºK
QÓB@
</top>

<top>

<numb> Number: 90

<title>QÖß
Aë 	QË @ 	�QÖß. 	á�®K
P Y	KBðP ��K. A�Ë@ ú
¾K
QÓB@ ��
KQË@ �éK. A�@
<desc> Description:

QÖß
Aë 	QË @ 	�QÖß. 	á�®K
P Y	KBðP �éK. A�@ YªK. 	á�
ºK
QÓB@ 	á�
�AJ
�Ë@ Éª 	̄ XP ñëAÓ
<narr> Narrative:
�éK. ñÊ¢ÖÏ @ �éj. J
�� 	JË @ ñë 	á�
ºK
QÓB@ 	á�
�AJ
�ÊË Éª 	®Ë @ XðXP É¿
ÑêÓ Q�
 	« 	á�
ºK
QÓB@ Q�
 	ªË Éª 	®Ë@ XðXPAÓ@
</top>

APPENDIX A. AGW TOPICS 239

T.No. All NR R T.No. All NR R T.No. All NR R

1 221 215 6 31 218 151 67 61 177 169 8

2 225 201 24 32 230 206 24 62 169 158 11

3 241 191 50 33 512 479 33 63 205 153 52

4 276 168 108 34 400 364 36 64 168 113 55

5 296 200 96 35 403 367 36 65 274 247 27

6 183 150 33 36 289 276 13 66 258 248 10

7 208 185 23 37 378 318 60 67 293 267 26

8 352 331 21 38 416 373 43 68 200 174 26

9 355 261 94 39 217 117 100 69 203 195 8

10 328 320 8 40 383 302 81 70 192 180 12

11 107 82 25 41 149 128 21 71 557 537 20

12 148 136 12 42 219 213 6 72 198 136 62

13 634 554 80 43 209 38 171 73 187 183 4

14 208 112 96 44 146 139 7 74 429 386 43

15 356 334 22 45 403 354 49 75 129 127 2

16 451 401 50 46 131 104 27 76 153 115 38

17 164 135 29 47 283 264 19 77 445 424 21

18 585 563 22 48 187 86 101 78 154 147 7

19 363 344 19 49 117 101 16 79 119 68 51

20 301 262 39 50 594 416 178 80 170 163 7

21 262 222 40 51 326 317 9 81 137 120 17

22 455 301 154 52 334 318 16 82 176 172 4

23 162 28 134 53 464 388 76 83 235 185 50

24 265 182 83 54 141 120 21 84 605 598 7

25 369 355 14 55 272 227 45 85 392 338 54

26 475 306 169 56 473 466 7 86 383 258 125

27 116 61 55 57 173 162 11 87 262 226 36

28 233 173 60 58 308 302 6 88 366 359 7

29 266 156 110 59 193 142 51 89 509 390 119

30 278 265 13 60 226 146 80 90 359 331 2

Table A.1: Topic numbers and their respective number of annotated documents. “T.No.”

stands for topic no, “All” stands for the total number of annotated documents per each topic,

“NR” stands of the number of non-relevant documents, and “R” stands for the number of

relevant documents. The average documents annotated per topic is 286.5, the average number

of non-relevant documents per topic is 241.6, and the average number of relevant documents

per topic is 44.8.

Appendix B

Foreign Words Expansion Results

This appendix shows results obtained by experiments in Chapter 7. The performance of the

light11 stemmer using similarity algorithms to expand foreign words in the query is shown

here. Tables show the performance of the stemmer in terms of Recall, P@10, and R-Precision

for expanding both automatically and manually identified foreign words in the queries.

240

APPENDIX B. FOREIGN WORDS EXPANSION RESULTS 241

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM 0.2539 0.2607 0.2652 0.2640 0.2652 0.2652 0.2652 0.2652

NORM1 0.2494 0.2551 0.2533 0.2689 0.2656 0.2611 0.2611 0.2622

NORM2 0.2494 0.2584 0.2562 0.2562 0.2562 0.2562 0.2562 0.2562

NORM3 0.2494 0.2584 0.2562 0.2562 0.2562 0.2562 0.2562 0.2562

gramCount 0.2478 0.2467 0.2422 0.2500 0.2567 0.2556 0.2567 0.2578

gramDist 0.2444 0.2444 0.2389 0.2511 0.2500 0.2500 0.2478 0.2311

LCS 0.2500 0.2589 0.2667 0.2667 0.2678 0.2756 0.2744 0.2689

Sgrams 0.2389 0.2389 0.2456 0.2500 0.2544 0.2567 0.2567 0.2456

Asoundex-Final 0.2528 0.2539 0.2506 0.2506 0.2506 0.2506 0.2506 0.2506

Soutex 0.2528 0.2539 0.2611 0.2678 0.2667 0.2633 0.2644 0.2622

Soutex4 0.2494 0.2551 0.2544 0.2700 0.2678 0.2711 0.2733 0.2644

AEditex 0.2489 0.2556 0.2700 0.2622 0.2722 0.2689 0.2678 0.2656

REditex 0.2629 0.2678 0.2667 0.2689 0.2689 0.2722 0.2722 0.2667

Dice 0.2478 0.2467 0.2422 0.2500 0.2567 0.2533 0.2544 0.2433

EditDistance 0.2444 0.2589 0.2667 0.2656 0.2689 0.2678 0.2667 0.2678

Table B.1: The P@10 scores of the light11 stemmer when expanding queries using the

top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms. The

baseline is the light11 stemmer (P@10=0.2533). Foreign words expanded are those auto-

matically identified as foreign in queries. ↓ indicates results that are significantly worse

than the light11 stemmer.

APPENDIX B. FOREIGN WORDS EXPANSION RESULTS 242

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM 0.5907 0.5917 0.5998 0.5998 0.6061 0.6064 0.6064 0.6064

NORM1 0.5917 0.5879 0.5936 0.6114 0.6110 0.6105 0.6102 0.6075

NORM2 0.5907 0.5960 0.5978 0.5980 0.5980 0.5980 0.5980 0.5980

NORM3 0.5907 0.5960 0.5978 0.5980 0.5980 0.5980 0.5980 0.5980

gramCount 0.5691↓ 0.5681↓ 0.5721↓ 0.5879↓ 0.5986 0.5981 0.5968 0.6087

gramDist 0.5691↓ 0.5681↓ 0.5716↓ 0.5911↓ 0.5993↓ 0.5991↓ 0.5968↓ 0.5884↓
LCS 0.5708 0.5668 0.5830 0.5859 0.5847 0.6174 0.6137 0.6350

Sgrams 0.5716↓ 0.5711↓ 0.5716↓ 0.5996↓ 0.6005↓ 0.5929↓ 0.5926↓ 0.5896↓
Asoundex-Final 0.5907 0.5856 0.5894 0.5922 0.5901 0.5901 0.5901 0.5901

Soutex 0.6011 0.5983 0.5849 0.6045 0.6050 0.6050 0.6100 0.6062

Soutex4 0.5993 0.5965 0.6053 0.6216 0.6248 0.6318 0.6598 0.6563

AEditex 0.5683↓ 0.5711↓ 0.5792 0.5750 0.6062 0.6092 0.6080 0.6090

REditex 0.5909 0.5792↓ 0.5790↓ 0.5797↓ 0.5792↓ 0.5802↓ 0.5792↓ 0.5790↓
Dice 0.5691 0.5681↓ 0.5721↓ 0.5879 0.5986 0.5976 0.5961 0.6070

EditDistance 0.5698↓ 0.5713 0.5753 0.5748 0.5998 0.6067 0.6062 0.6169

Table B.2: The Recall scores of the light11 stemmer when expanding queries using the

top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms. the

baseline is running the light11 stemmer without query expansion (Recall=0.6102). Foreign

words expanded are those automatically identified as foreign in queries. ↓ indicates results

that are significantly worse than the light11 stemmer.

