
Supporting Software Evolution in Agent Systems

A thesis submitted for the degree of

Doctor of Philosophy

Khanh Hoa Dam B.Cs., M.App.Sc (IT)

School of Computer Science and Information Technology,

Science, Engineering, and Technology Portfolio,

RMIT University,

Melbourne, Victoria, Australia.

28th August, 2008

Declaration

I certify that except where due acknowledgement has been made, the work is that of the

author alone; the work has not been submitted previously, in whole or in part, to qualify

for any other academic award; the content of the thesis is the result of work which has been

carried out since the official commencement date of the approved research program; and, any

editorial work, paid or unpaid, carried out by a third party is acknowledged.

Khanh Hoa Dam

School of Computer Science and Information Technology

RMIT University

28th August, 2008

ii

Acknowledgments

First of all, my deepest gratitude must go to my supervisors, Associate Professor Michael

Winikoff and Professor Lin Padgham, for providing me with the wonderful opportunity to

complete my PhD thesis. I would particularly like to thank Michael, who patiently guided me

through all the steps of my candidature with his enormous amount of constant support. He

has always placed substantial faith in my ability, and motivated and encouraged me through

the most difficult times. I feel extremely lucky and privileged to work with him and have his

excellent guidance.

I am also very grateful to Lin for her invaluable comments and suggestions along the way

of doing this research and writing the thesis. I also greatly thank Lin for helping me obtain

the scholarship that has been of great assistance to me over the last few years.

Michael and Lin have taught me many valuable lessons about being a good researcher,

and the knowledge I gained from them over the last few years is priceless. For all of the

things they have done for me that can hardly be expressed in just a few lines here, I sincerely

thank once again them both.

I wish to thank RMIT University for providing me with a generous scholarship, that

allowed me to pursue my dream of reading for a PhD. I thank the various administrative and

technical support staff at RMIT, who have helped me at different stages of my candidature.

I am very fortunate to work in the very active and friendly agent research group at

RMIT. I had a great opportunity to advance my presentation skills and obtained many useful

feedbacks to improve my work when presenting at the group’s weekly meetings. I would like

to thank all members of the group for their friendship and support, especially Sebastian

Sardina for many stimulating discussions regarding the work in chapter 7, Duc Pham for

reading and commenting on a draft of the thesis, and John Thangarajah for assistance in

integrating the Change Propagation Assistant with the Prometheus Design Tool.

I owe special gratefulness to my family for continuous and unconditional support, es-

pecially to my father for the enormous amount of sacrifices that he has made to allow me

to get this far in my education. His courage and gritty determination to overcome various

difficult challenges in life have also been inspiring me and pushing me forward. I also thank

my beloved wife whose enduring patience, understanding and sacrifices gave me the freedom

and energy to concentrate on the research. Finally, this thesis is dedicated to my late mother

for her incredible love and sacrifice.

iii

Credits

Portions of the material in this thesis have previously appeared in the following publications:

• Khanh Hoa Dam and Michael Winikoff. Cost-based BDI plan selection for change

propagation. In L. Padgham, D. C. Parkes, J. P. Müller, and S. Parsons, editors,

Proceedings of the 7th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2008), pages 217–224, Estoril, Portugal, May 2008 (work included

in Chapters 7 and 9).

• Khanh Hoa Dam and Michael Winikoff. Evaluating an agent-oriented approach for

change propagation. In M. Luck and J. J. Gomez-Sanz, editors, Proceedings of the

Ninth International Workshop on Agent Oriented Software Engineering, pages 61–72,

Estoril, Portugal, May 2008 (work included in Chapter 9).

• Khanh Hoa Dam. An agent-oriented approach to support change propagation in soft-

ware evolution. In L. Padgham, D. C. Parkes, J. P. Müller, and S. Parsons, editors,

Proceedings of the 7th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2008), Extended Thesis Abstract for Doctoral Mentoring Program,

pages 1736–1737, Estoril, Portugal, May 2008 (work included in Chapter 3).

• Khanh Hoa Dam and Michael Winikoff. Generation of repair plans for change propaga-

tion. In M. Luck and L. Padgham, editors, Agent-Oriented Software Engineering VIII,

volume LNCS 4951 of Lecture Notes in Computer Science, pages 132–146. Springer

Berlin/Heidelberg, April 2008. ISBN 978-3-540-79487-5 (work included in Chapter 6).

• Khanh Hoa Dam, Michael Winikoff and Lin Padgham. An agent-oriented approach

to change propagation in software evolution. In J. Han and M. Staples, editors, Pro-

ceedings of the Australian Software Engineering Conference (ASWEC), pages 309–318.

IEEE Computer Society, 2006. ISBN 0-7695-2551-2 (Best Research Paper award)

(work included in Chapters 3 and 4).

This work was supported by the Australian Research Council under grant LP0453486, in

collaboration with Agent Oriented Software.

The thesis was written in the WinEdt editor on Microsoft Windows XP Home Edition, and

typeset using the LATEX2ε document preparation system.

All trademarks are the property of their respective owners.

iv

Dedication

To the loving memory of my mother, Trần Thị Thái Phỉ (1946 – 1996).

Contents

Abstract 1

1 Introduction 3

1.1 Research questions . 5

1.2 Research outcomes and main contributions 6

1.3 Existing work . 8

1.4 Thesis structure . 9

2 Background 11

2.1 Software maintenance and evolution . 12

2.1.1 Overview . 12

2.1.2 Classification of changes . 14

2.1.3 Change propagation in a change mini-cycle process 16

Program comprehension . 16

Change impact analysis . 17

Change propagation . 19

Restructuring . 19

Verification and validation . 21

Re-documentation . 21

2.1.4 Related work on change propagation 21

Formalisation of change propagation process 22

Inconsistency-based change propagation 23

Change propagation and model transformation 27

2.2 Agent-based computing . 28

v

CONTENTS vi

2.2.1 Intelligent agents . 28

2.2.2 The Belief-Desire-Intention (BDI) model 30

2.2.3 Agent-Oriented Software Engineering 35

2.3 Object Constraint Language . 39

2.4 Chapter summary . 45

3 Change Propagation Framework 47

3.1 Building consistency relationships in design models 48

3.1.1 What is a model? . 48

3.1.2 How to define consistency in models? 51

3.2 An inconsistency based approach to change propagation 54

3.2.1 Inconsistency management . 54

3.2.2 Classification of repair actions . 56

3.3 Architectural overview of our change propagation framework 58

3.4 Chapter summary . 65

4 Case Study I: Prometheus 67

4.1 Overview of the Prometheus methodology . 68

4.1.1 System specification . 69

4.1.2 Architectural design . 72

4.1.3 Detailed design . 75

4.1.4 Prometheus diagrams . 76

4.2 The four-layer metamodel hierarchy . 77

4.3 A metamodel for Prometheus . 79

4.3.1 ModelEntity . 80

4.3.2 Actor . 80

4.3.3 Role . 80

4.3.4 Percept . 82

4.3.5 Action . 82

4.3.6 Data . 83

4.3.7 Goal . 84

4.3.8 Scenario . 85

4.3.9 Step . 85

CONTENTS vii

4.3.10 Agent . 86

4.3.11 Capability . 88

4.3.12 Message . 89

4.3.13 Protocol . 90

4.3.14 Pelement . 91

4.3.15 Plan . 92

4.4 Consistency constraints . 93

4.4.1 Role . 94

4.4.2 Agent . 95

4.4.3 Capability . 97

4.4.4 Percept . 98

4.4.5 Step . 98

4.4.6 Message . 99

4.4.7 Pelement . 99

4.4.8 Plan . 99

4.4.9 Data . 101

4.5 Example . 102

4.6 Chapter summary . 105

5 Case Study II: UML 107

5.1 Overview of UML . 107

5.2 UML metamodel . 109

5.3 Case study application . 113

5.3.1 Initial system . 113

5.3.2 A proposed change . 116

5.3.3 Change propagation process . 117

Generate repair plan types . 117

Check constraints . 119

Generate repair plan instances . 120

Calculate cost . 122

Select one plan to execute and execute plan 124

5.4 Chapter summary . 124

CONTENTS viii

6 Plan Generation 126

6.1 Formally defining repair actions . 126

6.2 Automatic repair plan generation: issues and solutions 130

6.3 Extended repair plan syntax . 131

6.4 Plan generation rules . 132

6.4.1 Navigation . 135

6.4.2 Constraints on attributes . 138

6.4.3 Constraints on Boolean-valued set expressions 140

6.4.4 Constraints on non-Boolean-valued set expressions 143

6.4.5 Boolean connectives . 144

6.4.6 Rules for addition and deletion involving derived sets 146

6.4.7 Discussion . 151

6.5 Example . 152

6.6 Correctness and completeness . 155

6.7 Related work . 161

6.8 Chapter summary . 163

7 Plan Selection 165

7.1 Issues and solutions in repair plan selection 165

7.2 Cost definition . 167

7.2.1 Example . 172

7.3 Properties of the cost definitions . 175

7.4 Cost calculation algorithms . 177

7.4.1 Initial algorithms . 178

7.4.2 Advanced algorithms with pruning capabilities 180

7.4.3 Example . 184

7.4.4 Complexity analysis . 185

7.5 Related work . 187

7.6 Chapter summary . 189

8 Implementation 190

8.1 Architectural overview . 190

8.2 Dresden OCL2 Toolkit . 192

CONTENTS ix

8.3 Repair Plan Generator module . 194

Constraint Processor package . 194

Repair Plan Builder packages . 195

User Interface package . 196

8.4 Change Propagation Engine module . 198

Constraint Evaluator . 198

Cost Calculator . 198

8.5 Chapter summary . 201

9 Evaluation 203

9.1 Issues in evaluation . 203

9.1.1 Which methodology should be used? 205

9.1.2 Which application(s) should be used? 205

9.1.3 What changes to the application should be done? 207

9.1.4 How do we select primary changes to perform? 208

9.1.5 How are basic costs determined? . 208

9.2 A model of the change propagation process 209

9.3 Experiment process and metrics . 212

9.4 An overview of the evaluation application . 213

9.5 Change scenarios and results . 217

9.5.1 Change 1: Adding wind speed alerting 218

9.5.2 Change 2: Implementing a variable threshold alerting 221

9.5.3 Change 3: Adding volcanic ash . 225

9.5.4 Change 4: Logging sent alerts . 231

9.5.5 Change 5: Having multiple “TAF Manager” agents 234

9.5.6 Change 6: Subscription . 238

9.5.7 Summary of all changes . 242

9.6 Efficiency analysis . 245

9.7 Discussion . 249

9.8 Chapter summary . 251

10 Conclusions and Future Work 253

10.1 Summary of contributions . 253

CONTENTS x

10.2 Future work . 258

A Proof 260

A.1 Proofs for generated repair plans for making a constraint true, i.e. R(ct) . . . 261

A.1.1 Navigation . 261

A.1.2 Constraints on attributes . 265

A.1.3 Constraints on Boolean-valued set expressions 267

A.1.4 Constraints on non-Boolean-valued set expressions 272

A.1.5 Boolean connectives . 275

A.2 Proofs for generated repair plans for making a constraint false, i.e. R(cf) . . 278

A.3 Rules for addition involving derived sets, i.e. Q+ 279

A.4 Rules for deletion involving derived sets, Q− 285

Bibliography 288

List of Figures

2.1 A change mini-cycle process (adapted from [Mens, 2008; Rajlich, 1999; Yau

et al., 1978]) . 17

2.2 A typical BDI execution cycle . 33

2.3 An example UML class diagram . 40

2.4 An excerpt of the OCL grammar (adopted from [Object Management Group,

2006] and [Object Management Group, 2005]) 41

3.1 A model and its containments . 49

3.2 Different views of one system in one model (redrawn from [Kleppe et al., 2003]) 50

3.3 Prometheus Metamodel (Excerpt) . 53

3.4 UML 1.5 Metamodel (Excerpt) . 54

3.5 A classification of repair actions . 56

3.6 Change propagation framework . 59

3.7 Example of repair plans for fixing constr(A,P) 61

3.8 Repair plan abstract syntax . 62

4.1 The Prometheus Methodology (obtained from the authors of Prometheus.) . 68

4.2 An analysis overview diagram for a weather alerting system 70

4.3 A goal overview diagram for a weather alerting system 71

4.4 A role diagram for a weather alerting system 72

4.5 An agent role grouping diagram for a weather alerting system 73

4.6 System overview diagram for a weather alerting system 74

4.7 Agent overview diagram for the “Discrepancy” agent 76

4.8 Prometheus diagrams . 77

4.9 The four-layer metamodel hierarchy . 78

xi

LIST OF FIGURES xii

4.10 Metamodel snapshot relating to system specification entities 81

4.11 Metamodel snapshot relating to Scenario . 86

4.12 Metamodel snapshot relating to Agent . 87

4.13 Metamodel snapshot relating to Role, Agent, Capability and Plan 88

4.14 Metamodel snapshot relating to Capability 89

4.15 Metamodel snapshot relating to Protocol . 91

4.16 Metamodel snapshot relating to Plan . 92

4.17 Data coupling diagram for a weather alerting system 102

4.18 Agent overview diagram for the “Alerter” agent 103

5.1 UML diagram types . 108

5.2 The four-layer metamodel hierarchy . 109

5.3 An excerpt of UML metamodel concerning Class, Operation, ClassifierRole,

and Message . 110

5.4 An excerpt of UML metamodel concerning Class, StateMachine, State, Tran-

sition . 111

5.5 Class diagram for the VOD system (adopted from [Egyed, 2007]) 114

5.6 A sequence diagram for instances of classes Display and Streamer (adopted

from [Egyed, 2007]) . 114

5.7 Statechart diagrams for classes Display and Streamer (adopted from [Egyed,

2007]) . 115

5.8 Design of the VOD system after primary changes are made (adopted from

[Egyed, 2007]) . 116

5.9 Example consistency constraints . 119

5.10 Example repair plans for constraint C1 . 120

5.11 Repair plan instances for fixing constraint C1(“2 : stream”) with respect to

plan type P1 . 121

6.1 A taxonomy of repair actions . 128

6.2 Repair plan abstract syntax . 132

6.3 An excerpt of the OCL grammar (adopted from [Object Management Group,

2006] and [Object Management Group, 2005]) 134

LIST OF FIGURES xiii

6.4 Plan generation rules (ct) for basic propositions involving navigations to a

single entity . 137

6.5 Plan generation rules (cf) for basic propositions involving navigation to a

single entity . 138

6.6 Plan generation rules (ct) for basic propositions involving attributes 139

6.7 Plan generation rules (cf) for basic propositions involving attributes 140

6.8 Plan generation rules (ct) for basic propositions involving set operations re-

turning boolean values . 141

6.9 Plan generation rules (cf) for basic propositions involving set operations re-

turning boolean values . 142

6.10 Plan generation rules (ct) for basic propositions involving set operations re-

turning primitive values . 144

6.11 Plan generation rules (cf) for basic propositions involving set operations re-

turning primitive values . 145

6.12 Plan generation rules (ct) for boolean connectives 145

6.13 Plan generation rules (cf) for boolean connectives 146

6.14 Plan generation rules for basic propositions involving set addition 148

6.15 Plan generation rules for basic propositions involving set deletion 149

6.16 An event-plan tree for ct(self) . 154

6.17 An example illustrating relationships between plan types, plan instances and

action sequences . 156

7.1 An example of cost calculation for constraint c1(a1, p1) 173

7.2 Tree Transformation . 178

7.3 Calculating Plan Node Cost (No Pruning) . 179

7.4 Calculating Goal Node Cost (No Pruning) . 180

7.5 Calculating Plan Node Cost (Pruning) . 181

7.6 Calculating Goal Node Cost (Pruning) . 182

7.7 An example of cost calculation for constraint c1(a1, p1) 184

8.1 Change propagation assistant tool architecture 191

8.2 Packages and Tools of the Dresden OCL2 Toolkit (copied from http://dresden-

ocl.sourceforge.net) . 193

LIST OF FIGURES xiv

8.3 Packages of the Repair Plan Generator module 195

8.4 Screenshot of Repair Plan Generator’s inputs pane 197

8.5 Screenshot of Repair Plan Generator’s repair plan editor pane 197

8.6 Packages of Change Propagation Engine and PDT Interface Communicator . 199

8.7 Screenshot of change propagation user interface in PDT 200

9.1 Change propagation framework . 204

9.2 A taxonomy of software change . 208

9.3 A model of the Change Propagation Process (redrawn from [Hassan and Holt,

2004]) . 209

9.4 Our model of the Change Propagation Process 210

9.5 A change propagation process . 211

9.6 MAS-WA System Overview Diagram (from [Jayatilleke, 2007]) 215

9.7 MAS-WA Design . 216

9.8 Changes are classified based on our taxonomy 217

9.9 The agent overview diagram for “Discrepancy” agent after change 1 219

9.10 The system overview diagram after change 2 222

9.11 The agent overview diagram for “GUI” agent after change 2 223

9.12 The system overview diagram after change 3 227

9.13 The agent overview diagram for “VolcanicManager” agent after change 3 . . . 228

9.14 The agent overview diagram for “Alerter” agent after change 3 229

9.15 The agent overview diagram for “Alerter” agent after change 4 232

9.16 The agent overview diagram for “Discrepancy” agent after change 4 233

9.17 The system overview diagram after change 5 235

9.18 The agent overview diagram for “TAFManager” agent after change 5 236

9.19 The agent overview diagram for “Discrepancy” agent after change 5 237

9.20 The “Process TAF” scenario after change 5 238

9.21 The system overview diagram after change 6 239

9.22 The agent overview diagram for “TAF Manager” agent after change 6 240

9.23 The portion of changes done by the tool in each change scenario 244

9.24 Performance of the cost algorithm in the first experiment 247

9.25 Performance of the cost algorithm in the second experiment 248

LIST OF FIGURES xv

A.1 An example of fixing constraint c def= c1 and c2 276

A.2 An example showing how E is connected to x (w.r.t. aend1.aend2) 287

List of Tables

2.1 Set operations supported in OCL . 44

5.1 The cost of repair options for fixing C1(“2:stream”) 123

9.1 Summary of evaluation results derived from the six change scenarios 243

9.2 Efficiency results from the six change scenarios 249

xvi

Abstract

Software maintenance and evolution is arguably a lengthy and expensive phase in the life

cycle of a software system. A critical issue at this phase is change propagation: given a

set of primary changes that have been made to software, what additional secondary changes

are needed to maintain consistency between software artefacts? Although many approaches

have been proposed, automated change propagation is still a significant technical challenge

in software maintenance and evolution. Furthermore, while most of the existing change

propagation approaches focus on source code, support for propagating changes in design

models has received less attention. As the importance of models in the software development

process has been better recognised, a recent research trend is dealing with changes at the

level of design models.

The agent paradigm, with its new way of thinking about software systems as a collection

of autonomous, flexible and robust agents, offers a promising solution for modelling and im-

plementing distributed complex systems. Agent systems, like conventional software systems,

must evolve to meet the ever-changing user requirements and operating environment. If we

are to be successful in the development of agent-oriented systems that remain useful after

delivery, the research community must provide solutions and insights that will improve the

practice of maintaining and evolving agent systems. While a large number of agent-oriented

methodologies and techniques have been proposed to support the process of analysing, de-

signing and implementing agent systems, there has been limited work aiming to improve the

maintenance and evolution of such systems.

Our objective is to provide tool support for assisting designers in propagating changes

during the process of maintaining and evolving models. We propose a novel, agent-oriented

approach that works by repairing violations of desired consistency rules in a design model.

Such consistency constraints are specified using the Object Constraint Language (OCL) and

the Unified Modelling Language (UML) metamodel, which form the key inputs to our change

propagation framework. The underlying change propagation mechanism of our framework

is based on the well-known Belief-Desire-Intention (BDI) agent architecture. Our approach

represents change options for repairing inconsistencies using event-triggered plans, as is done

in BDI agent platforms. This naturally reflects the cascading nature of change propagation,

where each change (primary or secondary) can require further changes to be made.

An important piece of our change propagation framework is a new method for generating

interactive repair plans from the OCL consistency constraints that restrict a design model.

This provides effective automation in terms of reducing the significant effort that the user

would require to write such repair plans manually, but importantly, also ensures that the

repair plans are correct. Furthermore, typically a given inconsistency will have a number of

repair plans that could be used to restore consistency. We propose a mechanism for semi-

automatically selecting between alternative repair plans based on a notion of cost, which takes

into account cascades (where fixing the violation of a constraint breaks another constraint),

and synergies between constraints (where fixing the violation of a constraint also fixes another

violated constraint). Our framework is supported by a proof-of-concept tool, called Change

Propagation Assistant (CPA), that is integrated into the Prometheus Design Tool. We used

the CPA tool in an evaluation in which different change scenarios involving an existing

weather alerting system were examined. The results have shown that given a reasonable

amount of primary changes, the approach is able to assist the designer by recommending

feasible secondary change options that match the designer’s intentions. The evaluation has

also shown that the approach can, on average, automatically identify the majority of the

actions in a given change plan for meeting a particular change request. Finally, we also

illustrate that our approach is applicable not only to agent-oriented models (e.g. Prometheus

models) but also to object-oriented models in the Unified Modelling Language (UML).

2 (28th August, 2008)

Chapter 1

Introduction

The ever-changing business environment demands constant and rapid evolution of software.

Change is inevitable if software systems are to remain useful. Software maintenance and

evolution is the modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified operational envi-

ronment [Van Vliet, 2001]. This thesis addresses the problem of software maintenance and

evolution in the context of agent-oriented development. We especially focus on improving the

support for dealing with changes when maintaining and evolving the design of agent-oriented

software.

Change is an important part of the software development activity, which can account for

a large percentage of the cost of software development. Although a significant amount of

work has been done, software evolution and maintenance is still a challenging problem for

both research and practice [Bennett and Rajlich, 2000; Rajlich, 2006]. This is due to the

lack of theoretical foundations and empirical studies of software evolution and maintenance,

as well as to the inherent complexity of software.

To make matters worse, the level of complexity in software systems is growing, which

demands new approaches in software engineering to manage this complexity. The emerging

agent-oriented paradigm, with its potential to significantly improve the development of high-

quality and complex systems, has attracted an increasing amount of interest from the research

and business communities [Luck et al., 2005]. A software agent is a piece of software which

is situated in an environment, acts on its own and interacts with other similar entities to

achieve some design goals [Wooldridge and Jennings, 1995]. An agent also works proactively

CHAPTER 1. INTRODUCTION

to pursue certain goals while, at the same time, it responds in a timely fashion to changes

that occur in its environment. This agent view provides a well suited level of abstraction

for modelling, an effective way of decomposing, and an appropriate method for dealing with

the dependencies and interactions in complex software systems [Jennings, 2001; Wooldridge

and Ciancarini, 2001]. Indeed, there have been numerous agent-based applications in a wide

variety of domains such as air traffic control [Ljungberg and Lucas, 1992], space exploration

[Muscettola et al., 1998], weather alerting [Mathieson et al., 2004], business process man-

agement [Burmeister et al., 2008], holonic manufacturing [Monostori et al., 2006; Shen and

Norrie, 1999], e-commerce, and information management [Jennings and Wooldridge, 1998;

Munroe et al., 2006].

Agent systems, like conventional software systems, undergo changes during their evo-

lution to meet ever-changing user requirements and environment changes. If we are to be

successful in the development of agent-oriented systems that remain useful after delivery,

the research community must provide solutions and insights that will improve the practice

of maintaining and evolving agent systems. A substantial amount of work in agent-oriented

software engineering (AOSE) [Jennings and Wooldridge, 1999] has provided methodologies

for analysing, designing and implementing software systems in terms of agents [Bergenti

et al., 2004; Henderson-Sellers and Giorgini, 2005]. However, there has been very little work

on maintenance and evolution of agent-based systems [Dam and Winikoff, 2003; Tran and

Low, 2005].

The main purpose of this research is to fill that gap. More specifically, our work tackles the

issue of change propagation, which is arguably a central aspect of software maintenance and

evolution [Buckley et al., 2005; Rajlich, 2006]. A software system consists of various entities

(e.g. agents, plans, events, etc. in an agent-based system) and their dependencies (e.g. an

incoming message depending on plans to handle it). Different software engineering paradigms

or software systems may consist of different entities and dependencies. A dependency between

two entities is consistent if what an entity provides satisfies the requirements of the other

entity. When a developer makes a change in a software system, he/she usually begins with

modifying a particular entity of the system. After this initial, primary, change, the entity

may no longer interact properly with other entities of the system, because it may no longer

satisfy the requirements of the other entities, or it may now require different services from

the entities it depends on. This results in inconsistent dependencies (inconsistencies for

4 (28th August, 2008)

CHAPTER 1. INTRODUCTION

short) in the software system. The purpose of a change propagation process is to reintroduce

consistency into the system by keeping track of the inconsistencies and making additional,

secondary changes to repair these inconsistencies [Rajlich, 2006]. The secondary changes,

however, may themselves introduce new inconsistencies, which may also trigger additional

changes and so on.

One the one hand, change propagation is very important in the process of maintaining

and evolving a software system. The software maintainer has to ensure that the change is

correctly propagated, and that the software does not contain any inconsistencies. Errors and

bugs in software are partly due to an unforseen and uncorrected inconsistency. On the other

hand, change propagation is a complicated and costly process, especially in complex software

systems [Luqi, 1990; Rajlich, 2006; Yau et al., 1978]. As a result, there is an emerging need

to have supporting tools and techniques which improve both the efficiency and quality of the

change propagation process. Much of the work that has been done in change propagation

has been addressing the issue at the code level (e.g. [Gwizdala et al., 2003; Hassan and

Holt, 2004; Rajlich, 2001; 1997]). The recent emergence of model driven development (e.g.

MDA [Kleppe et al., 2003]) has better recognised the importance of models in the software

development process [Mellor et al., 2003; Schmidt, 2006]. Current modelling environments,

however, do not adequately address software evolution problems, which leads to an emerging

need to deal with software changes at the model level [van Deursen et al., 2007]. As a result,

the main focus of our work is to deal with propagating changes through design models.

1.1 Research questions

Our approach to change propagation is based on the conjecture that given a suitable set

of consistency relationships1, change propagation can be done by finding and fixing incon-

sistent relationships in a design model, which are caused by primary changes made to the

model. As a result, our research revolves around two main problems: the first is establishing

consistency relationships between design entities and models, and the second is representing

and implementing a mechanism for fixing inconsistencies caused by changes made to design

models. These two problems correspond to our first two research questions:

1. What type of consistency relationships can be derived from design artefacts to support

change propagation and how can they be identified and represented?
1Consistency relationships refer to some relationship that should hold between model elements.

5 (28th August, 2008)

CHAPTER 1. INTRODUCTION

2. How to effectively represent and implement a mechanism for propagating changes by

fixing those consistency relationships when they are violated?

Typically for a given inconsistency there will be multiple ways of fixing it, which leads us

to the following questions:

3. (a) What is an appropriate representation for capturing different options of repairing

an inconsistency? (b) What kinds of automation can be provided to generate such

repair options?

4. How to select between different applicable repair options to fix a given consistency

violation? The selection must take into account the potential side-effects, where fixing

one inconsistency may inadvertently affect how to fix another one.

Our last research question is pragmatic, and relates to the need for tools to support

change propagation in software maintenance and evolution.

5. What type of tool support can be given to designers to assist in the process of un-

derstanding and modifying an existing agent system? In our view, a tool cannot fully

automate change propagation because a tool cannot make decisions involving trade-offs

and design styles where human intervention is required. However, the tool can help the

designer by presenting feasible change propagation options.

1.2 Research outcomes and main contributions

This thesis makes several contributions to the state of the art. Firstly, we have developed

an agent-based framework to propagate changes by fixing inconsistencies in design models.

Consistency relationships are defined as constraints that describe conditions that all design

models must satisfy for them to be considered valid, e.g. syntactic well-formedness, coher-

ence between different diagrams, and even best practices. Such consistency constraints are

specified on the Unified Modelling Language (UML) [Object Management Group, 2005] meta-

models using the formal language Object Constraint Language (OCL) [Object Management

Group, 2006] (research question 1).

Secondly, we have adopted the well-known Belief-Desire-Intention (BDI) architecture to

represent and implement the underlying change propagation mechanism (research question

6 (28th August, 2008)

CHAPTER 1. INTRODUCTION

2). Repair options are represented as BDI plans whilst fixing a constraint is considered as a

goal/event (research question 3a). The use of BDI-style, event-triggered plans, matches well

with the cascading nature of change propagation, where a change can cause other changes

to be made. Further, there are usually many ways of fixing a given inconsistency, and this is

naturally captured using multiple plans that respond to a given event. Such abstract repair

plans are a way to reasonably enumerate the otherwise large number of concrete ways of

fixing inconsistencies. Although we do not use the full capabilities of a BDI agent, these

two properties of change propagation make the use of BDI plans natural and, we believe,

well-motivated.

Thirdly, we have also developed a repair plan generator that is able to automatically

produce repair plans for a given constraint (research question 3b). This significantly reduces

the substantial amount of time and effort that the user would have to spend on writing such

repair plans manually. Another key consequence of generating plans, rather than writing

them manually, is that by careful definition of the plan generation scheme, it is possible to

guarantee the completeness and correctness of the generated plans.

Fourthly, our research has directly addressed the general problem of (applicable) BDI

plan selection in the context of change propagation (research question 4). We dealt with this

issue by defining a suitable notion of repair plan cost that incorporates both conflict between

plans, and synergies between plans. We then developed an algorithm, based on the notion

of cost, that finds cheapest options and proposes them to the user.

Finally, our last contribution is the implementation of the Change Propagation Assistant

(CPA) tool that demonstrates the applicability and practicality of our approach (research

question 5). The tool is integrated with the Prometheus Design Tool (PDT)2 [Padgham et al.,

2005], a modelling tool that supports the Prometheus methodology for building agent-based

systems. We then performed an empirical evaluation to assess the efficiency and effectiveness

of our change propagation framework generally and the CPA tool in particular.

Although the CPA tool, a prototypical implementation of our change propagation frame-

work, is specific to the Prometheus methodology, we believe that the framework is generic

in which it can be applied to a range of design types. In fact, we have shown that our

approach is applicable not only to agent-oriented models (e.g. Prometheus models) but also

to object-oriented design models such as UML models. Our work aims not only to provide
2http://www.cs.rmit.edu.au/agents/pdt

7 (28th August, 2008)

CHAPTER 1. INTRODUCTION

solutions for software maintenance in agent-oriented software engineering but also to apply

agent technology to the problem of software maintenance in a broader context.

1.3 Existing work

There has been very little work on the field of maintenance and evolution of agent systems.

Although there have been a number of agent-oriented methodologies proposed in the past

few years, previous studies [Dam and Winikoff, 2003; Tran and Low, 2005] have shown that

none of the prominent methodologies explicitly and extensively cover the maintenance phase.

In particular, we are not aware of any existing work on dealing with the critical issues of

change propagation in maintaining and evolving agent-based design models.

On the other hand, software maintenance has been an active area of research in the field

of software engineering. There has been a lot of interest in addressing the issue of assisting

software engineers to deal with software changes. In particular, change impact analysis has

been extensively investigated but most of the work has focused on source code. Many of

the impact analysis approaches are discussed in [Arnold and Bohner, 1996] and are typically

used to assess the extent of the change, i.e. the artefacts, components, or modules that will

be impacted by the change, and consequently how costly the change will be. Although these

approaches are very powerful, they do not readily apply to design models [Egyed, 2007].

Model consistency checking is an area clearly related to change propagation and there has

been a wide range of work in this area (e.g. [Bodeveix et al., 2002; Breu et al., 1997; Engels

et al., 2002; Ivkovic and Kontogiannis, 2004; Kuzniarz et al., 2002; 2003; Van Der Straeten

et al., 2003]). A change propagation framework can be built on top of existing consistency

checking approaches. However, it should be noted that the iterative nature of cascading

changes ideally requires incremental consistency checking as proposed in ArgoUML3 and

xlinkit [Nentwich et al., 2002]. Advanced event-driven consistency checking approaches such

as Egyed’s [2006] can be integrated in order to improve the consistency checking capability

of a change propagation framework.

There have been several works that specifically target fixing inconsistencies in design

models. The work by Nentwich et al. provides a framework which automatically derives

a set of repair actions from the constraint by analysing consistency rules expressed in first-

order logic and models expressed in xlinkit [Nentwich et al., 2002; 2003]. Their work considers
3http://argouml.tigris.org/

8 (28th August, 2008)

http://argouml.tigris.org/

CHAPTER 1. INTRODUCTION

only a single inconsistency and consequently does not explicitly address dependencies among

inconsistencies and potential consequences of repairing them, e.g. fixing one constraint can

repair or violate others. However, their work proposes a fundamental idea that can be further

extended: that ways of fixing inconsistencies can be represented as abstract repair actions.

Recently, Egyed proposed an approach based on fixing inconsistencies in UML models

[Egyed, 2007]. The approach uses model profiling to locate possible starting points for fixing

an inconsistency in a UML model. He also tried to use model profiling to predict the side-

effects of fixing an inconsistency. His work, however, treats a constraint as a black box and

consequently does not benefit from the knowledge of the constraints. Similarly the work of

Briand et al. also looks at how to identify impacted entities during change propagation using

UML models [Briand et al., 2006]. It defines specific change propagation rules (expressed in

OCL) for a taxonomy of changes. However, their approaches do not provide options to repair

inconsistencies as a way of propagating changes, but only suggest starting points (entities in

the model) for fixing the inconsistency.

1.4 Thesis structure

The remainder of this thesis is structured as follow.

• Chapter 2: “Background” provides background material and existing work related to

this thesis. This includes an overview of software maintenance and evolution with a spe-

cial focus on change propagation. This chapter also provides background information

which details the concepts of agents (especially BDI agents), agent oriented software

engineering (AOSE), and the Object Constraint Language (OCL).

• Chapter 3: “Change Propagation Framework” provides a description of our approach

to the issue of change propagation in maintaining and evolving agent systems.

• Chapter 4: “Case Study 1: Prometheus” describes how our approach can be applied to

the Prometheus methodology, a prominent agent-oriented methodology.

• Chapter 5: “Case study 2: UML” provides a description of a small case study for

the purpose of illustrating how our approach can support change propagation in UML

object-oriented design models.

9 (28th August, 2008)

CHAPTER 1. INTRODUCTION

• Chapter 6: “Plan Generation” presents in detail one of the key and novel components of

our change propagation framework: a repair plan generator, which takes a given OCL

constraint and automatically produces repair plans that can fix the constraint.

• Chapter 7: “Plan Selection” addresses an important question that needs to be answered

as part of our change propagation framework, which is how to select between different

applicable (repair) plan instances to fix a given constraint.

• Chapter 8: “Implementation” provides a description of a prototype tool support for

change propagation, called Change Propagation Assistant, that we have developed.

• Chapter 9: “Evaluation” presents, discusses and analyses the results of an empirical

evaluation of our approach.

• Chapter 10: “Conclusion” revisits our research questions and highlights our major

contributions as well as raises suggestions for future research.

10 (28th August, 2008)

Chapter 2

Background

The main purpose of this chapter is to provide some insight into the problem that this

research attempts to tackle. The first part of this chapter provides some background on soft-

ware maintenance and evolution, with a special focus on change propagation, the particular

issue of software maintenance that we aim to address. More specifically, in section 2.1 we

give an overview of the history of software maintenance and evolution, and some key areas

for research. In addition, we present a classification of changes, the underpinning force of

software maintenance and evolution. Furthermore, we explain the role of change propaga-

tion in the context of the software maintenance process. We also describe a range of major

approaches and techniques for change propagation.

The second part of this chapter (section 2.2) gives some background on the agent-oriented

approach, including an introduction to agents and a brief description of the famous Belief-

Desire-Intention (BDI) agent architecture. In this section, we also give an overview of Agent-

Oriented Software Engineering (AOSE) and briefly explain its potential for being an efficient

and powerful software engineering approach. We then highlight some of the key ideas, re-

search questions, and current challenges in AOSE.

The final section of this chapter (section 2.3), briefly describes the Object Constraint

Language (OCL), which is a standard language for describing rules that apply to UML

models. We briefly explain how OCL is used, including its syntax, using a simple example.

Finally, we present a description of current tool support for OCL.

CHAPTER 2. BACKGROUND

2.1 Software maintenance and evolution

The development of software involves a number of activities such as requirement specification,

architecting, design, implementation, testing, and deployment. As software systems are

continuously evolving and changing, maintaining and enhancing them is an inevitable and

challenging activity. More and more software is being built every day and more organisations

are now strongly dependent on their software systems. Such software systems are critical

business assets and a substantial investment must be put into system change to maintain

the value of these assets. As a result, software maintenance and evolution has become an

active area of research and practice.

2.1.1 Overview

“The modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environ-

ment.” – IEEE Standard 1219 for Software Maintenance [IEEE, 1999]

During more than 60 years of modern computing, there have been major changes in the

interpretation and importance of software maintenance [Bennett, 2005]. In the early days,

the focus was mainly on writing new software and consequently software maintenance did

not attract much attention. As time went on, more software products were created and

therefore a steadily increasing amount of effort went into the support of these products. As

a result, in the late 1960s and early 1970s software maintenance began to be recognised as an

important activity after software delivery. The decade of the 1980s witnessed the difficulties

of modifying legacy systems developed based on old architectures (which had been used for

the previous two decades) in order to meet new business requirements [Lientz and Swanson,

1980]. Since then, there has been a strong need for software systems to be evolved to match

with the ever-changing business environment [Parnas, 1994].

The notion of software evolution also originated in the late seventies, when Manny

Lehman started to develop his, now well-known, laws of software evolution based on his

empirical studies performed on IBM’s OS 360 operating system [Lehman, 1980; Lehman and

Parr, 1976]. Lehman’s laws arguably laid an important foundation for the study of software

maintenance and evolution. In fact, it was possibly the first time that the term software evo-

lution was intentionally used to emphasize the difference with the post-deployment activity

12 (28th August, 2008)

CHAPTER 2. BACKGROUND

of software maintenance [Mens, 2008]. There are eight of Lehman’s laws including continuing

change, increasing complexity, self regulation, invariant work rate, conservation of familiarity,

continuing growth, declining quality, and feedback system. In particular, Lehman’s laws of

evolution stress that successful software systems are committed to evolve over time since they

“operate in or address a problem or activity of a real world ”. Lehman’s laws also suggest that

product and process attributes such as size, time between releases, and the number of re-

ported bugs are almost invariant for each release (i.e. self regulating), or that the incremental

change in each release in statistically invariant over the lifetime of a system (i.e. conservation

of familiarity). His later studies [Lehman, 1996; Lehman and Belady, 1985; Lehman et al.,

1997] concerning other software systems confirm his original findings.

Changes relating to bug fixing or error correction were the typical image of software

maintenance in the early days. By contrast, evolutionary change has been the essence of

software development since the 1990s. In fact, enhancement and evolution are increasingly

needed (and even inevitable) to accommodate business changes [Bennett and Rajlich, 2000].

The definition of software maintenance has recently extended: “Software maintenance is the

totality of activities required to provide cost-effective support to a software system. Activities

are performed during the pre-delivery stage as well as the post-delivery stage” (according to

the ISO/IEC and IEEE Standards 14764-2006 [IEEE, 2006]). From this software engineering

perspective, the terms software evolution and software maintenance are virtually synony-

mous1, referring to the same activity in the software life cycle and share the same economic,

organisational and technical concerns [Mens, 2008]. The only difference between the two

terms is that evolution has more appealing aesthetics whilst maintenance is usually associ-

ated with negative connotation. Maintenance seems to lead to an incorrect assumption that

the software system becomes lower in quality. In reality however, various studies and surveys

[Abran and Nguyen, 1993; Bennett and Rajlich, 2000; Pigoski, 1996; Takang and Grubb,

2003] have shown that more than 80% of the total maintenance effort is spent on adapting

the software to meet changes in the environment or user needs.

A substantial percentage – as much as two-thirds – of the cost of any software are at-

tributed to its maintenance, making software maintenance a critical technical and economic

factor [Koskinen, 2004; Lientz and Swanson, 1980; Seacord et al., 2003; Van Vliet, 2001]. As

a result, there has been a significant amount of research in this area. Approaches have been
1The two terms are also used interchangeably in this dissertation.

13 (28th August, 2008)

CHAPTER 2. BACKGROUND

proposed to support crucial activities in software maintenance such as program comprehen-

sion and reverse engineering [Müller et al., 2000], restructuring [Fowler and Beck, 1999; Mens

and Tourwé, 2004], re-engineering [Miller, 1998], impact analysis [Arnold and Bohner, 1996],

and management processes [Polo et al., 2003; Takang and Grubb, 2003]. Those approaches

will be discussed later in the chapter. However, dealing with software evolution remains one

of the most challenging issues in mainstream software engineering [Bennett and Rajlich, 2000;

Mens, 2008]. In order to gain more understanding about the problem, the next section serves

to identify various types of changes that motivate maintenance and evolution activities.

2.1.2 Classification of changes

Software change is the essence of software maintenance and evolution. An important step

towards understanding the importance of maintenance and its implication on the costs and

the quality of software systems is identifying the reasons that drive the need for change. As

a result, there has been a range of work in defining a taxonomy for software maintenance.

Nearly three decades ago, Swanson [1976] proposed a software maintenance typology in

terms of distinguishing the purposes of three activities: perfective, adaptive and corrective

maintenance. Corrective maintenance introduces changes to remove bugs in the software.

Adaptive maintenance involves changing the system so that it can continue to work in a

changed environment, for instance modifying the system to make it run on a new operating

system or hardware platform. Finally, perfective maintenance aims to add, delete or modify

the system’s functionalities resulting from user needs. Recent studies [Abran and Nguyen,

1993; Bennett and Rajlich, 2000; Pigoski, 1996; Takang and Grubb, 2003] have shown that

most maintenance tasks involve perfective and adaptive maintenance, rather than error cor-

rection.

Based on the above taxonomy, software maintenance is mostly used to improve the quality

of a software system. On the other hand, software changes usually lead to the increased

complexity of software and make it harder to maintain. In fact, Lehman’s second law of

software evolution states that “as an evolving program changes, its structure tends to become

more complex. Extra resources must be devoted to preserving the semantics and simplifying

the structure” [Lehman, 1980]. Accordingly, a new type of maintenance, namely preventive

maintenance, has been introduced to indicate changes that improve the maintainability of

software, providing a basis for future enhancements [Lientz and Swanson, 1980]. However,

14 (28th August, 2008)

CHAPTER 2. BACKGROUND

the term preventive maintenance is confusing since it is also viewed as modifications of a

software product after delivery to detect and correct latent faults in the software product

before they become effective faults [Chapin, 2000; Kajko-Mattsson, 2000]. The ISO standards

[ISO/IEC 14764, 1999] adopt this latter view of preventive maintenance together with the

three classical types of software maintenance proposed by Swanson [1976].

There has also been other work that extends the above types of software maintenance. For

instance, Chapin et al. [2001] refined Swanson’s typology into an evidence-based classification

of 12 different types of maintenance activities: evaluative, consultive, training, updative, refor-

mative, adaptive, performance, preventive, groomative, enhancive, corrective and reductive.

These types are determined based on the maintenance and evolution activities performed

on different parts of the system. Specifically, updative and reformative maintenance involve

changes made to the documentation. In addition, there are maintenance activities that affect

the source code in terms of either changing the functionalities (enhancive – functionalities

added or replaced; corrective – functionalities fixed; and reductive – functionalities removed),

or not changing the functionalities (adaptive – use new resources or technologies; performa-

tive – alter system performance; preventive – avoid future maintenance; and groomative –

make the system more maintainable). Finally, Chapin et al. [2001] also identified mainte-

nance activities that relate to the supporting aspect of the software rather than the software

itself (i.e. no changes made to the software). These include using the software for stakeholder

training, as a basis for consultation or for evaluating the software.

