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Thesis Abstract 

 
Beginning in the early 1990s several countries, including Australia, have pursued 

programs of deregulation and restructuring of their electricity supply industries. 

Dissatisfaction with state-run monopoly suppliers and a desire for increased 

competition and choice for consumers have been the major motivations for reform. In 

Australia, the reform process followed the recommendations of the 1993 “Report of 

the Independent Committee of Inquiry into the Australian Electricity Utilities 

Industry” (the Hillmer Report). The previously vertically integrated, government-

owned electricity authorities were progressively separated into separate generation, 

transmission, distribution and retail sales sectors in each State and a competitive, 

wholesale market for electricity, the National Electricity Market (NEM) began 

operation in December 1998.  

 

The goal of deregulation and this new market was (and remains) increased 

competition in electricity supply, so that consumers may enjoy wider choice of 

electricity supplier and lower prices.  The first benefit has been delivered, at least in 

the major cities, but it is arguable whether the second benefit of lower prices has been 

realised. Increased competition has come at the price of increased wholesale price 

volatility, which brings with it increased cost as market participants seek to trade 

profitably and manage the associated increase in price risk.  In the NEM, generators 

compete to sell into an electricity market pool and the distributors purchase electricity 

from the pool at prices determined by the intersection of demand and supply, on an 

hourly or half-hourly basis. These market-clearing prices can be extremely volatile. 
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The volatility arises because of the physical characteristics of electricity. Unlike other 

traded commodities, electricity cannot be stored – it is for all practical purposes 

instantly produced and consumed. This means that neither suppliers nor consumers 

can “stockpile” the commodity and use inventory to smooth short-run shocks to 

supply or demand.   

 

Electricity price behaviour is highly idiosyncratic and there is much work needed in 

order to understand it. Electricity prices are generally characterised by significant 

seasonal patterns, on an intra-day, weekly and monthly basis, as demand and supply 

conditions vary. Electricity prices are also characterised by strong mean-reversion and 

are subject to extremely high spikes in price. While long-run mean prices typically 

range between $30 and $45 per megawatt hour, prices can spike to levels above 

$9,000, even reaching the NEM’s price cap of $10,000 per megawatt hour from time 

to time. These spikes tend to be sporadic and very short-lived, rarely lasting for more 

than an hour or two. Although infrequent, spikes are the major contributor to price 

volatility and their evolution and causes need to be investigated and understood.  

 

The purpose of this thesis is to investigate and model Australian electricity prices. The 

research work presented is mostly empirical, with the early analytical chapters 

focusing on investigating the presence and significance of seasonal factors and spikes 

in electricity price and demand. In subsequent chapters this work is extended into 

analysis of the underlying volatility processes and the interaction between extreme 

values in demand and price.  The findings of the thesis are that the strong seasonal 

patterns and spikes that are generally observed in similar electricity markets are 
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present in the NEM, in both price and demand, there is significant variation in their 

presence and effect between the regional pools. The study also finds that, while time-

varying volatility is evident in the price series, there is again some variation in the 

way this is characterised between states. A further finding challenges the accepted 

wisdom that demand peaks drive price spikes at the extremes and shows empirically 

that price spikes are more likely to be caused by supply disruptions than extremes of 

demand. The findings provide useful insight into this economically important national 

market. 
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Chapter 1: Introduction 

1.1 Background 

Prior to the 1990s, the electricity supply industry in many countries was viewed as a 

natural monopoly and was typically operated as such with all stages in the electricity 

value chain, from fuel production through generation, transmission and retail 

distribution, under state control. Prices were generally fixed at levels reflecting the 

operator’s short-run marginal cost, plus a required return to the state as owner. The 

late 1980s and early 1990s saw a growing dissatisfaction with state-owned and 

operated monopoly electricity supply and an emerging view worldwide that wherever 

technically feasible, competition should be introduced into the electricity supply 

industry1. To that end many national regulators have embarked on new regulatory 

schemes and programmes of industry reform, involving varying degrees of 

privatisation of electricity generation and distribution businesses, and the 

establishment of wholesale electricity markets, in which the price is determined by the 

interaction of demand and supply (Wolak, 1997).  

 

In this new setting, generators compete to sell into an electricity market pool and 

distributors purchase electricity from the pool at prices set by the intersection of 

aggregated demand and supply on an hourly (or half-hourly) basis. Prices in these 

new, deregulated markets typically demonstrate extremely high volatility. When 

compared with financial markets (stocks, bonds) or with other commodities, the 

behaviour of electricity prices is quite complex and volatile (see Escribano et al., 
                                                 
1 Although outside the scope of this thesis, there is an extensive literature on the deregulation of 
electricity markets from a regulatory and industrial organization point of view. For an introduction to 
competitive electricity markets, see Hogan (1998), Borenstein (2001) and references therein. 
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2002, Bunn and Karakatsani, 2003). Deregulation has introduced new elements of 

price uncertainty to both the production and consumption sectors and tools for 

financial risk management in the form of derivatives such as futures contracts, options 

and commodity swaps are being developed by and for the industry. Electricity futures 

contracts are traded on the Sydney Futures Exchange, New Zealand Futures and 

Options Exchange, Eltermin (Scandinavia), NYMEX and others, and seemingly 

exotic “weather derivatives” have emerged on the major United States and 

Continental exchanges to assist firms in dealing with weather variation that affects 

demand conditions and therefore price. 

 

Why are electricity prices so volatile? The principal reason derives from the physical 

properties of electricity. By its nature it is instantly produced and consumed and 

cannot be stored (at least not in any viable wholesale quantity). For this reason, 

shocks to demand and supply cannot be smoothed out using inventory.  Another 

factor contributing to volatility is that electricity demand is highly inelastic to price. 

Commercial and industrial consumers as well as households tend not to moderate 

their consumption in response to price variation (Escribano et al., 2002). The 

characteristics of the supply stack within each market can also contribute to the price 

volatility. At low levels of demand, generators supply electricity by using base-load 

units with low marginal costs. As higher quantities are needed to meet demand, new 

generators with higher marginal costs are called into production and the marginal 

price of supply rises. The relative insensitivity of demand to price fluctuations and the 

binding constraints of generation capacity at peak times contribute to the extreme 

volatility seen in the spot price. Further, electricity demand and price demonstrate 

significant seasonal behaviours at intra-daily, weekly and monthly levels.  
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The importance of regular patterns in the behaviour of electricity prices has been 

analysed by Lucia and Schwartz (2000) and by Bhanot (2000) among others. While 

the goals of restructuring and deregulation include increased competition and lower 

prices to consumers, according to Booth (2004), the increased price volatility that has 

come with it increases the risk of trading in the market and may lead to increased 

consumer prices as participants pay for various risk management measures to mitigate 

the consequences prices spiking to high levels. The characterisation and 

understanding of the behaviour of electricity prices is therefore a very necessary task 

that will help inform the trading and investment decisions of generators and 

distributors as well as the development of effective financial products to help mitigate 

risk.  

 

1.2 Australian Electricity Prices 

Following the 1993 report of the Independent Committee of Inquiry into the 

Australian Electricity Utilities Industry (the Hillmer Report), the Australian electricity 

industry has been progressively deregulated. The Hillmer reforms led to the 

disaggregation of the vertically integrated government-owned electricity authorities 

into separate generation, transmission, distribution and retail sales sectors in each 

State. As in other countries that have undertaken similar programmes of reform in 

their electricity supply industries, the deregulation and restructuring of electricity 

markets in Australia has brought about fundamental changes in the behaviour of 

wholesale spot prices. Australian wholesale electricity prices demonstrate high 

volatility, strong mean-reversion (prices tend to fluctuate around a long-term 

equilibrium, usually reflecting generators’ short-run marginal costs), and abrupt and 
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unanticipated price jumps or spikes2 that are generally associated with shocks to 

demand or supply (Higgs & Worthington, 2006).  In addition, Australian electricity 

prices exhibit sporadic occurrences of negative prices3, which are not seen in other 

financial markets and are generally overlooked by the current electricity price 

literature. Figure 1.1 illustrates price spikes and negative prices in the VIC region 

over the sample period of the study. 

 

The National Electricity Market in Australia (the NEM) is administered by the 

National Electricity Market Management Company (NEMMCO), under the auspices 

of the National Electricity Code. Pool prices in the NEM (NEM) exhibit extraordinary 

levels of volatility, even when compared to electricity prices in other deregulated 

markets (Booth, 2004). Pool prices in the NEM generally remain around the levels 

where generators bid their marginal costs, as would be expected in a competitive 

market, however half-hourly prices can and do approach the NEM price ceiling of 

$10,000/MWh4 during price spikes, compared to long-run mean levels around $35-

$45 per megawatt hour. It should be noted that the Australian price cap of $10,000 is 

itself high compared to overseas practice. For example in the USA, a price cap of 

$US1,000/MWh is almost universally applied (Booth, 2004).  

                                                 
2 Note that electricity prices ‘spike’ rather than ‘jump’. A ‘jump’ process in financial markets usually 
suggests that prices move rapidly to a new level and remain there, however electricity process tend to 
move abruptly to an extremely high level and revert to mean levels just as abruptly (Blanco and 
Soronow, 2001). 
3 Negative prices occur as a result of the price bidding practices of generators. See Chapters Four and 
Five for further discussion. 
4 The National Electricity Code sets a maximum spot price of $10,000 per megawatt hour as the 
maximum price at which generators can bid into the market.  
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Figure 1.1 Half-Hourly Spot Prices in the VIC1 region, December 1998 to March 2005 
 

An understanding of the dynamics of Australian spot prices, particularly the spike 

process, is of interest to generators, distributors, retailers and large-scale consumers 

end-users for risk management, for capacity investment decisions, and for valuation 

of real and financial assets.   

 

The Australian Government’s white paper “Securing Australia’s Energy Future” 

(2004) recognises the significant economic impact of price spikes:  

“These peaks…while generally being of short duration, can impose high costs 
on the supply system…peaks lasting for only 3.2 percent of the annual 
duration of the market accounted for 36 percent of total spot market costs”.  

 

A report by the US Federal Energy Regulatory Commission (2004) compared the 

annualised historical volatility of the electricity market (Cinergy hub), with natural 

gas prices (Henry hub), oil (NYMEX) and the stock market 

fo

 8 



100 percent annualised volatility found in other energy commodities, and the 20 

percent or lower volatility reported in equity markets. By applying similar techniques 

to Australian market data, Booth (2004) calculated historical volatilities in the 

Australian market in excess of 900 percent. At least part of this volatility is a direct 

result of price spikes, with 20-30 percent of average annual pool prices in the 

Australian National Electricity Market (NEM) coming from price spikes occurring for 

less than one percent of hours in a year (Booth 2004). Observing fewer spikes in the 

USA, Bushnell (2003) argues that this is a consequence of US regulators being more 

willing to modify the behaviour of suppliers, while Australia, “…which also uses a 

niform price auction, places fewer restrictions on suppliers, and [as a consequence] 

e retailers can benefit from improved forecasting of 

olatility and price spikes to hedge their purchase price risk.  

                                                

u

price spikes, are a standard feature” (Mount et al., 2006: 63).  

 

It is easy to see why an understanding of the behaviour of spot prices, particularly the 

spike process, is critical to electricity generators, retailers and end-users. In particular, 

modelling price spikes is vitally important for generation assets, particularly peaking 

plants, whose value is entirely dependent on the existence of price spikes that 

facilitate the recovery of high marginal costs and the recouping of fixed costs over 

very short running periods (Blanco and Soronow, 2001). Large industrial users are 

also concerned with better modelling of prices because of the impact of load shedding 

during peak periods5, whil

v

 

There is an emerging literature on Australian electricity prices (see, for example, and 

Strickland, 2000a & 200b; Higgs and Worthington 2003, 2005; among others), 
 

5 When prices reach the maximum level of $10,000 prescribed by the National Electricity Code, 
generators are directed to disrupt supply in order to give effect to the price cap and maintain physical 
system balance. This process is known as ‘load shedding’. 
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however none has yet fully and specifically addressed these structural features of 

Australian electricity markets. Previous studies based on markets in the United States 

and Europe have attempted to capture some characteristics of electricity spot prices 

with mean-reverting specifications (see, for instance, Lucia and Schwartz, 2002). 

Unfortunately, while these models are useful for modelling storable commodities like 

oil and gas (see Schwartz, 1997 and Pindyck, 1999), they are less useful for 

electricity, where there is little opportunity for direct (or indirect) storage to smooth 

price spikes (de Jong 2005). 

 

Accordingly, the purpose of this thesis is to investigate the structural characteristics 

of Australian spot electricity prices, including the spike behaviour discussed so far, as 

well as the extent to which the strong seasonal patterns that are observed in other 

electricity markets are evident in the NEM. Much of the literature attempts to model 

spike behaviour using some generalised functional form [see Clewlow and 

Strickland, 2000a; Higgs and Worthington (2003, 2005); Bunn (2004); Alvaro, Peña, 

and Villaplana (2002); Hadsell, Marathe and Shawky (2004); and Goto and Karolyi 

(2004)]. This thesis takes a different approach by identifying and capturing individual 

spikes and modelling their effects, along with seasonal factors. Spikes are irregular 

and vary in magnitude, so it is useful to examine them individually. Much of the 

existing literature uses daily or hourly data, over samples spanning one or two yea

 

rs. 

his study’s use of half-hourly prices over a six-year sample provides a useful 

extension of past work and is potentially significant for producers, regulators and 

researchers. The use of data sampled over a longer (six-year) time period is necessary 

T

in order to establish the extent to which these extreme within-day price spikes and 

negative prices are significant and regular features of the data. Knittel and Roberts 
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(2001) find that the forecasting performance of standard financial models is relatively 

poor in the presence of seasonal effects and extreme behaviour without adjustment 

for these effects. By explicitly investigating these effects this study may also be of 

significance for financial markets traders wishing to profitably operate in the 

electricity markets. A further contribution of this thesis is to extend the analysis into 

demand, to investigate the presence and effect of seasonal patterns and spikes in 

demand and the interaction between observed demand spikes and spikes in price.  

 

The remainder of this thesis is organised as follows. Chapter Two presents a review of 

the relevant literature.  It is worth noting that the electricity market literature is very 

broad in scope and embraces the disciplines of engineering, mathematics, economics 

and finance. In the context of this thesis, only the latter are relevant and issues such as 

price and demand behaviour, price forecasting, and derivative pricing and contract 

design have been considered. As discussed earlier, the wholesale pool markets for 

electricity are a relatively new development. The economics and finance literature 

focussing on price behaviour in electricity markets is also relatively new and therefore 

1.3 Scope and Structure of Thesis 

ss extensive than the literature in ‘conventional’ financial commodity markets. 

especially the complex mix of seasonality and outlier effects observed in electricity 

le

Relevant research on price formation in electricity markets is discussed, given the 

special nature of electricity as a traded commodity and special aspects of market 

design that it requires. The next section presents the literature on stochastic modelling 

of electricity prices, particularly the various adaptations of techniques from the 

“conventional” financial markets and their strengths and limitations when applied to 

modelling electricity prices. Next, the literature emphasising structural modelling, 
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prices is discussed, followed by a brief overview of the emerging field of non-

parametric modelling, which takes in the application of neural networks, fuzzy logic 

and fuzzy regression techniques for the purposes of price forecasting. The nascent 

Australian literature is discussed next, and the final section discusses opportunities for 

research emerging from the literature and the foci of this thesis.   

hapter Four describes the data collection and collation procedures and sources of the 

from NEMMCO6 for the period from commencement of the NEM at 2:00am 

December 7, 1998 to 11:30pm March 31, 2005. NEMMCO collates and reports half-

                                                

 

Chapter Three provides an overview of the institutional characteristics of the 

Australian electricity market. It firstly provides background to the recent deregulation 

and restructuring of the Australian electricity supply industry. Second, it provides an 

overview of the important historical and operational aspects of Australia’s National 

Electricity Market (NEM). Third, the nature of electricity and how the NEM is 

organised to accommodate distribution given its unique characteristics is discussed - 

electricity has physical characteristics unlike other traded commodities and these 

characteristics require that the wholesale markets for electricity must be conducted 

differently to other commodity markets. Fourth, it provides an overview of the 

markets in other countries that have undertaken similar restructuring of their 

electricity supply industry.  

 

C

electricity price and demand data used in this thesis. The summary descriptive 

statistics for each data set are also presented. In brief, the data sets used include time 

series data for demand and price for electric power in the NEM, collected directly 

 
6 Available for download from NEMMCO’s website at 
http://www.nemmco.com.au/data/market_data.htm. 
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hourly trading interval observations for demand and price for the five NEM regions 

(NSW1, QLD1, SA1, SNOWY1 and VIC1)7. The sample size is 110,719 observations 

for each of price and demand for each of five regions in the NEM. This chapter also 

includes discussion of the process of determination of half-hourly demand and price 

values, which are necessarily different from pricing mechanisms in other financial 

markets.  

 

Chapter Five documents seasonal patterns and other characteristics of electricity spot 

rices in the Australian National Electricity Market (NEM), over the six-year sample p

period. The goal is to more finely investigate the influence of seasonalities and 

outliers noted in the body of literature on electricity prices.  Results confirm that 

electricity prices exhibit significant time-of-day and day-of-week effects. Monthly 

and yearly effects are significant to a lesser degree. Extremely high spikes in the price 

series are an important characteristic of electricity prices and are shown to be a highly 

significant component of returns behaviour. Negative prices are impossible in 

financial time series data but do occur in Australian electricity prices and are found to 

be influential.  The implications of these findings confirm the view that seasonal and 

outlier effects should not be ignored in efforts to model electricity prices. 

 

Chapter Six investigates whether the structural characteristics of electricity price are 

also present in electricity demand. Given that the spot market is always in 

equilibrium, these spikes could be caused by short-run spikes in demand or shocks to 

supply (such as breakdowns in generation plant or disruption to the transmission 

                                                 
7 The five NEM regional pools are defined on state lines, but are designated within the NEM as NSW1, 

LD1, SA1, SNOWY1 and VIC1. This naming scheme will be followed throughout this thesis. The 
TAS1 region based in Tasmania commenced operation in late 2005, after the sample period examined 
by this thesis.   

Q
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grid). Analysis of the demand data may provide some insight into the spike behaviour 

observed in the price series.  As a first step in this analysis, it is necessary to 

characterise any seasonal patterns that might be present and investigate the presence 

of spikes in the demand side of the spot market. Seasonal patterns in demand or 

system load are well documented in the literature and these patterns are incorporated 

into a variety of forecasting models. Harvey and Koopman (1993) document intra-day 

and intra-week effects and incorporate them into their demand model using splines. 

Earlier studies consider longer-term load forecasting horizons several months into the 

future, using monthly demand data (Engle, Granger and Hallman, 1989). In the 

Australian context, Smith (2000) and Cottet and Smith (2003) document intra-day 

patterns in demand in New South Wales.   

 

While a number of studies have incorporated seasonal patterns into demand models, 

the presence of sudden and fast reverting spikes in demand have not been 

comprehensively documented. This chapter investigates if, like changes in the 

electricity spot price, changes in demand demonstrate a high incidence of spikes, as 

well as sensitivity to seasonal patterns.  According to Knittel and Roberts (2001), the 

regular occurrence of these spikes accounts for the failure of conventional stochastic 

forecasting models and in light of this, I believe it is necessary to test if demand also 

xhibits evidence of spikes. With these objectives in mind the contribution of this e

chapter is twofold. First, the research examines a six-year sample of half hourly total 

system demand for five regions in Australia’s National Electricity Market (NEM) and 

reports on the occurrence of outliers in the form of extreme spikes in demand returns.  

Second, a model that captures the sensitivity of demand returns to these outliers is 

presented, that controls for seasonal factors including time-of-day, day-of-week, 
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monthly and yearly effects. The results show that seasonal effects are significant but 

vary across regions. Time-of-day effects are found to be more significant than other 

seasonalities. Further, like price spikes, spikes in demand are spikes that are present in 

the demand series and are found to be highly significant. Chapter Eight extends the 

work in Chapters five and six to examine the transmission of spikes in the demand 

data to price series.  

 

Chapter Seven considers the underlying volatility process in Australian electricity 

prices and examines the applicability of a range of GARCH specifications to 

modelling volatility in the 5 regional NEM markets. The GARCH variants considered 

include the “basic” GARCH specification (Bollerslev, 1986), the Threshold GARCH 

(TARCH) model of Glosten, Jaganathan and Runkle (1993), Nelson’s (1991) 

Exponential GARCH (EGARCH) and the Power ARCH (PARCH) model proposed 

by Ding et al. (1993). The approach used in this study differs from the previous 

Australian ARCH-based studies in that discrete half-hourly returns8 are used rather 

than price relatives. The use of discrete returns is necessary to allow for the presence 

of negative prices which were identified in Chapter Five as a significant feature of the 

data. This study is further distinguished from previous work in that seasonal effects 

and individual spikes are treated by pre-whitening the data to remove seasonalities 

and outlier effects in an OLS framework before fitting the various GARCH models. 

The reasons for doing so are twofold: firstly, after accounting for spikes and 

seasonalities, significant residual ARCH effects are observed in the pre-whitened data 

(see section 7.3 for further discussion). I am interested in developing a better 

                                                 
8 Electricity requires no initial investment and is not storable, therefore does not produce a return to an 
investor as it is generally understood in financial markets (ie: as a result of change in value of a held 
position). Here “return” means half-hourly percentage change in spot price, similar to Black’s (1976) 
application of the term in futures markets. 
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understanding of underlying volatility process in the returns series without the noise 

 which extreme spikes in 

emand coincide with spikes in price and whether a spike in demand triggers a 

’ parametric event study approach and a GARCH-based event study 

(following McKenzie, Thomsen and Dixon, 2004) are used and results show that there 

contributed by seasonalities and outliers; and secondly, a model specified with a 

conditional mean and variance process that includes a very large number of 

explanatory variables (up to 260 variables to account for seasonalities, outlier effects 

and serial correlation) and over a very large sample size (>110,000 observations in 

each region), is too unwieldy for available computing capabilities and as such, a two-

stage procedure is called for. Results show that based on ranking by Schwarz-Bayes 

and Akaike Information Criteria (see McKenzie and Mitchell, 2002), the PARCH(1,1) 

specification is favoured in all regions but in QLD1 and SA1, model parameters 

indicate that the PARCH (1,1) model may be unstable in QLD1 and SA1, in which 

case the EGARCH (1,1) specification is preferred as it more reliably describes the 

volatility processes in those two regions.  

 

Chapter Eight extends the work on spike analysis in Chapters five and six and 

considers the interaction of the significant spikes in price and demand. Having 

identified all individual occurrences of extreme spikes in both demand and price, this 

study applies an event study methodology to investigate the extent to which shocks 

and extreme values in the demand series are reflected as extreme values in price. The 

research issue considered in this section is the extent to

d

response in price. To date no other study in the electricity literature has used an event-

study approach to answer this question and I believe it provides valuable insight into 

the relationship between extreme demand and price behaviour in electricity markets. 

A ‘standard
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is negligible coincidence of demand and price spikes across the five NEM regions in 

sponse to demand 

ales, Queensland and Victorian regional pools. This 

stralian and Snowy pools. These results 

the study, yet there is evidence of a small but significant price re

spikes in the New South W

response is not evident in the South Au

suggest that supply effects might be more significant contributors to spike evolution 

and flags this possibility as a direction for future research.  

 

Chapter Nine concludes the thesis by summarising the major findings of the empirical 

analysis, highlighting the major contributions of this research to the existing literature 

in the field of electricity price behaviour and suggests possible directions for future 

research.  
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Chapter 2: Literature Review 

 

ibrium conditions (e.g. Guan 

et al., 2001; Park et al., 2001; Andersen and Xu, 2002).  A second popular area of 

ity price forecasting (e.g. Green and Newbery, 

; 

outledge, Seppi and Spatt, 2001; Baldick, 2002; Day et 

al., 2002; Bessembinder and Lemmon, 2002). The focus of this thesis is on the time-

series modelling of electricity price behaviour, including the special structure and 

stochastic properties of electricity prices.   

 

This chapter presents a review of the literature relevant to this thesis.  It should be 

noted that the wholesale pool markets for electricity are a relatively new development. 

As such, the economics and finance literature focussing on price behaviour in 

electricity markets is also relatively new and therefore less extensive than the 

literature in ‘conventional’ financial commodity markets. Section 2.2 discusses 

relevant research on price formation in electricity markets, given the special nature of 

2.1 Introduction 

The electricity market literature is very broad in scope and embraces the disciplines of 

engineering, mathematics, economics and finance.   In the context of this thesis, only 

the latter are relevant and issues such as price and demand behaviour, price 

forecasting, and derivative pricing and contract design have all been considered.  For 

example, one popular area of research has focused on the ex-ante economic modelling 

of electricity markets, using stylized game theory or simulation methods to understand 

the price implications of various market designs or equil

research has been in the area of electric

1992; Joskow and Frame, 1998; Green, 1999; Batstone, 2000, Skantze et al., 2000

Bunn and Oliveira, 2001; R
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electricity as a traded commodity and special aspects of market design that it requires. 

Section 2.3 presents the literature on stochastic modelling of electricity prices, 

particularly the various adaptations of techniques from the “conventional” financial 

markets and their strengths and limitations when applied to modelling electricity 

prices. Section 2.4 discusses the literature emphasising structural modelling, 

specially the complex mix of seasonalities and outlier effects observed in electricity 

 

icity Price Behaviour: Price Formation in 

lectricity Markets  

The most significant characteristic of the wholesale electricity spot market relates to 

the nature of the product being sold . The physical laws that govern the delivery of 

electricity via a “poles and wires” transmission grid require that the input of 

electricity by generators and offtake by consumers be in synchronous balance . If 

production and consumption are different, even for a moment, the frequency and 

voltage of the power fluctuates (Bunn & Karakatasani, 2003) leading to breakdown of 

transmission infrastructure and damage to end-use equipment. Further, end-users treat 

electricity as a service at their convenience, and there is very little short term elasticity 

                                                

e

prices. Section 2.5 briefly introduces the emerging field of non-parametric modelling, 

which investigate the efficacy of neural networks, fuzzy logic and fuzzy regression 

techniques for the purposes of price forecasting. Section 2.6 considers the emerging 

Australian literature and section 2.7 discusses opportunities for research emerging 

from the literature and the particular foci of this thesis.   

2.2 Models of Electr

E

9

10

 

price formation process in the Australian market. 
10 With some allowance for physical transmission losses across the transmission network. 

9 Chapter three presents a detailed discussion of the institutional characteristics of key markets and the 
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of demand to price (Silk and Joutz, 1997). The task of a system operator, in the 

Australian case the National Electricity Market Management Company (NEMMCO) 

is to continuously monitor the demand process and to ensure that base load 

requirements of the system are met and that generators who have the capacity to 

spond quickly to periodic fluctuations in demand are called in when required. 

 

Although many spot markets for electricity work on the basis of hourly trading 

intervals, the Australian (and British) spot markets are unique in that they trade based 

on half-hourly segments of time. At any given point in time, a variety of plants using 

different fuels and generation technologies will produce electricity.  The marginal cost 

of this supply is coupled with demand to set prices at different times. Figure 2.1 

presents a plot of the demand and price series for a selected week in 2000.  The price 

series exhibits a high degree of structure and seasonality, which is a defining feature 

of spot electricity prices.  

 

M  

ave been noted in the literature. Johnson and Barz (1999) report mean-reversion to a 

re

ore specifically, a number of characteristics typical of electricity spot price series

h

long-run level in various markets. Kaminski’s (1997) study of United States power 

markets identifies multi-scale seasonalities on an intra-day basis, along with weekly, 

monthly and seasonal effects related to summer, autumn, winter and spring). 

Kaminski (1997) also notes erratic extreme behaviour with fast-reverting spikes as 

opposed to “smooth” regime-switching and non-normality, expressed as high positive 

skewness and leptokurtosis. Electricity prices typically ‘spike’ rather than ‘jump’- a 

jump process typically suggests rapid movement to a new level which is subsequently 

maintained, whereas electricity prices increase rapidly to extremely high values and 
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revert quickly to ‘normal’ levels (Blanco and Soronow, 2001). In their analysis of the 

Nordic market, which is centered on Norway and Sweden, Lucia and Schwartz (2002) 

identify seasonal patterns in the deterministic component of prices and in the degree 

of spike intensity.  
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Figure 2.1: Victorian Half-Hourly Spot Price and Demand for the Week Commencing 
19/8/2000  

 
 

According to Escribano et al. (2001), the volatility of spot prices is typically orders of 

magnitude higher than for other commodities and financial assets, with annualised 

values of 200% or more. The authors further note that this volatility is time-varying, 

with evidence of heteroskedasticity both in the unconditional and conditional 

variance. They argue that the former reflects the influences of demand, capacity 

margin and trading volume on volatility levels and the latter describes the observed 

clustering of tranquil or unstable periods (GARCH effects), specifying volatility as a 

function of its lagged values and previous disturbances. There is also evidence in the 

m
M

pot
c

/
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literature that conditional variance reacts asymmetrically to positive and negative past 

shocks. Interestingly, electricity price volatility displays a response to leverage effects 

that is inverse to the response typically observed in conventional financial markets 

(Knittel and Roberts, 2001). Higgs and Worthington (2005) note a similar perverse 

asymmetry in the Australian markets. 

 

Bunn and Karakatsani (2003) argue that there are a number of market microstructure 

elements that help to explain these unusual time series characteristics. They contend 

that with a diversity of plant employing different generation technologies and fuel 

efficiencies in the system, different plant will be setting the market-clearing price at 

different levels of demand.  They further argue that a diversity of plant in the system 

is expected for two reasons. The first is obsolescence. With power plant lasting 40 

years or more, new and more efficient generation technologies will be introduced 

uring the productive life of existing plant. Prices will fluctuate because of the 

varying efficiencies of the set of plant being used for generation at any particular 

moment in time. The plant with the lowest marginal costs (the “base load” plant), will 

 

d

operate most of the time but during peaks in demand, other, “more expensive” power 

plants (the “peak load” plant) may only be operating for a few hours when demand 

exceeds base-load supply capacity and prices are sufficiently high. The recovery of 

capital costs on peak-load plant, through market prices, may have to be achieved over 

a relatively few hours of operation per year compared to the 8760 hours in a normal 

year that a base load plant could theoretically operate. The authors argue that this will 

favour both the construction of low capital/high operating cost plant for peaking 

purposes and the over-recovery of marginal costs when such plant is called into 

production, with a natural consequence that prices will be much higher in peak load
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periods. Blanco and Soronow (2001) put forward the view that modelling price peaks 

accurately is vitally important for generation assets, particularly peaking plants whose 

value is entirely dependent on the existence of price spikes that facilitate recovery of 

high marginal costs and recouping of fixed costs over very short running periods. This 

view is intuitively appealing and consistent with the experience in the Australian 

market, with base load generally being provided by relatively low-cost brown coal 

and black coal-fired generation plant that is in continuous operation, and high-priced 

eak load being provided by fast-start gas-fired and hydroelectric generators. Bunn 

2.3 Stochastic Modelling of Spot Electricity Prices  

reversion tendency, which is confirmed in the then newly-established national 

p

and Karakatsani (2003) further contend that other factors may also come into play in 

the short term: there may be technical failures with plant, causing more expensive 

standby generators to come online; the transmission system may become congested or 

disrupted so that expensive but necessary local plant gets called into production; and 

unexpected fluctuations in demand may also be influential.  

 

Much of the literature on empirical price modelling attempts to adapt an established 

model of financial asset behaviour to the special characteristics of electricity.  

Typically this is done in order to provide better information for trading decisions and 

to aid in the design and valuation of electricity derivatives.  An early example is 

Kaminski (1997), where the spiky characteristic observed in regional power markets 

in the United States is addressed through a random walk jump-diffusion model, 

adopted from Merton (1976). Kaminski’s model does not incorporate another 

fundamental feature of electricity prices, that being rapid reversion to a mean level 

following the occurrence of a spike.  Johnson and Barz (1999) identify this mean-
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Australian market by Clewlow and Strickland (2000b). Deng et al. (2000) extends 

this class of modelling to include regime-switching and stochastic volatility in the 

rice dynamics, although they are not captured jointly in a single model. In the same 

actual price 

recasting. Regime-switching can replicate price discontinuities observed in 

p

paper, the authors propose a multivariate framework for the joint dynamics of 

electricity price and a range of correlated variables including demand, weather 

conditions (in particular, air temperature) and fuel prices, allowing richer dynamics to 

emerge. 

 

Jump-diffusion models are superficially appealing but present some limitations when 

applied to electricity price data. Jump-diffusion models a la Clewlow and Strickland 

(2000a) assume that shocks affecting the price series die out at the same rate. This 

assumption is challenged by Huisman and Mahieu (2001). In their examination of 

daily price and price index data for the power markets in California, UK, Germany 

and the Netherlands, they find that stochastic jump models do not clearly disentangle 

mean-reversion from the reversal of spikes to normal levels. Secondly, model 

assumptions for jump intensity (constant or seasonal) are convenient for simulating 

the distribution of prices over several periods of time but are restrictive for actual 

short-term predictions for a particular time. Regime switching models offer an 

alternative framework to jump-diffusion that may be more suitable for 

fo

practice, and could detach the effects of mean-reversion and spike reversal that jump-

diffusion attempts to replicate. Ethier and Mount (1999) consider two latent market 

states, an abnormal, “spike” state and a more “regular” state around a long-run mean. 

They model an AR(1) price process under both the regular and the abnormal regimes 

and constant transition probabilities, however their model specification imposes 
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stationarity in the spike process which is sometimes found to be invalid (see de Jong 

and Huisman, 2002).  

 

Huisman and Mahieu (2001) propose a model that isolates the mean state and spike 

effects by assuming three market regimes; a regular state with mean-reverting price, a 

jump regime that creates the spike and finally, a jump reversal regime that ensures 

reversion of prices to their previous long-run mean level. Their regime-transition 

structure is restrictive, as it does not allow for consecutive irregular prices. In de Jong 

nd Huisman (2002), the spike states are found to be irregular and recurrent but not 

) 

a

persistent. They propose a more relaxed, two-state model, assuming a stable mean-

reverting regime and an independent spike regime of log-normal prices. Their model 

allows regime independence that can accommodate multiple consecutive regimes of 

either type. When applied to forecasting, their regime-switching price model typically 

overstates the ‘normal’ price level and generally predicts the normal regime, with 

predicted occurrence of spikes much less than the actual rate of occurrence and the 

predicted probabilities of the extreme state very rarely exceeding a conventional 

threshold level. This problem might be averaged out when simulating several periods 

ahead with the intention to price a financial instrument but it is critical for the 

precision required in a day-ahead prediction (Bunn & Karakatsani, 2003

 

An interesting and potentially more accurate description of electricity prices is 

proposed in Bystrom (2005). Bystrom examines five years of hourly price changes in 

the Nordpool, noting that hourly price changes of 100% are commonplace and have 

been observed to exceed 600%. The price change data is first pre-filtered using a 

combined AR-GARCH time series model, taking into account autocorrelation in the 
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returns themselves (AR) and in the squared returns, as well as seasonal effects and 

volatility clustering (GARCH). Extreme value theory (EVT) is then applied to the 

residuals using the peaks over threshold (POT) method, following McNeil and Frey 

(2000). Bystrom finds that the POT method models the extreme values with a high 

degree of accuracy, with in-sample and out-of-sample evaluation of forecasts 

providing strong support for conditional EVT-based modelling. This approach avoids 

the estimation complexities and forecasting limitations present in the previous 

ochastic models due to sudden and fast-reverting spikes.  

he same data set and not divided by load period.  

st

 

Finally, it should be noted that the stationarity properties of electricity prices 

potentially differ across markets. If the modelling involves daily average or by-period 

spot prices, a mean-reverting process with a seasonal trend, proposed for instance in 

Lucia and Schwartz (2002), seems appealing for some markets, however, 

discrepancies exist. In Atkins and Chen (2002), time and frequency-domain tests 

reject the null hypotheses of I (1) and I (0) processes for the electricity prices in 

Alberta. Long memory features are subsequently identified in the price evolution and 

described with autoregressive fractional difference (ARFIMA) models. In Stevenson 

(2002), a unit root is identified in the Victorian market, possibly because all hourly 

prices are retained in t

 

A common feature of the finance-inspired stochastic models reviewed in this section 

is their main intention to replicate the statistical properties of spot prices with the 

ultimate objective of derivatives evaluation. In order to retain simplicity and/or 

analytical tractability, the models include only a few factors and typically focus on 

daily average prices, which are sensitive to outliers. As noted earlier, trading in most 
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markets is based on half-hourly or hourly intervals. According to Ait-Sahalia et al. 