APPENDIX B. FOREIGN WORDS EXPANSION RESULTS 243

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM 0.2034 0.2104 0.2137 0.2130 0.2147 0.2147 0.2147 0.2147

NORM1 0.2004 0.2090 0.2108 0.2185 0.2185 0.2176 0.2166 0.2179

NORM2 0.1997 0.2074 0.2081 0.2076 0.2076 0.2076 0.2076 0.2076

NORM3 0.1997 0.2074 0.2076 0.2076 0.2076 0.2076 0.2076 0.2076

gramCount 0.1932 0.1908 0.1918 0.1964 0.2004 0.1970 0.1943 0.1935

gramDist 0.1865 0.1850 0.1837↓ 0.1935 0.1885 0.1861 0.1827 0.1773

LCS 0.1948 0.1988 0.2079 0.2095 0.2087 0.2157 0.2151 0.2118

Sgrams 0.1854↓ 0.1865 0.1894 0.1941 0.1938 0.1930 0.1915 0.1905

Asoundex-Final 0.2031 0.2043 0.2042 0.2044 0.2044 0.2044 0.2044 0.2044

Soutex 0.1992 0.2017 0.2098 0.2159 0.2137 0.2128 0.2147 0.2129

Soutex4 0.2011 0.2070 0.2105 0.2214 0.2200 0.2205 0.2251↑ 0.2208

AEditex 0.1882 0.1997 0.2097 0.2044 0.2101 0.2102 0.2090 0.2029

REditex 0.1994 0.2089 0.2075 0.2082 0.2079 0.2116 0.2127 0.2085

Dice 0.1928 0.1908 0.1918 0.1964 0.2004 0.1963 0.1935 0.1845

EditDistance 0.1869 0.1992 0.2054 0.2050 0.2102 0.2134 0.2117 0.2065

Table B.3: The R-Precision scores of the light11 stemmer when expanding queries using

the top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms.

The baseline is running the light11 stemmer without query expansion (R-Precision=0.2003).

Foreign words expanded are those automatically identified as foreign in queries. ↓ indicates

results that are significantly worse than the light11 stemmer, while ↑ indicates results that

are significantly better than the light11 stemmer in the 95% confidence level.

APPENDIX B. FOREIGN WORDS EXPANSION RESULTS 244

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM 0.2584 0.2562 0.2539 0.2562 0.2551 0.2551 0.2528 0.2539

NORM1 0.2467 0.2567 0.2700 0.2722 0.2689 0.2678 0.2667 0.2656

NORM2 0.2517 0.2528 0.2506 0.2506 0.2506 0.2506 0.2506 0.2506

NORM3 0.2483 0.2494 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483

gramCount 0.2378 0.2367 0.2400 0.2467 0.2600 0.2522 0.2522 0.2456

gramDist 0.2483 0.2444 0.2478 0.2611 0.2533 0.2500 0.2433 0.2278

LCS 0.2444 0.2533 0.2622 0.2622 0.2644 0.2744 0.2756 0.2656

Sgrams 0.2322 0.2333 0.2389 0.2500 0.2489 0.2511 0.2511 0.2400

Asoundex-Final 0.2467 0.2467 0.2422 0.2411 0.2400 0.2400 0.2400 0.2400

Soutex 0.2611 0.2644 0.2667 0.2756↑ 0.2756↑ 0.2756↑ 0.2778↑ 0.2722↑
Soutex4 0.2400 0.2444 0.2611 0.2778 0.2789 0.2822 0.2733 0.2611

AEditex 0.2378 0.2489 0.2656 0.2567 0.2656 0.2622 0.2611 0.2589

REditex 0.2596 0.2678 0.2667 0.2667 0.2656 0.2689 0.2689 0.2644

Dice 0.2400 0.2389 0.2333 0.2456 0.2578 0.2556 0.2522 0.2367

EditDistance 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633

Table B.4: The P@10 scores of the light11 stemmer when expanding queries using the

top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms. The

baseline is the light11 stemmer without query expansion (P@10=0.2533). Foreign words

expanded are those manually identified as foreign in queries. ↓ indicates results that are

significantly worse than the light11 stemmer, while ↑ indicates results that are significantly

better than the light11 stemmer in the 95% confidence level.

APPENDIX B. FOREIGN WORDS EXPANSION RESULTS 245

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM 0.5607 0.5652 0.5741 0.5851 0.5846 0.5838 0.5830 0.5828

NORM1 0.5609↓ 0.5760 0.6015 0.6005 0.6000 0.5976 0.5968 0.5931

NORM2 0.5642 0.5746 0.5734 0.5752 0.5752 0.5752 0.5752 0.5752

NORM3 0.5635 0.5739 0.5729 0.5744 0.5744 0.5744 0.5744 0.5744

gramCount 0.5530↓ 0.5525↓ 0.5574↓ 0.5906 0.6127 0.6191 0.6300 0.6258

gramDist 0.5774 0.5626↓ 0.5777↓ 0.6256 0.6184 0.6184 0.6080 0.6005↓
LCS 0.5555 0.5515↓ 0.5681 0.5723 0.5713 0.6038 0.5991 0.6164

Sgrams 0.5584↓ 0.5594↓ 0.5656↓ 0.6117 0.6134 0.6124 0.6122 0.6070↓
Asoundex-Final 0.5545↓ 0.5537↓ 0.5515↓ 0.5498↓ 0.5498↓ 0.5495↓ 0.5493↓ 0.5493↓
Soutex 0.5805 0.5810 0.5859 0.5958 0.5961 0.5963 0.6013 0.6008

Soutex4 0.5520↓ 0.5716 0.5857 0.6010 0.6290 0.6315 0.6305 0.6258

AEditex 0.5381↓ 0.5530↓ 0.5646 0.5597 0.5901 0.5958 0.5948 0.6018

REditex 0.5861 0.5785↓ 0.5795↓ 0.5800↓ 0.5787 0.5800 0.5795 0.5743↓
Dice 0.5527↓ 0.5517↓ 0.5584↓ 0.5820 0.6119 0.6110 0.6181 0.6263

EditDistance 0.5867↓ 0.5867↓ 0.5867↓ 0.5867↓ 0.5867↓ 0.5867↓ 0.5867↓ 0.5867↓

Table B.5: The Recall scores of the light11 stemmer when expanding queries using the

top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms. The

baseline is running the light11 stemmer without query expansion (Recall=0.6102). Foreign

words expanded are those manually identified as foreign in queries. ↓ indicates results that

are significantly worse than the light11 stemmer.