These works classify software maintenance and evolution activities on the basis of their

purpose, i.e. why software changes take place. On the other hand, Buckley et al. [2005]

recently proposed a taxonomy of software change that focuses on characteristics of software

change mechanisms and the factors that influence these mechanisms. This addresses several

questions including: when is a change made? (e.g. time of change, change history, and change

frequency), where is a change made? (e.g. software artefacts, granularity of the change in

terms of the scale of the artefacts to be changed, change impact, and change propagation),

what is being changed? (system properties such as availability, openness, and safety), and

how is the change accomplished? (e.g. degree of automated support for change, and degree

of formality of a change support mechanism).

15 (28th August, 2008)

CHAPTER 2. BACKGROUND

2.1.3 Change propagation in a change mini-cycle process

Regardless of what types of maintenance activities are performed, the outcome of software

maintenance and evolution is changes made to the existing system. There are many aspects

related to software change ranging from technical issues to managerial concerns. In order to

place the issue of change propagation, which is the main focus of our work, in the proper

context, we describe here the so-called change mini-cycle (see figure 2.1). This change process

was first developed by Yau et al. [1978] in the late seventies and is still widely accepted

[Bennett and Rajlich, 2000; Mens, 2008; Rajlich, 1999]. It is noted that this process addresses

the technical concerns rather than the managerial aspects of software change. In the context

of software development, each change mini-cycle can be considered as a incremental change

[Rajlich, 2001], which is popularly used in agile software development approaches (e.g. the

well-known eXtreme Programming [Beck, 1999]).

This process is triggered by a request which contains the specification of the change. The

request for change can have several forms, for example a bug report requesting to remove a

fault in the software or an enhancement request for adding a new functionality. The change

request can be generated by various actors such as a user, a developer, or a tester. If the

request is accepted, the process moves into the planning phase. The main purpose of the

planning phase is to perform some analysis and planning before deciding whether and how

the change should be implemented. This phase consists of two major activities: program

comprehension and change impact analysis.

Program comprehension

Program comprehension or program understanding refers to the processes used by software

developers to understand programs or software usually before modifications are made to

software. Program comprehension is a costly process, to which can be attributed more than

half of the cost of maintenance [Fjeldstad and Hamlen, 1982] (as cited in [Bennett and

Rajlich, 2000]). Program comprehension can involve activities such as reading (source code,

documentation, UML diagrams, comments), running the software and analysing its execution

trace, or interviewing users and developers. A useful technique that is used to comprehend

software is reverse engineering, which refers to “the process of analyzing a subject system to (i)

identify the system’s components and their inter-relationships and (ii) create representations

of the system in another form or at a higher level of abstraction” [Chikofsky and Cross, 1990].

16 (28th August, 2008)

CHAPTER 2. BACKGROUND

Reverse engineering activities include deriving information from available software artefacts

(e.g. source code) and converting it into higher-level, more abstract, human understandable

representations (e.g. design models).

Request for
Change

Verification
and validation

Re-documentation

Analyse and Plan for Change

Change impact analysis

Program comprehension

Change implementation
Restructuring for change

Change propagation
request rejected further changes

required

accepted

Locating and Making
Primary Change

Figure 2.1: A change mini-cycle process (adapted from [Mens, 2008; Rajlich, 1999; Yau et al.,
1978])

Change impact analysis

Another important activity in the planning phase is change impact analysis, which is defined

as “identifying the potential consequences of a change, or estimating what needs to be modified

to accomplish a change” [Bohner and Arnold, 1996]. The process of change impact analysis

contains two major steps. First, the analyst examines the change request and identifies the

software items (e.g. the artefacts, components, or modules) initially affected by the change.

Next, the analyst identifies other items in the software that apparently have dependency

relationships with the initial ones, and forms a set of impacts. Those impacted items also

relate to other items and thus the impact analysis continues this process until a complete

graph is obtained beginning at the selected items and ending with items on which nothing

else depends.

Existing techniques for change impact analysis tend to fall into two groups: static and

dynamic analysis. Static impact analysis techniques (e.g. [Ryder and Tip, 2001] or a number

of techniques reported in [Arnold and Bohner, 1996]) usually perform either program slicing

[Weiser, 1981] or graph traversals to compute impact sets in terms of collecting data related

to potential impacts. These techniques are said to be conservative in that they consider

all possible program inputs and behaviours. Results produced by static analysis may have

enormous impact sets, which are sometimes unnecessary or even too large to be of practical

17 (28th August, 2008)

CHAPTER 2. BACKGROUND

use [Breech et al., 2006]. Bohner [2002] proposed a range of guidelines to help find solu-

tions to these issues including the use of impact semantics and structural constraints (e.g.

distance between a change and an impact) to structure static analysis results. In contrast,

dynamic analysis techniques (e.g. [Apiwattanapong et al., 2005; Breech et al., 2005; Law and

Rothermel, 2003]) compute impacts using data obtained from executing a program. Dynamic

analysis results are more practically useful since they better reflect how the system is actually

being used, and consequently do not have computed impacts derived from impossible system

behaviour. However, due to their dependency on the inputs used to execute the program,

the results produced by dynamic analysis will not include impacts for parts (e.g. functions)

of the program that are not executed. As a result, recent approaches (e.g. [Breech et al.,

2006]) aim to improve the precision of dynamic impact analysis results.

Although a large portion of change impact analysis techniques focus on source code

analysis, there are a few approaches that target models. The work in [Kung et al., 1994]

addresses how change impact analysis can be performed from a class diagram. They also

discussed how object-oriented properties such as inheritance, encapsulation, polymorphism

and so on affect their impact analysis. They proposed an algorithm to identify the impacted

parts of the system by calculating the delta of two versions of software. Their analysis,

however, only used static information, i.e. the class diagram. In addition, there has been

some recent work aiming at (semi-)automated support for impact analysis of UML models.

For example, von Knethen and Grund [2003] developed a tool environment called QuaTrace

that semi-automatically identifies impacts on UML models when system requirements (e.g.,

use case descriptions) undergo changes. Their approach is based on the establishment of

traceability links between textual descriptions of use cases and UML model elements. The

work of Briand et al. [2006] also computes change impacts for actions for UML models

but takes a different approach. They identified specific impact analysis rules (defined with

the Object Constraint Language [Object Management Group, 2006]), which are used to

determine model elements that are directly or indirectly impacted by the changes. They also

proposed a measure of distance between changed model elements and impacted elements in

order to sort the resulting impact sets according to their probability of occurrence.

In summary, change impact analysis aims to assess the extent of the change, i.e. the

artefacts, components, or modules that will be impacted by the change, and consequently

predicts the cost and complexity of the change. Change impact analysis plays a major part

18 (28th August, 2008)

CHAPTER 2. BACKGROUND

in establishing the feasibility of a change in terms of determining whether the change is to be

undertaken. If the change is rejected, then the request is returned to its origin for revision

or more discussion. Otherwise, the change process enters the next phase which involves the

implementation of the change.

Change propagation

Change implementation leads to actual changes made to the software system. This process

usually starts with locating and making some primary changes to certain parts of the system.

The primary changes may make those parts no longer interact properly with other parts of

system and consequently may cause inconsistencies in the system. For example, adding a

message to a sequence diagram might break a consistency rule that messages must correspond

to operations in the class of the message’s receiver. Therefore, additional, secondary changes

are made to reintroduce consistency into the system. As in our earlier example, the inconsis-

tency can be fixed by adding an operation to the appropriate class. The secondary changes,

however, may introduce new inconsistencies, which may also trigger additional changes and

so on2. Determining and making these secondary changes is termed change propagation,

which is regarded as the central activity within the change implementation phase [Buckley

et al., 2005]. Activities in the previous planning stage, change impact analysis in particular,

also adds valuable information to change implementation by suggesting which parts of the

software need to be changed or are impacted by changes. In section 2.1.4 we discuss different

change propagation techniques in more detail.

Restructuring

During the change implementation phase, there may be situations where the change cannot

be easily and directly implemented. For instance, a change may involve many components in

the system if the concepts relevant to the change are widely spread over those components.

A well-known approach to deal with these issues is restructuring. Software restructuring is

the process of improving the logical structure of existing software systems in terms of making

it easier to understand and to change, or less susceptible to error when future changes are

introduced [Arnold, 1986]. For example, the solution to the issue of a change’s relevant
2This phenomenon is usually referred to as the ripple effect or cascading nature of change propagation

[Yau et al., 1978].

19 (28th August, 2008)

CHAPTER 2. BACKGROUND

concepts being delocalized is to restructure the program so that those concepts are localized

in one location but the behaviour of the program is still preserved. Other examples of

software restructuring include renaming variables, moving expressions, improving coding

style, relocating functional components into different modules and so on. Cohesion (i.e. the

relatedness of components within a module) and coupling (i.e. connectedness of modules)

are two common restructuring criteria [Kang and Bieman, 1999].

In an object-oriented context, software restructuring is commonly referred to as refactor-

ing [Fowler and Beck, 1999; Opdyke, 1992]. Since Fowler’s well-known book on refactoring

object-oriented programs with his introduction of refactoring patterns and processes, there

has been a substantial amount of interest in refactoring. A recent survey by Mens and

Tourwé [2004] gives an extensive overview of existing refactoring approaches from a range

of perspectives such as the degree of support for refactoring activities, techniques and for-

malisms that are used for supporting these activities, and the types of software artefacts that

are being refactored. In addition, there has been an emerging number of refactoring sup-

port tools (e.g. Eclipse3, IntelliJ IDEA4, RefactorIT5, Borland JBuilder6, Condenser7, and

jCOSMO8). However, an recent evaluation study in [Mealy and Strooper, 2006] has shown

that existing tools for refactoring (those that we listed earlier) do not provide sufficient sup-

port for the entire refactoring process as defined by Fowler and Beck [1999], and Mens and

Tourwé [2004]. In addition, the evaluation also identifies some issues relating to the maturity

and usability of existing tool support. Furthermore, most existing refactoring tools focus on

source code, but support for refactoring design models has received less attention. As models

have received better recognition, a recent research trend is model-driven software refactoring.

Model refactoring is a model transformation that preservers some behavioural properties of

a model [Porres, 2003]. A number of approaches and tools have been proposed to deal with

refactoring UML models, e.g. [Astels, 2002; Boger et al., 2003; Straeten and D’Hondt, 2006;

Zhang et al., 2005]. However, there is still a need to have formalisms, processes, methods

and tools that deal with refactoring in a more consistent, generic, scalable and flexible way

[Mens, 2008; Mens and Tourwé, 2004].
3http://www.eclipse.org
4http://www.jetbrains.com/idea
5http://www.refactorit.com
6http://www.borland.com/us/products/jbuilder
7http://condenser.sourceforge.net
8http://www.cwi.nl/projects/renovate/javaQA/intro.html

20 (28th August, 2008)

http://www. eclipse.org
http://www.jetbrains.com/idea
http://www.refactorit.com
http://www.borland.com/us/products/jbuilder
http://condenser.sourceforge.net
http://www.cwi.nl/projects/renovate/javaQA/intro.html

CHAPTER 2. BACKGROUND

Verification and validation

After the change is implemented, validation and verification are performed to make sure

that (a) the system integrity has not been compromised (e.g. no new errors are introduced),

and (b) the change is correctly implemented, i.e. the requirement described in the change

request is satisfied (e.g. the bug is fixed or new functionality is added). Software testing

techniques [Ammann and Offutt, 2008] are used in this phase. For instance, regression

testing which involves repeating all existing test cases for the modified system is usually

used to verify that the change did not have any undesirable effects. A detailed survey of

research in regression techniques can be found in [Rothermel and Harrold, 1998]. During

the validation and verification phase, if problems are discovered, the change may need to be

re-implemented.

Re-documentation

The final activity of the change process is updating the program documentation to match with

changes that have been implemented in the program. For instance, if changes are made to

source code, the design needs to be updated to reflect those changes. Depending on the type of

changes, other documentation such as user guides may also need to be updated. In addition,

Bennett and Rajlich [2000] point out that missing or incomplete program documentation can

be updated at this point using the outcome of the program comprehension performed earlier.

2.1.4 Related work on change propagation

We have previously examined the change mini-cycle process which consists of a number of

important activities related to the change process including program comprehension, change

impact analysis, restructuring, and change propagation. We also highlighted the key ap-

proaches that have been proposed to improve the support for these change activities. Within

this context, the focus of our work is, however, on change propagation. In this section we

discuss existing related work in dealing with the issue of change propagation in software

maintenance.

21 (28th August, 2008)

CHAPTER 2. BACKGROUND

Formalisation of change propagation process

An important activity of change propagation is identifying what are the other parts in the

system that need secondary changes. There has been a range of work addressing this issue

by formally modelling the change propagation process. Regarding this aspect, change impact

analysis and change propagation share several key ideas. A program is usually formalised

using graphs where the nodes are the software components, and the edges are dependency

relationships between them [Chaumun et al., 2002; Deruelle et al., 2001; Kung et al., 1994;

Luqi, 1990; Rajlich, 1997; Yau et al., 1988]. In order to build such a graph, the dependencies

in the program must be known. Dependency analysis is one of the impact-analysis techniques

to detect and capture information relating to data, control, and component dependencies.

Such dependency information is used as a starting point to formally model the process of

change propagation. A number of formal models of change propagation reviewed in [Arnold

and Bohner, 1996; 1993] use code dependencies and algorithms such as slicing and transitive

closure to propose several tools and techniques supporting dependency analysis in change

propagation.

One important work involving the formalising of change propagation which also uses

graphs as an underlying representation was Rajlich’s in the late nineties [Rajlich, 1997; 1999;

2000]. Compared with earlier work, Rajlich’s model is more complete in terms of reflecting

various strategies of propagation. Rajlich’s model uses graph rewriting techniques [Métayer,

1998; Rajlich, 1977] to formalise the change process. In Rajlich’s model, the change pro-

cess is viewed as the evolution of the dependency graph (called an evolving interoperation

graph), which is modelled as a sequence of snapshots. Each snapshot represents one partic-

ular moment in the process, with some software dependencies being consistent and others

being inconsistent. An evolving interoperation graph contains a set of interoperations which

are pairs of interacting software components (e.g. function calls, data flows, use of shared

resources, etc.). The changes are propagated through interoperations from one component

to the next by identifying and marking inconsistent interoperations. Rajlich then proposes

several strategies of visiting inconsistent interoperations such as strict change-and-fix, ran-

dom change-and-fix, and top-down process. Change-and-fix process visits all the inconsistent

components until all of them are resolved. This can lead to components being visited several

times and an infinite process may occur when a change is propagated in a cycle. Meanwhile,

top-down change propagation visits from the top components (i.e. components which do not

22 (28th August, 2008)

CHAPTER 2. BACKGROUND

support any other components) down to supporting components. This top-down process (also

referred to as Methodology of Software Evolution (MSE) by Rajlich) is more predictable but

is based on the assumption that there are no loops in the component dependencies. Rajlich’s

models have been implemented as a prototype tool called “Ripples 2”, which supports both

the change-and-fix and the MSE processes of change propagation.

Rajlich’s formal model of change propagation has been the foundation of other work.

For instance Deruelle et al. [2001] extend the graph model with typed nodes and edges and

constraints representing the invariant properties of the software. They then proposed an

expert system that contains rules (derived from the constraints) that drive the process of

visiting components that need changing. On the other hand, Hassan and Holt [2004] use

the intuition and ideas from Rajlich’s work to model a simplified change process. They then

designed and validated a set of change propagation heuristics based on data collected from

open source projects. Those historical heuristics are used to drive the change propagation

process by applying changes to all entities which frequently (e.g. 80% of the time) co-changed

with the changed entity in the past. Their empirical study has shown that change history

based heuristics outperform other types of heuristics that use, for example, dependency

information in a number of applications. Recently, Malik and Hassan [2008] argued that

those heuristics are static in that they do not adjust over time or adapt to a certain changed

entity. As a result, in order to improve the overall performance of change propagation

heuristics, they proposed a set of heuristics that can adapt to the current state of a software

lifecycle (e.g. new development vs. maintenance), and to the different characteristics of the

various entities in the software.

Inconsistency-based change propagation

As the process of change propagation aims to maintain consistency within software, an-

other (more direct) approach to deal with this issue is detecting and resolving inconsistencies

caused by changes. Differing from work that we presented earlier, which mainly focus on

source code, consistency maintenance approaches address a wide range of software artefacts

including design, specifications, documentation, source code, and test cases. Various tech-

niques and methods have been proposed in the literature to address different activities of

the consistency management process including: detecting overlaps between software models,

detecting inconsistencies, identifying the source, the cause and the impact of inconsistencies,

23 (28th August, 2008)

CHAPTER 2. BACKGROUND

and resolving inconsistencies [Spanoudakis and Zisman, 2001].

There has been recent work aiming to address a range of software artefacts (e.g. [Reiss,

2005]). These efforts mostly revolve around the development of a software development

environment that integrates different phases of a software life-cycle including maintenance.

The influential Viewpoints framework [Finkelstein et al., 1992; 1994] supports the use

of multiple perspectives in system development by allowing explicit “viewpoints” containing

partial specifications, which are expressed and developed using different representation styles

and development strategies. In their framework, inconsistencies arising between individual

viewpoints are detected by translating into a uniform logical language. Such inconsistencies

are resolved by having meta-level inconsistency handling rules. A number of approaches

have been proposed to deal with inconsistencies and change management in requirement

engineering [Ghose, 2000; Krishna et al., 2009; Tsai et al., 1992; van Lamsweerde et al.,

1998]. They focus on resolving inconsistencies between requirements in specifications using

a formal approach in which specifications are represented as logics. There is also work

that deals with only design models. As UML has become the de facto notation for object-

oriented software development, most research work in consistency management has focused

on problems relating to consistency between UML diagrams and models [Elaasar and Briand,

2004; Kuzniarz et al., 2002; 2003]. Such approaches have been advocated with the recent

emergence of model-driven evolution [van Deursen et al., 2007]. Several approaches strive

to define fully formal semantics for UML by extending its current metamodel and applying

well-formedness constraints to the model [Bodeveix et al., 2002; Breu et al., 1997]. Other

approaches transform UML specifications to some mathematical formalism such as Petri-

Nets [Engels et al., 2002], or Description Logic [Mens et al., 2005; Van Der Straeten et al.,

2003]. The consistency checking capabilities of such approaches rely on the well-specified

consistency checking mechanism of the underlying mathematical formalisms. However, it

is not clear to what extent these approaches suffer from the traceability problem: to what

extent can a reported inconsistency be traced back to the original model. Furthermore, the

identification of transformations that preserve and enforce consistency still remains a critical

issue at this stage [Engels et al., 2002].

Recently, Egyed [2006] proposed a very efficient approach to check inconsistencies (in the

form of consistency rules) in UML models. His approach scales up to large, industrial UML

models by tracking which entities are used to check each consistency rule, and then using this

24 (28th August, 2008)

CHAPTER 2. BACKGROUND

information to determine which rules might be affected by a change, and only re-evaluate

these rules. From a different direction, Blanc et al. [2008] argued that earlier work has a major

drawback in terms of dealing with only structural rules (which constrains the consistency of

a model), and not addressing methodological rules (which specify consistency with respect

to the overall process of constructing a model). Those two types of rules are both equally

important and complementary since structural rules are imposed on model states whereas

methodological rules restrict model changes [Spanoudakis and Zisman, 2001]. Blanc et al.

then proposed a framework that is able to express both structural and methodological rules

and detect their violation. Their framework also supports inconsistency detection for rules

that are expressed across a number of models which have different metamodels.

There are approaches that go further than detecting inconsistencies. Several approaches

provide developers with a software development environment which allows for recording,

presenting, monitoring, and interacting with inconsistencies to help the developers resolve

those inconsistencies [Grundy et al., 1998]. Other work also aims to automate inconsistency

resolution by having pre-defined resolution rules (e.g. [Liu et al., 2002]) or identifying specific

change propagation rules for all types of changes (e.g. [Briand et al., 2006; Han, 1997]). Such

rules can be formally defined following a logic-based approach (e.g. Liu et al. [2002] used

Java Rule Engine JESS, or Mens et al. [2005] used Description Logic, or a graph-based

approach such as the graph transformations used in [Mens and Van Der Straeten, 2007;

Mens et al., 2006]). However, these approaches suffer from the correctness and completeness

issue since the rules are developed manually by the user. As a result, there is no guarantee

that these rules are complete (i.e. that there are no inconsistency resolutions other than those

defined by the rules) and correct (i.e. any of the resolutions can actually fix a corresponding

inconsistency). In order to deal with this issue, Nentwich et al. [2003] has proposed an

approach for automatically generating repair options by analysing consistency rules expressed

in first order logic and models expressed in xLinkIt [Nentwich et al., 2002]. However, they

did not take into account dependencies among inconsistencies and potential interactions

between repair actions for fixing them. In other words, their work considers repair actions

as independent events, and thus does not explicitly deal with the cascading nature of change

propagation.

Those previous works do not address dependencies between inconsistencies and the po-

tential side effects of fixing them (i.e. repairs that inadvertently and adversely have influence

25 (28th August, 2008)

CHAPTER 2. BACKGROUND

on how to fix other, related inconsistencies), and consequently do not reflect the cascading

nature of change propagation. Recently, Egyed [2007] proposed an approach based on fixing

inconsistencies in UML models which uses model profiling to locate choices of starting points

for fixing an inconsistency in a UML model. His work does not analyse consistency rules

but rather observes their behaviour during evaluation (i.e. model profiling) and consequently

considers consistency rules as black-boxes. More specifically, he used model profiling to de-

termine which model elements and fields are accessed during the evaluation of a consistency

rule. These pairs of a model element and field form so-called scope elements for that given

rule instance. This model profiling data (i.e. scope elements) is useful because it indicates

the locations (i.e. the model elements) that potentially fix a given inconsistent rule. To be

complete, the scope of a rule also includes what he called “back-pointing” scope elements,

which have fields relating to one another due to the bidirectional relationships in UML (e.g.

a receiver of a message is an object that has the message as an incoming message). He argued

that if there are common scope elements among inconsistencies (i.e inconsistent rules), there

exists a dependency among these inconsistencies, which implies an opportunity for fixing

them by making a single design change. On the other hand, if a dependency among inconsis-

tencies does not exist, then these inconsistencies cannot share any location for fixing them.

He also tried to predict the side-effects of fixing an inconsistency by marking scope elements

with different annotations, which indicates for example which scope elements are guaranteed

to not affect another rule, or which affect only inconsistent rules. Egyed’s approach was

empirically evaluated on 48 UML models which had different sizes and were from various

domains. He used 34 types of rules addressing UML class, sequence, and statechart dia-

grams. For the purpose of profiling, these rules were instantiated more than 400,000 times

for all models. The results showed that his approach is able to identify the dependencies

among inconsistencies and locate the common choices (i.e. incorrect model elements) for

repairing them. Another benefit of the use of model profiling is the performance gain. In-

deed, as empirically validated, his approach scales relatively well to large models. The main

limitation in his work, however, is that his approach does not provide options (i.e. how) to

repair inconsistencies, but only suggests starting locations (entities in the model) for fixing

the inconsistency. Furthermore, the list of locations identified by his approach does contain

false positives, i.e. locations for which there is no actual concrete fix that resolves a given

inconsistency. Finally, as he also acknowledged, the performance of his approach was evalu-

26 (28th August, 2008)

CHAPTER 2. BACKGROUND

ated based on the assumption that non-scalable rules (e.g. rules that access a large number

of model elements) are excluded, which may not always be the case in practice.

Change propagation and model transformation

Change propagation takes place not only within a model but also between models at differ-

ent levels of abstractions or expressed in different languages (e.g. design and source code, or

UML models and ER models). In the context of model driven software development [Mellor

et al., 2003], especially the Model Driven Architecture (MDA) [Kleppe et al., 2003], target

models are obtained from source models using model transformations [Sendall and Kozaczyn-

ski, 2003]. In this context, one of the issues related to model evolution is that changes in the

source model (e.g. design) should be propagated to the target model (e.g. source code) and

vice versa. There are several approaches to deal with this issue. The first approach simply

re-transforms the changed source model to produce a new version of the target model for

each successive update made to the source model. The second approach, usually referred to

as incremental transformation, ensures that subsequent changes made to the source model

cause appropriate updates on the target model. The second approach provides a more direct

solution in terms of identifying the necessary changes to outputs in response to changes to in-

puts, as opposed to finding the actual outputs themselves. In addition, the second approach

is much more efficient, especially in an incremental development environment where small

changes frequently occur and constant synchronization is needed [Hearnden et al., 2006].

Both of these approaches, however, assume that the target model was not changed when it is

updated. As a result, when following these approaches any modifications that may be made

to the target model will be lost the next time a model transformation takes place. There are

several approaches to deal with this issue, i.e. preserving any manual updates to the target

model. The model merging approach requires re-running the entire transformation, and gen-

erating new target models that must then be merged with the previous target models. Other

transformations record traceability links between their source and target model elements

and use them to perform an incremental update mechanism [Ivkovic and Kontogiannis, 2004;

Tratt, 2008].

27 (28th August, 2008)

CHAPTER 2. BACKGROUND

2.2 Agent-based computing

In the previous section, we have provided some insight into the area of software maintenance

and evolution. In this section, we introduce the basic ideas of intelligent agents at a fairly

high level of abstraction (section 2.2.1). We also briefly describe the well-known Belief-Desire-

Intention (BDI) agent architecture that has been widely used in practice (section 2.2.2). We

give an example of a typical BDI execution cycle to show the flexibility offered by the BDI

model. Some of the BDI properties are also used in our change propagation framework (see

chapter 3). Finally, in section 2.2.3, we highlight the trend of software engineering paradigms

and the current position of agent-oriented software engineering (AOSE). In particular, we

briefly explain the major challenges that AOSE is facing and how the contribution of our

work fits in this picture.

2.2.1 Intelligent agents

The concepts associated with agents, also called software agents or intelligent agents, have

been discussed for many years within the Artificial Intelligence community. There has been

a number of different perspectives on agents [Bradshaw, 1997; Franklin and Graesser, 1996].

However, a current consensus considers an agent as “an encapsulated computer system, sit-

uated in some environment, and capable of flexible autonomous action in that environment

in order to meet its design objectives” [Wooldridge and Jennings, 1995]. There are various

examples of software agents, for example robot soccer playing at the RoboCup9 or intelligent

shopping agents helping travellers find airfares or holiday bargains. The applications of agent

technologies are spread out across different domains, including air traffic control [Ljungberg

and Lucas, 1992], business process management [Burmeister et al., 2008], space exploration

[Muscettola et al., 1998], manufacturing [Monostori et al., 2006; Shen and Norrie, 1999],

information management, and e-commerce [Jennings and Wooldridge, 1998; Munroe et al.,

2006].

Agent definitions are often classified into two categories: strong agency and weak agency [Fer-

ber, 1999; Franklin and Graesser, 1996; Nwana, 1995; Wooldridge and Jennings, 1995].

Agents by weak agency definitions should possess the following characteristics [Wooldridge

and Jennings, 1995]:
9http://www.robocup.org

28 (28th August, 2008)

http://www.robocup.org

CHAPTER 2. BACKGROUND

• Situatedness: Agents are embedded in an environment in terms of using their sensors

to perceive the environment and using their effectors to affect the environment. For

instance, a robot soccer player can be designed as an agent, which is situated in a soccer

field. One of the robot’s sensors is a group of cameras that keep track of where the ball

and other players are. The robot agent also has several effectors such as its legs or its

body, which are used to kick or pass the ball.

• Autonomy: Agents are able to operate independently, i.e. decide which action they

should take, independent of humans or other agents. As a result, agents cannot be

directly invoked like objects [Odell, 2002]. In our robot soccer player example, when a

robot agent has the ball, the decision whether to kick the ball for a goal or to pass the

ball to its teammates is totally up to the agent. This is an example of the autonomy

of agents due to the fact that those decisions are made without direct intervention of

humans or other robot soccer agents on the field.

• Reactivity: Agents can perceive their environment and respond in a timely fashion to

changes that occur in it. For example, when our robot soccer player detects the ball

being within its control area, it has to quickly perform some actions (to respond to

that event) such as passing or shooting the ball.

• Pro-activeness: Agents are pro-active if they have goals that they pursue over time. In

our example, the major goal of a robot soccer player is to win the game, which can be

achieved by scoring goals and defending against conceding goals. The agents pursue

this goal by performing actions (e.g. passing the ball to their other teammates, kicking

for goals, etc.) that contribute toward accomplishment of the goal.

• Social ability: Agents can interact with other agents and humans with the aim of

accomplishing their goals. In our example, social ability is reflected by the fact that

each robot soccer agent should be able to communicate and coordinate with their

teammates, or their coaches (which may be humans).

Strong agency takes a similar perspective in defining which properties an agent should

possess, but also views agents as having mentalistic notions such as knowledge, belief, inten-

tion and obligation [Shoham, 1993]. According to Dennett [1987], such strong agency (also

referred to as an intentional system) can be best described by the intentional stance, which

29 (28th August, 2008)

CHAPTER 2. BACKGROUND

is a strategy of understanding the behaviour of a system by ascribing mental attitudes such

as beliefs, wants, and desires to it. For example, by taking the intentional stance we can

predict that a (human) agent will leave the cinema and drive to the restaurant because she

sees that the movie is over and is hungry. Shoham also argues that the intentional stance

provides a convenient and familiar way of describing, explaining and predicting the behaviour

of complex systems (e.g. BDI formalisms of [Rao and Georgeff, 1995] discussed in the next

section). Generally, strong agents are built with more artificial intelligence/knowledge-based

technologies and to some extent are specified formally [Wooldridge and Jennings, 1995].

2.2.2 The Belief-Desire-Intention (BDI) model

Since the 1980s, the field of agent technology has attracted a substantial amount of interest

from researchers [Jennings et al., 1998; Luck et al., 2005]. In particular, there have been a

number of different agent theories, architectures, and languages proposed in the literature.

One of the most well-established and widely-used agent models is the Belief-Desire-Intention

(BDI) model. The BDI family of agent theories, languages and systems are inspired by

the philosophical work of Bratman [1987] about how humans do resource bounded practical

reasoning, i.e. figure out what to do and how to act under limited resource capacity. The

key concepts in the BDI model are:

• Beliefs: represent information about the environment, the agent itself, or other agents,

from the agent’s perspective in terms of the agent’s internal and external (environmen-

tal) state.

• Desires: represent the objectives to be accomplished in terms of states of the world

that the agent wants to reach.

• Intentions: represent the currently chosen courses of action (i.e. plans10) to pursue a

certain desire that the agent has committed to pursuing.

One of Bratman’s key contributions was to argue that intentions play a significant and

distinct part in the practical reasoning process. He argued that intentions are not reducible to

beliefs and desires for several reasons. As agents operate under bounded resources, they must
10Plans here are regarded as concrete instances that are being followed, rather than a “recipe” that can be

followed (i.e. plan type).

30 (28th August, 2008)

CHAPTER 2. BACKGROUND

decide on what to pursue (i.e. intentions), rather than waste their resources by continuously

weighing between their competing desires. In addition, intentions are used to constrain

the choice of plans that the agents considers. Furthermore, in terms of coordinating and

planning for future actions, intentions act as a filter on other future options. That means

that (a) agents do not adopt courses of actions that clash with the selected intention, and

(b) future planning should be based on the assumption that the currently adopted intention

will be pursued and (normally) eventually accomplished. For example, if a (human) agent

intends to go and watch a soccer match at the stadium, then she should not consider clashing

intentions, for example going to a party at the same time. If the party takes place before the

match and she desires to attend the party, then the agent can formulate plans to get to the

party on her way to the stadium.

The BDI model has been the basis for a range of agent architectures. For example, the

classical Intelligent Resource-bounded Machine Architecture (IRMA) proposed by Bratman

et al. [1988] has explicit representations of beliefs, desires, and intentions and prescribes how

an agent uses them to selects its course of action. The architecture consists of several mod-

ules including an intention structure, which is basically a library of partial and hierarchical

plans, a means-ends reasoner, an opportunity analyser, a filtering process, and a deliberation

procedure. The opportunity analyser is responsible for monitoring the environment in order

to determine options for actions. Further options are identified by the means-ends reasoner

from the agent’s plan library. The filtering process is responsible for determining which of

the available options are consistent with the agent’s current intentions. However, IRMA

also provides an “over-riding” facility where an intention can be adopted in some situations

even if it does conflict with existing intentions. Finally, options that successfully pass the

filtering process are examined by the deliberation process in terms of making choice between

competing options and adopting a new intention.

The IRMA architecture is, however, still at high level of abstraction and is not useful

as a practical system. As a result, since the late 1980s a range of work started developing

a practical BDI architecture on the basis of Bratman’s philosophical foundations. Georgeff

and Lansky [1987] developed the Procedural Reasoning System (PRS), which includes a plan

library, as well as explicit symbolic representations of beliefs, desires, and intentions. In

the early 1990s, Rao and Georgeff proposed an abstract system architecture containing an

abstract BDI interpreter (also referred to as an execution cycle) that demonstrates how the

31 (28th August, 2008)

CHAPTER 2. BACKGROUND

BDI constructs can be used within a computational environment [Rao and Georgeff, 1992;

1995]. They also developed a logical theory that provides a formal framework for defining

the concepts of beliefs, desires, and intentions [Rao and Georgeff, 1991]. However, in fact the

logical theory deals not with desires, but with goals, which are assumed to be a consistent

subset of desires.

At the implementation level, those initial ideas of the BDI model have been modified

to suit a practical computational environment. In fact, while BDI theories focus on desires

and goals, BDI implementations deal with events. Events are significant occurrences that

the agent should respond to in some way. Most BDI agent implementation platforms model

the change associated with the adoption of new (sub)goals as events. Furthermore, in BDI

implementations intentions are viewed as the plans which are currently being executed by the

agent. Plans are the central concept in the implementations: BDI agents have a collection of

pre-defined plan recipes (or types), usually referred to as a plan library. Each plan consists

of:

• an invocation condition which defines the event that triggers this plan (i.e. the event

that the plan is relevant for);

• a context condition (usually referring to the agent’s beliefs) which defines the situation

in which the plan is applicable, i.e. it is sensible to use the plan in a particular situation;

and

• a plan body containing a sequence of primitive actions and subgoals that are performed

for plan execution to be successful11. Subgoals can trigger further plans.

The BDI architecture is realised in a number of agent platforms such as JACK [Busetta

et al., 2000], Jadex [Pokahr et al., 2005], PRS [Ingrand et al., 1992], dMARS [d’Inverno et al.,

1998], or 3APL [Hindriks et al., 1999] (refer to [Bordini et al., 2006; 2005] for more agent

platforms). We describe here a typical execution cycle that implements the decision-making

of an agent following an implementation of the BDI architecture. The cycle can be viewed

as consisting of the following steps, shown in figure 2.2:

1. An event is received from the environment, or is generated internally by belief changes

or plan execution. The agent responds to this event by selecting from its plan library
11Generally — and in many actual agent platforms — plan bodies are not just sequences of primitive actions

and subgoals, but can include a range of programming constructs, e.g. in JACK [Busetta et al., 2000] plan
bodies are a superset of Java.

32 (28th August, 2008)

CHAPTER 2. BACKGROUND

a set of plans (P1 - Pk) that are relevant (i.e. match the invocation condition) for

handling the event (by looking at the plans’ definition).

2. The agent then determines the subset of the relevant plans (Pm - Pn) that is applicable

in terms of handling the particular event. The determination of a plan’s applicability

involves checking whether the plan’s context condition holds in the current situation.

Select relevant plans

Select applicable plans

Execute plan Pi

Event

Prometheus
ModelPlan Library

P1 P2 Pk

Pm Pj Pn

aka1

a2

…...

…...

Beliefs

. . .

1 m n k

n i m

Event

E
n
v
i
r
o
n
m
e
n
t

Figure 2.2: A typical BDI execution cycle

3. The agent selects one of the applicable plans (e.g. Pi). This may be based on certain

pre-determined priority (e.g. the first applicable plan is selected in JACK’s default

mechanism) although more sophisticated mechanisms can also be used, depending on

the implementation.

33 (28th August, 2008)

CHAPTER 2. BACKGROUND

4. The agent then executes the selected plan (e.g. Pi) by performing its actions and sub-

goals (a1 - ak). The actions can be modifying or querying the agent’s beliefs, raising

new events, or interacting with the environment.

A plan can be successfully executed, in which case the (sub-)goal is regarded to have been

accomplished. Execution of a plan, however, can fail in some situations, e.g. a sub-goal may

have no applicable plans, or an action can fail, or a test can be false. In these cases, if the

agent is attempting to achieve a goal, a mechanism that handles failure is used. Typically,

the agent tries an alternative applicable plan for responding to the triggering event of the

failed plan. It is also noted that failures propagate upwards through the event-plan tree: if

a plan fails its parent event is re-posted; if this fails then the parent of the event fails and so

on.

With the above characteristics, BDI agents offer two important qualities: robustness and

flexibility. BDI agents are robust since they are able to pursue persistent goals over time (i.e.

pro-activeness). In other words, agents will keep on trying to achieve a goal despite previously

failed attempts. In order to be able to recover from such failures, agents have multiple ways

of dealing with a given goal and such alternatives can be used in case any of them fail.

This gives agents flexibility in terms of exercising choice over their actions. Flexibility and

robustness are considered as useful qualities that a software system should possess, especially

if it operates in complex, dynamic, open and failure-prone environments. With the emergence

of distributed information systems, these types of environments are becoming more and more

common. Therefore, it is increasingly required to have technologies that are able to cope well

in such challenging environments.

Those properties of the BDI model also offer a suitable solution to change propagation.

Firstly, BDI agents operate in an event-triggered manner, where events trigger plans, which

in turn can create new events resulting in further plans being triggered. This hierarchical

relationship between plans is very suitable for representing the cascading nature of change

propagation and inconsistency repairing (where fixing an inconsistency by performing an

action can cause further inconsistencies requiring further action). In addition, an event can

have multiple plans that it can trigger, with plan selection being made at run-time. This

allows us to represent multiple ways of resolving a given inconsistency as separate plans,

with the choice between them corresponding to available traceability information, design

heuristics and (possibly) human intervention. The BDI architecture also offers flexibility as

34 (28th August, 2008)

CHAPTER 2. BACKGROUND

new or alternative ways of resolving an inconsistency can readily be added via additional

plans, without changing the previous structure. We exploit those useful properties of the

BDI model to develop an agent-based change propagation framework that is described in the

next chapter.

2.2.3 Agent-Oriented Software Engineering

In the previous sections we have briefly explained the concepts of agents and described the

BDI model, one of the most well-known agent architectures. The focus of this section is

to give an overview of Agent-Oriented Software Engineering (AOSE) and to indicate why

and how AOSE has the potential of being an efficient and powerful software engineering

approach. The key ideas, research questions and current challenges in AOSE are also briefly

discussed in this section.

Since the late 1980s, the object-oriented paradigm gained mainstream acceptance as a

new solution to develop software and quickly became the dominant software engineering

approach until now. There are a number of advantages that are offered by object-orientation

such as data abstraction, information hiding, encapsulation, concurrency [Van Vliet, 2001].

However, the object-oriented approach’s benefits are not all that they are often claimed

by its proponents . In fact, earlier studies have shown that object-oriented programming

is relatively difficult to learn and practice [Armstrong, 2006; Morris et al., 1999; Vessey

and Conger, 1994]. In addition, although there have been claims that the object-oriented

approach reduces the gap between the real world and the software application, it may not

be effective as the primary tool for communication between clients and developers at the

beginning stages of software development [Glass, 2002]. Furthermore, a recent study has also

indicated that while object-oriented concepts (e.g. objects, classes, or inheritance) appeal

to the designer’s intuitions of the real world, object-oriented design places them in a formal

context where those intuitions may be misleading [Hadar and Leron, 2008].

Recently, there have been several new approaches, which extend object-orientation in

order to improve the reusability and other aspects of software, such as component-ware,

design patterns, and application frameworks. However, there have been several indications

that object-orientation may not be able to deal with the increasing complexity of software

systems [Jennings and Wooldridge, 1999]. These emerging complexities result from different

sources. Firstly, the rapid and radical change of the information system environment, e.g.

35 (28th August, 2008)

CHAPTER 2. BACKGROUND

the Internet, has introduced a great deal of complexity to software. Software applications

have become more interconnected, decentralized and even more interdependent. In addition,

the growing number of interactions between subcomponents, an inherent property of large

systems, also lifts the complexities within software. As a result, building high-quality and

industrial-strength software becomes more and more difficult.

Agent Oriented Software Engineering (AOSE) is a promising new approach to software

engineering that uses the notion of agents as the primary method for analysing, designing

and implementing software systems [Jennings, 2001]. The effectiveness of AOSE resides in

its ability to translate the distinctive features of agents (discussed in section 2.2.1) into useful

properties of (complex) software systems and to provide an intuitive metaphor that operates

at a higher level of abstraction compared to the object oriented model.

Firstly, the technical embodiment of agency can lead to reduced coupling, resulting in

software systems that are more modular, decentralized and changeable. Indeed, the au-

tonomous property of agents can be viewed as encapsulating invocation [Odell, 2002]. Any

publicly accessible method of an object can be invoked externally, and once the method is

invoked the object performs the corresponding actions. On the other hand, when receiving

a message, an agent has control over how it deals with the message. This ability to encap-

sulate behaviour activation (action choice) is very useful in open environments in which the

system consists of organisations that have different goals [Jennings and Wooldridge, 1999].

Additionally, the robustness, reactiveness and pro-activeness also results in reduced coupling

[Padgham and Winikoff, 2004]. Once an agent acquires a goal, it commits to achieve the

goal by possibly trying different alternatives in responding to changes in the environment.

This means that there is no need for continuous supervision and checking since the agent

solely takes responsibility for accomplishing its adopted goals. As a result, it leads to less

communication and thus reduced coupling.

Loose coupling and strong encapsulation brought by agents are important, especially be-

cause they facilitate the process of evolving software by localising changes to an agent or

a group of agents. For instance, the BDI architecture (discussed in the previous section)

can be used to model and implement goal-directed process selection [Georgeff, 2006]. Tra-

ditionally, the calling process contains the names of the called processes (and possibly other

information such as the locations, the data needs, or even the implementation), and the con-

ditions specifying which (process) to call in which circumstance. The major disadvantage of

36 (28th August, 2008)

CHAPTER 2. BACKGROUND

this conventional approach is that the calling process is dependent on the called processes,

and thus they are not able to be developed independently of one another. A goal-directed

approach can separate the conditions of use from the calling processes and place them in the

called processes. As a result, processes become loosely coupled and process selection is made

dynamically at run time based on the usage context. In addition, if any chosen process fails,

the call is made again (i.e. reposted) and a new matching process is invoked. This offers a

better and more automatic handling of exceptions or failures. Furthermore, called processes

can be created or changed without affecting the existing ones and the calling process. These

benefits multiply each time the called process is reused in other calling processes.