(2003), when using high-frequency data it is desirable to sample as often as possible 

nd it may be that some important information may be lost by the use of daily average 

data. Worthington et al. (2005) however, note that daily averages play an important 

role in electricity markets, particularly in the case of financial contracts. For example, 

e electricity futures contracts traded via the Sydney Futures Exchange (SFE) are 

settled against the arithmetic mean of half hourly spot prices in a given month. 

  

Although useful for derivative contracts, the aggregation of intra-day information is 

likely to be restrictive from a forecasting perspective. Estimation complexities and 

forecasting limitations are further enhanced due to the abrupt and fast-reverting nature 

of price spikes. In many instances, short-duration spikes may occur in half-hourly 

prices, but these are often averaged away in daily prices. This is especially important 

because the spiking behaviour in electricity markets appears to exhibit strong time 

variation, with spikes being relatively more common in peak daylight times (see 

Higgs and Worthington, 2005 and Thomas et al., 2006). Accurate and reliable price 

recasting is crucial to generators when formulating their bidding strategies and 

 throughout the day as a response to 

a

th

fo

specification of intra-day data would provide a logical resolution to these as yet 

unexplored features.  

 

Stochastic models have been substantially adapted to the peculiarities of electricity, 

but still need much development in order to fully reveal the main components of price 

structure. Knittel and Roberts (2001) emphasised the need to explore this structure 

and include it in price specifications. A related challenge is to explore how the 

sensitivities of prices to influential factors vary

 27 



the fundamentals of intra-day variation in demand, plant-operating constraints, and 

the strategic actions of generators.  

 

 

 

Other structural formulations address non-linear aspects of electricity price dynamics, 

such as multiple price regimes and jumps. Vucetin et al. (2001) implement a 

discovery algorithm of regression regimes, which reveals multiple price-load 

relationships in spot trading. The assumption of a moderate switching rate between 

regimes, necessary for convergence, is unappealing for the sudden spikes in 

electricity but could desc

2.4 Structural Modelling  

There is an emerging family of structural models of electricity prices that seek to 

uncover a richer structure for electricity prices in order to understand market 

performance and enable more accurate forecasting. They typically examine historic 

market prices in the context of fundamental influences such as system load 

(demand), weather and data on plant service. For example, a simple regression 

model that relates spot price in the Spanish and Californian markets to lagged price 

and demand values is suggested in Nogales et al. (2002).  Their model was refined 

by adjusting the number of lags until the assumption of uncorrelated errors was 

satisfied, however the predictive ability of this model seems limited in the case of 

markets with strategic market power and complex trading environments.  

ribe smooth regime transitions in the medium term. As the 

regime-switching process is not modelled, the algorithm is constrained to the analysis 

f past data, rather than applied to forecasting.  o
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Davison et al. (2002), posits a model in which prices are assumed to follow a mixture 

of two normal distributions and the ‘regime’ probabilities are related empirically to a 

variable with economic and strategic attributes, the ratio demand/supply. To derive a 

general formulation that allows medium-term forecasting, demand is specified as a 

sinusoidal function and capacity across the year as a two-level categorical variable. 

This approximation however ignores the interaction between prices and capacity 

availability. In Skantze et al. (2000), hourly price is specified as an exponential 

function of demand and supply. Both are assumed stochastic with a deterministic 

monthly component plus a random term. Due to the pronounced intra-day correlation, 

the random terms are derived from a Principal Component Analysis approach, similar 

to Wolak (1997). To capture stochastic effects, the loadings are specified as mean-

reverting to a stochastic mean. A distinct feature of the model, compared to standard 

jump-diffusion, is the incorporation of data for plant outages affecting supply.  A 

Markovian process is assumed for plant outages with parameters related to the 

various generation technologies. The set of outages examined only reflects ex-post 

knowledge of outages and does not consider the possibility of generators engaging in 

rice manipulation, which has been a major strategic capacity withholding, leading to p

concern to regulators in electricity markets, and has strong implications for accurate 

price forecasting. In the Australian context, Booth (2004) suggests that generators 

actively exploit “…the freedom afforded them under the National Electricity Code to 

arrange their price bids and/or withhold capacity in various ways, causing a small 

number of very large price spikes and increasing the annual average pool prices to 

more acceptable levels”. 
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The existence of multiple, different, components in electricity pricing is considered in 

Stevenson (2002). The price and demand series are decomposed into multiple levels 

of resolution with wavelet analysis and signal is differentiated from noise with a 

robust smoother-cleaner transformation. For the reconstructed data, a threshold 

utoregressive (TAR) model is suggested, with demand as a critical variable. Price 

changes are modelled in the presence of a unit root and assigned to one of two 

regimes depending on whether the change in demand is positive or negative. This 

impact on prices of other fundamentals such as supply 

Efforts to model electricity prices are gradually becoming more focussed on practical 

applications with a view to reliable forecasting. To that end, several non-parametric 

techniques, such as genetic algorithms and neural networks, have been adopted for 

price prediction. An indicative list includes neural networks applications for the 

England -Wales pool by Ramsay and Wang (1997), for the California market by Gao 

et al. (2000), Spain by Centano Hernandez et al. (2003) and Victoria by Szkuta et al. 

(1999); fuzzy regression models linking demand and price by Nakashima et al. 

(2000); and Fourier and Hartley transformations by Nicolaisen et al. (2000). Although 

a

restriction excludes the 

constraints. The model could possibly be enhanced by defining the threshold variable 

as a function of the ratio of demand to supply. The smoothing procedure eliminates 

the leakage of rapidly reverting price spikes to more fundamental resolution levels, 

where information takes progressively longer to be impounded into price. This allows 

a more reliable estimation of the baseline regime but treats price spikes as noise are 

effectively filtered out of the data despite their information content.   

 

2.5 Non-Parametric Modelling. 
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non-parametric models tend to be flexible, can handle complexity and as a result are 

promising for short-term predictions, they do not provide structural insights or 

forecasts of the price distribution, which limits their application to risk management 

and longer-term capacity investment decisions. 

 

Electricity Market 

2.6 Modelling Price Behaviour in the Australian National 

pikes in electricity prices are a common feature of the Australian market. For 

Pennsylvania - New Jersey – Maryland pool) than in the Australian market and 

suggest that this is a consequence of US market regulators being more willing to 

constrain or modify the behaviour of generators, however the reason may be more to 

S

example, Lu et al., (2005) observe regional spot prices as high as several thousands 

of Australian dollars per Megawatt Hour (MWh), several hundred times higher than 

the normal price level around $20–30 per MWh. For example, at 18.30 on 31 July 

2003 New South Wales reached $8,622.63 per MWh and on January 16, 2007, prices 

in Victoria reached the market maximum level of $10,000 MWh for two hours during 

the afternoon. Booth (2004) estimates that some 20-30 percent of annual average 

price levels in the Australian National Electricity Market is attributable to extreme 

price spikes, which occur at fewer than one percent of the trading intervals in a year.  

Thomas et al. (2006) confirm this view and note some 516 occurrences of extreme 

spikes in returns across all NEM regions over a six-year sample period of half-hourly 

trading interval data representing approximately 0.1% of all observations. 

 

Bushnell (2003) observes fewer price spikes in the US market (based on the 
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do with market design. Wolak (1997) observes that the occurrence of extreme price 

spikes is more prevalent in compulsory pool markets such as the NEM than it is in 

esidual’ spot markets like Nordpool11 A report by the US Federal Energy 

                                                

‘r

Regulatory committee (2004) found electricity volatilities in the US approaching 300 

percent, with other energy commodities (oil, natural gas) never more than 100 percent 

and equity markets (S&P500) demonstrating annual volatility of 20 percent or less. 

Booth (2004) calculated historical volatilities in the Australian electricity market in 

excess of 900 percent. 

 

In the Australian context, only a small number of papers have been published that 

have focused on modelling volatility processes in electricity prices. For example, 

Worthington, Kay-Spratley and Higgs (2005) examine electricity prices and price 

volatility among the five Australian electricity markets in the NEM by applying a 

multivariate generalised autoregressive conditional heteroskedasticity (MGARCH) 

model to identify the source and magnitude of spillovers, in a sample of half-hourly 

spot prices for the period December 1998 to June 1991. The authors find a large 

number of significant own volatility and cross-volatility effects in all five markets, 

indicating the presence of strong ARCH and GARCH effects. It should be noted that 

for the purposes of their analysis a series of daily arithmetic means is drawn from the 

trading interval data (following Lucia and Schwartz, 2002). The authors recognise 

that this treatment will entail the loss of at least some ‘news’ impounded in more 

frequent trading interval data, but correctly note that “…daily averages play an 

 
11 See chapter three for further discussion of institutional characteristics of different markets. 
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important role in electricity markets, particularly in the case of financial 

contracts…”12.  

 

This work is extended in Higgs and Worthington (2005), which presents an 

investigation of the intra-day price volatility process in Australian electricity markets 

under five different ARCH processes: GARCH (generalised ARCH), Risk Metrics 

(normal integrated GARCH), normal APARCH (asymmetric power ARCH), Student 

APARCH and skewed-Student APARCH (following Ding, Granger, and Engle, 

1993; and Giot and Laurent, 2003a, 2003b). The authors include the documented 

systematic features – intra-day and monthly patterns (calendar effects), intra-day 

innovation and volatility spillovers (ARCH and GARCH effects) and market activity 

(demand and information asymmetry effects), with a view to providing a 

characterization of the volatility process. The data employed consists of electricity 

price relatives and demand volumes for the half-hourly intervals from 1 January 2002 

to 1 June 2003 for NSW1, QLD1, SA1 and VIC113. The natural log of the price for 

each half-hourly interval is used to produce a time series of price relatives for 

nalysis. In their analysis, the inclusion of news arrival is indicated by the 

-of-year 

a

contemporaneous volume of demand, time-of-day, day-of-week and month

effects as exogenous explanatory variables. The authors find that on the basis of the 

log-likelihood, Akaike Information (AIC) and Schwartz Criteria (SC), the skewed 

Student APARCH form is the best model for all four markets under consideration.  

Their results also indicate significant innovation (ARCH effects) and volatility 

(GARCH effects) in the conditional standard deviation equation, even with market 

                                                 
 For example, the electricity futures contracts traded via the Sydney Futures Exchange (SFE) is 
ttled against the arithmetic mean of half hourly spot prices in a given month. 

13 The SNOWY region is not included in the Higgs and Worthington (2005) study. 

12

se
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and calendar effects included. They further observe significant asymmetric news 

responses in intra-day price volatility. 

 

The previous Australian research typically confines its analysis to one regional 

market in the NEM over a relatively short time horizon (less than two years). This 

chapter extends the previous research by using data sampled over a much longer time 

horizon and includes five NEM regional markets, to better characterise the volatility 

process by examining the market over a wider range of conditions and broader 

arket base. I examine the applicability of a range of GARCH specifications to m

modelling volatility in 5 regional NEM markets. Half-hourly trading-interval prices 

for the period from the commencement of the NEM in December 1998 to March 

2005 are used and five NEM regions (NSW1, QLD1, SA1, SNOWY1 and VIC1) are 

included. The GARCH variants considered include the “basic” GARCH specification 

(Bollerslev, 1986), the Threshold GARCH (TARCH) model of Glosten, Jaganathan 

and Runkle (1993), Nelson’s (1991) Exponential GARCH (EGARCH) and the Power 

ARCH (PARCH) model proposed by Ding et al. (1993).  

 

2.7 Electricity Price Modelling: Research Opportunities  

The price structure of electricity markets is highly idiosyncratic when compared to 

other more “conventional” financial markets. Many of the characteristics of 

electricity prices can be replicated with existing stochastic models, but their structure 

has not been fully represented adequately in the empirical research literature. A 

structural approach is appropriate but to date there are several unresolved modelling 

issues.  
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The finance-based stochastic models reviewed in this section generally intend to 

valuate and replicate properties of spot prices with a view towards pricing and 

ontracts.  To retain simplicity and some degree of tractability, 

lectricity 

rices in the Australian National Electricity Market.  Seasonalities including time-of-

day, day-of-week, monthly and yearly effects and large price spikes are a well-

documented feature of electricity markets and several studies examine their effect in 

aggregate using various functional forms (e.g. Kaminski, 1997, Clewlow and 

Strickland, 2000a; De Jong and Huismann, 2002; and Goto and Karolyi, 2004). The 

literature on electricity price modelling frequently identifies the presence of extreme 

price jumps with rapid reversion to the mean as a cause of extreme volatility in 

electricity prices (Bunn (2004), Alvaro, Peña, and Villaplana (2002), Hadsell, 

Marathe and Shawky (2004)). Modelling electricity prices in the Australian and 

overseas markets is a difficult process and this provides a strong incentive for further 

research into the electricity price market. Various models developed in the study of 

financial time-series data have been applied to electricity time series but there is much 

work yet to be done to fully account for the main components of price structure. 

Knittel and Roberts (2001) highlight the need to explore this structure and include it 

in price specifications, as do Goto and Karolyi (2004).     

e

evaluating derivatives c

models include only a few factors and typically focus on daily average prices, which 

are sensitive to outliers. While convenient for derivative pricing, the aggregation of 

intra-day information can be restrictive from a forecasting prospective. Although 

some stochastic models are adaptable to the peculiarities of electricity, there is still 

much work to do in accounting for the main elements of electricity price structure.  

 

The focus of this thesis is on modelling the structural characteristics of e

p
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Chapter 3: The Market for Electricity 
 

3.1 Introduction 

he purpose of this chapter is fourfold. First, it provides background to the recent 

deregulation and restructuring of the Australian electricity supply industry. Second, it 

provides an overview of the important historical and operational aspects of Australia’s 

National Electricity Market (NEM). Third, the nature of electricity and how the NEM 

is organised to accommodate distribution given its unique physical characteristics is 

discussed. Fourth, it provides an overview of the significant markets in other countries 

that have undertaken similar restructures of their electricity supply industry.  

n extensive transmission and distribution 

etwork seem to favour supply by a single firm within a given geographic region. One 

generally accepted characteristic of a natural monopoly is increasing returns to scale. 

According to Sweeney (2002), transmission of electricity, that is the provision of 

physical delivery services and infrastructure (poles, wires, transformers, and other 

equipment) provides a robust example of increasing returns to scale in the electricity 

supply industry. A customer could double the amount of electricity used with no 

increase in the cost of providing wires to a home. If two competing companies were 

each to run electric wires down the same streets to compete for customers, total cost 

and cost per customer would increase even with no change in the quantity of 

 if there were only one company providing 

T

 

Electricity supply has traditionally been viewed as a natural monopoly, in which 

economies of scale and the need for a

n

electricity delivered. Cost would be lowest

the wires, transformers, and other physical equipment for local distribution of 

centrally generated electricity, therefore local distribution of centrally generated 
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electricity is generally considered to be a natural monopoly and, as such, has 

historically been allowed to operate as a monopoly franchise, subject to regulatory 

oversight.  

 

asing 

returns to scale. In order to double the amount of electricity sold, a retailer would 

need to double the amount of electricity purchased at wholesale. If wholesale 

electricity prices were held fixed, doubling the acquisition of electricity would double 

the total cost of acquiring the electricity, therefore the cost per unit of electricity sold 

at retail neither increases nor decreases (at least not significantly) as the scale of retail 

operations changes. Retail sale of the commodity, electricity itself, is not 

characterized by increasing returns to scale and the retail electricity sales function 

cannot be viewed as a natural monopoly. 

il sales function could be organised as a competitive industry even 

hen transmission does not lend itself to competition.  Although, in principle, 

delivery and sale of the electricity could be separated, they have typically been 

bundled: customers were charged a price for the combination of electricity and 

delivery services. In this way, the natural monopoly franchise for distribution was 

extended into a monopoly franchise for retail electricity supply.  

 of electricity demonstrates increasing returns to scale, up to a point. 

lectricity moves on high-voltage transmission lines integrated into an electricity 

Unlike electricity distribution, retail electricity is not characterised by incre

 

In principle, the regulatory system could separate transmission of electricity from 

retail sales. The reta

w

 

Transmission

E
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grid. Figure 3.1 illustrates the transmission system for electricity from generator to 

consumer: 

Figure 3.1: The Electricity Transport System 

 

        Source: NEMMCO 

nmentally sensitive and costs may include 

environmental impact assessments, animal relocation or habitat management among 

others, on top of land purchase or leasing costs. If transmission lines are operating 

through these lines. Even at capacity, installing additional high-voltage wires on an 

 

 A significant cost of this transmission system is the costs of acquiring the right-of-

way on which to build high-voltage transmission lines. Transmission rights-of-way 

are increasingly politically and enviro

below capacity, there is negligible additional cost for moving additional electricity 

existing transmission route involves substantially less cost than establishing the link 

in the first place or establishing a new link in a new location. Transmission therefore 

seems to be appropriately organised as a monopoly, at least along a given 

transmission path.  
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Sweeney (2002) contends that electricity generation also seemed to have the 

increasing returns to scale characteristic of a natural monopoly. For many years the 

conventional wisdom was that the larger the electric generating plant, the lower the 

overall cost of electricity generation. This belief in an increasing-returns-to-scale 

reinforced the common view that electricity generation should be organised as a 

monopoly.  

 

Given that all the components of the electricity supply system were operated as 

onopolies, they were typically (but not necessarily) vertically integrated into a m

single company. A fundamental reason for this was the need for coordinated planning 

for capital investments and operations. The amount of electricity sold by the 

distribution/retail firm determined the amount of generation and transmission capacity 

needed. The location of transmission infrastructure and generation facilities required 

coordination in order to minimise overall cost. This need for coordination throughout 

the supply chain and for appropriate information flows helped justify the combination 

of these three entities into one vertically integrated company. A second and related 

reason for vertical integration was based on reducing transaction costs. Three separate 

monopolies, all integrated into one supply chain, might choose to operate so as to 

each gain financial advantages over the other. Although this strategic problem could 

be controlled through the regulatory process, integrating the three entities into one 

company would reduce or eliminate those incentives and the resulting need for 

regulatory oversight (Sweeney, 2002).  
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For these reasons, in the early development of their electricity infrastructure many 

countries adopted the approach of establishing vertically-integrated “firms” as cost-

of-service regulated or government-owned utilities with monopoly control of the 

electricity supply chain, from generation, through transmission and distribution to 

retail supply, usually within a geographic region. Historically, joint decision making 

processes between regulated utility, regulatory body and/or government have had 

difficulty making economically efficient investment decisions concerning new 

generation and transmission capacity. Wolak (1997) argues that under this kind of 

industry structure there are limited incentives for efficient operation or developing 

new supply capacity. Supporting this last contention is early work by Joskow (1987), 

who argues that returns to scale in electricity generation diminish and are exhausted at 

a unit size of about 500 Megawatts, a level of production generally well below 

industry output in most Organisation for Economic Cooperation and Development 

(OECD) member countries. Econometric work by Lee (1995) finds that constant 

returns to scale in the electricity supply industry (combining generation, transmission 

and distribution) in the Unites States of America are better supported when electricity 

utilities are owned by private investors rather than by states. 

 

In summary, the desire for reform in the electricity supply industry has, over the last 

two decades, driven many regulators worldwide to develop new regulatory schemes 

and programmes of market reorganization. The prevailing view is that technologies 

for electricity generation and retailing are such that competition is feasible, but that 

transmission retains the features of a natural monopoly. Competition in transmission 

would require duplication of the existing physical network of poles and wires, which 

in most countries would not be economically viable. Several countries have in recent 
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years formed wholesale markets for electricity and introduced varying degrees of 

competition in electricity retailing. For reasons discussed earlier, most countries that 

have embarked on programmes of electricity industry reform have kept the 

transmission sectors of the industry regulated and under state control. To varying 

degrees generation and retail businesses have been privatised, in some countries state 

and privately-owned companies compete with each other, some have municipally-

owned distribution companies and a few have only privately-owned distribution 

companies (Wolak, 1997). The approach taken in Australia is discussed in section 3.2, 

and examples of countries that have taken similar steps towards integrated national 

markets are discussed in section 3.3. 
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3.2 The Australian National Electricity Market (NEM) 

The Australian National Electricity Market (NEM) is a wholesale market for 

electricity supply, initially covering the states of Queensland, New South Wales 

(including the Australian Capital Territory), Victoria and South Australia. The NEM 

commenced operating at 2:00 am on 7 December 1998, to deliver electricity to market 

customers on an interconnected power system that stretches more than 4000 km from 

Port Douglas in Queensland to Port Lincoln in South Australia. At its inception, the 

NEM included four regions based on the mainland state boundaries (designated 

NSW1, QLD1, SA1 and VIC1), plus the Snowy Mountains Hydroelectric Scheme 

(SNOWY1) which is classified as a region in its own right. Tasmania became the 

sixth region of the NEM late in 2005. Queensland, New South Wales and Tasmania 

have largely corporatised the individual sectors of their electricity supply industry 

(while keeping them

generation, distribution and re

in South Australia rem

companies under long-term tes the breakdown of 

M by stage in the value chain. 

 as government-owned entities), Victoria has fully privatised its 

tail sectors and the bulk of electricity supply businesses 

ain state-owned but are currently operated by private 

 lease arrangements. Table 3.1 illustra

ownership of assets in the NE

 

Table 3.1: Breakdown of Public vs Private Ownership of Assets, by Stage in the 
Electricity Value Chain (as at 2003) 

 
 Generation Transmission Distribution Retail 

Private 36% 57% 50% 55% 

Public 64% 43% 50% 45% 

        Source: NEMMCO 
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3.2.1 Formation of the NEM 

Since 1991 successive Australian Governments have introduced fundamental reforms 

to improve the performance of the electricity supply industry. Prior to 1990, vertically 

integrated, state-owned authorities responsible for the generation, transmission and 

distribution of electricity dominated the electricity supply industry. Electricity prices 

were set by the respective state governments to cover the industry’s costs plus a 

prescribed return component required by the governments as owners.  

 

Work undertaken by the Industry Commission in 1991 highlighted the idea that major 

increases in national productive output could be achieved from:  

• Restructuring the electricity supply industry into separate elements of 

generation, transmission and distribution and retail supply; 

• The introduction of competition into generation and retail supply; and  

• The enhancement and extension of the three state interconnected power 

systems (between New South Wales, South Australia and Victoria) to 

eventually include Queensland and Tasmania. 

 

Progressive deregulation and restructuring of the Australian electricity supply sector 

followed the recommendations of the 1993 report of the Independent Committee of 

Inquiry into the Australian Electricity Utilities Industry (the Hillmer Report). Prior to 

deregulation, each state’s electricity industry was closed and governed by state 

gislation. This regime was dismantled and the national wholesale market was begun, 

initially being organised into two separate electricity “pools”, centred in Victoria 

(Vicpool) and New South Wales (SEM). The Victorian Power Exchange (VPX) in 

Victoria and Transgrid in NSW operated these pools until December 1998. On 7 

le
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December 1998, VPX and Transgrid were amalgamated and joined by Queensland 

South Australia and the Snowy Hydroelectric Scheme to form the National Electricity 

Market (NEM). The NEM has been developed with the aims of achieving a 

competitive wholesale market for the supply and purchase of electricity by market 

participants in an open access regime, that provides for non-discriminatory access to 

electricity networks and a transparent and nationally consistent legal and regulatory 

framework. As an interim step towards a single, fully integrated national market, the 

NEM is segmented into 5 regions along state lines: VIC1, NSW1, QLD1, SA1, and 

SNOWY1. The SNOWY1 region is differs from the other regions in that it is not 

defined by state boundaries, rather it is a collection of hydroelectric power stations 

comprising the Snowy Mountains Hydroelectric Scheme and operated by Snowy 

Hydro, a corporation owned jointly by the State Governments of New South Wales, 

Victoria and the Commonwealth14. The majority of electric power generated in 

SNOWY1 services demand from New South Wales and Victoria. Physical 

transmission of power between regions is achieved via interconnectors that physically 

link VIC, NSW, SA, ACT and Queensland. The National Electricity Market 

Management Company (NEMMCO) operates the NEM on behalf of the participating 

states. Tasmania entered the NEM in late 2005 via the “Basslink” submarine cable 

interconnector under Bass Strait. Western Australia and the Northern Territory are not 

expected to join the NEM in the foreseeable future, primarily for reasons of 

geographic isolation.  

 

                                                 
14 At the time of writing the Snowy Mountains Hydroelectric Scheme remains jointly owned by the 
State Governments of New South Wales and Victoria and the Commonwealth Government. A program 
for full privatisation via a public share offering was initiated in 2006 but failed as a result of public and 
political pressure to retain public ownership of the Scheme. 
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3.2.2 The Special Nature of Electricity 

Electricity is a homogeneous commodity with physical characteristics that distinguish 

it from more conventional traded commodities. It is physically the same no matter 

when and where it is produced or consumed. Its generation and consumption are for 

all practical purposes simultaneous . The “non-storability” of electricity ensures that 

electricity markets clear at each moment in time through an adjustment of prices. 

There is no possibility for generators to make use of productive capacity in hours 

when demand for electricity may be substantially less than supply, nor can 

distributors stockpile the commodity, for later use to “smooth” supply or demand 

shocks, resulting in market-clearing prices that can be extremely volatile, especially 

on an intra-day basis. 

 

How is Electricity Produced? 

Electricity can be produced by either chemical or mechanical action. Electricity 

produced using chemical means is stored in batteries. While this type of electricity 

production has many important applications in modern society, it is an expensive 

production process and can meet only limited specific requirements for electricity. In 

the NEM, electricity is produced by large-scale power stations that produce electricity 

by the mechanical action of turbine-driven generators - large, powerful magnets that 

spin very rapidly inside huge coils of conducting wire. More than 90 percent of 

Australia’s electricity production relies on the burning of fossil fuels, primarily coal, 

15

                                                 
15

quantities of electric power. While it can be argued that hydroelectric generation technologies can 
provide de-facto storage, it is not physical storage of the commodity as is traditionally defined and 
understood. Pumped wat
water is cycled uphill into

 To date no technology has been developed to provide a viable storage medium for wholesale 

er storage provides at best an indirect form of storage: when prices are low, 
 a reservoir and at peak price periods, water is released in high volume to 

generate electricity through a turbine.  This is storage of potential energy rather than electrical energy 
and is only available when water levels are sufficient and the reservoir is ready for use (Bodily & 
Buono, 2002). 
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r gen n, wate red in nd  wall. 

 and falls through large pipes to a generation plant at 

dam wall. The kinetic energy lling water drives turbine blades to 

gy. -pow nerat n of a 

propeller-like turbine spi genera il to p city  

summarises the basic p l char tics of  used

technologies.  

The basic unit of electric power is referred to as a Watt, representing consumption of 

one joule of energy per second. A joule is the quantity of energy required to raise the 

temperature of a kilogram of water by 1-degree Celsius.  The “wattage” of an 

electrical appliance refers to the rate at which it converts electrical energy to heat or 

light. A typical electric kettle has wattage of 2400, indicating that its use consumes 

2400 joules of electrical energy per second. One megawatt (MW), or one million 

watts, is the standard unit applied in the wholesale markets. In the NEM, the unit of 

price is Australian dollars per megawatt hour ($/MWh), where one Megawatt Hour 

can be defined as the quantity of energy required to power ten thousand 100W light 

globes for one hour. 

 by natural gas or heating oil. The chemical ener
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Table 3.2 Characteristics of Electricity Generators  

Characteristic Type    
 

 

Coal-fired 

Gas 
Turbine 
and Oil-
Fired 

Water 
(Hydro) 

Renewable 
(Wind/Solar) 

Gas and 

Boilers 

Time to fire-up 
generator from cold  

8–48 hours 20 minutes 1 minute  dependent on 
prevailing 
weather  

Degree of operator medium
(dependcontrol over energy high  high  

 
ing on 

available water 
levels) 

low  
source  

Use of non-renew
res r l  nil  able 

ou ces  high  high  ni

Production of 
gre h high  medium-

high  nil  nil  en ouse gases  
Other characteristics  medium-

low 
medium-
high 

 

low fuel cost 
with plentiful 
water supply; 
production 

suitable for 
remote and 
stand-alone 
applications; 

operating 
cost  

operating
cost  

severely 
affected by 
drought  

batteries may be 
used to store 
power  

Source: Salomon Smith Barney 1998 – “Flipping the Switch”. 

Once electricity is dispatched to the distribution grid, it is not possible to distinguish 

which generator produced the electricity that is consumed by a particular customer.  

For this reason, the wholesale electricity market is organised as a centralised “pool” 

where all electricity output from generators is notionally pooled and coordinated to 

meet prevailing electricity demand.  
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3.2.3 NEMMCO Market Operation 

As described in the previous section the wholesale market uses a pool system to 

output from generators to meet consumer demand. The pool is 

not a centralised marketplace; rather it is a set of rules and procedures managed by 

ined in 

o basic components, which a

• The centrally coordinated dispatch process; and 

y “dispatching” generators to produce sufficient electricity to meet customer 

s also attempts to provide sufficient reserve supply (“reserve 

centrally coordinate 

NEMMCO. In order to understand how the spot price for electricity is determ

the NEM it is necessary to describe the workings of the pool.  

The pool has tw re: 

• The spot market. 

 

The Centrally Coordinated Dispatch Process: 

The centrally coordinated dispatch process continually balances supply with demand 

b

demand. The proces

margin”) to handle potential failures in generation units and transmission networks.  

In the event that reserve margin is insufficient to cover a failure, NEMMCO may 

reduce a customer’s load without reference to the customer to ensure that the power 

system achieves a balance between supply and demand. This process is referred to as 

“load shedding” and is only implemented as a measure of last resort. 

 

The NEMMCO trading day is divided into half-hour trading intervals, each defined 

by the local time at the end of the trading interval. For example, the trading interval 

“1630” describes the trading period from 4:01 to 4:30 pm. Each generator provides 

NEMMCO with a “dispatch offer”, an offer to supply electricity, for a given half-hour 

trading interval. Dispatch offers for a particular day’s trading intervals are submitted 
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no later than 24 hours ahead of time. The dispatch offer specifies a minimum level of 

generator output (the “self dispatch level”) plus prices for incremental supply 

quantit

 

For exa h offer: 

ies above the self-dispatch level.  

mple, a generator may make the following dispatc

Dispatched Quantity Offer Price
0-150MWh (self-dispatch level) $5 

0M $15 
M

350-500MWh $45 
 

This example indicat ate more as the spot price 

e  i level of 150MW at $5 per 

MWh and would like to be paid higher prices for load above 150MWh. The 

r a nal  of production. 

 

The Spot Market:  

The spot electricity m arket where all generators 

and market customer ses based on a spot price.  

t a cal  by a two-step 

procedure based on t generators and customers 

interval is further divided into five-minute 

“dispatch intervals”. First, a “dispatch price” is recorded as the marginal price of 

supply to meet demand for each five-minute interval in a given half-hour period.  This 

marginal price is typically the dispatch offer price of the last generator brought into 

per megawatt hour. To illustrate the process of spot price calculation, consider an 

150-25 Wh 
250-350 Wh $30 

es that the generator is willing to gener

rises. Th  generator s offering to sell up to its self-dispatch 

generato ’s self-disp tch price often corresponds to its margi  cost

arket in the NEM is the centralised m

s settle their electricity sales and purcha

The spo  price is  derived price per trading interval, culated

he spot price offers and bids made by 

in the pool. Each half-hour trading 

production to meet demand at that interval.  Second, the spot price is calculated as the 

arithmetic average of the six dispatch prices in a half hour and is expressed in dollars 
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example half-hour trading interval, for which five generators submit the following 

offers: 

Generator 1: 100MWh at a dispatch price of $20 
Generator 2: 150MWh at a dispatch price of $28 

Generator 4: 100MWh at a dispatch price of $37 

 

 

Generator 3: 50MWh at a dispatch price of $35 

Generator 5: 100MWh at a dispatch price of $38 

At each 5 minute interval during the dispatch period the following might occur: 

Time Demand Generator Dispatch Price 
4:05pm 260MWh Generator 1: 100MWh (fully dispatched) 

Generator 2: 150MWh (fully dispatched) 
Generator 3: 10MWh (partly dispatched) 

$35 

4:10pm 330MWh Generator 1: 100MWh (fully dispatched) 
Generator 2: 150MWh (fully dispatched) 
Generator 3: 50MWh (fully dispatched) 

tched) 

$37 

Generator 4: 30MWh (partly dispa
4:15pm 370MWh Generator 1: 100MWh (fully dispatched) 

Generator 2: 150MWh (fully dispatched) 

Generator 4: 70MWh (partly dispatched) 

$37 

Generator 3: 50MWh (fully dispatched) 

4:20pm 405MWh Generator 1: 100MWh (fully dispatched) 
Generator 2: 150MWh (fully dispatched) 
Generator 3: 50MWh (fully dispatched) 
Generator 4: 100MWh (fully dispatched) 
Generator 5: 5MWh (partly dispatched) 

$38 

4:25pm 470MWh Generator 1: 100MWh (fully dispatched) 
Generator 2: 150MWh (fully dispatched) 
Generator 3: 50MWh (fully dispatched) 

Generator 5: 70MWh (partly dispatched) 

$38 

Generator 4: 100MWh (fully dispatched) 

4:30pm 380MWh Generator 1: 100MWh (fully dispatched) 
Generator 2: 150MWh (fully dispatched) 
Generator 3: 50MWh (fully dispatched) 
Generator 4: 80MWh (partly dispatched) 

$37* 
 

* Dispatch price reverts to Generator 4’s offer price as Generator 5 is no longer “called in” to meet 
prevailing demand. Source: NEMMCO (2001) 
 

The spot price for 4:30pm is therefore: 

( ) 37$
6

37$38$38$37$37$35$
=

+++++  

This spot price is the market price paid to contributing generators for the 1630 trading 

interval and the price paid by wholesale customers for the electricity they consume 
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during the period 4:00pm to 4:30pm [for further discussion see Dickson and Warr 

ce and 

stability in the grid. 

 

3.3 Other National Electricity Markets 

To date several countries in the OECD have embarked on programs of deregulation in 

their electricity industries, forming wholesale markets and introducing varying 

deg s on into the retail side of electricity supply16.  The following 

ctions discuss the significant characteristics of the major overseas electricity 

(2000), and NEMMCO (2001)].  

 

The National Electricity Code sets a maximum spot price of $10,000 per megawatt 

hour as the maximum price at which generators can bid into the market. Referred to as 

the Value of Lost Load (VoLL), it is the price at which NEMMCO directs network 

service providers to interrupt customer supply to maintain physical balan

ree  of competiti

se

markets that have moved towards integrated, national wholesale markets in a broadly 

similar ways to Australia, including England and Wales; Norway and Sweden; and 

New Zealand.  

 

                                                 
16

of deregulation and restructuring and moved towards establishing wholesale pool markets in some 
states, most notably California. This section is concerned with discussing national industries that have 

 The  U.S.A. has a large and diverse electricity supply industry sector that has undergone some degree 

moved towards integrated national markets in similar ways to Australia. The U.S. wholesale electricity 
markets are still somewhat disjoint, functioning on geographically separate, state-based lines. As such 
the U.S. national electricity supply is quite different from the type of nationally-integrated markets 
under discussion and is not discussed in detail here. Several other countries have undergone processes 
of electricity industry deregulation and restructuring to varying degrees, including Spain, Greece and 
Portugal among others. 
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3.3.1 England and Wales 

A wholesale market for electricity commenced in April 1990, since which time all but 

 very small proportion of electricity consumed in England and Wales must be sold 

1. Generation; 

2. Transmission; 

4. Retail Sales. 

 

 the National Grid Company (NGC) was formed. The NGC was originally 

jointly owned by the 12 RECs but has since been privatised and is now a publicly 

traded company.  The NGC provides transmission services from the generators to the 

                                                

a

through a day-ahead spot market for electricity, with market-clearing prices set on a 

half-hourly basis. The market was formed as a result of the dissolution and 

privatisation of the state-owned Central Electricity Generation Board (CEGB) and 12 

“Area Boards” which served as the local electricity distribution organisations.  

 

The electricity supply industry was restructured into four segments17: 

3. Distribution; and 

The distribution network was split into 12 regional electricity supply companies 

(RECs) and

RECs, coordinates transmission and dispatch of generators and runs the electricity 

spot market. This arrangement differs from Australia’s NEM in that NEMMCO 

coordinates the dispatch of generators and runs the wholesale spot market but does 

not manage transmission. NGC runs both the physical and financial markets for 

 

variation. 
17 Almost all subsequent industry restructures have followed this same subdivision, with minor 
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electricity in England and Wales, serving as both power exchange and as independent 

system operator.  

 

The retail sector of the market was initially divided into franchise and non-franchise 

customers, with franchise customers being tied to a supplier within a geographic 

territory. Non-franchise customers were generally large-scale commercial consumers 

and were given their choice of supplier from any of the 12 RECs as well as selected 

generators directly. As of March 31, 1998 all customers, including residential 

consumers were given supplier choice and effectively became non-franchise 

ustomers. 