APPENDIX B. FOREIGN WORDS EXPANSION RESULTS 246

Number of variants used in query expansion

Expanded With 3 5 10 20 30 40 50 100

NORM 0.1949 0.1966 0.1966 0.1977 0.1978 0.1967 0.1948 0.1945

NORM1 0.1980 0.2083 0.2146 0.2174 0.2160 0.2142 0.2129 0.2117

NORM2 0.1914 0.1934 0.1914 0.1909 0.1909 0.1909 0.1909 0.1909

NORM3 0.1899 0.1921 0.1907 0.1896 0.1896 0.1896 0.1896 0.1896

gramCount 0.1882 0.1866 0.1896 0.1926 0.1963 0.1905 0.1898 0.1884

gramDist 0.1881 0.1844↓ 0.1901 0.1962 0.1872 0.1871 0.1845 0.1773

LCS 0.1956 0.1996 0.2099 0.2087 0.2062 0.2134 0.2149 0.2118

Sgrams 0.1816↓ 0.1831↓ 0.1860 0.1917 0.1889 0.1887 0.1873↓ 0.1866↓
Asoundex-Final 0.1941 0.1907 0.1878 0.1879 0.1874 0.1872 0.1871 0.1871

Soutex 0.1988 0.2029 0.2060 0.2112 0.2096 0.2094 0.2094 0.2061

Soutex4 0.1897 0.1961 0.2091 0.2145 0.2167 0.2184 0.2143 0.2065

AEditex 0.1828↓ 0.1980 0.2107 0.2042 0.2098 0.2079 0.2099 0.1990

REditex 0.1945 0.2078 0.2057 0.2064 0.2044 0.2071 0.2096 0.2042

Dice 0.1918 0.1893 0.1894 0.1933 0.1962 0.1922 0.1879 0.1781

EditDistance 0.2009 0.2009 0.2009 0.2009 0.2009 0.2009 0.2009 0.2009

Table B.6: The R-Precision scores of the light11 stemmer when expanding queries using

the top 3, 5, 10, 20, 30, 50, and 100 variants returned by similarity matching algorithms.

The baseline is running the light11 stemmer without query expansion (RP=0.2003). Foreign

words expanded are those manually identified as foreign in queries. ↓ indicates results that

are significantly worse than the light11 stemmer.

Bibliography

A. Abdelali, J. Cowie, and H. S. Soliman. Arabic information retrieval perspectives. In

Proceedings of the 11th Conference on Natural Language Processing, Journes d’Etude sur

la Parole - Traitement Automatique des Langues Naturelles (JEP-TALN), Fez, Morocco,

April 2004.

N. Abduljaleel and L. Larkey. English to Arabic transliteration for information retrieval: A

statistical approach. Technical Report IR-261, Univeristy of Massachusetts, 2002.

N. Abduljaleel and L. S. Larkey. Statistical transliteration for English-Arabic cross-language

information retrieval. In Proceedings of the International Conference on Information and

Knowledge Management, pages 139–146, New Orleans, LA, 2003. ACM Press. ISBN 1-

58113-723-0.

H. Abu-Salem. A Microcomputer Based Arabic Information Retrieval System with Relational

Thesauri (Arabic-IRS). PhD thesis, Illinois Institute of Technology, Chicago, IL, August

1992.

H. Abu-Salem, M. Al-Omari, and M. W. Evens. Stemming methodologies over individual

query words for an Arabic information retrieval system. Journal of the American Society

for Information Science, 50(6):524–529, 1999. ISSN 0002-8231.

H. K. Al Ameed, S. O. Al Ketbi, A. A. Al Kaabi, K. S. Al Shebli, N. F. Al Shamsi, N. H.

Al Nuaimi, and S. S. Al Muhairi. Arabic light stemmer: A new enhanced approach.

In Proceedings of The Second International Conference on Innovations in Information

Technology (IIT’05), pages 1–9, Dubai, UAE, 26–28 September 2005.

URL: http://www.it-innovations.ae/iit005/proceedings/articles/G 1 IIT05 Hayder.pdf.

S. S. Al-Fedaghi and F. Al-Anzi. A new algorithm to generate Arabic root-pattern forms.

247

BIBLIOGRAPHY 248

In Proceedings of the 11th National Computer Conference and Exhibition, pages 391–400,

Dhahran, Saudi Arabia, March 1989.

I. A. Al-Kharashi. Micro-AIRS: a microcomputer-based Arabic information retrieval sys-

tem comparing words, stems, and roots as index terms. PhD thesis, Illinois Institute of

Technology, Chicago, IL, 1991.

I. A. Al-Kharashi and M. W. Evens. Comparing words, stems, and roots as index terms in

an Arabic information retrieval system. Journal of the American Society for Information

Science, 45(8):548–560, 1994.

A. Al-Maskari, M. Sanderson, and P. Clough. The relationship between IR effectiveness

measures and user satisfaction. In Proceedings of the 30th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’07),

pages 773–774, Amsterdam, The Netherlands, 2007. ACM Press. ISBN 978-1-59593-597-7.

J. B. S. Al-Qinal. Morphophonemics of loanwords in translation. Journal of King Saud

University, 13:1–132, 2002.

R. Al-Shalabi and M. Evens. A computational morphology system for Arabic. In Proceedings

of the Workshop on Computational Approaches to Semitic Languages (COLING-ACL ’98),

pages 66–72, Montreal, Quebec, Canada, 16 August 1998.

URL: http://www.cs.um.edu.mt/∼mros/casl/prog.html.

M. S. Al-Shanti. Al Maharat Allughawia. Al Andalus for publishing and distribution, fourth

edition, 1996. In Arabic.

I. A. Al-Sughaiyer and I. A. Al-Kharashi. Arabic morphological analysis techniques: A

comprehensive survey. Journal of the American Society for Information Science and Tech-

nology, 55(3):189–213, 2004.

M. Alghamdi. Algorithms for romanizing Arabic names. Journal of King Saud University:

Computer Sciences and Information., 17:1–27, 2005. In Arabic.

M. Aljlayl and O. Frieder. Effective Arabic-English cross-language information retrieval via

machine-readable dictionaries and machine translation. In Proceedings of the International

Conference on Information and Knowledge Management, pages 295–302, Atlanta, Georgia,

2001. ACM Press. ISBN 1-58113-436-3.

BIBLIOGRAPHY 249

M. A. Aljlayl. On Arabic Search: The Effectiveness of Monolingual and Bidirectional Infor-

mation Retrieval. PhD thesis, The Graduate College of the Illinois Institute of Technology,

2002.

M. A. Aljlayl and O. Frieder. On Arabic search: improving the retrieval effectiveness via a

light stemming approach. In Proceedings of the International Conference on Information

and Knowledge Management, pages 340–347, McLean, Virginia, 2002. ACM Press. ISBN

1-58113-492-4.

A. M. AlShehri. Optimization and effectiveness of n-grams approach for indexing and re-

trieval in Arabic information retrieval systems. PhD thesis, School of Information Science,

University of Pittsburgh, 2002.

S. U. Aqeel, S. Beitzel, E. Jensen, D. Grossman, and O. Frieder. On the development of name

search techniques for Arabic. Journal of the American Society for Information Science and

Technology, 57(6):728–739, 2006. ISSN 1532-2882.

M. Arbabi, S. M. Fischthal, V. C. Cheng, and E. Bart. Algorithms for Arabic name translit-

eration. IBM Journal of Research and Development, 38(2):183–194, 1994. ISSN 0018-8646.

J. Asian. Effective Techniques for Indoneian Text Retrieval. PhD thesis, School of Computer

Science and Information Technology, RMIT University, Melbourne, Australia, 2007.

M. Attia. Developing a robust Arabic morphological transducer using finite state technology.

In Proceedings of the 8th Annual UK special-interest group for computational linguistics

(CLUK) research Colloquium, University of Manchester, UK, 2005.

M. Attia. An ambiguity-controlled morphological analyzer for modern standard Arabic mod-

elling finite state networks. In Proceedings of the Challenge of Arabic for NLP/MT Con-

ference. The British Computer Society, London, October 2006.