It has also been argued that AOSE, equipped with the rich representation capabilities

of agents, is suitable (and reliable) for modelling complex organisational processes [Jennings

et al., 1998; Luck et al., 2005; Munroe et al., 2006]. Jenning and Wooldridge in [Jennings,

2001; Jennings and Wooldridge, 1999] have shown that agent-orientation facilitates complex-

ity management in three aspects: decomposition, abstraction, and organisation. Firstly, they

argue that decomposing the problem space of a complex system in an agent-oriented way is

very effective. Secondly, they are able to demonstrate the ability of agents in representing

high-level abstractions of active entities in a software system, and consequently reducing the

gap between business users and system architects. Finally, they explain why it is appropriate

to apply an agent-oriented philosophy to the modelling and managing of organisational rela-

tionships in such a way that the dependencies and interactions in those complex organisations

are effectively dealt with.

However, ultimately, the proof of AOSE is its application in the real world. There are

many applications (e.g. [Burmeister et al., 2008; Monostori et al., 2006; Munroe et al., 2006])

and some of these are showing significant measurable benefits [Benfield et al., 2006].

As agents have been increasingly recognised as possibly the next prominent paradigm of

developing software, there has been a growth of interest in agent-oriented software engineer-

ing. A significant amount of AOSE work has focussed on developing new methodologies and

tools for software development using the agent concepts. In fact, as far as we are aware, there

have been nearly fifty agent-oriented methodologies proposed to date. Those methodologies

(e.g. Gaia [Zambonelli et al., 2003], Tropos [Bresciani et al., 2004], Prometheus [Padgham

and Winikoff, 2004], O-MaSE [DeLoach, 2005], PASSI [Cossentino, 2005] etc.) offer notations

and models, methods and techniques, processes and (for some methodologies) tool support

37 (28th August, 2008)

CHAPTER 2. BACKGROUND

that a software developer can use to develop an agent-based application [Bergenti et al., 2004;

Henderson-Sellers and Giorgini, 2005].

In the past few years, there has been also a range of work on comparison of the existing

agent-oriented methodologies, e.g. [Al-Hashel et al., 2007; Dam and Winikoff, 2003; Elamy

and Far, 2006; Sturm and Shehory, 2003; Tran and Low, 2005]. The results from such

studies have shown that there are a range of similarities between different methodologies.

For instance, they often provide reasonable support for basic agent-oriented concepts such

as autonomy, mental attitudes, pro-activeness, and reactiveness. However, each of them also

has its own particular strengths and weaknesses. As a result, there have been suggestions

concerning methodological integration in a similar way as the Unified Modelling Language

(UML) has become standard in the context of object oriented approaches. In fact, there has

been work on developing a common metamodel that can be widely accepted by the AOSE

community [Bernon et al., 2006] or on unifying graphical notation for several prominent

agent-oriented methodologies [Padgham et al., 2008], and there is current work on agent

standardisation by FIPA/OMG12.

Despite its popularity and attractiveness as a research area, agent technology generally

and AOSE particularly still face many obstacles in being widely adopted by the industry.

Many challenges have been identified and discussed in the community in the past few years

(e.g. [Zambonelli and Omicini, 2004], and the recent FOSE-MAS session at the AAMAS

2008 conference13). There is an increasing demand for better techniques and tools to test,

verify and validate agent-based systems during the development cycle. Additionally, AOSE

methodologies, techniques and tools should aim to improve not only the development of

agent-based software but also its maintenance and evolution [Cuesta et al., 2007].

In this context, our work also aims to make a contribution to the improvement of AOSE

in terms of addressing the issue of software maintenance and evolution, an area that has

not seen much work in an AOSE context. We have applied our work to an agent-oriented

methodology which is extended to support change propagation during the process of main-

taining software systems (refer to chapter 4). The methodology that we chose to use is

Prometheus, a prominent agent-oriented software engineering methodology which has been

used and developed more than 10 years. The methodology is described in considerable detail,
12http://www.omg.org/cgi-bin/doc?ad/2008-06-02
13Future of Software Engineering and Multi-Agent Systems (FOSE-MAS): http://www.cs.kuleuven.be/

~danny/fose-mas.php

38 (28th August, 2008)

http://www.omg.org/cgi-bin/doc?ad/2008-06-02
http://www.cs.kuleuven.be/~danny/fose-mas.php
http://www.cs.kuleuven.be/~danny/fose-mas.php

CHAPTER 2. BACKGROUND

and has tool support14. A detailed description of the methodology can be found in chapter

4.

2.3 Object Constraint Language

The Object Constraint Language (OCL) [Object Management Group, 2006] is a declarative

language for describing expressions and constraints on UML models. It has become15 a

subset of the industry standard Unified Modelling Language (UML) [Object Management

Group, 2005] and is one of the core technologies underpinning the recently emerging Model

Driven Architecture16 paradigm [Kleppe et al., 2003]. OCL supplements UML by expressing

constraints that cannot be described (or are difficult to describe) using only UML. In addition,

OCL offers a proper solution to formalising UML in terms of having neither the ambiguities

of natural language (due to freedom of interpretation) nor the inherent difficulty of using

complex mathematics. As a result, OCL becomes useful since it allows a developer to create a

highly specific set of constraints that govern many essential aspects of the business model of a

system. In particular, OCL is an integral part of MDA development since precise (consistent

and coherent) models can be built using the combination of UML and OCL [Warmer and

Kleppe, 2003].

OCL is deeply integrated with UML in that every OCL expression depends on the types

(i.e. the classes, interfaces, etc.) that are defined in the UML diagrams. Figure 2.4 shows a

simplified excerpt of the OCL grammar. There are generally four types of constraints that can

be expressed using OCL: an invariant , a pre-condition, a post condition, and a guard. A pre-

condition or post-condition to an operation is a condition that must hold at the moment just

before or after its execution (i.e. OperationContextDecl). Meanwhile, a guard is a constraint

(specifically referring to statechart diagrams) which describes a condition that must hold

before a state transition fires. We are, however, most interested in invariants which specify

conditions that must hold in all instances of the class, type, or interface in a UML diagram

(i.e. Invariant). In this sense, all invariants are written using OCL expressions in such a way

that the expressions evaluate to true if the invariants hold. In our framework, a consistency

constraint contains an OCL expression, specifying an invariant for the associated metamodel

elements.
14http://www.cs.rmit.edu.au/agents/pdt
15The latest version is OCL 2.0.
16http://www.omg.org/mda

39 (28th August, 2008)

http://www.cs.rmit.edu.au/agents/pdt
http://www.omg.org/mda

CHAPTER 2. BACKGROUND

Trip
-numberOfSeats : Integer

Bus

-name : String
Person

trip

0..*

bus

1

trip0..*

passengers0..*

Figure 2.3: An example UML class diagram

We now briefly explain the main parts of the OCL syntax that are used in this thesis by

giving examples of how OCL can be used to specify an invariant constraint. For more detail

on OCL including all the syntax, grammar, and other specifications, we refer the readers

to [Object Management Group, 2006]. Let us consider the UML model shown in figure 2.3,

describing three classes: Trip, Person, and Bus. An association between class Trip and class

Bus indicates the single bus (note the cardinality 1 on the side of the Bus class) that is used

for the trip. Meanwhile, an association between class Trip and class Person indicates that

a particular group of persons are the passengers on the trip. The multiplicity many (0..*)

on the side of the Person class implies that there is no limit on the number of passengers

participating the trip. However, in practice the number of passengers on a trip must be not

greater than the number of seats on the bus that is used in the trip. This restriction cannot

be expressed in the UML diagram. Rather, we use the following OCL constraint:

context Trip

inv : self.passengers→size() <= self.bus.numberOfSeats

In the above constraint, the context keyword refers to the model entity for which the OCL

expression is defined. The model entity is usually a class, interface, datatype or even compo-

nent, and is generally termed as a Classifer in the UML standard. Each OCL expression is

written in the context of an instance of a specific type. For instance, in the above constraint

the Trip class is the contextual type of the OCL expression. Meanwhile, the keyword self is

used to refer to the contextual instance, which is the instance of Trip in our example. The

40 (28th August, 2008)

CHAPTER 2. BACKGROUND

ContextDeclaration ::= ClassifierContextDecl | OperationContextDecl
ClassifierContextDecl ::= “context” pathName Invariant
Invariant ::= “inv” (simpleName)? : OclExp Invariant
OclExp ::= LetExp | LogicalExp
LogicalExp ::= RelationalExp (LogicalOperator RelationalExp)∗
RelationalExp ::= AdditiveExp (RelationalOperator AdditiveExp)?
AdditiveExp ::= MultiplicativeExp (AddOperator MultiplicativeExp)∗
MultiplicativeExp ::= UnaryExp(MultiplyOperator UnaryExp)∗
UnaryExp ::= (UnaryOperator PostfixExp) | PostfixExp
PostfixExp ::= PrimaryExp | ((“.” | “− > ”) ModelPropertyCallExp)∗
PrimaryExp ::= LiteralExp | ModelPropertyCallExp | IfExp
ModelPropertyCallExp ::= OperationCallExp | AttributeCallExp

NavigationCallExp | LoopExp
NavigationCallExp ::= AssociationEndCallExp | AssociationClassCallExp
LoopExp ::= IteratorExp | IterateExp
OperationCallExp ::= OclExp simpleName OclExp |

OclExp “→ ” simpleName “(” arguments? “)”
OclExp “.” simpleName “(” arguments? “)”
simpleName “(” arguments? “)”
pathName “(” arguments? “)”
simpleName OclExp

AttributeCallExp ::= OclExp “.”simpleName | simpleName | pathName
IfExp ::= “if ” OclExp “then” OclExp

“else” OclExp “endif ”
IteratorExp ::= OclExp “→ ” Iterator “(” VariablesDecl “ | ” OclExp “)”
IterateExp ::= OclExp “→ ” “iterate” “(” VariablesDecl “ | ” OclExp “)”
Iterator ::= “forAll” | “exists” | “select” | “reject” | “one” |

“collect” | “any” | “isUnique” | “sortedBy”
LiteralExp ::= EnumLiteral | CollectionLiteral | PrimitiveLiteral
LogicalOperator ::= “and” | “or” | “xor” | “implies”
RelationalOperator ::= “ = ” | “ <> ” | “ < ” | “ > ” | “ <= ” | “ >= ”
UnaryOperator ::= “− ” | “not”
AddOperator ::= “ + ” | “− ”
MultiplyOperator ::= “× ” | “ : ”

Figure 2.4: An excerpt of the OCL grammar (adopted from [Object Management Group,
2006] and [Object Management Group, 2005])

41 (28th August, 2008)

CHAPTER 2. BACKGROUND

invariant is expressed in the second line of the constraint declaration (although it is legiti-

mate to put the whole expression in just one line) following the keyword inv (referring to an

invariant instead of other types of constraint) and a colon.

OCL is not only an expression language but also a navigation language for graph-based

models like UML models. It means that starting from a specific instance, we can navigate

an association (on the class diagram) to refer to other instances and their properties (i.e.

NavigationCallExp). Navigation can be done using the association ends, which is written

as instance.rolename. Depending on the cardinality of the association end rolename, the

value of this expression can be a single instance or a set of instances. For example, in the

above constraint the self .passengers expression, going from self (an instance of Trip) to class

Person (which has an association to class Trip with role name passengers), results in a Set of

Persons because of the multiplicity 0..* on the side of the Person class. On the other hand,

self .bus refers to a single instance of Bus because the multiplicity of the association (between

classes Trip and Bus) on the side of class Bus is one.

In OCL, we can also refer to the value of an attribute (i.e. AttributeCallExp). For exam-

ple, in our model the Bus class has an attribute numberOfSeats. As a result, since self .bus

is an instance of Bus, self .bus.numberOfSeats is the value of the attribute numberOfSeats of

this instance. Informally, self .bus.numberOfSeats means the number of seats on the bus that

is used for a given trip self .

A navigation over associations can result in not only Sets but also other OCL pre-defined

collection types such as Bags (resulting from combined multiple navigations) and Sequences

(resulting from navigation over associations adorned with “ordered”). However, we only

focus on Sets here since it is the main collection type that we deal with. OCL supports

a large number of pre-defined operations that can be used to apply a property on a Set.

A property of the set itself is accessed using an arrow “→” followed by the name of the

association operation. For example, self.passengers→size() refers to the size property of the

Set self .passengers, which results in the number of passengers on the Trip self . In table 2.1,

we summarise the set operations that are supported in OCL17. This includes all predefined

collection operations that use an iterator (LoopExp) such as iterate18, select, collect, reject,

forAll, exists, and other pre-defined set operations such as union, intersection, etc. (which
17SE is denoted as a set.
18The iterate operation is the most fundamental and complex loop operations in OCL. More details of this

operation can be found in [Object Management Group, 2006]. Although we do not directly deal with this
operation, we address other simple forms of loop operations such as forAll , exist , select , etc.

42 (28th August, 2008)

CHAPTER 2. BACKGROUND

are part of OperationCallExp19).

OCL also supports logical connectives including and , or , xor , not , implies (i.e. Logical-

Exp), and if − then − else (i.e. IfExp). For example, the constraint presented earlier can be

extended to include the condition that passengers who take part in the trip must not have

the same name. We use the and operator to connect the first constraint with the newer one,

resulting in the following OCL expression:

context Trip

inv : self.passengers→size() <= self.bus.numberOfSeats and self.passengers→isUnique(name)

OCL is a typed language and the pre-defined basic types in OCL are Boolean, Integer,

Real, and String. All classifiers from the UML model (e.g. classes, interfaces, datatypes, etc.)

are types in OCL expressions that are associated to the model. In addition, enumeration

types are supported. OCL allows for reusing variables or operations in terms of the let

expression (i.e. LetExp), which enables us to define a variable or operation that can be

used instead of a sub-expression. There are several pre-defined operations that apply to all

instances in the associated UML model. For example, for dealing with the (direct or indirect)

type of an instance, we can use oclIsTypeOf , oclIsKindOf , or oclAsType operations.

As OCL use has become more widespread, there have been a number of tools supporting

OCL available in both academia and industry [Álvarez et al., 2003]. OCL tools aim to

support and handle OCL expressions to different extents. The common functionalities of

those tools such as Octopus20, Dresden OCL2 Toolkit21, Naomi22, OCL Library23, OCLE24,

and USE25 are parsing/compiling OCL expressions and evaluating OCL expressions against

UML models. Several tools such as Dresden OCL2 Toolkit, Octopus, OCL Library, etc.

also offer the capability of generating Java and even SQL (e.g. Dresden OCL2 Toolkit) from

UML models with OCL expressions. There are stand-alone tools (e.g. Dresden OCL Toolkit)

or tools that are integrated with a modelling tool (e.g. Octopus is an Eclipse plugin, and
19An operation call can have several forms, such as a pre-defined collection operation, class operation call

and so on.
20http://www.klasse.nl/octopus
21http://dresden-ocl.sourceforge.net
22https://sourceforge.net/projects/mocl/
23http://www.cs.kent.ac.uk/projects/ocl
24http://lci.cs.ubbcluj.ro/ocle
25http://i12www.ira.uka.de/~key

43 (28th August, 2008)

http://i12www.ira.uka.de/~key

CHAPTER 2. BACKGROUND

Operation Description
SE→size() The number of elements in SE .
SE→includes(x) True if x is an element of SE , false otherwise.
SE→excludes(x) True if x is not an element of SE , false otherwise.
SE→includesAll(SE’) True if SE contains all the elements of SE ′.
SE→excludesAll(SE’) True if SE contains none of the elements of SE ′.
SE→isEmpty() True if SE contains no elements.
SE→notEmpty() True if SE contains one or more elements.
SE→sum() The addition of all elements in SE . Elements must be

of a type supporting the + operation, e.g. Integer and Real.
SE→exist(c) True if there is at least one element in SE for which

constraint c is true.
SE→forAll(c) True if constraint c is true for all elements in SE .
SE→isUnique(expr) True if the expression expr evaluates to a different value

for each element in SE .
SE→sortedBy(expr) The Sequence consisting of all elements of SE

in which the element for which the expression expr
has the lowest value comes first, and so on.
The type of the expr expression must be comparable.

SE→iterate(expr) A value obtained by iterating over all elements in SE .
SE→one(c) True if there is exactly one element in SE for which

constraint c is true.
SE→any(c) Any element in SE for which constraint c is true.
SE1→union(SE2) The union of SE1 and SE2.
SE1 = SE2 True SE1 and SE2 contain the same elements.
SE1→intersection(SE2) The intersection of SE1 and SE2, i.e. the set of all elements

that are in both SE1 and SE2.
SE1 − SE2 The element of set SE1, which are not in set SE2.
SE→including(x) The set containing all elements of SE plus x .
SE→excluding(x) The set containing all elements of SE without x .
SE1→symmetricDifference(SE2) The set containing all the elements that are either in SE1 or

SE2 but not in both.
SE→select(c) A subset of SE containing all elements for which

constraint c is true.
SE→reject(c) A subset of SE containing all elements for which

constraint c is false.
SE→collect(expr) The Bag of elements that results from applying expr

to every member of SE .
SE→count(x) The number of times that element x occurs in SE .
SE→asSequence() The Sequence consisting of all the elements from SE ,

in undefined order.
SE→asBag() The Bag consisting of all elements from SE .

Table 2.1: Set operations supported in OCL

44 (28th August, 2008)

CHAPTER 2. BACKGROUND

Oclarity26 is an AddIn for Rational Rose). In fact, commercial visual modelling applications

(e.g. Borland Together27) have started to provide support for OCL together with the MDA

development. Apart from the core functionalities we mentioned earlier, the commercial tools

also offer usability features such as syntax highlighting, and OCL expression constructing.

An important aspect that in our view is missing from those tools is the capability of

dealing with violated OCL constraints. Constraint violations may indicate that the UML

model is not well-formed or inconsistent. Therefore, resolving those violations is equally

important as identifying them. In order to deal with this issue, it is necessary to provide a

(semi)-automated mechanism for working out the resolutions for particular OCL constraints

and executing these resolutions (i.e. making changes to the model). This is also one of the

issues that this dissertation aims to address.

2.4 Chapter summary

In this chapter, we have given an overview of software maintenance and evolution by briefly

reviewing its history, presenting its definitions and key concepts, and emphasizing its signif-

icant importance in software development. We have also explained the three major types of

maintenance: perfective, adaptive, and corrective, as well as briefly describing other varia-

tions of this classical taxonomy. As the aim of our work is to improve change propagation

in software maintenance, we give it more attention in this chapter. More specifically, a typ-

ical change mini-cycle process has been described to show the role of change propagation

in software change and how it fits in with other activities such as program comprehension,

change impact analysis, and restructuring. We also reviewed different approaches that have

been proposed to deal with the change propagation issue in software maintenance. Those ap-

proaches address various aspects of the problem including developing a formalism to model

the process of change propagation, managing inconsistencies caused by software changes,

and transforming models. We have also discussed the advantages and disadvantages of those

approaches in order to highlight the gaps that our work can aim to fill.

The second part of this chapter introduced the agent-based paradigm. It started with a

brief description of software agents and their key concepts including situatedness, autonomy,

reactivity, pro-activeness, and social activity. We have also discussed the advantages of the
26http://www.empowertec.de/products/rational-rose-ocl.htm
27http://www.borland.com/us/products/together

45 (28th August, 2008)

CHAPTER 2. BACKGROUND

notion of agency over other existing entities such as objects. In order to strengthen our points,

we briefly described the well-known Belief-Desire-Intention (BDI) agent architecture to show

some aspects of its flexibility in an execution cycle. Finally, our description of the agent

paradigm ended with an overview of agent-oriented software engineering (AOSE), which is

also the context of our work.

The final part of the chapter introduced the Object Constraint Language (OCL), which

our work is extensively based on. We have briefly described some of the key OCL constructs

and explained how OCL can be used with UML models using a small example. Finally, we

gave a brief review of existing tool support for OCL with an indication that there has been a

lack of support for resolving OCL constraint violation, which is one of our work’s objectives.

In the next chapter, we begin describing our work with a description of an agent-based change

propagation framework that we have developed.

46 (28th August, 2008)

Chapter 3

Change Propagation Framework

The previous chapter provided some insight into the problem which this research attempts

to tackle. We have briefly touched on the concepts related to agents, agent-based systems

and agent-oriented software engineering. In addition, we provided a broad overview of the

research area of software maintenance and evolution with a special focus on approaches and

techniques for planning and implementing changes, and managing inconsistencies in and

between models. Furthermore, we also reviewed the Object Constraint Language, a recently

well-known standard for UML modelling. On this basis, in this chapter we present our

approach to the issue of change propagation in maintaining and evolving agent systems.

We first discuss how to develop consistency relationships in design models (section 3.1). In

this section we also provide a definition of a model and explain why model consistency is

important. In addition, we discuss how consistency relationships can be defined using a

metamodel and a set of constraints. We also discuss how such constraints can be extracted

from a design model. In section 3.2, we present our approach to change propagation based on

fixing inconsistencies in the design. We also explain how our work is situated in the area of

model inconsistency management. Furthermore, we provide a classification of repair actions

that can resolve inconsistencies. Section 3.3 is the crucial part of this chapter in which

we describe an agent-based change propagation framework. We present an architectural

view of the framework as well as explain why the well-known Belief-Desire-Intention agent

architecture is a natural match for representing and implementing a change propagation

mechanism.

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

3.1 Building consistency relationships in design models

3.1.1 What is a model?

The central subject of our research is a (design) model. Before we discuss how to deal with

changes made to a model, we need to understand what a model is in the context of software

development. In Mellor et al. [2003], a model is defined as a “coherent set of formal elements

describing something (for example, a system, bank, phone, or train) built for some purpose

that is amenable to a particular form of analysis, such as:

• Communication of ideas between people and machines

• Completeness checking

• Race condition analysis

• Test case generation

• Viability in terms of indicators such as cost and estimation

• Standards

• Transformation into an implementation”

Due to the various benefits mentioned above, models have been widely used to provide an

abstract representation of the important aspects of the system under development. In fact,

models for representing system designs are in general the core component of any software

engineering methodology. Advocates of model-driven engineering even consider models as

the primary assets [Mellor et al., 2003].

The term model is, however, used in many contexts and usually has a different meaning.

For example, a class diagram is also referred to as a class model. An interaction diagram

is sometimes called a interaction model. Are these two models not related to each other or

should they be regarded as being part of the same thing? In order to answer this question,

let us explain what is meant by a model and discuss some of its key properties.

Since our objective is to propagate changes by fixing inconsistencies in design models, we

have adopted the following definition of a model from [Kleppe et al., 2003].

Definition 1. A model describes a system using a well defined (modelling) language, which

has clear syntax and semantics suitable for both human and computer interpretation. �

48 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

This definition makes a distinction between models in terms of the language in which each

model is written. For instance, a UML model is written in UML which contains concepts

such as classes, methods, objects, etc. On the other hand, a Prometheus model is written in

a language that contains concepts specific to agents such as goal, plans, events, etc.

Model

ModelElement
*

Entity Relationship

*

Attribute
2..*

Figure 3.1: A model and its containments

The above definition leads to our notion of a model which is adopted from [Warmer and

Kleppe, 2003].

• A model is a consistent and coherent set of model elements (refer to figure 3.1). Model

elements can be either model entities (e.g. agent, class) or relationships between two

or more entities (e.g. a triggering relationship between an event and a plan, or an

association between classes). Model entities also have attributes such as name. We

consider attributes that have primitive types (e.g. integer, string) instead of referencing

types, which are regarded as relationships. For instance, an agent has a number of goals.

Instead of considering a set of goals as an attribute of an agent, we view an agent as

having an aggregation relationship with goals.

• A diagram provides a certain view of the model elements in a model. For instance, a

UML class diagram depicts a structural view of a model whereas a sequence diagram

represents a dynamic view of the same model. Different views of a model are all written

in the same language. Figure 3.2 shows how different diagrams in UML are all views

on the same model and are all written in the same language (i.e. UML).

The multi-view approach is widely used in software engineering due to several reasons

49 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

Model

Systemuse case view

class diagram view
state diagram view

interaction view

UML

is
written

in

describes

Figure 3.2: Different views of one system in one model (redrawn from [Kleppe et al., 2003])

[Kruchten, 1995; Object Management Group, 2005]. A complex system usually has

many aspects such as how its components are structured, how they interact with each

other or how data flows and is processed. In addition, different stakeholders may

have different viewpoints of the system, e.g. the customer is more interested in the

system’s functionalities whereas the focus of a designer might be the internal structure

of the system. As a result, no single diagram is sufficient to represent the whole

system’s model and consequently a range of different views is needed to provide multiple

perspectives of the system under development.

Since a model has multiple views, it is difficult to maintain consistency between them.

Especially during the maintenance process, the designer usually focuses on making changes

to some of the views while he/she may ignore the others. This partial view of the model can

cause serious issues later on if the model is made inconsistent.

50 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

3.1.2 How to define consistency in models?

We have defined a model as a description of a system using a well-defined modelling language

which is suitable for computer interpretation. Metamodelling is a widely used mechanism

to define such a language [Atkinson and Kühne, 2003]. A metamodel is also a model which

describes the abstract syntax of a modelling language, i.e. a definition of all the concepts and

the relationships existing between concepts that can be used in that language. Similarly,

a metametamodel defines the language in which metamodels are expressed. In principle,

there is an infinite number of layers of metamodelling. In practice however, the four levels of

modelling have been generally agreed upon and have become a standard [Miller and Mukerji,

2003]. In this context, the models at the lowest level are called the M0 models and contain

instances, i.e. the actual items that are being modelled. The next layer contains M1 models,

while meta models are called M2 and meta meta models are called M3. A model is said

to conform (or also called well-formed) to its metamodel like a program conforms to the

grammar of the programming language in which it is written.

It is very important that each view of a model must be both syntactically and semantically

consistent [Spanoudakis and Zisman, 2001]. Syntactic consistency ensures that a model’s view

conforms to the model’s abstract syntax, i.e. a metamodel, which guarantees that the overall

model is well-formed. For instance, a well-formed UML model contains classes, operations,

messages, and so on because the UML metamodel (see figure 3.4 on page 54) defines what

is a class, message, operation and so on. However, such elements (e.g. classes) may not be

contained in a valid Prometheus model because they are not defined in the metamodel of

Prometheus (see figure 3.3 on page 53). On the other hand, semantic consistency requires

different views of a model to be semantically compatible (i.e. coherence). For instance,

the message calling direction in a UML sequence diagram must match the class association

direction in a class diagram.

Such consistency requirements upon a model are often expressed using its metamodel and

a set of constraints that specify conditions that a well-formed and consistent model should

satisfy. In this context, we adopt a simple definition of what actually constitutes an inconsis-

tency: an inconsistency occurs if and only if a (consistency) constraint has been broken. Such

a constraint explicitly describes some form of relationship or fact that is required to hold.

Constraints may describe syntactic and semantic relationships between model elements. They

may also be used to prescribe coherence relationships between different views of a model,

51 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

i.e. intra-model or horizontal consistency as defined in [Spanoudakis and Zisman, 2001]. Our

approach is also applicable to constraints that express consistency between different models

(or referred as inter-model or vertical consistency by Spanoudakis and Zisman [2001]) pro-

vided that those models are defined based on the same metamodel. In addition, constraints

can be used to impose best practices or industry standards on designers, e.g. a constraint

requiring that all constructors of a class are declared private and that the class provides

static creation operations (factory pattern) [Gamma et al., 1995]. Finally, constraints may

be used to describe specific requirements related to a particular domain, e.g. there could be

a constraint that all agents in the system need to subscribe to a particular agent.

We use the Object Constraint Language [Object Management Group, 2006] to specify con-

straints. OCL is part of the UML standard which is used to specify invariants, pre-conditions,

post-conditions and other kinds of constraints imposed on elements in UML models. Below

(constraint 1) is an example of an OCL constraint that defines the semantics of relationships

between agents, roles and percepts which are described in the metamodel in figure 3.31.

In the OCL notation “self” denotes the context node (in this case an Agent) to which the

constraints have been attached and an access pattern such as “self.perceptsEntityReference”

indicates the result of following the association between an agent and a percept (in the meta-

model), which is, in this case, a collection of percepts which are handled by the agent. OCL

also has operations on collections such as “SE→includes(x)” stating that a collection SE must

contain an entity x , or “SE→exists(c)” specifying that a certain condition c must hold for at

least one element of SE , or “SE→forAll(c)” specifying that c must hold for all elements of

SE . In section 2.3 (on page 39) we provide more detailed information on OCL.

For example, the following constraint (with regard to the metamodel in figure 3.3), which

could be expressed in a more traditional form as ∀ p ∈ self .perceptsEntityReference • ∃ r ∈
self .rolesEntityReference • p ∈ r .perceptsEntityReference, states that: considering the set

of percepts that are handled by the agent (self.perceptsEntityReference), for each of the

percepts (p) if we consider the roles played by that agent (self.rolesEntityReference) then

one of these roles (r) must include the current percept (p) in the list of percepts that it

handles (r.perceptsEntityReference).

Constraint 1. Any percept handled by an agent must be handled by at least one of its roles.
1This figure shows that an agent can play a number of roles and handle some percepts, and that a role can

also handle several percepts. The complete Prometheus metamodel and consistency constraints are provided
in chapter 4.

52 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

-source : String
-informationCarried : String
-knowledgeUpdated : String
-processing : String
-frequency : String
-name : String

Percept

-name : String
Role

-lifetime : String
-initialisation : String
-demise : String
-cardinalityMaximum : String
-cardinalityMinimum : String

Agent
rolesEntityReference

1..*

agent

1..*

perceptsEntityReference

0..*

role 1..*

perceptsEntityReference

0..*

agent 1..*

Figure 3.3: Prometheus Metamodel (Excerpt)

Context Agent inv:

self.perceptsEntityReference→forAll(p : Percept |
self.rolesEntityReference→exists(r : Role | r.perceptsEntityReference→includes(p)))

The above constraint is applied to the Prometheus methodology. Below is an example of

a consistency constraint for UML 1.5 models (with regard to the UML metamodel in figure

3.42).

Constraint 2. The name of a message (in sequence diagrams) must match an operation in

its receiver’s class (in class diagrams).

Context Message inv:

self.receiver.base.operation→exists(op : Operation | op.name = self.name)

The metamodel and constraints can be developed by extracting information such as

relationships, dependencies, and even best practices from a methodology. For example, a

metamodel for UML and a set of well-formedness constraints have been defined in [Object

Management Group, 2005]. In chapter 3, we will discuss how we have developed a metamodel

and a collection of consistency constraints for the Prometheus methodology [Padgham and

Winikoff, 2004].
2It is noted that in practice a ClassifierRole typically has one Class base.

53 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

Class

ClassifierRole

Operation

Message

*

+base 1..*

+owner

0..1

+operation

*

+receiver

1

+receivedMsg

*

+sender1 +sentMsg

*

+successor

*

+predecessor*

Figure 3.4: UML 1.5 Metamodel (Excerpt)

3.2 An inconsistency based approach to change propagation

When software is modified, typically some primary changes are made and then additional,

secondary, changes are made as a result. Change propagation is the process of determining

and making these secondary changes. We approach the change propagation issue based on

the conjecture that, given a suitable set of consistency constraints, change propagation can

be done by fixing inconsistencies in a design. In other words, we propagate changes by finding

places in a design where the desired consistency constraints are violated, and fixing them

until no inconsistency is left in the design.

There are, however, various strategies to handle inconsistency and to preserve consistency

in design models. In this section, we discuss which inconsistency handling strategy we chose

to follow. In addition, we look at repair actions that allow for semi-automatic resolution of

inconsistencies.

3.2.1 Inconsistency management

Inconsistency management is a process that includes various activities ranging from defin-

ing and detecting inconsistencies to diagnosing and handling them [Finkelstein et al., 1996;

Grundy et al., 1998; Nuseibeh et al., 2000; Spanoudakis and Zisman, 2001; Van Der Straeten,

2005] . In the previous section, we have discussed how a metamodel and a set of constraints

54 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

are developed to specify consistency relationships. In this context, inconsistencies are de-

fined as the occurrence of violation of such constraints. The question remains how does our

approach detect, diagnose and handle inconsistencies?

Detection of inconsistencies is the activity of checking for inconsistencies in design models.

Our work does not aim to tackle this issue. Rather, we rely on existing techniques and

tools for checking inconsistencies. As discussed in chapter 2, there are various approaches

for the detection of inconsistencies [Spanoudakis and Zisman, 2001]. In our framework,

inconsistencies are in the form of an OCL constraint violation. Therefore, we use existing

techniques and tools that check OCL constraints.

Diagnosis of inconsistencies is the activity for identifying the source, the cause and the

impact of an inconsistency [Spanoudakis and Zisman, 2001]. In our approach, the source of

an inconsistency is a collection of model elements involved in the inconsistency. In addition,

we consider the primary changes made to the model as the cause of an inconsistency. It can

be useful to analyse the impact of an inconsistency in order to determine the priority with

which the inconsistency has to be handled. This task is normally left to the user [Van Der

Straeten, 2005] as the impact of an inconsistency depends on the applications and on the

current activity of software maintenance and evolution. Therefore, the way that we deal with

this issue is by allowing the user to prioritize consistency constraints, e.g. determine which

ones are mandatory, and which ones are optional (a more fine-grained priority scheme could

also be used).

Inconsistency handling includes activities for identifying methods for dealing with an

inconsistency (e.g. repair it, or note it but not fix it, or ignore it), evaluating the impacts

and consequences of each of the methods, and determining when to deal with inconsistencies.

As also discussed in chapter 2, there are different techniques for handling an inconsistency.

A key idea of inconsistency handling is to tolerate inconsistencies [Nuseibeh et al., 2000].

Balzer [1991] was among the first to address this particular issue by proposing a formalism in

which inconsistencies can be temporarily marked and resolved later rather forcing resolution

at the point of violation. Our approach addresses this issue in several ways. Firstly, when

primary changes are made temporary inconsistencies are allowed as in Balzer’s approach.

The change propagation process is triggered by the user to fix inconsistencies only when

he/she decides to do so. Secondly, we allow the user to determine whether an inconsistency

is acceptable. This can be done at design time (by determining whether a constraint is

55 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

Model

relationship

ModelElement

*
Entity Relationship

Repair Action

Creation

Deletion

Connection

Disconnection

en
tit

y

en
tit

y

re
la

tio
ns

hi
p

re
la

tio
ns

hi
p

Modification

*

Attribute

*

currentModel

*
newModel

2..* *

Figure 3.5: A classification of repair actions

included) or at run time (by determining whether a violated constraint instance should be

fixed or not). Inconsistencies that should be fixed are resolved by repair actions which modify

the design model. We now consider the different kinds of repair actions.

3.2.2 Classification of repair actions

A design model is updated through repair actions performed on the model’s elements or

their attributes (see figure 3.5). We adopted an evolution model described in [Mens and

D’Hondt, 2000] to classify such repair actions into five different primitive types. For each

type of repair action we informally describe its effect on the model and also provide a formal

OCL representation.

• Creation: a model entity is created, e.g. creating a new agent, which in terms of the

(UML) metamodel, implies the instantiation of a metaclass Agent. Creation does not

result in any changes to the set of relationships in the current model, and the set of

56 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

entities in the new model will be a union of the entities in the current model and the

new entity being added.

Context Creation:

self.currentModel.entity3→excludes(self.entity)

self.newModel.entity = self.currentModel.entity→including(self.entity)

self.newModel.relationship = self.currentModel.relationship4

• Deletion: a model entity is deleted from a model, e.g. an agent is deleted, which

implies the deletion of an instance of a metaclass Agent. The entity being deleted

should exist in the current model and should not exist in the new model. Moreover,

the set of entities in the new model will be the entities in the current model minus the

entity being removed. In addition, all the relationships associated with the entity being

removed should also be deleted.

Context Deletion:

self.currentModel.entity→includes(self.entity)

self.newModel.entity = self.currentModel.entity→excluding(self.entity)

self.newModel.relationship = self.currentModel.relationship − self.entity.relationship

• Connection: a relationship is added to a model by connecting two or more entities,

e.g. assigning a role to an agent. This action has no effect on the set of entities in the

current model. The relationship being added should not exist in the current model. In

addition, the set of relationships in the new model will be a union of the relationships

in the current model and the relationship being added.

Context Connection:

self.newModel.entity = self.currentModel.entity

self.currentModel.relationship→excludes(self.relationship)

self.newModel.relationship = self.currentModel.relationship→including(self.relationship)

• Disconnection: a relationship is removed from a model by disconnecting two or more

entities, e.g. unassigning a role from an agent. There are no changes to the set of entities

in the current model. In addition, the relationship being removed should exist in the

current model and should not exist in the new model. Finally, the set of relationships
3self .currentModel .entity results in a set of entities in the current model.
4self .currentModel .relationship results in a set of relationships in the current model.

57 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

in the new model will be the relationships in the new model minus the relationship

being removed.

Context Disconnection:

self.newModel.entity = self.currentModel.entity

self.currentModel.relationship→includes(self.relationship)

self.newModel.relationship = self.currentModel.relationship→excluding(self.relationship)

• Modification: an attribute of a model element is modified, e.g. the name of an agent

is changed. There should not be any effect on the set of entities and relationships in

the current model .

The above taxonomy covers a complete range of fine-grained actions that can be made

to a model. In the next section, we discuss a change propagation framework that uses such

actions to propagate changes by resolving inconsistencies.

3.3 Architectural overview of our change propagation framework

In this section, we describe the architecture of an agent-based framework to deal with

change propagation by fixing inconsistencies in a design model. The framework provides a

flexible underlying formalism on which a “change propagation assistant”, that offers support

to a designer by suggesting additional (secondary) changes once primary changes have been

made, can be based.

Figure 3.6 shows an overview of our architecture as a data flow diagram. The key data

items we deal with are as follows.

• An application model: the current design of a system that is being modified for

maintenance and/or evolution purposes. Such a model needs to meet two important

criteria. Firstly, it should be in a computer interpretable form so that changes can be

automatically made to it, and it can be automatically checked for inconsistencies. For

example, the XML Metadata Interchange (XMI) [Object Management Group, 2003] is

widely used as an interchange format for UML models, and is supported for importing

and exporting by a large number of CASE tools. It is noted that the application’s

design model can usually be obtained from the CASE tool that is used to develop the

design. For instance, ArgoUML5 supports exporting a model in XMI format.
5http://argouml.tigris.org

58 (28th August, 2008)

http://argouml.tigris.org

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

Generate
repair plan

types
OCL constraints

Repair plan types
Repair Plan

Library

Modification
(e.g. change context conditions,

remove plan types,
change plan body)

Check
constraints Violated constraints

Calculate cost

Repair plan instances

Plan instances with least cost
Select one

plan to
execute

User selection

Chosen repair plan instances

Constraints
Repository

OCL
constraints

Basic cost
values

Basic costs User input

MetamodelMetamodel

Metamodel

Application’s
model

Execute plan

changes

model

Repair
administrator

Repair
administrator

Software designer

Generate repair
plan instances

Repair plan types

OCL constraints

Software designer

(Chapter 6)

(Chapter 7)

Figure 3.6: Change propagation framework

Secondly, the design model should be in a form that can be accepted as an input to a

constraint checker that is used. Otherwise, a transformation is needed to translate the

design model to a form that is accepted by the constraint checker. We will discuss this

issue in more detail in chapter 8, where we present an implementation of our framework.

• A metamodel to which the application’s design model should conform. As previously

discussed in section 3.1.2, a metamodel is the central item on which consistency rela-

tionships can be defined. Depending on the types of design that we target, a metamodel

can be available or not. For example, if one wants to apply our framework to UML

models, they can use the existing UML metamodel [Object Management Group, 2005]

or an excerpt of it. In contrast, the Prometheus methodology does not have a meta-

model and consequently we needed to develop a metamodel for Prometheus, which is

discussed in chapter 4.

59 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

• A set of consistency constraints that are expressed on the input metamodel. The

repair administrator6, creates consistency constraints and expresses them in OCL. For

instance, UML has a set of well-formedness constraints that maintain the consistency

of UML syntax and semantics [Object Management Group, 2005]. Those constraints

can be input to our framework if one wishes to apply it to UML design models. For

Prometheus, we have also developed a set of consistency constraints which is explained

in detail in chapter 4.

Above are the three important inputs of the change propagation process. There are two

important properties of change propagation: (a) it is cascading, i.e. performing an action

to fix an inconsistency can cause further inconsistencies which require further actions; and

(b) it has multiple choices, i.e. there are usually many ways of making the design consistent

again. Those two properties are interestingly similar to the characteristics of the well-known

and studied Belief-Desire-Intention architecture [Rao and Georgeff, 1992], which we have

discussed in section 2.2.2 (page 30). In fact, BDI agents operate in an event-triggered manner,

where events trigger plans, which in turn can create new events resulting in further plans

being triggered. This is similar to the cascading nature of change propagation in which the

need to fix an inconsistency matches an event and repair actions match a plan. Furthermore,

in the BDI model an event can have multiple plans that it can trigger, with plan selection

being made at run-time. This allows us to represent multiple ways of resolving a given

inconsistency as separate plans, with the choice between them being specified in the plans’

context conditions.

Based on that observation, in our framework a goal to repair a violated constraint (an

inconsistency) is represented as an event and the ways to fix the violated constraint are

represented as (repair) plans. For example, consider the constraint “constr(A, P)”: an agent

A should play at least one role that handles a given percept P (this constraint is a sub-

constraint of constraint 1 we presented earlier in section 3.1.2). As can be seen in figure

3.7, there are several different plans that are triggered by the same “Repairing constr(A,P)”

event. The first repair plan attempts to make an existing role played by agent A handle

percept P . The second repair plan aims to make agent A play a role R (this role was not
6There are two actors interacting with our framework and they have different roles. The repair admin-

istrator is responsible for defining a metamodel and a set of constraints. Meanwhile, the software designer
assumes the infrastructure (e.g. metamodels, constraints) is already available and just simply uses the tool
to propagate changes in his working (design) model. In practice, the two roles can, however, be played by the
same user.

60 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

played by the agent before) and to make R handle percept P . The third repair plan is similar

to the second repair plan except that it creates a new role instead of using an existing one. It

is important to note that those repair plans are plan types. At run time, each plan type can

generate multiple plan instances depending on its context condition. For instance, the first

repair plan in the above example can generate various repair plan instances, one for each of

the existing roles played by agent A.

Plan #1: Use existing roles played by the agent
Triggering event: Repairing constr(A,P)
Context condition: R is a role played by agent A
Plan body:

1. Connect role R and percept P .

Plan #2: Use existing roles not played by the agent
Triggering event: Repairing constr(A,P)
Context condition: R is a role not played by agent A
Plan body:

1. Connect agent A and R.
2. Connect role R and percept P .

Plan #3: Create a new role
Triggering event: Repairing constr(A,P)
Context condition: None
Plan body:

1. Create role R.
2. Connect agent A and R.
3. Connect plan R and percept P .

Figure 3.7: Example of repair plans for fixing constr(A,P)

The repair plan’s context condition is also used to determine whether a repair plan is

applicable to handle a specific event. For example, if agent A does not play any roles, then the

first repair plan is not applicable. Although an event can potentially trigger several applicable

plans, only one of them will be executed to handle a particular event. Additional criteria can

be incorporated in the context condition such as design heuristics, user preferences, etc. We

can also have a default plan which involves the intervention of the user. This corresponds to

the situation where none of the provided repair plans are applicable. This also ensures that

there is always at least one applicable plan. However, we do not have this type of default

61 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

P ::= E [: C]← B
C ::= C ∨ C | C ∧ C | ¬ C | ∀ x • C | ∃ x • C | Prop
B ::= RepairAction; | !E | B1; B2 |

if C then B | for each x in SE B

Figure 3.8: Repair plan abstract syntax

plan in our change propagation framework since we have a translation schema that generates

a complete set of repair plans (i.e. always guarantees there is at least one applicable repair

plan). This issue will be further discussed in chapter 6.