Nordpool began operation in Oslo, Sweden in 1996 and is the world’s only 

international power exchange, integrating the electricity systems of Norway and 

Sweden, with some limited participation by neighbouring Russia, Finland and 

Denmark. 

 

capacity provided by other renewable energy means (wind and solar). This contrasts 

c

 

3.3.2 Norway and Sweden 

There are three major differences between Nordpool and the markets in England and 

Wales. The first relates to generation technology. In Norway, 99 per cent of installed 

capacity is provided by hydro-electric plant, with the remaining marginal capacity 

provided by oil and gas-fired plant. In Sweden, approximately half of total capacity is 

provided by hydropower, approximately thirty percent is provided by nuclear power 

and the remainder provided by oil and gas fired plant and some small marginal 
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with England and Wales, where some 80% of generation capacity is provided by 

higher marginal cost fossil-fuel powered plant.  

 

The second difference is that Nordpool is not a mandatory pool. Generators and 

consumers are free to choose whether or not they wish to sell or buy electricity 

 

The third difference is that the greater proportion of generation plant in Norway and 

separate companies providing generation, transmission, and distribution services 

similar to the market structure in Australia, England and Wales, but was not 

through Nordpool or by way of directly-negotiated bilateral contracts. To date the 

majority of electricity in Norway and Sweden is still traded via bilateral contract. In 

addition, there is a weekly financial futures market that offers contracts with 

maturities ranging from a week ahead to three years ahead.  

Sweden is still state-owned. When the electricity market in Norway was 

“deregulated”, Statkraft, the state-owned electricity supplier, was broken up into 

privatised. Statkraft SF was created as the national grid company and system operator 

and retained all Statkraft  generation assets. Statnett Marked AS was formed to run 

the spot electricity market. Statkraft owns approximately 40% of Norway’s 

hydroelectric capacity and supplies approximately 30% of all Norwegian output. 

Norsk Hydro, a large industrial end-user of electricity, controls 10% of generation 

capacity through its subsidiary Hydro Energy. The remaining 60% of supply is 

provided by small firms, the majority of which are owned by municipalities. In total 

there are approximately 200 generation companies in Norway, many of whom do not 

participate in the wholesale spot market). In Sweden, Vatenfall, the Swedish state 
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power board, generates approximately 50% of electricity supplied, nine other large 

generators share 40%, with small municipally-owned plants providing the remainder.  

 

3.2.3 New Zealand 

Up to 1994, the New Zealand Electricity Market had a system of monopoly providers 

of generation, transmission, distribution and retailing. Electricity Supply Authorities 

 

nd export to the North Island. The annual consumption of electricity in New Zealand 

is typically about one tenth that of England and Wales, yet the land area of New 

Zealand is approximately the same size as the entire United Kingdom. With a 

(ESAs) handled local distribution as governing bodies (power boards) Since then, a 

step-by-step process of industry reform has led to the separation of the monopoly 

elements to create competition in energy generation and electricity retailing. Reform 

of the New Zealand’s electricity supply industry followed the passage of the Energy 

Sector Reform Bill in 1992, which corporatised the ESAs and removed franchise 

territories, starting in 1993 for small customers and for all customers in 1994. 

Ownership of the distribution network remained primarily in government hands 

through municipally owned trusts or other local government authorities. 

The geographic separation of New Zealand into two main islands has resulted in a 

system consisting of two alternating current (AC) subsystems for the North and South 

Islands, connected by a submarine High Voltage Direct Current (HVDC) cable. All 

generation capacity on the South Island is hydroelectric and on the North Island there 

is a mix of hydroelectric (approximately 75%), geothermal (approximately 17%) and 

fossil fuel (approximately 8%) electricity generation plant. There is sufficient 

generation capacity on the South Island to serve its existing levels of local demand

a
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relatively small population of approximately 3.5 million and a mountainous 

topography, transmission and distribution accounts for a relatively large proportion of 

the cost of delivered electricity compared to the other markets discussed. Another 

important aspect of the New Zealand system is that most of the population resides on 

the North Island, yet the bulk of the generation resources are on the South Island, 

therefore transmission constraints imposed by the HVDC submarine interconnector 

play an important role in electricity supply (Wolak, 1997).  

A wholesale market for electricity commenced on October 1, 1996 and is 

administered by The Electricity Market Company (EMCO) on behalf of the 

lectricity Commission of New Zealand (ECNZ). The main participants are seven 

ho trade at 244 nodes across the transmission grid. Similar to 

r all half-hours for 

ollowing day. Generator dispatch must meet actual loads and price is determined 

E

generator/retailers w

Nordpool, participation in the wholesale market is not mandatory. The generators 

offer their capacity at grid injection points and retailers bid for electricity “offtake” at 

grid exit points. EMCO reconciles all metered quantities, determines the prices at 

each node, and manages a clearing and settlement process by which generators are 

paid for their generation at the market clearing price and retailers are invoiced for 

their for their “offtake”. Prices and quantities are determined half-hourly at each node. 

Because of concerns about the capacity of the HVDC interconnector, different spot 

prices are set for the North Island and the South Island. Market operation is similar to 

NEMMCO, in that generators submit bids as a function of price fo

the f

ex-post as a function of the market clearing dispatch solutions during each half-hour. 
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The transmission system is owned and operated by a state-owned enterprise, 

Transpower, that performs the functions of Grid Owner, Grid Operator, Scheduler and 

ispatcher for the wholesale market. Distribution of electricity from the grid exit 

 

3.4 Summary 

D

points to the end consumers' premises is the responsibility of 28 distributors who have 

monopoly control of the line services on their networks. Ownership of distributors, 

also known as lines companies, is through Trust Owned Companies or Public 

Companies. Full retail competition was introduced in 1999, with the result that 

consumers can choose from up to seven electricity retailers (who are also generators) 

for their energy supply.  

In most countries the electricity supply industry has historically been controlled and 

operated by vertically-integrated, state-controlled enterprises with effective monopoly 

control over a geographic territory for the entire electricity supply chain, from 

generation, through transmission and distribution to retail sales to the end consumer. 

Limited or no competition, perceived inefficiencies, limited economies of scale and 

reduced incentives for investment in such a market environment has led many 

countries to embark on programmes of deregulation, restructure and privatization to 

varying degrees, with a view to providing improved pricing and services to consumers 

and industry and improved productivity within the industry itself.   

 

In the Australian context the regime of state-controlled, vertically integrated suppliers 

has been progressively restructured since the early 1990s, with the component sectors 
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of the electricity supply industry disaggregated into distinct generation, transmission 

and distribution businesses. 

s of South Australia, Victoria, 

New South Wales, Queensland and more recently Tasmania. Because of the special 

physical characteristics of electricity: that it cannot be stored; that it is for all practical 

purposes instantly produced and consumed; and supplied quanta cannot be identified 

to a particular producer, the NEM is based on a regional “pool” structure based on 

state boundaries, with the addition of the generation assets of the Snowy 

Hydroelectric Scheme as its own pool.  The NEM trades continuously, with each 

calendar day divided into 48 half-hourly trading intervals. The NEM coordinates 

supply to meet demand through a mechanism of demand-driven generator dispatch 

and prices are determined as an average of market-clearing dispatch prices within 

each half-hour trading interval. All spot electricity trade between generators and 

retail/distributors is conducted via the pool system, but bilateral contracts are also 

 

The generation and retailing ends of the supply chain lend themselves well to 

deregulation and increased competition, while the transmission and distribution 

sectors of the industry (the “poles and wires” network) exhibit traits of natural 

monopoly and have remained under regulated, state control. In Victoria, the 

generation and retail businesses have been fully privatised and the assets of these 

sectors in the other states have been corporatised but remain under state ownership.  

 

The National Electricity Market (NEM), administered by the National Electricity 

Market Management Company (NEMMCO) was established in December 1998 as a 

wholesale market for electric power covering the state
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traded between generators, retail companies and large-scale industrial and commercial 

embarked on similar restructures, most 

ed into 

lectricity generation and retail. Transmission and distribution assets have remained 

ate-owned 

customers. 

 

Other OECD countries have successfully 

notably England and Wales; Norway and Sweden; and New Zealand. Each of these 

countries has, like Australia, disaggregated the components of electricity supply into 

separate generation, transmission & distribution and retail business. Competition and 

varying degrees of corporatisation and privatisation have been introduc

e

monopolies, either retained under state control through the agency of a st

company, or fully privatised, as in England and Wales. Each has established a 

wholesale market for spot trade in electricity, administered by a corporate entity that 

also serves as an Independent System Operator (ISO). 
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Chapter 4: Description and Sources of Data 

 

4.1 Introduction 

ose of this chapter is to describe the data collection and collation procedures 

esis. The summary descriptive statistics for 

ta for 

MMCO Electric Power Demand and Price Series 

ns sourced directly from NEMMCO18 for the period from commencement 

urly trading interval observations for each of demand and 

values for each 

                                                

The purp

and sources of the data sets used in this th

each data set are also presented. In brief, the data sets used include time series da

demand and price for electric power in the NEM collected from NEMMCO.  

 

4.2 NE

The demand and price data used in this study are half-hourly demand and pool price 

observatio

of the NEM at 2:00am December 7, 1998 to 11:30pm on March 31, 2005. NEMMCO 

collates and reports half-ho

price for the five NEM regions (NSW, QLD, SA, SNOWY1 and VIC1). The sample 

size is 110,719 observations for each of the five regions in the NEM. 

 

4.2.1 Demand 

This study uses NEMMCO’s reported pre-dispatch total demand 

region, expressed in Megawatts (MW) by half-hour trading interval for the sample 

period. Total demand is defined by NEMMCO as the total forecast regional demand 

 
18 Available for download from NEMMCO’s website at 
http://www.nemmco.com.au/data/market_data.htm
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against which a dispatch solution is performed. For any particular interval and region 

 

this is determined by NEMMCO as19: 

∑∑ ∑ ++++−= ADEDFAILNILGD iiT )(  iii

Where: 

D tal Demand ing I

∑ Generator W ( , the itial alues f

scheduled generation units within n, measured at thei rator te

and reported by SCADA – NEMMCO’s Superv ntrol ata Ac  

s

∑  Initia CADA sche -lo ion le  the 

interval; 

N onn itial M  Regio net of rconn ows 

into and out of the region; 

∑  “Total Allocated Interc  Loss pres  ∑(MW losses X 

egional Loss Allocation) .  “MW losses” represents actual power losses due to 

T is To  per Trad nterval; 

Gi is “∑  Initial M SCADA)”  sum of in MW v or all 

 the regio r gene rminals 

isory Co And D quisition

ystem; 

Li is “∑Load l MW(S )”, the duled base ad generat vel for

Ii is “Net Interc ector In W into n”, the  all inte ector fl

AILi is onnector es” is re ented by

R

physical leakage from the transmission system. Regional Loss Allocation is a 

NEMMCO pre-determined static loss factor for each interconnector; 

Fi(D) is Demand Forecast, a per-interval demand adjustment that relates the demand 

at the beginning of the interval to the target at the end of the interval; 

ADE is “Aggregate Dispatch Error”, an adjustment value used by the NEM to 

account for disparities between scheduled and actual dispatch for all scheduled 

generation units in the region; 

                                                 
19 Source:  NEMMCO Document “Regional Demand Definition” , Version 1.0, 17 June, 2004, 

The demand determination model is here presented as it is in the NEMMCO demand definition 
document. 

available at http://www.nemmco.com.au/dispatchandpricing/140-0035.htm, accessed 25 June 2005. 
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Summary statistics by region for each demand series are presented in Table 4.1.  

 

7/12/1998 to 1/4/2005 

 NSW1 QLD1 SA1 SNOWY1 VIC1 

Table 4.1: Descriptive Statistics for Total Demand (MW) by region 

 

Mean 8042.87 5118.64 1451.41 29.58 5355.72 

Median 8106.43 5157.00 1454.71 18.76 5335.44 

Maximum 12838.14 8231.95 2833.22 736.89 8524.07 

St. Dev 1287.40 837.72 263.574 27.79 761.55 

Skewness 0.01 0.07 0.75 

Minimum 3294.38 2023.65 731.48 0.00 2239.46 

1.40 -0.04 

Kurtosis 2.65 2.62 4.44 10.69 2.94 

Jarque-Bera 568.30 771.56 20003.84 309405.6 54.44 

      

 

# Obs 

 

110719 

 

110719 

 

110719 

 

110719 

 

110719 

(p-value) (0) (0) (0) (0) (0) 

ADF Test Stat 

(1% crit.value) 

-20.55 

(-3.43) 

-16.50 

(-3.43) 

-25.61 

(-3.43) 

-16.73 

(-3.43) 

-20.46 

(-3.43) 

 

NSW1 has the highest mean, median and maximum demand observations of the five 

regions for the period. New South Wales is Australia’s most populous state so we 

would expect that demand for electric power to be highest in the NSW1 region. The 

other regions follow generally in order of state population, with VIC1 next highest, 

followed by QLD1, SA1 and SNOWY1. It should be noted that SNOWY1 represents 

a cluster of hydroelectric generation assets in the snowy mountains regions of New 

South Wales, rather than a geographical region or state like the other 4 NEM regions. 

As such almost all of the electric power produced by generation plant in SNOWY1 

services demand arising primarily in New South Wales. To a lesser extent Victoria 
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and Queensland are serviced with power from SNOWY1 via the interconnectors 

joining those states with New South Wales.  

 

The distributions of demand observations are slightly negatively skewed for VIC1, 

and positively skewed for NSW1, QLD1, SA1 and SNOWY1; and that the Demand 

series’ for NSW1, QLD1, SA1, SNOWY1 and VIC1, demonstrate positive kurtosis. 

Jarque-Bera (JB) statistics reject the hypothesis of normal distribution at the 1% level 

of significance for all 5 regions. Augmented Dickey-Fuller statistics reject the 

hypothesis of a unit root at the 1% level of significance, indicating stationarity 

consistent with the findings of Worthington et al. (2003)20.  

 

An interesting characteristic of t ccurrence of zero demand from 

time to time, as illustrated by Figure one. Over the sample period, a zero level of 

demand is observed 1799 times.  Figure 4.1 indicates that at times of zero demand we 

also observe a market-clearing price. This condition may be attributable to the 

business activities Snowy Hydro Pty Ltd, the operator of the Snowy Hydroelectric 

Scheme. A significant component of Snowy Hydro’s earnings derive from its 

distributors and retailers, as protection against price spikes. 

 

                                                

he SNOWY1 is the o

activities in the sale of hedge contracts to demand-side market participants, primarily 

 
20 Interestingly, De Vany and Walls (1999) find that electricity prices in 10 of 11 regional markets in 
the USA demonstrate significant non-stationarity. This difference may be a result of market operation 
and design - that the prices considered by their study were prices for supply determined by over-the-
counter bilateral supply agreements.  
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5/9/1999, Illustrating the Occurrence of Zero Demand Associated With a Market 
Clearing Spot Price. 

/operator sells cap-style option contracts on spot electricity with a 

ecific exercise price over a specified quantity of electricity. In the first instance it 

.

t holder the excess of the spot price over 

e exercise price for the specified quantity of electricity. Hydroelectric generation is 

em
M

)

ot Prce ($
M

W

5/9 6/9 7/9 8/9 9/9 10/9 11/9

Figure 4.1: SNOWY1 Half-Hourly Demand and Spot Price for the Week Commencing 

 

The generator

sp

receives premium income for the sold option  If the exercise price of the cap is 

exceeded, cap is in the money and the holder will exercise their right under the cap. 

On exercise the generator pays the contrac

th

described as a “fast-start” generation technology – hydroelectric generation plant can 

typically be called into production within one to two minutes of activation21. This 

capacity to generate and to commence production quickly provides a natural hedge 

                                                 

from the dam and falls through large pipes to a generation plant at the foot of the dam wall. The kinetic 

can usually be started o
coal, oil or gas-fired pl

21 In hydroelectric power generation, water is stored in a reservoir behind a dam wall. Water is released 

energy of falling water drives generator turbine blades to produce electrical energy. The flow of water 
r stopped within one to two minutes. Other generation technologies, such as 
ant, require that fuel be burned to heat water, producing steam that turns 

generator turbine blades to produce electricity. Gas turbine and some oil-fired plant can be called into 
production in the order of 20 to 30 minutes, with coal-fired plant requiring 8 to 48 hours for orderly 
start-up and shutdown. (source: “Flipping the Switch”, Salomon Smith Barney, 1998). 
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against the exercise risk of the sold contract. The generator can bid its production 

capacity into the pool at the exercise price and quantity of its sold contracts to cover 

its exercise risk. If the spot price exceeds the exercise price of the sold cap, the 

operator will be called into production at its bid price and level of production, 

receiving the spot price over the production quantity specified by its sold contracts. 

As a result a quantity of electricity is produced by the SNOWY1 generation assets and 

sold at a prevailing spot market price, but that quantity sold is not necessarily 

associated with a level of physical demand in the SNOWY1 region. On this basis, 

Snowy Hydro effectively operates as a peak producer with its generation assets 

dormant for much of the time and only producing when prices are high but with a 

supplementary income stream of premiums earned from the sale of option contracts.  

 

4.2.2 Price 

 
T ses half-ho rted s 22 valu ch re ress

Australian Dollars23 per watt hour (MWh). De  statisti region

the price series’ are presented in Table 4.2. 

 

T n has th mean an p egawatt hour at $45.99 

and $28.05 respectively. This is most likely attributab  the natur  generati

technology prevalent in each state. New South Wales, Queensland and

o -cost and bl tors fo base-

electricity n pared to South Aust

turbine generation.  
                                                

his study u urly repo pot price es for ea gion, exp ed in 

 mega scriptive cs by  for 

he SA1 regio e highest  and medi rices per m

le to e of on 

 Victoria rely 

n relatively low brown ack coal fired genera r their load 

eeds, com ralia’s greater reliance on higher-cost gas-

 
22 The mechanism of spot price determination is described in section 3.1.3 
23 Spot prices are exclusive of Australian Goods and Services Tax (GST) 
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The distributions of price for all five regions demonstrate positive excess skewness 

s, 

consistent with the earlier findings of Goto and Korolyi (2004). 

 NSW1 QLD1 SA1 SNOWY1 VIC1 

with coefficients higher than 0.5, and extremely high positive kurtosis with some 

coefficients in the order of 1000 or more. This extreme fat-tailed character is 

consistent with the findings of earlier studies (see Huisman and Huurman, 2002; 

Higgs and Worthington, 2005; and Wolak, 1997) and is likely driven by the 

prevalence of extremely high prices (see Figure 1.1) and the occurrence of negative 

prices (see Figure 4.2).  Consistent with these statistics, Jarque-Bera (JB) statistics are 

extremely high and reject the null hypothesis of normal distribution at the 1% level of 

significance for all five regions. Augmented Dickey-Fuller (ADF) statistics robustly 

reject the hypothesis of a Unit Root at the 1% level of significance for all five region

 
Table 4.2: Descriptive Statistics for Price ($/MWh) by region 

7/12/1998 to 1/4/2005 

Mean 33.98 37.98 45.99 31.78 30.46 

Median 23.18 21.95 28.05 23.44 23.11 

.19 

91 

St. Dev 167.22 159.51 201.08 119.01 102.66 

S .31 

.47 

 

Jarque-Bera 

(p-value) 

1.1

(0) (0) 

9

(0) 

1.26 x1010

(0) 

8.95 x109

(0) 

 

ADF Test Stat 

t.valu

-33.80 

4

5.21 

3) 

-33.64 

3) 

-32.21 

(-3.43) 

 

# ns 1 11 19 110719 19 

Maximum 9909.03 8942.60 8999.98 7500.00 6444

Minimum -3.10 -156.14 -822.45 -3.15 -329.

kewness 36.01 27.46 20.99 36.81 34

Kurtosis 1561.44 993.59 505.49 1652.50 1394

2x1010 4.54 x109 1.17E x10

-30.01 -2

(1% cri e) (-3. 3) (-3.43) (-3.4 (-3.4

 Observatio  1107 9 0719 1107 1107
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Ne ce

An observed characteristic of the price seri 1, QLD1,

SN nd e oc urrence from time to time of negative prices in the 

po  4  an xtrem rence o  a negative price in the pool, 

where the pool price fell to -$161.48 at 12:30 am, 15/4/2000. Negative prices are not 

usually encountered in financial time series. In the NEM price series for the sample 

pe cc latively rare, with NSW ding 6 ccurrences, QLD1 

9 occurrences, SA1 5 occurrences, includi  the treme value of -$822.45. 

SN co tive price events (all of which coincid  with o es 

in  V C1 cords 15

gative Pri s 

es for all 5 regions (NSW  SA1, 

OWY1, a  VIC1) is th c

ol.  Figure .2 illustrates e e occur f  

riod they o ur but are re 1 recor o

ng  most ex

OWY1 re rding 6 nega e ccurrenc

 NSW1 and IC1), and VI re  occurrences for the period under study.   
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Figure 4.2: VIC1 Spot rice for the Month of April 2000, illustrating the Occurrence of 

Occurrences of negative price are rare and typically short-lived, usually persisting for 

½ to 1 hour. The longest observed interval of negative price occurred simultaneously 

in NSW1, SNOWY1 and VIC1 for a period of 2½ hours, between 04:00am and 06:30 

po
t

ic
e 

(
A/

M
h)

30/415/45/4 10/4 20/4 25/4

 

an Extreme Negative Price Spike at 12:30a.m. on April 15, 2000. 
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am on October 10, 1999. Table 4.4 lists all observed occurrences of negative price 

during the sample period by regions, and shows the date and time of the occurrence 

and the corresponding spot price. 

 
Table 4.3: Occurrences of Negative Spot Price ($/MWh) by region 

7/12/1998 to 1/4/2005 
DATE TIME (aest) NSW1 QLD1 SA1 SNOWY1 VIC1 

16-Jun-99 6:00:00 AM  -4.45    
29-Aug-99 4:00:00 AM  -3.52    
10-Oct-99 4:00:00 AM -0.39   -0.39 -0.38 
10-Oct-99 4:30:00 AM -1.00   -1.02 -1.00 
10-Oct-99 5:00:00 AM -1.52   -1.55 -1.53 
10-Oct-99 5:30:00 AM -3.10   -3.15 -3.10 
10-Oct-99 6:00:00 AM -3.07   -3.11 -3.07 
10-Oct-99 6:30:00 AM -0.02   -0.02 -0.02 
24-Oct-99 4:30:00 AM  -12.81    

13-Jun-00 5:30:00 AM   
15-Apr-00 8:30:00 AM  -2.91   -161.67 

   
3-Jul-00 6:00:00 AM  -4.28    

22-Oct-00 6:00:00 AM     -305.78 
28-Oct-00 3:00:00 AM  -84.39    
20-Jan-01 1:30:00 AM  -20.81    

3-Jan-02 4:30:00 AM     -155.94 
3-Nov-02 5:00:00 AM   -246.57  -228.01 
3-Nov-02 5:00:00 AM      

10-Nov-02 10:30:00 AM     -5.10 
10-Dec-02 2:00:00 PM   -6.03   
12-Dec-02 5:00:00 PM   -9.99   
11-Jan-03 3:00:00 PM   -61.95   

25-Mar-03 6:00:00 AM  -156.14    
8-Mar-04 12:00:00 PM   -822.45   
24-Jun-04 1:00:00 PM  -150.46    
27-Jun-04 6:30:00 AM     -163.02 

8-Jul-04 6:00:00 AM     -329.91 
30-Oct-04 4:00:00 PM     -153.61 
31-Oct-04 1:00:00 PM     -153.00 

 

 

The occurrence of negative prices is attributable to the market practices of generators. 

As discussed previously, it is usual for generators to provide offers to supply 

electricity to the pool one day ahead of actual supply.  The offer bid specifies a 

minimum level of generator output known as the “self-dispatch” level.  A generator 
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may lower its self-dispatch price to ensure that it is called in to generate. A generator 

may bid a negative price into the pool for its self-dispatch quantity (in effect, an offer 

to pay to generate) as a tactical move to ensure that they are among the first to be 

called in to generate.  Demand usually outstrips the self-dispatch level of supply, so it 

is rare that generators actually pay to generate but on occasion a generator may not be 

called in and is “caught short”, effectively paying to generate for a short period. 

rades are settled in the NEM daily on a net basis, so “paying to generate” does not 

                                                

T

usually require a cash outlay on the part of the generator. The occurrence of a 

negative price may also be a function of the nature of technology used to generate 

electricity. In Victoria and New South Wales “base load” generation capacity employs 

what is generally referred to as “slow-start” generation technology, typically brown 

coal (VIC1) or black coal (NSW1) fired generation plant, usually located adjacent to a 

coalmine. The process of extracting coal from the earth, conveying it to a furnace, 

starting a furnace to boil water to make steam to ultimately turn a generator turbine, 

may require 8-4824 hours for an orderly start-up and a similar time for an orderly shut-

down, at great cost to the generator. Given that electricity is not storable and if 

demand does not meet the minimum base-load capacity of these generators for a short 

period, a generator may be prepared to risk having to “pay” the pool to take their 

excess capacity for a short time rather than incur the greater cost of shut-down and 

start-up and the opportunity cost of lost production. 

 
24 See table 3.1 and accompanying discussion. 
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4.3 Summary 

In this chapter, electricity demand and price data sources and collection method are 

resented, along with a description of NEMMCO’s method of deriving half-hourly 

emand values. Preliminary statistical analyses of demand and price are also 

technologies are used and the benefits of a direct 

terconnector with New South Wales and the SNOWY hydroelectric scheme are not 

p

d

presented.   

 

The descriptive analyses in this chapter suggest that demand for electric power is 

greater in Australia’s more populous states, a finding which is intuitively appealing. 

Demand in the SNOWY1 region is comparatively very low. This can be attributed to 

the nature of SNOWY1 as an artificially-defined region of hydroelectric power 

generation assets that primarily services demand from New South Wales and Victoria. 

Mean and median electricity prices are broadly consistent across the NSW1, QLD1 

and VIC1 regions in which base generation technologies are similar and use relatively 

low-cost fuels. Mean and median prices appear higher in South Australia, where more 

costly fuels and generation 

in

available. It should also be noted that consistent with the extant literature, 

distributions of price and demand are significantly non-normal for all 5 NEM regions 

with all demonstrating broadly similar characteristics of positive skewness and high 

kurtosis, consistent with the established literature on electricity prices. 
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Chapter 5: Seasonal Factors and Outlier Effects in 
Rate of Return on Electricity Spot Prices in Australia’s 
National Electricity Market 
 

 

5.1 Introduction 

As discussed in Section 3.2, the non-storability of electricity ensures that electricity 

markets clear at each moment in time through an adjustment of prices and there is no 

capacity for producers or consumers to use inventory to smooth out supply or demand 

shocks. Such shocks may be caused by unplanned generation unit outages, 

transmission network failure, generator pool price re-bidding, unexpected weather 

variation and physical constraints on transmission between regions.  This particular 

feature of electricity means that market-clearing prices can be extremely volatile, 

especially within an intra-day time frame.  Further, electricity price time series tend to 

exhibit a greater incidence of extreme price spikes than financial data and at times 

negative prices are observed.  

 

The literature on electricity price modelling frequently identifies the presence of 

extreme price jumps with rapid reversion to the mean as a cause of extreme volatility 

in electricity prices (Bunn (2004), Alvaro, Peña, and Villaplana (2002), Hadsell, 

Marathe and Shawky (2004)). Modelling electricity prices in the Australian and 

foreign markets is a difficult process and this provides a strong incentive for further 

research into the electricity price market. Many stochastic models applied to 

conventional financial time-series data have been applied to electricity time series but 

they have some way to go in revealing the main components of price structure. Knittel 
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and Roberts (2001) emphasised the need to explore this structure and include it in 

price specifications. Goto and Karolyi (2004) further note that their jump models fail 

 capture the significant effects of extreme price spikes and the effects of these spikes 

 

The research contribution of this chapter is twofold. First, it examines a six-year 

sample of half hourly returns on spot prices for five regions in Australia’s National 

Electricity Market (NEM) and reports on the occurrence of outliers in the form of 

extreme spikes and the incidence of negative prices. It is not contentious that 

seasonalities and large price spikes are a feature of electricity markets and several 

studies examine their effect in aggregate using various functional forms (e.g. 

Kaminski, 1997; Clewlow and Strickland, 2000a; De Jong and Huismann, 2002; 

Goto and Karolyi ,2004) This study differs from previous work in that it presents a 

model that captures individual large price spikes along with negative prices and 

ay-of-week, monthly and yearly effects. 

to

warrant further investigation.   

 

seasonal factors including time-of-day, d

Much of the existing literature uses daily or hourly data, over samples spanning one 

or two years. This study’s use of half-hourly prices over a six-year sample provides a 

useful extension of past work and is potentially significant for producers, regulators 

and researchers. The use of data sampled over a longer (six-year) time period is 

necessary in order to establish the extent to which these extreme within-day price 

spikes and negative prices are a regular feature of the data.   Knittel and Roberts 

(2001) find that the forecasting performance of standard financial models is relatively 

poor in the presence of seasonal effects and extreme behaviour and without 

adjustment for these effects. By explicitly investigating these effects this study may 
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also be of significance for financial markets traders wishing to profitably operate in 

the electricity markets.  

 

The empirical results of this study show that seasonal effects vary between regions 

nd time of day effects are generally more significant than other seasonalities. It is 

5.2 Summary of Key Literature 

in Guthrie and Videbeck (2002). In a 

study of half-hourly prices in the New Zealand Electricity Market (NZEM), support 

a

further shown that when examined individually the extreme values represented by 

spikes and negative prices are highly significant.   

 

The rest of the chapter is organised as follows: Section 5.2 summarises the key related 

literature on electricity price behaviour to clearly distinguish contribution of this 

study. Data and preliminary statistical analysis is provided in section 5.3. Models and 

main estimation results are presented in sections 5.4 and 5.5. Section 5.6 summarises 

findings and suggests further related research.  

 

The literature in the field of electricity price behaviour reveals several typical 

characteristics in its various markets. These characteristics include non-normality in 

the form of positive skewness and extreme leptokurtosis (e.g. Huismann and 

Huurman, 2003, Goto and Karolyi, 2004), mean-reversion to a long-run level (e.g. 

Johnson and Barz, 1999), multi-scale seasonality (intra-day, weekly, seasonal), 

calendar effects, and extreme behaviour with fast-reverting spikes (e.g. Kaminski, 

1997, Clewlow and Strickland, 2000b). The majority of the literature treats electricity 

as a single commodity traded and delivered at different times of the day. An 

interesting alternative approach is proposed 
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is found for the treatment of electricity delivered at different times of the day as 

ple where the spike characteristic is addressed through a random walk 

mp-diffusion model, adopted from Merton (1976), but this model ignores the 

different commodities that trade on a small number of distinct intra-day markets, 

however in the interests of model parsimony, their approach ignores finer intra-day 

variation and other seasonalities. 

 

Spot prices for electricity display excessive volatility when compared to other 

commodities and financial assets (Bunn and Karakatsani, 2003). Escribano et al. 

(2002) show volatility to be time-varying with evidence of heteroskedasticity in 

conditional variance for daily spot prices in Argentina, New Zealand, Nordpool 

(Norway and Sweden) and Spain. Much of the work on empirical price modelling 

attempts to adapt some of the familiar models from financial assets to the 

characteristics of electricity. Knittel and Roberts (2001), apply various financial 

models of asset prices to hourly prices in the California market, including mean-

reversion, time-varying mean, jump-diffusion, time-dependent jump intensity, 

ARMAX and EGARCH.  The author concludes that the forecasting performance is 

relatively poor for most standard financial asset models. Kaminski (1997) provides an 

early exam

ju

persistent mean-reversion in electricity prices first identified by Johnson and Barz 

(1997) and explored further in Clewlow and Strickland (2000a and 2000b).  One of 

the limitations of the jump-diffusion approach is the assumption that all shocks 

affecting the price series decay at the same rate. Escribano et al. (2002) suggests two 

additional price features; volatility clustering in the form of GARCH effects and 

seasonality (emphasised by Lucia and Schwartz, 2002), both in the deterministic 

component of prices and the jump intensity.  
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There is a branch of the literature that provides support for regime-switching as an 

alternative modelling framework to jump-diffusion and this may be more suitable for 

actual price forecasting. Huisman and Mahieu (2001) propose an isolation of two 

effects assuming three market regimes; a regular state with mean-reverting price, a 

jump regime that creates the spike and finally, a jump reversal regime that ensures 

that prices revert to their previous normal level. The advantage of this model is that 

e mean-reversion and spike features are included, with the spikes treated as truly 

pot prices demonstrate spikes that are truly 

me-specific events and are independent from the underlying mean-reverting price 

Sweden) and Australia.  Evidence in support of the existence of volatility jumps is 

found in their sample of data. Wolak (1997) and Goto and Karolyi (2004) in their 

comparative studies of markets note that jump characteristics appear to be closely 

related to the institutional structure of markets, with extreme price spikes more 

prevalent in markets with compulsory participation, as is the case in Australia’s NEM. 

Higgs and Worthington (2005) estimate five different GARCH volatility processes 

th

independent disruptions from the (normally) stable price process. One limitation of 

this regime-transition structure is that it does not allow for the multiple consecutive 

spikes that are sometimes observed in electricity markets. De Jong and Huisman 

(2002) relax this constraint and propose a two-state model of lognormal prices that 

assumes a stable mean-reverting regime and an independent spike regime in spot price 

observed on the Dutch power exchange (APX) for the period January 2001 to June 

2002.  These models show that electricity s

ti

process.  

 

Goto and Karolyi (2004) provide some insight into Australian electricity price in their 

comparison of electricity prices drawn from the US, NORDPOOL (Norway and 
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(GARCH, RiskMetrics, Normal, student and skewed student APARCH) over a 

sample of half-hourly price data for the period January 1, 2002 to June 1, 2003. Their 

results indicate that time-of-day, day-of-week and month-of-year effects proxy the 

arrival of new market information. They further find that positive price spikes, early-

morning, late-afternoon and early evening hours are associated with high volatility 

and that negative price spikes, and other times of the day, week and year are 

associated with relatively lower volatility.  

 

According to Bunn and Karakatsani (2003), a common feature of finance-inspired 

stochastic models is to capture the statistical properties of spot price behaviour in the 

context of derivatives pricing. In order to retain simplicity and/or analytical 

tractability, the models include only a few factors and typically focus on daily 

average prices, which are sensitive to outliers. While convenient for options pricing, 

disregarding evident seasonal and structural effects present in the market data is 

unhelpful from a forecasting perspective.  

 

Much of the literature documents behaviour of daily or hourly price and returns series 

over sample periods of two years or less25. The Australian wholesale electricity 

market is based on prices determined at half-hourly trading intervals. According to 

03), when using high-frequency data it is desirable to sample as 

                                                

Ait-Sahalia et al. (20

 

1999 to 31 December 2004, however rather than using half-hourly trading interval data in their 

half-hourly prices, but these are often averaged away in daily prices. This is especially important 
because the spiking behaviour in electricity markets appears to exhibit strong time variation, with 
spikes being relatively more common in peak daylight times. Specification of intra-day data would 
provide a logical resolution to these as yet unexplored features. 
 
 

25 With the exception of Higgs and Worthington (2005) who use a sample period of from 1 January 

analysis, a series of daily arithmetic means is drawn from the trading interval data, yielding 2,192 
observations for each market. The study presented here uses samples of more than 110,000 
observations for each of five regions. Second, through the use of daily data, this methodology also sets 
the shortest duration of a spike to one day. In many instances, short-duration spikes may also occur in 
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often as possible and I believe the use of daily data may lead to the loss of important 

information present in the higher-frequency time series. Many stochastic models 

applied to conventional financial time-series data have been applied to electricity time 

ries but they have some way to go in revealing the main components of price 

structure. As noted in the introduction to this study, Knittel and Roberts (2001) 

emphasised the need to explore this structure and include it in price specifications. 

Goto and Karolyi (2004) further note that their jump models fail to capture apparently 

significant effects of extreme price jumps and the effects of these jumps warrant 

further investigation. This chapter extends the current body of empirical work by 

examining how half-hourly returns are sensitive to seasonalities and other structural 

factors over a six-year sample period. Seasonalities examined include time-of-day, 

day-of-week, monthly and yearly effects and structural effects examined include 

extreme-value influences such as price spikes and negative prices.  The effects of 

price spikes are more closely examined in this paper and occurrences of negative 

price, which are generally not considered in the literature, but are explicitly 

investigated in this study. 