M. Attia. Arabic tokenization system. In Proceedings of the 2007 Workshop on Computational

Approaches to Semitic Languages: Common Issues and Resources, pages 65–72, Prague,

Czech Republic, June 2007. Association for Computational Linguistics.

URL: http://www.aclweb.org/anthology/W/W07/W07-0809.

R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM Press /

Addison-Wesley, 1999. ISBN 0-201-39829-X.

BIBLIOGRAPHY 250

BBC News. Social networks top Google search, 18 December 2006.

URL: http://news.bbc.co.uk/go/pr/fr/-/2/hi/technology/6189809.stm, [Online; accessed

26 Febreuary 2008].

K. R. Beesley. Arabic finite-state morphological analysis and generation. In Proceedings of

the 16th International Conference on Computaional Linguistics (COLING ’96), volume 1,

pages 89–94, Copenhagen, Denmark, 1996. Association for Computational Linguistics.

K. R. Beesley. Computer analysis of Arabic morphology: A two-level approach with detours.

In B. Comrie and M. Eid, editors, Proceedings of the Perspectives on Arabic Linguistics

III: Papers from the Third Annual Symposium on Arabic Linguistics, volume 12, pages

155–172. John Benjamins, Amsterdam, 1991.

K. R. Beesley. Arabic morphological analysis on the Internet. In Proceedings of the 6th In-

ternational Conference and Exhibition on Multi-lingual Computing, Cambridge University,

UK, 17-18 April 1998.

K. R. Beesley, T. Buckwalter, and S. N. Newton. Two-level finite-state analysis of Arabic

morphology. In Proceedings of the Seminar on Bilingual Computing in Arabic and English,

Cambridge, England, 6–7 September 1989.

Y. Benajiba, P. Rosso, and J.-M. Bened́ı. Anersys: An Arabic named entity recognition

system based on maximum entropy. In A. F. Gelbukh, editor, Proceedings of the 8th

International Conference of the Computational Linguistics and Intelligent Text Processing,

(CICLing ’07), volume 4394 of Lecture Notes in Computer Science, pages 143–153, Mexico

City, Mexico, 18–24 February 2007. Springer. ISBN 3-540-70938-X.

B. Bishop. A history of the Arabic language, 24 April 1998.

URL: http://linguistics.byu.edu/classes/ling450ch/reports/arabic.html.

C. L. Borgman and S. L. Siegfried. Getty’s synoname and its cousins: A survey of applications

of personal name-matching algorithms. Journal of the American Society for Information

Science, 43(7):459–476, 1992.

C. Buckley, G. Salton, and J. Allan. The effect of adding relevance information in a rele-

vance feedback environment. In Proceedings of the 17th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR ’94), pages

292–300, Dublin, Ireland, 1994. Springer-Verlag New York, NY. ISBN 0-387-19889-X.

BIBLIOGRAPHY 251

T. Buckwalter. Buckwalter Arabic morphological analyzer version 1.0, 2002. LDC Catalog

No. LDC2002L49.

T. Buckwalter. Buckwalter Arabic morphological analyzer version 2.0, 2004. LDC Catalog

No. LDC2004L02.

J. Callan, W. B. Croft, and S. Harding. The INQUERY retrieval system. In Proceedings

of the 3rd International Conference on Database and Expert Systems Application, pages

78–83, 1992.

J. P. Callan, W. B. Croft, and J. Broglio. TREC and TIPSTER experiments with INQUERY.

Information Processing & Management, 31(3):327–343, 1995. ISSN 0306-4573.

W. B. Cavnar and J. M. Trenkle. N-gram based text categorization. In Proceedings of the

3rd Annual Symposium on Document Analysis and Information Retrieval (SDAIR ’94),

pages 161–175, Las Vegas, US, April 1994.

J. Celko. Joe Celko’s SQL for smarties: advanced SQL programming. Morgan Kaufmann

Publishers Inc., Amsterdam, Boston, third edition, 2005.

S.-F. Chang, W. Hsu, L. Kennedy, L. Xie, A. Yanagawa, E. Zavesky, and D. Zhang. Columbia

university TRECVID-2005 video search and high-level feature extraction. In Proceedings

of the TRECVID 2005 Workshop, Gaithersburg, Maryland, November 2005.

A. Chen and F. Gey. Building an Arabic stemmer for information retrieval. In NIST Special

Publication 500-251: Proceedings of the Eleventh Text REtrieval Conference (TREC 2002).

National Institute of Standards and Technology, November 2002.

URL: http://trec.nist.gov/pubs/trec11/papers/ucalberkeley.chen.pdf.

A. Chowdhury, M. C. McCabe, D. Grossman, and O. Frieder. Document normalization

revisited. In Proceedings of the 25th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR ’02), pages 381–382. ACM

Press, 2002. ISBN 1-58113-561-0.

G. G. Chowdhury. Introduction to modern information retrieval. Facet Publishing, London,

UK, second edition, 2004.

P. Christen. A comparison of personal name matching: Techniques and practical issues.

Technical Report TR-CS-06-02, The Australian National University, September 2006a.

BIBLIOGRAPHY 252

P. Christen. A comparison of personal name matching: Techniques and practical issues.

In Proceedings of the Sixth IEEE International Conference on Data Mining - Workshops

(ICDMW’06), pages 290–294, Los Alamitos, CA, 2006b. IEEE Computer Society. ISBN

0-7695-2702-7.

G. V. Cormack, C. R. Palmer, and C. L. A. Clarke. Efficient construction of large test

collections. In Proceedings of the 21st Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR ’98), pages 282–289, Mel-

bourne, Australia, 1998. ACM Press. ISBN 1-58113-015-5.

A. Corrada-Emmanuel and W. B. Croft. Answer models for question answering passage

retrieval. In Proceedings of the 27th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR ’04), pages 516–517, Sheffield,

UK, 2004. ACM Press. ISBN 1-58113-881-4.

F. J. Damerau. A technique for computer detection and correction of spelling errors. Com-

munications of the ACM, 7(3):171–176, 1964. ISSN 0001-0782.

K. Darwish and D. W. Oard. Term selection for searching printed Arabic. In Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR ’02), pages 261–268, Tampere, Finland, 2002. ACM Press.

ISBN 1-58113-561-0.

K. Darwish and D. W. Oard. Probabilistic structured query methods. In Proceedings of

the 26th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR ’03), pages 338–344, Toronto, Canada, 2003a. ACM Press.

ISBN 1-58113-646-3.

K. Darwish and D. W. Oard. CLIR experiments at Maryland for TREC 2002: Evi-

dence combination for Arabic-English retrieval. Technical Report LAMP-TR-101,CS-TR-

4456,UMIACS-TR-2003-26, University of Maryland, College Park, February 2003b.

URL: http://lampsrv01.umiacs.umd.edu/pubs/TechReports/LAMP 101/LAMP 101.pdf.

K. Darwish and D. W. Oard. Adapting Morphology for Arabic Information Retrieval, vol-

ume 38 of Text, Speech and Language Technology, pages 245–262. Springer Netherlands,

2007. ISBN 978-1-4020-6045-8.

BIBLIOGRAPHY 253

K. Darwish, D. Doermann, R. Jones, D. Oard, and M. Rautiainen. TREC 10 experiments

at university of Maryland clir and video. In NIST Special Publication 500-250: Proceed-

ings of the Tenth Text REtrieval Conference (TREC 2001), pages 549–561, Gaithersburg,

Maryland, 2001.