The syntax for repair plans (see figure 3.87) is formally defined based on AgentSpeak(L)

[Rao, 1996]. Each repair plan, P , is of the form E : C ← B where E is the triggering event;

C is an optional “context condition” (Boolean formula) that specifies when the plan should

be applicable8; and B is the plan body, which can contain sequences (B1; B2) and events

which will trigger further plans (written as !E). We extend AgentSpeak(L) by allowing the

plan body to contain primitive repair actions that are presented in section 3.2.2, and also to

contain conditionals and loops.

Below is how the repair plans in figure 3.7 are represented using the syntax defined in

figure 3.8. We use constrt(A,P) to denote the event of making constraint constr(A,P) true.

We also define the abbreviation SE as the set of roles played by agent A.

P1 constrt(A,P) : R ∈ SE ← Connect role R and percept P

P2 constrt(A,P) : R ∈ Set(Role) ∧ R 6∈ SE

← Connect agent A and R ; Connect role R and percept P

P3 constrt(A,P)

← Create role R ; Connect agent A and R ; Connect role R and percept P

In this change propagation framework, the repair plans are generated automatically (at design

time) from the constraints and metamodel, and form a repair plan library which is used at

run time. One key consequence of generating plans from constraints, rather than writing
7“Prop” denotes a primitive condition such as checking whether x > y or whether x ∈ SE .
8In fact when there are multiple solutions to the context condition, each solution generates a new plan

instance. For example, if the context condition is x ∈ {1, 2} then there will be two plan instances.

62 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

them manually, is that, by careful definition of the plan generation scheme, it is possible

to guarantee that the plans generated are correct, complete, and minimal, i.e. there are no

repair plans to fix a violation of a constraint other than those produced by the generator;

and any of the repair plans produced by the generator can fix a violation. However, we

also allow the repair administrators to use their domain knowledge and expertise to modify

generated repair plans or remove plans that should not be executed. Since the library of

plans is derived before runtime, the efficiency of deriving it is not crucial. In chapter 6 we

discuss the (repair) plan generator in more detail.

The generation of repair plans is done ahead of time. At runtime, i.e. when the change

propagation process starts (described as the shaded area in figure 3.6 on page 59), after

primary changes are made to the design model, it is checked for inconsistencies. Our current

implementation simply performs an exhaustive check of all the constraint instances that we

take into account (i.e. the repair scope). However, better constraint checking strategies

discussed in section 2.1.4 (on page 23) can be used in this process. For instance, we can

use the information associated with the primary changes (e.g. the entity or relation being

modified) to perform an incremental validation, which is more efficient because only the

context of the last change, (instead of the whole model) is revalidated [Haesen and Snoeck,

2004; Wagner et al., 2003]. Other advanced constraint checking techniques such as the one

proposed by Egyed [2006] can also be used to improve the performance.

Constraint checking may result in the detection of a number of violated constraints.

When such a violation occurs, in order to have the constraint repaired a corresponding

event is generated. A given constraint repairing event may trigger a number9 of possible

repair plans instances (instantiated from the library of repair plans). The determination as

to which repair plans to choose is generally a design decision, which can be dependent on

various factors such as the cause of inconsistencies, or even factors other than consistency

that contribute to a good design (e.g. experience, knowledge on the future evolution of the

design, design styles, etc.). In general, many of these dependencies may not even be capable

of being formulated formally and being captured without extra knowledge provided by the

software designer. As a result, it is expected that the execution of repair actions requires

user interaction.

However, in some cases the number of different ways of fixing a inconsistency can be
9Which will be always be greater than zero, due to the way in which plans are generated

63 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

very large. Therefore, it is also important not to overwhelm the user with a large number of

choices. For example, it is necessary to prevent infeasible repair options (e.g. repair actions

that result in infinite cycles) from being presented to the user. In addition, it would be

advantageous if the user had a simple mechanism to adjust the change propagation process,

for example, specifying preference to bias the change propagation process towards adding

more information rather then removing things.

We address the issue of repair plan selection by defining a suitable notion of repair plan

cost that takes into account the important cascading nature of change propagation and

fixing inconsistencies. Our framework has a cost calculation component that is responsible

for calculating the cost of each repair plan instance. We recognize that fixing one violated

constraint may also repair or violate others as a side effect, and so the cost calculation

algorithm computes the cost of a given repair plan instance as including the cost of its

actions (using basic costs defined by the software designer), the cost of any other plans that

it invokes directly, and also the cost of fixing any constraints that are made false by executing

the repair plan. In order to do this we simulate the BDI event-triggered change propagation

mechanism in a manner similar to the lookahead planning technique (e.g. [Blythe, 1999;

Erol et al., 1994]). The cost calculation component collects cheapest repair plans with the

assumption that they are preferable from the perspectives of the user. We allow the user (i.e.

the software designer) to specify the repair cost for each basic repair action. The software

designer may use this mechanism to adjust the change propagation process. For example, if

he/she wishes to bias the change propagation process towards adding more information then

he/she may assign lower costs to actions that create new entities or add entities, and higher

costs to actions that delete entities. In chapter 7, we will discuss our cost-based approach

for repair plan selection in more detail.

The least cost plans (which can be more than one) are presented to the designer for

selection. In case there is a large number of equal least cost plans, a certain heuristic can

be used to make it faster for the software designer, by placing plans that are more likely

to be chosen earlier in the list. For instance, we have implemented10 a heuristic which use

primary changes as input. More specifically, we identify new model entities that have been

created by primary changes. We then sort the returned (cheapest) repair plans on the basis

of the number of their contained repair actions involving those new entities. Repair plans
10This heuristic has not, however, been thoroughly developed or evaluated.

64 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

that have more actions affecting the new entities appear earlier in the list presented to the

software designer. This heuristic assumes that “desirable” secondary changes likely target

at the newly created entities so that they form consistency relationships with other existing

entities in the model. This is because newly created entities usually cause inconsistencies

due to the lack of relationships with other existing entities. In our view, it is reasonable for

a heuristic to make a certain assumptions as long as they seem to work. Finally, it is noted

that the user can choose not to make any selection, in this case he/she continues performing

further primary changes and invokes the change propagation process later.

3.4 Chapter summary

This chapter serves to lay out a foundation for our work, which is the proposal of a novel,

agent-based, change propagation framework. This framework tackles the important research

questions that were outlined earlier in chapter 1. More specifically, we have explained how

consistency relationships can be identified and represented using a metamodel and a set

of consistency constraints. In this context, the change propagation process is based on

fixing inconsistencies. We have also argued that the concepts of BDI agents are naturally

suitable to represent and implement the change propagation mechanism. More specifically,

the use of BDI-style, event-triggered, plans matches well with the cascading nature of change

propagation and with the property of having multiple ways of fixing an inconsistency. We

also briefly explain how we deal with the issue of automatically generating repair plans, and

how to select between different applicable repair plan instances to fix a given constraint

violation. These issues will be further discussed in the latter parts of this dissertation.

Our work is loosely related to the constraint satisfaction problems (CSPs) [Hentenryck

and Saraswat, 1996]. CSPs address the combinatorial problem in which given a set of con-

straints among variables and a set of (domain) values the variables can take, what choices

best satisfy these constraints. There have been some efforts on translating a UML model in

terms of a class diagram annotated with OCL constraints into a CSP (e.g. [Cabot et al.,

2008; Cadoli et al., 2004]) in order to automatically verify if the model is satisfiable, i.e. it

is possible to create a correct (no model constraint violation) and non-empty instantiation

of the model. However, the formulating process of mapping UML concepts (e.g. classes,

associations, attributes, etc.) to CSP’s variables and their domain values is complicated and

challenging, especially maintaining the traceability between the original UML model and its

65 (28th August, 2008)

CHAPTER 3. CHANGE PROPAGATION FRAMEWORK

corresponding CSP. In addition, while a CSP constraint typically identifies the variables ex-

plicitly, an OCL constraint does not identify variables directly but instead gives navigation

instructions for the UML model [Egyed, 2006]. Furthermore, constraint satisfaction tech-

niques are often used on a finite domain for variable values whereas fixing inconsistencies in

design models generally deals with open range values in which new values may be created

and/or user intervention is often needed. Nonetheless, UML model checkers built in part on

CSP technology such as UML2CSP [Cabot et al., 2007] can be used to pre-evaluate the inputs

to our framework. More specifically, they can be used to check several correctness properties

about the UML metamodel annotated with OCL constraints such as the satisfiability of the

metamodel or the existence of contradictory constraints.

In the next two chapters, we will demonstrate how our framework is generic and applicable

to a wide range of software engineering methodologies and design types. In particular, we

will discuss how our framework can be applied to Prometheus, a prominent agent-oriented

methodology (chapter 4), and to UML, a widely used modelling language for developing

object-oriented systems (chapter 5).

66 (28th August, 2008)

Chapter 4

Case Study I: Prometheus

In the previous chapter, we have presented an agent-based change propagation framework

that supports software designers in maintaining their designs. We have also argued that

this framework is applicable to a range of software engineering methodologies and design

types. In order to show this, we have performed two case studies involving the application

of our framework to the Prometheus methodology, a prominent agent-oriented methodology,

and UML, a well-known standard for modelling object-oriented designs. In this chapter, we

discuss the first case study by beginning with a brief overview of the Prometheus method-

ology (section 4.1). In doing so, we explain the three major phases in Prometheus: system

specification, architectural design and detailed design and describe the artefacts produced in

each phase. Although Prometheus provides detailed processes, techniques, and heuristics for

developing an agent-oriented system, the modelling language of Prometheus is not formally

defined using a metamodel. On the other hand, a key data item required by our framework

is a metamodel. Therefore, a step towards applying our approach to Prometheus is devel-

oping a metamodel for it. In section 4.2, we discuss a multi-layer metamodelling framework

where a metamodel of Prometheus can be situated. Section 4.3 serves to provide details

of the Prometheus metamodel that we have developed. In addition to a metamodel, our

framework also requires a set of consistency constraints. The details of a set of consistency

constraints for Prometheus, many of which have been developed independently of this work,

are presented in section 4.4.

CHAPTER 4. CASE STUDY I: PROMETHEUS

4.1 Overview of the Prometheus methodology

Prometheus1 is a prominent agent-oriented software engineering methodology which has been

used and developed over a number of years. The methodology is complete, described in con-

siderable detail, and has tool support, i.e. Prometheus Design Tool (PDT2). The description

in this section is necessarily extremely brief, and for further details we refer the reader to

[Padgham and Perepletchikov, 2007; Padgham and Winikoff, 2004].

The Prometheus methodology consists of three phases: system specification, architectural

design and detailed design. In this section, we describe them briefly with the main focus

being on the artefacts that are produced at each stage. An overview of the methodology is

depicted in figure 4.1.

Agent
descriptors

actions, percepts

Scenarios

Interaction
diagrams

Protocols

Initial
Role
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

agent
grouping

agent
acquaintance

shared
data

actors

D
et

ai
le

d
D

et
ai

le
d

de
si

gn
de

si
gn

A
rc

hi
te

ct
ur

al

A
rc

hi
te

ct
ur

al
 d

es
ig

n
de

si
gn

Sy
st

em
Sy

st
em

sp
ec

ifi
ca

ti
on

sp
ec

ifi
ca

ti
on System goals

final design
artefact

intermediate
design
artefact

input

KeyKey

Process

Analysis
Overview

messages

Figure 4.1: The Prometheus Methodology (obtained from the authors of Prometheus.)

1Prometheus was the wisest Titan. His name means “forethought” and he was able to foretell the future.
Prometheus is known as the protector and benefactor of man. He gave mankind a number of gifts including
fire (www.greekmythology.com).

2http://www.cs.rmit.edu.au/agents/pdt

68 (28th August, 2008)

www.greekmythology.com
http://www.cs.rmit.edu.au/agents/pdt

CHAPTER 4. CASE STUDY I: PROMETHEUS

4.1.1 System specification

The system specification is the first phase of Prometheus which involves the following activ-

ities:

1. Building a system’s environment model.

2. Identifying system goals and sub-goals.

3. Developing use case scenarios illustrating the system’s operation.

4. Grouping goals into the basic roles of the system

We now explain each of these activities in detail. As we described in chapter 2, one of the

key properties of agents is “situatedness”, which means that agent systems are situated in a

dynamic environment. Therefore, developing the environment model is an important step in

this system specification phase. Modelling an environment involves a very important activity:

identifying actors and their interaction with the system. The concept of actors in Prometheus

is similar to that of object-oriented analysis. Actors are any stakeholders who will interact

with the system to achieve some goals, and can be humans or other software systems. For

each actor, percepts which are inputs from the actor to the agent system are identified. In

addition, outputs from the system to actors (actions) are identified. An analysis overview

diagram is used in Prometheus to describe the relationships between actors, percepts, actions

and scenarios.

In describing Prometheus we use an example system that is a simplified version of an

actual application developed using Prometheus and reported in [Mathieson et al., 2004]. The

simplified version we use is taken from the work of Jayatilleke [2007] and from teaching

materials developed by the RMIT Agent Group3, with some modifications by ourselves.

Figure 4.2 shows an example of an analysis overview diagram for the simplified version of

a weather alerting system4 described in [Mathieson et al., 2004]. The “Forecaster” actor

interacts with the system by providing “TAF5” percepts that contain forecasting data. The

“Sensor (at AWS6)” actor provides AWS inputs (i.e. actual weather data) to the system via an
3http://www.cs.rmit.edu.au/agents
4More description and discussion of this application can be found in section 9.4 of chapter 9. The analysis

overview diagram is taken from a student project in the agent-oriented programming course taught at RMIT
University.

5TAFs stand for terminal aerodrome forecasts, highly abbreviated forecasts of weather around airports
intended for pilots [Mathieson et al., 2004].

6AWSs stand for automated weather stations.

69 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

“AWS” percept. It also receives requests from the system in the form of a “NewAWSRequest”

action. The “Airport Official” interacts with the system in several ways: providing details

of subscription (“ChangeSubscription” percept) for receiving weather alerts, and receiving

response messages from the system (“PrintMsg” and “ConfirmSubscriptionUpdate” actions).

The analysis overview diagram also shows which percepts are required by which scenarios, e.g.

the “Provide Alert” scenario includes the “TAF” and “AWS” percepts, and the “Subscription

Registration” scenario includes the “ChangeSubscription” percept. The purpose of these

scenarios are discussed ahead.

Figure 4.2: An analysis overview diagram for a weather alerting system

Similarly to identifying use cases in the object-oriented approach, the interaction between

each actor and the system is described using scenarios in Prometheus. Each interaction

scenario is described in a structured form which includes a sequence of steps, where each

step can be an action being performed by a role, a percept being received by a role, a goal

being achieved by a role, or a sub-scenario7.

The system goals are identified on the basis of the initial scenarios as described above.

Further goals are then elicited using abstraction and refinement techniques, as well as by

developing scenario steps. This results in a goal hierarchy which is represented in a goal

overview diagram. Figure 4.3 shows an example goal overview diagram for a weather alerting
7There is also an “other” step type which can be used to represent miscellaneous things such as waiting for

a response.

70 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Figure 4.3: A goal overview diagram for a weather alerting system

system. As can be seen, the major goal of the system is providing alerts (“Provide Alerts”

goal) which is broken down into several subgoals: “Process TAF”, “Process AWS”, “Check

TAF Discrepancy”, and “Generate Alert”. These subgoals are also refined into sub-subgoals

and so on.

The final step of the system specification phase involves identifying roles. Roles are

obtained by grouping similar goals, and also including the percepts and actions associated

with the included goals. A role diagram is used to capture the roles, and their percepts,

actions and goals. According to figure 4.4, there are six different roles in the system: “Manage

Subscription” role is for storing active subscriptions and delivering alerts to the relevant

subscribers; “User Interaction” role is for receiving change subscription requests from the

user, displaying messages such as alerts, and confirming subscription update; “Manage TAF

Data” and “Manage AWS Data” roles are for managing each of these data types available

in the system; “Check Discrepancies” role is responsible for detecting discrepancies between

AWS and TAF data; and “Filter Alerts” role is for combining alerts for a given GUI which

occur almost at the same time, determining whether to deliver an alert and controlling the

frequency of alerts sent to the user.

71 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Figure 4.4: A role diagram for a weather alerting system

4.1.2 Architectural design

Between the system specification phase and the detailed design phase where the system

is modelled as computational entities which are suitable for a particular agent platform,

Prometheus provides an intermediate phase called architectural design. The major purpose

of the architectural design phase in Prometheus is to identify the agent types within the

agent system and the interactions between these agent types. The main steps of this phase

are:

1. Determining what agent types will be implemented

2. Developing the interaction diagrams and interaction protocols that describe the dy-

namic behaviour of the system.

3. Developing the system overview diagram which captures the system’s overall (static)

structure.

72 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Figure 4.5: An agent role grouping diagram for a weather alerting system

Agent types are derived as groups of one or more roles. The choice of grouping is guided

by considerations of coupling and cohesion. For instance, if there are significant interactions

between two roles (e.g. a large number of messages exchanged), then there is a high possibility

that they should be grouped (coupling criterion). On the other hand, roles that are related to

each other (e.g. sharing the same data) are likely to be in the same group (cohesive criterion).

Prometheus provides the agent acquaintance diagram and data coupling diagram to help the

designer group roles into agent. The data coupling diagram shows the relationships between

roles in terms of data used. Meanwhile, the agent acquaintance diagram shows interactions

between agents as links. Figure 4.5 shows how roles are grouped into agents in the weather

alerting system. In this case, each role is assigned to an agent except that the “Manage

Subscription” and “Filter Alerts” roles are played by the “Alerter” agent.

Once the agent types have been determined, it is possible to start defining the interactions

between them using interaction protocols. These protocols capture the dynamic behaviour

of the system by defining the intended valid sequences of messages between agents. The

73 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

interaction protocols are developed from interaction diagrams which in turn are based on the

scenarios developed in the system specification phase. Interaction protocols can be captured

using a range of possible notations. The Prometheus methodology does not prescribe a

particular notation, but the Agent UML (AUML8) notation is often used and is supported

by the Prometheus Design Tool.

Figure 4.6: System overview diagram for a weather alerting system

The system’s (static) structure is captured in a system overview diagram, which is re-

garded as the single most important design artefact in Prometheus. The system overview

diagram gives the software designer a general picture of how the system as a whole is struc-

tured. This type of diagram shows the agent types, the communication links between them,

and data. It also shows the system’s boundary and its environment in terms of actions, per-

cepts, and external data. For example, figure 4.6 shows the system overview diagram for the

weather alerting system. It shows how the five agents in the system interact with each other.

“TAFManager” and “AWSManager” agents process “TAF” and “AWS” percepts respectively,

and store the relevant data which can be accessed by the “Discrepancy” agent. This agent

sends “AlertDiscrepancy” messages to the “Alerter” agent, which uses the “SubscriptionStore”
8http://www.auml.org

74 (28th August, 2008)

http://www.auml.org

CHAPTER 4. CASE STUDY I: PROMETHEUS

data to work out which GUI agents should receive discrepancy alerts. A “GUI” agent can also

register for being alerted by sending a “SubscribeChange” message to the “Alerter” agent.

4.1.3 Detailed design

The final stage of the Prometheus methodology is the detailed design. The internal structure

of each agent and how it will accomplish its goals within the overall system are addressed in

this phase. Specifying agent internals in Prometheus is a process of progressive refinement,

including the following activities:

1. Defining and developing capabilities (modules within agents) and their relationships.

2. Developing process diagrams depicting the internal processing of each agent related to

the protocol specifications. However, process diagrams are not as well developed in

Prometheus, are less commonly used and are not supported by the Prometheus Design

Tool. As a result, we do not cover process diagrams in this thesis.

3. Developing plans, events, and data and their relationship.

Most of the Prometheus methodology does not assume any particular agent architecture.

However, the lowest layer of plans and events does assume that the target agent architecture

is plan-based (which is the case for BDI agent platforms). This could easily be exchanged

for an alternative architecture if desired, but a detailed design which is close to code, must

make some assumptions about the implementation architecture. Agent overview diagrams

and capability overview diagrams capture the structure of the capabilities, sub-capabilities,

plans, events and data within the agent. Figure 4.7 shows the internals of the “Discrepancy”

agent, which contain several plans to achieve its goal of detecting discrepancies. The ‘Han-

dleAwsDataPlan” plan is triggered by an “AWSData” message, sent by the “AWSManager”

to inform it that a new AWS has just arrived. This plan then retrieves TAF and AWS data

from “TAFDataStore” and “AWSDataStore” respectively and processes them. It may also

request for new AWS by sending a “RequestNewAWS” message to the “AWSManager” agent.

Discrepancy detection for each data type and sending alerts to the “Alerter” agent are done

by “CheckTempDiscrepancy” and “CheckPressDiscrepancy” plans.

75 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Figure 4.7: Agent overview diagram for the “Discrepancy” agent

4.1.4 Prometheus diagrams

As previously described, following the Prometheus methodology produces a range of artefacts

at different stages of the software development lifecycle. These artefacts form a semantically

consistent abstraction of an agent system to be built. Each artefact represents a different

aspect or abstraction level of the underlying system and can be seen as a “view” on the full

underlying model. Each view depicts various associations between the Prometheus concepts

or entities, such as actors, goals, agents, roles, percepts, actions, etc. Many of the entities

may appear in different views. For instance, the same percept entity can appear in the

analysis overview diagram, a scenario editor, the role diagram, the system overview diagram,

an agent overview diagram and a capability overview diagram. In each of these views, the

percept has associations with other entities. This repetition of entities across different views

76 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

induces dependencies among them. Figure 4.8 summarizes the most important diagrams that

appear in Prometheus or PDT.

Diagram Purpose
System Specification

Analysis Overview How the system interacts with its environment
in terms of actors, percepts, actions, and scenarios

Scenario Editor Possible sequential interaction between roles
Goal Overview Structure of system goals and subgoals
System Roles Grouping of goals, percepts and actions into roles
Architectural Design

Agent-Role Grouping Grouping of roles into agents, derived from Data
Coupling and Agent Acquaintance

System Overview Overall system structure in terms of agent types,
interactions between them and the environment

Protocol Possible interaction between agents
Detailed Design

Agent Overview Internals of agents in terms of their capabilities,
events, plans and data structures

Capability Overview Structure of the plans and events within capabilities
Process Internal processing of an agent

Figure 4.8: Prometheus diagrams

In this section, we have provided an overview of the Prometheus methodology. We

have also summarized the different diagrams within Prometheus that provide structural

and behavioural views of the system under development. In the next section, we review the

multi-layer metamodel hierarchy approach and discuss where a metamodel of Prometheus

will reside.

4.2 The four-layer metamodel hierarchy

Model driven development (MDD) generally advocates the multi-layer modelling approach.

For example, the Model Driven Architecture (MDA) [Kleppe et al., 2003], the MDD frame-

work part of OMG standards, uses the well-known four layer metamodelling framework for

defining where entities are used within and between models. Therefore, an important step

to develop a metamodel for Prometheus is defining where its metamodel is situated in a

multi-layer metamodelling framework.

77 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

M3 (UML metamodel)

M2 (Prometheus metamodel)

M0 (System -
runtime instances)

M1 (Model of a System in
Prometheus language)

Agent
-name : string

UML ClassUML Attribute

name = "GUI"
GUI:Agent

<<instance of>> <<instance of>>

<<instance of>>

<<instance of>>

<<instance of>>

Figure 4.9: The four-layer metamodel hierarchy

Similarly to the MDA four-layer metamodel hierarchy, the lowest layer is called M0 (see

figure 4.9). At this level, there is the running system that contains the actual (“real”) in-

stances. These instances are, for example, the agents named “iGUI MELB” and “iGUI SYD”.

Such instances are the run-time instances of model elements defining a specific domain, e.g.

a weather alerting business.

In MDA context, the M1 layer contains models of a system. It is mainly responsible

for defining languages that describes certain domains. Prometheus provides such a language

to describe a domain from an agent-oriented perspective. A Prometheus model is an M1

model that contains, for instance, a “GUI” agent type, an “AlertDisrepancy” message type,

a “CheckTempDiscrepancy” plan type. It is noted that each entity at the M0 layer is always

78 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

an instance of an element at M1 layer. For example, the agents named ‘iGUI MELB” and

“iGUI SYD” are instances of the M1 element, Prometheus “GUI” agent type.

The next higher level, also referred to as M2, contains elements that specify the elements

at the M1 layer. More specifically, every element at M1 is an instance of an M2 element, and

the concepts at M2 are all categorisation or classification of instances at M1. A metamodel

for Prometheus that we want to build should reside in this layer. This metamodel should be

defined in such a way that every Prometheus model (at M1) is an instance of the Prometheus

metamodel (at M2). For instance, the “GUI” agent type in a Prometheus model is shown in

figure 4.9 as an instance of the class “Agent”.

As we use UML to define a metamodel for Prometheus, our next higher level, i.e. M3,

clearly contains the UML metamodel. The same relationship that exist between elements

of lower layers is present between elements of the M2 and M3 layers. Each element in M2

should be an instance of an element in M3. For instance, the “Agent” class (in Prometheus

metamodel) is an instance of a “UML Class”, and the “name” property of the “Agent” class

is an instance of a “UML Attribute”. It is noted that similar to MDA, we can have another

higher layer that contains the Meta-Object Facility (MOF) to define the UML metamodel.

In addition, we choose the UML metamodel (instead of MOF) as the metametamodel for

the M2 Prometheus because the Dresden OCL2 Toolkit that we used for our implementation

currently supports only UML models (see chapter 8 for more details). However, our main

focus is at the M2 layer, where the Prometheus metamodel resides.

4.3 A metamodel for Prometheus

A Prometheus metamodel should specify what can be expressed in the valid models of the

Prometheus modelling language. It should also formally capture the relationships between

all Prometheus concepts such as actors, goals, agents, roles, percepts, actions, etc. In [Jay-

atilleke, 2007], a metamodel has been developed for Prometheus in order to support automatic

transformations from Prometheus models to source code. However, the focus of that meta-

model is on detailed design and implementation, and it does not cover some of the entities

at system specification and architectural levels such as actors, scenarios, roles, etc. Conse-

quently, we have developed a metamodel of Prometheus by extracting such well-formedness

conditions and relationships between Prometheus entities presented in [Padgham and Pere-

pletchikov, 2007; Padgham and Winikoff, 2004; Perepletchikov and Padgham, 2005]. Our

79 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

metamodel covers entities described across the three development phases in Prometheus, i.e.

system specification, architecture design and detailed design.

As our Prometheus metamodel is relatively large, we present here its different snapshots.

Figures 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16 provide different snapshots of the main

metamodel showing the relationships between those Prometheus entities.

4.3.1 ModelEntity

A ModelEntity represents all the Prometheus entities, i.e. all these entities are directly or

indirectly inherited from the ModelEntity. Each Prometheus model entity has a name, a

description, a unique identification, and some notes attached to it.

Attributes

name The name of the entity.

description A brief description of the entity.

uniqueId A unique identifier for this entity

notes Some notes related to this entity.

4.3.2 Actor

An actor represents an external entity, which can be human or software systems (see figures

4.10 and 4.15). In the metamodel, an Actor may affect the system through a set of Percepts.

The system in turn may affect an Actor through Actions. An Actor may also participate in

a number of Scenarios and Protocols.

Associations

action Actions produced by a system which the Actor interacts with. These actions give

certain effects on the Actors.

percept The set of percepts represented how the Actor input to the system that it interacts

with.

scenario The set of use case scenarios in which this Actor participates.

protocol The set of protocols in which this Actor participates.

4.3.3 Role

A role represents a certain functionality of a system. Roles are developed by grouping goals

based on their functional relatedness. In the metamodel (see figures 4.10, 4.11, and 4.13),

80 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

a Role can handle several Percepts, perform a number of Actions, and is responsible for

achieving Goals. A Role may also have access (read or write) to some Data. Steps in a

Scenario have to be associated with at least one Role. Finally, a Role should be played by

at least one Agent.

Associations

perceptsEntityReference The set of percepts that are handled by the Role.

actionsEntityReference The set of actions that are performed by the Role.

goalsEntityReference The set of goals that are achieved by the Role.

readData Data that are read by the Role.

writtenData Data that are written by the Role.

step The steps (in a particular scenario) that are performed by the Role.

agent One or more agents that play the Role.

Data

+dataType:String

+includedFields:String

+externalToSystem:Boolean

+initialisation:String

+writtenWhen:String

Role

Actor

Percept

+source:String

+informationCarried:String

+knowledgeUpdated:String

+processing:String

+frequency:String

Action

+parameters:String

+durationDescription:String

+failureNotificationDescription:String

+partialChange:String

+sideEffects:String

Goal

+orRefined:Boolean

Scenario

+priority:Integer

+variation:String

+trigger:String

Actor-Percept-Action-Data-Role-Scenario

goal+

*scenario+

*

parent+
*

subGoalsEntityReference+

*

actor+ *

percept+*

actor+ *

scenario+*

actor+

* action+

*

role+ *

goalsEntityReference+*

role+

1..*
perceptsEntityReference+

* role+1..*

actionsEntityReference+ *

readingEntitiesEntityReference_Role+

* readData+

*

writingEntitiesEntityReference_Role+

* writtenData+

*

Figure 4.10: Metamodel snapshot relating to system specification entities

81 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

4.3.4 Percept

Percepts represent inputs from an actor or environment to the system. In the metamodel

(refer to figures 4.10, 4.11, 4.12, 4.14 and 4.16), a Percept can be provided by several Actors.

A Percept can be linked to a PerceptStep in a scenario. A Percept should be handled by

at least one Role and one Agent. Capabilities are also able to handle Percepts. The system

processes its input Percepts using Plans. In some cases, Percepts are also the events that

trigger some Plans.

Attributes

description Indicates the situation in which this Percept is received.

source Describes how information is retrieved from the environment.

informationCarried Specifies what information is available regarding the Percept.

knowledgeUpdated Identifies knowledge updates resulting from the Percept. This can be either

directly or indirectly (via some forms of reasoning) extracted from the

information carried.

processing Indicates how the Percept is processed or is received directly from the agent

sensor.

frequency Specifies the likely frequency of the Percept. It may contain extra infor-

mation relating to handling of extreme cases if necessary.

Associations

actor Specifies the actors who provides the given Percept.

role The set of roles that are responsible for handling the given Percept.

At least one role are assigned to handle the Percept.

step Indicates the (scenario) steps that this Percept is associated with.

agentRespondingEntityReference One or more agents that respond to this Percept.

capability Capabilities that respond to this Percept.

plan The set of plans that process this Percept.

triggeredPlan Plans that are triggered by this Percept. In this case, the Percept

is considered as an event.

4.3.5 Action

Actions represent outputs from the system to actors. In the metamodel (see figures 4.10,

4.11, 4.12, 4.14 and 4.16), an Action can give effects on a number of Actors. An Action

is linked with an ActionStep in a scenario, and is performed by at least one Role and one

82 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Agent. Capabilities are also able to perform Actions. An Action must be performed by at

least one Plan.

Attributes

description Describe the action and its intended results.

parameters Specifies parameters that can influence how the action is performed.

durationDescription Indicates whether the action is instantaneous or durational.

failureNotifiationDescription Indicates how failure is checked and reported.

partialChange Describes the change that results from performing the failed action.

sideEffects Indicates the side effects of the action.

Associations

actor Specifies the actors who receives the Action from the system.

role The set of roles that are responsible for performing the given Action.

step Indicates the (scenario) steps that this Action is associated with.

agent One or more agents that perform this Action.

capability Capabilities that perform this Action.

plan The set of plans that perform this Action.

4.3.6 Data

Data represents the persistent data that are used in the system. In the metamodel (see figures

4.10, 4.11, 4.12, 4.14 and 4.16), Data can be read or written by Roles, Steps in a scenario,

Agents, Capabilities and Plans. Data can also be owned by an Agent or a Capability.

Attributes

dataType Indicates the type of this Data.

includedFields Indicates the fields that are contained in this Data.

externalToSystem Indicates whether this data is external to the system or not.

initialisation Describes the initialisation process or values.

writtenWhen Specifies what the data is used for and when it is updated.

83 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Associations

readingEntitiesEntityReference Role The roles that read this Data.

writingEntitiesEntityReference Role The roles that write to this Data.

stepReader Indicates the (scenario) steps that read this Data.

stepWriter Indicates the (scenario) steps that write to this Data.

agentOwner One or more agents that own this Data. Instances of the given

Data are internal to these agents.

writtenByEntityReference Agent One or more agents that write to this Data. The given Data

is external to these agents.

readByEntityReference Agent One or more agents that read this Data. The given Data is

external to these agents.

ownerCapability One or more capabilities that own this Data. Instances of the

given Data are internal to these capabilities.

writtenByEntityReference Capability One or more capabilities that write to this Data. The given

Data is external to these capabilities.

readByEntityReference Capability One or more capabilities that read this Data. The given Data

is external to these Capability.

planWriter The set of plans that write to this Data.

planReader The set of plans that read this Data.

4.3.7 Goal

Goals represents the purposes of the system to be developed. In the metamodel (see figures

4.10, 4.11, 4.12, 4.14 and 4.16), a Goal is assigned to Roles, Agents, Capabilities and Plans.

A Goal is also associated with a Scenario that illustrates a means to achieve it. Similar to

a percept and an action, a Goal can be linked to a Step in a scenario. A Goal can contains

other Goals, which are usually referred to as subgoals.

Attributes

orRefined Indicates whether this goal is OR-refined or AND-refined. If a goal is AND-

refined, it means that subgoals are steps (that must be done) in achieving

the overall goal. If a goal is OR-refined, then subgoals are alternative ways

of accomplishing the goal, i.e. achieving any of them is sufficient.

84 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Associations

role The set of roles that are responsible for achieving the given Goal.

scenario The scenarios that mean to achieve the goal.

subGoalsEntityReference The set of subgoals of this Goal. Primitive goals, i.e. goals that are at

the leaves of the goal tree, do not have any subgoals.

step The (scenario) steps that this Goal is associated with.

agent The set of agents that achieve this Goal.

capability The set of capabilities that achieve this Goal.

plan The set of plans that aim to achieve this goal.

4.3.8 Scenario

A scenario describes the interaction between actors and the system. In the metamodel

(see figure 4.11), each Scenario is associated with a goal, which the scenario is one way of

accomplishing. Different scenarios can be linked with the same goal. A scenario contains a

number of Steps. Each Step in a scenario is performed by a number of Roles (typically one

role) and can have access to some Data.

Attributes

priority The priority of this scenario. A high number indicates a high priority.

variation Describes certain variations of this scenario.

trigger Indicates the triggers of this scenario.

Associations

actor The actors who participate in this scenario.

goal The goals that this scenario aims to achieve.

stepsEntityReference A sequence of steps in this scenario.

step The (scenario) steps that this scenario is associated with.

4.3.9 Step

Steps are primitive entities that form a scenario. In the metamodel (figure 4.11), a Step

can be of different kinds: GoalStep, ActionStep, PerceptStep, ScenarioStep or OtherStep. A

GoalStep is linked with a Goal, an ActionStep is linked with an Action, and a PerceptStep

is linked with a Percept. ScenarioStep is used to specify a sub-scenario, and is linked to a

scenario. OtherStep is to cover other cases such as waiting for something to happen. A Step

85 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Data

Action

Step

ScenarioStep

Scenario
Role

PerceptStep

Percept

OtherStep
GoalStep

Goal

ActionStep

Scenario

step+*

stepEntityReference+

step+ *

stepEntityReference+

goal+

* scenario+

*

stepEntityReference+

step+
*

scenario+

stepsEntityReference+*
{ordered} step+

*

rolesEntityReference+

1..*

stepEntityReference+

step+ *

stepWriter+

* dataWrittenEntityReference+

*

stepReader+

* dataReadEntityReference+

*

Figure 4.11: Metamodel snapshot relating to Scenario

is part of a Scenario and is assigned to a number of Roles (typically only one). A Step may

also read or write some Data.

Associations

scenario The scenario which owns this step.

rolesEntityReference The roles which perform this step.

dataReadEntityReference The data read by this step.

dataWrittenEntityReference The data written by this step.

4.3.10 Agent

An agent is the most important entity in the system. In Prometheus, agents are formed by

combining roles. In the metamodel (figures 4.12, 4.13, and 4.15), an Agent plays at least one

Role. An Agent also handles some Percepts, performs some Actions, achieves some Goals,

reads/writes to some Data, and sends/receives some Messages. An Agent may also own some

internal Data or Messages (i.e. messages that are posted and handled internally to a single

agent). An Agent may contain a number of Capabilities and Plans. An Agent may also take

86 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Goal

ActionPercept

Message

+purpose:String
+informationCarried:StringData Agent

+lifetime:String
+initialisation:String
+demise:String
+cardinalityMinimum:Integer
+cardinalityMaximum:Integer

Agent

agentOwner+

*internalData+

*

readByEntityReference_Agent+

*readData+

*

writtenByEntityReference_Agent+

*writtenData+

*

agentReceiver+

* receivedMessage+

*

agentSender+

* sentMessage+

*

agentOwner+

* internalMessage+

*

agent+*

goalsEntityReference+ *

agentsRespondingEntityReference+ 1..*

perceptsEntityReference+*

agent+ 1..*

actionsEntityReference+*

Figure 4.12: Metamodel snapshot relating to Agent

part in several protocols as a means of interacting with other agents.

Attributes

lifetime Indicates the lifetime of the agent.

initilisation Describes what is involved in the process of initiating this agent.

demise Describes what is involved in the process of terminating this agent.

cardinalityMinimum Indicates the allowable minimum number of instances of this agent.

cardinalityMaximum Indicates the allowable maximum number of instances of this agent.

Associations

perceptsEntityReference The percepts that this agent is responsible for handling.

goalsEntityReference The goals that this agent aims to achieve.

actionsEntityReference The set of actions performed by this agent.

internalData Data owned by this agent.

writtenData Data written by this agent.

readData Data read by this agent.

internalMessage Messages owned by this agent.

sentMessage Messages sent by this agent.

receivedMessage Messages received by this agent.

rolesEntityReference One or more roles played by this agent.

includedPlansEntityReference Plans owned by this agent.

includedCapabilitiesEntityReference Capabilities owned by this agent.

protocolsEntityReference Protocols that this agent takes part in.

87 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Role

Capability

+notes:String

+processes:String

Plan

+context :String

+failure :String

+failureRecovery :String

+procedure :String

Agent

Role-Agent-Plan-Capability

agent+

1..*
includedPlansEntityReference+

*

agent+ 1..*

includedCapabilitiesEntityReference+*

capability+

*

includedPlansEntityReference+

*

ownerCapability+
*

includedCapabilitiesEntityReference+

*

rolesEntityReference+ 1..*

agent+1..*

Figure 4.13: Metamodel snapshot relating to Role, Agent, Capability and Plan

4.3.11 Capability

Capabilities allow agent elements to be hierarchically structured. In the metamodel (figures

4.13 and 4.14), a Capability may handle some Percepts, perform some Actions, achieve some

Goals and read/write to some Data. A Capability may also own some internal Data. A

Capability may be nested within other Capabilities and may contain a number of Plans.

Attributes

process Description of an internal process of this Capability.

88 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Message

Goal

Data

Action
Percept

Capability

+processes:String

Capability

capability+ *

actionsEntityReference+*

capability+
*

perceptsEntityReference+

*

capabilityOwner+

* internalData+

*

readByEntityReference_Capability+*

readData+

*

capability+*

goalsEntityReference+ *

writtenByEntityReference_Capability+

* writtenData+

*

capabilityOwner+

*internalMessage+

*

sentMessage+

* capabilitySender+

*

receivedMessage+

* capabilityReceiver+

*

Figure 4.14: Metamodel snapshot relating to Capability

Associations

perceptsEntityReference The percepts that this capability is responsible for handling.

goalsEntityReference The goals that this capability aims to achieve.

actionsEntityReference The set of actions performed by this capability.

internalData Data owned by this capability.

writtenData Data written by this capability.

readData Data read by this capability.

internalMessage Messages owned by this capability.

sentMessage Messages sent by this capability.

receivedMessage Messages received by this capability.

agent The agents owning this capability.

includedPlansEntityReference Plans owned by this capability.

includedCapabilitiesEntityReference Capabilities owned by this capability.

ownerCapability The parent capability of this capability.

4.3.12 Message

A message defines a particular communication between agent instances. In the metamodel

(see figures 4.12, 4.14, 4.15 and 4.16), a Message is sent and received by Agents, Capabilities

and Plans. Messages may be owned by an Agent or a Capability, i.e. posted (and handled)

internally within the Agent or the Capability. A Message can also be an event which triggers

89 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

a Plan.

Attributes

purpose Indicates the purpose of this message.

informationCarried Information contained in this message.

Associations

agentOwner The agents which own this message.

agentSender The agents which send this message.

agentReceiver The agents which receive this message.

capabilityOwner The capabilities which own this message.

capabilitySender The capabilities which send this message.

capabilityReceiver The capabilities which receive this message.

planReceiver The plans receiving this message.

triggeredPlan The plans triggered by this message.

planSender The plans sending this message.

4.3.13 Protocol

A protocol defines exactly which interaction sequences are valid within the system. Inter-

action protocols consists of sequencing, iteration, alternatives, and other control structures.

There is a range of notations that can be used to describe protocols such as UML activity

diagram, AUML9 (Agent UML) [Odell et al., 2000], and Petri nets (e.g. [Nowostawski et al.,

2001]; [Poutakidis et al., 2002]). A protocol in Prometheus is defined based on the revised

version of Agent UML [Huget and Odell, 2004]. This version of AUML contains a range of

notations for describing sequence diagrams, interaction overview diagrams, communication

diagrams, and timing diagrams. AUML has been receiving a reasonable level of community

acceptance. More specifically, its sequence diagrams notation has been adopted by several

prominent agent-oriented methodologies (e.g. Prometheus, Gaia, and Tropos) for depicting

agent interactions, and by FIPA10 for describing standardised protocols.

The Prometheus Design Tool uses a textual notation for AUML to provide a precise,

formal and simple definition of agent interaction protocols [Winikoff, 2007]. The metamodel

that we have developed for protocol in Prometheus is based on that textual notation. In the

metamodel (figure 4.15), a Protocol has participation from two or more Agents. A Protocol
9http://www.auml.org

10The Foundation for Intelligent Physical Agents, http://www.fipa.org.

90 (28th August, 2008)

http://www.auml.org
http://www.fipa.org

CHAPTER 4. CASE STUDY I: PROMETHEUS

can contain Pelements which can be either a Message, a Goto, a Label, a Box, a Region or

even a SubProtocol. A Protocol may refer to SubProtocols.

Message

Actor

SubProtocol

Region

+guard:String

Box

-type:String
Label

-label:String

Goto

-label:String

Pelement

Protocol

Agent

Protocol

agentsEntityReference+
2..*

protocolsEntityReference+
*

owner+ pElement+

1..*
{ordered}

regionOwner+

pElement+

*{ordered}

boxOwner+

region+ 1..*
{ordered}

protocol+

subProtocol+

*

actor+ *

protocol+*

agentReceiver+

* receivedMessage+

*

agentSender+
*

sentMessage+

*

agentOwner+
*

internalMessage+

*

Figure 4.15: Metamodel snapshot relating to Protocol

Associations

subProtocol The protocols that are included in this protocol.

pElement The protocol elements.

agentsEntityReference The agents which participate in this protocol.

actor The actors who participate in this protocol.