The raw price data used to derive the returns series employed by this study are half-

hourly pool price observations sourced directly from NEMMCO for the period from 

7  December 1998 to 31  March, 2005 . Descriptive statistics and preliminary 

se

 

5.3 Data 

5.3.1 Price Data 

th st 26

                                                 
26 It is worth noting that the half-hourly spot price in the NEM is a derived price and the method used 
by the NEM to determine spot price is generally not generally discussed in the current body of 
literature. A description of the mechanism of spot price determination is presented in section 3.1.3. 
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analysis of the price series is presented in detail in section 4.2. The sample size is 

110,719 observations for each of five NEM regions under examination, these being 

NSW1, QLD1, SA1, SNOWY1 and VIC1.  

 

As discussed in Chapter Four, the existence of negative prices is a characteristic of the 

electricity market that is not commonly found in financial time series data and is most 

likely attributable to the market practices of generators.  Figure 4.2 illustrates an 

extreme occurrence of negative price in VIC1, where the pool price fell to -$161.48 at 

12:30a.m. on April 15, 2001. Figure 4.2 also suggests that negative prices exhibit 

similar rapid mean-reverting tendencies to the extreme high price spikes discussed in 

the existing literature. Occurrences of negative price are rare and typically short-lived, 

usually persisting for half to one hour. The longest observed interval of negative price 

occurred simultaneously in NSW1, SNOWY1 and VIC1 for a period of two and a half 

hours, between 04:00am and 06:30 am on October 10, 1999.  

 

5.3.2 Half-Hourly Rate of Return 

In general, attempts to model or forecast prices in financial markets should be based 

on successive variations in price and not on the prices themselves (see, inter alia, de 

 

commodity as such, spot electricity also does not yield a rate of return to an investor 

in the traditional sense. In light of this characteristic the term “returns” is used to 

Bodt, Rynkiewicz & Cottrell, 2001). In the context of commodity futures contracts,

Black (1976) notes that because futures contracts require no initial investment, futures 

positions cannot be said to yield rates of return as they are generally understood, i.e. 

as a result of change in value of the holder’s initial investment over time. Because 

there is no ability to hold a unit of electricity and there is no “initial investment” in the 
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denote proportionate price change over a trading interval. The half-hourly rate of 

return series (hereafter referred to as “returns”) is of interest because there are a 

growing number of over-the-counter and exchange-traded derivative products 

available for hedgers tricity 

ies. 

and speculators in the Australian and overseas elec

markets and pricing models for derivatives are informed by the behaviour of returns.  

Figure 5.2 shows price and returns over a 10-day period in August 2000 and indicates 

that returns appear to exhibit some time-of-day effects but may not necessarily exhibit 

the seasonal effects evident in the price ser
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Figure 5.1: Half-Hourly VIC1 Price and Return for the period 14/8/200 6/8/2000. 
 

A discrete returns specification  is preferred over log returns because the spot market 

in the NEM trades at discrete half-hourly intervals – it is not a continuous market in 

the way of most conventional financial m rkets. Further, a log returns specification 

ill dampen the extreme spike effects I am attempting to capture, and is not defined 

                                                

8 16/8 18/ 20/8

0 to 2

27

a

w

 
27 The analysis on returns reported in this chapter was also performed on first-difference (change in level) in the 
price series and the results were not found to be materially different from those found for the returns series.  
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in the presence of negative prices, the effects of which are also examined.  With these 

market characteristics in mind, the returns series used in this study were generated as 

half-hourly discrete returns, ie: 

( )
1

1

−

−−
=

t

tt

P
PP

RP .      (5.1) 

Where RP

t

urn”) 

t time t, Pt is half-hourly price at time t and |Pt-1| is the absolute value of the previous 

icity 

prices that do not occur in financial m hen working with returns, 

negative prices h observation 

 is a negative price that occurred in the VIC1 regional pool at 10:30 am on 

November 10th, 2002: 

 

le 5. tion o thmeti ent of Negative Price

Observation  

  

t represents the half-hourly discrete proportionate change in price (“ret

a

half-hourly price, i.e. at time t-1. The denominator is specified as the absolute value to 

allow for the presence of negative prices.  

As discussed in Chapter 4, negative prices are a rare but real feature of electr

arkets data. W

 become problematic, as illustrated by Table 5.1, in whic

4

Tab 1: Illustra f the Ari c Treatm s 
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(2)
 

 

Date & Time

(3)
 

(4)

tP  1

1

−

−−
= t

t P
P

RP
t

tP
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1−tP
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−

t

t

P
P

=tRP

1 10/1 , 09:30 6.49  _ 1/2002 _

2 10 09:30 .12  10% 

4 10/11/2002, 10:30 -5.10 -149% -149% 

/11/2002,  7 10%

3 10/11/2002, 10:00 10.38 46% 46% 

5 10/11/2002, 10:30 16.33 -420% 420% 

6 10/11/2002, 10:30 5.67 -65% -65% 

7 10/11/2002, 10:30 5.59 -1% -1% 
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The conventionally derived discrete return is shown in column (4). Arithmetically, 

this approach produces a negative return of -420% at observation 5, immediately 

following the occurrence of negative price, implying incorrectly that the price falls 

from -$5.10 to +16.33. The magnitude of the change is correct but the sign is wrong. 

By applying the absolute value of Pt-1 in the denominator, as in column 5, the sign of 

the return is corrected, and now reflects a price increase from -$5.10 to +16.33.  

 

Descriptive statistics for the half-hourly returns series are shown in Table 5.2. The 

mean, standard deviation, minimum, maximum, range, skewness, kurtosis and 

Augmented Dickey-Fuller statistics are reported for each region’s returns series.  

 

Table 5.2: Descriptive Statistics for Half-Hourly Returns  
(by Region, December 1998 to March 2005). 

Returns NSW1 QLD1 SA1 VIC1 
 

SNOWY1 
Mean  0.0284 0.0643 0.0651 0.0955 0.0272 
S.D. 1.22 1.72 1.77 17.00 1.11 

Minimum -222.00 -11.25 -32.94 -220.00 -209.50 

Skewness -0.44 113.14 117.56 241.51 -14.86 

JB Stat  

ADF Stat* -38.16 -40.66 -341.20 -332.65 -39.84 

Maximum 151.93 369.24 390.80 4542.50 142.43 

Range 152.37 256.10 273.24 4300.99 157.29 

Kurtosis 15213.09 20540.27 22339.69 59676.37 16338.64 

P-Value 0.000 0.000 0.000 0.000 0.000 

N 110718 110718 110718 110718 110718 
*All Augmented Dickey-Fuller test statistics reject the hypothesis of a Unit Root at the 1% level of 
confidence. 
 

Mean half-hourly returns vary widely between regions, from 2.72% for VIC1 to 

9.55% for SNOWY1. The standard deviation of returns is generally high, is widely 

dispersed across the regions and is consistent with the pattern of means, ranging from 

111% for VIC1 to an extremely high 1700% for SNOWY1.  The highest maximum 
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return of 454250% is observed in SNOWY1 and lowest in VIC1 of 14,243%.  

hydroelectric, whereas more than 80% of generation capacity in NSW1, VIC1 and 

QLD low-

art” technology, with orderly shutdown and start-up procedures taking up to 48 

turns in all regions demonstrate extremely high positive 

kurtosis. Jarque-Bera (JB) statistics reject the null hypothesis of normal distribution at 

with earlier studies (see Huisman and Huurman (2002), Higgs and Worthington 

(2005) and Wolak (2000)) and like price, is driven by the prevalence of extremely 

large spikes in returns. Augmented Dickey-Fuller (ADF) statistics clearly reject the 

hypothesis of a Unit Root at the 1% level of significance for all five regions, again 

SNOWY1 also exhibits a markedly wider range of returns than the other regions. The 

extreme character of returns evident for SNOWY1 is most likely attributable to the 

nature of generation technology employed. All generation plant in SNOWY1 is 

1 is provided by coal-fired plant. Coal-fired generation is described as a “s

st

hours. By contrast, hydroelectric plant is a “fast-start” technology that can be called 

into production and shut down within a few minutes, with the result that hydroelectric 

generators are able to behave more opportunistically than coal-fired generators, with 

the ability to opt out of supply when pool prices are low and respond rapidly when 

prices are high.  

 

The distributions of returns for QLD1, SA1 and SNOWY1 demonstrate positive 

skewness with NSW1 and VIC1 demonstrating a relatively low degree of negative 

skewness. Distributions of re

the 1% level of significance for all five regions. This fat-tailed character is consistent 

consistent with the findings of the earlier studies.  
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5.3.3 Spike Behaviour 

Th ence of treme sp s in pric s a wide recognise haracter of 

ele y markets. Figure 5.3 illustrates t ccurrenc f extreme spikes in the price 

series over a four-day period in August 2000. 
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For the purposes of this study a spike in returns is defined as any observed return 

more than four dard de ons lar han the an. While the conventional 

practice is to apply a filter for outliers at three standard deviations from the mean, an 

initial survey of the data indicated that there is sufficient incidence of high prices and 

returns around and above the threshold at three standard deviations to justify applying 

a filter for outliers at four standard deviations. Table 5.3 collates the occurrences of 

spikes as defined. Panel (a) shows the occurrence of spikes by region and in aggregate 

for weekday, month and year. Panels (b) and (c) show the occurrence of spikes by 

half-hourly trading interval. 
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Tab ss 

all regions during the sample period. QLD1 has t in e of extr ice 

spikes by state with 190 occurrences (34% of the total sample o pikes), followed by 

SA1 with 162 (29%), both have a ma edly hig  incidence than VIC1 with 98 

(17%), NSW1 with 90 (16%) and SNOWY1 with 26 occurrences (5%). By day of the 

week, Monday shows the highest incidence with 121 observations (21%) and Friday 

the rrences (9%).  

 
Table 5.3: Panel (a) Summary of Occurrences of Extreme Spikes in Returns by Region, 

b eekday onth and ear. 
 

NSW QLD A owy VIC al 

le 5.3, Panel (a) shows that there are 566 extreme returns spikes observed acro

 the highes cidenc eme pr

f s

rk her

 lowest with 49 occu

y W , M  Y

 S Sn Tot
Sun 1  0 8 19 7 6 24 1 7
Mon 2 6 5 27 1 

1  5 6 18 3 
1  7 5 10 4 

 2 14  
 0 5  
 0 5 1 

9  2 26 98 6 
    

3 30 3 12
Tue 4 40 2 10
Wed 8 24 2 8
Thu 8 27 20 71

9Fri 2 19 23 4
Sat 

Total 
9 
0 

26
190

21 
16

6
56

   
Jan 5 23 0 3  13 44
Feb 2 9 20 2 7  

 0 2  
1 0 2  

1  1 4 16  
2  3 20  
1  5 12 1 

  3 6  
 1 6 2 

 7 12  
 0 6  

1 6  
 2 26 98  

   

40
Mar 0 13 18 33
Apr 0 4 1 17
May 4 19 1 64
Jun 3 30 11 87
Jul 3 29 12 7

Aug 6 14 7 36
Sep 7 2 6 2
Oct 9 21 13 62
Nov 7 11 14 38
Dec 4 15 26 52

Total 90 190 16 566
    

1998 2 2 16 0 2  22
1999 1  2 8 10 4 

1  1 3 20 0 
 0 13 1 

3  9 5 32 8 
1  1 6 16 3 

 2 5 2 
 2 0  

9  2 26 98 6 

0 34 3 9
2000 7 59 3 13
2001 4 15 19 5
2002 7 55 2 15
2003 5 15 1 6
2004 4 10 21 4
2005 1 0 3 6
Total 0 190 16 56
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Table 5.3: Panel (b) Occurrence of Extreme Price Spikes by Half-Hourly Trading 

T.I. NSW1 QLD1 SA1 SNOWY1 VIC1 Total 

Interval (T.I.) 0000hrs to 2330hrs. 

H0000 0 0 3 0 0 3 
H0030 0 0 1 0 0 1 
H0100 0 0 7 0 0 7 
H0130 0 1 2 0 2 5 

H0230 0 3 3 0 0 6 

H0330 0 0 0 0 0 0 

H0430 1 2 1 

H0200 0 0 1 0 0 1 

H0300 1 3 0 0 0 4 

H0400 1 1 0 1 1 4 
1 2 7 

H0500 1 1 1 1 2 6 
H0530 2 1 0 1 2 6 
H0600 1 3 4 1 4 13 

H0700 7 1 8 3 7 26 

H0800 0 4 1 0 0 5 

H0900 1 3 5 0 2 11 

H1000 0 4 5 0 1 10 

H1100 0 3 3 0 1 7 

H1200 0 3 2 0 0 5 

H1530 3 2 7 1 2 15 
H1600 0 2 4 0 3 9 
H1630 1 5 5 0 1 12 
H1700 1 5 8 1 1 16 
H1730 12 12 3 0 8 35 
H1800 39 40 19 11 33 142 
H1830 2 7 5 1 1 16 
H1900 0 9 5 0 2 16 
H1930 0 3 2 0 1 6 
H2000 0 4 3 0 1 8 
H2030 0 1 3 0 0 4 
H2100 0 0 3 0 0 3 
H2130 1 1 1 0 0 3 
H2200 0 0 0 0 0 0 
H2230 2 7 5 0 1 15 
H2300 1 2 0 0 0 3 
H2330 0 5 0 0 0 5 

H0630 4 4 4 3 6 21 

H0730 0 12 2 0 0 14 

H0830 0 10 5 0 2 17 

H0930 3 5 0 0 1 9 

H1030 1 2 1 1 2 7 

H1130 0 1 0 0 0 1 

H1230 0 3 7 0 2 12 
H1300 2 3 4 0 1 10 
H1330 1 3 5 0 3 12 
H1400 0 4 6 0 0 10 
H1430 2 4 2 0 2 10 
H1500 0 1 6 0 1 8 
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Jun y 

year occur in 2002 with 158 spikes (28%) and 2000 with 130 spikes (23%), both 

markedly higher than any other full year in the study period28. It should be noted that 

the incidence of extreme price spikes appears to be declining from 2003 onwards. At 

the time of writing it is believed that this “settling down” is a feature of a maturing 

market combined with the development and wider use of bilateral hedge contracts 

between generators and distributors/retailers.  

 

Table 5.3, Panel (b) shows the incidence of extreme spikes in returns by half-hourly 

trading interval. There is evidence of a concentration of spikes occurring between the 

hours 06:30 to approximately 10:00 and between 15:30 and 19:00 hours, with a 

marked increase in frequency evident at the 18:30 trading interval. A sub-period 

analysis of returns shows that this high concentration at 18:30 may be transient. 

Figure 5.4 on the following pages shows the pattern of extreme returns for NSW1 

from 1999 to 2004 and represents the apparent transient nature of the concentration of 

spikes around the 18:00 trading interval29. The concentration of extreme returns is not 

present in 1999-2001, arises in 2002 and 2003 in all regions and dissipates after 2003.   

                                                

e shows the highest incidence by month with 87 (15%). The highest incidences b

 
28 The sample data set includes the full years 1999-2004. 1998 includes approximately three weeks of 
December, from the commencement of the market on 7th December 1998. 2005 only includes 
observations for the January to March period and is not likely to be representative of the full year. 
29 This pattern of returns behaviour is illustrative of the patterns in the other regions. 
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Figure 5.4: Half-Hourly returns for NSW1 for the years 1999-2005, illustrating the 
transient nature of the observed 6:00pm effect. 
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5.4 Methodology 

The summary of key literature on electricity prices presented in section 5.2 suggests 

that furthering our understanding of the nature and significance of seasonalities and 

 the dependent variable is half-hourly return and the explanatory 

 negative value in the price series.  

 objective of capturing 

e effects of individual spikes while controlling for seasonalities and serial 

NEGSPIKEHH εβββ ++++ ∑ ∑ ∑

− ,4,3,2,,10,

extreme values in electricity prices is justified. To that end an autoregressive model is 

developed in which

variables are half-hourly lagged returns and dummy variables30 representing trading 

interval (half-hourly time of day), day of the week, and month of the year for NSW1, 

QLD1, SA1, SNOWY1 and VIC1. The model also incorporates dummy variables for 

“spikes”, as defined in section 5.3.3, and dummy variables are set for each occurrence 

of a

 

The model employed by this study is presented as equation (5.2) and provides a 

relatively simple but highly effective method for satisfying the

th

correlation in the returns series.    

t
m

N

o

N

p
pRpoRomm
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        (5.2)  
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j
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itRitR

                                                 
30 Seasonal behaviour can be incorporated in these models as either dummy variables (Lucia and 

2002).Lucia and Schwartz (2002) favour dummy variables as they are intuitive and are relatively easy 
Schwartz 2002; Huisman and Mahieu 2003) or sinusoidal cosine functions (Lucia and Schwartz 

to interpret.   
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Where: 

RPR,t  represents the discrete return for region R at time t; 

DAYj represents the dummy variable for each day of the week (j=1 for Monday, 2 for 

Tuesday,…,6 for Saturday). MTHk represents the dummy variable for each month 

(k=1 for January, 2 for February,…,12 for December).  

YRl represents the dummy variable for each year included in the sample period 

(l=1999,…,2006).  

HHm represents the dummy variable for each half-hourly trading interval (m= 1 for 

R,S R,S

R,S

R,N

R,N R,N  

o avoid the dummy variable trap, the dummy variables representing the trading 

0

m

j k l 

00:00hrs, 2 for 00:30hrs…,48 for 23:30hrs) SPIKE  represents a set of N  dummy 

variables, one for each extreme spike as previously defined, with N  representing the 

number of extreme returns observed in region R for the period of the study (see Table 

2); 

NEG  represents the dummy variable for the return associated with an occurrence of 

a negative price (p=1,…,N ), with N representing the number of occurrences of a 

negative price for region R during for the period of the study.  

 

T

interval at 1100hrs, Sunday, September and the year 2001 are dropped to avoid exact 

collinearity.  These values were dropped because they reflect categories whose returns 

activity was consistently lowest in all five regions. As such, the constant term (α ) 

embodies this omitted case and the estimates for the included dummy variables HH , 

DAY , MTH , and YR must be assessed relative to this base case. 

 

The model presents a relatively simple but highly effective method for capturing the 

impact of individual price spikes and seasonalities. The equation was initially 
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estimated for each region with 20 lagged returns (RETRt-1, …RETRt-20). F-Tests for 

redundant variables were performed for all regions and AIC and SBC values support 

the finding that lags 1 through 5 were significant. Lags 6 onwards were not found to 

be significant and were discarded. Standard tests and residual diagnostics revealed no 

misspecification in the above model. 

 
 

5.5. Empirical Results 

esults of the regression analysis are presented in Table 5.4.  Coefficients and p-

nted out that in very large samples, test 

atistics may be biased in favour of “unfairly” accepting a parameter as significant. In 

ificant and positive effects are noted for 

December in NSW1, SNOWY1 and VIC1 but not in QLD1 and SA1. A possible 

explanation of the similarity in these monthly effects between NSW1 and VIC1 might 

R

values are presented for each seasonal dummy variable and for lagged returns.  In 

view of the very large number of individual spikes in returns (566 spikes identified for 

the sample period), results for individual outliers are discussed here but not reported 

in full detail. Note also that Lindley (1957) poi

st

view of Lindley’s (1957) paradox and the need for conservatism that it suggests, a 1% 

level of significance is applied rather than the more usual 5%. 

 

The results do not reveal a clear pattern in day-of-week effects for most days across 

regions. There is a positive and significant effect in returns for Monday observed in 

SA1 only. Friday demonstrates statistically significant negative returns across all 5 

regions. Significant positive effect on returns is found for Saturday in QLD1 only. 

There appears to be no clear pattern in monthly effect across regions, although a small 

but significant positive effect is observed for April in VIC1, May in NSW1, 

SNOWY1 and VIC1, June in NSW1.  Sign
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signif

 

Hal f-d c  m ter res d ad re

con g n as fe vio is In al

ign neg ive are und  small hours of the mo

uring this period. Significant positive effects are observed for all regions in the early 

evening, generally between the hours of 5:00 to 7:00 pm, reverting to significant 

negative effects for the remainder of the evening, until positive effects emerge in the 

late evening at 10:30 p.m. and at midnight.  

 

 the broadly similar temperate climates in NSW and VIC, with relatively higher us

electrici y ting in e r stat u  season  t  

 and e y win on acc atises o coole season  

eratures; and increa tems i Decem  as th  

ulation cclima es to w rmer su mer tem erature The co monalit of the  

ts may also be e to the geograp  proxi ity of N 1 and IC1, w  the fa  

s are well serv d by l ge capa y interconnectors and that 

 is a hi h degre f inter egional ctricit een th . 

T e is no lear pa n evid t in ye y effec with w  variation in direction and 

s icance betwee regions  Lagge return exhibit ariatio in dire ion an  

icance of effe betwee  region with dividua gs 1,  and 5 eneral  

icant. 

f-hourly time-o ay effe ts offer ore in esting ults an  are bro ly mo  

sistent across re ions tha  the se onal ef cts pre usly d cussed.  gener  

s ificant at returns fo for the rning between 

12:30 a.m. and approximately 4:30 a.m. in all regions. The hours between 5:00a.m. 

and 9:30a.m. inclusive exhibit significant positive effect in all regions. Negative 

returns are found during mid-afternoon but are generally not statistically significant 

d
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Table 5.4: Panel (a) - Results Of Regression Analysis For Returns Against Seasonal 
my Variables, By Region For Day, Month, Year and Lagged Return (RPDum R,t-i). 

 NSW1  QLD1  SNO1  VIC1  SA1  
 Coeff p-val Coeff p-val Coeff p-val Coeff p-val Coeff p-val 
C -0.010 0.0206 0.013 0.0950 0.020 0.0067 -0.014 0.0592 -0.006 0.1869
MON 0.002 0.1637 0.001 0.9730 0.006 0.0186 0.009 0.0014 0.003 0.1172
TUE 0.001 0.6738 0.001 0.6583 0.004 0.1779 0.001 0.8105 0.001 0.9572
WED 0.003 0.1310 0.001 0.9599 0.004 0.1385 0.001 0.7191 0.001 0.8655
THU -0.001 0.6689 -0.006 0.0802 0.002 0.5919 -0.003 0.3623 -0.002 0.2946
FRI -0.009 0.0000 -0.016 0.0000 -0.009 0.0013 -0.012 0.0002 -0.010 0.0000
SAT 0.005 0.0668 0.022 0.0000 0.003 0.5603 0.003 0.4606 0.007 0.0147
JAN 0.005 0.0662 0.014 0.0022 0.008 0.0569 0.002 0.7064 0.007 0.0134
FEB 0.002 0.4887 0.027 0.0000 0.000 0.9188 -0.002 0.5877 0.002 0.4924
MAR 0.004 0.1400 0.003 0.5083 0.003 0.5692 0.001 0.9600 0.005 0.0602
APR 0.008 0.0042 0.016 0.0008 0.003 0.5684 0.009 0.0417 0.008 0.0031
MAY 0.009 0.0010 0.019 0.0001 0.003 0.4984 0.020 0.0000 0.010 0.0004
JUN 0.007 0.0053 0.012 0.0116 0.011 0.0168 0.009 0.0330 0.007 0.0131
JUL 0.004 0.1107 0.015 0.0015 0.007 0.1013 0.004 0.4105 0.005 0.0672
AUG 0.001 0.8883 0.010 0.0391 0.001 0.9247 -0.002 0.7251 0.001 0.9143
OCT -0.001 0.8461 0.001 0.9582 0.009 0.0407 0.001 0.7889 -0.001 0.8014
NOV 0.000 0.8714 0.011 0.0251 -0.005 0.2730 -0.001 0.7730 0.002 0.5013
DEC 0.022 0.0001 -0.008 0.4289 0.041 0.0000 0.029 0.0012 0.013 0.0274
1999 0.005 0.0067 0.023 0.0000 0.040 0.0000 0.003 0.2803 -0.001 0.5457
2000 0.013 0.0000 0.038 0.0000 0.022 0.0000 0.017 0.0000 0.008 0.0001
2002 0.008 0.0000 0.009 0.0061 0.005 0.0934 0.018 0.0000 0.003 0.2025
2003 0.001 0.8298 -0.008 0.0191 -0.001 0.8623 0.001 0.9728 -0.004 0.0731
2004 0.004 0.0306 -0.005 0.1413 0.003 0.4083 0.003 0.3547 0.002 0.3039
2005 -0.003 0.2840 -0.021 0.0002 -0.005 0.3232 0.001 0.9947 -0.009 0.0057
2006 0.002 0.0000 -0.005 0.0000 -0.007 0.0000 0.001 0.0000 -0.001 0.0164
RPR,t-1 -0.008 0.0000 -0.004 0.0000 -0.002 0.0002 0.002 0.0000 -0.008 0.0000
RPR,t-2 -0.005 0.0000 -0.002 0.0001 -0.002 0.0002 0.001 0.0033 -0.006 0.0000
RPR,t-3 -0.002 0.0000 -0.001 0.3134 0.001 0.6153 0.001 0.4172 -0.002 0.0000
RPR,t-4 -0.001 0.1015 -0.001 0.3258 -0.001 0.0528 0.002 0.0000 -0.002 0.0015
RPR,t-5 -0.010 0.0206 0.013 0.0950 0.020 0.0067 -0.014 0.0592 -0.006 0.1869
R2 0.9788  0.9670  0.9717 0.9998  0.9720
Adj R2 0.9787  0.9669  0.9716 0.9997  0.9719
DW Stat 2.0005  1.9942  1.9967 2.0573  1.9832

Note: The equation was initially estimated for each region with 20 lagged returns. F-Tests for redundant variables 
were performed and for all regions AIC and SBC values indicated that lags 1 through 5 were significant. Lags 6 
onwards were not found to be significant and were discarded. Standard tests and residual diagnostics revealed no 
misspecification in the above model. Bold type indicates significance at 1%. R2 and Adj R2 values shown are for 
the complete model incorporating all seasonal factors and outliers. Table 5.4 Panel (b) shows coefficients and p-
values for trading interval (time of day).  Coefficients for 566 spike dummies are not reported in detail – all were 
positive and significant. 
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Table 5.4 Panel (b): Results of regression a alysis for returns against seasonal dummy 
variables, by half-hourly trading interval by region, 0000hrs to 2330hrs 

(excluding 11:00hrs). 

p-val
0.000
0.000
0.000
0.000
0.000

H0230 -0.080 0.000 -0.075 0.000 -0.110 0.000 -0.088 0.000 -0.114 0.000
0.000

H0330 -0.071 0.000 -0.057 0.000 -0.138 0.000 -0.076 0.000 -0.101 0.000
0.000

H0430 0.022 0.000 -0.013 0.144 -0.031 0.000 0.022 0.009 0.012 0.034
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

H0900 0.015 0.004 0.044 0.000 0.030 0.001 0.017 0.041 0.029 0.000
0.000

H1000 -0.003 0.600 -0.031 0.001 -0.017 0.044 -0.003 0.707 0.002 0.703
0.771

H1100 0.014 0.006 -0.025 0.008 -0.010 0.247 0.016 0.049 0.014 0.011
0.310

H1230 0.022 0.000 -0.029 0.001 0.018 0.034 0.022 0.009 0.015 0.007
0.001 0.793 -0.033 0.000 -0.004 0.663 0.011 0.182 0.002 0.669
0.041 0.000 0.010 0.297 -0.004 0.652 0.047 0.000 0.039 0.000

H1400 -0.006 0.223 -0.020 0.028 -0.015 0.080 -0.003 0.740 -0.010 0.059
H1430 0.005 0.353 -0.001 0.928 -0.030 0.000 0.005 0.546 -0.004 0.430
H1500 -0.007 0.172 -0.045 0.000 -0.025 0.004 -0.001 0.950 -0.003 0.582

994 -0.017 0.064 -0.049 0.000 0.010 0.230 -0.006 0.262
000 -0.003 0.768 -0.007 0.411 0.015 0.070 0.020 0.000

H1630 -0.013 0.012 -0.009 0.334 -0.040 0.000 -0.004 0.666 -0.007 0.192
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

H2100 -0.066 0.000 -0.088 0.000 -0.084 0.000 -0.062 0.000 -0.066 0.000
0.000

H2200 -0.091 0.000 -0.097 0.000 -0.097 0.000 -0.088 0.000 -0.101 0.000
0.000

H2300 -0.075 0.000 -0.081 0.000 -0.060 0.000 -0.068 0.000 -0.069 0.000
0.000

n

NSW1 QLD1 SA1 SNO1 VIC1
Coeff p-val Coeff p-val Coeff p-val Coeff p-val Coeff

H0000 -0.104 0.000 -0.168 0.000 -0.018 0.035 -0.099 0.000 -0.107
H0030 -0.064 0.000 -0.123 0.000 -0.033 0.000 -0.067 0.000 -0.082
H0100 -0.067 0.000 -0.098 0.000 -0.036 0.000 -0.070 0.000 -0.087
H0130 0.091 0.000 -0.038 0.000 -0.088 0.000 0.111 0.000 0.192
H0200 -0.112 0.000 -0.096 0.000 -0.186 0.000 -0.116 0.000 -0.141

H0300 -0.066 0.000 -0.060 0.000 -0.155 0.000 -0.073 0.000 -0.100

H0400 -0.043 0.000 -0.046 0.000 -0.105 0.000 -0.045 0.000 -0.065

H0500 0.031 0.000 -0.008 0.406 -0.006 0.511 0.033 0.000 0.032
H0530 0.155 0.000 0.052 0.000 0.122 0.000 0.162 0.000 0.172
H0600 0.079 0.000 0.010 0.300 0.072 0.000 0.092 0.000 0.116
H0630 0.158 0.000 0.091 0.000 0.179 0.000 0.174 0.000 0.222
H0700 0.173 0.000 0.118 0.000 0.214 0.000 0.197 0.000 0.214
H0730 -0.060 0.000 0.066 0.000 -0.048 0.000 -0.069 0.000 -0.065
H0800 0.152 0.000 0.133 0.000 0.130 0.000 0.147 0.000 0.171
H0830 0.113 0.000 0.120 0.000 0.149 0.000 0.113 0.000 0.137

H0930 0.065 0.000 0.060 0.000 0.015 0.087 0.066 0.000 0.072

H1030 -0.005 0.366 -0.029 0.002 -0.038 0.000 -0.001 0.920 -0.002

H1200 0.009 0.075 -0.010 0.261 -0.010 0.268 0.009 0.260 0.006

H1300
H1330

H1530 0.000 0.
H1600 0.020 0.

H1700 0.029 0.000 0.045 0.000 0.002 0.788 0.039 0.000 0.036
H1730 0.074 0.000 0.121 0.000 0.035 0.000 0.097 0.000 0.060
H1800 0.217 0.000 0.267 0.000 0.146 0.000 0.296 0.000 0.193
H1830 0.047 0.000 0.079 0.000 0.059 0.000 0.044 0.000 0.049
H1900 -0.022 0.000 0.046 0.000 -0.042 0.000 -0.024 0.004 -0.025
H1930 -0.074 0.000 -0.102 0.000 -0.096 0.000 -0.072 0.000 -0.068
H2000 -0.038 0.000 -0.086 0.000 -0.038 0.000 -0.033 0.000 -0.025
H2030 -0.039 0.000 -0.122 0.000 -0.071 0.000 -0.034 0.000 -0.035

H2130 0.005 0.328 -0.054 0.000 -0.044 0.000 0.012 0.161 -0.021

H2230 0.195 0.000 0.145 0.000 0.050 0.000 0.198 0.000 0.140

H2330 0.205 0.000 0.129 0.000 0.146 0.000 0.224 0.000 0.319
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All occurrences of extreme outliers captured by the model are statistically significant 

and as noted in the Australian Government’s (2004) white paper “securing Australia’s 

Energy Future”, represent a significant economic cost to the community with price 

ikes accounting for greater than 30% of total spot market costs31. As discussed in 

5.6 Conclusion 

sp

Section 1.2 and in later chapters, spikes also contribute excess volatility and its 

attendant costs. All occurrences of negative prices have a statistically significant 

negative effect on returns in QLD1, SA1 and VIC1 with fewer instances having effect 

in NSW1 and SNOWY1.  That said, negative prices have negligible economic effect. 

As noted in Chapter 4, occurrences of negative prices are rare and very short-lived, 

with occurrences rarely lasting more than an hour. Given that sales are settled on a 

daily basis, it is unlikely that a generator would ever have to outlay cash to “pay” the 

pool for taking its excess capacity, nor would distributors or retailers receive cash for 

taking it. 

 

The deregulation of the electricity supply chain and its reorganisation into wholesale 

markets offers a rich opportunity for researchers. The physical nature of electricity 

and the mode of organisation of its various markets give rise to price characteristics 

and behaviours that are not widely found in more traditional financial markets. 

Several contributors to the current body of empirical work, including Knittel and 

Roberts (2001), Goto and Karolyi (2004) and Higgs and Worthington (2005) identify 

seasonal factors in electricity prices as a critical component of price behaviour and 
                                                 
31 See Section 1.2 for further discussion. 
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therefore worthy of further study. A number of studies document and attempt to 

model extreme behaviour with fast-reverting spikes (e.g. Kaminski, 1997, Clewlow 

nd Strickland, 2000a). Knittel and Roberts (2001) find that in the presence of these 

he NEM, with positive returns 

enerally occurring at times of peak population activity in the morning and early 

The occurrence of negative prices, although relatively rare and 

ique to electricity markets are found to have a significant negative effect on 

returns. These findings reinforce the assertions of previous researchers that seasonal 

a

seasonal effects and extreme behaviour, the forecasting performance of standard 

financial models is relatively poor without adjustment for these effects.   

 

This study investigates seasonalities and spike effects in Australian electricity prices 

in considerable detail and over a longer sample period than the existing literature. 

Over the six-year period of the study, time-of-day effects in returns are significant 

and generally consistent across all five regions of t

g

evening and negative returns observed at most other times.  There is also evidence of 

a transient, early evening spike effect in returns arising in 2002 and 2003 and 

dissipating quickly over subsequent years. Day-of-week effects generally appear 

stronger for Monday and Friday than for other days of the week. Monthly effects 

show some consistency between NSW1, SNOWY1 and VIC1 in late autumn to early 

winter and in early summer. 

 

The physical nature of electricity and aspects of the organisation of the Australian 

market give rise to the occurrence of extreme spikes in prices and in the returns 

series. Extreme spikes in returns, although representing less than 0.1% of 

observations in any region, are found to have highly statistically significant positive 

effect on returns.  

un
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and price spike effects should be incorporated into stochastic models of electricity 

us market-clearing nature of prices in the NEM, a logical 

extension of this study is to investigate the prevalence of seasonal effects and spike 

behaviour in electricity demand, with a view to examining the extent to which these 

effects are transmitted from demand to price and how efficiently the spot market 

absorbs demand-side shocks. Planned further work also includes an examination of 

the influence of air temperature on electricity demand, and an investigation into the 

influence of supply-side shocks on price behaviour.   

 

As a caveat on methodology I recognise that while the ordinary-least-squares 

approach to modelling adopted for this study is a simple but very effective tool for 

capturing these effects but with many variables it becomes cumbersome for 

forecasting purposes. A further proposed extension follows Bystrom (2005), who 

suggests a potentially more practical description of electricity prices involving 

extreme-value theory. Bystrom introduces an AR-GARCH price process with a 

seasonal component in volatility. The advantage of this approach is that the residuals 

are modelled with distributions from extreme value theory.  Another extension is 

suggested by the apparent intra-day switching between positive and negative returns, 

which may provide support for further development of regime-switching models, and 

provide support for multiple intra-day markets such as proposed by Guthrie and 

Videbeck (2002).  

  

price behaviour.  

 

Given the instantaneo
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Chapter 6: Structural Characteristics of Demand for 

.1 Introduction 

Forecasting electricity spot price remains one of the most challenging tasks for 

energy traders. The spot market for electricity in the NEM differs from conventional 

financial markets, primarily because of the non-storable nature of electricity. This 

special characteristic implies that the spot market is always in equilibrium, i.e. 

demand is always equal to supply and that spot price is determined by the interaction 

of these two factors. Chapter Five of this thesis examined the seasonal patterns and 

sudden spikes in electricity spot price changes in the NEM, and showed that seasonal 

effects vary between regions and that time of day effects are generally more 

significant than other seasonalities. The extreme values represented by high price 

spikes and negative prices were shown to be highly significant.  

 

Demand is a major driver of spot price (see Vucetic et al., 2001 and references 

therein, and Lo and Wu, 2004) and this chapter investigates whether similar structural 

                                                

Electricity in Australia’s National Electricity Market 
 

6

characteristics to those evident in electricity prices are present in electricity demand32. 