K. Darwish, H. Hassan, and O. Emam. Examining the effect of improved context sensitive

morphology on Arabic information retrieval. In Proceedings of the ACL Workshop on

Computational Approaches to Semitic Languages, pages 25–30, Ann Arbor, Michigan, June

2005. Association for Computational Linguistics.

URL: http://www.aclweb.org/anthology/W/W05/W05-0704.

S. Dennis, R. McArthur, and P. Bruza. Searching the World Wide Web made easy? the cog-

nitive load imposed by query re nement mechanisms. In Proceedings of the 3rd Australian

Document Computing Symposium, pages 65–71, Sydney, Australia, 1998.

T. DeYoung. Arabic language: Background and history, 1999.

URL: http://www.iub.edu/∼arabic/Summer2004/Arabic History.pdf.

M. Diab, K. Hacioglu, and D. Jurafsky. Automatic tagging of Arabic text: from raw text

to base phrase chunks. In Proceedings of the Human Language Technology Conference

of the North American Chapter of the Association for Computational Linguistics (HLT-

NAACL): Short Papers, pages 149–152, Boston, Massachusetts, 2–7 May 2004. Association

for Computational Linguistics.

L. R. Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):

297–302, July 1945.

S. Doraisamy and S. Rüger. Robust polyphonic music retrieval with n-grams. Journal of

Intelligent Information Systems, 21(1):53–70, 2003. ISSN 0925-9902.

T. Dunning. Statistical identification of language. Technical Report MCCS-94-273, Com-

puting Research Lab (CRL), New Mexico State University, 1994.

I. H. A. El-Khair. Effectiveness of document processing techniques for Arabic information

retrieval. PhD thesis, School of Information Science, University of Pittsburgh, 2003.

T. A. El-Sadany and M. A. Hashish. An Arabic morphological system. IBM Systems Journal,

28(4):600–612, 1989. ISSN 0018-8670.

BIBLIOGRAPHY 254

R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo, N. Nicolov, and

S. Roukos. A statistical model for multilingual entity detection and tracking. In Proceedings

of the Human Language Technology Conference of the North American Chapter of the

Association of Computational Linguistics (HLT-NAACL), pages 1–8, Boston, MA, 2–7

May 2004. Association for Computational Linguistics.

C. Foley, C. Gurrin, G. Jones, H. Lee, S. McGivney, N. E. O’Connor, S. Sav, A. F. Smeaton,

and P. Wilkins. TRECVid 2005 experiments at dublin city university. In Proceedings of

the TRECVID 2005 Workshop, Gaithersburg, Maryland, 14–15 November 2005.

W. B. Frakes and R. A. Baeza-Yates, editors. Information Retrieval: Data Structures &

Algorithms. Prentice-Hall, 1992. ISBN 0-13-463837-9.

W. B. Frakes and C. J. Fox. Strength and similarity of affix removal stemming algorithms.

SIGIR Forum, 37(1):26–30, 2003. ISSN 0163-5840.

T. Gadd. Phonix: the algorithm. Program, 24(4):363–369, 1990.

F. C. Gey and D. W. Oard. The TREC 2001 cross-language information retrieval track:

Searching Arabic using English , French or Arabic queries. In NIST Special Publication

500-250: Proceedings of the Tenth Text REtrieval Conference (TREC 2001), pages 16–25,

Gaithersburg, Maryland, 2001.

Y. Goldberg and M. Elhadad. Identification of transliterated foreign words in Hebrew script.

In Proceedings of the 9th International Conference on Intelligent Text Processing and Com-

putational Linguistics (CICLing ’08), Lecture Notes in Computer Science, pages 466–477,

Haifa, Israel, 17–23 February 2008. Springer, Heidelberg, Germany. ISBN 978-3-540-78134-

9.

R. Gong and T. K. Chan. Syllable alignment: A novel model for phonetic string search.

IEICE transactions on information and systems, 89(1):332–339, 2006. ISSN 0916-8532.

A. Goweder and A. D. Roeck. Assessment of a significant Arabic corpus. In Proceedings

of the ACL/EACL 2001 Workshop on Arabic Natural Language Processing: Status and

Prospects, Toulouse, France, 6 July 2001.

URL: http://www.elsnet.org/arabic2001/goweder.pdf.

A. Goweder, M. Poesio, and A. D. Roeck. Broken plural detection for Arabic information

retrieval. In Proceedings of the 27th Annual International ACM SIGIR Conference on

BIBLIOGRAPHY 255

Research and Development in Information Retrieval (SIGIR ’04), pages 566–567, Sheffield,

UK, 2004. ACM Press. ISBN 1-58113-881-4.

D. Graff, K. Chen, J. Kong, and K. Maeda. Arabic Gigaword second edition. Linguistic

Data Consortium, January 2006. LDC Catalog No. LDC2006T02.

D. Grune and C. Jacobs. Parsing Techniques A Practical Guide. Ellis Horwood limited,

Amsterdam, Netherlands, first edition edition, 1994. ISBN 0-13-651431-6.

URL: ftp://ftp.cs.vu.nl/pub/dick/PTAPG 1st Edition/BookBody.pdf.

N. Habash. Large scale lexeme based Arabic morphological generation. In Proceedings of the

11th Conference on Natural Language Processing, Journes d’Etude sur la Parole - Traite-

ment Automatique des Langues Naturelles (JEP-TALN), pages 271–276, Fez, Morocco,

April 2004.

N. Habash. Arabic Morphological Representations for Machine Translation, volume 38 of

Text, Speech and Language Technology, pages 263–285. Springer Netherlands, 2007. ISBN

978-1-4020-6045-8.

N. Habash and O. Rambow. Arabic tokenization, part-of-speech tagging and morphological

disambiguation in one fell swoop. In Proceedings of the 43rd Annual Meeting on Associ-

ation for Computational Linguistics (ACL ’05), pages 573–580, University of Michigan,

Michigan, 25–30 June 2005. Association for Computational Linguistics.

P. A. V. Hall and G. R. Dowling. Approximate string matching. ACM Computing Surveys,

12(4):381–402, 1980. ISSN 0360-0300.

J. Halpern. The challenges and pitfalls of Arabic Romanization and Arabization. In Pro-

ceedings of the Second Workshop on Computational Approaches to Arabic Script-based

Languages, pages 47–54, Stanford, CA, 21–22 July 2007.

S. M. Harding, W. B. Croft, and C. Weir. Probabilistic retrieval of OCR degraded text using

n-grams. In Proceedings of the First European Conference on Research and Advanced

Technology for Digital Libraries (ECDL ’97), pages 345–359, London, UK, 1997. Springer-

Verlag. ISBN 3-540-63554-8.

D. Harman. How effective is suffixing? Journal of the American Society for Information

Science, 42(1):7–15, 1991.

BIBLIOGRAPHY 256

B. He and I. Ounis. Term frequency normalisation tuning for bm25 and dfr models. In

Proceedings of the 27th European Conference on IR Research (ECIR ’05), volume 3408 of

Lecture Notes in Computer Science, pages 200–214. Springer, 2005. ISBN 3-540-25295-9.

M. R. Henzinger. Tutorial 1: Web information retrieval. In Proceedings of the 16th Interna-

tional Conference on Data Engineering (ICDE’00), page 693, 2000.

URL: http://www.tcnj.edu/∼mmmartin/CMSC485/Papers/Google/icde.pdf, Presenta-

tion slides.