4.3.14 Pelement

A protocol element describes what are the constituents within a protocol. In the metamodel,

a Pelement is an abstract class that represents either a Message, a Goto, a Label, a Box,

a Region, or a SubProtocol. A Pelement is contained in a Protocol and a Region. A Box

can be divided into a number of Regions, which can contain Pelements. There are several

types of Box such as “Alternative”, “Option”, or “Parallel”, which are specified in the type

attribute. Each region can contain Pelements and has a guard, specifying a condition on

91 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

that region being selected. Labels and Gotos represent incoming and outgoing continuations

respectively. Finally, a SubProtocol represents a reference to another protocol. It is noted

that every Pelement must belong to exactly one protocol or one region.

Associations

owner The protocol which owns this element.

regionOwner The region which owns this element.

4.3.15 Plan

A plan describes the details of how an agent or capability achieves its goal. In the meta-

model (figures 4.13 and 4.16), a Plan is assigned to accomplish some Goals, respond to some

Percepts, perform some Actions, read or write to some Data, and send and/or receive some

Messages. A Plan is triggered by an event which is either a Percept or a Message. A Plan

may be contained in some Capabilities and in at least one Agent.

Percept

Data

Goal

Plan

+context:String
+failure:String
+failureRecovery:String
+procedure:String

Action

Message

Plan

planSender+

1..* outgoingMessagesEntityReference+

*

actionsEntityReference+*

plan+ 1..*

planReceiver+

* incomingMessagesEntityReference+

*

triggeredPlan+

* triggersEntityReferenceMessage+

*

plan+
*

goalsEntityReference+
*

planReader+

*readData+

*

planWriter+

*writtenData+

*

plan+*

perceptsEntityReference+ *

triggeredPlan+*

triggersEntityReferencePercept+

*

Figure 4.16: Metamodel snapshot relating to Plan

92 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

Attributes

context Indicates the context condition of this plan.

failure Describes situations where this plan fails.

failureRecovery Describes how the plan recovers from a failure.

procedure Describes roughly the process of this plan.

Associations

goalsEntityReference The set of goals which this plan aims to achieve.

actionsEntityReference The actions performed by this plan.

perceptsEntityReference The percepts handled by this plan.

triggersEntityReferencePercept The percepts triggering this plan.

writtenData The data written by this plan.

readData The data read by this plan.

incomingMessagesEntityReference The messages received by this plan.

outgoingMessagesEntityReference The messages sent by this plan.

triggersEntityReferenceMessage The messages triggering this plan.

agent Agents owning this plan.

capability Capabilities owning this plan.

4.4 Consistency constraints

In addition to the metamodel, another important input to our change propagation frame-

work is a set of consistency constraints. These constraints are usually derived based on

well-formedness, coherence between diagrams and best practice guidelines11. With respect

to Prometheus, the consistency constraints aim to ensure well-formedness and coherence

among analysis overview diagrams, scenarios, role diagrams, data coupling diagram, agent

role coupling diagram, system overview diagram, agent overview diagrams, and capability

diagrams. In addition, the constraints make sure that best practice guidelines (such as those

proposed in [Padgham and Winikoff, 2004]) are followed. These guidelines include constraints

such as messages must be both sent and received, or data must be both used and produced.

The set of consistency constraints for Prometheus that we have used come from three
11It is noted that there are also constraints corresponding to the cardinalities (of associations) in the

metamodel. Such constraints are also taken into account during the constraint repair process of our change
propagation framework. In fact, our tool support (discussed in chapter 8) is able to extract information
relating to cardinalities in the input metamodel and automatically create corresponding constraints for them.

93 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

different sources: the methodology documentation (mainly from [Padgham and Winikoff,

2004]), its tool support (i.e. Prometheus Design Tool), and our own contribution including

consultation with the methodology’s authors. More specifically, all the following constraints

for roles, agents (except the last one), percepts, messages, and data are explicitly mentioned

in [Padgham and Winikoff, 2004]. The constraint for Pelement is from [Winikoff, 2007].

Constraints 2-9 for plans are not explicitly discussed in the methodology’s documentation but

are enforced by the Prometheus Design Tool. The remaining constraints (all the constraints

for steps) are derived based on our experience of using Prometheus plus consultation with

the methodology’s authors. We have used the Object Constrain Language (OCL) to formally

express those constraints.

We now present the consistency constraints for entities in the Prometheus metamodel.

For each constraint, there is an informal description and an equivalent OCL expression. It

is noted that the context of an OCL constraint is implicitly the entity being described. For

example, the context of the first constraint of the Role (below) is the entity Role in the

metamodel.

4.4.1 Role

The relationship between roles and agents is constrained to be transitive: if a role is played

by an agent, and the role reads some data, then the agent is deemed to also read the data.

Most of the following constraints specify this transitive relationship.

1 Any data read by a role must also be read by all the agents playing this role.

self.readData→forAll(data : Data |
self.agent→forAll(a : Agent | data.readByEntityReference Agent→includes(a))

2 Any data written by a role must also be written by all the agents playing this role.

self.writtenData→forAll(data : Data |
self.agent→forAll(a : Agent | data.writtenByEntityReference Agent→includes(a))

3 Any action performed by a role must also be performed by all the agents which play

this role.

self.actionsEntityReference→forAll(action : Action |
self.agent→forAll(a : Agent | a.actionsEntityReference→includes(action)))

4 Any percept handled by a role must also be responded to by all the agents which play

this role.

94 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

self.perceptsEntityReference→forAll(percept : Percept |
self.agent→forAll(a : Agent | a.perceptsEntityReference→includes(percept)))

5 Any goal achieved by a role must also be accomplished by all the agents which play

this role.

self.goalsEntityReference→forAll(goal : Goal |
self.agent→forAll(a : Agent | a.goalsEntityReference→includes(goal)))

4.4.2 Agent

Constraints 1-5 are derived from the relationship between agents and roles. The rest of the

constraints (except the last one) are derived from the completeness conditions between agents

and plans, e.g. for each action performed by an agent, it is required to have at least one plan

owned by the agent which performs this action12. Finally, the last constraint, i.e. constraint

16, is an example of a domain specific constraint. It describes a design guideline specific to

the design of the weather alerting system.

1 Any percept handled by an agent must be handled by at least one of its roles.

self.perceptsEntityReference→forAll(percept : Percept |
self.rolesEntityReference→exists(role : Role | role.perceptsEntityReference→includes(percept)))

2 Any action performed by an agent must be performed by at least one of its roles.

self.actionsEntityReference→forAll(action : Action |
self.rolesEntityReference→exists(role : Role | role.actionsEntityReference→includes(action)))

3 Any goal achieved by an agent must be achieved by at least one of its roles.

self.goalsEntityReference→forAll(goal : Goal |
self.rolesEntityReference→exists(role : Role | role.goalsEntityReference→includes(goal)))

4 Any data written by an agent must be written by at least one of its roles.

self.writtenData→forAll(data : Data |
self.rolesEntityReference→exists(role : Role | role.writtenData→includes(data)))

5 Any data read by an agent must be read by at least one of its roles.

self.readData→forAll(data : Data |
self.rolesEntityReference→exists(role : Role | role.readData→includes(data)))

12The action can be performed by a capability belonging to the agent. However, due to a similar constraint
imposed on capabilities and the transitive relationship between agents, capabilities, and plans (refer to section
4.4.3), the capability needs to have at least one plan performing the action, and this plan is also ultimately
owned by the agent.

95 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

6 For each action performed by an agent, there is at least one plan owned by the agent

which performs this action.

self.actionsEntityReference→forAll(action : Action |
self.includedPlansEntityReference→exists(plan : Plan | plan.actionsEntityReference→includes(action)))

7 For each percept handled by an agent, there is at least one plan owned by the agent

which handles this percept.

self.perceptsEntityReference→forAll(percept : Percept |
self.includedPlansEntityReference→exists(plan : Plan | plan.perceptsEntityReference→includes(percept)))

8 For each goal allocated to an agent, there is at least one plan owned by the agent which

achieves this goal.

self.goalsEntityReference→forAll(goal : Goal |
self.includedPlansEntityReference→exists(plan : Plan | plan.goalsEntityReference→includes(goal)))

9 For each message sent by an agent, there is at least one plan belonging to the agent

that sends this message.

self.sentMessage→forAll(msg : Message |
self.includedPlansEntityReference→exists(plan : Plan |

plan.outgoingMessagesEntityReference→includes(msg)))

10 For all messages received by an agent, there at least one plan belonging to the agent

that receives this message or is triggered by this message.

self.receivedMessage→forAll(msg : Message |
self.includedPlansEntityReference→exists(plan : Plan |

plan.incomingMessagesEntityReference→includes(msg)
or plan.triggersEntityReferenceMessage→includes(msg)))

11 For all messages posted internally within an agent there is at least one plan belonging

to the agent that sends this message.

self.internalMessage→forAll(msg : Message |
self.includedPlansEntityReference→exists(plan : Plan |

plan.outgoingMessagesEntityReference→includes(msg)))

12 For all messages posted internally within an agent there is at least one plan belonging

to the agent that receives or is triggered by this message.

self.internalMessage→forAll(msg : Message |
self.includedPlansEntityReference→exists(plan : Plan |

plan.incomingMessagesEntityReference→includes(msg)
or plan.triggersEntityReferenceMessage→includes(msg)))

96 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

13 For all data read by an agent, there is at least one plan belonging to the agent that

reads this data.

self.readData→forAll(data : Data |
self.includedPlansEntityReference→exists(plan : Plan | plan.readData→includes(data)))

14 For all data written by an agent, there is at least one plan belonging to the agent that

writes this data.

self.writtenData→forAll(data : Data |
self.includedPlansEntityReference→exists(plan : Plan | plan.writtenData→includes(data))

15 For all data owned by an agent (internal), there is at least one plan belonging to the

agent that either reads/writes this data.

self.internalData→forAll(data : Data |
self.includedPlansEntityReference→exists(plan : Plan |

plan.writtenData→includes(data) or plan.readData→includes(data)))

16 (Domain specific to the weather alerting system presented in section 4.1) The “GUI”

agent is notified (of a particular change) only by agents that the “GUI” agent has

subscribed to, i.e. for each message received by the agent “GUI”, the agent which sends

this message receives the “SubscribeChange” message from the “GUI” agent.

self.name = ’GUI’ implies self.receivedMessage→forAll(msg : Message |
msg.agentSender→forAll(a : Agent |

a.receivedMessage→exists(m : Message |
m.name = ’SubscribeChange’ and m.agentSender→includes(self))))

4.4.3 Capability

Since capabilities can contain sub(capabilities), the above constraints 6-15 that are applied

to agents are also applied to capabilities. For instance, constraint 6 applying to a capability

can be stated that for each action performed by a capability, there is at least one plan owned

by the capability which performs this action. In addition, the relationships between agents,

capabilities and plans are constrained to be transitive. For example, if capability C is owned

by agent A and owns plan P (or capability C’), then agent A also owns plan P (or capability

C’). The following constraints specify these transitive relationships.

1 A capability cannot own itself.

self.includedCapabilitiesEntityReference→excludes(self)

97 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

2 Any plan owned by a capability must also belong to all the agents owning the capability.

self.includedPlansEntityReference→forAll(pl : Plan |
self.agent→forAll(a : Agent | a.includedPlansEntityReference→includes(pl)))

3 Any plan owned by a capability must also belong to all the capabilities owning the

capability.

self.includedPlansEntityReference→forAll(pl : Plan |
self.ownerCapability→forAll(cap : Capability | cap.includedPlansEntityReference→includes(pl)))

4 Any (sub-)capability owned by a (parent) capability must also belong to all the agents

owning the (parent) capability.

self.includedCapabilitiesEntityReference→forAll(cap : Capability |
self.agent→forAll(a : Agent | a.includedCapabilitiesEntityReference→includes(cap)))

5 Any (sub-)capability owned by a (parent) capability must also belong to all the capa-

bilities owning the (parent) capability.

self.includedCapabilitiesEntityReference→forAll(cap : Capability |
self.ownerCapability→forAll(ancCap : Capability |

ancCap.includedCapabilitiesEntityReference→includes(cap)))

4.4.4 Percept

1 A percept must either trigger or be responded to by at least one plan.

self.plan→size() > 0 or self.triggeredPlan→size() > 0

4.4.5 Step

1 For each data written by a step, there exists a role which performs the step and also

writes this data.

self.dataWrittenEntityReference→forAll(data : Data |
self.rolesEntityReference→exists(r : Role | r.writtenData→includes(data)))

2 For each data read by a step, there exists a role which performs the step and also reads

this data.

self.dataReadEntityReference→forAll(data : Data |
self.rolesEntityReference→exists(r : Role | r.readData→includes(data)))

The following constraint is applied to PerceptStep only.

98 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

3 Among the roles performing a given PerceptStep, there exists one role that is assigned

to the percept associated with the step.

self.rolesEntityReference→exists(r : Role | r.perceptsEntityReference→includes(self.stepEntityReference))

The following constraint is applied to ActionStep only.

4 Among the roles performing a given ActionStep, there exists one role that is assigned

to the action associated with the step.

self.rolesEntityReference→exists(r : Role | r.actionsEntityReference→includes(self.stepEntityReference))

The following constraint is applied to GoalStep only.

5 Among the roles performing a given GoalStep, there exists one role that is assigned to

the goal associated with the step.

self.rolesEntityReference→exists(r : Role | r.goalsEntityReference→includes(self.stepEntityReference))

4.4.6 Message

1 For each message, there should be at least one plan being triggered by it or receiving

it.

self.planReceiver→size() > 0 or self.triggeredPlan→size() > 0

4.4.7 Pelement

1 Each protocol element (Pelement) must belong to exactly one protocol or one region.

(self.owner→size() = 1 and self.regionOwner→size() = 0)
xor (self.owner→size() = 0 and self.regionOwner→size() = 1)

4.4.8 Plan

1 A plan should have exactly one trigger (can be either a message or a percept).

(self.triggersEntityReferenceMessage→size() = 1 and self.triggersEntityReferencePercept→size() = 0)
xor

(self.triggersEntityReferenceMessage→size() = 0 and self.triggersEntityReferencePercept→size() = 1)

2 Any action performed by the plan should be performed by all the agents and capabilities

owning the plan.

99 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

self.actionsEntityReference→forAll(action : Action |
self.agent→forAll(agent : Agent | agent.actionsEntityReference→includes(action)))
and self.capability→forAll(cap : Capability | cap.actionsEntityReference→includes(action)))

3 Any data written by a plan should be either owned by the plan’s agents (in which case

it should be written by capabilities that own the plan), or written by the agents (in

which case it should also be written by capabilities that own the plan), or owned by

the plan’s capabilities.

self.writtenData→forAll(data : Data |
self.agent→forAll(agent : Agent |

(agent.internalData→includes(data)
and self.capability→forAll(cap : Capability | cap.writtenData→includes(data)))

or (agent.writtenData→includes(data)
and self.capability→forAll(cap : Capability | cap.writtenData→includes(data))))

or
self.capability→forAll(cap : Capability | cap.internalData→includes(data)))

4 Any data read by a plan should be either owned by the plan’s agents (in which case

it should be read by capabilities that own the plan), or read by the agents (in which

case it should also be read by capabilities that own the plan), or owned by the plan’s

capabilities.

self.readData→forAll(data : Data |
self.agent→forAll(agent : Agent |

(agent.internalData→includes(data)
and self.capability→forAll(cap : Capability | cap.readData→includes(data)))

or (agent.readData→includes(data)
and self.capability→forAll(cap : Capability | cap.readData→includes(data))))

or
self.capability→forAll(cap : Capability | cap.internalData→includes(data)))

5 Any percept triggering the plan should be handled by all the agents and capabilities

owning the plan.

self.triggersEntityReferencePercept→forAll(percept : Percept |
self.agent→forAll(agent : Agent | agent.perceptsEntityReference→includes(percept)))
and self.capability→forAll(cap : Capability | cap.perceptsEntityReference→includes(percept)))

6 Any percept handled by the plan should be handled by all the agents and capabilities

owning the plan.

self.perceptsEntityReference→forAll(percept : Percept |
self.agent→forAll(agent : Agent | agent.perceptsEntityReference→includes(percept)))
and self.capability→forAll(cap : Capability | cap.perceptsEntityReference→includes(percept)))

100 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

7 Any message sent by a plan should be either owned by the plan’s agents (in which case

it should be sent by capabilities that own the plan), or sent by the agents (in which

case it should also be sent by capabilities that own the plan), or owned by the plan’s

capabilities.

self.outgoingMessagesEntityReference→forAll(msg : Message |
self.agent→forAll(agent : Agent |

(agent.internalMessage→includes(msg)
and self.capability→forAll(cap : Capability | cap.sentMessage→includes(msg)))

or (agent.sentMessage→includes(msg)
and self.capability→forAll(cap : Capability | cap.sentMessage→includes(msg))))

or
self.capability→forAll(cap : Capability | cap.internalMessage→includes(msg)))

8 Any message received by a plan should be either owned by the plan’s agents (in which

case it should be received by capabilities that own the plan), or received by the agents

(in which case it should also be received by capabilities that own the plan), or owned

by the plan’s capabilities.

self.incomingMessagesEntityReference→forAll(msg : Message |
self.agent→forAll(agent : Agent |

(agent.internalMessage→includes(msg)
and self.capability→forAll(cap : Capability | cap.receivedMessage→includes(msg)))

or (agent.receivedMessage→includes(msg)
and self.capability→forAll(cap : Capability | cap.receivedMessage→includes(msg))))

or
self.capability→forAll(cap : Capability | cap.internalMessage→includes(msg)))

9 Any message triggering a plan should be either owned by the plan’s agents (in which

case it should be received by capabilities that own the plan), or received by the agents

(in which case it should also be received by capabilities that own the plan), or owned

by the plan’s capabilities.

self.triggersEntityReferenceMessage→forAll(msg : Message |
self.agent→forAll(agent : Agent |

(agent.internalMessage→includes(msg)
and self.capability→forAll(cap : Capability | cap.receivedMessage→includes(msg)))

or (agent.receivedMessage→includes(msg)
and self.capability→forAll(cap : Capability | cap.receivedMessage→includes(msg))))

or
self.capability→forAll(cap : Capability | cap.internalMessage→includes(msg)))

4.4.9 Data

1 Any data must be read or written or owned by at least one agent.

101 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

self.agentOwner→size() > 0 or self.readByEntityReference Agent→size() > 0
or self.writtenByEntityReference Agent→size() > 0

2 Any data must be read or written by at least one plan.

self.planReader→size() > 0 or self.planWriter→size() > 0

4.5 Example

In this section, we provide a simple example that illustrates how the constraints defined are

used by our framework to perform change propagation in Prometheus. The example that we

use is the design of a weather alerting system that has been shown in the previous sections.

In this example, we focus on a particular agent, the “Alerter” agent. As shown in figure 4.5

(on page 73), within the existing system this agent plays two roles: “Manage Subscription”

and “Filter Alerts”. Figure 4.4 (on page 72) shows that the role “Manage Subscription”

is assigned to achieve goal “Subscribe Registration” and role “Filter Alerts” achieves goals

“Determine Frequency” and “Package Alerts”. As can be seen in figure 4.17, the two roles

have access to only one data, i.e. “SubscriptionsStore”.

Figure 4.17: Data coupling diagram for a weather alerting system

Figure 4.18 depicts the internals of the Alerter agent. It currently has two plans, “SendAlert-

102 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

ToSubscribedGUIs” and “HandleAlertSubscription”. The former is for sending new alerts to

subscribed “GUI” agents, and the latter is for handling subscriptions, which are stored in the

“SubscriptionsStore” data.

Figure 4.18: Agent overview diagram for the “Alerter” agent

Let us suppose that as a means of tracking alerts generated and also for verification

purposes, a new requirement is that all alerting messages sent to the “GUI” agents of the

system should be recorded in a log. The “Alerter” agent is responsible for handling alerts

and sending them to the registered “GUI” agents as well as managing the alert subscriptions.

Hence, one way of implementing this change is making the “Alerter” agent be responsible for

handling alert logging.

Since we need a new data store to log the details of alerts sent, it is assumed that the

designer would perform the following primary changes:

1. Create a new data called “AlertLog” (equivalent to creating a new instance of the Data

class in the metamodel and naming it “AlertLog”).

2. Making the “Alerter” agent write to the new data (equivalent to connecting agent

“Alerter” to data “AlertLog” with the relationship writtenByEntityReference Agent –

writtenData in the metamodel – see figure 4.12 on page 87).

Assume that after making the above changes, the designer uses our framework to find out

103 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

if those changes cause any inconsistency in the design model and if so, what further changes

are needed to resolve them.

The constraint checking component of our framework evaluates all the constraints pre-

sented in section 4.4. It identifies constraint 413 and constraint 1414 (in the context of an

Agent), and constraint 215 (in the context of a Data) as being violated.

• C4(“Alerter”): constraint C4 (in the Agent context) evaluated on agent “Alerter”.

• C14(“Alerter”): constraint C14 (in the Agent context) evaluated on agent “Alerter”.

• C2(“AlertLog”): constraint C2 (in the Data context) evaluated on data “AlertLog”.

In order to fix constraint C4(“Alerter”), our repair plan generator generates the following

repair options. Note that in chapter 6, we will discuss in detail how these repair options are

generated.

1. Making either existing roles be played by the “Alerter” agent (i.e. “Manage Subscrip-

tion” or “Filter Alerts”) write to the “AlertLog” data.

2. Making one of the other existing roles (but not “Manage Subscription” or “Filter Alerts”)

be played by the “Alerter” agent, and write to the “AlertLog” data.

3. Creating a new role and making it be played by the “Alerter” agent, and write to the

“AlertLog” data.

4. Making the “Alerter” agent not write to the “AlertLog” data.

The first three repair options do not violate any other constraints. However, the last

repair option not only undos the previous primary change but also breaks the constraint 116

in the context of a Data. Therefore, if it gets chosen, further changes are needed and may

also result in a cycle.

With regard to constraint C14(“Alerter”), our repair plan generator gives several repair

options, which involve either the creation of new plans or new capabilities or using existing

plans to access the newly created data. For instance, the obvious and easy fix is to make
13Any data written by an agent must be written by at least one of its roles.
14For all data written by an agent, there is at least one plan belonging to the agent that writes this data.
15Any data must be read or written by at least one plan.
16Any data must be read or written or owned by at least one agent.

104 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

one of the plans belong to agent “Alerter” (i.e. “SendAlertToSubscribedGUIs” or “HandleAl-

ertSubscription”) write to the “AlertLog” data. However, this option seems to degrade the

coherence of those existing plan in agent “Alerter” by adding in an unrelated task. As a

result, the user may chose the repair option involving the creation of a new plan.

Similarly with regard to constraint C2(“AlertLog”), there are also various repair options

that can resolve its violation. One of the ways of fixing this constraint is to make an existing

plan read or write to the “AlertLog” data. However, doing so would violate constraint 317

or 418 (in the context of a Plan) because an agent which owns the plan needs to either read

or write to the data as well. There is an exception (i.e. no further constraint violations)

if either plan “SendAlertToSubscribedGUIs” or “HandleAlertSubscription” is used, since the

agent owning it (“Alerter” agent) already writes to the “AlertLog” data). This option also

resolves the violation of constraint 14 (in the context of an Agent).

Our framework uses the above reasoning process to work out the best (i.e. cheapest)

repair options and propose them to the user. For instance, in this example one of the

repair options that is proposed by our framework is to make the role “Manage Subscription”)

write to the “AlertLog” data (fixing constraint 4 in the context of an Agent) and make the

plan “SendAlertToSubscribedGUIs” write to the “AlertLog” data (fixing constraint 14 in the

context of an Agent and constraint 2 in the context of a Data).

4.6 Chapter summary

In this chapter we have briefly described the Prometheus methodology, which is the subject of

our major case study to demonstrate the applicability of our change propagation framework.

We have provided an overview of the major phases and artefacts within Prometheus and refer

the reader to other technical documentation (e.g. [Padgham and Winikoff, 2004]) for more

details. The key content of this chapter, which also highlights one of our contributions, is the

development of a metamodel and a set of consistency constraints for Prometheus. We first

explained where a Prometheus metamodel would be placed in a hierarchy of metamodels

like the popular MDA’s four-layer metamodel hierarchy. We then presented our proposal
17Any data written by a plan should be either owned by the plan’s agents (in which case it should be

written by capabilities that own the plan), or written by the agents (in which case it should also be written
by capabilities that own the plan), or owned by the plan’s capabilities.

18Any data read by a plan should be either owned by the plan’s agents (in which case it should be read
by capabilities that own the plan), or read by the agents (in which case it should also be read by capabilities
that own the plan), or owned by the plan’s capabilities.

105 (28th August, 2008)

CHAPTER 4. CASE STUDY I: PROMETHEUS

of a Prometheus metamodel with a detailed description. We also described a number of

consistency constraints that we have identified based on conditions such as well-formedness

of the models, coherence between diagrams, and best practice guidelines.

In order to illustrate how our framework uses the defined metamodel and consistency

constraints to perform change propagation in Prometheus models, we gave a simple example

based on a weather alerting system which was designed using the Prometheus methodology.

Nonetheless, the example only shows the reasoning process of the framework at a high level.

More details of the framework are presented in the chapters ahead. In the next chapter, we

will, however, investigate the application of our framework to UML, a widely used modelling

language.

106 (28th August, 2008)

Chapter 5

Case Study II: UML

Our framework is generally applicable to a range of methodologies and design types. In the

previous chapter, we have discussed a case study in which our framework was applied to

Prometheus, an agent-oriented methodology. In this chapter, we present a small case study

with the aim of showing how our framework can support change propagation in UML object-

oriented design models. We first give a brief overview of UML in section 5.1 and describe a

small excerpt of the UML metamodel and some examples of consistency constraints that are

commonly used in UML practice (section 5.2). We then discuss a small example to illustrate

how our framework deals with changes in a UML design of an existing system.

5.1 Overview of UML

The Unified Modelling Language (UML) has its roots in the unification of various object-

oriented modelling languages emerging in the early 1990s. In 1997, UML was adopted by

the Object Management Group (OMG) as an official OMG standard. Since then, UML

has become the state-of-the-art and widely-used modelling language, especially for object-

oriented software development. UML has undergone various versions and the latest version

2.0 has recently been released. However, UML 2.0 is not commonly supported in industry,

in part, because of legacy models and tools [Egyed, 2007]. In this case study, we apply our

framework to UML 1.4.2 [Object Management Group, 2005], which was adopted as an ISO

standard. However, our ideas and results can be applied to other versions of UML.

UML has a set of diagrams which provide multiple perspectives of the system under de-

velopment. Figure 5.1 describes major diagram types in UML and their purposes. A use

CHAPTER 5. CASE STUDY II: UML

case diagram describes the functionalities of a system in terms of how users interact with the

system. A class diagram is the backbone of UML which describes the static structure of a sys-

tem in terms of the types of objects (i.e. classes) and relationships between them. An object

diagram is closely linked to class diagrams, which describes the static structure of an instance

of the system at a particular time. The dynamic interactions between objects are modelled

using sequence diagrams and communication diagrams. Sequence diagrams depict interac-

tions between objects in terms of an exchange of messages over time. Sequence diagrams

emphasise the sequence of messages in an interaction. Although communication diagrams

also capture a series of sequenced messages, their main emphasis is on the communication

paths between different interacting objects.

Diagram Behaviour Purpose
or Structure

Use case Behaviour/ How users interact with a system
Structure

Class Structure Classes and static relationships between them
Object Structure An instance of a class diagram, showing a snapshot of

the detailed state of a system at a point in time
Sequence Behaviour Possible interactions between objects with the focus on sequence
Collaboration Behaviour Possible interactions between objects with the focus on links
Statechart Behaviour Possible sequences of states and actions through which

an object can proceed during its lifetime
Activity Behaviour Dynamic nature of a system in terms of the flow of

control from activity to activity
Component Structure Aspects of physical implementation in terms of

structure and connections of components
Deployment Structure Physical resources in a system, including nodes,

components, and connections.

Figure 5.1: UML diagram types

Statechart diagrams are used to describe the dynamic behaviour of a system. In partic-

ular, a statechart diagram defines the possible states an object can proceed through during

its lifetime, and the different transitions from one state to another. Similar to statechart di-

agrams, activity diagrams also illustrate the dynamic nature of a system. In fact, an activity

diagram is a special case of a state diagram. However, activity diagrams are typically used to

describe workflow or business processes and procedural logic. Because an activity diagram is

a special kind of statechart diagram, it uses some of the same modelling conventions. Aspects

108 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

of physical implementation of a system are modelled in two different types of implementation

diagrams: component diagrams and deployment diagrams. Component diagrams depict the

structure of components whereas deployment diagrams illustrate the structure of the nodes

on which the components are deployed.

Those UML diagrams represent different views of elements of a common UML metamodel

that we describe in the next section.

5.2 UML metamodel

UML is defined using a metamodelling approach. Figure 5.2 depicts a four-layer metamodel

hierarchy in which the UML metamodel is built. At M0 is the actual system with run-time

instances, i.e. object instances. At the M1 layer is the model of a system using UML.

The UML metamodel is situated at the M2 layer, which contains instances of MOF model

elements (M3).

M2 (UML metamodel)

M1 (Model of a System)

M0 (System – runtime instances)

-name : string
Display

UML ClassUML Attribute

name = "GUI"
disp:Display

<<instance of>><<instance of>>

<<instance of>>

M3 (MOF metamodel)
MOF Class

<<instance of>> <<instance of>>

Figure 5.2: The four-layer metamodel hierarchy

109 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

The UML metamodel contains the concrete syntax, abstract syntax and the semantics of

UML. The UML metamodel is also equipped with well-formedness rules that are described

in the Object Constraint Language (OCL). OCL is also used to express the semantics of

UML, and heuristics and even best practices in UML. The UML metamodel and its accom-

panying well-formedness conditions are very large and the full details are provided in [Object

Management Group, 2005]. Figures 5.31 and 5.4 show small excerpts of the UML meta-

model. Figure 5.3 depicts relationships between major elements in a class diagram: Class,

Association, AssociationEnd and Operation, and between two major elements in a sequence

diagram: ClassifierRole (usually referred to as objects in a sequence diagram) and Message.

According to the UML metamodel, a Class has many AssociationEnds, and at least two of

those are needed to form an Association. In addition, a Class can own multiple Operations

and can be a base of several ClassifierRoles, which can send or receive messages.

Class

ClassifierRole

Operation

Message

*

+base 1..*

+owner

0..1

+operation

*

+receiver

1

+receivedMsg

*

+sender1 +sentMsg

*

+successor

*

+predecessor*

-isNavigable : Boolean
AssociationEnd

Association

+participant 1

+association

*

+owner

1

+connection

2..*

Figure 5.3: An excerpt of UML metamodel concerning Class, Operation, ClassifierRole, and
Message

1It is noted that although in the metamodel a ClassifierRole can have more than one base Class, this
cardinality is usually only one in practice.

110 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

Figure 5.4 depicts the key elements of a state machine2 (alternatively called a statechart

diagram). The behaviour of each Class can be specified by multiple StateMachines (although

one is sufficient for most purposes). A StateMachine contains a top-level State and a set of

Transitions. All remaining states are transitively owned by a state machine through its top

state and the state containment hierarchy. A State can be either a CompositeState (that

contains other states), a SimpleState or a FinalState. Each Transition has a source State and

a target State that is reached when the transition is taken. A transition can have at most

one trigger, which is the Event that fires the transition. Each state has transitions departing

from it and entering it.

State Transition

StateMachineClass

+behaviour

*

+context

0..1

0..1

+transitions*

+source1 +o
ut

go
in

g

*

+target

1

+incoming

*

Event

*

+trigger

0..1

0..1

+t
op

1

CompositeState SimpleStateFinalState
0..1

0..*

Figure 5.4: An excerpt of UML metamodel concerning Class, StateMachine, State, Transition

In this case study we consider only a fragment of the UML with the focus on three major

diagrams: class, sequence and statechart diagrams. Class diagrams are the most important

structural diagrams which capture the fundamental concepts of object-oriented development:

classes and their relationships. Sequence and statechart diagrams also play an important part

in modelling in UML in which they capture the behavioural aspect. There is a great deal

of overlap between the three types of diagram. Model elements defined in class diagrams

are used in sequence and statechart diagrams. Sequence diagrams and statechart diagrams

are complementary in the way that the former models interactions between objects, whilst

the latter depicts the behaviour of a single object. The three diagram types also cover a
2For the sake of simplicity we abstract away other entities such as StateVertex, PseudoState, Guard,

SubState, etc.

111 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

large range of modelling elements in UML. In addition, they are the diagram types most

commonly described and studied in literature. Other types of diagram such as use case and

activity diagrams are also interesting. However, due to time restrictions we were not able to

investigate these types of diagram.

Consistency constraints for UML specify conditions that an UML model must obey for it

to be considered a valid UML model, e.g. syntactic well-formedness and coherence between

different diagrams. Below are four such consistency constraints3 on how UML class, sequence

and statechart diagrams relate to each other. It is noted that constraints 1 and 3 are standard

UML well-formedness constraints [Object Management Group, 2005], whilst constraints 2 and

4 are not, but they are examples of coherence constraints between two diagrams [Egyed,

2006].

1 The name of a message (in a sequence diagram) must match an operation in its receiver’s

class (in a class diagram). (c1)

Context Message inv c1:
self.receiver.base.operation→exists(op : Operation | op.name = self.name)

2 The sequence of incoming messages in an object of a sequence diagram must match the

allowed behaviour of the statechart diagram of the object’s class. (c2)

It is rather complicated to express this constraint in OCL. Similarly to [Egyed, 2007], we provide here
a definition sketch4. The idea is that for a given message, we find a state transition that matches the
name of the message. This constraint holds for the message only if for a given sequence of messages
in the sequence diagram (starting from the first message), there exists a sequence of state transitions
from the first transition which matches the message sequence.
startingPoints = find state transitions equal to the first message name
startingPoints→exists(object sequence = reachable sequence from startingPoint in the statechart)

3 The message calling direction (in a sequence diagram) must match the class association

(in a class diagram). (c3)

Context Message inv c3:
self.receiver.base.inAssociations.intersection(self.sender.base.outAssociations)→notEmpty()

where inAssociations and outAssociations are additional operations applied to a Class. inAssociations
is the set of associations (of a given class) that have directions pointing to the class. Meanwhile,
outAssociations is the set of associations (of a given class) that have directions pointing away from the
class.
Context Class:

3It is noted that we extensively use the shorthand of the collect OCL operation here. For in-
stance, in the first constraint self .receiver .base refers to the set of base classes of the self ’s receiver and
self .receiver .base.operation results in the set of operations of all those base classes.

4As a result, the checking of this constraint is currently manually done, not by the tool.

112 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

inAssociations : set(Association);
inAssociations = self.association.owner→select(a |

a.connection→select(ae | ae.participant = self and ae.isNavigable).size = 1)

outAssociations : set(Association);
outAssociations = self.association.owner→select(a |

a.connection→select(ae | ae.participant 〈 〉 self and ae.isNavigable).size = 1)

4 The name of an event (in a statechart diagram of an object) must match an operation

in the corresponding class. (c4)

Context Event inv c4:
self.transition.statemachine.context→exists(op : Operation | op.name = self.name)

However, we consider here only two constraints c1 and c2 for the purpose of comparing

with the work in [Egyed, 2007], which also aims to fix inconsistencies in UML design models.

He used the two constraints c1 and c2 to illustrate how his approach works. These two con-

straints form what we call a repair scope, which is a group of constraints that are considered

together in the process of fixing constraint violations. Further discussion of a repair scope

will be presented in chapter 7.

5.3 Case study application

Having provided a brief snapshot of key elements of the UML metamodel and some examples

of consistency constraints, we now discuss a simple application which illustrates how our

framework uses the UML metamodel and consistency constraints to propagate changes. We

first describe the initial system and a simple change. We then explain how each process in

our framework is executed to deal with the change.

5.3.1 Initial system

Our case study is a design of a real, albeit simplified, video on demand (VOD) system

[Dohyung, 1999]. We use the simplified version that is presented in [Egyed, 2007] due to the

fact that we want to compare his work with ours. The simplified VOD system allows a user

to select a movie to play. The user is also able to play, pause and resume the movie.

The class diagram (see figure 5.5) represents the structure of the initial VOD system.

There are three classes: “Display” for visualizing movie streams and receiving user inputs,

“Streamer” for downloading and decoding movies, and “Server” for providing data. The

“Display” class has four operations: “select()” for choosing a movie, “stream()” for playing

113 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

+select()
+stream()
+draw()
+stop()

Display
+display +streamer

+stream()
+wait()

Streamer

+connect()
+handleRequest()

Server

+streamer

+server

Figure 5.5: Class diagram for the VOD system (adopted from [Egyed, 2007])

and retrieving the movie steams, “draw()” for rendering the received movie stream, and

“stop()” for halting the movie being played. The “Streamer” class has only two operations:

“stream()” for streaming the movie data received from the server, and “wait()” for halting the

streaming process. Finally, the “Server” has a “connect()” operation that is called by clients

(e.g. the Streamer) and a “handleRequest()” to deal with requests from clients.

disp : Display st : Streamer

::User 1: select

2: stream
3: stream

4: draw
5: stop

6: wait

Figure 5.6: A sequence diagram for instances of classes Display and Streamer (adopted from
[Egyed, 2007])

The sequence diagram (see figure 5.6) depicts a typical scenario of interactions between

114 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

the user, a Display object (“disp”) and a Streamer object (“st”)5. The user selects a movie that

she wants to see (message 1). She then starts playing the selected movie - in the sequence

diagram the user sends a message “stream” to the Display (message 2). The Display then

retrieves the movie stream from the Streamer (message 3) and renders the movie (message

4). When the user wants to stop viewing the movie (message 5), the Display notifies the

Streamer to stop streaming (message 6).

The two statechart diagrams (see figure 5.7) describe the behaviour of the two classes:

“Display” and “Streamer”. As can be seen, the behaviour of the “Streamer” class simply

changes between the waiting and the streaming states depending on whether it is triggered

by the “wait” or “stream” event. Meanwhile, the behaviour of the “Display” class ranges over

three different states: “Idle”, “Ready” and “Playing”.

Idle

Playing

Ready

select

draw

stop stream

Waiting

Streaming

streamwait

Display Streamer

Figure 5.7: Statechart diagrams for classes Display and Streamer (adopted from [Egyed,
2007])

5A Server object is also involved in these interactions but we do not show it here.

115 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

5.3.2 A proposed change

In the current design, the Display and Streamer classes have two different methods with

the same name “stream”. In order to avoid the confusing dual use of the term “stream”,

the designer makes the following primary changes. It is emphasized that these changes are

proposed by Egyed [2007] and intentionally include design errors for the purpose of illustrating

how undesirable inconsistencies are identified and resolved.

A1: Renaming the method “stream()” of class Display to “play()”.

A2: Renaming the message “3:stream” to “play” in the sequence diagram.

A3: Renaming the state transition named “stream” to “play” in the Display’s statechart.

+select()
+play()
+draw()
+stop()

Display

+stream()
+wait()

Streamer

disp : ::Display st : ::StreamerUser

1: select

2: stream

3: play

4: draw

5: stop

6: wait

Idle

Playing

Ready

select

draw

stop play

Waiting

Streaming

streamwait

Display Streamer

(A1)

(A2)

(A3)

Figure 5.8: Design of the VOD system after primary changes are made (adopted from [Egyed,
2007])

Figure 5.8 shows how the above changes are made on the initial UML model (each change

is marked with the X sign). We now consider how our framework performs change propaga-

tion by restoring consistency in the design.

116 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

5.3.3 Change propagation process

The overall process of change propagation in our framework (described in detail in chapter

3) is summarized as follows.

1. At design time the repair plans are automatically generated from the constraints and

metamodel

2. When the change propagation process starts, we check whether the constraints hold in

the design model.

3. We use the repair plans to generate plan instances (i.e. repair options) for the violated

constraints.

4. We calculate the cost of the different repair plan instances.

5. We select a repair plan instance (possibly by picking the single cheapest, if it exists, or

by asking the user).

6. The selected repair plan instance is executed, and it updates the application design

model.

We now describe how each of the steps in this process is applied to our VOD example.

Generate repair plan types

Let us consider the first constraint, denoted as C1(self), that we have defined above. By

analysing its definition6, we are able to identify several ways of fixing C1(self):

• Take an operation op in self.receiver.base.operation, and make op.name = self .name

true (which can be achieved by either renaming op or renaming self).

• Take an existing operation op which does not belong to self.receiver.base.operation, add

op to self.receiver.base.operation, and make op.name = self .name true.

• Create a new operation op, add op to self.receiver.base.operation, and make op.name =

self .name true.
6In chapter 6, we present a translation schema that takes OCL constraints as inputs, and generates a

complete set of repair plans for them.

117 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

The above options are written in our repair plan syntax as follows7.

Plan P1. c1True(self) : op ∈ self.receiver.base.operation ← !c1’True(op, self)

Plan P2. c1True(self) : op ∈ Set(Operation) ∧ op 6∈ self.receiver.base.operation ← !(Add

op to self.receiver.base.operation) ; !c1’True(op, self)

Plan P3. c1True(self) ← Create an operation op ; !(Add op to self.receiver.base.operation)

; !c1’True(op, self)

In the body of plans P1, P2 and P3, an event c1′True(op, self) is posted. This event

corresponds to making op.name = self .name true, which is handled by the following plans.

Plan P 4. c1’True(op, self) : self.name 6= op.name ∧ self.name 6= null ← Rename op to

self .name

Plan P 5. c1’True(op, self) : self.name 6= op.name ∧ op.name 6= null ← Rename self to

op.name

Plan P6. c1’True(op, self) : self.name = op.name ∨ c1(self) ← true8

There is another event, Add op to self.receiver.base.operation, that is posted within the

body of plans P2 and P3. Adding the operation op to the set of operations self .receiver .base.operation

can be achieved in several ways, including9 making op an operation of the class self .receiver .base,

or changing self .receiver .base to an existing class that owns the operation op. These are ex-

pressed in terms of the following repair plans.

Plan P7. Add op to self.receiver.base.operation ← Connect self .receiver .base with op

Plan P8. Add op to self.receiver.base.operation : op ∈ x .operation ← !(Change self .receiver .base

to x)

Similarly, changing self .receiver .base to an existing class x that owns the operation op

can be achieved in different ways and is consequently represented as an event. The plans

that are able to handle this event include making x be the base of self .receiver (plan 9) or

making the receiver of message self be an object that is an instance of class x (plan 10).
7It is noted that for each repair plan, there is an implicit context condition that the constraint and the

parent constraints that it is trying to fix are violated.
8It means that this plan does nothing.
9Other options are less reasonable, e.g. creating a new class, adding op to be one of the new class’s

operations, and making the receiver’s class of message self to be the new class.

118 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

Plan P9. Change self .receiver .base to x ← Connect self .receiver to x

Plan P10. Change self .receiver .base to x : o ∈ Set(ClassifierRole) ∧ o.base = x ← Connect

self to o

Figure 5.10 summarises the repair plans (and subplans) for constraint C1. Using a similar

approach we can derive repair plans for constraint C2.

C1 The name of a message (in a sequence diagram) must match an operation in its receiver’s class
(in a class diagram).

C2 The sequence of incoming messages in an object of a sequence diagram must match the allowed
behaviour of the statechart diagram of the object’s class.