Results from chapter 5 show the presence of significant spikes in the price series, and 

given that the spot market is always in equilibrium, these spikes could be caused by 

short-run spikes in demand or shocks to supply such as breakdowns in generation 

plant or disruption to the transmission grid. Analysis of the demand data may provide 

some insight into the spike behaviour observed in the price series.  As a first step in 

this analysis, it is necessary to characterise any seasonal patterns that might be 
 

32 Demand is also referred to as “load” or “system load”. In practice and in the academic literature 
these terms appear to be used interchangeably. 
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present and investigate the presence of spikes in the demand side of the spot market. 

Chapter Eight will examine the transmission of spikes in the demand data to price 

series.  

 

Understanding the behaviour of demand for electricity is central to operation of and 

er systems may be quite sensitive to forecasting 

rors. Haida and Muto (1994) observed that both positive and negative forecasting 

Seasonal patterns in demand or system load are reported in the literature and these 

patterns are incorporated into a variety of forecasting models. Harvey and Koopman 

(1993) document intra-daily and intra-week effects and incorporate them into their 

demand model using splines. Earlier studies considered longer-term load forecasting 

horizons several months into the future, using monthly demand data (Engle, Granger 

and Hallman, 1989). Pardo, Meneu and Valor (2002) employ daily data in a study of 

Spanish electricity demand and emphasise the importance of daily and monthly 

seasonal structures.  More recent studies consider modelling and forecasting demand 

planning for electric utilities and is central to the forecasting function of electricity 

producers and consumers that participate in electricity markets. Accurate load 

forecasting holds great saving potential for electric utility corporations. According to 

Bunn and Farmer (1985), these savings are realised when demand forecasting is used 

to control operations and decisions such as dispatch, commitment of generation plant, 

fuel allocation, maintenance scheduling and off-line network analysis. The accuracy 

of demand forecasts has a significant effect on power system operations, as economy 

of operations and control of pow

er

errors resulted in increased operating costs. Hobbs et al. (1999) quantified the dollar 

value of improved demand forecasting for a typical utility; a 1% reduction in the 

average forecast error can save hundreds of thousands or even millions of dollars.  
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over shorter periods using intra-day data. In the Australian context, Smith (2000) and 

Cottet and Smith (2003) document intra-day patterns in demand in New South Wales 

and incorporate diurnal variation into a Bayesian regression framework to model 

intra-day electricity load data and obtain short-term load forecasts.    

While a number of studies have incorporated seasonal patterns into demand models, 

the presence of sudden and fast reverting spikes in demand have not been 

nted. I am interested in investigating if, like changes in the 

hange is reported.  

econd, a model is presented that captures the sensitivity of demand changes to these 

 

comprehensively docume

electricity spot price, half-hourly changes in demand demonstrate a high incidence of 

spikes, as well as sensitivity to seasonal patterns.  According to Knittel and Roberts 

(2001), the regular occurrence of these spikes accounts for the failure of conventional 

the stochastic forecasting models. I believe it is necessary to test if demand also 

exhibits evidence of such spikes. 

  

With these objectives in mind the contribution of this chapter is twofold. First a  six-

year sample of half hourly total system demand for five regions in Australia’s 

National Electricity Market (NEM) is examined here and the occurrence of outliers in 

the form of extreme spikes in half-hourly proportionate demand c

S

outliers, while controlling for seasonal factors including time-of-day, day-of-week, 

monthly and yearly effects. The results show that seasonal effects are significant but 

vary across regions. Time of day effects are found to be more significant than other 

seasonalities. Further, demand spikes are present in the series and are found to be 

highly significant.  
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The rest of the chapter is organised as follows. Demand change data and preliminary 

statistical analysis are presented in section 6.2. Models and main estimation results 

are presented in sections 6.3 and 6.4 and section 6.5 presents conclusions and 

 

6.2.1 Demand data 

The basic quantity of interest in demand modelling and forecasting is the periodic 

“total system demand” or “total demand”. The total demand value reported by 

NEMMCO is a derived value, somewhat different from demand as it is understood in 

conventional financial markets (and as may be represented by traded volume). The 

NEM trading day is divided into 48 half-hour “trading intervals”, each defined by the 

local time at the end of the trading interval. Suppliers and distributors lodge schedules 

and bids for the sale and purchase of electricity with NEMMCO at 12:30pm on the 

day prior to actual dispatch of electricity. NEMMCO compiles this data and mates it 

with a short-term forecast of system demand and grid capacity to determine a  

dispatch quantity and dispatch order of generators (Smith, 2000).   

 

The dem

escribed in section 4.2.1), sourced directly from NEMMCO for the period from 

resented in Chapter Four, section 4.2.1.  

suggests further related research.  

6.2 Data 

and data used in this study are half-hourly observations of total demand (as 

d

2:00am on December 7, 1998, to 11:30pm on March 31, 2005. The sample size is 

110,719 observations for each of the five NEM under study (NSW1, QLD1, SA1, 

SNOWY1 and VIC1). Descriptive statistics and preliminary analysis of the demand 

series is p
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6.3.2 Changes in Demand 

The half-hourly pool price and its associated returns exhibit strong seasonal and 

outlier effects as a result of the occurrence of price spikes. As indicated earlier, 

demand is widely understood to be a major influence on price (and therefore returns) 

and I am intereste e d in investigating the extent to which the seasonalities and spik

effects observed in half-hourly returns on spot price are present in the equivalent 

changes in demand.  
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Figure 6.1: VIC1 Demand and Demand Change for the Week Commencing 5/6/00.  
 

e
)

m
hange (%

)

 

Figure 6.1 shows a snapshot of demand with demand change over a week during June 

2000, indicating that dema exhibit some time-of-day 

effects, but also suggests the presence of sudden and fast-re  spikes in 

D
e

and C

nd and demand changes may 

verting demand 

change. 
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L pri C em ported urly i  

discrete time. For this reason and for consistency with the approach taken in Chapter 

y 

discrete changes rather than log changes, according to equation 6.1: 

ike spot ce, NEMM O's total d and is re  at half-ho ntervals in

Five, the demand change series used in this study were generated as half-hourl

( )
1

1−−
= tt

t D
DD

CD .       (6.1)   
−t

Where CDt is discrete proportionate change in demand at time t, Dt is half-hourly 

demand at time t and Dt-1 is the previous half-hourly total demand, i.e. at time t-1. The 

results of tests for the presence of a unit root give us confidence that the demand and 

demand changes series are stationary. This discrete change specification is preferred 

over log changes,  as a log specification will dampen the spike effects I am attempting 

to capture. 

 

Table 6.1: Descriptive Statistics for Half-Hourly Demand Change (CDt), by Region, 
December 1998 to March 2005. 

CDt NSW1 QLD1 SA1 SNOWY1 VIC1

Descriptive statistics for the half-hourly demand change series are shown in Table 6.1. 

The mean, standard deviation, minimum, maximum, skewness, kurtosis and 

Augmented Dickey-Fuller statistics are reported for each region’s demand changes 

series. Mean, standard deviation, maximum and minimum are expressed in terms of 

half-hourly percentage change  and are broadly consistent across NSW1, QLD1, SA1 

and VIC1. SNOWY1 demonstrates extremely high mean, and standard deviation of 

demand changes when compared to the other regions. I believe that this is attributable 

to the unique nature of SNOWY1, as discussed in section 3.1. 

 

Mean* 0.05 0.04 0.05 73.16 0.04 
S.D.* 3.16 2.88 3.27 2210.41 3.02 
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Maximum* 44.50 76.38 38.41 357868.40 62.33 
Minimum* -26.55 -31.94 -38.97 -100.00 -100.00 

Range 71.05 108.32 77.38 357968.40 162.33 
Skewness 1.13 1.07 0.38 99.91 0.87 
Kurtosis 5.05 9.97 4.57 12337.15 17.60 
JB Stat 4.30 x104 2.45 x105 1.40 x104 7.02 x1011 9.97 x105

ADF ** -43.66 -43.67 -39.71 -333.16 -40.74 
N 110718 110718 110718 110718 110718 

*Mean, Standard Deviation, Maximum and Minimum are expressed as percentage values. 
**Augmented Dickey-Fuller (ADF) Statistic rejects the hypothesis of a Unit Root at the 1% level of confidence. 

Demand in SNOWY1 may maintain at zero or very low levels for som

 

e time, then 

increase markedly when Snowy Hydro’s generation assets are called into production. 

As discussed earlier, the “fast-start” nature of hydroelectric generation allows plant to 

be called into production and shut down within a few minutes, with the result that 

hydroelectric generators are able to behave more opportunistically than coal-fired 

respond rapidly when demands and prices are high or when sold option contracts are 

in the money. 

 

The distributions of demand change for all five regions demonstrate positive 

skewness and extreme leptokurtosis. Jarque-Bera (JB) statistics reject the null 

hypothesis of normal distribution at the 1% level of significance for all five regions. 

This fat-tailed character is consistent with studies on price behaviour (see Huisman 

and Huurman (2003), Higgs and Worthington (2005) and Wolak (1997)) and appears 

statistics robustly reject the hypothesis of a Unit Root at the 1% level of significance 

for all five regions, again consistent with the findings of the earlier studies.  

 

generators, with the ability to opt out of supply when pool demands are low and 

skewness and high kurtosis, with SNOWY1 demonstrating extremely high positive 

driven by the presence of spikes in demand change.  Augmented Dickey-Fuller (ADF) 
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6.2.2 Spikes in Half-Hourly Demand Change  

For the purposes of this study a spike in demand change is defined as any observed 

emand change greater than four standard deviations larger than the mean change, 

 

By day of the week, Monday shows the highest incidence with 95 (25%) and Saturday 

the lowest with 30 occurrences (8%). March shows the highest incidence by month 

with 59 (16%) and of these 32 occur in VIC1. The next highest incidences by month 

are December (51) and August (49), with the majority of these spikes occurring in 

NSW1 and VIC1. The highest incidence by year occurs in 1999 with 178 spikes 

(47%), dropping markedly in 2000 (60) and 2001 (33). The incidence of spikes 

appears to be declining from 2001 onwards33. Interestingly, the sample data for 1998 

only includes the period from 7th December when the NEM commenced to 31st 

December and includes 28 spikes, more than the number observed for each of the full 

                                                

d

consistent with the spike definition applied to returns on price in Chapter Five. Table 

6.2 collates the occurrences of spikes in demand change. Panel (a) shows the 

occurrence of spikes by region and in aggregate for weekday, month and year. Panels 

(b) and (c) show the occurrence of spikes by half-hourly trading interval. 

 

Table 6.2 Panel (a) shows that in aggregate there are 377 spikes in demand change 

observed across all regions during the sample period. VIC1 shows the highest 

incidence of demand spikes with 113 (30%) of the 377 observed, followed by 

SNOWY1 with 109 (29%), NSW1 with 94 (25%) of observed spikes during the 

sample period.   

 
33 Sample data for 2005 only includes the period from January to March inclusive and may not be 
representative of the full year.  
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years from 2002 to 2004 inclusive, which may be attributable to start-up effects in a 

new market. 

 
 

Ta , Panel  shows  incidence of extreme spikes in d nd changes by 

half-hourly trading interval. There are concentrations of spikes occurring at the 06:30 

trading interval (98 spikes, of which 80 ur in NS and 23 08 sp of 

whi  occur in IC1). The umber and occurrence of spikes in the demand change 

seri hat from  number  occurrenc bserved eturns o ice 

(566 spikes are observed in returns on price, 377 are ob ved in de nd change - see 

Table 5.2). Given the accepted wisdom that demand drives price this is an inte

com tive result that will be investigate urther in Chapter Eight, in which a study 

of action en de nd spikes and price sp be undertaken and the 

eff  spikes emand change on ret  on price be investigated.  

ble 6.2  (b) the ema
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1 Y IC1 tal 

able 6.2: Panel (a) Summary of Occurrences of Extreme Spikes in Demand Change by
gion, by Weekday, Month and Yea

 NSW1 QLD1 SA S OWN 1 V To
Sun 4 6 8 11 9 38 
Mon 4 1 13 23 95 

1  11 22 52 
1  19 18 62 
1  16 18 54 

21 17 46 
18 6 30 

9  5 109 114 377 
    

0 8 1
Tue 3 3 3
Wed 6 5 4
Thu 4 0 6
Fri 5 2 1 
Sat 2 2 2 

Total 4 26 3
   

Jan 2 0 0 18 22 42 
Feb 0 0 2 12 17 31 

2 8 32 59 
 7 9 20 

1  8 0 25 
2  2 0 28 

9 0 21 
3  8 3 49 

 5 0 15 
 6 1 14 
 11 2 21 
 15 27 51 

9  5 109 114 377 
    

Mar 4 3 1
Apr 3 1 1
May 4 0 3
Jun 0 4 2
Jul 3 4 5 

Aug 7 1 0
Sep 6 4 0
Oct 3 2 2
Nov 1 6 1
Dec 1 1 7

Total 4 26 3
   

1999 0 1 2 3 22 28 
2000 2 3 61 80 178 

1  34 6 60 
2  3 4 33 
2  2 1 28 
1  5 0 26 

 1 0 20 
 0 0 6 

9  5 109 114 377 

0 4 1
2001 4 2 4
2002 1 1 4
2003 1 4 0
2004 0 6 5
2005 7 6 6
2006 1 0 5
Total 4 26 3
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Table 6.2: Panel (b) Occurrence of Extreme Demand Spikes by Half-Hourly Trading 

T.I. NSW1 QLD1 SA1 SNOWY1 VIC1 Total 

Interval (T.I.) 0000hrs to 2330hrs 

H0000 0 0 1 1 0 2 
H0030 0 0 0 3 0 3 
H0100 0 0 0 2 0 2 
H0130 1 1 0 5 0 7 

H0230 0 1 0 5 2 8 

H0330 0 0 0 0 0 0 

H0430 0 0 0 1 0 1 

H0200 0 0 0 5 0 5 

H0300 0 0 0 4 0 4 

H0400 0 1 0 6 0 7 

H0500 0 1 0 3 0 4 
H0530 1 1 0 1 2 5 
H0600 0 0 0 1 0 1 
H0630 80 8 0 4 6 98 
H0700 0 1 1 0 0 2 
H0730 0 1 3 3 0 7 
H0800 0 1 2 0 0 3 
H0830 1 1 2 1 1 6 
H0900 1 1 2 1 1 6 
H0930 1 1 2 2 1 7 
H1000 0 0 0 1 0 1 
H1030 0 0 0 0 0 0 
H1100 0 0 0 1 0 1 
H1130 0 0 0 1 0 1 
H1200 0 0 2 0 1 3 
H1230 0 0 1 1 0 2 
H1300 0 0 2 0 0 2 
H1330 1 2 3 1 0 7 
H1400 0 0 2 1 0 3 
H1430 
H
H1530 0 0 1 1 0 2 
H1600 0 1 0 0 0 1 
H1630 0 1 0 1 0 2 

0 0 3 0 4 
5 

H2000 0 0 0 2 0 2 

H2100 0 0 0 1 0 1 

H2200 0 0 0 1 1 2 

H2300 1 0 0 5 0 5 

0 1 1 4 0 6 
1500 0 1 1 0 0 2 

H1700 1 
H1730 0 1 0 4 0 
H1800 4 0 2 7 0 13 
H1830 1 0 6 1 1 9 
H1900 0 0 0 4 0 4 
H1930 0 0 0 4 0 4 

H2030 0 0 0 1 0 1 

H2130 1 0 1 1 0 3 

H2230 0 0 0 5 0 5 

H2330 0 0 0 10 98 108 
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A sub-period analysis of demand changes suggests that sharp peaks in demand 

changes are persistent throughout the sample period, as illustrated by Figure 6.2. 

Figure 6.2 shows the pattern of demand changes for VIC1 from 1999-2005 and is 

broadly illustrative of the pattern observed in the other regions. The 06:30 peak in 

mand appears consistent with the commencement of the morning peak in activity in 

ht off-peak retail electricity tariffs.  

 

ctricity demand and the results reported in Chapter 

 justified. To that end an autoregressive model is developed in 

ummy variables representing trading 

interval (half-hourly time of day), day of the week, and month of the year for NSW1, 

de

the population. The 23:30 peak appears to coincide with the activation of off-peak hot 

water systems set to take advantage of overnig

V ic to ria  In tra -D ay E ffec t (1999 -2005 )
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Figure 6.2: Half-Hourly Change in Demand for VIC1 for the years 1999-2005.  

 
 

6.3 Methodology 

The survey of the literature on ele

Five suggests that further exploration of the significance of seasonalities and extreme 

values in demand is

which the dependent variable is half-hourly demand changes and the explanatory 

variables are half-hourly lagged returns, d
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QLD1, SA1, SNOWY1 and VIC1. The model also incorporates dummy variables for 

“spikes”, as defined in section 6.3. Unlike the model developed in Chapter Five, there 

are no dummy variables required to account for the presence of negative values in the 

ase demand series, as demand level does not fall below zero. 

kkjjitRitR YRMTHDAYCD ββββα ++++= ∑∑∑∑ −

2006

,4

12

,3

6

,2

1

,,10,

presents the discrete demand change for region R at time t; 

0 represents the constant term; 

AYj represents the dummy variable for each day of the week (j=1 for Monday, 2 for 

TH  represents the dummy variable for each month (K=1 for January, 2 for 

February, ..., 12 for December). ; 

YR  represents the dummy variable for each year included in the sample period 

(l=1999, …, 2006); 

HH  represents the dummy variable for each half-hourly trading interval (m=1 for 

00:00hrs, 2 for 00:30hrs, ..., 48 for 23:30hrs); 

b

  

The model used for this study captures seasonalities and controls for demand spikes 

and is specified in equation (6.2), as follows:  
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Where: 

CD

ll

R,t re

α

D

Tuesday, ..., 6 for Saturday); 

M k

l

m
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SPIKER,o represents a set of NR,S dummy variables, one for each extreme return as 

previously defined, with NR,S representing the number of extreme positive returns 

observed in region R for the period of the study (see Table 6.2); 

 

Note that this model specification differs from that presented in Chapter Five in that a 

dummy variable series representing negative values in the base series is not included 

in the specification – there are no instances of negative demand observed in the base 

series.  

 

As in Chapter Five, the trading interval at 11:30hrs, Sunday, September and the year 

001 were incorporated into the constant term α in the model as the base case for each 

6.4 Empirical Results 

 
Results of the regression analysis are presented in Table 6.3.  Coefficients and p-

values are presented for each seasonal dummy variable and for lagged returns.  In 

view of the very large number of individual spikes in demand changes (377 spikes 

identified for the sample period across all regions), coefficients are not reported in 

detail but the results for these outliers are discussed here. 

 

2

dummy series. These base cases were selected as the trading interval, day, month and 

year in which demand changes activity was consistently lowest in all five regions. 

Standard tests and residual diagnostics revealed no misspecification in the above 

model. 

 

 

 111 



Re 1, 

QLD1, SA1 and VIC1 but marked NOWY1. Day-of-week effects are 
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Table 6.3: Panel (a) - Results Of Regression Analysis For Demand changes Against 
Seasonal Dummy Variables, By Region For Day, Month, Year and Lagged Demand 

change (CDR,t-i). 
 NSW1  QLD1  SA1  SNO1  VIC1  
 Coeff p-val Coeff p-val Coeff p-val Coeff p-val Coeff p-val 
C 0.0030 0.0000 0.0043 0.0000 0.0040 0.0000 0.1247 0.0665 -0.0016 0.0000 
MON 0.0010 0.0000 0.0006 0.0000 0.0004 0.0173 -0.0238 0.3671 0.0002 0.2239 
TUE 0.0001 0.9954 0.0001 0.9918 0.0001 0.8777 0.0242 0.4061 0.0001 0.3715 
WED -0.0001 0.6471 0.0000 0.9985 0.0001 0.8338 0.0030 0.9173 0.0001 0.2679 
THU -0.0003 0.0267 -0.0003 0.0079 -0.0004 0.0307 0.0013 0.9658 0.0000 0.8831 
FRI -0.0014 0.0000 -0.0008 0.0000 -0.0006 0.0002 -0.0762 0.0091 -0.0008 0.0000 
SAT 0.0001 0.9205 0.0001 0.8791 0.0001 0.9848 0.1117 0.0049 -0.0001 0.7064 
JAN 0.0001 0.8452 0.0001 0.9019 0.0002 0.9483 0.1420 0.0005 0.0001 0.8512 
FEB 0.0002 0.7998 0.0001 0.9544 0.0001 0.9124 0.0306 0.4413 -0.0001 0.5626 
MAR 0.0001 0.7342 0.0001 0.9576 0.0001 0.9627 0.0686 0.0944 0.0001 0.9798 
APR 0.0001 0.6109 0.0001 0.7203 0.0001 0.8800 0.1022 0.0120 0.0001 0.7825 
MAY 0.0001 0.6830 0.0001 0.8455 0.0001 0.5699 0.0412 0.3147 0.0001 0.8737 
JUN 0.0002 0.4104 0.0001 0.6348 0.0001 0.8341 0.1097 0.0070 0.0001 0.9149 
JUL -0.0001 0.6659 0.0001 0.8630 0.0001 0.7031 0.1594 0.0001 0.0001 0.9543 
AUG 0.0001 0.9752 0.0001 0.9122 0.0001 0.8822 0.0046 0.9092 0.0001 0.9942 
OCT 0.0001 0.9096 0.0001 0.9521 0.0001 0.9934 0.0869 0.0342 0.0001 0.8170 
NOV 0.0001 0.9153 -0.0001 0.7350 0.0001 0.9831 0.0867 0.0331 0.0001 0.9087 
DEC -0.0001 0.9072 0.0002 0.8991 0.0001 0.9961 -0.0240 0.7788 -0.0009 0.0164 
1998 0.0001 0.9883 0.0001 0.7712 0.0001 0.8820 0.4632 0.0000 -0.0002 0.1829 
1999 0.0001 0.9437 0.0001 0.7042 0.0001 0.9914 0.4613 0.0000 0.0001 0.9442 
2000 0.0001 0.8559 0.0001 0.9346 0.0002 0.9881 -0.0139 0.6288 0.0001 0.9056 
2002 0.0001 0.9811 0.0001 0.8750 0.0001 0.9621 -0.0390 0.1761 0.0001 0.8742 
2003 0.0001 0.9398 0.0001 0.9173 0.0001 0.9778 -0.1581 0.0000 0.0001 0.8523 
2004 0.0001 0.8533 0.0001 0.8637 0.0001 0.8743 -0.1866 0.0001 0.0001 0.6338 
2005 0.0010 0.0000 0.0006 0.0000 0.0004 0.0173 -0.0238 0.3671 0.0002 0.2239 
CDR,t-1 0.6238 0.0000 0.5470 0.0000 0.6300 0.0000 -0.0006 0.0882 0.6109 0.0000 
CDR,t-2 -0.1186 0.0000 -0.0646 0.0000 0.0059 0.0911 0.0001 0.8528 -0.1158 0.0000 
CDR,t-3 0.0641 0.0000 -0.0716 0.0000 -0.0708 0.0000 -0.0002 0.6728 -0.0330 0.0000 
CDR,t-4 -0.1666 0.0000 -0.0223 0.0000 -0.0440 0.0000 0.0000 0.9920 -0.0412 0.0000 
CDR,t-5 0.0301 0.0000 -0.0287 0.0000 -0.0105 0.0003 -0.0003 0.4531 - - 
CDR,t-6 -0.0040 0.2480 -0.0176 0.0000 - - - - - - 
CDR,t-7 -0.1144 0.0000 -0.0122 0.0002 - - - - - - 
CDR,t-8 -0.0422 0.0000 -0.0022 0.4940 - - - - - - 
CDR,t-9 - - -0.0318 0.0000 - - - - - - 
R2 0.8038  0.8427  0.7871  0.9852  0.8337  
Adj R2 0.8035  0.8426  0.7869  0.9851  0.8334  
DW Stat 1.9943  1.9967  1.9937  2.0652  1.9844  

 
Note: The equation was initially estimated for each region with 20 lagged returns. F-Tests for 
redundant variables were performed and for all regions AIC and SBC values indicated that the 
appropriate number of significant lags on the dependent variable ranged from 4 to 9 as shown in the 
table. Standard tests and residual diagnostics revealed no misspecification in the above model. Bold 
type indicates significance at 5%. R2 and Adj R2 values shown are for the complete model 
incorporating all seasonal factors and outliers. Table 4 Panel (b) shows coefficients and p-values for 
trading interval (time of day). Coefficients and p-values for all 377 spikes outliers are not reported in 
detail here – all were significant. 
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Table 6.3 Panel (b): Results of regression analysis for Demand Changes (CDR,t) against 

(excluding 11:00hrs). 
NSW1 QLD1 SA1 SNOWY 1 VICl
Coeff p-val Coeff p-val Coeff p-val Coeff p-val Coeff p-v

H0030 -0.014 0.000 -0.036 0.000 -0.033 0.000 0.091 0.254 -0.022 0.0
H0100 -0.026 0.000 -0.021 0.000 0.006 0.000 0.184 0.021 -0.002 0.0
H0130 -0.023 0.000 -0.027 0.000 -0.064 0.000 0.668 0.000 0.086 0.0
H0200 -0.028 0.000 -0.022 0.000 -0.036 0.000 -0.149 0.061 -0.068 0.0
H0230 -0.026 0.000 -0.020 0.000 -0.019 0.000 0.260 0.001 -0.027 0.00
H0300 -0.020 0.000 -0.015 0.000 -0.015 0.000 0.249 0.002 -0.006 0.00
H0330 -0.018 0.000 -0.012 0.000 -0.017 0.000 0.270 0.001 -0.008 0.000
H0400 -0.010 0.000 -0.009 0.000 -0.015 0.000 0.071 0.372 -0.005 0.00
H0430 -0.002 0.000 -0.004 0.000 -0.008 0.000 0.041 0.604 0.000 0.3
H0500 0.001 0.083 -0.001 0.029 -0.003 0.000 -0.166 0.036 0.003 0.0
H0530 0.028 0.000 0.017 0.000 0.002 0.000 -0.072 0.365 0.022 0.000
H0600 0.015 0.000 0.015 0.000 0.016 0.000 -0.199 0.012 0.017 0.0

H0700 0.026 0.000 0.029 0.000 0.035 0.000 -0.054 0.497 0.017 0.0

H0800 0.032 0.000 0.012 0.000 0.001 0.180 -0.067 0.396 0.037 0.0

H0900 0.007 0.000 0.006 0.000 0.006 0.000 -0.233 0.003 0.001 0.0

H1000 0.005 0.000 -0.001 0.004 0.003 0.000 -0.087 0.273 0.001 0.0

H1100 0.001 0.020 -0.001 0.181 0.001 0.225 -0.078 0.327 0.005 0.0

H1230 -0.003 0.000 -0.007 0.000 0.001 0.277 0.154 0.052 0.000 0.2

H1330 -0.004 0.000 -0.004 0.000 -0.004 0.000 0.297 0.000 0.009 0.0

HI 430 -0.004 0.000 -0.004 0.000 -0.014 0.000 0.017 0.832 -0.001 0.0
H1500 -0.006 0.000 -0.009 0.000 -0.003 0.000 -0.031 0.699 0.002 0.000
H1530 -0.003 0.000 -0.005 0.000 -0.008 0.000 -0.028 0.728 0.002 0.0
H1600 0.000 0.513 -0.001 0.001 -0.006 0.000 0.082 0.300 0.004 0.000
H1630 -0.004 0.000 -0.001 0.028 -0.002 0.000 -0.074 0.349 0.001 0.04
H1700 0.009 0.000 0.005 0.000 -0.003 0.000 0.127 0.111 0.007 0.00
H1730 0.001 0.202 0.004 0.000 0.003 0.000 0.185 0.020 0.003 0.00
H1800 0.016 0.000 0.008 0.000 0.005 0.000 0.163 0.041 0.008 0.00
H1830 -0.014 0.000 -0.007 0.000 0.007 0.000 -0.018 0.822 -0.006 0.00
H1900 -0.006 0.000 -0.001 0.006 -0.008 0.000 -0.083 0.294 -0.003 0.00
H1930 -0.011 0.000 -0.015 0.000 -0.010 0.000 0.082 0.302 -0.003 0.0
H2000 -0.005 0.000 -0.009 0.000 -0.009 0.000 0.100 0.206 0.002 0.0
H2030 -0.016 0.000 -0.017 0.000 -0.004 0.000 0.122 0.125 -0.009 0.000
H2100 -0.012 0.000 -0.012 0.000 -0.014 0.000 0.048 0.547 -0.010 0.00
H2130 0.001 0.075 -0.015 0.000 -0.015 0.000 0.064 0.419 -0.016 0.000
H2200 -0.019 0.000 -0.019 0.000 -0.013 0.000 -0.023 0.777 -0.013 0.0

seasonal dummy variables, by half-hourly trading interval by region, 0000hrs to 2330hrs 

00
00
00
00
0
0

0
15
00

00
H0630 0.028 0.000 0.046 0.000 0.013 0.000 0.060 0.450 0.042 0.000

00
H0730 -0.001 0.005 0.032 0.000 0.014 0.000 -0.055 0.491 -0.021 0.000

00
H0830 0.015 0.000 0.010 0.000 0.020 0.000 -0.081 0.310 0.017 0.000

13
H0930 0.017 0.000 0.009 0.000 -0.002 0.000 0.029 0.714 0.012 0.000

00
H1030 0.008 0.000 0.000 0.873 -0.004 0.000 -0.035 0.655 0.004 0.000

00
H1200 0.002 0.000 -0.004 0.000 -0.003 0.000 -0.008 0.919 0.002 0.000

99
H1300 -0.005 0.000 -0.006 0.000 -0.002 0.000 -0.080 0.312 0.001 0.084

00
H1400 -0.008 0.000 -0.006 0.000 0.005 0.000 -0.059 0.458 -0.006 0.000

02

00

9
0
0
0
0
0

00
00

0

00
H2230 0.020 0.000 -0.007 0.000 -0.016 0.000 0.718 0.000 -0.006 0.000
H2300 -0.031 0.000 -0.018 0.000 0.010 0.000 -0.032 0.687 -0.004 0.000
H2330 -0.007 0.000 0.000 0.709 -0.011 0.000 0.938 0.000 0.081 0.000

al
H0000 -0.028 0.000 -0.049 0.000 0.039 0.000 -0.205 0.010 -0.064 0.000
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Results for trading interval (time of day) are shown in Table 6.3 Panel (b). Half-

hourly time-of-day effects offer more interesting results than the broader seasonalities 

nd are more consistent across regions than the seasonal effects previously discussed. 

 general, significant negative demand changes are found for the small hours of the 

s for the remainder of the early morning. There is 

me small variation in the pattern of demand changes during the waking day. NSW1 

and VIC1 show broadly similar intra-day patterns, with significant positive demand 

changes dominating between 04:30 and 18:00 and with minor variation reverting to 

a

In

morning from 12:30 a.m. until approximately 4:00 – 5:00 a.m. in all regions except 

SNOWY1. VIC1 exhibits an unexplained highly significant positive return at 1:30 

a.m., reverting to negative return

so

negative demand changes for the remainder of the evening. QLD1 and SA1 are also 

broadly similar to each other; demonstrating significant positive effect between 04:30 

and 10:30, predominantly negative effect from 10:30 to 15:30, reverting to positive 

effect from 16:00 to 19:30 when there is apparent reversion to negative effect for the 

remainder of the evening.  No clear pattern is discernible in intra-day demand changes 

for SNOWY1. The periods of positive return in the early morning and early evening 

are consistent with peaks in activity in the population. One would expect to observe 

positive demand changes arising from off-peak hot water systems generally switching 

on around 11:00 pm, but curiously returns appear to be significant and negative at 

around that hour in all regions except SA1. The periods of positive return in the 

morning and early evening are economically sensible, coinciding with peaks in 

activity in the population. For example, the morning peaks are broadly consistent with 

people rising, breakfasting, traveling to work, and turning on office and factory 

equipment at the start of the working day. The late afternoon and evening peaks are 
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consistent with people traveling home from work, turning on heating or cooling 

depending on the season, preparing evening meals, watching television and so forth.   

 

 

The results for spikes in the model show that all 377 observed spikes contribute 

significant effect in demand change in all regions, consistent with expectations and 

with the existing price literature.  

 

6.5 Conclusion 

The deregulation of the electricity supply chain and its reorganisation into wholesale 

markets offers a rich opportunity for researchers. The physical nature of electricity 

and the mode of organisation of its various markets give rise to price characteristics 

and behaviours that are not widely found in more traditional financial markets. It is 

widely held that in wholesale pool markets for electricity, like Australia’s NEM, 

demand for electricity is a primary driver of spot price. The motivation for 

undertaking the research presented in this chapter is to investigate the extent to which 

the seasonal factors and outlier effects that are found to be significant in half-hourly 

price and returns as shown in Chapter Five are present in the demand and demand 

changes series. Findings suggest that of the seasonal effects considered, intra-day 

effects are more significant and persistent than day of the week, monthly or yearly 

effects, but with some variation between regions. The variation between regions is 

broadly consistent with findings in the literature on price behaviour (see 

Worthington, Kay-Spratley and Higgs, 2003). Extreme positive spikes in demand 

change represent less than 0.05% of observations across all NEM regions under 

study, yet results show that extreme spikes are statistically significant, similar to 
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findings in the literature pertaining to returns on spot price [e.g. Higgs and 

s price 

 accepted as fact in electricity markets, and a preliminary comparison between the 

occurrences of spikes in returns on price versus spikes in demand change suggests 

s may not be consistent with price shocks. A further stage of 

Worthington (2005) and Thomas et al., (2006)].  The notion that demand drive

is

that demand-side spike

development of this research, presented in Chapter Eight, will be to investigate the 

extent to which the seasonal and outlier effects documented in this study transmit to 

the spot price.  
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Chapter 7: GARCH Modelling of High-Frequency 

t ed 

ansmission and distribution infrastructure, and the potential for market power and 

Volatility in Australia’s National Electricity Market 
 

7.1 Introduction 

The deregulation and restructuring of the Australian electricity industry and the 

development of the National Electricity Market (NEM) has moved Australia’s 

electricity industry a long way towards the broad aims of greater competition and 

lower wholesale electricity prices. That said, greater competition and lower general 

prices have come at the cost of higher price volatility. The non-storable nature of 

electricity, difficulties in forecasting and managing demand, a poorly main ain

tr

information asymmetry, among others, can provide a load-matching problem for 

market operators34. These conditions create clear seasonal patterns in wholesale 

electricity prices by time of day, weekday, month and to a lesser extent yearly patterns 

(see inter alia Lucia and Schwartz, 2002; and Chapters five and six). Intra-day 

patterns are the predominant form of seasonality and they are frequently accompanied 

by short-run spikes that are a significant and challenging feature of price behaviour 

[see Wolak (1997), Goto and Karolyi (2004), Higgs and Worthington (2005)].  

                                                 
34 In the Australian summers of 2005/6 and 2006/7, persistent high temperatures have resulted in “load 
shedding” becoming a recurrent feature of electricity supply, particularly in southern Victoria and 
southeast Queensland. The system operator, NEMMCO, may from time to time direct electricity 
providers to disrupt supply in order to maintain system balance (see section 3.1).On January 16, 2007, 
VIC1 prices reached the $10,000 VoLL level for two hours after bushfires disrupted the interconnector 
between NSW and VIC. On the afternoon of that day, Victoria's demand peaked at 9100 megawatts, 
4.2 per cent above the previous high observed on February 2006. (R Myer, “Power Meltdown Could 
Savage Snowy Hydro”  http://www.theage.com.au/articles/2007/01/17/1168709832134.html, accessed 
18/1/07). 
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High volatility has been a feature of price behaviour in the NEM since its 

establishment in 1998. When prices are highly volatile, it creates uncertainty about 

generators’ revenues35 and retailers’ and distributors’ costs. Further, high price 

volatility can make capacity planning and investment decisions difficult for generators 

and for owners and operators of the distribution grid. System operators and industry 

gulators also need to understand volatility to ensure that markets are designed and 

rkets. Lucia and 

chwartz (2002) report volatility clustering in the form of GARCH effects and 

re

operated in a way that limits market power and promotes confidence and safety for 

market participants. Finally, information about volatility informs measures of risk that 

are critically important to managers of energy commodity portfolios. Valuing 

derivatives and hedge contracts meaningfully and accurately requires meaningful and 

accurate measures and forecasts of price volatility over the life of an instrument36.   