I. Hmeidi, G. Kanaan, and M. Evens. Design and implementation of automatic indexing

for information retrieval with Arabic documents. Journal of the American Society for

Information Science, 48(10):867–881, 1997. ISSN 0002-8231.

D. Holmes and M. C. McCabe. Improving precision and recall for soundex retrieval. In

Proceedings of the International Conference on Information Technology: Coding and Com-

puting (ITCC ’02), pages 22–27, Los Alamitos, CA, 2002. IEEE Computer Society. ISBN

0-7695-1506-1.

D. Holmes, S. Kashfi, and S. U. Aqeel. Transliterated Arabic name search. In Proceed-

ings of the 3rd International Conference on Communications, Internet, and Information

Technology (IASTED ’03), pages 267–273, St. Thomas, US Virgin Islands, 2004.

W. H. Hsu and S.-F. Chang. Visual cue cluster construction via information bottleneck

principle and kernel density estimation. In Proceedings of the 4th International Conference

on Image and Video Retrieval (CIVR), pages 82–91, Singapore, 20-22 July 2005.

W. H. Hsu, L. Kennedy, S.-F. Chang, M. Franz, and J. Smith. Columbia-IBM news video

story segmentation in TRECVID 2004. Technical Report 209-2005-3, Columbia ADVENT,

New York, 2005.

D. Hull. Using statistical testing in the evaluation of retrieval experiments. In Proceedings of

the 16th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR ’93), pages 329–338, Pittsburgh, Pennsylvania, 1993. ACM

Press.

D. Hull. Stemming algorithms: A case study for detailed evaluation. Journal of the American

Society for Information Science, 47(1):70–84, 1996.

BIBLIOGRAPHY 257

D. Hull and G. Grefenstette. Querying across languages: a dictionary-based approach to

multilingual information retrieval. In Proceedings of the 19th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’96),

pages 49–57, Zurich, Switzerland, 1996. ACM Press.

IPA. Handbook of the International Phonetic Association. Cambridge University Press,

Cambridge, UK, 1999. ISBN 0-521-65236-7.

B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information retrieval: a study

of user queries on the web. SIGIR Forum, 32(1):5–17, 1998. ISSN 0163-5840.

N. Jardine and C. J. van Rijsbergen. The use of hierarchical clustering in information

retrieval. Information Storage and Retrieval, 7:217–240, 1971.

K. S. Jeong, S. H. Myaeng, J. S. Lee, and K.-S. Choi. Automatic identification and back-

transliteration of foreign words for information retrieval. Information Processing and Man-

agement, 35(4):523–540, 1999.

M. Jiyad. A hundred and one rules !, 2005.

URL: http://www.mtholyoke.edu/courses/mjiyad/ArabicGrammarBook.doc.

K. S. Jones and C. van Rijsbergen. Report on the need for and provision of an “ideal”

information retrieval test collection (British Library Research and Development Report

No. 5266). Computer Laboratory, University of Cambridge, England, 1975.

Y. Kadri and J.-Y. Nie. Effective stemming for Arabic information retrieval. the challenge

of Arabic for NLP/MT. In Proceedings of the International conference at the British

Computer Society, pages 68–74, London, UK, 23 October 2006.

URL: http://www.mt-archive.info/BCS-2006-Kadri.pdf.

D. Kamir, N. Soreq, and Y. Neeman. A comprehensive NLP system for modern standard

Arabic and modern Hebrew. In Proceedings of the ACL-02 workshop on Computational

approaches to semitic languages, pages 1–9, Philadelphia, Pennsylvania, 2002. Association

for Computational Linguistics.

B.-J. Kang and K.-S. Choi. Effective foreign word extraction for Korean information retrieval.

Information Processing and Management, 38(1):91–109, 2002.

BIBLIOGRAPHY 258

M. M. Kashani, F. Popowich, and A. Sarkar. Automatic transliteration of proper nouns from

Arabic to English. In Proceedings of the Second Workshop on Computational Approaches

to Arabic Script-based Languages, Stanford, CA, 21–22 July 2007.

S. Khoja and R. Garside. Stemming Arabic text. Technical report, Computing Department,

Lancaster University, Lancaster, September 1999.

G. A. Kiraz. Arabic computational morphology in the West. In Proceedings of the 6th In-

ternational Conference and Exhibition on Multi-lingual Computing, Cambridge University,

17-18 April 1998.

P. Koehn and C. Monz. NAACL 2006 workshop on statistical machine translation, June

2006.

URL: http://www.statmt.org/wmt06/, [Online; accessed 26 February 2008].

R. Krovetz. Viewing morphology as an inference process. In Proceedings of the 16th Annual

International ACM SIGIR Conference on Research and Development in Information Re-

trieval (SIGIR ’93), pages 191–202, Pittsburgh, Pennsylvania, 1993. ACM Press. ISBN

0-89791-605-0.

K. Kuriyama, N. Kando, T. Nozue, and K. Eguchi. Pooling for a large-scale test collection:

An analysis of the search results from the first NTCIR workshop. Journal of Information

Retrieval, 5(1):41–59, 2002. ISSN 1386-4564.

L. Larkey, N. Abduljaleel, and M. Connell. What’s in a name?: Proper names in Arabic

cross language information retrieval. Technical Report IR-278, Univeristy of Massachusetts,

2003.

L. S. Larkey and M. E. Connell. Arabic information retrieval at UMass in TREC 10. In

NIST Special Publication 500-250: Proceedings of the Tenth Text REtrieval Conference

(TREC 2001), pages 562–570, 2001.

URL: http://trec.nist.gov/pubs/trec10/papers/UMass TREC10 Final.pdf.

L. S. Larkey and M. E. Connell. Structured queries, language modeling, and relevance

modeling in cross-language information retrieval. Information Processing and Management

Special Issue on Cross Language Information Retrieval, 41(3):457–473, 2005.

L. S. Larkey, L. Ballesteros, and M. E. Connell. Improving stemming for Arabic infor-

mation retrieval: light stemming and co-occurrence analysis. In Proceedings of the 25th

BIBLIOGRAPHY 259

Annual International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval (SIGIR ’02), pages 275–282, Tampere, Finland, 2002. ACM Press. ISBN

1-58113-561-0.

L. S. Larkey, L. Ballesteros, and M. E. Connell. Light Stemming for Arabic Information

Retrieval, volume 38 of Text, Speech and Language Technology, pages 221–243. Springer

Netherlands, 2007. ISBN 978-1-4020-6045-8.

Y.-S. Lee, K. Papineni, S. Roukos, O. Emam, and H. Hassan. Language model based Ara-

bic word segmentation. In Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics (ACL ’03), pages 399–406, Sapporo, Japan, 7–12 July 2003.

Association for Computational Linguistics.

X. Liu and W. B. Croft. Statistical language modeling for information retrieval. In the Annual

Review of Information Science and Technology, volume 39, pages 3–28. Information Today,

inc., 2005.

URL: http://ciir.cs.umass.edu/pubfiles/ir-318.pdf.

J. B. Lovins. Development of a stemming algorithm. Mechanical Translation and Computa-

tional Linguistics, 11(4):22–31, 1986.

M. Maamouri, A. Bies, H. Jin, and T. Buckwalter. Arabic Treebank: Part 1 v 2.0, 2003.

LDC Catalog No. LDC2003T06.