Figure 5.9: Example consistency constraints

Check constraints

After the designer completes making the primary changes on the design of the initial sys-

tem, our framework is in place to perform change propagation. The first step is checking

constraints, which involves the instantiation of pre-defined constraints. For instance, the two

constraints in our repair scope (see figure 5.9) are instantiated with respect to each instance

of the constraints’ context. For example, there are 6 instances of the first constraint, each

corresponding to a message in the sequence diagram. Each constraint instance is evaluated to

check for violation. For example, with respect to the constraint instance C1(“2 : stream”) the

evaluation first computes self .receiver .base.operation where self .receiver is the object “disp”

(this object is on the receiving end of the message as shown by the arrowhead), receiver .base

is the class “Display” (object “disp” is an instance of class “Display”), and base.operation

is {“select()”, “play()”, “draw()”, “stop()”} (the set of operations of the class “Display”).

The evaluation then returns false because there does not exist any operation in the set

base.operation that has the same name (i.e. stream) as message “2:stream”.

Following a similar approach, we identify the following constraints that are violated after

the primary changes are made.

• C1(“2:stream”): constraint C1 evaluated on message “2:stream”.

• C1(“3:play”): constraint C1 evaluated on message “3:play”.

• C2(“disp”): constraint C2 evaluated on object “disp”.

119 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

• C2(“st”): constraint C2 evaluated on object “st”.

P1 c1True(self) : op ∈ self.receiver.base.operation ← !c1’True(op, self)

P2 c1True(self) : op ∈ Set(Operation) ∧ op 6∈ self.receiver.base.operation ← !(Add op to
self.receiver.base.operation) ; !c1’True(op, self)

P3 c1True(self) ← Create an operation op ; !(Add op to self.receiver.base.operation) ; !c1’True(op,
self)

P4 c1’True(op, self) : self.name 6= op.name ∧ self.name 6= null ← Rename op to self .name

P5 c1’True(op, self) : self.name 6= op.name ∧ op.name 6= null ← Rename self to op.name

P6 c1’True(op, self) : self.name = op.name ∨ c1(self) ← true

P7 Add op to self.receiver.base.operation ← Connect self .receiver .base with op

P8 Add op to self.receiver.base.operation : op ∈ x .operation ← !(Change self .receiver .base to x)

P9 Change self .receiver .base to x ← Connect self .receiver to x

P10 Change self .receiver .base to x : o ∈ Set(ClassifierRole) ∧ o.base = x ← Connect self to o

Figure 5.10: Example repair plans for constraint C1

Generate repair plan instances

After violated constraints are identified, the next step in our change propagation frame-

work is generating plan instances for each of the violated constraints. It is important

to note that each repair plan type can generate multiple (i.e. zero or more) plan in-

stances, depending on its context condition. For instance, let us consider the repair plan

instances for constraint C1(“2 : stream”) (where self = “2 : stream” and self .name =

“stream”) (refer to figure 5.10 for the repair plan types). Since self .receiver .base.operation =

{“select()”, “play()”, “draw()”, “stop()”}, repair plan P1 generates 4 plan instances (plans

P11, P12, P13, and P14 in figure 5.11), one for each of the existing operations in the “Dis-

play” class. Plan P1 posts event c1′True which can be handled by three different plans P4,

P5, and P6. However, plan type P6 does not generate any plan instance because its context

condition does not hold (none of the operations op in the “Display” class has the same name

as message self , i.e. “2:stream”). Therefore, there are 8 possible options to repair constraint

C1(“2 : stream”) using plan type P1:

1. Rename operation “select()” to stream.

2. Rename operation “play()” to stream.

3. Rename operation “draw()” to stream.

4. Rename operation “stop()” to stream.

120 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

P11

c1True(“2: stream”)

Rename “select()”
to stream

op = “select()”

P12 P14P13

op = “play()” op = “draw()”
op = “stop()”

c1'True(“select()”,
“2: stream”)

c1'True(“play()”,
“2: stream”)

c1'True(“draw()”,
“2: stream”)

c1'True(“stop”, “2:
stream”)

Rename “play()”
to stream

Rename “draw()”
to stream

Rename “stop()”
to stream

Rename “2:stream”
to select

P41 P51

Rename “2:stream”
to play

Rename “2:stream”
to draw

Rename “2:stream”
to stop

P42 P52 P53 P54P43
P44

Event

Plan

Action

Key

Figure 5.11: Repair plan instances for fixing constraint C1(“2 : stream”) with respect to plan
type P1

5. Rename message “2:stream” to select.

6. Rename message “2:stream” to play.

7. Rename message “2:stream” to draw.

8. Rename message “2:stream” to stop.

Similarly, let us consider the instances generated by plan P2. Note that there are two

existing operations that do not belong to the Display class: “stream()” and “wait()”. With

regard to the case op = “stream()”, let us consider which plan instances are generated

to handle the events posted within plan P2. Firstly, regarding the first event (add op

to self.receiver.base.operation) plan P7 has one instance: connect operation “stream()” (of

class “Streamer”) to class “Display”. Plan P8 has one instance (because x can only be class

“Streamer”): posting an event changing self.receiver.base to class “Streamer", which is han-

dled by plans P9 and P10. Plan P9 has one instance: connect object “disp” to “Streamer”

class and plan P10 has one instance: connect message “2:stream” with object “st:Streamer”.

Finally, since the name of operation op (i.e. “stream”) is the same as the name of message

self , plans P6 is applicable and which results in no further action being needed to handle

121 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

the second event (c1′True(op, self)) posted within plan P2.

Therefore, plan P2 with respect to op = “stream()” gives the following repair options to

fix C1(“2 : stream”):

9. Connect operation “stream()” to class “Display”, i.e. add method “stream()” to class

“Display”.

10. Connect object “disp” to “Streamer” class, i.e. add class “Streamer” to the set of bases

of object “disp”.

11. Connect message “2:stream” with object “st:Streamer”, i.e. changing the receiver of

message “stream” to object “st”.

Similarly, plan P2 with respect to op = “wait()” gives four repair options: two of them

are described as below plus the other two are repair options 10 and 11 above (because

these two options already make constraint C1(“2 : stream”) true and consequently plan P6

for c1′True(“wait()”, “2 : stream”) is applicable which results in no further action being

needed).

12. Connect operation “wait()” (of class “Streamer”) to class Display, and rename operation

“wait()” to stream.

13. Connect operation “wait()” (of class “Streamer”) to class Display, and rename message

“stream” to wait.

Plan P3 involves creation of a new operation and it has only one instance:

14. Create a new operation, add it to class “Display” and name it “stream”.

Overall, there are 14 different options for fixing constraint C1(“2 : stream”). Repair plan

instances for the other three constraints are also created in a similar way.

Calculate cost10

The next process in our framework is calculating the cost of each repair option before pre-

senting the cheapest ones to the user for selection. Firstly, in our framework the designer
10Here we briefly illustrate a mechanism for plan section based on cost calculation which applied for this

example. A more detailed and formal discussion will be presented in chapter 7

122 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

Option Cost
1 1 + C1(“1:select”) + C1(“3:play”) + C2(“disp”) + C2(“st”)
2 1 + C1(“3:play”) + C2(“disp”) + C2(“st”)
3 1 + C1(“3:play”) + C1(“4:draw”) + C2(“disp”) + C2(“st”)
4 1 + C1(“3:play”) + C1(“5:stop”) + C2(“disp”) + C2(“st”)
5 1 + C1(“3:play”) + C2(“disp”) + C2(“st”)
6 1 + C1(“3:play”) + C2(“st”)
7 1 + C1(“3:play”) + C2(“disp”) + C2(“st”)
8 1 + C1(“3:play”) + C2(“disp”) + C2(“st”)
9 1 + C1(“3:play”) + C2(“disp”) + C2(“st”)
10 1 + C1(“3:play”) + C2(“st”) + C2(“disp”)
11 1 + C1(“3:play”) + C2(“disp”) + C2(“st”)
12 2 + C1(“3:play”) + C1(“6:wait”) + C2(“disp”) + C2(“st”)
13 2 + C1(“3:play”) + C2(“disp”) + C2(“st”)
14 2 + C1(“3:play”) + C2(“disp”) + C2(“st”)

Table 5.1: The cost of repair options for fixing C1(“2:stream”)

is responsible for defining the costs for basic repair actions. The basic costs can be varied

and may have some effects on which repair plans are considered as higher cost than others.

For instance, in this example we use the following settings: the cost of creation is 0, the

cost of connection, disconnection, and modification is 1, and the cost of deletion is 2. Other

combinations can be used but may give a different outcome. Secondly, the cost of a repair

option is the sum of the costs of its repair actions and the costs of fixing violated constraints

existing after the repair option is executed. The former cost component is calculated by

simply summing the cost of each primitive action in a repair option. On the other hand, in

order to work out the latter cost we need to simulate the execution of a repair option.

For example, the cost of the first repair option (renaming operation “select()” to stream)

is the cost of the renaming action (which is equal the cost of a modification, i.e. 1) plus

the cost of fixing violated constraints. Assume that the first repair option is executed,

then constraints C1(“3:play”), C2(“disp”) and C2(“st”) are still violated. In addition, there is

one new violated constraints: C1(“1:select”) – the “1:select” does not match name with any

operation in class “Display”. Therefore, the cost of the first repair option is 1 plus the costs

of fixing constraints C1(“1:select”), C1(“3:play”), C4(“disp”), and C4(“st”). Table 5.1 shows

the cost of the first repair option (the first row) as well as the cost of other repair options

for fixing C1(“2:stream”).

123 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

The first repair option is an example where fixing an inconsistency may result in creating

new inconsistencies. Repair option 6 is, on the other hand, an example where fixing an

inconsistency may also lead to repairing other inconsistencies. In fact, this repair option

fixes not only constraint C1(“2:stream”) but also constraint C2(“disp”).

In this example, it is easy to see that at this stage repair options 6 gives the cheapest

cost. However, in other cases a full simulation, i.e. executing all repair plans, is needed to

determine the cheapest repair option. Pruning techniques are also applied to improve the

performance as well as to detect cycles, which are discussed in more detail in chapter 7. We

briefly note here that repair option 6 (similarly to other repair options) needs to expand

to include plans that fix constraint C1(“3:play”) and C2(“st”). We then need to follow the

same process to generate repair plan instances and calculate cost for those two constraints.

However, it is easy to see that a cheapest repair option for both C1(“3:play”) and C2(“st”) is

renaming message “3:play” to “stream”.

Select one plan to execute and execute plan

After the cost of each repair plan is calculated, the next step is presenting the cheapest plans

for user selection. However, since we have done full planning in the previous step, what we

present to the user is repair plans that are able to fix not only one constraint but also all the

constraints in the repair scope, e.g. C1(“2:stream”), C1(“3:play”), C2(“disp”), and C2(“st”)

in our example. The user chooses one of those repair plans and the framework will execute

the plans to apply (secondary) changes to the model. These changes will make the model

become consistent with respect to the repair scope. For instance, in our VOD example there

is only one repair plan that has the cheapest cost of 2: renaming message “2:stream” to “play”,

and renaming message “3:play” to “stream”. This repair plan is presented to the user and if

it gets chosen it will be executed. The model will then become consistent with respect to

constraints C1 and C2.

5.4 Chapter summary

In this chapter, we have investigated the applicability of our approach to UML using a

small case study which concerns a small excerpt of the UML metamodel, a few consistency

constraints and a simple application designed using UML. A similar setting has also been

used in the recent work of Egyed [2007]. On the one hand, his work is similar to ours in

124 (28th August, 2008)

CHAPTER 5. CASE STUDY II: UML

that he also aims to fix inconsistencies in UML design models. His approach uses model

profiling to locate possible starting points for fixing an inconsistency in a UML model. He

also tries to use model profiling to predict the side-effects of fixing an inconsistency. On the

other hand, there are several major differences between his work and ours. Firstly, he treats

a constraint as a black box whilst we analyse the constraints to generate repair plans. He

does not provide options to repair inconsistencies, but only suggests starting points (entities

in the model) for fixing the inconsistency. In other words, using his approach the designer

would be advised where are the right places for resolving inconsistencies, but would not be

told what the concrete fixes are. Our work goes further than that by suggesting the concrete

feasible repair options.

With regard to this specific VOD example that is used in both his work and ours, the

repair options that our framework identified match the choices of starting points suggested by

his approach. The cheapest repair option from our framework’s point of view, i.e. renaming

message “2:stream” to “play” and renaming message “3:play” to “stream”, is also the most

reasonable option that the designer tends to follow. This example is an illustration of how

our approach can be applied in the context of UML design models. Although the result

seems promising, in order to fully understand the applicability of our approach to UML

models, a more extensive investigation involving the whole UML metamodel and consistency

constraints is needed. This is part of our future work. In addition, also as in [Egyed, 2007],

the scalability issue of our approach should also be investigated, which will be discussed in

chapter 9.

So far, we have presented a high level overview of our framework and used two case studies

to illustrate how our ideas can be applied to different methodologies and design types. In

the next two chapters, we will discuss the details of our framework in terms of how repair

plans are automatically generated (chapter 6) and how to select repair plans for resolving a

constraint violation (chapter 7).

125 (28th August, 2008)

Chapter 6

Plan Generation

There can be a substantial number of consistency constraints in the context of design models.

For instance, we have identified nearly 50 consistency constraints that can be imposed on

Prometheus design models. In UML 1.5 [Object Management Group, 2005], the number

of well-formedness constraints is over 100. A consequence of large numbers of constraints

is an even larger number of repair plans. In these cases, hand-crafting repair plans for

all constraints becomes a labour intensive task. In addition, it is difficult for the repair

administrator to know if the set of repair plans which they create is of high quality and not

faulty, meaning that in practice they should be complete and correct. Therefore, we have

developed a translation schema that takes constraints, expressed as OCL invariants, as input

and generates repair plans that can be used to correct constraint violations. In this chapter

we discuss the repair plan generation in detail. We first present a formal definition of repair

actions. We then discuss some extensions to the abstract syntax of repair plans previously

mentioned in chapter 3. In addition, we present the plan generation rules for a set of basic

propositions in OCL as well as rules for all OCL boolean connectives (e.g. and, or, not, etc.).

Using a combination of such rules, repair plans can be automatically generated for a range

of OCL constraints. Finally, we explain and prove the correctness and completeness of our

generated plans.

6.1 Formally defining repair actions

As previously discussed in section 3.1.1, we abstractly view a (design) model as consisting of

a set of model entities and a set of relationships between entities. Model entities also have

CHAPTER 6. PLAN GENERATION

attributes. We consider attributes that have primitive types (e.g. integer, string) instead of

referencing types, which are regarded as relationships.

Each model entity is an instance of a metamodel element, which is also referred to as the

entity’s type. For instance, valid types in a Prometheus design model can be agent, plan,

event, etc. A model entity is defined by a unique identifier (entity-id) and a type (entity-

type). The set of entity-id and entity-type pairs in a design model is denoted as entities.

For example, a model containing an agent and a plan has entities = {(e12, Agent), (e14,

Plan)} where e12 and e14 are the unique identifiers of the agent and the plan respectively.

An entity can only have a single type. A design model also contains a set of relationships

between entities. It is noted that there can be more than one relationship between two

entities. For example, between an agent and a message, in Prometheus, there can be three

different types of relationships: an agent sends a message, an agent receives a message, and an

agent owns a message. In addition, a relationship may involve more than two entities, i.e. n-

ary relationships. However, n-ary relationships rarely exist compared to binary relationships

and we can break an n-ary relationship into multiple binary relationships. Therefore, our

focus is on binary relationships. We formally define a relationship as a triple: entity ID

(source), relation ID, and entity ID (destination) and relationships is the set of those triples.

For example, a model with an agent which owns a plan has relationships = {(e12, r1, e14)}

where r1 is the unique identifier for the relationship between an agent and its belonging plan.

DesignModel
entities : IDENT 7→ TYPE
relationships : (IDENT × IDENT)× IDENT
attrValues : IDENT × IDENT 7→ VALUE

dom(dom relationships) ⊆ dom entities
ran relationships ⊆ dom entities
dom(dom attrValues) ⊆ dom entites

We also formally represent the value of an entity’s attribute as a value function attrValues

from entity ID and attribute ID to a single value (e.g. integer, string), e.g. the name attribute

of the entity agent1 has the value “Monitor Agent”. Overall, a design model is formally

defined as a schema written in the Z notation [Spivey, 1989] as below1. Assume that IDENT
1In Z domX is the domain of X and A⊕ B = {〈x , y〉 | 〈x , y〉 ∈ A ∧ x 6∈ domB} ∪ B

127 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

is the set of possible unique identifiers, TYPE is the set of possible entity types, and VALUE

is the set of possible attribute values.

Model

relationship

ModelElement
*

Entity Relationship

Repair Action

Creation

Deletion

Connection

Disconnection

en
tit

y

en
tit

y

re
la

tio
ns

hi
p

re
la

tio
ns

hi
p

Modification

*

Attribute

*
currentModel

*

newModel

2..* *

Figure 6.1: A taxonomy of repair actions

Previously in section 3.2.2 we have presented a classification of repair actions that we

consider in our framework. The five types of primitive actions that are used to update

the model are creation and deletion of entities, adding and removing relationships between

entities (corresponding to connection and disconnection respectively), and modifying the

values of attributes of entities (see figure 6.1). Each of them is formally defined below.

Create
∆DesignModel
eId? : IDENT
eType? : TYPE

eId? 6∈ dom entities
entities ′ = entities ∪ {(eId?, eType?)}
relationships ′ = relationships
attrValues ′ = attrValues

128 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

A creation has two inputs: a unique identifier of a newly created entity (eId) and its

type (eType). This action has a precondition that the new eId should be unique. The post

condition is that the set of entities is updated with the new entity.

Deletion also requires two inputs: the entity to be deleted and its type. The precondition

states that this entity to be deleted should exist. The postcondition is that the set of entities

is updated excluding the entity to be removed. All attributes belonging to the entity to

be removed are also deleted. In addition, the set of relationships is updated excluding any

relationships involving the entity to be deleted2.

Delete
∆DesignModel
eId? : IDENT
eType? : TYPE

(eId?, eType?) ∈ entities
entities ′ = entities \ {(eId?, eType?)}
relationships ′ = ({eId?} −C relationships)−B {eId?}
attrValues ′ = {eId?} −C attrValues

A connection has three inputs corresponding to two entities to be connected and a re-

lationship between them. Its precondition requires that the two entities should exists. Its

postcondition requires the set of relationships to be updated with the new relationship.

Connect
∆DesignModel
eId1?, eId2? : IDENT
rId? : IDENT

eId1? ∈ dom entities
eId2? ∈ dom entities
relationships ′ = relationships ∪ {(eId1?, rId?, eId2?)}
entities ′ = entities
attrValues ′ = attrValues

A disconnection also has three inputs corresponding to two entities to be connected and a

relationship between them. A disconnection is equivalent to removing a relationship from the
2In Z, A−C B = {〈x , y〉 | 〈x , y〉 ∈ B ∧ x 6∈ A} and A−B B = {〈x , y〉 | 〈x , y〉 ∈ A ∧ y 6∈ B}

129 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

set of current relationships in a design model. Its precondition requires that the relationship

should exist.

Disconnect
∆DesignModel
eId1?, eId2? : IDENT
rId? : IDENT

relationships ′ = relationships \ {(eId1?, rId?, eId2?)}
entities ′ = entities
attrValues ′ = attrValues

Modification involves an entity (eId), its attribute (aId) and a new value (val). It has a

precondition requiring that the entity should exist and a postcondition requiring the entity’s

value be changed to val .

Modify
∆DesignModel
eId? : IDENT
aId? : IDENT
val? : VALUE

eId? ∈ dom entities
attrValues ′ = attrValues ⊕ {(eId?, aId?) 7→ val?}
entities ′ = entities
relationships ′ = relationships

6.2 Automatic repair plan generation: issues and solutions

The core part of the repair plan generator is a translation that takes an OCL constraint as

input and generates repair plans that can be used to correct constraint violations. Such a

translation can be developed by considering all the possible ways in which a constraint can

be false, and hence all the possible ways in which it can be made true. However, there may be

a large number of concrete ways of fixing a constraint violation. In some cases this number

can be infinite. For instance, consider a constraint requiring a particular set SE to be non-

empty. Assume that SE is empty, then the various ways of fixing this constraint are adding

1 element, adding 2 elements, adding 3 elements, and so on. Another example is a constraint

requiring that the age (attribute) of a person (model entity) has to be greater than 18. There

130 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

is also an infinite number of ways to fix this constraint, each of which corresponds to changing

the age to a number greater than 18. Such issues are due to the inherent characteristics of

first order logic that OCL is based on. We avoid infinities by either ruling out the constraint

forms that lead to an infinite number of repair options, or by consulting the user to provide

further information to restrict the number of potential repair options.

We have addressed these issues when developing the repair plan translation in the follow-

ing ways:

• Generated repair plans abstractly represent certain classes of concrete ways of fixing a

constraint. For example, plan ct : x ∈ SE ←!c1t(x) represents all the repair plans that

make constraint c true, each of which corresponds to picking an element x in the set

SE and making c1(x) true.

• Generated repair plans are minimal in that all of their actions contribute towards

fixing a certain constraint, i.e. taking out any of the actions results in failing to fix the

constraint. For example, the generated repair plan for making a (empty) set be not

empty is adding only one element to the set.

• There is a type of repair plan that involves user interaction in which the user is asked

to provide an input. For example, in the above example the user is asked to input an

age value that is greater than 18.

In the next section, we discuss several changes made to the abstract syntax of repair

plans. Some of them are for accommodating the above solutions.

6.3 Extended repair plan syntax

The extended abstract syntax (see figure 6.2) has several modifications. Firstly, we also cover

the case when the plan does nothing in which its plan body has only one construct called

true. Secondly, we include the definition of repair actions as previously explained in section

6.1. “Create e : t” indicates a creation of entity e of type t whilst “Delete e” results in a

deletion of entity e. “Connect e1 and e2 (w.r.t. r)” denotes a connection between entities e1

and e2 with respect to relationship r , and similarly “Disconnect e1 and e2 (w.r.t. r)” refers

to a disconnection between entities e1 and e2 with respect to relationship r . “Change attr

of e to val ” involves modifying attribute attr of entity e to a new value val .

131 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P ::= E [: C]← B
E ::= Ct | Cf | +(x ,SE) | −(x ,SE)
C ::= C ∨ C | C ∧ C | ¬ C |

∀ x • C | ∃ x • C | Prop | Ask(userVal , guidance)
B ::= RepairAction | !E | B1; B2 |

if C then B | for each x in SE B | true
RepairActions ::= Create e : t | Delete e | Connect e1 and e2 (w .r .t r) |

Disconnect e1 and e2 (w .r .t r) | Change attr of e to val

Figure 6.2: Repair plan abstract syntax

Thirdly, the context condition can now contain a predicate Ask(userVal , guidance) indi-

cating that the user should be asked to provide (following the hints provided in the guidance)

a value bounded to userVal . For example, the user is asked to provide a value for a new

attribute. Finally, we define an event which can be: making a constraint true (Ct), or mak-

ing a constraint false (Cf), or adding an entity to a derived set (+(x ,SE)), or removing it

from a derived set (−(x ,SE)). Addition and deletion for derived sets (e.g. union sets) are

represented as events because they do not usually involve a primitive action. Rather, they

require a number of different actions, for example two deletions might be needed, one of the

first set and the other for the second set, in the case of removing an entity from a union of

two sets.

In the next sections, we will demonstrate how repair plans are written using this abstract

syntax.

6.4 Plan generation rules

In this section, we present the rules which can be used to generate repair plans for a given

consistency constraint expressed in OCL. Figure 6.33 depicts the grammar of the most im-

portant OCL expressions. Since the use of OCL in this case is to specify invariants on classes

in the metamodel, our plan generation rules cover only OCL expressions in the form of in-

variants. As a result, OCL expressions for specifying constraints on operations, and pre-

and post conditions on operations (i.e. OperationContextDecl) are not covered (although a

similar approach can be adopted to cover those cases).
3Expressions and operators (e.g. LetExp, AddOperator) that we have not supported are in bold.

132 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

We cover OCL expressions that involve attributes (i.e. AttributeCallExp) and naviga-

tions (i.e. NavigationCallExp). In terms of navigations, the current rules support most of

the navigations over associations (i.e. AssociationEndCallExp), except for navigation to/from

association classes, and navigation through qualified associations (i.e. AssociationClassCall-

Exp).

We support all the boolean connectives in OCL, i.e. and, or, xor, not and implies (i.e.

LogicalExp). We do not cover the let expression which allows for defining an attribute

or operation that can be used in a constraint (i.e. LetExp). However, such attributes or

operations can be placed directly into a constraint. With respect to collection types, our

repair plan generator covers only OCL invariants relating to all standard operations on sets

including all predefined collection operations that use an iterator (i.e. IteratorExp), e.g.

select, collect, reject, forAll, exists, etc. The two exceptions that we do not cover are the

iterate (i.e. IterateExp) and sum operations. While the former is relatively complicated

which requires future work, propositions derived from the latter (i.e. the sum operation)

can have an infinite number of equivalent ways to repair and consequently user intervention

would be very complicated. Hence, they can not be automatically generated. Although we

do not have rules for other collection types, similar techniques can be used to derive repair

plans for bag and sequence types.

In terms of basic values and types, the rules cover the four basic types pre-defined in

OCL (Boolean, Integer, Real, and String). Although we do not explicitly address enumeration

types as defined in OCL, we can consider it as a set of possible values, which can be expressed

as a context condition of a repair plan. We do not address operations defined for OCL types

such as oclIsKindOf(), oclIsTypeOf(), and oclAsType(), and leave them for future work.

There are OCL expressions that result in sets, e.g. navigation over associations with

multiplicity more than one, or a select operation applied to a set returning another set, or

other pre-defined set operations such as union, intersection, etc. (which are part of Oper-

ationCallExp4). Addition and deletion involving such derived sets are not simply primitive

repair actions. In fact, we model them as events, which are handled by further repair plans.

In summary, our plan generation rules address the following OCL expressions:

1. Navigation.
4An operation call can be a pre-defined collection operation (which we support), or other forms such as

class operation call (which we do not cover).

133 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

ContextDeclaration ::= ClassifierContextDecl | OperationContextDecl
ClassifierContextDecl ::= “context” pathName Invariant
Invariant ::= “inv” (simpleName)? : OclExp Invariant
OclExp ::= LetExp | LogicalExp
LogicalExp ::= RelationalExp (LogicalOperator RelationalExp)∗
RelationalExp ::= AdditiveExp (RelationalOperator AdditiveExp)?
AdditiveExp ::= MultiplicativeExp (AddOperator MultiplicativeExp)∗
MultiplicativeExp ::= UnaryExp(MultiplyOperator UnaryExp)∗
UnaryExp ::= (UnaryOperator PostfixExp) | PostfixExp
PostfixExp ::= PrimaryExp | ((“.” | “− > ”) ModelPropertyCallExp)∗
PrimaryExp ::= LiteralExp | ModelPropertyCallExp | IfExp
ModelPropertyCallExp ::= OperationCallExp | AttributeCallExp

NavigationCallExp | LoopExp
NavigationCallExp ::= AssociationEndCallExp | AssociationClassCallExp
LoopExp ::= IteratorExp | IterateExp
OperationCallExp ::= OclExp simpleName OclExp |

OclExp “→ ” simpleName “(” arguments? “)”
OclExp “.” simpleName “(” arguments? “)”
simpleName “(” arguments? “)”
pathName “(” arguments? “)”
simpleName OclExp

AttributeCallExp ::= OclExp “.”simpleName | simpleName | pathName
IfExp ::= “if ” OclExp “then” OclExp

“else” OclExp “endif ”
IteratorExp ::= OclExp “→ ” Iterator “(” VariablesDecl “ | ” OclExp “)”
IterateExp ::= OclExp “→ ” “iterate” “(” VariablesDecl “ | ” OclExp “)”
Iterator ::= “forAll” | “exists” | “select” | “reject” | “one” |

“collect” | “any” | “isUnique” | “sortedBy”
LiteralExp ::= EnumLiteral | CollectionLiteral | PrimitiveLiteral
LogicalOperator ::= “and” | “or” | “xor” | “implies”
RelationalOperator ::= “ = ” | “ <> ” | “ < ” | “ > ” | “ <= ” | “ >= ”
UnaryOperator ::= “− ” | “not”
AddOperator ::= “ + ” | “− ”
MultiplyOperator ::= “× ” | “ : ”

Figure 6.3: An excerpt of the OCL grammar (adopted from [Object Management Group,
2006] and [Object Management Group, 2005])

134 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

2. Constraints on attributes (e.g. <, >, <>, and =).

3. Constraints on Boolean-valued set expressions (e.g. forAll , exists).

4. Constraints on non-Boolean-valued set expressions.

5. Boolean connectives (e.g. and , or , etc.).

6. Addition or deletion involving derived sets.

It is noted that all of the consistency constraints that we have identified in Prometheus

can be expressed using the above forms of OCL expressions that the plan generation rules

address. With respect to the UML, most of the consistency constraints are (or can be, refer

to [Object Management Group, 2005]) defined using those forms. However, we also consider

to fully support all forms of OCL expressions, which is part of our future work. We now

explain and discuss the rules that we currently support in detail.

Firstly, it it noted that consistency constraints describe properties that must be true about

the application model. Such a constraint, however, can contain many individual clauses (i.e.

sub-constraints) that can be true or false, e.g. logical connectives such as not , xor , etc.

Hence, we need to consider repair plans of making each possible clause true or false, which

can then be combined to form repair plans for making the top-level constraint true. For

example, repairing constraint c1
def= not c2 requires us to look for assignments that make

sub-constraint c2 false. Therefore, our plan generation has rules that make a constraint

true ct (under the assumption that the constraint has been violated) and rules that make a

constraint false cf (under the assumption that the constraint will evaluate to true). We now

explain the plan generation rules, for both ct and cf , for each of the supported basic OCL

propositions.

The translation for this group of rules is defined as a function P that takes an OCL

constraint as input and returns a set of specific plans that are based on the constraint form.

We now define function P in terms of plan generation rules for each of the basic OCL

propositions that are covered.

6.4.1 Navigation

A common expression in OCL is navigations over an association, which applies to an entity

and results in either another single entity or a set of entities, depending on the nature of

135 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

the association. In the case where the multiplicity of an association end is one (or zero), the

result of its corresponding navigation is either a single entity or null. In the case where the

multiplicity of the association end is more than one, the result of its corresponding navigation

is a set of entities (which we also consider as derived sets). In this section we present rules

that cover navigations leading to a single entity. In this context, equality is the only valid

relation operator. In section 6.4.6, we have rules that cover the case of navigations leading

to multiple entities.

Assume that E and x are two given model entities, and E .aend navigates the association

by using the opposite association end5 aend , leading to zero or one entities. We identify the

following basic propositions:

• c def= E.aend = x: This constraint returns true if entities E and x are connected with

respect to association end aend . If E is currently not connected to any entity with

respect to association end aend (i.e. E.aend = null), then to make this constraint true

we connect E and x with respect to association end aend . Otherwise, assume that E is

connected to y with respect to association end aend (i.e. E.aend = y6), then we have

to disconnect E from y before connecting E and x . To make this constraint false, we

just disconnect E from x .

• c def= E.aend1.aend2 = x: This constraint returns true if entities E .aend1 (if E .aend1

refers to a single entity7) and x are connected with respect to association end aend2.

To make this constraint true, we need to ensure that E .aend1 = z for some z and that

z .aend2 = x . There are several specific possible patterns of action sequences depending

on the choice of z : z can be a newly created entity, or it can be an existing entity. In

the latter case there are two distinct situations: z can be the (unique) entity for which

E .aend1 = z currently holds, or it can be another existing entity (which can be either

connected to x w.r.t. aend2, i.e. z .aend2 = x , or not connected to x w.r.t. aend2 but

having the same type of E .aend1, i.e. z ∈ Type(E .aend1)). To make this constraint

false, we either disconnect E .aend1 from x or disconnect E from y where y .aend2 = x .
5In OCL, a navigation expression may start with an object and then navigate to a connected object by

referencing the latter by the role name attached to its association end. More details and examples of OCL
syntax have been discussed in section 2.3 on page 39.

6In this case, E .aend is implicity not null , i.e. y 6= null .
7Note that E .aend1 is not null, otherwise E .aend1.aend2 is not valid since “any property call applied on

null results in OclInvalid, except for the operation oclIsUndefined()” [Object Management Group, 2006].

136 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

• c def= E1.aend1 = E2.aend2: This constraint returns true if entities E1 and E2 con-

nect to the same entity with respect to association ends aend1 and aend2 respectively.

To make this constraint true, we need to ensure that E1.aend1 = E2.aend2 which

necessarily involves ensuring either that E1.aend1 = x and E2.aend2 = x for some x .

There are four specific possible patterns of action sequences depending on the choice

of x : x can be a newly created entity, or it can be an existing entity8. In the latter

case there are three distinct situations: x can be the (unique) entity for which either

E1.aend1 = x or E2.aend2 = x currently holds, or it can be another existing entity.

To make this constraint false, we change either E1.aend1 or E2.aend2 so that they are

different from each other.

P t(c
def= E.aend = x) =

{ct : E.aend = null ← Connect E and x (w.r.t aend),
ct : E.aend = y ← Disconnect E and y (w.r.t aend); Connect E and x (w.r.t. aend)}

P t(c
def= E.aend1.aend2 = x) =

{ct : E.aend1 = y ← !(y .aend2 = x)t ,
ct : z.aend2 = x ← !(E .aend1 = z)t ,
ct : z ∈ Type(E.aend1) ∧ z.aend2 6= x ← !(E .aend1 = z)t ;!(z .aend2 = x)t ,
ct ← Create z : Type(E.aend1); !(E .aend1 = z)t ; !(z .aend2 = x)t }

P t(c
def= E1.aend1 = E2.aend2) =

{ct : E2.aend2 = x ← !(E1.aend1 = x)t ,
ct : E1.aend1 = x ← !(E2.aend2 = x)t ,
ct : x ∈ Type(E1.aend1) ∧ x 6= E1.aend1 ∧ x 6= E2.aend2

← !(E1.aend1 = x)t ; !(E2.aend2 = x)t ,
ct ← Create x : Type(E1.aend1); !(E1.aend1 = x)t ; !(E2.aend2 = x)t}

Figure 6.4: Plan generation rules (ct) for basic propositions involving navigations to a single
entity

Figures 6.4 and 6.5 give the definition of functions P t and P f for the above three propo-

sitions corresponding to making the input constraint true or false respectively. We can

apply those rules for any multiple navigations that lead to a single entity. For instance,

regarding a constraint of the form of E1.aend1.aend2 = E2.aend3, we can either change

E1.aend1.aend2 to match the value of E2.aend3 (i.e. repair plans are generated by applying

the rule E1.aend1.aend2 = x) or vice versa (repair plans are generated by applying the rule
8We assume that a solution that sets both E1.aend1 and E2.aend2 to null is not desirable, but that if it

is acceptable, then it can be added as an extra repair plan.

137 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P f (c
def= E.aend = x) =

{cf ← Disconnect E and x (w.r.t aend)}

P f (c
def= E.aend1.aend2 = x) =

{cf ← Disconnect E.aend1 and x (w.r.t aend2),
cf ← Disconnect E and E.aend1 (w.r.t. aend1)}

P f (c
def= E1.aend1 = E2.aend2) =

{cf : E2.aend = x ← (E1.aend = x)f ,
cf : E1.aend = x ← (E2.aend = x)f }

Figure 6.5: Plan generation rules (cf) for basic propositions involving navigation to a single
entity

E2.aend3 = x) or changing both E1.aend1.aend2 and E2.aend3 to another same entity.

6.4.2 Constraints on attributes

OCL uses E .a to denote the attribute a of entity E . The value of E .a can be of four basic

types supported in OCL: Boolean, Integer, Real and String. For attribute values, we consider

the following basic propositions. Note that we do not have a rule for inequality proposition

since we consider it as a case of a not of an equality constraint.

• c def= E .attr = val : is true if the attribute attr of entity E has a value of val . To make

this constraint true we simply change the value of attr to val . To make it false, we

change it to any value that is different to val . Since there is a large number of such

values (except if val is a Boolean), the user must be asked to provide a value.

• c def= E .attr > val : is true if the attribute attr of entity E has a value greater than val .

To make this constraint true we need to change the value of attr to a value provided

by the user that is greater than val . To make this constraint false we need to change

the value of attr to a value provided by the user that is smaller or equal to val .

• c def= E .attr < val : is true if the attribute attr of entity E has a value smaller than val .

To make this constraint true we need to change the value of attr to a value provided

by the user that is smaller than val . To make this constraint false we need to change

the value of attr to a value provided by the user that is greater or equal to val .

• c def= E1.attr1 = E2.attr2: is true if the attribute attr1 of entity E1 has the same value

as the attribute attr2 of entity E2. To make this constraint true we need to ensure that

138 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P t(c
def= E.attr = val) =

{ct ← Change attr of E to val}

P t(c
def= E.attr > val) =

{ct : Ask(userVal, “> val”) ∧ userVal > val ← Change attr of E to userVal}

P t(c
def= E.attr < val) =

{ct : Ask(userVal, “< val”) ∧ userVal < val ← Change attr of E to userVal}

P t(c
def= E1.attr1 = E2.attr2) =

{ct : E1.attr1 = val ← !(E2.attr2 = val)t ,
ct : E2.attr2 = val ← !(E1.attr1 = val)t ,
ct : Ask(userVal, “ 6= E1.attr1 and 6= E2.attr2”) ∧ userVal 6= E1.attr1 ∧ userVal 6= E2.attr2

← !(E1.attr1 = userVal)t ; !(E2.attr2 = userVal)t}

P t(c
def= E1.attr1 > E2.attr2) =

{ct : E1.attr1 = val ← !(E2.attr < val)t ,
ct : E2.attr2 = val ← !(E1.attr1 > val)t}

Figure 6.6: Plan generation rules (ct) for basic propositions involving attributes

E1.attr1 = E2.attr2 which necessarily involves ensuring either that E1.attr1 = val and

E2.attr2 = val . There are three specific possible patterns of action sequences depending

on the choice of val : it is either the current value of E1.attr1 or the current value of

E2.attr2 or a new value provided by the user (i.e. userVal . To make this constraint

false we either change the value of attr2 to a value that is different of attr1 or vice

versa.

• c def= E1.attr1 > E2.attr2: Returns true if the value of attribute attr1 of entity E1 is

greater than the value of attribute attr2 of entity E2. To make this constraint true we

either change the value of attr1 to a value greater than attr2 or change the value of

attr2 to a value smaller than attr1. To make this constraint false we either change the

value of attr1 to a value less than or equal to the value of attr2 or change the value of

attr2 to a value greater of equal to the value of attr1.

Figures 6.6 and 6.7 give the definition of functions P t and P f for the above propositions

corresponding to making the input constraint true or false respectively. Note that there is

a predicate Ask(userVal , guidance) in the context condition of some repair plans indicating

that the user is asked to provide a value for userVal . The predicate also indicates some

hints in terms of how the expected value should satisfy a certain condition provided in the

guidance. For instance, Ask(userVal , “ > val”) implies that the user should input a value

139 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P f (c
def= E.attr = val) =

{cf : Ask(userVal, “ 6= val”) ∧ userVal 6= val← Change attr of E to userVal}

P f (c
def= E.attr > val) =

{cf : Ask(userVal, “≤ val”) ∧ userVal ≤ val ← Change attr of E to userVal}

P f (c
def= E.attr < val) =

{cf : Ask(userVal, “≥ val”) ∧ userVal ≥ val ← Change attr of E to userVal}

P f (c
def= E1.attr1 = E2.attr2) =

{cf : E1.attr1 = val ← !(E2.attr2 = val)f ,
cf : E2.attr2 = val ← !(E1.attr1 = val)f }

P f (c
def= E1.attr1 > E2.attr2) =

{cf : E1.attr1 = val ← !(E2.attr < val)f ,
cf : E2.attr2 = val ← !(E1.attr1 > val)f }

Figure 6.7: Plan generation rules (cf) for basic propositions involving attributes

that is greater than val . The guidance string is also checked by the generated plan.

6.4.3 Constraints on Boolean-valued set expressions

We cover all set operations returning boolean values supported in OCL (except isUnique()).

• c def= SE→includes(x): Returns true if x is an element of set SE , false otherwise. To

make the constraint true, we simply add x to SE (which may be able to be done in a

number of ways depending on SE), and to make it false we remove x from SE .

• c def= SE→excludes(x): Returns true if x is not an element of SE , false otherwise. To

make this constraint true, we simply remove x from SE , and to make it false we add x

to set SE .

• c def= SE→includesAll(SE’): Returns true if the set SE contains all of the elements of

the set SE ′. To make this constraint true we pick out all the elements that are present

in SE ′ but not in SE and for each such element either remove it from SE ′ or add it to

SE . To make the constraint false we either pick an element in SE ′ and remove it from

SE 9, or add an existing entity not belonging to SE to SE ′, or create a new entity and

add it to SE ′.
9Since the constraint is true, i.e. SE ′ ⊆ SE , this element is in SE .

140 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

• c def= SE→excludesAll(SE’): Returns true if SE contains none of the elements of SE ′

(this constraint is equivalent to SE ∩ SE ′ = ∅). To make this constraint true we, for

each element that is in both SE and SE ′, remove it from either SE or SE ′. There are

several ways of making the constraint false: adding an element in SE ′ (but not in SE)

to SE , adding an element in SE (but not in SE ′) to SE ′, adding an existing element

(not in SE and SE ′) to both SE and SE ′, or creating a new element and adding it to

both SE and SE ′.

P t(c
def= SE→includes(x)) =

{ct ← !+(x, SE)}

P t(c
def= SE→includesAll(SE’)) =

{ct ← for each x in (SE’ − SE)
!c′t(x),
c′t(x) ← !−(x, SE’),
c′t(x) ← !+(x, SE)}

P t(c
def= SE→excludes(x)) =

{ct ← !−(x, SE)}

P t(c
def= SE→excludesAll(SE’)) =

{ct ← for each x in SE ∩ SE’ !c′t(x)
c′t(x) ← !−(x, SE’),
c′t(x) ← !−(x, SE)}

P t(c
def= SE→isEmpty()) =

{ct ← for each x in SE !−(x, SE)}

P t(c
def= SE→notEmpty()) =

{ct : x ∈ Type(SE) ← !+(x, SE),
ct ← Create x : Type(SE) ; !+(x, SE)}

P t(c
def= SE→forAll(c1)) =

{ct ← for each x in SE if ¬ c1(x) then !c′t(x),
c′t(x) ← !−(x, SE),
c′t(x) ← !c1t(x)}

P t(c
def= SE→exists(c1)) =

{ct : x ∈ SE ← !c1t(x),
ct : x ∈ Type(SE) ∧ x 6∈ SE← !+(x, SE) ; !c1t(x),
ct ← Create x : Type(SE) ; !+(x, SE) ; !c1t(x),
c1t(x) : c1(x) ∨ c ← true }

P t(c
def= SE1 = SE2) = P t(c

def= SE→isEmpty())
where SE = (SE1 − SE2)→union(SE2 − SE1)

P t(c
def= SE→one(c1)) = P t(c

def= SE’→size() =
1)
where SE’ = SE→select(c1)

Figure 6.8: Plan generation rules (ct) for basic propositions involving set operations returning
boolean values

• c def= SE→isEmpty(): Returns true if SE contains no elements. To make the constraint

true we remove all the elements in SE . To make it false we either add an existing

element to SE or create a new element and then add it to SE .