 

In addition to generally high levels of volatility relative to the pre-NEM period and in 

comparison with more conventional financial markets (see Bunn and Karakatsani, 

2003), volatility clustering has been identified as a characteristic of electricity 

markets (Lucia and Schwartz, 2002). Autoregressive conditional heteroskedasticity 

(ARCH) models allow volatility shocks to cluster in time and may offer some insight 

into the volatility observed in electricity markets. To date, a relatively small number 

of ARCH-based studies have been undertaken in electricity ma

S

seasonality in both the deterministic component of prices and in jump (spike) 

                                                 
35 Taxpayer-owned Snowy Hydro faced possible large losses from the failure of the NSW-to-Victoria 
interconnector on Tuesday 16/1/07.  VIC1 prices soared dramatically, sitting on $9000 a megawatt-
hour for most of the afternoon and then hit the $10,000 mark for two hours after bushfires disrupted the 
cross-border transmission line. The average power price in normal times is about $30 a MWh. Snowy, 
a peak-power provider, has hedge contracts with Victorian power retailers and can usually deliver up to 
1900 MW to Victoria via the interconnector. Being unable to deliver power via the interconnector, it 
had to meet its hedge contract obligations by buying wildly expensive power on the spot market and 
selling it to the retailers at their contract price. (ibid) 
36 Ibid. 
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intensity. Escribano et al. (2002) show volatility to be time-varying with evidence of 

heteroskedasticity in conditional variance for daily spot prices in Argentina, New 

Zealand, Nordpool (Norway and Sweden) and Spain. Knittel and Roberts (2001) 

apply a range of models of asset prices to hourly prices in the California market, 

including an EGARCH specification.  

 

Of particular interest in the Australian context is the ARCH-based study of 

Worthington, Kay-Spratley Higgs (2005). This paper examines electricity prices and 

price volatility among the five Australian electricity markets in the NEM by applying 

a multivariate generalised autoregressive conditional heteroskedasticity (MGARCH) 

model to identify the source and magnitude of spillovers, in a sample of half-hourly 

spot prices for the period December 1998 to June 2001. The authors find a large 

number of significant own volatility and cross-volatility effects in all five markets, 

indicating the presence of strong ARCH and GARCH effects. It should be noted that 

for the purposes of their analysis a series of daily arithmetic means is drawn from the 

trading interval data (following Lucia and Schwartz, 2002). The authors recognise that 

this treatment will entail the loss of at least some ‘news’ impounded in more frequent 

trading interval data, but correctly note that “…daily averages play an important role in 

lectricity markets, particularly in the case of financial contracts…”37.  

 

e

Higgs and Worthington (2005) presents an investigation of the intra-day price 

volatility process in Australian electricity markets by employing five different ARCH 

processes: GARCH (generalised ARCH), Risk Metrics (normal integrated GARCH), 

                                                 
37 For example, the electricity futures contracts traded via the Sydney Futures Exchange (SFE) are 
settled against the arithmetic mean of half hourly spot prices in a given month. 
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normal APARCH (asymmetric power ARCH), Student APARCH and skewed Student 

APARCH (following Ding, Granger, and Engle, 1993; and Giot and Laurent, 2003a, 

2003b). The authors include the documented systematic features – intra-day and 

monthly patterns (calendar effects), intra-day innovation and volatility spillovers 

(ARCH and GARCH effects) and market activity (demand and information 

asymmetry effects), with a view to providing a characterisation of the volatility 

process. The data employed consists of half-hourly electricity price relatives and 

demand volumes from 1 January 2002 to 1 June 2003 for NSW1, QLD1, SA1 and 

VIC138. The natural log of the price for each half-hourly interval is used to produce a 

time series of price relatives for analysis. In their analysis, the inclusion of news 

arrival is proxied by the contemporaneous volume of demand, time-of-day, day-of-

week and month-of-year effects as exogenous explanatory variables. The authors find 

that on the basis of the log-likelihood, Akaike Information (AIC) and Schwartz 

Criteria (SC), the skewed Student APARCH form is the best model for all four 

markets under consideration.  Their results also indicate significant innovation 

(ARCH effects) and volatility (GARCH effects) in the conditional standard deviation 

equation, even with market and calendar effects included. They further observe 

significant asymmetric news responses in intra-day price volatility. 

 

The previous Australian research typically confines its analysis to one regional market 

in the NEM over a relatively short time horizon (less than two years). This study 

considers a much larger data sample that is broader in scope than the previous papers 

– covering a six-year sample of higher-frequency half-hourly data, across five regions 

in the NEM, as compared to 1-2 year samples using daily average data from one or 

                                                 
38 The SNOWY1 region is not included in the Higgs and Worthington (2005) study. 
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two regions only. I believe the use of a very-much-larger data set better characterises 

the volatility process by examining the market over a wider range of conditions and a 

broader market base. The treatment of seasonal effects and outliers is precise and 

specific and differs markedly from the generalised functional forms applied in the 

earlier studies; and this study finds that preferred ARCH model specifications and 

conditional error distributions differ when using high-frequency data. Further, the 

work presented in this chapter establishes a basis for the application of GARCH-based 

event study methodologies applied in the further research presented as Chapter Eight.  

 

 Half-hourly trading-interval prices for the period from the commencement of the 

EM in December 1998 to March 2005 are used and five NEM regions (NSW1, 

, SNOWY1 and VIC1) are included. The GARCH variants considered 

include the “basic” GARCH specification (Bollerslev, 1986), the Threshold GARCH 

(TARCH) model of Glosten, Jaganathan and Runkle (1993), Nelson’s (1991) 

Exponential GARCH (EGARCH) and the Power ARCH (PARCH) model proposed 

by Ding et al. (1993). The approach used in this study differs further from the 

previous Australian ARCH-based studies in that discrete half-hourly returns are used 

rather than log-based price relatives, to allow for the presence of negative prices, 

which were identified in Chapter Five as a significant feature of the data. This study is 

further distinguished from previous work in that seasonal effects and individual spikes 

are treated by pre-whitening the data by removing seasonalities and outlier effects in 

an OLS framework before fitting the various GARCH models to the data. The reasons 

for doing so are twofold: firstly, after accounting for spikes and seasonalities, 

significant residual ARCH effects are observed in the whitened returns data (see 

section 7.3). I am interested in developing better understanding of underlying 

N

QLD1, SA1
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volatility process in the returns series without the noise contributed by seasonalities 

and outliers; and secondly, a model specified with a con nce 

process that includes a very large number of variables (up to 260 to account for 

0 returns observations in each region), is too unwieldy for available 

is called for. The rest of the 

arises findings and suggests 

7.2 Data 

d s

half-hourly returns as defined by 

39

                                                

ditional mean and varia

seasonal and outlier effects and serial correlation) and over a very large sample size 

(>110,00

computing capabilities and as such a two-stage procedure 

chapter is organised as follows: Data and preliminary statistical analysis is provided in 

section 7.2. Models and econometric methodology and main estimation results are 

presented in sections 7.3 and 7.4. Section 7.5 summ

further related research.  

 

This stu y employs half-hour di crete returns for each of the five NEM regions that 

have been pre-whitened of seasonal and outlier effects following the process outlined 

in Chapter Five.  The base returns data are discrete 

equation 5.1 , and the filtered data used in this study are derived by capturing the 

residuals from the model defined by equation 7.1.  

 
39 The base returns series used in this study are half-hourly discrete returns as used in chapter five ie.: 
 

( )
1

1−−
= tt

t
PP

RP .      (5.1) 
−tP

 
Where RPt represents the half-hourly discrete proportionate change in price (“return”) at time t, Pt is 
half-hourly price at time t and |Pt-1| is the absolute value of the previous half-hourly price, at time t-1. 
The denominator is specified as the absolute value to allow for the presence of negative prices.  
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00:00hrs, 2 for 00:30hrs…,48 for 23:30hrs)  

SPIKER,S 

p sly defin  re  th of ex rns n 

r or the pe the stud Table 

N esents y variable for the r ssociate  an occurrence of 

a negative price (p= NR,N), wi N  representing the number of occurrences of a 

n rice for  during  perio  study.

 

This m but highly effective m

f lities a ffects dual s

W

RPR,t  represents the discrete return for region R at time t; 

DAYj represents the dummy variable for each day of the week (j=1 for Monday, 2 for 

Tuesday,…,6 for Saturday). MTHk represents the dummy variable for each month 

(k=1 for January, 2 for February,…,12 for December).  

YRl represents the dummy variable for each year included in the sample period 

(l=1999,…,2006).  

HHm represents the dummy variable for each half-hourly trading interval (m=1

represents ch extreme spike as a set of NR,S dummy variables, one for ea

reviou ed, with NR,S presenting e number treme retu observed i

egion R f riod of y (see 5.2); 

EGR,N repr the dumm eturn a d with

1,…, th NR,

egative p region R  for the d of the   

odel represents a relatively simple ethod for controlling 

or seasona nd the e of indivi pikes40. The data used in this study are 

                                                 
40 The model specification represented by equation 7.1 differs from equation 5.2 in that it does not 
include lagged dependent variables to control for serial correlation in the returns series. The rationale 
for this difference is explained in section 7.3 
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the residuals represented by the error term, εt in the model. Descriptive statistics for 

the filtered returns series are shown in Table 7.1. Augmented Dickey-Fuller (ADF) 

statistics and results of ARCH-LM tests for each region’s filtered returns series are 

also included in Table 7.1.  

 

The standard deviation is generally high relative to the mean and takes on a range of 

values across the regions, indicating a high degree of variability in the filtered returns 

and considerable variation between the 5 regions.  The highest mean returns are found 

in QLD1, SA1 and SNOWY1 and these regions exhibit the largest standard 

deviations.  Consistent with the findings of the earlier studies and with the returns 

series as discussed in Chapter Five, Augmented Dickey-Fuller (ADF) statistics reject 

the hypothesis of a Unit Root at the 1% level of significance for all five regions.  

(by Region, December 1998 to March 2005). 
ε NSW1 QLD1 SA1 SNOWY1 VIC1 

Table 7.1: Descriptive Statistics for Filtered Half-Hourly Returns εt. 

t.

Mean -2.44x10-17 1.29x10-16 1.57x10-17 1.48x10-17 2.72x10-17

Median -0.006 -0.014 -0.019 -0.008 -0.007 

Maximum 4.82 6.86 7.00 19.82 4.39 

Minimum -1.13 -1.81 -1.46 -1.21 -1.30 

Std. Dev. 0.18 0.30 0.29 0.28 0.19 

Skewness 6.52 8.92 7.97 29.87 4.81 

Kurtosis 121.53 139.03 122.96 1459.27 72.50 

JB stat  
(p-value) 

6.56x107

(0.000) 
8.68x107

(0.000) 
6.76x107

(0.000) 
9.80x109

(0.000) 
2.27x107

(0.000) 
ADF Stat -38.34 -32.22 -34.27 -36.10 -40.02 

ARCH-LM Test     

F-Stat 
(p-value) 

95.06 
(0.000) 

57.06 
(0.000) 

49.53 
(0.000) 

44.89 
(0.000) 

62.12 
(0.000) 

N 110718 110718 110718 110718 110718 
The critical values of significance for skewness and kurtosis at the 0.05 level are 0.0305 and 0.0610, respectively. 
JB is the Jarque-Bera statistic. The critical value for the ADF statistic at the 0.01 level is -3.43  
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T  

and extremely high kurtosis. This fat-tailed character persists despite the removal of 

extreme spikes in the raw returns data and is consistent with the findings of Huisman 

ggs and Worthington (2005) and Wolak (2000).   

 

The p-values for the Jarque-Bera (JB) statistics presented in Table 7.1 reject the null 

hypothesis of a normal distribution at the 1% level of significance for all five regions. 

It follows that these half-hourly returns are not well approximated by the normal 

distribution, implying that it may be appropriate to fit ARCH-type volatility models. 

The p-values for F-statistics in the ARCH-LM test results confirm the presence of 

ARCH effects in all five regions. Figure 7.1 suggests that volatility clustering is a 

feature of the data and the high positive skewness values suggest that there is a 

significant asymmetric response to positive shocks. It appears that VIC1 exhibits a 

different pattern of returns to the other regions, evidenced by smaller kurtosis and 

skewness. 

he distributions of filtered returns for all 5 regions demonstrate positive skewness

and Huurman (2003), Hi
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Figure 7.1: Filtered Discrete Returns by Region, for the period 7/12/1998 to 31/3/2005 
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The descriptive statistics presented in the previous section indicate that it may be 

appropriate to use ARCH models to describe the volatility process in returns to 

electricity prices in the NEM. This assertion is consistent with the findings of the 

earlier Australian studies and studies of foreign electricity markets that find temporal 

variation in electricity price volatility, with evidence of heteroskedasticity in 

conditional variance [see Bunn and Karakatsani, (2003) and Escribano et al., (2002)]. 

 

Since Bollerslev (1986) proposed the Generalised ARCH (GARCH) model, there 

have been numerous developments in the ARCH literature to refine the mean and 

variance equations in order to better capture temporal variations in financial market 
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volatility41.  An important innovation has been development of ARCH model 

specifications to describe the asymmetry present in financial data, where the current 

onditional volatility estimate for an asset is often dependent on the size and sign of 

shold GARCH specifications that were introduced 

dependently by Zakoïan (1994) and Glosten, Jaganathan, and Runkle (1993).  In 

c

past observations. For stock markets, this phenomenon was initially attributed to 

leverage effects (see inter alia Black 1976, Christie 1982 and Nelson 1991). The 

presence of asymmetry in other financial markets such as foreign exchange markets 

required a different explanation. Bekaert and Wu (2000) suggest that volatility 

feedback mechanisms are a more likely explanation. Several ARCH models capture 

this characteristic, including Nelson’s (1991) Exponential GARCH (EGARCH) and 

the Threshold ARCH and Thre

in

their examination of electricity price relatives, Higgs and Worthington (2005) argue 

that there is evidence of significant asymmetric effects in the volatility process.  

 

A fat-tailed or leptokurtic distribution of prices and returns is a well-documented 

characteristic of electricity markets (see inter alia. Huismann and Huurman, 2003, 

Worthington, Kay-Spratley and Higgs, 2005 and Higgs and Worthington, 2005).  

Further innovations have been made to ARCH models to accommodate this 

characteristic in asset prices in conventional financial markets. Typically, this 

modification to the standard class of model involves replacing the standard normal 

density with some other assumed distribution such as a t-density (see Engle and 

Bollerslev 1986), the GED density (see Nelson 1991) and the autoregressive 

conditional density of Hansen (1994). 

                                                 
41 Developments in ARCH modelling and its application are surveyed in Bollerslev, Chou and Kroner (1992), 
Bera and Higgins (1993), Ding, Granger, and Engle (1993), Diebold and Lopez (1995), Pagan (1996), Giot and 
Laurent (2003a, 2003b), and Mitchell and McKenzie (2003, 2006). 
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A further modification to the standard class of the ARCH model focuses on the 

specification of the power term that is used to transform the data to emphasize periods 

standard class of ARCH model uses a 

 from the normality assumption traditionally 

bing the data. The presence of leptokurtosis suggests that this 

rms may be more appropriate (Mitchell & 

cKenzie, 2006).  For example, Taylor (1986) and Schwert (1989) argued in favour 

of the standard devia cified. 

ch 

 infinite 

 

egative and positive shocks. The 

tudent-APARCH model is a further extension designed to account for the acute 

tricity markets (see Bauwens and Giot, 2001, and Giot 

 

o

theoretical basis for favouring one model specification over another42. As such they 

of volatility and relative tranquility. The 

squared power term, which may stem

invoked when descri

assumption may be invalid in which case the potential superiority of a squared 

transformation is lost and other power te

M

tion GARCH model, where a power term of unity is spe

Ding et al. (1993) introduced a new class of power-ARCH (PARCH) model in whi

the power parameter is estimated rather than imposed, thereby allowing an

number of transformations of the data.   

Higgs and Worthington (2005) find support for the Student-APARCH model in 

favour of other ARCH specifications. The Asymmetric Power-ARCH (APARCH) 

model proposed by Ding, Granger and Engle (1993) extends the PARCH model to 

capture the asymmetric volatility response to n

S

leptokurtosis in Australian elec

and Laurent, 2003a and 2003b). 

ARCH m dels by and large are purely adaptive models and provide no clear 

                                                 
42 For a discussion of the atheoretic nature of ARCH mod ee Diebold and Lopez (1995), Goodhart els s
and O’Hara (1997) and Ackert and Racine (1997).  
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are regarded more as descriptive tools than representative of the actual data generating 

process. There are a wide variety of features found in the financial markets data and a 

very large number of models have been proposed to describe these features (Mitchell 

and McKenzie, 2005, 2006). Further, there are a growing number of univariate and 

multivariate extensions to the basic ARCH model, as such it would not be feasible to 

include all of the different specifications in this analysis.  With this in mind and given 

that the purpose of this study is to examine the relative efficacy of univariate ARCH 

models in describing the filtered data, I have chosen to limit the scope of this study to 

e more basic forms of ARCH model that may reflect established characteristics of 

the TARCH, EGARCH and PARCH specifications as 

 

   (7.2) 

s such the mean equation (7.2) is a function of exogenous variables with an error 

ed to include 

rrelation in the data:  

    (7.3) 

th

electricity prices, these being 

discussed above. The basic GARCH specification is included for comparison, to 

determine if a relatively simple model describes the data adequately, despite the 

documented characteristics of the data.  

7.3.1 Model Specification 

The Mean Equation 
 
The basic GARCH (1,1) specification of Bollerslev (1986), gives the mean equation 

as follows: 

 
ttt XY εθ +=     

 

'

A

term. For the purposes of this study the mean equation is modifi

appropriate AR and MA terms to control for serial autoco

∑ ∑
= =

−− ++=
p

i

q

i
itiititt YXY

1 1

' εβαθ
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where Et is a dummy variable assigned the value of one on event days (or at event 

time) and zero otherwise. γ  represents the event coefficient, which is interpreted as 

the average abnormal return on the event day; and p and q are chosen to capture 

significant spikes in the autocorrelation function.  

 

GARCH Model Specification 

The GARCH (1,1) conditional variance equation is given by equation 7.4: 

22 ++= βσαεωσ

resents last period’s forecast 

variance. The specification of this model is consistent with the volatility clustering 

often seen in financial returns data, where large changes in returns are likely to be 

followed by further large changes. In conventional financial markets, this 

specification is taken to suggest that an agent or trader predicts this period’s variance 

as a function of a long term average (the constant), the forecasted variance from last 

period (the GARCH term), and information about volatility observed in the previous 

period (the ARCH term). If the asset return was unexpectedly large, then the trader 

will increase the estimate of the variance for the next period.  

 

Threshold ARCH (TARCH)  

It is often observed in financial markets research that a downward price movement in 

the market will generate a higher volatility response than an equivalent upward 

movement. This is described as asymmetric news impact. The TARCH specification 

2
11 −− ttt      (7.4) 

In which ω is a constant term, the ARCH term, 2
1−tε , is given as the first lag of the 

squared residual from the mean equation and represents news about the volatility from 

the previous period, and the GARCH term, 2
1−tσ , rep
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proposed by Glosten, Jaganathan, and Runkle (1993) and Zakoian (1994) is used to 

test for this asymmetric news impact. The occurrence of extremely short-lived spikes 

).  Higgs and Worthington (2005) find that price 

orning, late-aft are associated with high 

volatility and that negative price spikes, and other times of the day, week and year are 

11 −−−− ttttt

 to includ

1 −− tt t t odel, an 

upward spike  (εt<0) has an impact of α and a downward or negative spike (εt>0) has 

an impact of α+γ. If γ >0, a negative spike increases volatility and a leverage effect is 

resent. If γ≠0, the impact of news on the series’ returns is asymmetric.  

The asymmetric volatility response identified by Higgs and Worthington (2005) 

 a form of perverse asymmetry that is counter to the effects 

generally observed in conventional financial markets.   

followed by periods of relative calm is a well-established feature of electricity price 

behaviour. Evidence in support of the existence of volatility spikes is found by Wolak 

(1997) and Goto and Karolyi (2004

spikes, early-m ernoon and early evening hours 

associated with relatively lower volatility.  

 

The GJR TARCH specification for the conditional variance is: 

  2222 +++= d βσγεαεωσ     (7.5) 

The basic GARCH model of equation 7.4 is extended e a threshold 

term 2 dγε . In this model,  d =1  if  ε  < 0, and 0 otherwise. In this m

11

1

p

 

indicates that volatility tends rise in response to ‘good news’ for traders (proxied by 

positive price spikes – see Chapter Five) and fall in response to ‘bad news’ (negative 

spikes)’, which is
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Exponential GARCH  

Nelson’s (1991) Exponential GARCH (EGARCH) model is formulated to capture 

news in the form of leverage effects. In the EGARCH model the specification for the 

conditional covariance is given by: 

  ( ) ( ) ∑∑∑
= −

−

= −=
− ++=

rp

i it
i

q

j
jtjt

11
loglog

σ
ασβωσ − +

k kt

kt
k

it

1

22

σ
ε

γ
ε  (7.6) 

he left-hand side is the log of the conditional variance, implying that any leverage 

onditional variance are guaranteed to be 

non-negative. In interpreting the model, the presence of leverage effects is indicated 

EGARCH model allows unrestricted estimation of the variance, i.e. -∞ < log( ) < 

2 2

the transformation of the error term in the models. The PARCH specification is given 

by equation 7.7:   

 

T

effects are exponential and that forecasts of c

by γk<0, and the impact is asymmetric if γk ≠0. While the basic GARCH model 

(equation 7.4) requires the restrictions in estimation that 2σ >0, for t = 1…T , the 

2
i

∞, implying that tσ >0, and so the assumption that tσ >0, for t = 1…T  is 

automatically satisfied.  

 

Power ARCH 

The power-ARCH (PARCH) specification proposed by Ding et al. (1993) generalises 

t

σ

( )∑ ∑
= =

−−− −++=
q

j

p

i
ititjtjt

1 1
1

δδδ εγεασβωσ    (7.7) 
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The power parameter, δ, is estimated rather than imposed, and an optional threshold 

parameter, γ, may be included to capture asymmetry. The Bollerslev (1986) model 

ts δ=2, γ=0, and the Taylor (1986) model sets δ=1and γ,=0. Empirical estimates 

lectricity prices.  

 

Preliminary attempts to estimate the four GARCH specifications to order (1,1) with a 

mean equation inclusive of the very large number of seasonal and outlier control 

model could not be reliably estimated43. In view of this constraint a decision was 

ken to undertake a two-stage estimation process by firstly pre-filtering the data by 

controlling for seasonalities and outliers in the returns series using OLS estimation in 

equation 7.1, capturing the residuals (εt) from the model (referred to herein as the 

                                                

se

indicate the power term is sample dependent and values of near unity are common in 

the case of stock data (see Ding et al. 1993), while for foreign exchange data the 

power term varies between unity and two (see McKenzie and Mitchell, 2002). When 

fitting a PARCH model to electricity price data, the choice of power parameter is not 

obvious. Higgs and Worthington (2005) find some variation between regions in the 

estimated power term of a model for e

7.3.2 Model Estimation Procedure  

variables identified in Chapter Five created convergence problems that meant the 

ta

“filtered returns”), then simultaneously estimate the mean and conditional variance 

equation over the filtered returns, incorporating appropriate AR and MA terms in the 

 
43 Initial attempts using EVIEWS and SPSS statistical software packages to fit GARCH(1,1), 
TARCH(1,1), EGARCH(1,1) and PARCH(1,1) models to each region’s discrete returns series, while 
controlling carefully for seasonal an outlier effects and serial correlation required that the mean 
equation be specified to include as many as 260 dummy variables (47 intra-day, six weekday, 11 
monthly, six for year and up to 190 spikes, depending on region – see chapter five), over a sample size 
of 110,718 observations for each region. Almost all attempts to fit basic GARCH(1,1) processes to 
such large models failed to converge after 1000-1500 iterations.  
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mean equation to control for serial correlation. In view of the very large sample size, 

and according to Engle (1982), this two-stage approach should not result in loss of 

asymptotic efficiency in model estimation. 

 

ARCH specification also requires that an assumption be made about the conditional 

istribution of the error term. There are three assumptions commonly employed when 

working with ARCH models: normal (Gaussian) distribution, t-distribution, and 

Nelson’s (1991) Generalized Error Distribution (GED).  Preliminary analysis of the 

full data set found that the Generalised Error Distribution (GED) was the most 

appropriate for model estimation44.   

 

Given a distributional assumption, ARCH models are typically estimated by the 

method of maximum likelihood. For the GED, the contribution to the log-likelihood 

for observation t is: 

d

( )
( )( )

( )( )
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22'
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3 3
log11log1

t
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⎛ Γ
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σ  (7.8) 

Where the tail paramete

22 /12232

r

rrr ⎟⎜ Γ⎟⎜ Γ σ

r r > 0. The GED is a normal distribution if r = 2 and 

leptokurtic if r < 2. 

 

                                                 
44 In preliminary analysis, GARCH(1,1), TARCH(1,1), EGARCH(1,1) and PARCH(1,1) models were 
estimated over full data samples for all five regions, assuming normal (Gaussian), student-t, 
constrained student-t (with degrees of freedom set at 2 and 4) and GED. In all five regions, the 
distributions of standard errors were found to be significantly non-normal and significantly asymmetric 
and as such neither the assumption of a normal distribution nor a student-t distribution for the standard 
errors was supported. Note also that Nelson’s (1991) EGARCH specification as represented by 
equation 7.5 assumes that the standard errors εt follow a Generalised Error Distribution.  
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7.4 Empirical Results. 

For c bles 

p esent the re  re eti ta

estim a d lu th iti

variance equations for the four different GA  pr s u xa n a

with the estimat D p ter kai orm (AI d S z B

C in atson (DW) statistic and F-Statistic and p-value showing the 

r lts of ARCH es

 

The uppermost sectio h d s e

account for serial correlation for each region. There is some variation between 

r it NSW1 d AR effects the 1% level at lags 1,5,7 

and 8; QLD1 de rat nif R s at , 4 48 nif

M fect at  SA1 s o gnificant AR effects at lags 1, 47 and 48. 

cross all four GARCH specifications, while VIC1 demonstrates significant AR 

larity, the empirical results are presented in Tables 7.2 to 7.6, where the ta

r sults for the five gions in alphab cal order. Each ble presents the 

ated coefficients, standard errors n  p-va es for e cond onal mean and 

RCH ocesse nder e minatio long 

ed GE arame  (r), A ke Inf ation C) an chwart ayes 

riteria (SBC), Durb -W

esu -LM t ts.  

n of eac  table e cribes the ARMA structure requir d to 

egions, w h emonstrating significant 

monst ing sig icant A  effect  lags 1 7 and and sig icant 

A ef  lag 48; h wing si

Interestingly SNOWY1 exhibits the same type of AR structure as QLD1 with 

significant AR effects at lags 1, 47 and 48 and similar magnitude of coefficients 

a

effects at lags 1, 5, 7, 47 and 48. Durbin-Watson statistics for all model specifications 

in all regions are close to 2, indicating a lack of significant residual serial correlation 

after model estimation.  
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Table 7.2: Estimated Coefficients for Conditional Mean Returns and Variance 
Equations (NSW1) 

 GARCH(1,1) TARCH(1,1) EGARCH(1,1) PARCH(1,1) 
 Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val 
Mean Equation        
ω -0.006 0.000 -0.006 0.000 -0.006 0.000 -0.005 0.000

0.048 0.000 0.048 0.000 0.048 0.000 0.047 0.000
-0.025 0.000 -0.025 0.000 -0.024 0.000 -0.023 0.000

AR(7) -0.030 0.000 -0.030 0.000 -0.029 0.000 -0.029 0.000

         

 

         

SBC -1.664  -1.664  -1.662  -1.670  

         

AR(1) 
AR(5) 

AR(48) 0.402 0.000 0.402 0.000 0.402 0.000 0.405 0.000

Variance Equation        
ω 0.003 0.000 0.003 0.000 -1.265 0.000 0.019 0.000
α 0.474 0.000 0.497 0.000 0.553 0.000 0.379 0.000
β  0.482 0.000 0.481 0.000 0.793 0.000 0.575 0.000
γ   -0.046 0.001 -0.002 0.616 -0.086 0.000
δ      1.065 0.000

        
r 0.875 0.000 0.875 0.000 0.873 0.000 0.876 0.000

AIC -1.665  -1.665  -1.663  -1.671  

DW-Stat 2.054  2.055  2.054  2.054  

ARCH-LM Test       
F-Stat 0.119 0.731 0.144 0.704 0.055 0.815 0.055 0.815
    
#Obs 110670  110670 110670 110670 

 
This table provides the estimated coefficients and p-values for the mean and conditional standard deviation 

αis the ARCH coefficient, γ is the leverage effect, δis the power of the conditional standard deviation process, AIC 
and SBC are Akaike Information and Schwartz-Bayes Criteria respectively. DW stat is the Durbin-Watson 
Statistic. ARCH-LM tests were specified with 48 lags, representing one full trading day.  

 

equations for the NSW1 regional electricity pool in the NEM. ω is the constant in the conditional mean equation, 

The results from fitting the various GARCH specifications vary somewhat from 

region to region. For NSW1 (see Table 7.2),  the ARCH parameter (α), GARCH 

parameter (β), and parameter for the asymmetric volatility response (γ) (where 

applicable) in the GARCH, TARCH and PARCH specifications sum to less than one, 

and EGARCH imposes no constraints on the parameter estimates, indicating in NSW1 

all four models result in stable ARCH processes and are viable models. The ARCH 

parameter (α), and GARCH parameter (β) are positive and significant in all four 
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models, indicating the presence of ARCH and GARCH effects in the filtered returns. 

The  2, 

indicating that the distribution of s is hic t 

w  character obse  in Australian electricity

 

The parameter y ic lity ns  neg an ica

the TARCH and PARCH m  asym et c o

returns in the conditional variance ion res bro ons it

skewness values shown in Table 7.1 and igu  an ct

condition that v  t e on osi ike fall on

n ve spike s counte e sual exp n in stock here 

d  mov  alling ret r  followed h

m n s ation (AIC) and 

Schwartz Bayesian Criteria (SBC) favours the PARCH model over the other three 

ur model specifications, with the p-value for the PARCH model’s F-Statistic 

indicating that this model may be accounting for a greater proportion of 

heteroskedasticity than the other models. Finally, the power coefficient (δ) of the 

standard deviation process in the PARCH model is significantly different from one, 

indicating it is more relevant to model the conditional standard deviation of electricity 

markets in a non-linear form.  

estimated GED parameter (r) is in the order of 0.88, falling between 0 and

standard error  leptokurtic45, w h is consisten

ith the fat-tailed rved  prices and returns. 

for the as mmetr  volati  respo e (γ) is ative d signif nt in 

odels indicating an m ri  resp nse for positive 

 equat . This ult is adly c istent w h the 

suggested by F re 7.1 d refle s the 

olatility ends ris in resp se to p tive sp s and  in resp se to 

egati s. This lie r to th  u ectatio  markets w

ownward ements (f urns) a e  by hig er volatility than upward 

ovements (increasi g return )46. Ranking by Akaike Inform

specifications. F-Statistics resulting from the ARCH-LM test are significant for all 

four models, indicating that heteroskedasticity has largely been accounted for by all 

fo

 

                                                 
45 See Nelson (1991). 
46 See inter alia Thomas and Brooks, 2001. 
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Results for QLD1 differ markedly from those found for NSW1 (see Table 7.3).   

Table 7.3: Estimated Coefficients for Conditional Mean Returns and Variance 
Equations (QLD1) 

) TARCH(1,1) EGARCH(1,1) PARCH(1,1)  GARCH(1,1
 Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val 
Mean Equation        
ω -0.020 0.000 -0.022 0.000 -0.025 0.000 -0.021 0.000

AR(47) 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000

MA(48) -0.841 0.000 -0.846 0.000 -0.853 0.000 -0.845 0.000

Variance Equation        
ω
α 0.899 0.000 0.798 0.000 0.696 0.000 0.658 0.000
β  0.390 0.000 0.391 0.000 0.806 0.000 0.479 0.000
γ   0.196 0.000 -0.183 0.000 0.043 0.000
δ     1.248 0.000
       
r 0.741 0.000 0.741 0.000 0.723 0.000 0.741 0.000

AIC -1.510  -1.510  -1.481

AR(1) 0.017 0.000 0.016 0.000 0.015 0.000 0.016 0.000

AR(48) 0.934 0.000 0.937 0.000 0.941 0.000 0.937 0.000

         

 0.003 0.000 0.003 0.000 -1.209 0.000 0.013 0.000

         
 -1.514  

SBC -1.509  -1.509  -1.480  -1.513  
2.183  2.182  2.178  2.181  

        

F-Stat 0.182 0.669 0.172 0.678 0.129 0.720 0.094 0.760

DW-Stat 
 
ARCH-LM Test        

    
#Obs 110670  110670 110670 110670 

 
This table provides the estimated coefficients and p-values for the mean and conditional standard deviation 

is the ARCH coefficient, γ is the leverage effect, δ is the power of the conditional standard deviation process, AIC 
and SBC are Akaike Information and Schwartz-Bayes Criteria respectively. DW stat is the Durbin-Watson 

 

equations for the QLD1 regional electricity pool in the NEM. ω is the constant in the conditional mean equation, α 

Statistic. ARCH-LM tests were specified with 48 lags, representing one full trading day.  

The sum of the α, β and γ values is markedly greater than 1 in the GARCH and 

ARCH models (summing to 1.29 and 1.19, respectively) suggesting an explosive 

ARCH process. The α and β values for the PARCH specifications sum to 1.09, less 

marked than the other two specifications but still indicating a potentially unstable 

model, leaving the EGARCH which imposes no constraints on the parameter 

estimates as the only viable model, despite the AIC and SBC estimates slightly 

favouring the PARCH specification. In the EGARCH model, the α and β estimates 

T
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are s s in 

the filtered retu

 

W e F-Statistics re  f e A -LM  are sign  fo

four models, indicating that heteroskedasticity has been accounted for by all four 

model specifications, the es e te istic suggest e P  m

m  be taking cc f t CH ts. SW e e d 

parameter ( tween 0 and 2, indicating that the 

distribution of standard errors is leptokurti e

v ity respo  negative g ificant, in g an asymm e onse 

for positive returns in t uation.   

 
r tent with 1 than NS e Table 

specifications. The sum of the ARCH parameter (α), and GARCH parameter (β), in 

ignificant and positive, indicating the presence of ARCH and GARCH effect

rns. 

hile th sulting rom th RCH  test  not ificant r all 

p-valu  for th st stat  that th ARCH odel 

ay better a ount o he AR  effec Like N 1, th stimate GED 

r) is in the order of 0.88, falling be

c; and the  param ter for the asymmetric 

olatil nse (γ) is  and si n dicatin  etric r sp

he conditional variance eq

SA1 yields results that are mo e consis the QLD W1 (se

7.4). Again, F-Statistics resulting from the ARCH-LM test are all significant, 

indicating that heteroskedasticity has largely been accounted for by all four model 

the GARCH model is greater than 1 (1.09). For the TARCH model, the α and β values 

sum to 0.93 but the addition of the γ parameter results in a value of 1.28.  
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Table 7.4: Estimated Coefficients for Conditional Mean Returns and Variance 

 GARCH(1,1) TARCH(1,1) EGARCH(1,1) PARCH(1,1) 

Equations (SA1) 

 Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val 
       Mean Equation 

ω -0.017 0.000 -0.017 0.000 -0.018 0.000 -0.017 0.000
0.058 0.000 0.055 0.000 0.053 0.000 0.051 0.000
0.067 0.000 0.069 0.000 0.071 0.000 0.067 0.000

AR(48) 0.239 0.000 0.242 0.000 0.242 0.000 0.243 0.000

Variance Equation        
ω .000
α .000

  0 0
  

        
   -1.108  
   -1.107  

bs 1 1 1 1

AR(1) 
AR(47) 

         

0.005 0.000 0.005 0.000 -0.919 0.000 0.028 0
0.625 0.000 0.451 0.000 0.544 0.000 0.423 0

0β 0.464 0.00
 

0.480 0.00 0.836 0.000 0.602 0.00
 γ

δ
0.347 0.000 -0.160 0.000 0.075

0.964 
0.000
0.000  

  
    
      

r 0.698 0.000 0.702 0.000 0.698 0.000 0.704 0.000
 
AIC -1.098 -1.101 -1.095
SBC -1.097 -1.100 -1.094
DW-Stat 2.186  

 
2.180  

 
2.177  

 
2.174  

      
ARCH-LM Test        
F-Stat 
 

0.416 0.661 0.540 0.462 0.278 0.598 0.115 0.735
   

#O 10670  10670 10670 10670 
 
This table provi  the estim ed coeffici nts and p r the mean and conditiona   de
equations for the SA1 regional ectricity pool in the NEM. ω is the constant in the condition a on, α is 
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rhe estimated GE r

asymmetric volatility response (γ) is negative and significant in both the EGARCH 

and PARCH models, indicating an asymmetric response for positive returns in the 

c

Akaike Information (AIC) and Schwartz Bayesian Criteria (SBC) favours the PARCH 

model over the EGARCH specification. The p-values for the ARCH-LM test statistic 

suggest that the PARCH model may be taking better account of the ARCH effects 

 141 



in the PARCH model is significantly different from one, indicating that the 

conditional standard deviation of electricity markets should not be modelled in a 

near framework.  li

 

Results for the conditional variance equation for SNOWY1 are shown in Table 7.5: 

Table 7.5: Estimated Coefficients for Conditional Mean Returns and Variance 
Equations (SNOWY1) 

 GARCH(1,1) TARCH(1,1) EGARCH(1,1) PARCH(1,1) 
 Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val 
Mean Equation        
C -0.014 0.000 -0.015 0.000 -0.017 0.000 -0.013 0.000

0.007 0.000 0.007 0.000 0.007 0.000 0.006 0.000
0.008 0.000 0.009 0.000 0.012 0.000 0.008 0.000

AR(48) 0.949 0.000 0.950 0.000 0.948 0.000 0.952 0.000

        

         

SBC -1.716  -1.716  -1.703  -1.722  

     
.001 0.986 0.001 0.989 0.018 0.894

    
110670  110670 110670 110670 

AR(1) 
AR(47) 

MA(48) -0.828 0.000 -0.831 0.000 -0.826 0.000 -0.833 0.000
         
Variance Equation        
ω 0.003 0.000 0.003 0.000 -1.504 0.000 0.020 0.000
α 0.575 0.000 0.527 0.000 0.581 0.000 0.428 0.000
β  0.431 0.000 0.431 0.000 0.738 0.000 0.546 0.002
γ   0.099 0.000 -0.111 0.000 0.022 0.000
δ      1.061 0.000

r 0.806 0.000 0.807 0.000 0.804 0.000 0.805 0.000

AIC -1.717  -1.717  -1.704  -1.723  

DW-Stat 1.975  1.975  1.975  1.974  
         
ARCH-LM Test   
F-Stat 0.002 0.989 0

#Obs 
This table provides the estimated coefficients and p-values for the mean and conditional standard deviation 
equations for the SNOWY1 regional electricity pool in the NEM. ω is the constant in the conditional mean 

1, results for SNOWY1 eliminate the GARCH and TARCH 

specifications on the basis of the α, β and γ values adding to values greater than 1 

(≈1.06 for both models). This notwithstanding, F-Statistics resulting from the ARCH-

equation, α is the ARCH coefficient, γ is the leverage effect, δ is the power of the conditional standard deviation 
process, AIC and SBC are Akaike Information and Schwartz-Bayes Criteria respectively. DW stat is the Durbin-
Watson Statistic. ARCH-LM tests were specified with 48 lags, representing one full trading day.  
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power coefficient (δ) of the standard deviation process in the PARCH model is 

significantly different from unity.   