W. Magdy, K. Darwish, O. Emam, and H. Hassan. Arabic cross-document person name

normalization. In V. Cavalli-Sforza and I. Zitouni, editors, Proceedings of the 2007 Work-

shop on Computational Approaches to Semitic Languages: Common Issues and Resources,

pages 25–32, Prague, Czech Republic, June 2007. Association for Computational Linguis-

tics.

URL: http://www.aclweb.org/anthology/W/W07/W07-0804.

D. Melamed. Automatic evaluation and uniform filter cascades for inducing N-best transla-

tion lexicons. In D. Yarovsky and K. Church, editors, Proceedings of the Third Workshop

on Very Large Corpora, pages 184–198, Somerset, New Jersey, 1995. Association for Com-

putational Linguistics.

Microsoft Corporation. Arabic proofing tools in Office 2003, 2002.

URL: http://www.microsoft.com/middleeast/arabicdev/office/office2003/Proofing.asp.

BIBLIOGRAPHY 260

Miniwatts International. Internet usage statistics — The big picture, 2007.

URL: http://www.internetworldstats.com, [Updated 30 November 2007].

H. Moukdad. Stemming and root-based approaches to the retrieval of Arabic documents on

the Web. Webology, 3(1), March 2006.

URL: http://www.webology.ir/2006/v3n1/a22.html.

S. H. Mustafa and Q. A. Al-Radaideh. Using n-grams for Arabic text searching. Journal

of the American Society for Information Science and Technology, 55(11):1002–1007, 2004.

ISSN 1532-2882.

A. Narayanan and L. Hashem. Finite-state abstractions on Arabic morphology. Artificial

Intelligence Review, 7(6):373–399, 1993.

D. W. Oard and F. C. Gey. The TREC 2002 Arabic/English CLIR track. In NIST Special

Publication 500-251: Proceedings of the Eleventh Text REtrieval Conference (TREC 2002),

pages 16–25, Gaithersburg, Maryland, 2002.

URL: http://trec.nist.gov/pubs/trec11/papers/OVERVIEW.gey.ps.gz.

V. M. Orengo and C. Huyck. A Stemming Algorithm for Portuguese Language. In Proceedings

of Eigth Symposium on String Processing and Information Retrieval (SPIRE ’01), pages

186–193, 2001.

N. Ostler. Empires of the word: A lnaguage history of the world. Harper-Collins, New York,

NY, 2005. ISBN 0-06-6621086-0.

W. Otterspeer, editor. Studies in the History of Leiden University, volume 5. Brill Academic

Publishers, 1997. ISBN 9004090223.

P. Over, T. Ianeva, W. Kraaij, and A. Smeaton. TRECVID 2005: An overview. In Proceedings

of the TRECVID 2005 Workshop, Gaithersburg, Maryland, 14–15 November 2006.

URL: http://www-nlpir.nist.gov/projects/tvpubs/tv5.papers/RMIT.pdf.

C. D. Paice. Method for evaluation of stemming algorithms based on error counting. Journal

of the American Society for Information Science, 47(8):632–649, 1996.

W. Paik, E. D. Liddy, E. Yu, and M. McKenna. Interpretation of proper nouns for information

retrieval. In Proceedings of the workshop on Human Language Technology, pages 309–313,

BIBLIOGRAPHY 261

Princeton, New Jersey, 1993. Association for Computational Linguistics. ISBN 1-55860-

324-7.

U. Pfeifer, T. Poersch, and N. Fuhr. Searching proper names in databases. In R. Kuhlen and

M. Rittberger, editors, Proceedings of the Hypertext - Information Retrieval - Multimedia,

Synergieeffekte elektronischer Informationssysteme (HIM ’95), volume 20 of Schriften zur

Informationswissenschaft, pages 259–275, Konstanz, April 1995. Universitätsverlag Kon-

stanz.

U. Pfeifer, T. Poersch, and N. Fuhr. Retrieval effectiveness of proper name search methods.

Information Processing & Management, 32(6):667–679, 1996.

A. Pirkola, H. Keskustalo, E. Leppänen, A.-P. Känsälä, and K. Järvelin. Targeted S-gram

matching: a novel n-gram matching technique for cross- and mono-lingual word form

variants. Information Research, 7(2), 2002.

URL: http://informationr.net/ir/7-2/paper126.html.

J. M. Ponte and W. B. Croft. A language modeling approach to information retrieval. In

Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’98), pages 275–281, Melbourne, Australia,

1998. ACM Press.

M. Popovic̆ and P. Willett. The effectiveness of stemming for natural-language access to

Slovene textual data. Journal of the American Society for Information Science, 43(5):

384–390, 1992.

M. F. Porter. An algorithm for suffix stripping. Program, 13(3):130–137, 1980.

H. Raghavan and J. Allan. Using soundex codes for indexing names in ASR documents. In

B. Ramabhadran and D. Oard, editors, Proceedings of the HLT-NAACL 2004 Workshop:

Interdisciplinary Approaches to Speech Indexing and Retrieval, pages 22–27, Boston, Mas-

sachusetts, 6 May 2004. Association for Computational Linguistics.

URL: http://acl.ldc.upenn.edu/W/W04/W04-2905.bib.

H. Raghavan and J. Allan. Matching inconsistently spelled names in automatic speech rec-

ognizer output for information retrieval. In Proceedings of Human Language Technol-

ogy Conference and Conference on Empirical Methods in Natural Language Processing

BIBLIOGRAPHY 262

HLT/EMNLP 2005, pages 451–458, Vancouver, BC, Canada, 6–8 October 2005. The As-

sociation for Computational Linguistics.

V. Raghavan, P. Bollmann, and G. S. Jung. A critical investigation of recall and precision

as measures of retrieval system performance. ACM Transactions on Information Systems,

7(3):205–229, 1989. ISSN 1046-8188.

R. Rickman and P. Rosin. Content-based image retrieval using colour n-grams. IEE Collo-

quium on Intelligent Image Databases, pages 15/1–15/6, 22 May 1996.

A. M. Robertson and P. Willett. Applications of n-grams in textual information systems.

Journal of Documentation, 54(1):48–67, 1998. ISSN 0022-0418.

S. E. Robertson and K. S. Jones. Relevance weighting of search terms. Journal of the

American Society for Information Science, 27:129–146, 1976.

S. E. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In Proceedings of the Text

Retrieval Conference (TREC), pages 151–162, Gaithersburg, Maryland, 1999. National

Institute of Standards and Technology.

J. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, editor, The SMART

Retrieval System - Experiments in Automatic Document Processing, pages 313–323. Pren-

tice Hall, Englewood, Cliffs, New Jersey, 1971.

R. Rosenfeld. Two decades of statistical language modeling: Where do we go from here?

Proceedings of the IEEE, 88:1270–1278, 2000.

G. Ruibin and C. K. Yun. An Adaptive Model for Phonetic String Search, volume 3683 of

Lecture Notes in Computer Science, pages 915–921. Springer Berlin, Heidelberg, 2005.

ISBN 978-3-540-28896-1.

G. Salton. Computer based text retrieval. In A. Kent and J. G. Williams, editors, Encyclo-

pedia of Microcomputers, volume 3, pages 82–92. Marcel Dekker, Inc., 1998.

G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of

Information by Computer. Addison-Wesley, 1989. ISBN 0-201-12227-8.

G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Journal

of American Society for Information Sciences, 41:288–297, 1990.

BIBLIOGRAPHY 263

G. Salton and M. Lesk. Computer evaluation of indexing and text processing. Journal of the

ACM, 15(1):8–36, 1968.