• c def= SE→notEmpty(): Returns true if SE contains one or more elements. To make

the constraint true we either add an existing element to SE or create a new element

and then add it to SE . To make this constraint false, we remove all the elements in

141 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P f (c
def= SE→includes(x)) =

{cf ← !-(x, SE)}

P f (c
def= SE→includesAll(SE’)) =

{cf : x ∈ SE’ ← !-(x, SE),
cf : x ∈ Type(SE) ∧ x 6∈ SE← !+(x, SE’),
cf ← Create x : Type(SE) ; !+(x, SE’)}

P f (c
def= SE→excludes(x)) =

{cf ← !+(x, SE)}

P f (c
def= SE→excludesAll(SE’)) =

{cf : x ∈ SE’ ∧ x 6∈ SE ← !+(x, SE),
cf : x ∈ SE ∧ x 6∈ SE’ ← !+(x, SE’),
cf : x ∈ Type(SE) ∧ x 6∈ SE ∧ x 6∈ SE’ ←

!+(x, SE) ; !+(x, SE’),
cf ← Create x : Type(SE) ;

!+(x, SE); !+(x, SE’)}

P f (c
def= SE→notEmpty()) =

{cf ← for each x in SE !-(x, SE)}

P f (c
def= SE→isEmpty()) =

{cf : x ∈ Type(SE) ← !+(x, SE),
cf ← Create x : Type(SE) ; !+(x, SE)}

P f (c
def= SE→forall(c1)) =

{cf : x ∈ SE ← !c1f (x),
cf : x ∈ Type(SE) ∧ x 6∈ SE← !+(x, SE) ; !c1f (x),
cf ← Create x : Type(SE) ; !+(x, SE) ; !c1f (x),
c1f (x) : ¬ c1(x) ∨ ¬ c ← true }

P f (c
def= SE→exist(c1)) =

{cf ← for each x in SE if c1(x) then !c′f (x),
c′f (x) ← !-(x, SE),
c′f (x) ← !c1f (x)}

P f (c
def= SE1 = SE2) = P(c def= SE→isEmpty())

where SE = (SE1 − SE2)→union(SE2 − SE1)

P f (c
def= SE→one(c1)) = P(c def= SE’→size() =

1)
where SE’ = SE→select(c1)

Figure 6.9: Plan generation rules (cf) for basic propositions involving set operations returning
boolean values

SE .

• c def= SE→exist(c1): Returns true if there is at least one element in SE for which

constraint c1 is true. There are three ways of making this constraint true: pick one

element in SE and make constraint c1 true for this element, add an existing element

(not in SE) to SE and make the constraint true for it, and create a new element, add

it to SE , and make the constraint true for it. To make this constraint false, we pick

out all the elements in SE that make c1 true, and for each such element either delete

it from SE or make c1 false for it.

• c def= SE→forAll(c1): Returns true if constraint c1 is true for all elements in SE . To

make this constraint true, we choose all the elements in SE that make c1 false, and

for each such element either delete it from SE or make c1 true for it. To make this

constraint false, we pick out an element in SE and make c1 false for it, or add an

142 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

existing element to SE and make c1 for it, or create a new element, add it to SE and

make c1 false for it.

• c def= SE→one(c1): Returns true if there is exactly one element in SE for which the

constraint c1 is true. This constraint is equivalent to SE→select(c1)→size() = 1. We

can consider SE→select(c1) as a (derived) set (refer to section 6.4.6) and we also have

a rule for generating constraints in the form of SE→size() = m that is discussed in

section 6.4.4.

• c def= SE1 = SE2: Returns true if SE1 and SE2 contain the same elements. This

constraint is equivalent to SE→isEmpty() where SE = (SE1−SE2)→union(SE2−SE1).
This constraint form is addressed in section 6.4.6 on page 149.

Figures 6.8 and 6.9 gives generation rules for the above cases. The terms SE , SE ′, SE1,

and SE2 denote a set expression which can be a single set (e.g. the set of agents in the system)

or a derived set which is built from another set using a navigation (e.g. S def= self .agent) or

set operation (e.g. S def= S1→select(c)). Adding an element and removing an element from

a derived set are considered as events +(x ,SE) and −(x ,SE) respectively. We will discuss

how plans are generated to handle such events in section 6.4.6.

6.4.4 Constraints on non-Boolean-valued set expressions

In addition to operations that return boolean values, there are several set operations that

result in other primitive values, which form the following basic propositions.

• SE→size(): The number of elements in SE . Constraints can be derived: SE→size() = m,

SE→size() > m, and SE→size() < m. For a constraint in the form of SE→size() = SE’→size()

(similarly to inequality constraints, e.g. SE→size() > SE’→size()), we can generate re-

pair plans by changing either SE so that SE→size() is m (where m = SE’→size()) or

vice versa or changing both SE and SE ′ in such a way that they have the same size.

• SE→count(x): The number of times that element x occurs in SE . Since SE is

a set, the value of the operation is at most 1. Therefore, two constraints can be

derived including SE→count(x) = 1 and SE→count(x) = 0, which are equivalent to

SE→includes(x) and SE→excludes(x) respectively.

143 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P t(c
def= SE→size() = m) =

{ct ← for each i in {1,2,...,|m − s|} !c′t ,
c′t : m < s ∧ x ∈ SE ← !−(x, SE),
c′t : m > s ∧ x ∈ Type(SE) ∧ x 6∈ SE← !+(x, SE),
c′t : m > s ← Create x : Type(SE) ; !+(x, SE)}
where s = SE→size()

P t(c
def= SE→size() ≥ m) =

{ct ← for each i in {1,2,...,(m − s)} !c′t ,
c′t : x ∈ Type(SE) ∧ x 6∈ SE ← !+(x, SE),
c′t ← Create x : Type(SE) ; !+(x, SE)}
where s = SE→size()

P t(c
def= SE→size() ≤ m) =

{ct ← for each i in {1,2,...,(s − m)}
!c′t ,
c′t : x ∈ SE ← !−(x, SE)}
where s = SE→size()

P t(c
def= SE→count(x) = 0) =

P t(c
def= SE→excludes(x))

P(c def= SE→count(x) = 1) =
P t(c

def= SE→includes(x))

Figure 6.10: Plan generation rules (ct) for basic propositions involving set operations return-
ing primitive values

We have generation rules for propositions related to two operations size() and count()

(see figures 6.10 and 6.11).

6.4.5 Boolean connectives

We support all the boolean connectives in OCL, i.e. and, or, xor, not and implies.

• c def= c1 and c2: Returns true if both c1 and c2 are true. To make this constraint true,

we need to make either c1 or c2 true , depending on which one (or both) is false. If c1

and c2 are both false initially, we can fix one of them first (without loss of generality

assuming c1) and then fix the other one (i.e. c2) if it has not been fixed yet. In section

6.4.7, we introduce some top level plans (i.e. fixCt) to deal with these cases. To make

the constraint false, we make one of the sub-constraints false.

• c def= c1 or c2: Returns true if either c1 or c2 is true. To make this constraint true we

make either constraint c1 or c2 true. To make the constraint false, we need to make

either c1 or c2 false, depending on which one is true, or make both of them false if they

are both true.

• c def= c1 xor c2: Returns true if either c1 or c is true but not both. To make this

constraint true, we either make one of them true if they are both false or make one of

144 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P f (c
def= SE→size() = m) =

{cf : x ∈ SE ← !−(x, SE),
cf : x ∈ Type(SE) ∧ x 6∈ SE ← !+(x, SE),
cf ← Create x : Type(SE) ; !+(x, SE)}

P f (c
def= SE→size() < m) =

{cf ← for each i in {1,2,...,(m − s)} !c′f ,
c′f : x ∈ Type(SE) ∧ x 6∈ SE ← !+(x, SE),
c′f ← Create x : Type(SE) ; !+(x, SE)}
where s = SE→size()

P f (c
def= SE→size() > m) =

{cf ← for each i in {1,2,...,(s − m)}
!c′f ,
c′f : x ∈ SE ← !−(x, SE)}
where s = SE→size()

P f (c
def= SE→count(x) = 0) =

P f (c
def= SE→excludes(x))

P f (c
def= SE→count(x) = 1) =

P f (c
def= SE→includes(x))

Figure 6.11: Plan generation rules (cf) for basic propositions involving set operations return-
ing primitive values

them false if they are both true. To make this constraint false, we either make the true

constraint false or make the false constraint true.

• c def= not c1: Returns true if constraint c1 is false. This constraint is made true by

making c1 false and is made false by making c1 true.

• c def= c1 implies c2: Returns true if either c1 is false or c2 is true. To make this

constraint true we either make c1 false or make c2 true. To make the constraint false

we make c2 false if c1 is true, or make c1 true if both of them are false, or make c1

P t(c
def= c1 and c2) =

{ct : ¬ c1 ∧ c2 ← !c1t ,
ct : ¬ c2 ∧ c1 ← !c2t ,
ct : ¬ c1 ∧ ¬ c2 ← !c1t }

P t(c
def= c1 or c2) =

{ct ← !c1t ,
ct ← !c2t}

P t(c
def= c1 xor c2) =

{ct : c1 ∧ c2 ← !c1f ,
ct : c1 ∧ c2 ← !c2f ,
ct : ¬ c1 ∧ ¬ c2 ← !c1t ,
ct : ¬ c1 ∧ ¬ c2 ← !c2t}

P t(c
def= not c1) = { ct ← !c1f }

P t(c
def= c1 implies c2) = { ct ←!c1f ,

ct ←!c2t}

Figure 6.12: Plan generation rules (ct) for boolean connectives

145 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

P f (c
def= c1 and c2) =

{cf ← !c1f ,
cf ← !c2f }

P f (c
def= c1 or c2) =

{cf : ¬ c1 ∧ c2 ← !c2f ,
cf : ¬ c2 ∧ c1 ← !c1f ,
cf : c1 ∧ c2 ← !c1f ; !c2f }

P f (c
def= not c1) = {cf ←!c1t}

P f (c
def= c1 xor c2) =

{cf : c1 ∧ ¬ c2 ← ! c1f ,
cf : c1 ∧ ¬ c2 ← !c2t ,
cf : ¬ c1 ∧ c2 ← !c1t ,
cf : ¬ c1 ∧ c2 ← !c2f }

P f (c
def= c1 implies c2) =

{ cf : c1 ∧ c2 ← ! c2f ,
cf : ¬ c1 ∧ ¬ c2 ← !c1t ,
cf : ¬ c1 ∧ c2 ← !c1t ; !c2f }

Figure 6.13: Plan generation rules (cf) for boolean connectives

true and c2 false if c1 is false and c2 is true.

The generation rules for boolean connectives are shown in figures 6.12 and 6.13.

6.4.6 Rules for addition and deletion involving derived sets

Repair plans for propositions that are related to sets contain actions involving adding or

removing entities from a set. However, sets can be derived from other sets by means of

navigation or set operations supported in OCL such as select(), reject(), etc. Although

adding an element to a basic single set (or removing it from the set) is a primitive action,

adding or deleting elements from derived sets is not a primitive action. Instead, we model

addition and deletion from derived sets as events, which are handled by additional plans.

For example, in order to add the element x to SE def= S→select(c) (previously denoted as the

event +(x ,SE)), we ensure both that x is in S , and that c(x) is true.

The translation for this group of rules is defined as functions Q+ and Q−, each of which

takes a derived set and returns a set of repair plans for adding an element to the set or

removing an element from it respectively. Our repair plan generator covers the following

cases of derived sets:

• SE def= E.aend: Returns a set of entities that are connected to E with regard to

association end aend . Adding an entity x to this set is equivalent to connecting x with

entity E with regard to association end aend . Removing an entity from this set is

disconnecting the entity from E with regard to association end aend .

146 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

• SE def= E.aend1.aend2: Returns a set of entities that are connected (w.r.t. aend2) to

entities that are connected to E with respect to aend1. There are two cases that we

need to consider here:

– E .aend1 leads to a single entity: adding an entity x to this set can be achieved by

(i) adding x to y .aend2 and (ii) making E .aend1 = y true for some y . Depending

on the choice of y we may need to do either (i) – for y that E is currently connected

to w.r.t. aend1, or (ii) – for y that is currently connected to x w.r.t. aend2, or

both of them – for another existing entity y or a newly created one. Removing

an entity x from this set is equivalent to disconnecting E .aend1 from x (w.r.t.

aend2), or disconnecting E from E .aend1 (w.r.t. aend1).

– E .aend1 leads to a set of entities: this is a shorthand notation of the collect

operation, i.e. E.aend1→collect(aend2). Adding an entity x to this set can be

achieved by (i) adding x to y .aend2 and (ii) adding y to E .aend1 for some y .

Depending on the choice of y we may need to do either (i) – for y that E is

currently connected to w.r.t. aend1, or (ii) – for y that is currently connected to

x w.r.t. aend2, or both of them – for another existing entity y or a newly created

one. Removing an entity x from this set can be achieved by picking out all the

entities in the set E .aend1 that connect to x w.r.t. aend2 and for each such entity

either disconnecting it from x (w.r.t. aend2), or disconnecting it from E (w.r.t.

aend1).

It is also noted that this case can be generalised to multiple navigations (more than

two), i.e. E .aend1.aend2.aend3....

• SE def= S→select(c): A subset of SE containing all elements for which constraint c is

true. Adding an entity x to this set can be achieved by different ways: if x is contained

in S then we have to make constraint c true for x ; if x is not in S then we need to add

x to S and if c is false for x , we need to make c true for x . Removing an entity x from

this set can be achieved by either making c false for x or removing x from S .

• SE def= S→reject(c): A subset of SE containing all elements for which constraint c is

false. Adding an entity x to this set can be achieved by different ways: if x is contained

in S , then we have to make constraint c false for x; if x is not in S then we need to

147 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

Q+(SE def= E.aend) =
{+(x ,SE) ← Connect E and x (w.r.t aend)}

Q+(SE def= E.aend1.aend2) =
{+(x ,SE) : isSingle(E.aend1) ∧ E.aend1 = y

← !+(x, y.aend2),
+(x ,SE) : isSingle(E.aend1) ∧ x ∈ y.aend2

← !(E .aend1 = y)t ,
+(x ,SE) : isSingle(E.aend1) ∧ y 6= E.aend1

∧ x 6∈ y.aend2 ∧ y ∈ Type(E.aend1)
← !(E .aend1 = y)t ; !+(x, y.aend2),

+(x ,SE) : isSingle(E.aend1)
← Create y : Type(E.aend1) ;

!(E .aend1 = y)t ; !+(x, y.aend2),
+(x ,SE) : ¬ isSingle(E.aend1) ∧ y ∈ E.aend1

← !+(x, y.aend2),
+(x ,SE) : ¬ isSingle(E.aend1) ∧ x ∈ y.aend2

← !+(y, E.aend1),
+(x ,SE) : ¬ isSingle(E.aend1) ∧ y 6∈ E.aend1

∧ x 6∈ y.aend2 ∧ y ∈ Type(E.aend1)
← !+(y, E.aend1) ; !+(x, y.aend2),

+(x ,SE) : ¬ isSingle(E.aend1)
← Create y : Type(E.aend1) ;

!+(y, E.aend1) ; !+(x, y.aend2)}

Q+(SE def= S→select(c)) =
{ +(x ,SE) : x ∈ S ← !ct(x),
+(x ,SE) : x 6∈ S ∧ c(x) ← !+(x, S),
+(x ,SE) : x 6∈ S ∧ ¬ c(x)← !+(x, S) ; !ct(x)}

Q+(SE def= S→excluding(e)) =
{+(x ,SE) : x 6∈ S ∧ x 6= e ← !+(x, S)}

Q+(SE def= S1→union(S2)) =
{ +(x ,SE) : x 6∈ S1 ← !+(x, S1),
+(x ,SE) : x 6∈ S2 ← !+(x, S2)}

Q+(SE def= S1→intersection(S2)) =
{ +(x ,SE) : x 6∈ S1 ∧ x ∈ S2 ← !+(x, S1),
+(x ,SE) : x ∈ S1 ∧ x 6∈ S2 ← !+(x, S2),
+(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S1) ; !+(x,
S2)}

Q+(SE def= S1 - S2) =
{ +(x ,SE) : x 6∈ S1 ∧ x ∈ S2 ← !+(x, S1) ;
!−(x, S2),
+(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S1),
+(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S2)}

Q+(SE def= S1→symmetricDifference(S2))
=
{ +(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S1),
+(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S2),
+(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S1),
+(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S2)}

Q+(SE def= S→including(e)) =
{+(x ,SE) : x 6∈ S ∧ x 6= e ← !+(x, S)}

Q+(SE def= S→reject(c)) =
{ +(x ,SE) : x ∈ S ← !cf (x),
+(x ,SE) : x 6∈ S ∧ c(x) ← !+(x, S) ; !cf (x),
+(x ,SE) : x 6∈ S ∧ ¬ c(x) ← !+(x, S)}

Figure 6.14: Plan generation rules for basic propositions involving set addition

148 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

add x to S and if c is true for x , we need to make c false for x . Removing an entity x

from this set can be achieved by either making c true for x or removing x from S.

• SE def= S1→union(S2): The union of SE1 and SE2. Adding an entity x to this set

can be achieved by adding x to either S1 or S2 if x does not belong to either of them.

Removing an entity x from this set can be achieved by removing x from either S1 or

S2 or both of them, depending on whether x is in S1, or S2, or both of them.

Q−(SE def= E.aend) =
{−(x ,SE)←Disconnect E and x (w.r.t aend)}

Q−(SE def= E.aend1.aend2) =
{−(x ,SE) : isSingle(E.aend1) ∧ E.aend1 =
E1
← Disconnect E1 and x (w.r.t aend2),

−(x ,SE) : isSingle(E.aend1) ∧ E.aend1 = E1
← Disconnect E and E1 (w.r.t aend1),

−(x ,SE) : ¬ isSingle(E.aend1)
∧ E.aend1 = SE1

← for each y in SE1
if x ∈ y.aend2 then !aux(x, SE, y),

aux(x, SE, y) ← Disconnect y and x (w.r.t.
aend2),
aux(x, SE, y) ← Disconnect E and y (w.r.t.
aend1)}

Q−(SE def= S→select(c)) =
{ −(x ,SE) ← cf (x),
−(x ,SE) ← !−(x, S)}

Q−(SE def= S→reject(c)) =
{ −(x ,SE) ← ct(x),
−(x ,SE) ← !−(x, S)}

Q−(SE def= S→excluding(e)) =
{−(x ,SE) : x ∈ S ∧ x 6= e ← !−(x, S)}

Q−(SE def= S1→union(S2)) =
{ −(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S1) ; !-(x,
S2),
−(x ,SE) : x ∈ S1 ∧ x 6∈ S2 ← !−(x, S1),
−(x ,SE) : x 6∈ S1 ∧ x ∈ S2 ← !−(x, S2)}

Q−(SE def= S1→intersection(S2)) =
{ −(x ,SE) ← !−(x, S1),
−(x ,SE) ← !−(x, S2)}

Q−(SE def= S1 - S2) =
{ −(x ,SE) ← !−(x, S1),
−(x ,SE) ← !+(x, S2)}

Q−(SE def= S1→symmetricDifference(S2))
=
{ −x : x ∈ S1 ∧ x 6∈ S2 ← !−(x, S1),
−x : x ∈ S1 ∧ x 6∈ S2 ← !+(x, S2),
−x : x ∈ S2 ∧ x 6∈ S1 ← !−(x, S2),
−x : x ∈ S2 ∧ x 6∈ S1 ← !+(x, S1)}

Q−(SE def= S→including(e)) =
{−(x ,SE) : x ∈ S ∧ x 6= e ← !−(x, S)}

Figure 6.15: Plan generation rules for basic propositions involving set deletion

• SE def= S1→intersection(S2): The intersection of SE1 and SE2, i.e. the set of all

elements that are in both SE1 and SE2. Adding an entity x to this set can be achieved

149 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

by adding x to either S1 (if x is not in S1 but in S2), or S2 (if x is not in S2 but in

S1) or both of them (if x is not in either of S1 or S2). Removing an entity from this

set is equivalent to removing it either from S1 or from S2.

• SE def= S1 − S2: The elements of set SE1, which are not in set SE2. Adding an entity

x to this set can be done in different ways: if x is in S2 but not in S1 then we need

to add x to S1 and remove it from S2; if x is neither in S1 nor S2 the we need to add

x to S1; if x is in both S1 and S2, then we need to remove x from S2. Removing an

entity from this set can be done by removing it from S1 or adding it to S2.

• SE def= S1→symmetricDifference(S2): The set containing all the elements that are

either in SE1 or SE2 but not in both. Adding an entity x to this set can be done in

different ways: if x is in neither S1 nor S2 then we need to add x to either S1 or S2; if

x is in both S1 and S2 then we need to remove it from either S1 or S2. Removing an

entity from this set can be done by adding it to the set (either S1 or S2) that it does

not belong to or removing it from the set that it does belong to.

• SE def= S→including(e): The set containing all elements of SE plus e. Adding an

entity to this set is achieved by adding it to the set S but only if this entity does not

belong to S and is different from e. Removing an entity from this set is equivalent to

removing it from the set S . If the entity to be added is e, then adding e to SE does

not result in any effect and removing it from SE cannot be done.

• SE def= S→excluding(e): The set containing all elements of SE without e. Adding an

entity to this set is achieved by adding it to the set S but only if this entity does not

belong to S and is different from e. Removing an entity from this set is equivalent to

removing it from the set but only if this entity is in S and is different from e.

• SE def= S→collect(aend): the shorthand of this notation is using multiple navigation,

e.g. E .aend1.aend2. We have discussed this form of set expression earlier.

The generation rules for addition and deletion involving derived sets are shown in figures10

6.14 and 6.15.
10Function isSingle() tests if a given navigation results in a single entity. In addition, E .aend1 = E1

indicates that E .aend1 results in a single entity E1. Meanwhile, E .aend1 = SE1 indicates that E .aend1
leads to a set of entities SE1.

150 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

6.4.7 Discussion

In the previous sections, we define functions P t and P f that return a set of specific plans

for a given constraint form. We now define a fuction R that takes an event (e.g. making

a constraint true) and returns a repair plan set (unlike function P t or P f which takes a

constraint not an event). More specifically, let R(ct) and R(cf) be the complete set of repair

plans for the event of making constraint c true and false respectively (note that ct and cf

are events). We then define a function T that takes a constraint and returns the complete

repair plan set: T (c) = R(ct) ∪R(cf).

We now discuss what should be included inR(ct) andR(cf). Firstly,R(ct) should contain

Pt(c) (which is the specific plans for the constraint form) and similarly R(cf) contains Pf (c).

In addition, a constraint may have sub-constraints and consequently fixing the parent

constraint may lead to the need to repair sub-constraints. This dependency is reflected in

the generated plans, e.g. the form of some repair plans for constraint c def= SE→exists(c1)

contain an event posted to repair the sub-constraint c1. If a constraint has more than one

sub-constraint then fixing one sub-constraint might conflict with the plan that repairs the

other sub-constraint. Therefore, in order to guarantee that the generated repair plans always

correctly fix the constraint, we include some top level plans. More specifically, R(ct) includes

{fixCt : c ← true, fixCt : ¬ c ← !ct ; !fixCt}. Similarly, R(cf) includes {fixCf : ¬ c ← true,

fixCf : c ← !cf ; !fixCf }.

Furthermore, our repair plans are structured in a hierarchical manner, i.e. a plan may

post certain events which are handled by further plans. As a result, when we consider a

complete set of repair plans for a specific constraint, we need to take into account plans that

handle events. Events in our generated repair plans are generally in two forms: fixing a

sub-constraint and adding/deleting an element to/from a derived set (see section 6.4.6). We

denote event(Pt(c)) as the set of events that are posted within all plans belonging in Pt(c),

which may include events of the form +(x ,SE) and (x ,SE). The complete set of repair plans

R(ct) for making constraint c true is defined as:

R(ct) = Pt(c) ∪ {fixCt : c ← true, fixCt : ¬ c ←!ct ; !fixCt} ∪
⋃

ev∈event(Pt (c))

R(ev)

and the complete set of repair plans R(cf) for making constraint c false is as:

151 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

R(cf) = Pf (c) ∪ {fixCf : ¬ c ← true, fixCf : c ←!cf ; !fixCf } ∪
⋃

ev∈event(Pf (c))

R(ev)

The above definition is applied to the events representing the need to make a constraint

true and false. With respect to the event representing addition of an entity e to a derived

set SE , denoting +(e,SE), we have the following definition.

R(+(e,SE)) = Q+(SE) ∪
⋃

ev∈event(Q+(SE))

R(ev)

Similarly to deletion to a derived set, we have the following definition:

R(−(e,SE)) = Q−(SE) ∪
⋃

ev∈event(Q−(SE))

R(ev)

In the next section, we illustrate how the repair plan generation rules are used to generate

repair plans for a simple example.

6.5 Example

Now let us consider a simple example of how repair plans are generated for a consistency

constraint in Prometheus (refer to the Prometheus metamodel presented in figure 4.12 on

page 87, figure 4.13 on page 88, and figure 4.16 on page 92). The following constraint11

specifies that any agent that handles a percept should contain at least one plan that is

triggered by the percept.

Context Percept inv:

self.agent→forAll(a : Agent | a.plan→exists(pl : Plan | pl.percept→includes(self)))

We denote the above constraint as c(self), and ct(self) is the event representing the need

to make c(self) true. We also define the following abbreviations:

c1(self, a) def= a.plan→exists(pl : Plan | pl.percept→includes(self))

c2(self, pl) def= pl.percept→includes(self)
11Here, association ends agentsRespondingEntityReference, includedPlansEntityReference, and

perceptsEntityReference are written as agent , plan, and percept respectively for short.

152 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

Our repair plan generator produces the following repair plans for making constraint c

true, since it has the form SE→forAll(c).

ct(self) ← for each a in self.agent if ¬ c1t(self, a) then !c′t(self, a) (P1)

c′t(self, a) ← !−(a, self.agent)12 (P2)

c′t(self, a) ← !c1t(self, a)13 (P3)

For constraint c1 we generate the following plans, since the constraint is of the form

SE → exists(c). In the rules of figure 6.8 “Type(SE)” denotes the type of SE’s elements,

in this case SE (which is a.plan) contains plans, and therefore in P5 the context condition

requires that pl be an element of the set of all plans, denoted Set(Plan).

c1t(self, a) : pl ∈ a.plan ← !c2t(self, pl) (P4)

c1t(self, a) : pl ∈ Set(Plan) ∧ pl 6∈ a.plan ← !+(pl, a.plan) ; !c2t(self, pl) (P5)

c1t(self, a) ← Create pl : Plan ; !+(pl, a.plan) ; !c2t(self, pl) (P6)

c2t(self, pl) : c1(self, a) ∨ c2(self, pl) ← true (P7)

Similarly, for constraint c2 we generate the following plan.

c2t(self, pl) ← !+(self, pl.percept) (P8)

Finally, by applying functions Q+ and Q− we have the following plans for addition and

deletion from derived sets.

−(a, self.agent) ← Disconnect self and a (w.r.t. agent) (P9)

+(pl, a.plan) ← Connect a and pl (w.r.t. plan) (P10)

+(self, pl.agent) ← Connect pl and self (w.r.t. agent) (P11)

Figure 6.16 represents the event-plan tree for fixing constraint c using the plans produced

by our repair plan generator. At the root of the tree is the event of making the top constraint

c true. The leaves of the tree are primitive repair actions. As can be seen, the top event

ct(self) can trigger only one plan P1. From its definition, this plan can post multiple events

c′t(self), as denoted with a * mark next to its node. It is noted that events and plans in this

tree are event types and plan types, not instances. A single plan type can generate multiple
12Post an event to remove a from the set self .agent .
13Post an event to make c1(self , a) true.

153 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

plan instances at runtime. For instance, plan P4 triggered by the event c1t(self) has a free

variable “pl” in its context conditions. At runtime, this variable is bound to different values,

in this case it is bound to any entity contained in the set a.plan. For each value it is bound

to, a corresponding plan instance is generated at runtime.

P1

ct(self)

Key
Event

Plan

c’t(self)

P2 P3

P4P5 P6

P8

P9

P10

P11

*

-(a, self.agent) c1t(self, a)

c2t(self)+(pl, a.plan) +(pl, a.plan)

+(self, pl.percept)

Disconnect
self and a

(w.r.t. agent)

Connect a
and pl (w.r.t.

plan)

P10

Connect pl and self
(w.r.t. percept)

Create pl :
Plan

Action

Connect a
and pl (w.r.t.

plan)

P7

Figure 6.16: An event-plan tree for ct(self)

By examining the event-plan tree, one is able to identify options to repair the top con-

straint. For instance, the event-plan tree in figure 6.16 gives the following repair options for

fixing constraint c(self), which are informally expressed as below:

1. For each agent handling the given percept self , if the agent does not contain at least

one plan that is triggered by the percept, we do one of the following:

154 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

(a) Remove this agent from the percept, i.e. this agent no longer handles the percept

(plans P2 and P9).

(b) Pick out one of the plans belonging to the agent, and make it handle the percept

(P3, P4, P8 and P11).

(c) Pick one existing plan, add it to the agent (P3, P5, P10), and if the plan already

handles the percept then do nothing (P7), else make the plan handle the percept

(P8 and P11).

(d) Create a new plan, add it to the agent, and make it handle the percept (P3, P6,

P10, P8, and P11).

An important question that can be raised here is whether the above repair options are cor-

rect and complete. In the next section, we attempt to prove the correctness and completeness

of the generated repair plans.

6.6 Correctness and completeness

As mentioned earlier, the most important criteria of our repair plan generator are correctness

and completeness. In this section, we prove, by induction, that the translation schema

proposed above possesses these two properties.

A repair plan type contains a mixture of actions and subgoals (or alternatively called

events). Such subgoals are achieved by executing further plans. At run time, a repair plan

type (e.g. plan P in figure 6.17) is expanded into zero or more plan instances (e.g. plans

P1, P2, ..., Pn) by solving the plan’s context condition. When each plan instance (e.g. plan

P1) has all its subgoals resolved, it is then expanded into some number of action sequences

(e.g. Pa
1 , ..., P

m
1) by expanding each subgoal into a particular choice of plan (and doing this

recursively for sub-subgoals and so on). We firstly define a sequence of repair actions that

correctly fixes a given constraint.

Definition 2 (Correct sequence of repair actions). A sequence of actions S repairs constraint

C in model M iff (a) C is violated in M ; and (b) performing S on M yields a new model

M ′; and (c) C holds in M ′. �

The above definition generalises to a set of constraints in the obvious way. Based on the

definitions of repair actions in section 6.1, an important observation is that the preconditions

155 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

In
st

an
tia

te

Plan type P

Plan instances
P1, P2 …………… Pn

R
es

ol
ve

su

bg
oa

ls

R
es

ol
ve

su

bg
oa

ls

P1
a, …… P1

m ……………
Action sequences

Figure 6.17: An example illustrating relationships between plan types, plan instances and
action sequences

of these primitive actions are quite weak. This allows us to arbitrarily reorder a sequence of

actions subject to the following conditions:

1. Creation of entities must remain before addition of relationships (i.e. connecting) be-

tween the entities;

2. If the sequence of actions has redundant pairs – an action that undoes the effects of an

earlier action – then the pair cannot be swapped, but it can be simplified by deleting

both of the two actions. For example, adding a relationship followed by deleting it can

be replaced by simply doing nothing. Condition (2) is not needed if we assume that

the sequence of actions being reordered is non-redundant, i.e. does not contain any

redundant pairs.

Lemma 1 (Action sequence reordering). A non-redundant sequence of actions S can be

arbitrarily reordered, so long as creation of entities precedes relating these entities, without

affecting the overall effect of S . �

156 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

The permutation of actions within a particular action sequence may give a number of

different action sequences which, according to lemma 1, give the same effect as long as they

satisfy condition 1 mentioned earlier. For such action sequences, we are interested in their

representative which is defined as below.

Definition 3 (Representative permutation of action sequences). A sequence of actions S is

said to be a representative permutation of all action sequences that are derived by arbitrarily

reordering it, subject to the constraint that creation of entities precedes operations on these

entities. �

Based on the definition of a correct sequence of repair actions, we now define a definition

of a correct repair plan.

Definition 4 (Correct repair plan). A repair plan type P correctly fixes a violated constraint

C if and only if when P is instantiated and then resolved, it results only in correct sequences

of actions for repairing C . �

As mentioned in chapter 3 (our change propagation framework) and discussed in detail

in chapter 7, the selection of applicable repair plans is based on the notion of costs. As a

result, when repair plans are generated at compile time, we only focus on plans that have

no unnecessary steps in fixing a particular constraint. Such plans are considered as minimal

plans which are defined as below. Similar to the way we define correct repair plans, we define

minimal repair plans through the concept of minimal sequence of actions.

Definition 5 (Minimal sequence of repair actions). A correct sequence of actions S is

minimal if removing actions from it always results in a sequence that no longer repairs C in

M . �

Definition 6 (Minimal plan). A repair plan type P for fixing constraint C is said to be a

minimal plan if and only if when P is instantiated and resolved, it results in only minimal

sequences of actions for repairing C . �

Given the definitions of correct and minimal plans, a complete set of repair plans is

defined below.

Definition 7 (Complete set of repair plans). A set of repair plan types R(Ct) for a constraint

C is said to be complete if and only if, for any minimal (and correct) sequence of actions S

157 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

for repairing C , a representative permutation of S can be obtained by instantiating and then

resolving a plan in R(Ct). �

Based on the above definitions, the correctness and completeness of our translation scheme

for making a constraint true (i.e. R(Ct)) are expressed by the following theorem. Note that

a similar theorem can also be derived for the translation scheme for making a constraint false

(i.e. R(Cf)).

Theorem 1. For any given OCL constraint C which is satisfiable14 , the set of repair plans

R(Ct) produced by the repair plan generator is correct and complete. That is, it generates15

a representative permutation for each correct and minimal action sequence, and does not

generate any incorrect action sequences, and all generated action sequences are minimal.

Proof: We will prove, by induction, that the above theorem holds with respect to the

translation schemas for making a constraint true, i.e. ct . A similar proof can be used to

prove its correctness for making a constraint false, i.e. cf .

First of all, we will prove that theorem 1 holds for all the basic OCL constraints that we

cover. This is relatively easy since repair plans are generated by considering all the possible

ways in which a constraint can be false. In appendix A, we provide a proof of the theorem

for all basic OCL constraints that are covered by our repair plan generator. We provide here

a detailed proof for a typical example: c def= SE→includesAll(SE’).

As can be seen in figure 6.8, the repair plan set Pt(c) for the given constraint c contains

three main plan types: {ct ← for each x in (SE’ − SE) !c′t(x), c
′
t(x) ← !−(x, SE’), c′t(x) ←

!+(x, SE)}. When these plan types are instantiated and resolved, we obtain a set of possible

action sequences AS . We need to show that:

(a) for any as ∈ AS : (i) as is correct; and (ii) as is minimal.

(b) let as ′ be a correct and minimal action sequence, then as ′ must be either in AS or a

representative permutation of an action sequence in AS .

In order to show (a), let {x1, . . . , xn} = SE ′ − SE (where we know that n > 0, else the

constraint is already true), and, because it is a set, we also know that xi 6= xj for i 6= j .

14Satisfiability here means that there exists a sequence of actions which makes the constraint true. We do
not actually check for satisfiability – we assume that the user will not ask for impossible constraints, and the
system does actually detect failure in these cases.

15In this context, plan generation means instantiation of plans followed by resolving subgoal choices.

158 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

From the above plan type definitions, any action sequence as in AS contains actions that

for each xi either remove it from SE ′ or add it to SE .

The above constraint can be written as:

c def= ∀ x ∈ SE ′ • x ∈ SE

Assume that c is violated, i.e. ¬ c is true, expressed as follows.

¬ c def= ¬ (∀ x ∈ SE ′ • x ∈ SE)
def= ∃ x ∈ SE ′ • x 6∈ SE

Now, SE ′ − SE is the set of xi for which the condition xi ∈ SE ′ ∧ xi 6∈ SE holds.

Therefore, constraint c is violated if and only if there is an xi which is in SE ′ and not in

SE . Hence to fix c (minimally) must ensure that no such xi exists. We do this by finding

all xi for which the condition holds (which is given by SE ′− SE) and for each xi making the

condition false, which can be done by either deleting it from SE’ (to make xi ∈ SE ′ false) or

adding it to SE (to make xi 6∈ SE false). This matches exactly with an action sequence as

in AS .

Depending on the nature of the sets SE and SE ′, there are further plans contained in

R(ct), and we need to reason by induction. Let us consider as an example the case where

SE def= E.aend. By applying the rules described in figure 6.14, there is another plan in R(ct):

+(x ,E .aend) ← Connect E to x (w.r.t aend). E .aend is the set of entities that connect to

E with respect to association end aend . Therefore, the only action for adding an entity x to

the set E .aend is connecting E to x with respect to aend (see the taxonomy of repair actions

in section 6.1).

Now, in order to prove (b), let as ′ be an action sequence that is both correct (for fixing

c) and minimal. We argue that as ′ must be either one of the action sequences in AS or a

representative permutation of an action sequence in AS . Let xi be in (SE ′ − SE) then, as

argued earlier, as ′ must somehow remove xi from (SE ′−SE), and this can be done in exactly

two (minimal) ways: removing it from SE ′, or adding it to SE .

Furthermore, as ′ must do this for each xi in (SE ′ − SE) – any xi that is not removed

159 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

leaves a violation of the constraint. Finally, removing each of the xi from (SE ′ − SE) is

sufficient to repair the constraint, and therefore as ′ does not do anything else (since it is

minimal). Thus we have argued that as ′ must follow the pattern of action sequences in AS .

An OCL constraint is ultimately a combination (and , or , not , xor and implies) of basic

constraints. We have proved that theorem 1 holds for all basic constraints. We now use that

to prove, by induction, that theorem 1 holds for the basic connectives: and , or , and not .

The other connections (xor and implies) can be derived from the basic ones. Below is a proof

for the or expression. For the others, please refer to appendix A.

For c def= c1 or c2, assume that theorem 1 holds for R(c1t) and R(c2t), i.e. both of them

are correct and complete sets. Now we need to prove that it also holds for R(ct).

According to figure 6.12, we have:

Pt(c) = {ct : ¬ c1←!c1t , ct : ¬ c2←!c2t}

and we also have:

R(ct) = Pt(c) ∪R(c1t) ∪R(c2t) ∪ . . .

Because of our induction assumption R(c1t) is correct and complete, i.e. it contains plans

that correctly (and minimally) fix c1, and similarly for R(c2t) and c2. Therefore, plan ct

: ¬ c1 ← !c1t is able to repair c1 and plan ct : ¬ c2 ← !c2t is able to repair c2. Since the

constraint c holds if either of c1 or c2 holds, any plan that is able to fix c1 or c2 can fix c.

As a result, we can conclude that R(ct) contains plans that correctly fix c. These plans are

also minimal because they do not contain redundant repair actions. For instance, plan ct :

¬ c1 ← !c1t fixes only c1 when c1 is false, which just sufficiently repairs c without the need

to fix c2.

We have proved that R(ct) contains correct and minimal repair plans for c. Now we prove

the completeness of the set R(ct). Assume that there is a minimal plan P that fixes c and

does not belong to R(ct). Plan P must fix either c1 or c2 (but not both, otherwise it is not

minimal), and without loss of generality we assume that P aims to fix c1. Therefore, plan

P is also the minimal plan for fixing c1, which results in, due to the induction assumption,

160 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

that P belongs to R(c1t). Since R(ct) contains R(c1t), P also belongs to R(ct), which

contradicts our previous assumption. Hence, there does not exist any minimal plan P that

fixes c and does not belong to R(ct), i.e. the set R(ct) is complete.

The induction proof above shows that the generated repair plans of an or constraint cor-

rectly fix the constraint. The proofs for all other constraint forms are presented in appendix

A. One interesting case that should be noted involves constraint forms that have repair plans

for fixing sub-constraints conflicting with each other. For instance, for c def= c1 and c2 the

generated repair plans are16:

Rt(c) = {fixCt : c ← true, fixCt : ¬ c ←!ct ; !fixCt} ∪ R(c1t) ∪R(c2t) ∪

{ct : ¬ c1 ∧ c2←!c1t , ct : ¬ c2 ∧ c1←!c2t , ct : ¬ c1 ∧ ¬ c2←!c1t}

Assume that c is false because c1 is true and c2 is false, then fixCt calls the plan aiming

to fix c2, i.e. ct : ¬ c2 ∧ c1 ← !c2t . However, this plan may make c1 become false, which

results in c still being false. Since fixCt is called recursively until c becomes true, the plan

aiming to fix c1 is called, i.e. ct : ¬ c1 ∧ c2 ← !c1t . However, this plan may also make c2

false, in which case the plan aiming to fix c2 is called and this may continue as a loop. In

general, if it is not possible to make both c1 and c2 true at the same time, i.e. every plan

that fixes c1 violates c2 and vice versa, then c is not satisfiable. If c is satisfiable, then there

exists a repair plan that is able to fix c. We are able to prove (refer to appendix A) that such

a repair plan can be generated by R. Furthermore, in this case our plan selection mechanism

(discussed in chapter 7) will find terminating repair plans by favoring them over any other

repair plans that cause an infinite loop.

Overall, we can conclude that our generated repair plans for a constraint correctly fix it

if the constraint is satisfiable. Our cost algorithm (described in chapter 7) is able to detect

infinite loops caused by conflict between repair plans fixing sub-constraints. �

6.7 Related work

There has been a range of work on automatic repair of constraints in the area of databases. In

these approaches, production rules are often used to represent various ways of fixing a given

violated constraint. A rule premise contains conditions and if the premise is satisfied, actions
16The full proof for this constraint form is presented in appendix A.

161 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

specified in the consequent of the rule can be executed. One key difference between their

work and ours is that we generate abstract, structured, repair plans that are instantiated at

runtime.

The work in the area of databases focuses on integrity constraint maintenance [Mayol

and Teniente, 1999], i.e. making changes to transactions or databases to recreate a state

of integrity. While approaches in this area share a common goal, which is avoiding costly

transaction roll-back by fixing constraint violations before committing, they differ in several

aspects such as the expressiveness of the constraints that they allow, the degree of user

interaction, and the assurance that can be made about repairs. We now describe some of the

most relevant work in the area of relational, object-oriented, active and deductive databases.

Firstly, Urban et al. [1992] proposed an approach to generate repair actions for a given

constraint in the context of active integrity maintenance of an object-oriented database17.

Their approach also works automatically from a declarative specification but it can only

handle simple boolean constraints in Skolem normal form.

The approach described in [Ceri et al., 1994] also supports automatic generation of pro-

duction rules but focuses on integrity enforcement for relational databases. Moreover, their

rule generator takes constraints in more complicated forms, i.e. existential and universal

quantifications. In addition, they also allow the user to modify the generated rules, as well

as the order on constraints to be checked and the order on rules to be executed. In our

framework, the user is also able to modify generated repair plans but they do not need to

take care of the order of constraints or rules to be executed. In fact, as we show in chapter

7, with regard to the specific problem that we are trying to solve, the order in which con-

straints are fixed does not affect the outcome. Similar to our approach, they also involve user

intervention in selecting repair actions but they use a low-level text mechanism and no tool

support is discussed. The work described in [Gertz and Lipeck, 1997] covers a similar class of

constraints (as in [Ceri et al., 1994]) but they specifically raise the issue of user involvement

in the process of resolving constraint violation, i.e. allow the user to choose between possible

alternative repairs that reflect the user’s intention or the application requirements. They

propose several repair strategies for reducing the set of repair actions presented to the user

for selection such as minimizing the number of changes necessary to the database or the
17The consistency of a database can be specified using passive and/or active integrity constraints. While

passive constraints are used for simply checking validity, active constraints ensure database consistency by
adding or deleting data [Cacace et al., 1990].