 

In VIC1 (Table 7.6), the estimated GARCH, EGARCH and PARCH models are 

stable, and the TARCH model is the only one rejected on the basis of instability (α, β 

and γ sum to 1.05).  

test are all significant, indicating that heteroskedasticity has largely b

y all four mod ecifications. 

odels e AIC d SBC stimates vour 

odel. I resting  the p lues f the A H-LM st stati c are 

arkedly larger for N t

el, the -value suggests that the EGARCH odel 

ight have better overcom oblem hetero edastic in the rns ser s.  

he A rameter (  (β) in th EGARCH

d  are posi  signific n ti g that d returns ex

RCH and GARCH e f cts. Co istent i h the p e ious t ee regio s, the es i ated 

er (r) is b  0 and 2 fo els, ind  the dist

 143 



Table 7.6: Estimated Coefficients for Conditional Mean Returns and Variance 
Equations (VIC1) 

 GARCH(1,1) TARCH(1,1) EGARCH(1,1) PARCH(1,1) 
 Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val 
Mean Equation        
ω -0.005 0.000 -0.006 0.000 -0.007 0.000 -0.006 0.000
AR(1) 0.053 0.000 0.051 0.000 0.050 0.000 0.051 0.000
AR(5) -0.026 0.000 -0.026 0.000 -0.024 0.000 -0.023 0.000
AR(7) -0.022 0.000 -0.023 0.000 -0.021 0.000 -0.021 0.000
AR(47) 0.073 0.000 0.075 0.000 0.076 0.000 0.074 0.000
AR(48) 0.330 0.000 0.330 0.000 0.330 0.000 0.330 0.000
         
Variance Equation        
ω 0.004 0.000 0.004 0.000 -1.320 0.000 0.029 0.000
α 0.513 0.000 0.417 0.000 0.591 0.000 0.391 0.000
β  0.448 0.000 0.457 0.000 0.772 0.000 0.554 0.000
γ   0.179 0.000 -0.081 0.000 0.031 0.002
δ      0.962 0.000
        
r 0.841 0.000 0.807 0.000 0.843 0.000 0.844 0.000
         
AIC -1.456  -1.457  -1.458  -1.464  
SBC -1.455  -1.456  -1.457  -1.463  
DW-Stat 2.109  2.106  2.104  2.106  
         
ARCH-LM Test        
F-Stat 0.921 0.337 0.553 0.457 0.248 0.618 0.029 0.865
    
#Obs 110670  110670 110670 110670 

 
This table provides the estimated coefficients and p-values for the mean and conditional standard deviation 
equations for the VIC1 regional electricity pool in the NEM. ω is the constant in the conditional mean equation, α 
is the ARCH coefficient, γ is the leverage effect, δ is the power of the conditional standard deviation process, AIC 
and SBC are Akaike Information and Schwartz-Bayes Criteria respectively. DW stat is the Durbin-Watson 
Statistic. ARCH-LM tests were specified with 48 lags, representing one full trading day.  

 

As in the other 4 regions, ranking by Akaike Information and Schwarz-Bayes Criteria 

favours the PARCH model over the remaining viable models and like NSW1, QLD1 

and SA1, the p-values for the ARCH-LM test statistic suggest that the PARCH model 

might better address heteroskedasticity in the data. The ARCH parameter (α), and 

GARCH parameter (β) in the EGARCH and PARCH models are positive and 

significant, consistent with the other regions. The leptokurtic character of the 

distribution of the standard is supported by the GED parameter (r) estimate of 0.84. 

The parameter for the asymmetric volatility response (γ) is negative and significant in 
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both the EGARCH and PARCH models, and like the other regions the power 

coefficient (δ) of the standard deviation process in the PARCH model indicates that a 

non-linear conditional standard deviation equation is appropriate. 

 

In summary, ranking by AIC and SBC favours the Power-ARCH (PARCH) 

specification in all five regions, although it should be noted that in QLD1 the sum of 

the ARCH, GARCH and Threshold (asymmetric volatility response) parameters sum 

to a value slightly greater than unity which signals an unstable model, in which case 

the choice of model defaults to the EGARCH specification. Model instability rejects 

the GARCH model in QLD1, SA1 and SNOWY1; and the TARCH model is rejected 

on the basis of instability in all but NSW1. In the generally-favoured PARCH model, 

strong ARCH effects, and strong lagged volatility or GARCH effects are evident.  

 

In all five regions the PARCH models indicate that the estimated asymmetric 

coefficients (γ
1
) are significant and negative for all four regional markets indicating 

that positive shocks are associated with higher volatility than negative shocks. This 

outcome is consistent with the findings of Higgs and Worthington (2005), but is 

contrary to what is generally observed in equity markets. Interestingly, in an 

examination of the Nordpool spot price, Solibakke (2002: 28) found “…insignificant 

asymmetric volatility coefficient for all specifications… suggesting equal reaction 

patterns to positive and negative shocks” while in their application of a Threshold 

ARCH model to North American regional markets, Hadsell, Marathe and Shawky 

(2004) estimated that the asymmetric effect was also significant and negative thus 

capturing a strong market response to ‘negative’ news in US electricity prices.   
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In all five regions, the estimated GED parameter (r) associated with all models lies 

between 0 and 2, consistent with the generally-observed leptokurtic character of 

distributions relating to electricity prices. Finally, in all five regions, the estimated  

power coefficients (δ) of the standard deviation process in the PARCH model were 

positive and significantly different from one and two, thus indicating it is more 

relevant to model the conditional standard deviation in a non-linear form.  

 

7.5 Conclusion 

The study presented in this chapter investigates the efficacy of four different GARCH 

model specifications in describing the underlying intra-day volatility processes in 

returns on electricity prices in five regional pools (designated NSW1, QLD1, SA1, 

SNOWY1 and VIC1) in Australia’s National Electricity Market (NEM). Four 

GARCH specifications, Generalised ARCH (GARCH), Threshold ARCH (TARCH), 

Exponential GARCH (EGARCH) and Power-ARCH (PARCH) models are applied to 

half-hourly returns on electricity prices for the period 7 December 1998 

(commencement of the NEM) to 31 March 2005.  Unlike previous GARCH-based 

studies on electricity prices, which seek to incorporate seasonal factors and outlier 

(price spike) effects in their models of the conditional mean equation, the very large 

data set used and the desire to investigate the underlying volatility process in the 

absence of these structural effects required that the returns data be deseasonalised and 

stripped of extreme spike effects prior to estimating the conditional mean and 

conditional variance equation in the GARCH estimation process.  
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The results show that significant ARCH and GARCH effects are present in the data 

and that Power ARCH specification with a Generalised Error Distribution applied to 

the standard errors generally describes the volatility process better than the other three 

GARCH models.  The asymmetric volatility response captured by the PARCH model 

generally indicates that volatility tends rise in response to ‘good news’ for traders 

(proxied by positive price spikes – see Chapter Five) and fall in response to ‘bad 

news’ (negative spikes), which is counter to the effects generally observed in 

conventional financial markets but consistent with the findings of previous Australian 

GARCH-based studies. Finally, the estimated GED parameter (r) for each region 

confirms the fat-tailed properties that are generally observed in electricity market data 

in Australia and overseas.  

 

A possible extension to this work might be in an investigation of the application of 

other ARCH specifications to the data, possibly including higher-order GARCH 

specifications. Remembering that most ARCH/GARCH specifications and estimation 

procedures have been developed for more “conventional” financial markets and it 

may be that a further extension to the GARCH family is warranted, or that a different 

distributional assumption about the standard errors in the model is required. A further 

extension is possibly suggested by the recent work of Mitchell and McKenzie (2005, 

2006) in the field of GARCH model selection criteria. This study and the previous 

Australian studies use the scheme of ranking models by Akaike Information (AIC) 

and Schwartz Bayesian Criteria (SBC). This approached may be well-established in 

practice but it has its detractors (see inter alia Pagan and Schwert, 1990) and it may 

be that there are more appropriate model selection criteria for electricity markets.   
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Chapter 8: The Effect of Extreme Spikes in Demand on 
Electricity Prices - An Event Study Approach. 
 

 

8.1 Introduction 

The non-storable nature of electricity is well-documented feature of the commodity 

that ensures that markets clear instantly through an adjustment of prices. In the 

absence of storage there is no capacity to use inventory to smooth short-run shocks to 

supply or demand, with the result that spot prices for electricity display excessive 

volatility compared to other traded commodities and financial assets (Bunn and 

Karakatsani, 2003). Much of this volatility can be attributed to relatively infrequent 

but extremely large spikes in price, which may be caused by a range of factors 

including unexpected peaks in demand, unplanned generation unit outages, 

transmission network failure, generator pool price re-bidding, unexpected weather 

variation and physical constraints on transmission between regions. 

 

An understanding of the spike process is of interest to generators, retailers and end-

users for valuation of real and financial assets and for risk management. The 

Australian Government’s white paper “Securing Australia’s Energy Future” (2004) 

recognises the significant economic impact of price spikes:  

“These peaks…while generally being of short duration, can impose high costs 
on the supply system…peaks lasting for only 3.2 percent of the annual 
duration of the market accounted for 36 percent of total spot market costs”.  

 

A better understanding of price spikes is vitally important for electricity generators, 

particularly peak-load producers, whose business is entirely dependent on the 

occurrence of high prices and extreme price spikes (Blanco and Soronow, 2001). 
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Large industrial and commercial users are also interested in spikes because of the 

economic impact of load shedding during peak periods47, while distributors and 

retailers can benefit from improved forecasting of volatility and price spikes to aid in 

hedging their purchase price risk.  

 

In Chapters 5 and 6, individual spikes in demand and price in the NSW1, QLD1, SA1, 

SNOWY1 and VIC1 regions in the NEM are identified over a six-year period and 

shown to be a significant feature of both price and demand. As stated, unexpected 

peaks in demand are considered by many to be among the possible causes of price 

spikes. This study is motivated by two questions. Firstly, does a spike in demand 

result in a contemporaneous spike in price? If not, is there a significant price response 

to a demand spike?  The first question is investigated in the following section. 

 

8.1.1 Spike Coincidence 

Consistent with the earlier analysis in Chapters five and six, this study defines a spike 

in half-hourly price change (hereafter referred to as “returns”) or in demand change as 

any observed half-hourly percentage change that is more than four standard deviations 

greater than the mean half-hourly change48. Table 8.1 collates the occurrences of 

spikes as defined, by region and shows that there are 377 spikes in demand change 

                                                 
47 The National Electricity Code sets a maximum spot price of $10,000 per megawatt hour as the 
maximum price at which generators can bid into the market. When this maximum market price is 
reached, NEMMCO directs network service providers to interrupt customer supply to maintain 
physical balance and stability in the system. This process if supply interruption is referred to as “load 
shedding”. For example, on January 16, 2007, VIC1 prices reached the $10,000 VoLL level for two 
hours after bushfires disrupted the interconnector between NSW and VIC. A series of rolling cuts to 
supply throughout various areas of the Victoria occurred during that afternoon. 
 
48 While conventional practice is to apply a filter for outliers at three standard deviations from the 
mean, an initial survey of the data indicated that there is a very high incidence of high prices and 
returns around and above the threshold at three standard deviations to justify applying a filter for 
outliers at four standard deviations in order to capture “true” outliers. 
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observed across all regions during the sample period. VIC1 shows the highest 

incidence of demand spikes with 113 (30%) of the 377 observed, followed by 

SNOWY1 with 109 (29%), NSW1 with 94 (25%) observed spikes during the sample 

period.  There are 566 extreme spikes in returns observed across all regions during the 

same sample period. QLD1 has the highest incidence of extreme price spikes by state 

(with 190 occurrences (34% of the total sample of spikes), followed by SA1 with 162 

(29%), both have a markedly higher incidence than VIC1 with 98 (17%), NSW1 with 

90 (16%) and SNOWY1 with 26 occurrences (5%).  

 
Table 8.1: Summary of Occurrences of Extreme Spikes   

(by Region, December 1998 to March 2005). 
 NSW1 QLD1 SA1 SNOWY1 VIC1 Total 
Spike CDt 94 26 35 109 114 377 
Spike RPt 90 190 162 26 98 566 
Spike CDt and Spike RPt represent the number of spikes as defined in demand change and returns 
respectively.  
 

With the possible exception of NSW1, there is a marked disparity between the 

incidence of spikes in demand and prices, suggesting that they are not necessarily 

contemporaneous. In order to investigate the extent to which spikes in demand change 

and spikes in returns coincide, a dummy variable series was generated  for each of the 

demand change and returns series incorporating all observed spikes as defined, 

resulting in a vector for each series in which “1” represents the occurrence of a spike 

as defined and “0”otherwise. A “coincidence vector” was created by multiplying the 

two spike vectors together: 

   (8.1) 
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Where: 
 
SpikeCDi=1 for the occurrence of a spike in half-hourly demand change as previously 

defined and 0 otherwise; 

SpikeRPi=1 for the occurrence of a spike in half-hourly return as previously defined 

and 0 otherwise; 

And SCi =1 where a spike in half-hourly demand change and a spike in half-hourly 

return occur at the same trading interval. 

 
Table 8.2 shows the occurrence of spikes in both demand change and returns along 

with the coincidence of spikes. The results are somewhat surprising and show that a 

spike in demand change as currently defined does not result in a contemporaneous 

extreme spike in returns. 

 
Table 8.2: Extreme Spike Coincidence  

(by Region, December 1998 to March 2005). 
 NSW1 QLD1 SA1 SNOWY1 VIC1 Total 
Spike CDt 94 26 35 109 114 377 
Spike RPt 90 190 162 26 98 566 
SCt 0 1 1 0 2 4 
Spike CDt and Spike RPt represent the number of spikes as defined in demand change and returns 
respectively. SCt  represents the count of coinciding spikes. 
 
 

In markets such as the NEM pools that are designed to clear instantly, we would 

expect to see a higher rate of coincidence between extreme spikes in demand and 

price spikes.  This result may suggest that other factors, perhaps supply-side outages, 

may be more significant drivers of price spikes than unexpected shocks to demand.  

 

Despite the apparent lack of coincidence between extreme values in price and 

demand, it is of interest to see whether there is evidence of a significant response in 

price as a result of a demand shock. This chapter seeks to extend the work on spike 
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analysis in Chapters 5 and 6 by employing an event-study approach to examine the 

extent to which extreme spikes in demand trigger a response in price. To date no other 

study in the electricity literature has used an event-study approach to answer this 

question. A ‘traditional’ event study approach based on average abnormal returns 

around a spike event and a GARCH-based event study approach (following 

McKenzie, Thomsen and Dixon, 2004) have been used and results show that despite 

the almost negligible coincidence of demand and price spikes there is evidence of a 

significant price response to demand spikes in NSW1, QLD1 and VIC1, but not in 

SA1 or SNOWY1. 

 
The rest of the chapter is organised as follows: Section 8.2 presents a discussion of 

event study methods. Data and preliminary statistical analysis is provided in section 

8.3. Models and main estimation results are presented in sections 8.4 and section 8.5 

summarises findings and suggests further related research.  

 
 

8.2 Event Study Methods 

Traditional event studies in the equity markets start with the hypothesis that if a 

particular event materially affects the value of a firm (or portfolio), the change in 

value will be reflected in the company’s stock showing an abnormal return. Typically, 

abnormal returns, ARit, are obtained as the difference between observed returns Rit of 

firm i at event week t and the expected return, E(Rit),  based on an appropriate 

benchmark: 

 

       (8.2) 
 
 

( )ititit RERAR −=

 152 



By averaging the abnormal returns in common event time, average abnormal returns 

are obtained, where N is the number of firms in the sample (t=0 corresponds to period 

0 in event time): 

∑
−

=
N

i
itit AR

N
AR

1

1        (8.3) 

The null hypothesis is that abnormal returns are not significantly different from zero, 

and the standard test statistic is a t-statistic as defined by equation 8.4: 
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1     (8.4)  

in which ( )itARσ  is the standard deviation of the cross-sectional sample abnormal 

returns. The test statistic t is approximately normally distributed as N becomes large 

(Thomas, 1997).  In the context of daily stock returns, the statistical properties of 

event study methods have been examined extensively. Brown and Warner (1985) 

found that statistical tests based upon standard event study methods are well specified 

and generally robust to features of daily price change data such as non-normality.  

 

Event study methods developed in the study of equity markets have been adapted and 

successfully applied to studies of market-related events in commodity futures markets 

(McKenzie, Thomsen & Dixon, 2004). The objective of these studies has generally 

been to test market efficiency in terms of the extent to which commodity futures 

prices in the United States markets react to a variety of market-related events, 

including the release of United States Department of Agriculture (USDA) reports on 

various agricultural commodities. Milonas (1987) examines the effect of USDA crop 

announcements; Schroeder, Blair and Mintert (1990) examine the effect of USDA 

inventory reports on cattle and hog futures; and Patterson and Brorsen (1993) consider 
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the impact of USDA export sales reports. In the context of meat futures prices, 

Robenstein and Thurman (1996) and Lusk and Schroeder (2002) examined the 

response of red meat futures prices to adverse health reports. McKenzie & Thomsen 

(2001) examine the effect on futures prices of meat recalls due to E.coli 

contamination.   

 

McKenzie et al. (2004) discusses two event study approaches that are widely used as 

standards for measuring the reaction of commodity prices to market-related events. 

The first is described by the authors as a constant mean return (CMR) model that 

measures abnormal returns as prediction errors from some benchmark model of 

normal returns. Examples that have used a CMR model include Milonas (1987), 

Schroeder, Blair, and Mintert (1990), Mann and Dowen (1997), and McKenzie and 

Thomsen (2001). A second approach involves regression methods with abnormal 

returns being estimated as coefficients of dummy variables that correspond to events. 

Studies employing an Ordinary Least Squares regression framework include 

Robenstein and Thurman (1996) and Lusk and Schroeder (2002). Patterson and 

Brorsen (1993) extend the OLS approach using a GARCH framework. Recognising 

that the variance of futures prices changes through time, GARCH models are used in 

evaluating the price movements in grain futures in response to USDA grain export 

sales reports.  

 

The CMR model, OLS regression and GARCH approaches are all aimed at measuring 

the same phenomenon - the average abnormal return on an event day. Test statistics in 

each approach relate to the same null hypothesis: that the average abnormal return on 

an event day is zero. With the CMR model, the researcher compares the return 
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(percentage price change) on the event date with some meaningful benchmark normal 

return or expected return49.   

 

In regression-based approaches to event studies, the average effect of an event is 

parameterised within a regression model of the form: 

       (8.5) 

Where the vector Xt includes a constant term and non-event related variables that may 

effect the return. Et is a dummy variable assigned the value of one on event days (or at 

event time) and zero otherwise. β represents the event coefficient, interpreted as the 

average abnormal return on the event day.  Binder (1998) observes that the regression 

approach is “easier” than the CMR model approach because it estimates the 

benchmark model and the abnormal returns in one step and the appropriate statistical 

tests can be done directly in standard regression software packages. As noted by 

McKenzie et al. (2004), another issue relates to parameter constancy. In the CMR 

model, the normal return is estimated from a portion of the data set close in time to 

the event. In contrast, futures event studies following the regression approach use all 

available data over a given study period to estimate abnormal returns. Although the 

use of all available data would seem to be preferable, the authors note that any 

structural breaks in the data series could lead to spurious inferences with respect to 

event-induced price responses50. If the normal return is not constant over the sample, 

the CMR model potentially yields a more precise estimate of the average abnormal 

return than would an OLS regression. Within the regression model in equation (8.4), 

                                                

tttt EXR εβθ ++= '

 
49 Care should be taken in selecting a meaningful benchmark return, as there may be a range of 
exogenous or market-wide factors operating on a price. To correctly measure the impact of a particular 
event we need to control for “unrelated” factors (Serra, 2002). In the case of electricity prices (and 
returns), significant seasonal and outlier effects are present and it would be desirable to control for 
them.  
50 There are no structural breaks in the data series used for this study.  
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the parameter constancy issue can be addressed if the non-event related explanatory 

variables explain changes in the conditional mean over the study period. That said, 

this is not necessarily an advantage of the regression approach, as the CMR model as 

described here can be modified easily to incorporate non-event related variables. The 

market model is such a modification that has been used widely in stock market event 

studies (see Brown & Warner, 1985).  

 

GARCH-type model extensions to the regression approach can accommodate 

distributional problems that are often a feature of returns data.  When the data-

generating process is better represented by models allowing for time variation in the 

conditional second moment and the distribution of returns is leptokurtic, GARCH-

type model parameter estimates may be  more efficient than their OLS counterparts 

(see Greene, 2000; McKenzie et al., 2004),  A recent example of a GARCH-type 

event study using commodity futures prices is presented in Park (2000) in a study of  

the effect of limit-lock days on daily corn, oats, soybeans, and wheat futures price 

changes.  

 

Prior to McKenzie et al. (2004), no studies had examined whether GARCH-type 

models improve the size or power of test statistics within an event study framework. 

The regression model of Equation 8.5 can be easily extended to include GARCH 

effects. Under a standard GARCH specification the conditional mean and conditional 

volatility of returns are modelled as:  

        (8.6) ttt xR εθ += '
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where the mean equation (8.6) is a function of exogenous variables with an error term. 

In McKenzie et al. (2004), the mean equation is modified to include the event dummy 

Et as previously defined: 

,        (8.7) 

In which the event coefficient, β, is interpreted as the average abnormal return on the 

event day. 

 

The conditional variance equation is unmodified from the standard GARCH 

specification and is given by: 

      (8.8)  

In which ω is a constant term, the ARCH term , is the first lag of the squared 

residual from the mean equation and repres ut the volatility from the 

previous period, and the GARCH term, 2 , represents last period’s forecast 

variance.  

 

Although GARCH models with conditionally normal errors are able to partially 

account for kurtosis, they generally fail to sufficiently capture the kurtosis evident in 

the distribution of asset returns (Wang et al., 2001). Baillie and Myers (1991) 

advocate using a GARCH model with a Student’s t-distribution (GARCH-T) when 

modelling commodity futures returns when they are found to exhibit excess kurtosis. 

The Student’s t-distribution, originally suggested by Bollerslev (1987) models thicker 

tails than the normal distribution. 
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McKenzie et al. (2004) compare the statistical performance of a CMR approach with 

OLS and GARCH event study methods using agricultural futures data and find that all 

three forms are well specified under their null hypotheses of zero abnormal returns. 

The authors find that all three approaches yield broadly similar results and test 

statistics from OLS and GARCH specifications perform similarly in terms of their 

size but GARCH specifications are generally more powerful. They believe that this 

statistical advantage is explained by the ability of GARCH specifications to account 

for the distributional characteristics of futures price changes such as excess kurtosis 

and volatility clustering (ARCH effects).  McKenzie et al. (2004) also suggest that 

regression and GARCH models have an advantage over CMR specifications in the 

presence of event clustering51, because the abnormal return is parameterised within 

the estimation model and clustering is therefore not an issue.  

 

It is now well established that like futures prices and returns, electricity prices and 

price changes (herein referred to as “returns”) also demonstrate excess kurtosis (see 

Huismann and Huurman, 2003; Worthington, Kay-Spratley and Higgs, 2005; Higgs 

and Worthington, 2005; and Thomas et al., 2006).  The presence of ARCH effects in 

the electricity data is established in the Australian literature (see Worthington, Kay-

Spratley and Higgs, 2005; and Higgs and Worthington, 2005) and in Chapter Seven of 

this thesis.  Specifically, results in Chapter Seven show that while significant GARCH 

effects are found in electricity returns, there is some variation between regions and 

that a Power-ARCH (1,1) specification is favoured in the interconnected NSW1, 

                                                 
51 McKenzie et al.. (2004) note that the meaning of the term “event clustering” as it is used in this 
context is different from its usage in the event study literature in equity markets. In studies of stock 
price behaviour, “event clustering” typically refers to an event that affects several firms in the same 
calendar period. Here the term is used to refer to cases where multiple events occur within a short time 
of one another. 
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SNOWY1 and VIC1 regions, while an EGARCH(1,1) specification better describes 

the volatility processes in QLD1 and SA1. In view of the McKenzie et al. (2004) 

findings which show that in the presence of these effects a GARCH-based event study 

approach offers advantages over other techniques, it would seem a useful exercise to 

apply a GARCH-based event study method to returns in electricity prices. With that in 

mind, section 8.4 develops appropriate GARCH-based specifications based on the 

analysis conducted in Chapter Seven, along with a standard CMR-style event study 

approach for comparison. 

 
 

8.3 Data 

 

8.3.1 Price Data 

Consistent with the analysis conducted for Chapter Five, the raw price data used to 

derive the returns series employed by this study are half-hourly pool price 

observations sourced directly from NEMMCO for the period from 7th December 1998 

to 31st March, 2005. Descriptive statistics and preliminary analysis of the price series 

is presented in detail in section Chapter Four, section 4.2. The sample size is 110,719 

observations for each of the NSW1, QLD1, SA1, SNOWY1 and VIC1 regional pools 

in the NEM. 

 

8.3.2 Returns Data 

In the context of commodity futures contracts, Black (1976) notes that because futures 

contracts require no initial investment, futures positions cannot be said to yield rates 
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of return as they are generally understood, i.e. as a result of change in value of the 

holder’s initial investment over time. Because there is no ability to hold a unit of 

electricity and there is no “initial investment” in the commodity as such, spot 

electricity also does not yield a rate of return in the traditional sense. In light of this 

characteristic and for reasons of consistency with previous event studies, the “returns” 

are percentage price changes over a half-hourly trading interval. In general, attempts 

to model or forecast prices in financial markets should be based on successive 

variations in price and not on the prices themselves (see, inter alia, de Bodt, 

Rynkiewicz & Cottrell, 2001). 

 

Because the spot prices in the NEM are determined at discrete half-hourly intervals, 

the market should not be viewed as a continuous market in the way of most 

conventional financial markets52, therefore a discrete returns specification is preferred 

over log returns.  Consistent with the previous empirical chapters in this thesis, the 

returns used in this study are half-hourly discrete returns, ie: 

( )
1

1

−

−−
=

t

tt
t P

PP
RP .      (8.9) 

Where RPt represents the half-hourly discrete proportionate change in price (“return”) 

at time t, Pt is half-hourly price at time t and |Pt-1| is the absolute value of the previous 

half-hourly price, i.e. at time t-1. The denominator is specified as the absolute value to 

allow for the presence of negative prices53.  

 

                                                 
52 A log returns specification will dampen the extreme spike effects I am attempting to capture, and is 
not defined in the presence of negative prices, the effects of which are also examined. See section 4.2.2 
for a discussion of negative spot prices.  
53 Discussed in chapters four and five. 
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Descriptive statistics for the half-hourly returns series are shown in Table 5.1 (see 

Chapter Five, section 5.3.2), in which the mean, standard deviation, minimum, 

maximum, range, skewness, kurtosis and Augmented Dickey-Fuller statistics are 

reported for each region’s returns series.  Mean half-hourly returns vary widely 

between regions, from 2.72% for VIC1 to 9.55% for SNOWY1. The standard 

deviation of returns is generally high, is widely dispersed across the regions and is 

consistent with the pattern of means, ranging from 111% for VIC1 to an extremely 

high 1700% for SNOWY1.  The highest maximum return of 454,250% is observed in 

SNOWY1 and lowest in VIC1 of 14,243%.  SNOWY1 also exhibits a markedly wider 

range of returns than the other regions. The distributions of returns for QLD1, SA1 

and SNOWY1 demonstrate positive skewness with NSW1 and VIC1 demonstrating a 

relatively low degree of negative skewness. Distributions of returns in all regions 

demonstrate extremely high kurtosis. Jarque-Bera (JB) statistics reject the null 

hypothesis of normal distribution at the 1% level of significance for all five regions. 

Augmented Dickey-Fuller (ADF) statistics clearly reject the hypothesis of a Unit Root 

at the 1% level of significance for all five regions, again consistent with the findings 

of the earlier studies.  

 

8.3.3 Demand Data 

The basic demand data that the spike series used in this study are extracted from are 

half-hourly observations of total demand (as described in section 4.2.1), sourced 

directly from NEMMCO for the period from 2:00am on December 7, 1998, to 
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11:30pm on March 31, 2005. The sample size is 110,719 observations for each of the 

five NEM under study (NSW1, QLD1, SA1, SNOWY1 and VIC1)54.  

 

8.3.4 Changes in Demand 

The half-hourly pool price and its associated returns exhibit strong seasonal effects 

and spike effects as a result of the occurrence of price spikes, as shown in Chapter 

Five. Similar seasonal and spike effects are found in half-hourly changes in demand 

for electricity (see Chapter Six). As indicated in section 8.1, demand shocks are 

believed to be one of the potential causes of price spikes and I am interested in 

investigating the extent to which a spike in demand change triggers a response in 

price change (referred to here as “returns”).  

 

As with spot price, NEMMCO's total demand is reported at half-hourly intervals in 

discrete time and for consistency with the approach taken with price, the demand 

change series used in this study were generated as half-hourly discrete changes rather 

than log changes, according to equation 8.10: 

( )
1

1

−

−−
=

t

tt
t D

DD
CD .       (8.10)   

Where CDt is discrete percentage change in demand at time t, Dt is half-hourly 

demand at time t and Dt-1 is the previous half-hourly total demand, i.e. at time t-1. The 

results of tests for the presence of a unit root show that the demand and demand 

changes series are stationary. Given that this study is concerned only with the 

incidence of spikes in demand change (CDt), summary statistics for the demand 

                                                 
54 Descriptive statistics and preliminary analysis of the demand series is presented in chapter four, 
section 4.2.1.  
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change series (CDt) are not reported here. Descriptive statistics and preliminary 

analysis of the demand series is presented in Chapter Six, section 6.3.2.  

 

 

8.4 Methodology 

8.4.1 GARCH Model Specification 

As discussed in section 8.2, McKenzie et al. (2004) establish that when the 

distribution of returns is highly leptokurtic and significant volatility clustering is 

present in the data, a GARCH-based event study approach provides advantages over 

other techniques. Results in Chapter Seven show that there are significant GARCH 

effects found in electricity returns as defined but that there is some variation between 

regions. Based on ranking by Schwarz-Bayes and Akaike Information Criteria (see 

McKenzie and Mitchell, 2002), PARCH (1,1) specification is favoured in all regions 

but model parameters indicate that the PARCH(1,1) model may be unstable in QLD1 

and SA155 . For these reasons, the PARCH(1,1) specification is used in this study for 

NSW1, SNOWY1 and VIC1 regions, and the EGARCH(1,1) specification is used for 

QLD1 and SA1 as it better describes the volatility processes in those two regions.  

 

In view of the McKenzie et al. (2004) findings and the results in Chapter Seven, a 

GARCH-based event study specification is developed, with variation in the 

specification of the conditional variance equation according to the previously-

determined ‘best-fit' for each region. In Chapter Seven, the mean equation is modified 

                                                 
55 See chapter seven, section 7.4. 
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to include appropriate AR and MA terms to control for autocorrelation in the data 

according to:  

     (8.11) 

where p and q are chosen to capture significant spikes in the autocorrelation function. 

 

Following McKenzie et al. (2004), the mean equation is further modified to include 

an event dummy Et:  

    (8.12) 

where Et = 1 on event days and 0 otherwise and the event coefficient φ  is interpreted 

as the average abnormal return on the event day. 

Consistent with the results in Chapter Seven, a PARCH (1,1) specification is used for 

NSW1, SNOWY1 and VIC1 and an EGARCH specification is used for QLD1 and 

SA156.  

 

Power ARCH 

The power-ARCH (PARCH) specification proposed by Ding et al. (1993) generalises 

the transformation of the error term in the models. The PARCH specification is given 

by equation 8.13:   
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56 In preliminary analysis PARCH (1,1) and EGARCH (1,1) models were run for all five regions with appropriate 
AR and MA terms and the event dummy Et included in the specification of the mean equation. In QLD1 and SA1, 
coefficients for the event dummy were not materially different between the EGARCH (1,1) and PARCH (1,1) 
models but in the PARCH(1,1) models for each of  these two regions the coefficients for the ARCH (α), GARCH 
(β) and power (γ) parameters summed to a value greater than unity, indicating a potentially unstable model. For 
this reason the preferred PARCH(1,1) specification is applied to NSW1, SNOWY1and VIC1 and the 
EGARCH(1,1) specification is applied to QLD1 and SA1.  
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The power parameter, δ, is estimated rather than imposed, and an optional threshold 

parameter, γ, may be included to capture asymmetry. The Bollerslev (1986) model 

sets δ=2, γ=0, and the Taylor (1986) model sets δ=1and γ,=0. Empirical estimates 

indicate the power term is sample-dependent and values of near unity are common in 

the case of stock data (see Ding et al. 1993), while for foreign exchange data the 

power term varies between unity and two (see McKenzie and Mitchell 2002). When 

fitting a PARCH model to electricity data, the choice of power parameter is not 

obvious. Higgs and Worthington (2005) find variation between regions in the 

estimated power term of a model for electricity prices.  

 

Exponential GARCH  

Nelson’s (1991) Exponential GARCH (EGARCH) model is formulated to capture 

news in the form of leverage effects. In the EGARCH model the specification for the 

conditional covariance is given by: 

  ( ) ( ) ∑∑∑
= −

−

= −

−

=
− +++=

r

k kt

kt
k

p

i it

it
i

q

j
jtjt

111

22 loglog
σ
ε

γ
σ
ε

ασβωσ  (8.14) 

The left-hand side is the log of the conditional variance, implying that any leverage 

effects are exponential and that forecasts of conditional variance are guaranteed to be 

non-negative. In interpreting the model, the presence of leverage effects is indicated 

by γk<0, and the impact is asymmetric if γk ≠0. While the basic GARCH model (see 

equation 7.4) requires the restrictions in estimation that 2 >0, for t = 1…T , the tσ
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EGARCH model allows unrestricted estimation of the variance, -∞ < log( 2 ) < ∞, 

implying that 2σ >0, and so the assumption that 2σ >0, for t = 1…T  is automatically 

satisfied.  