M. Sanderson and H. Joho. Forming test collections with no system pooling. In Proceedings

of the 27th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR ’04), pages 33–40, Sheffield, UK, 2004. ACM Press. ISBN

1-58113-881-4.

M. Sanderson and J. Zobel. Information retrieval system evaluation: effort, sensitivity, and

reliability. In Proceedings of the 28th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (SIGIR ’05), pages 162–169, Salvador,

Brazil, 2005. ACM Press. ISBN 1-59593-034-5.

J. Savoy. A stemming procedure and stopword list for general French corpora. Journal of

the American Society for Information Science, 50(10):944–952, 1999.

K. Shaalan and H. Raza. Person name entity recognition for Arabic. In V. Cavalli-Sforza

and I. Zitouni, editors, Proceedings of the 2007 Workshop on Computational Approaches to

Semitic Languages: Common Issues and Resources, pages 17–24, Prague, Czech Republic,

June 2007. Association for Computational Linguistics.

URL: http://www.aclweb.org/anthology/W/W07/W07-0803.

M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical significance tests for

information retrieval evaluation. In Proceedings of the sixteenth ACM conference on Con-

ference on information and knowledge management (CIKM ’07), pages 623–632, Lisbon,

Portugal, 6–9 November 2007. ACM Press. ISBN 978-1-59593-803-9.

K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of information

retrieval: Development and comparative experiments. Information Processing & Manage-

ment, 36(6):779–840, 2000.

A. Spink. A user-centered approach to evaluating human interaction with web search engines:

an exploratory study. Information Processing & Management, 38(3):401–426, 2002. ISSN

0306-4573.

A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic. Searching the Web: The public and

their queries. Journal of the American Society for Information Science and Technology,

52(3):226–234, 2001.

BIBLIOGRAPHY 264

B. G. Stalls and K. Knight. Translating names and technical terms in Arabic text. In Pro-

ceedings of COLING/ACL Workshop on Computational Approaches to Semitic Languages,

pages 34–41, Montreal, Quebc, Canada, 1998.

G. A. Stephen. String search. Technical Report TR-92-gas-01, School of Electronic Engi-

neering Science, University College of North Wales, 1992.

K. Taghva, R. Elkhoury, and J. Coombs. Arabic stemming without a root dictionary. In

Proceedings of the International Conference on Information Technology: Coding and Com-

puting (ITCC’05) - Volume I, pages 152–157, Washington, DC, 2005. IEEE Computer

Society. ISBN 0-7695-2315-3.

M. Tayli and A. I. Al-Salamah. Building bilingual microcomputer systems. Communications

of the ACM, 33(5):495–504, 1990. ISSN 0001-0782.

P. Thompson and C. C. Dozier. Name searching and information retrieval. In C. Cardie

and R. Weischedel, editors, Proceedings of the Second Conference on Empirical Methods in

Natural Language Processing, pages 134–140. Association for Computational Linguistics,

Somerset, New Jersey, 1997.

H. Turtle and W. B. Croft. Inference networks for document retrieval. In Proceedings of

the 13th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR ’90), pages 1–24, Brussels, Belgium, 1990. ACM Press. ISBN

0-89791-408-2.

H. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval model. ACM

Transactions on Information Systems, 9(3):187–222, 1991. ISSN 1046-8188.

E. Ukkonen. Approximate string-matching with q-grams and maximal matches. Theoretical

Computer Science, 92(1):191–211, 1992. ISSN 0304-3975.

C. J. van Rijsbergen. Information Retrieval. London, 1975.

URL: http://www.dcs.gla.ac.uk/Keith/Preface.html.

P. Vines and J. Zobel. Efficient building and querying of Asian language document databases.

In Proceedings of the Fourth International Workshop on Information Retrieval for Asian

Languages, pages 118–125. Academia Sinica, Taiwan, November 1999.

BIBLIOGRAPHY 265

P. Virga and S. Khudanpur. Transliteration of proper names in cross-language applications.

In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’03), pages 365–366, Toronto, Canada, 2003.

ACM Press. ISBN 1-58113-646-3.

T. Volkmer and S. Tahaghoghi. RMIT university shot boundary detection at TRECVID

2005. In Proceedings of the TREC Video Retrieval Evaluation (TRECVID) Workshop,

Gaithersburg, Maryland, 14–15 November 2005.

E. M. Voorhees. Overview of TREC 2001. In NIST Special Publication 500-250: Proceed-

ings of the Tenth Text REtrieval Conference (TREC 2001), pages 1–15, Gaithersburg,

Maryland, 13–16 November 2001.

E. M. Voorhees. Overview of the TREC 2003 question answering track. In Proceedings of

the Text Retrieval Conference (TREC), pages 54–68, Gaithersburg, Maryland, 2003.

E. M. Voorhees and D. Harman. Overview of the nineth text retrieval conference (TREC-9).

In Proceedings of the Text Retrieval Conference (TREC), Gaithersburg, Maryland, 2000.

E. M. Voorhees and D. K. Harman. Overview of the sixth TREC conference (TREC-6). In

Proceedings of the Text Retrieval Conference (TREC), pages 1–24, Gaithersburg, Mary-

land, 1997. National Institute of Standards and Technology.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the

ACM, 21(1):168–173, 1974. ISSN 0004-5411.

S. Walker, S. E. Robertson, M. Boughanem, G. J. F. Jones, and K. S. Jones. Okapi at

TREC 6 automatic ad hoc, VLC, routing, filtering and QSDR. In Proceedings of the Text

Retrieval Conference (TREC), pages 125–136, Gaithersburg, Maryland, 1997.

URL: http://trec.nist.gov/pubs/trec6/papers/city proc auto.ps.

D. L. Wheeler. The Internet in the Arab world: Digital divides and cultural connections, 16

June 2004.

URL: http://www.riifs.org/guest/lecture text/Internet n arabworld all txt.htm.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1:80–83,

1945.

URL: http://www.jstor.org/view/00994987/di009195/00p0035l/0.

BIBLIOGRAPHY 266

W. E. Winkler. String comparator metrics and enhanced decision rules in the Fellegi-Sunter

model of record linkage. In Proceedings of the Section on Survey Research Methods, pages

354–359. American Statistical Association, 1990.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers Inc., second edition, 1999. ISBN

1-55860-570-3.

W. Wright. A Grammar of the Arabic language, volume 1. Librairie du Liban, Lebanon,

1874. third edition.

J. Xu, A. Fraser, and R. Weischedel. Empirical studies in strategies for Arabic retrieval. In

Proceedings of the 25th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’02), pages 269–274, Tampere, Finland,

2002. ACM Press. ISBN 1-58113-561-0.

A. B. Yagoub. Mausooat Annaho wa Assarf. Dar Alilm Lilmalayn, Beirut, Lebanon, 1988.

Third reprint, in Arabic.

J. Zobel. How reliable are the results of large-scale information retrieval experiments? In

Proceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’98), pages 307–314, Melbourne, Australia,

1998. ACM Press. ISBN 1-58113-015-5.

J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software - Practice

and Experience, 25(3):331–345, 1995. ISSN 0038-0644.

J. Zobel and P. Dart. Phonetic string matching: lessons from information retrieval. In

Proceedings of the 19th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’96), pages 166–172, Zurich, Switzerland,

1996. ACM Press. ISBN 0-89791-792-8.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys, 38

(2):1–56, 2006. ISSN 0360-0300.

J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for text

indexing. ACM Transactions on Database Systems, 23(4):453–490, 1998.