 

8.4.1.1 GARCH Model Estimation Procedure  

As discussed in Chapter Seven, attempts to res rict GARCH specifications to order 

(1,1) with a mean equation inclusive of the ber of seasonal and outlier 

control variables identified in Chapter Five created convergence problems that meant 

the models could not be estimated reliably57. In view of this constraint, a decision was 

taken to undertake a two-stage estima  pre-filtering the data to 

control for seasonalities and outliers in the return s using OLS estimation58. The 

residuals (εt) from the OLS model are then captu erred to herein as the “filtered 

returns”). The mean and conditional variance equation are then estimated over the 

filtered returns, incorporating appropriat s in the mean equation to 

control for serial correlation. According to Engle (1982), this two-stage approach 

should not result in loss of asymptotic effici odel estimation for large sample 

sizes. For the purposes of this event study an ean equation is modified to 

include an event dummy as defined in equation 8.12.  

The OLS model used to generate the filtered returns for this study is shown in Chapter 

Seven, equation 7.1 and shown again here.  
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57 Initial attempts using EVIEWS and SPSS statis re packages to fit GARCH(1,1), 
TARCH(1,1), EGARCH(1,1) and PARCH(1,1) m  discrete returns series, while 
controlling carefully for seasonal an outlier effects rrelation required that the mean 
equation be specified to include as many as 260 dumm ables (47 intra-day, six weekday, 11 
monthly, six for year and up to 190 spikes, depending on  – see chapter five), over a sample size 
of 110,718 observations for each region. Almost all atte ts to fit basic GARCH(1,1) processes to 
such large models failed to converge after 1000 iterations.  
58 See equation chapter seven, equation 7.1. 
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Where: 

RPR,t  represents the discrete return for region R at time t; 

DAYj represents the dummy variable for each day of the week (j=1 for Monday, 2 for 

Tuesday,…,6 for Saturday). MTHk represents the dummy variable for each month 

(k=1 for January, 2 for February,…,12 for December).  

YRl represents the dummy variable for each year included in the sample period 

(l=1999,…,2006).  

HHm represents the dummy variable for each half-hourly trading interval (m= 1 for 

00:00hrs, 2 for 00:30hrs…,48 for 23:30hrs)  

SPIKER,S represents a set of NR,S dummy variables, one for each extreme spike in 

returns as previously defined, with NR,S representing the number of extreme returns 

observed in region R for the period of the study (see Chapter Five, Table 5.2); 

NEGR,N represents the dummy variable for the return associated with an occurrence of 

a negative price (p=1,…,NR,N), with NR,N  representing the number of occurrences of a 

negative price for region R during for the period of the study.  

 

The data used in this part of the study are the residuals represented by the error term, 

εt in the model. Descriptive statistics for the filtered returns series are shown in Table 

8.3. Augmented Dickey-Fuller (ADF) statistics and results of ARCH-LM tests for 

each region’s filtered returns series are also included in Table 8.3. The mean values 

for the sample are very small yet the standard deviation is generally high relative to 

the mean and takes on a range of values across the regions, indicating a high degree of 
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variability in the filtered returns and considerable variation between the 5 regions.  

Although close to zero, the highest mean returns are found in QLD1, SA1 and 

SNOWY1 and these regions exhibit the largest standard deviations. 

Table 8.3: Descriptive Statistics for Filtered Half-Hourly Returns εt. 

(by Region, December 1998 to March 2005). 
εt. NSW1 QLD1 SA1 SNOWY1 VIC1 
Mean -2.44x10-17 1.29x10-16 1.57x10-17 1.48x10-17 2.72x10-17

Median -0.006 -0.014 -0.019 -0.008 -0.007 

Maximum 4.82 6.86 7.00 19.82 4.39 

Minimum -1.13 -1.81 -1.46 -1.21 -1.30 

Std. Dev. 0.18 0.30 0.29 0.28 0.19 

Skewness 6.52 8.92 7.97 29.87 4.81 

Kurtosis 121.53 139.03 122.96 1459.27 72.50 

JB stat  
(p-value) 

6.56 x107

(0.000) 
8.68 x107

(0.000) 
6.76 x107

(0.000) 
9.80 x109

(0.000) 
2.27 x107

(0.000) 
ADF Stat -38.34 -32.22 -34.27 -36.10 -40.02 

ARCH-LM Test     

F-Stat 
(p-value) 

95.06 
(0.000) 

57.06 
(0.000) 

49.53 
(0.000) 

44.89 
(0.000) 

62.12 
(0.000) 

N 110718 110718 110718 110718 110718 
The critical values of significance for skewness and kurtosis at the .05 level are 0.0305 and 0.0610, respectively. 
JB – Jarque-Bera. The critical value for the Augmented Dickey-Fuller ststistic at the 0.01 level is -3.43  

 

Consistent with the findings of the earlier studies and with the returns series as 

discussed in Chapter Five, Augmented Dickey-Fuller (ADF) statistics reject the 

hypothesis of a Unit Root at the 1% level of significance for all five regions.  

 

The distributions of filtered returns for all 5 regions demonstrate positive skewness 

and extremely high kurtosis. This fat-tailed character persists despite the removal of 

extreme spikes in the raw returns data and is consistent with the findings of Huisman 

and Huurman (2002), Higgs and Worthington (2005) and Wolak (2000). The p-values 

for F-statistics in the ARCH-LM tests suggest that heteroskedasticity effects are 
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present and highly significant. As discussed in Section 7.3.2, preliminary analysis of 

the full data set found that Nelson’s (1991) Generalised Error Distribution (GED) was 

the most appropriate for model estimation.   

 

8.4.2 Standard Event Study Methodology 

For the purposes of comparison with the GARCH approach described in the previous 

section a traditional event study approach is also included. Traditional event study 

methods in equity markets are generally based on the premise that if a particular 

event, for example a company announcement, materially affects the value of a firm, 

any change in value will be reflected in the company’s stock showing an abnormal 

return at some time interval shortly after the event. The basic event study approach is 

described in section 8.2. (see equations 8.2 to 8.4). For the purpose of analysing the 

response of electricity returns to demand spikes, the standard approach is adapted by 

identifying demand spikes within each NEM region and selecting a sample of half-

hourly returns either side of the spike event. 

Abnormal returns are generated as: 

 

( )ststst RERAR −=        (8.17) 

 

Where Rst is the half hourly return as defined by equation 8.8 observed at trading 

interval t around spike s. Mean half-hourly returns are generally very small, and given 

that this analytical approach is included for comparison with the GARCH approach 

which does not include mean-adjusted returns, the expected half-hourly return E(Rst) 

in equation 8.13 is set to zero so that ARst = Rst. The selection of “normal period” 

 169 



around the event time can be somewhat arbitrary. The spot market in the NEM is 

designed to adjust instantly to demand and supply variation through an adjustment of 

prices, so a sample space of 12 half hourly trading intervals either side of the demand 

spike event is selected as a reasonable window, long enough to so as not to be biased 

by very short-term price movements, yet short enough so as not to be influenced by 

price-sensitive market information other than the spike in question.  

 

The demand spikes within each region are then arranged in common event time and 

the cross-sectional average abnormal returns are obtained as  

∑
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1        (8.18) 

where N is the number of spikes in the region’s cross-sectional sample and t=0 

corresponds to trading interval 0 in event time, when the demand spike occurs.  

 

The null hypothesis is that abnormal returns are equal to zero, and the standard test 

statistic is: 
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In which ( )stRσ  is the standard deviation of the cross-sectional sample of abnormal 

returns as defined.  

 

If there is event clustering in the sample data, the abnormal return measure may be 

biased (see Brown & Warner, 1985, McKenzie et al., 2004).  A number of spikes in 

demand change are observed to occur at consecutive half-hourly trading intervals in 
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four of the five regions. In order to control for possible cross-sectional dependence as 

a result of these consecutive spikes, any spikes occurring within 12 hours of each 

other (24 trading intervals) within a region were dropped from that region’s sample.  

This action reduces the number of demand spike events tested in NSW1 from 94 to 

89, in QLD1 from 23 to 15, in SA1 from 30 to 17 and in VIC1 from 109 to 106. 

Consecutive spikes as described are not observed in the SNOWY1 sample. 

 

8.5 Empirical Results 

Results for the GARCH-based event study approach for the five regions are show

Table 8.4.  Table 8.4 presents and the estimated coefficients, standard errors and p-

values for the conditional mean and variance equations for the preferred GARCH 

specifications for each region along with the estimated GED parameter (r), Akaike 

Information (AIC) and Schwartz Bayesian Criteria (SBC), Durbin-Watson (DW) 

statistic and F-Statistic and p-value showing the results of ARCH-LM tests.  

 

The uppermost section of the table describes the ARMA structure required to account 

for serial correlation for each region. There is some variation between regions, with 

NSW1 demonstrating significant AR effects the 1% level at lags 1,5,7 and 8; QLD1 

demonstrating significant AR effects at lags 1, 47 and 48 and significant MA effect at 

lag 48; SA1 showing significant AR effects at lags 1, 47 and 48. SNOWY1 exhibits 

the same type of AR structure as QLD1 with significant AR effects at lags 1, 47 and 

48 and similar magnitude of coefficients. VIC1 demonstrates significant AR effects at 

lags 1, 5, 7, 47 and 48. 

n in 
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Table 8.4: Estimated Coefficients for Conditional Mean Returns and Variance 
Equations for All Regions 

 NSW1 QLD1 SA1 SNOWY1 VIC1 
 PARCH(1,1) EGARCH(1,1) EGARCH(1,1) PARCH1,1) PARCH(1,1) 
 Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val Coeff. P-val 
Mean Equation          
ωm -0.005 0.000 -0.026 0.000 -0.018 0.000 -0.013 0.000 -0.006 0.000 
φ 0.087 0.000 0.038 0.000 0.003 0.694 0.003 0.523 0.041 0.000 
AR(1) 0.047 0.000 0.016 0.000 0.054 0.000 0.006 0.000 0.051 0.000 
AR(5) -0.023 0.000       -0.023 0.000 
AR(7) -0.029 0.000       -0.021 0.000 
AR(47)   0.016 0.000 0.072 0.000 0.008 0.000 0.074 0.000 
AR(48) 0.405 0.000 0.937 0.000 0.241 0.000 0.952 0.000 0.330 0.000 
MA(48)   -0.845 0.000   -0.834 0.000   
           
Variance Equation         
ωv 0.019 0.000 -1.210 0.000 -0.923 0.000 0.020 0.000 0.029 0.000 
α 0.379 0.000 0.699 0.000 0.546 0.000 0.428 0.000 0.390 0.000 
β  0.576 0.000 0.806 0.000 0.835 0.000 0.547 0.000 0.554 0.000 
γ -0.086 0.000 -0.185 0.000 -0.161 0.000 0.021 0.003 0.031 0.001 
δ 1.065 0.000 -1.210 0.000 -0.923 0.000 1.061 0.000 0.961 0.000 
           
r (GED)  0.876 0.000 0.721 0.000 0.700 0.000 0.805 0.000 0.844 0.000 
           
AIC -1.671  -1.481  -1.095  -1.723  -1.464  
SBC -1.670  -1.480  -1.094  -1.722  -1.463  
DW 2.054  2.181  2.178  1.974  2.106  
           
ARCH-LM Test          
F-Stat 0.096 1.000 0.296 0.999 0.735 0.820 0.007 1.000 0.316 0.999 
           
#Obs 110670  110670  110670  110670  110670  

This table provides the estimated coefficients and p-values for the mean and conditional variance equations for the 
NSW1, QLD1, SA1, SNOWY1 and VIC1 regional electricity pools in the NEM. ωm is the constant term in the 
mean equation, φ is the event parameter, ωv is the constant term in the conditional variance equation, α is the 
ARCH coefficient, γ is the leverage effect, δ is the power of the conditional standard deviation process. r is the 
GED parameter and AIC and SBC are Akaike Information and Schwartz-Bayes Criteria respectively. DW is the 
Durbin-Watson Statistic. 
 

 

Durbin-Watson statistics for all model specifications in all regions are close to 2, 

indicating a lack of significant residual serial correlation after model estimation.  The 

GED parameter (r) falls between 0 and 2, suggesting that the distribution of standard 

errors is leptokurtic in all regions. The p-values for the F-Statistic in the ARCH-LM 

tests indicate that ARCH effects have largely been accounted for by the models.  
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Interestingly the coefficients for the event study parameter (φ) show there is some 

regional variation in the price response to demand spikes. Despite the lack of temporal 

coincidence between spikes in returns and demand change suggested by Table 8.2, 

there is a significant and positive response indicated in NSW1, SNOWY1 and VIC1, 

although it is worth noting that the coefficients in these three regions are small. By 

contrast QLD1 and SA1 do not appear to demonstrate a significant response.   

 

Results for the standard event study approach are shown in Table 8.6 and are 

supported by Figure 8.1, which shows cumulative average abnormal returns around 

event time for each region.   

 
Figure 8.1: Cumulative Average Abnormal Returns by Region 
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Parametric test results shown in Table 8.6 are broadly consistent with the results of 

the GARCH–based method. Significant and positive responses are evident in NSW1 

and VIC1 at event time (t0), with the response in SNOWY1 positive but borderline 

significant. Results for QLD1 and SA1 are also consistent with the GARCH results, 

with a positive but not significant response indicated at event time (t0). These results 

also show that while the price response is positive at event time, a variety of 

significant positive and negative responses at trading intervals around the event time 

for all 5 regions, with no clear common pattern between regions. 

 
Table 8.5: Results for Standard Event Study Approach by Region, for the 

Horizon t=-12 to +12 
 NSW1 QLD1 SA1 SNOWY1 VIC1 

t stR  stR  stR  stR  stR  t-stat t-stat t-stat t-stat t-stat 
t-12 -0.05 -5.38 -0.01 -0.17 0.40 2.10 -0.04 -2.23 -0.09 -5.40
t-11 -0.06 -6.92 -0.04 -1.42 0.01 0.09 0.02 0.88 -0.04 -3.12
t-10 0.12 6.27 0.02 0.63 0.01 0.11 0.02 0.86 -0.06 -3.97
t-9 -0.08 -6.12 -0.06 -3.24 0.05 0.65 0.04 1.50 -0.03 -3.58
t-8 0.14 0.72 -0.08 -4.39 -0.04 -1.19 -0.03 -2.01 0.02 2.08
t-7 -0.07 -7.67 -0.05 -2.29 -0.02 -0.32 0.01 0.57 0.09 1.50
t-6 -0.10 -9.49 -0.03 -1.81 -0.03 -0.57 0.01 0.67 -0.03 -2.97
t-5 -0.03 -0.80 -0.01 -0.51 0.00 0.02 0.00 -0.20 -0.04 -4.21
t-4 -0.03 -3.33 -0.01 -1.36 0.33 1.12 0.03 1.17 0.04 5.37
t-3 -0.01 -0.39 -0.01 -0.88 -1.50 -0.77 0.03 0.48 -0.05 -5.24
t-2 0.11 7.38 -0.01 -0.28 -0.46 -0.70 0.02 0.85 0.10 5.31
t-1 0.10 5.51 0.00 0.06 4.63 1.46 -0.05 -2.32 0.00 -0.04
t0 0.35 12.92 0.29 2.77 2.97 1.06 0.06 1.97 0.93 2.54
t1 0.40 3.37 0.51 1.44 1.59 1.01 0.00 -0.18 -0.08 -3.40
t2 -0.10 -4.85 0.83 1.45 -0.23 -2.38 0.00 0.00 -0.11 -6.43
t3 0.22 8.29 0.21 1.74 -0.06 -0.86 0.00 0.13 -0.09 -7.82
t4 -0.03 -2.26 0.03 0.27 -0.07 -1.40 0.00 -0.15 0.14 9.06
t5 -0.09 -8.46 0.00 -0.01 0.01 0.22 0.00 0.09 -0.10 -8.43
t6 0.05 2.96 0.08 1.24 -0.06 -1.49 0.04 1.72 -0.08 -5.71
t7 -0.05 -6.55 -0.09 -2.23 0.98 0.88 0.01 0.69 -0.05 -2.82
t8 -0.06 -6.15 0.05 0.88 1.11 1.01 0.02 1.06 -0.05 -5.75
t9 -0.02 -2.01 -0.06 -0.98 -0.06 -0.89 0.05 2.23 -0.01 -1.86
t10 -0.01 -1.40 -0.01 -0.14 0.05 0.89 0.05 2.61 0.02 1.18
t11 -0.02 -2.17 -0.03 -1.28 -0.06 -0.78 0.02 1.28 0.03 1.05
t12 -0.02 -2.26 0.06 0.59 -0.03 -0.44 0.00 0.18 0.16 6.17
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There is a difference in magnitude of event response in these results compared to the 

GARCH-based results, which is most likely attributable to the fact that the GARCH 

model is correcting for a range of seasonal and outlier effects in the price series that 

are not accounted for by the standard approach. The standard approach is based on the 

raw returns data described by equation 8.8 whereas the data used in the GARCH 

approach are the filtered returns generated as the residuals from equation 8.11. It is 

unclear then the extent to which these responses at times other than t=0 other may be 

influenced by intra-day seasonal factors.   

8.6 Conclusion 

Extreme spikes are a significant feature of electricity prices, particularly in Australia’s 

National Electricity Market (NEM) and are attributable to the non-storable nature of 

electricity and aspects of market operation that are designed to ensure that the market 

clears instantly through an adjustment of prices, as demand and supply fluctuate. 

Better understanding of the dynamics of spot prices, particularly the spike process, is 

of interest to generators, retailers and end-users for valuation of real and financial 

assets and for risk management.  

 

In Chapters 5 and 6, individual spikes in demand and price in the in the NSW1, 

QLD1, SA1, SNOWY1 and VIC1 regions in the NEM are identified over a six year 

period and established to be a significant feature of both price and demand 

progression. This study extends the work on spike significance in Chapters 5 and 6 by 

seeking the answers to two questions - does a spike in demand result in a 

contemporaneous spike in price? If not, is there a significant price response to a 

demand spike?   
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The answer to the first question appears to be somewhat surprising in that there is a 

marked absence of exact temporal coincidence between extreme spikes in half-hourly 

demand change and extreme spikes in half-hourly price change across the five NEM 

regions considered. In view if this result, an event-study approach is employed to 

examine the extent to extreme spikes in demand trigger a response in price. To date 

no other study in the electricity literature has used an event-study approach to answer 

this question. A ‘traditional’ event study approach and a GARCH-based event study 

approach (following McKenzie, Thomsen and Dixon, 2004) are used and results show 

that despite the almost negligible coincidence of demand and price spikes across the 

NEM there is evidence of a significant positive price response to a demand spikes in 

NSW1, QLD1 and VIC1, but not in SA1 or SNOWY1. It should also be noted that 

although statistically significant the size of the response is quite small. All that said, it 

may be that the findings of this study are dependent on the spike definition used and 

the use of returns on price and demand, however preliminary analyses have suggested 

that a more liberal definition of a spike may result in problems for GARCH model 

estimation and that the study of price levels yields similar results to returns59. In 

markets like the NEM pools that are designed to clear instantly, one would intuitively 

expect to see a higher rate of coincidence between extreme spikes in demand and 

price. These findings suggest that one or more of the other causal factors may make a 

greater contribution to the occurrence of a price spike. Other factors, perhaps supply-

side disruption in the form of generator outages or transmission failure, may be more 

significant drivers of price spikes than unexpected shocks to demand.  The events of 

the afternoon of January 16, 2007, may provide a clue. On that day extreme high 

temperatures in Victoria and New South Wales resulted in unusually high demand for 

                                                 
59 See chapters 4 and 5. 

 176 



electricity, but the transmission interconnector between the two states was disrupted 

by intense bushfires, with the result that peak-load power generated by the Snowy 

Hydroelectric Scheme could not be delivered to the grid in Victoria. Victorian prices 

hovered in the high $9,000 range for most of the afternoon and reached the $10,000 

market cap level for two hours, resulting in load shedding and widespread cuts to 

power supply throughout the state. This suggests that a useful extension to this work 

would be to collate event data relating to supply disruptions and compare their 

occurrence with price spikes to determine the extent to which supply-side shocks are 

transmitted to price. 
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Chapter 9: Conclusion 
 
 

9.1 Overview 

Chapter One advances the argument that the deregulation and restructuring of the 

electricity supply sector in many jurisdictions, while intended to increase competition 

among suppliers and choice for end users has resulted in idiosyncratic price behaviour 

characterised by strong intra-day, weekly and monthly seasonal patterns and extreme 

price spikes that contribute to excess volatility in the market. This excess volatility 

brings with it new risk management challenges and associated costs. Reform of the 

electricity supply industry, in countries or regions where it has taken place, has 

usually involved the disaggregation of vertically-integrated, state-owned monopolies 

that control the whole electricity value chain, from fuel extraction through generation, 

transmission and distribution to retail sales. In general, sector restructuring has 

involved splitting off the generation and distribution/retail business with some degree 

of privatisation or corporatisation, while the transmission infrastructure (the ‘poles 

and wires’) has generally remained in state hands.   

 

Under regulated regimes prices were generally fixed (or were periodically adjusted 

for inflation), based on the supplier’s short-run marginal cost of production and 

delivery plus some reasonable return to the state as owner. In the new market setting, 

generators compete to sell into an electricity market pool and the distributors purchase 

electricity from the pool at prices determined by the interaction of demand and supply 

on an hourly or half-hourly basis. Unlike other traded energy commodities like oil and 

gas, electricity is not storable. As such inventory cannot be use to ‘smooth out’ shocks 
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to demand or supply, which gives rise to the extremely high volatility observed in 

these new, deregulated markets. Further, demand tends to be highly inelastic to price, 

and when compared with financial markets (stock, bonds) or with other commodities 

the behaviour of electricity prices is regarded as quite complex and volatile (see 

Escribano et al., 2002; Bunn and Karakatsani, 2003). A unique feature of electricity 

prices in some jurisdictions is the occurrence of negative prices, which arise as a 

result of the price bidding practices of generators60. The deregulation has introduced 

new elements of price uncertainty to both the production and consumption sides of the 

sector and tools for financial risk management in the form of futures contracts, 

options and swaps are being developed by and for the industry.  

 

In the Australian context, the ‘Hillmer reforms’ of the early 1990s led to the 

disaggregation of the vertically integrated government-owned electricity authorities 

into separate generation, transmission, distribution and retail sales sectors in each 

State. The goal of the reform process was to increase competition in the industry and 

provide greater choice for end-use electricity consumers. As in other countries that 

have undertaken programmes of restructuring and deregulating their electricity supply 

industries, the restructuring and deregulation of electricity markets in Australia has 

brought about fundamental changes in the behaviour of wholesale spot prices. 

Australian wholesale electricity prices demonstrate high volatility, strong mean-

reversion (prices tend to fluctuate around a long-term equilibrium, usually reflecting 

generators’ short-run marginal costs), and abrupt and unanticipated price jumps or 

spikes that are generally associated with shocks to price-inelastic demand and supply 

(Higgs & Worthington, 2006). Indeed it has been shown that electricity prices in the 

                                                 
60 See chapter four, section 4.2.2 for discussion. 
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Australian market display volatility and spike behaviour far in excess of other, similar 

electricity markets, largely as a result of local market design and regulation (Booth, 

2004).   

 

Excess volatility and the resultant uncertainty about prices increases the risk of 

trading in the spot market and increases consumer prices as participants pay for 

various risk management measures used to mitigate the consequences of being caught 

when prices spike to high levels. The characterisation and understanding of the 

behaviour of electricity prices is therefore an important and necessary research 

objective and will help to better inform a range of electricity market considerations, 

not least among which are valuation of real assets in the sector and financial claims on 

the commodity, new investment decisions on the part of suppliers and distributors, 

and management of price risk, not only by suppliers but by large commercial and 

industrial users for whom electricity is a basic input to their business.  

 

9.2 Summary and Findings 

The focus of this thesis is on modelling the structural characteristics of electricity 

prices in the Australian National Electricity Market.  Seasonalities including time-of-

day, day-of-week, monthly and yearly effects and large price spikes are a well-

documented feature of electricity markets and several studies examine their effect in 

aggregate using various functional forms (e.g. Kaminski, 1997; Clewlow and 

Strickland, 2000a; de Jong and Huismann, 2002; and Goto and Karolyi, 2004). The 

literature on electricity price modelling frequently identifies the presence of extreme 

price jumps with rapid reversion to the mean as a cause of extreme volatility in 

electricity prices [Bunn (2004), Alvaro, Peña, and Villaplana (2002), Hadsell, 
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Marathe and Shawky (2004)]. Modelling electricity prices in the Australian and 

overseas markets is a difficult process and this provides a strong incentive for further 

research into the Australian electricity price market. Various models developed in the 

study of financial time-series data have been applied to electricity time series but 

there is much work yet to be done to fully account for the main components of price 

structure. Knittel and Roberts (2001) and Goto and Karolyi (2004) highlight the need 

to explore this structure and include it in price specifications.  

 

The previous research on spike behaviour generally attempts to capture spike effects 

using some generalised functional form [See Clewlow and Strickland, 2000a and 

(2000b), Higgs and Worthington (2003, 2005), Bunn (2004), Alvaro, Peña, and 

Villaplana (2002), Hadsell, Marathe and Shawky (2004) and Goto and Karolyi 

(2004)]. Most of these studies use daily price data, which is inadequate, given that 

spikes tend to be very short lived and multiple spikes may occur on a trading day.  

This thesis extends the earlier research by examining intra-day prices and identifying 

and capturing individual spikes and modelling their effects, along with seasonal 

factors. The existing literature also uses data sampled over a one or two year horizon 

and the Australian studies tend to concentrate on only one or two regions in the NEM. 

By using half-hourly data, sampled over a longer period (six years) from five NEM 

regions, this study better establishes the extent to which these extreme within-day 

price spikes and negative prices are a regular feature of the data. As such it is 

potentially significant for producers, regulators and researchers.  

 

Briefly, the four empirical chapters in the thesis addresses the following research 

questions: (1) are individual extreme spikes significant in half-hourly prices, to what 

 181 



extent are seasonal factors significant, and is there regional variation within the 

NEM? (Chapter Five); (2) to what extent are any structural characteristics identified 

in the prices series evident in half-hourly demand (Chapter Six); (3) having accounted 

for seasonalities and outlier effects in price, can the underlying volatility processes be 

described using established empirical models? (Chapter Seven); and (4), given that 

demand variation is generally accepted to  be a driver of price variation, do the 

extreme values observed in demand and price coincide and to what extent does a 

demand shock result in a response in price? (Chapter Eight).  Chapters five and six 

employ a relatively straightforward OLS regression approach to modelling the effects 

of seasonal factors and extreme price spikes. Chapter Seven tests the efficacy of a 

range of common GARCH model specifications under several different assumptions 

about the distribution of the conditional error term. Chapter Eight brings together the 

spike analysis conducted in Chapters five and six with the GARCH analysis in 

Chapter Seven, in a GARCH-based event study framework to investigate the effect of 

spikes in demand on price.  

 

The thesis is organised as follows. Chapter Two introduces the domain of relevant 

literature, including recent research on price formation in electricity markets given the 

special nature of electricity as a traded commodity and special aspects of market 

design that it requires. The literature on stochastic modelling of electricity prices is 

presented, particularly the various adaptations of techniques from the “conventional” 

financial markets and their strengths and limitations when applied to modelling 

electricity prices. The next section of the chapter discusses the literature emphasising 

structural modelling, especially the complex mix of seasonalities and outlier effects 

observed in electricity prices. The emerging field of non-parametric modelling for 
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price forecasting is briefly introduced, and the emerging body of Australian literature 

is presented and discussed.  Chapter Three provides an overview of the institutional 

characteristics of electricity markets. First, it provides background to the recent 

deregulation and restructuring of the Australian electricity supply industry. Second, it 

provides an overview of the important historical and operational aspects of Australia’s 

National Electricity Market (NEM), including a worked example demonstrating the 

method of deriving the half-hourly spot price. Fourth, it provides an overview of the 

significant markets in other countries that have undertaken similar restructures of their 

electricity supply industry.  

 

Chapter Four describes the data collection and collation procedures and sources of the 

electricity price and demand data used in this thesis. The summary descriptive 

statistics for each data set are also presented. This chapter also includes discussion of 

the process of determination of half-hourly demand values and a discussion of the 

phenomenon of negative spot prices, which are impossible in financial markets but 

are a sporadic yet significant feature of prices in the NEM.    

 

Chapter Five investigates seasonalities and spike effects in Australian electricity 

prices in considerable detail and over a longer sample period than the existing 

literature. Over the six-year period of the study, time-of-day effects are found to be 

significant in half-hourly prices and are broadly consistent across all five regions of 

the NEM, with positive returns generally occurring at times of peak population 

activity in the morning and early evening and negative returns observed at most other 

times.  There is also evidence of a transient, early evening spike effect in returns 

arising in 2002 and 2003 and dissipating over subsequent years. Day-of-week effects 
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generally appear stronger for Monday and Friday than for other days of the week. 

Monthly effects show some consistency between NSW1, SNOWY1 and VIC1 in late 

autumn to early winter and in early summer. Extreme spikes, although representing 

less than 0.1% of observations in any region, are found to have highly statistically 

significant positive effect on returns.  The occurrence of negative prices, although 

relatively rare and unique to electricity markets are found to have a significant 

negative effect on returns. These findings reinforce the assertions of previous 

researchers that seasonal and price spike effects should be incorporated into 

stochastic models of electricity price behaviour.  

 

The purpose of the research presented in Chapter Six is to investigate the extent to 

which the seasonal factors and outlier effects that are found to be significant in half-

hourly price and returns as shown in Chapter Five are present in demand for 

electricity. Of the seasonal effects considered, intra-day effects are more significant 

and persistent than day of the week, monthly or yearly effects, but with some 

variation between regions. The variation between regions is broadly consistent with 

findings in the literature on price behaviour (see Worthington, Kay-Spratley and 

Higgs, 2005), suggesting that for the purposes of analysis it is appropriate to treat the 

different regions in the NEM as separate markets. Extreme positive spikes represent 

less that 0.05% of demand observations across all NEM regions under study, yet 

results show that extreme demand spikes are statistically significant, similar to 

research findings pertaining to spot price, for example Higgs and Worthington (2005) 

and Thomas et al.    (2006). 

 

 184 



The study presented in Chapter Seven investigates the efficacy of four different 

GARCH model specifications in describing the underlying intra-day volatility 

processes in returns on electricity prices in five regional pools (designated NSW1, 

QLD1, SA1, SNOWY1 and VIC1) in Australia’s National Electricity Market (NEM). 

four GARCH specifications, Generalised ARCH (GARCH), Threshold ARCH 

(TARCH), Exponential GARCH (EGARCH) and Power-ARCH (PARCH) models 

are applied to half-hourly returns on electricity prices for the period 7 December 1998 

(commencement of the NEM) to 31 March 2005.  Unlike previous GARCH-based 

studies on electricity prices, which seek to incorporate seasonal factors and 

generalised outlier effects in their models of the conditional mean equation, the very 

large data set used and the desire to investigate the underlying volatility process in the 

absence of these structural effects required that the returns data be pre-whitened prior 

to estimating the conditional mean and conditional variance equation in the GARCH 

estimation process. The results show that significant ARCH and GARCH effects are 

present in the data and that Power ARCH specification with a Generalised Error 

Distribution applied to the standard errors generally describes the volatility process 

better than the other three GARCH models, although in the QLD1 and SA1 regions 

the PARCH model is potentially unstable, so the choice of model reverts to the 

EGARCH(1,1) which does not impose the same parameter restrictions.  Interestingly, 

the asymmetric volatility response captured by the PARCH model generally indicates 

that volatility tends rise in response to positive price spikes (see Chapter Five) and fall 

in response to negative spikes, which is counter to the effects generally observed in 

conventional financial markets but consistent with the findings of previous Australian 

GARCH-based studies in electricity.  
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The final empirical chapter, Chapter Eight, extends the work on spike significance 

presented in Chapters five and six by seeking the answers to two questions - does a 

spike in demand result in a contemporaneous spike in price? If not, is there a 

significant price response to a demand spike?  The answer to the first question appears 

to be somewhat surprising in that there is a marked absence of exact temporal 

coincidence between extreme spikes in half-hourly demand change and extreme 

spikes in half-hourly price change across the five NEM regions considered. In view if 

this finding, an event-study approach is employed to examine the extent to which 

extreme spikes in demand trigger a response in price. To date no other study in the 

electricity literature has used an event-study approach to answer this question. A 

‘traditional’ event study approach and a GARCH-based event study approach 

(following McKenzie, Thomsen and Dixon, 2004) are used and results show that 

despite the almost negligible coincidence of demand and price spikes across the NEM 

there is evidence of a significant positive price response to a demand spikes in NSW1, 

QLD1 and VIC1, but not in SA1 or SNOWY1. It should also be noted that although 

statistically significant the magnitude of the response is relatively small, and it may be 

that other causal factors, perhaps unexpected supply disruptions, make a greater 

contribution to spike evolution.  

 

9.3 Directions for Future Research 

The work undertaken for this thesis reinforces the view that the behaviour of 

electricity markets is highly idiosyncratic when compared to other more 

“conventional” financial markets. Although many of the characteristics of electricity 

prices can be replicated to some extent with existing stochastic models and a 
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structural approach to modelling is warranted, there are several modelling issues that 

are worthy of further exploration. These include: the factors driving the behaviour of 

spot prices, for example economic fundamentals including demand-side behaviour, 

fuel costs; regulatory constraints, market design effects, the effects of forward 

contracting and option sales by generators, perceived risks, trading inefficiencies and 

strategic use of market power and short-run anomalies like generation plant outage or 

transmission grid failure. The magnitude, relative importance and intra-day variation 

of these economic fundamentals  and their influence on prices, especially the 

behaviour of demand and any strategic trading behaviour on the part of generators 

may be worthy of further exploration, as would the changing nature and dynamics of 

structural effects as markets evolve and mature.  

 

Much of the work on empirical price modelling attempts to adapt familiar models 

from financial assets to the characteristics of electricity. Knittel and Roberts (2001) 

find that the forecasting performance of standard financial models is relatively poor 

in the presence of seasonal effects and extreme behaviour and without adjustment for 

these effects. A further possibility for research is the distributional characteristics of 

electricity prices. It may be that the findings of Knittel and Roberts (2001) to some 

extent result from the fact that most “standard” financial models require some 

assumption about the distributional characteristics of prices and returns and these 

assumptions may not hold in electricity markets. Further investigation of these effects 

may also be of significance for financial institutions wishing to trade in the electricity 

markets or to develop risk products for market participants. 
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Although the imperfections of electricity market offer a rich structure for modellers, 

and most of the economic, technical and behavioural influences could be captured by 

a mixture of econometric and stochastic specifications, the political, environmental 

and social sensitivity of the electricity sector is becoming increasingly important. 

Even though markets have been deregulated in many jurisdictions, the threat of 

regulatory interference is ever present (see Bower, 2004). High prices only have to 

persist for a few months before price caps emerge, as indeed they have in Britain, 

Spain, and Australia. In more recent times the social, industrial and environmental 

impacts of the electricity industry have become a point of discussion among 

politicians and the wider community. Carbon emissions trading schemes exist in 

other parts of the world and for Australia, some form of national regulatory impost 

for carbon dioxide emissions is not far away, either in the form of “carbon taxes” or a 

required emissions trading scheme (various disjoint forms of voluntary and 

compulsory scheme already operate in Australia). There is much work to be done in 

the meantime on understanding electricity prices but it would seem prudent in the 

longer run to consider how these additional factors might be incorporated into model 

specifications. 

 

A further possibility for research is the effect of market power and supplier bid 

behaviour. Robinson and Baniak (2002) argue that in the UK setting, generators with 

market power have the incentive to create volatility in the spot market in order to 

benefit from higher risk premiums in the contract market. Criticisms along these lines 

have recently been made regarding the operations of Snowy Hydro as a peak producer 

in the local market. Similarly, changes in purchasing or contracting behavior by large 

purchasers of electricity may also have an influence on price volatility; an aspect of 
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volatility development that has had little treatment in the Australian setting. Smith 

(2003), argues that the US spot electricity markets lost much of their volatility as 

large consumers, like California, moved out of electricity purchases in the spot market 

to long-term contracts and a similar effect was observed in England and Wales when 

the spot market was changed from a compulsory market (like Australia) to a non-

compulsory, residual settlement market. Wolak (1997) and Goto and Karolyi (2004) 

in their comparative studies of markets note that volatility characteristics appear to be 

closely related to the institutional structure of markets, with extreme price spikes 

more prevalent in markets with compulsory participation, as is the case in Australia’s 

NEM.  It may be possible to proxy changes in the competitive environment to provide 

empirical evidence whether competition increases or decreases price volatility and it 

is feasible that changes in regulatory regimes could be more directly included as 

exogenous factors in a study of electricity price and volatility. Better understanding of 

the effects of changes to market operation and regulation may provide useful insight 

for future regulation and market management in Australia.  
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