162 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

transactions triggering the repairs. These strategies are, however, analytical and generic (i.e.

not developed based on domain knowledge), which differ from our repair plans. Nonetheless,

we also share the same concern as one of their repair strategies in terms of only including

repair plans which make changes necessary to the application model.

There have also been work on deriving repair actions in deductive databases. For example,

Moerkotte and Lockemann [1991] proposed a system that generates actions from closed,

range-restricted first order logic formulae. Since their repair algorithm depends on the rules

of the database and the closed-world assumption, it can automatically find repairs for violated

existential formulae without user intervention. Such assumptions are not available in the case

of design models and thus a mechanism of interactively querying the user, in some cases, to

select a specific repair action for violated constraints is needed.

Our work is also related to the approach for repairing inconsistent distributed and struc-

tured documents proposed in [Nentwich et al., 2003]. Constraints between distributed doc-

uments are expressed in xlinkit, a combination of first order logic with XPath expressions.

Their framework is powerful in terms of automatically deriving a set of repair actions from the

constraints. In addition, they use abstract repair actions as a way to as a way to reasonably

represent the potentially large number of concrete ways of resolving constraint violations.

However, they consider only a single change, and do not take into account dependencies

among inconsistencies and potential interactions between repair actions for fixing them. As

a result, their approach does not explicitly address the cascading nature of change propaga-

tion. Our repair plan generator is, however, built on top of the intuition and ideas proposed

in their approach.

6.8 Chapter summary

In this chapter we have described in detail one of the key and novel components of our

change propagation framework: a repair plan generator. The key idea of this generator is

automatically producing repair plans for a given OCL constraint. Its availability significantly

facilitates the task of the repair administrator in terms of developing and managing repair

plans which is the means of propagating changes. In this chapter, we have formally defined

repair actions using the Z notation. We have also discussed several key issues and solutions

involving automatically generating repair plans by analysing OCL constraints. In addition,

we completed the abstract syntax of repair plans previously mentioned (in chapter 3). The

163 (28th August, 2008)

CHAPTER 6. PLAN GENERATION

key part of this chapter is the set of generation rules for common OCL invariants. Finally,

we have proved that the repair plans generated following our rules are correct, minimal and

complete.

As shown in most of plan generation rules, there are usually multiple repair plans for

a given constraint. This leads to another key question that needs to be answered which is

how to select between different applicable repair plans to fix a given constraint violation.

Resolving this issue is the focus of the next chapter.

164 (28th August, 2008)

Chapter 7

Plan Selection

In the previous chapter, we have discussed the repair plan generator, an important compo-

nent of our framework, which is responsible for producing repair plan types for consistency

constraints. These plan types are instantiated at run time to become plan instances. The

availability of the repair plan generator provides a significant step in our effort to improve

the automation of change propagation. However, another important issue that needs to be

answered as part of the effort is how to select between different applicable (repair) plan

instances to fix a given constraint violation. This chapter serves to address this issue. We

begin with a discussion of the challenges in dealing with the problem of repair plan selec-

tion and propose our approach of using a notion of repair plan cost (section 7.1). We also

explain why this cost calculation mechanism is suitable to reflect the cascading nature of

change propagation. In section 7.2 we present a series of formal definitions for the cost of

actions, plans, constraints and (sub)goals. In section 7.3 we then explore some properties

of the definitions that enable us to derive cost algorithms. We present two versions of the

cost algorithms: one involving an exhaustive search and the other with pruning capabilities

(section 7.4). We also analyse and discuss the complexity of the algorithms.

7.1 Issues and solutions in repair plan selection

There can be multiple applicable repair plans for resolving a given inconsistency. For instance,

an inconsistency concerning a naming mismatch between a message in a sequence diagram

and the operations in the message’s receiver class (as discussed in chapter 5) can be resolved

in different ways: either changing the message’s name or changing the name of one of the

CHAPTER 7. PLAN SELECTION

operations. Choosing between those different possible repair plans can depend on various

factors. For example, assume that the inconsistency is caused because the designer has

renamed the message so that its name matches with a corresponding state transition. In this

case, renaming an operation is possibly more preferable from the designer’s perspective.

The above example has shown that the cause of inconsistency can play a role in deter-

mining which repair plans should be chosen. Other elements that can influence repair plan

selection include user dependent factors such as the designer’s style and preferences. Formu-

lating all of those factors is not generally feasible [Egyed and Wile, 2006], thus a completely

automated mechanism for selecting repair options is not appropriate. On the other hand, it

is not desirable for our change propagation mechanism to involve a substantial amount of

user interaction. We therefore develop a semi-automated mechanism for repair option selec-

tion: options that are considered infeasible and costly (explained below) are automatically

filtered out, and the user is presented with a set of “quality” (i.e. low cost) repair options

for selection. It is noted that we assume that cheapest repair options are the “best” options

although this may not be necessarily the case in practice. More investigation on this issue is

part of future work as discussed in chapter 10.

We view inconsistency resolution in the context of change propagation. It means that we

have to consider the side-effects of a repair plan on other constraints. They can be negative

effects, i.e. breaking a constraint, or positive effects, i.e. resolving a violated constraint. As

a result, the selection of repair plans is also dependent on their side-effects.

Our approach to the above issues relating to plan selection is to define a suitable notion

of repair plan cost. Generally, the cost of a repair plan indicates the number of repair actions

that are needed to fix a given constraint violation. There are several important properties

related to our notion of repair plan cost.

• It can reflect the user preferences in terms of biasing repair plans that have cheaper cost.

This implies that we can minimise the user interaction during the change propagation

process. It reduces the load on the user by presenting them with a subset of possible

repair options, namely the cheapest ones.

• It provides a simple mechanism for the user to adjust the change propagation process.

For example, if the user wishes to bias the change propagation process towards adding

more information then he/she may assign lower costs to actions that create new entities

or add entities, and higher costs to actions that delete entities. Another example is the

166 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

case where the user wants a particular type of artefact (e.g. class diagrams) to take

precedence over others (e.g. statechart diagrams). He/she can assign higher costs to

actions that change class diagrams and lower costs to actions that modify statechart

diagrams.

• It provides an effective way of accounting for the side-effects of a repair plan. More

specifically, side-effects can be measurable in terms of costs and can be included in

the cost of a repair plan. Negative side-effects increase the cost of a repair plan whilst

positive side-effects reduce its cost. By modelling side-effects as costs, we can also

effectively eliminate infeasible cyclic repair plans because such plans would result in an

infinite cost.

In the next section, we discuss the cost definition of repair plans in more details.

7.2 Cost definition

In this section, we give equations that define the cost of fixing a given constraint using repair

plans. The notion of cost that we use is abstract: it can be viewed as counting the number of

primitive actions (creation, deletion, connection, disconnection and modification) involved in

a given repair plan. For example, if repair plan P1 involves 5 connections and repair plan P2

involves 3 connections then we view P2 as being cheaper. In order to compare “apples and

oranges”, e.g. if P3 involves two connections and a creation, we assume that each primitive

action type is assigned a numerical cost (its “basic cost”), for instance creation may have an

assigned cost of 5 and connection a cost of 3. These numbers do not correspond to any real

cost, and are simply used to compare different action types.

Let us define some preliminary concepts and terminology.

Definition 8 (Action cost). The cost of an action is defined by a function cost that maps an

action to a natural number. cost(A) is the user-defined basic cost associated with the repair

action type A (i.e. creation, deletion, connection, disconnection, and modification). �

A constraint that does not hold with regard to a model is said to be violated, and can be

fixed by executing a repair plan. Based on the abstract syntax of repair plans, we can view

a repair plan instance as comprising primitive repair actions and subgoals (also referred to

as events).

167 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

Definition 9 (Primitive actions of a repair plan1). The primitive actions of a repair plan

are defined by a function A that maps a repair plan to a set of primitive repair actions

(i.e. creation, deletion, connection, disconnection, and modification). In other words, A(P)

returns the set of the repair actions in plan P. �

The cumulative costs of those primitive repair actions in a repair plan form the plan’s

basic cost. Calculating the basic costs of a repair plan is straightforward and is done by

summing the costs of all actions in the plan.

Definition 10 (Basic cost). The basic cost of a plan is defined by a function basicCost that

maps a plan to a natural number. The basic cost of a plan is the sum of the costs of all

actions of the plan.

basicCost(P) =
∑

A∈A(P)

cost(A)

�

Aside from primitive actions, a repair plan also contains subgoals/events which in most

cases correspond to resolving violated sub-constraints or adding/removing concerning sets.

Definition 11 (Subgoals of a repair plan). The subgoals of a repair plan are defined by a

function G that maps a repair plan to a set of subgoals. In other words, G(P) returns the set

of subgoals of plan P. �

Similar to primitive actions, the costs of subgoals in a repair plan form the subgoal cost of

the plan. Calculating a plans’s subgoal cost is more complicated than its basic cost because

one needs to work out the cost of each subgoal in the plan. We will define the cost of a goal

later.

Definition 12 (Subgoal cost). The subgoal cost of a plan is defined by a function subGoal-

Cost that maps a plan to a natural number. The subgoal cost of a plan is the sum of the costs

of all subgoals in the plan.

subGoalCost(P) =
∑

G∈G(P)

cost(G)

1In this section, repair plan instances are referred to as repair plans, and constraint instances are referred
to as constraints.

168 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

�

We now define the main cost of a plan in terms of the costs of its basic actions (basicCost)

and the cost of its subgoals (subGoalCost). It is noted that the main cost is different from

the cost of a repair plan which also takes into account the costs of fixing other violated

constraints – which we will discuss next.

Definition 13 (Main cost). The main cost of a plan is defined by a function mainCost that

maps a plan to a natural number. The main cost of a plan is the sum of the plan’s basic cost

and its subgoal cost.

mainCost(P) = basicCost(P) + subGoalCost(P)

=
∑

A∈A(P)

cost(A) +
∑

G∈G(P)

cost(G)

�

As previously discussed, repairing a constraint often has side-effects. Such side-effects

include both introduction of new constraint violations and the repair of existing violations.

Therefore, it is very important in the context of change propagation to consider a group of

constraints together when fixing a single constraint. We name this group of constraints the

repair scope. When a repair plan completes fixing a constraint, the other constraints in the

repair scope are checked and any violated constraints are then repaired. A global repair scope

involves all constraints whilst a local one contains constraints related to certain entities in

the model.

Definition 14 (Repair scope of a repair plan). The repair scope of a repair plan is defined

by a function S that maps a repair plan to a set of constraints. In other words, S(P) returns

a set of constraints, which is called the repair scope, of plan P. �

A repair scope is related to the “distance” of change propagation, i.e. how far changes

are propagated in a design model. For instance, if one wants to propagate changes from

design artefacts to specification artefacts, one needs to consider a repair scope that contains

constraints which affect model elements in those artefacts. In our framework, we allow the

repair administrator to group constraints into different repair scopes, which enables them to

169 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

limit the propagation to certain constraints or model entities. Normally the repair scope is

set initially (typically to be global) and then is not changed.

Our cost calculation takes into account the side-effects of a plan with respect to its repair

scope by having a concept of a (repair) scope cost for each repair plan. If a repair plan

positively contributes towards its repair scope, e.g. does not break any constraint and/or

fixes some other violated constraints, then its scope cost will be low. On the other hand, if

a repair plan has a negative impact on its repair scope, e.g. breaks some other constraints,

then its scope cost will be high. Hence, the scope cost of a repair plan is measured through

the number of violated constraints and the costs of fixing them after the plan’s execution.

In order to calculate the scope cost of a repair plan, one needs to execute the plan and work

out which constraints in the plan’s repair scope become violated and which constraints are

no longer violated.

Definition 15 ((Repair) scope cost). The (repair) scope cost of a plan is defined by a function

scopeCost that maps a plan to a natural number. The scope cost is the cost of repairing all

(violated) constraints in the plan’s repair scope after the execution of the plan2.

scopeCost(P) =
∑

C∈S(P)

cost(C)

�

We now define the cost of a plan in terms of its main cost and repair scope cost. It

is noted that a repair scope is only meaningful to top-level plans, i.e. those that fix the

top-level constraints. As a result, when calculating the cost of a plan we need to know if it

is a top-level plan or not.

Definition 16 (Plan cost). The cost of a plan is defined by a function that maps a plan to

a natural number. If a plan is to fix a top level constraint, the plan’s cost is equal to the sum

of its main cost and its repair scope cost. If a plan is to achieve a subgoal, the plan’s cost is

equal to its main cost.

cost(P) =

 mainCost(P) + scopeCost(P) if P is top-level plan

mainCost(P) otherwise

2Since we will define cost(C) = 0 if the constraint C is not violated we simply sum over the cost of all
constraints in S(P).

170 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

�

We now provide equations that define the cost of constraints and goals/events. A

goal/event can be either fixing a top-level constraint, a sub-constraint or adding/removing

elements to/from derived sets. There are usually several applicable plan instances to repair

a constraint violation or to achieve a goal.

Definition 17 (Applicable plans). The applicable repair plans of a constraint is defined by

the function CP that maps a constraint to a set of plan instances that can be used to fix the

constraint. The applicable plans for achieving a goal is defined by the function GP that maps

a goal to a set of plan instances that can be used to accomplish a goal. �

The best plan, which is selected for execution, is the one with minimum cost. Hence the

cost of repairing a constraint is the cost of the cheapest repair plan instance.

Definition 18 (Constraint cost). The cost of a constraint3 is defined by a function cost that

maps a constraint to a natural number. The cost of fixing constraint C is equal to the cost

of the best applicable repair plan instance with regard to C . If there are no applicable repair

plans, the cost of C is undetermined4 . The cost of fixing an unviolated constraint is 0.

cost(C) =

 0 if C unviolated

min {cost(P) | P ∈ CP(C)} otherwise

�

Similarly, we define the cost of a plan achieving a goal. It is noted that the cost of a goal

of fixing a constraint is equal to the cost of the constraint.

Definition 19 (Goal cost). The cost of a goal is defined by a function cost that maps a goal

to a natural number. The cost of achieving a goal is the cost of the cheapest available repair

plan.

cost(G) = min {cost(P) | P ∈ GP(G)}

�
3The cost of a constraint (instance) is relative to a particular state of the model.
4In this case we treat the cost as infinite.

171 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

We have provided equations to define the cost of plans, constraints, and goals. In order

to illustrate how those definitions are applied in reality, we now calculate the costs for the

following example.

7.2.1 Example

Assume that a model contains one agent a1 which plays one role r1 and handles one percept

p1. Note that role r1 is not set to deal with percept p1. In addition, role r1 is also the only

role in the model. It is noted that we use this simple and artificial example so that it is easy

to demonstrate the pruning that is discussed later.

We now consider a repair scope that contains the following constraint:

• For any agent a and percept p that is handled by the agent, there is at least one of the

roles played by agent a that is able to deal with percept p. This constraint is written

in OCL in the context of the Prometheus metamodel (refer to figure 4.10 on page 81

and figure 4.13 on page 88) as below5.

c1(a, p) def= a.role→exists(r : Role | r.percept→includes(p))

We define constraint c1’(r, p) def= r.percept→includes(p), which is a sub-constraint of c1,

i.e. constraint c1 can be written as c1(a, p) def= a.role→exists(r : Role | c1’(r, p))
By applying the repair plan generation rules as previously discussed in chapter 6, we

derive the following repair plan types for making constraint c1 true:

c1t(a, p) : r ∈ a.role ← !c1′t(r, p)

c1t(a, p) : r ∈ Set(Role) ∧ r 6∈ a.role ← !+(r, a.role); if ¬ c1’(r, p) !c1′t(r, p)

c1t(a, p) ← Create r : Role ; !+(r, a.role) ; if ¬ c1’(r, p) !c1′t(r, p)

+(r, a.role) ← Connect a to r (w.r.t. role)

c1′t(r, p) ← !+(p, r.percept)

+(p, r.percept) ← Connect r to p (w.r.t. percept)

Given the existing model, constraint c1(a1, p1) is violated. We use the above repair plan

types to generate the following repair plan instances for fixing this constraint. It is noted

that a1.role = {r1} and the set of roles currently has only r1, i.e. Set(Role) = {r1}. As a
5Here, association ends perceptsEntityReference and rolesEntityReference are written as percept and role

respectively for short.

172 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

result, the second plan type to handle event c1t(a1, p1) does not yield any instances because

its context condition has no solutions, i.e. no existing roles belonging to a1.role.

c1t(a1, p1) ← !c1′t(r1, p1) (P1)

c1t(a1, p1) ← Create r2 : Role ; !+(r2, a1.role) ; !c1′t(r2, p1) (P2)

+(r2, a1.role) ← Connect a1 to r2 (w.r.t. role) (P3)

c1′t(r1, p1) ← !+(p1, r1.percept) (P4)

c1′t(r2, p1) ← !+(p1, r2.percept) (P5)

+(p1, r1.percept) ← Connect r1 to p1 (w.r.t. percept) (P6)

+(p1, r2.percept) ← Connect r2 to p1 (w.r.t. percept) (P7)

There are two applicable repair plans for making constraint c1(a1, p1) true: P1 and P2.

Therefore, the cost of fixing this constraint is the minimum of cost(P1) and cost(P2).

P1

c1t(a1, p1)

c1't(r1, p1)

P2

Create r2

P4

Connect r1 to p1

+(p1, r1.percept)

P6

+(r2, a1.role) c1't(r2, p1)

Connect a1 to r2

P5

+(p1, r2.percept)

P7

Connect r2 to p11

1

1

1

1

1 + scopeCost(P1)

1

1

1

1

1

1

1
1

3 + scopeCost(P2)

SG21 SG22

SG51

P3

1

min{cost(P1), cost(P2)} Event

Plan

Action

Key

Figure 7.1: An example of cost calculation for constraint c1(a1, p1)

173 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

Figure 7.16 shows the goal-plan tree of repair plans for fixing constraint c1(a1, p1 and

how the costs are calculated. We assume a basic cost of 1 for all action types used in this

example. Basically, the costs of plan P2 are calculated as.

cost(P2) = mainCost(P2) + scopeCost(P2)

Where,

mainCost(P2) = basicCost(P2) + subGoalCost(P2)

= cost(Creation) + cost(SG21) + cost(SG22)

= cost(Creation) + cost(P3) + cost(P5)

= cost(Creation) + cost(Connection) + cost(SG51)

= cost(Creation) + cost(Connection) + cost(P7)

= cost(Creation) + cost(Connection) + cost(Connection)

= 3

Therefore, the cost of plan P2 is: cost(P2) = 3 + scopeCost(P2)

Similarly, the cost of plan P1 is:

cost(P1) = mainCost(P1) + scopeCost(P1)

= 1 + scopeCost(P1)

Although the main cost of P1 is smaller than the main cost of P2, P1 may not be the

plan chosen to fix c1. This is because its total cost, which includes the scope cost, is not

guaranteed to be less than the cost of plan P2. In other words, we need to know the scope

cost of each plan before making the decision of which plan to choose for fixing constraint c1.

For instance, if the repair scope contains only constraint c1, then the scope costs of plans

P1 and P2 are 0. Therefore, the cost of P1 is 1, which is smaller than the cost of P2 (i.e.

3) and consequently P1 is chosen to repair c1. However, consider the case where the repair
6The number placed next to each node is its corresponding cost.

174 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

scope contains another constraint c2 requiring that every agent needs to play at least 2 roles.

In this case, plan P2 has a scope cost of 0, since after its execution, none of the constraints

in the repair scope are violated (c2 is not violated since agent a1 now plays two roles r1

and r2). On the other hand, the scope cost of plan P1 is not 0 but is equal to the cost of

constraint c2 (it is violated because agent a1 plays only 1 role r1). By performing a similar

calculation, one should derive the cost of constraint c2 is 2 (1 for creating a new role and 1

for connecting it with agent a1). Therefore, the cost of plan P1 would be 3, which is equal

to the cost of P2. As a result, with regard to this repair scope both plans could be chosen

to fix c1.

7.3 Properties of the cost definitions

Having defined the costs of repairing violated constraints, we now consider a number of

properties of these definitions.

Firstly, a repair plan type contains a mixture of actions and subgoals. Such subgoals are

achieved by performing further actions. Therefore, a repair plan instance, which has all its

subgoals resolved, is ultimately a sequence of actions that the user needs to perform in order

to fix a particular violated constraint. By viewing an expanded repair instance in terms of

the corresponding action sequence, we are able to ease our proof of the lemma and theorem

presented ahead.

Definition 2 (on page 155) defines a sequence of actions that is able to repair a given

constraint. We now define the cost of such an action sequence.

Definition 20 (Repair action sequence cost). The cost of a sequence of repair action S is

defined by a function cost that maps an action sequence to a natural number. The cost of an

action sequence is the sum of the costs of all actions of the sequence.

cost(S) =
∑
A∈S

cost(A)

We have previously defined a minimal sequence of repair actions (refer to definition 5 on

page 157). It is noted that minimality implies non-redundancy, i.e. all minimal plans are

non-redundant. In addition, the definition of minimality generalises to a set of constraints

in the obvious way. This definition gives us the following important lemma and theorem.

175 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

Lemma 2. Let M0 be a model in which the constraints Ci are violated. Let S be a minimal

sequence of actions for repairing all the constraints Ci in M0. Then for a given constraint,

say (without loss of generality) C1, there exists at least one sequence of actions S ′ which is

obtained by removing some number (possibly zero) of actions from S such that S ′ repairs C1

in M0 and is minimal.

Proof: S repairs C1 in M0, but may contain actions that are unnecessary for repairing C1

(since S also repairs other constraints Ci where i 6= 1). We construct S ′ by simply removing

these unnecessary actions, resulting in a minimal S ′. �

Theorem 2. Let M0 be a model where some number of constraints Ci are violated and let

S be a minimal (and hence non-redundant) sequence of actions that repairs the Ci in M0,

yielding model MF :

M
0

M
F

S

M
1

S
1

S’

Then (by lemma 2) for any of the given constraints, say (without loss of generality) C1, there

exists a minimal action sequence S1 that repairs C1 in M0 yielding M1. Furthermore, there

then exists a minimal (and hence non-redundant) action sequence S ′ that takes us from M1

to MF where cost(S) = cost(S1) + cost(S ′).

Proof: We construct S ′ and S1 from S as follows. We form S1 by removing actions from

S to yield a minimal S1 for repairing C1 in M0 (using lemma 2). The actions that are not

removed from S are the remainder, S ′. We can view the sequence S1 followed by S ′ as being

a reordering of S , and by lemma 1 (on page 156) it has the same effect as S , i.e. results in

MF . Since S1 followed by S ′ has the same actions as S it must have the same cost.

Now we prove, by contradiction, that S ′ is minimal. Assume that S ′ is not minimal. Then

there exists a sub-sequence S ′′ of S ′ which is obtained by removing unnecessary actions, such

that S ′′ correctly repairs all constraints Ci where i 6= 1. Now consider the action sequence

AS = S1 ; S ′′. This action sequence, from state M0, correctly repairs C1 using S1 (resulting

in state M1), and then proceeds (using S ′′) to correctly repair the remaining constraints

176 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

Ci (i 6= 1). In other words, AS correctly repairs constraints Ci from state M0. But by

construction AS is a sub-sequence of S which is known to be minimal. This contradicts our

assumption, and hence shows that S ′ is indeed minimal as desired. �

By applying this theorem repeatedly, on C1, then C2, etc. we can show that in order

to repair a set of violated constraints we can consider a single constraint at a time, in an

arbitrary order, with no loss of generality. Furthermore, since the repair plans are complete

(theorem 1 on page 158), the action sequence S1 can be generated by instantiating the repair

plan set. This strong result is only possible because the actions we consider have limited

preconditions (refer to the formal definitions of repair actions in section 6.1 on 126), allowing

them to be reordered fairly freely. This result holds for our case studies involving Prometheus

and UML design models because we use those same types of repair actions in both cases. The

reordering may not be necessarily possible if different actions with stronger preconditions are

included. A specific corollary is that, considered as a planning domain, our actions do not

allow for a Sussman anomaly situation7 [Russell and Norvig, 2003, page 414] to exist.

7.4 Cost calculation algorithms

In the previous section, we have defined how a repair plan’s cost is calculated. We now give

algorithms that calculate this cost. The algorithms operate with plan-goal trees, where a goal

has as children the plans that can be used to achieve it (denoted P(G)) and a plan has as

children its sub-goals (denoted G(P)). Each plan node stores the plan’s basic cost (basicCost,

initially the basic cost of the plan), other costs (dynamicCost, initially 0), a boolean value

indicating whether the node is a leaf (isLeaf, initially false), and a queue of its sub-goals

(subGoalQueue, initially empty). Each goal node stores a list of best (i.e. least cost) plan(s)

(bestPlans, initially empty) that achieve the goal.

Before we present the algorithm, we discuss a tree transformation that the algorithm

uses. When considering the alternative ways of dealing with a given (sub)goal the algorithm

considers the available plans and selects the cheapest. In doing so, it needs to consider the

future: what will happen after the goal is handled. We do this by transforming the tree so

that the “future” is pushed down into the tree beneath the current goal. Specifically, when

we consider a goal that has a future (i.e. a parent plan with non-empty sub-goals) we copy
7Sussman’s anomaly is well-known as an example of a planning problem in which a side-effect of establishing

one (sub)goal is to deny another (sub)goal regardless of the order in which one tries to achieve the (sub)goals.

177 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

G

P

P
1

G’

G
1

P
2

G
2

G

P

P
1

G
1

P
2

G
2

G’ G’

P
3

P
3

G

P

P
1

G
1

P
2

G
2

G’ G’

P
3

P
4

P
4

P
4

Figure 7.2: Tree Transformation

the sub-goals of the parent plan to the sub-goals of the children plans. As seen in figure 7.2,

when considering two different plans P1 and P2 that handle goal G , we need to take into

account the effects of each plan on achieving goal G ′. As a result, the tree is transformed in

which goal G ′ is pushed down to become the last subgoal of plans P1 and P2. Similarly, for

the same reasons, goal G continues being pushed down to be a subgoal of plans P3, P4, and

so on. It is noted that this technique is not generally applicable since a plan (e.g. P1) may

not have information accessible to its parent plan (e.g. P). In our case, however, the design

model is the only information needed and is made globally accessible to all plans.

7.4.1 Initial algorithms

The algorithm presented in figure 7.3 computes the cost of a plan according to the equations

in the previous section. Since we assume that basicCost is already computed (by simply

summing the costs of primitive actions in a plan), the algorithm only needs to work out the

plan’s subgoal costs and repair scope costs (see definition 16). These costs are stored in

dynamicCost which is initially set to 0, and is progressively incremented with the costs of

sub-goals and of violated constraints in the repair scope.

The algorithm selects each sub-goal in turn (lines 2 and 3) and adds the cost of any

violated constraints onto the dynamic cost (line 6). If the plan node has children (i.e. violated

178 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

function cost(P)
1 P .isLeaf ← true
2 while P .subGoalQueue is NOT empty do
3 dequeue subGoal from P .subGoalQueue
4 if the constraint associated with subGoal is violated then
5 P .isLeaf ← false
6 P .dynamicCost ← P .dynamicCost + cost(subGoal , P)
7 end if
8 end while
9 if P .isLeaf = true then
10 local violatedSubGoals ← get-scope-violated-constraints()
11 if violatedSubGoals is NOT empty then
12 get a random violatedSubGoal from violatedSubGoals
13 enqueue violatedSubGoal into P .subGoalQueue
14 return cost(P)
15 end if
16 end if
17 return P .dynamicCost + P .basicCost

Figure 7.3: Calculating Plan Node Cost (No Pruning)

constraints8) then we are done, since the scope cost will be calculated in those children. On

the other hand, if this plan node has no children (isLeaf = true, line 9) then we check for

violated constraints in the repair scope (lines 10 and 11), and if there are any, we select one

of the violated constraints (line 12), add it to the queue (line 13), and recursively call cost(P)

to compute its cost (line 14).

The algorithm in figure 7.4 calculates the cost of a goal node (see definition 19) by

considering the possible plans and looking for the cheapest one. We first retrieve a list of

applicable plans for the goal (line 2). We then iterate through the list of plans (line 4) and

calculate the cost for each of them (line 9). When a plan that is cheaper than the previous

best is found, the previous best plan(s) are replaced with the new plan (lines 10-13). When a

plan is found that is as good as the current best, it is added to the list of best plan(s) (lines

14-15).

The algorithm uses look-ahead and simulates the application of the plans. Line 5 executes

the plan currently being considered by (a) updating the model with the effects of the plan’s

actions, and (b) adding the plan’s sub-goals to the tree. In order to be able to consider
8Note that when we encounter a violated constraint we note that the plan node is not a leaf (line 5).

179 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

function cost(G , ParentPlan)
1 local bestCost ← +∞
2 local planList ← get-repair-plans(G)
3 G .bestPlans ← empty
4 for each plan P in planList do
5 execute plan P (in simulation)
6 if ParentPlan is not null then
7 copy all ParentPlan.subgoals to the end of P .subgoals
8 end if
9 local c ← cost(P)
10 if c < bestCost then
11 bestCost ← c
12 clear G .bestPlans
13 add P to G .bestPlans
14 else if c = bestCost then
15 add P to G .bestPlans
16 end if
17 unexecute plan P (in simulation)
18 end for
19 if ParentPlan is not null then
20 ParentPlan.subgoals ← empty
21 and if
22 return bestCost

Figure 7.4: Calculating Goal Node Cost (No Pruning)

alternative plans we need to undo the effects of the plan’s execution on the model, and this

is done by line 17. This is implemented by logging changes to the model, allowing these

changes to be rolled back.

Lines 6-8 and 19-21 implement the tree transformation discussed earlier: the sub-goals

of the parent plan (excluding the current sub-goal) are added to the end of the sub-goals of

each plan P (lines 6-8). Once this has been done for all plans, we remove the sub-goals from

the parent (lines 19-21).

7.4.2 Advanced algorithms with pruning capabilities

The algorithms given in figures 7.3 and 7.4 implement the definitions given in section 7.2, but

they search the whole goal-plan tree. This is inefficient, and may lead to non-termination,

since the tree may be infinite. We therefore modify the algorithms by adding loop checking,

180 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

function cost(P)
1 P .isLeaf ← true
2 while P .subGoalQueue is NOT empty do
3 dequeue subGoal from P .subGoalQueue
*4 if P .β = +∞ and subGoal is in history then
*5 clear history
*6 return +∞
*7 end if
8 if the constraint associated with subGoal is violated then
9 P .isLeaf ← false
*10 local threshold = P .σ + lowerBoundCost(subGoal) +

P .basicCost + P .dynamicCost
*11 if threshold > P .β then
*12 return threshold
*13 end if
*14 subGoal .σ ← P .σ + P .dynamicCost + P .basicCost
*15 subGoal .β ← P .β
16 P .dynamicCost ← P .dynamicCost + cost(subGoal , P)
17 end if
18 end while
19 if P .isLeaf = true then
20 violatedSubGoals ← get-scope-violated-constraints()
21 if violatedSubGoals is NOT empty then
22 get a random violatedSubGoal from violatedSubGoals
23 enqueue violatedSubGoal into P .subGoalQueue
24 return cost(P)
25 end if
26 end if
*27 P .β ← min(P .β, P .σ + P .dynamicCost + P .basicCost)
28 return P .dynamicCost + P .basicCost

function lowerBoundCost(G)
*1 local planList ← get-repair-plans(G)
*2 local lowerBound ← +∞
*3 for each plan P in planList do
*4 if P .basicCost < lowerBound then
*5 lowerBound ← P .basicCost
*6 end if
*7 end for
*8 return lowerBound

Figure 7.5: Calculating Plan Node Cost (Pruning)

181 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

and a form of pruning. We add to each goal/plan node two values9: β (initially +∞) - the

least cost of fixing all constraints in the repair scope, and σ (initially 0) - the (accumulative)

cost of everything above the current node. In figures 7.5 and 7.6 lines that are new (relative

to figures 7.3 and 7.4) are marked with “*”.

function cost(G , ParentPlan)
1 local bestCost ← +∞
2 local planList ← get-repair-plans(G)
3 G .bestPlans ← empty
*4 remove plans in planList that have basic cost greater than G .β
*5 sort plans in planList based on their basic action costs
*6 if G .β = +∞ then
*7 add G into history
*8 end if
9 for each plan P in planList do
*10 P .β ← G .β
*11 P .σ ← G .σ
12 execute plan P (in simulation)
13 if ParentPlan is not null then
14 copy all ParentPlan.subgoals to the end of P .subgoals
15 end if
16 c ← cost(P)
17 if c < bestCost then
18 bestCost ← c
19 clear G .bestPlans
20 add P to G .bestPlans
*21 G .β ← P .β
22 else if c = bestCost then
23 add P to G .bestPlans
24 end if
25 unexecute plan P (in simulation)
26 end for
27 if ParentPlan is not null then
28 ParentPlan.subgoals ← empty
29 end if
30 return bestCost

Figure 7.6: Calculating Goal Node Cost (Pruning)

Computing the cost of a plan is done by the algorithm in figure 7.5. We use a pruning
9We use “β” since we do the β part of a classical α− β pruning. We do not do the α part because we have

a min-sum tree, rather than a min-max tree.

182 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

mechanism, where we establish a threshold in order to avoid exploring alternatives that are

more expensive than known solutions. The threshold is calculated (line 10 of figure 7.5)

based on the current accumulative cost σ, the plan cost (P .basicCost and P .dynamicCost)

and the lower bound cost, which is an estimate of the minimum cost of achieving a (sub-)goal

(lines 1-8 in the bottom of figure 7.5).

The algorithm presented has two forms of loop detection. The first is a consequence of

pruning: if one way of repairing the violated constraints has been found then the algorithm

cannot fall into a loop, since the cost of a loop increases, and eventually the algorithm detects

this and prunes the loop. The second loop detection mechanism is used when no repair plan

has yet been found (lines 4-7 of figure 7.5 and lines 6-8 of figure 7.6). This second mechanism

keeps track of all of the sub-goals encountered, and if the same goal (i.e. instantiated by the

same constraint type and model entity instances) is seen again, corresponding to the fact

that a constraint has become violated and is being fixed again, then we have a loop and we

terminate with infinite cost. These two mechanisms together are quite effective at detecting

and avoiding non-termination, and were successful in all of our testing and experiments.

However, these mechanisms are not perfect: it is possible to envisage pathological cases10

where the algorithm fails to terminate. However, these pathological cases appear to be

unlikely, and indeed, we believe (but have not proven) that they are ruled out by the plan

generation mechanism.

The two values β and σ are passed from each parent goal/plan node down to its child

plan/goal nodes (lines 14-15 in figure 7.5 and lines 10-11 in 7.6). Line 14 in figure 7.5 shows

that σ is in fact an accumulative cost: we accumulate the cost of the current node in σ.

When a plan cost is resolved, the total cost so far (i.e. the cost of the plan as well as σ,

the cost of the path from the root of the tree to the current node) is compared against the

current β to see if it needs to be updated (line 27 in figure 7.5). If at any point the total

cost for a plan (threshold) exceeds β then we prune (lines 11-13 of figure 7.5). We also prune

in the (admittedly unlikely) case that a plan’s basic cost by itself exceeds β (line 4 of figure

7.6). Once a best plan for a goal is found, the goal’s β is also updated with the plan’s β
10For example, suppose that we have a hypothetical domain-specific constraint c that each agent type has

a “supervisor” agent type, and there is only one applicable plan for repairing this constraint (if it is violated
with regard to a particular agent): creating a new agent and making the new agent the supervisor of the
existing agent. Also, assume that the model initially has only one agent a1. Since a1 needs a supervisor, we
create agent a2 and make it the supervisor for a1. However, agent a2 now needs a supervisor, which leads to
the creation of agent a3, and so on. Since the goal instance is different in each case (e.g. c(a1), c(a2), etc.) the
same exact constraint never appears twice in the history, so the termination checker cannot detect the loop.

183 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

(line 21 of figure 7.6). Line 5 of figure 7.6 implements a heuristic that considers plans with

cheaper basic cost first.

7.4.3 Example

We now give an example to illustrate how the algorithms work. We use the same example

as in section 7.2.1 with the assumption that the repair scope contains only one constraint,

i.e. c1. Figure 7.7 shows a plan-goal tree with the values associated with each node. Firstly,

it can be seen that we apply the tree transformation to the subgoal c1′(r2, p1) by moving it

and all of its children to be a subgoal of plan P3.

P1

c1t(a1, p1)

c1't(r1, p1)

P2

Create r2

P4

Connect r1 to p1

+(p1, r1.percept)

P6

+(r2, a1.role)

c1't(r2, p1)Connect a1 to r2

P5

+(p1, r2.percept)

P7

Connect r2 to p1
1

basicCost = 1
dynamicCost =0

P3

bestCost = 1

basicCost = 0
dynamicCost =1

bestCost = 1

basicCost = 0
dynamicCost =1

β = 1

β = 1
σ = 0

bestCost = 1
bestPlans = {P1}

β = 1
σ = 0

basicCost = 1
dynamicCost = 0

lowerBoundCost = 1

basicCost = 1

basicCost = 0

basicCost = 1

Pruned

threshold = 2

1

1

1

bestCost = 1
bestPlans = {P1}

Figure 7.7: An example of cost calculation for constraint c1(a1, p1)

On the leftmost branch of the tree, values are propagated from the leaf to the root. For

184 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

example, the basicCost of plan P6 is 1 (because it has only one connection action) and its

dynamic cost is 0 (because it has no subgoals), resulting in its total cost being 1. Since

subgoal +(p1, r1.percept) has only one plan P6, its bestCost is clearly equal to the cost of

the plan, i.e. 1. Similarly, after the branch starting with plan P1 is fully explored, the values

at the root node c1t(a1, p1) are: β = 1, σ = 0, bestCost = 1, and bestPlans = {P1}. After

that, the algorithm begins calculating the cost of nodes on the branch starting with plan

P2. The values of β (1) and σ (0) are propagated from the root node to the plan node P2

(corresponding to lines 10 and 11 in figure 7.6). Plan P2 then executes (line 12) and its

cost is calculated (line 16). This leads to line 10 of figure 7.5 where the threshold variable is

calculated. Note that the lowerBoundCost of subgoal +(r2, a1.role) is 1 because the subgoal

has only one plan, i.e. P3 that has a basic cost of 1 (since it has only one connection action).

As a result, the threshold has the value of 2, which is greater than the value of β. Therefore,

the tree is pruned here (lines 11 and 12 of figure 7.5) and the cost of plan P2 is returned with

the value of 2. This cost is greater than the current best cost of the top goal c1t t(a1, p1),

therefore the best cost is 1 and the best plan is P1.

7.4.4 Complexity analysis

The computational complexity of the algorithm depends on the cost of checking all constraints

in the repair scope, as well as the number of child nodes each (non leaf) node has (N), the

depth of the plan-goal tree (D), and the size of the application design model, i.e. the number

of model elements (M). Based on empirical evidence [Egyed, 2006], we assume the cost of

checking a single constraint to be constant. More specifically, we assume constraints are

not likely to be enormously complex. In addition, from a complexity analysis point of view

we can determine the largest constraint size, c, and use this as the constant. As a result,

checking all constraints in the repair scope is basically proportional to the size of the repair

scope (E). Furthermore, although we do not include the tree transformation in the analysis

(lines 6-8 of figure 7.3), we note that the transformation may create duplicate nodes, which

consequently creates duplicated work.

For each plan node, we need to execute the plan, i.e. perform update actions on the

application design model (line 5 of figure 7.4) and unexecute the plan, i.e. undo what was

previously done to the model (line 17 of figure 7.4). As executing/unexecuting a plan involve

actions that affect only a small part of the application model, we assume it to be constant,

185 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

i.e. not depending on the size of the application model. Moreover, for each plan node we

also need to calculate the cost of all of the plan’s subgoals (lines 2-8 of figure 7.3). As

the maximum number of subgoals is N , the work to be done for each plan node is O(N).

Finally, we may also need to perform constraint evaluation to identify violated constraints

in the repair scope (line 10 of figure 7.3). As a result, the work to be done for each plan

node may also include evaluating constraints in the repair scope, i.e. O(E). Overall, the

worst-case complexity of each plan node is, therefore, O(N + E).

For each goal node, we need to get a list of applicable repair plan instances (line 2 of figure

7.4), calculating the cost of each of these plans (line 9 of figure 7.4), work out the cheapest

plans and store them with the goal node (line 10-16 of figure 7.4). As can be seen in chapter

6, the repair plans that generate many instances are the ones which have a context condition

of the form x ∈ SE , where SE is set of existing entities in the model. As a result, time

taken to generate applicable repair instances from repair plan types tends to be proportional

to the number of model elements, i.e. M . The work to calculate the cost of each plan is

already considered above. Finally, the time taken of sorting and storing cheapest repair plans

is proportional to N logN . As a result, the work to be done for each goal node is roughly

O(N logN + M).

Since the number of nodes is roughly O(ND) this gives an overall computational com-

plexity of O(ND×(N logN +M +N +E)). Because N < N logN , the overall computational

complexity is O(ND × (N logN + M + E)).

The algorithms are exponential in the number of violated constraints in a repair scope

due to an extensive look-ahead planning. In practice, this issue can be dealt with by limiting

the number of constraints in a repair scope. A smaller repair scope will reduce the number

of plan and goal nodes to be explored, hence improving the performance of the algorithms.

The trade-off is, however, that the user needs to carefully select which constraints should be

included in the repair scope. In addition, after all changes are made the design may still be

inconsistent with respect to other constraints that are not taken into account in the repair

scope. Furthermore, as noted earlier, the number of constraints in the repair scope is related

to the distance of change propagation. As a result, limiting the number of constraints in the

repair scope would affect how far changes are propagated in the design. Finally, an extreme

solution is considering a single constraint at a time, instead of the whole repair scope (i.e.

equivalent to a repair scope of size 1). The algorithms is roughly linear in this case. The

186 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

trade-off of this solution is that side-effects are not taken into account and consequently the

cascading nature of change propagation is ignored.

In chapter 9, we will discuss an evaluation to assess the algorithm’s performance em-

pirically, and its results show that despite exponential worse-case complexity, the algorithm

is viable for small to medium examples. In addition, although pruning was not taken into

account in the analysis, it was assessed empirically in chapter 9.

7.5 Related work

The cost calculation algorithm can be seen as a form of reasoning about an agent’s plans,

albeit in a special setting. There has been previous work on investigating the interaction

between plans either within a single agent or between different agents in a multi-agent sys-

tem (e.g. [Clement and Durfee, 1999; Thangarajah et al., 2002]). There are some similarities

between this work and ours, for example, a plan’s cost can be viewed as its resource con-

sumption and the fact that fixing one constraint can partially/totally repair other constraints

can be seen as positive interaction between plans. However, there are several major differ-

ences between their work and ours. First of all, the selection between applicable plans is not

controllable. Secondly, the algorithms of [Thangarajah et al., 2002] rely on a finite plan-goal

tree, whereas our algorithm does not require a complete tree, rather, the search tree is pruned

as soon as cheaper plans are identified.

The issue of calculating the cost of a plan or a goal in the context of existing plans has

been previously addressed in [Horty and Pollack, 2001]. The aim of their work is to determine

whether an agent should adopt a new goal. They estimate the cost (with a range) rather than

calculate the exact cost like our work. In addition, the plans which they consider contain

only primitive actions, and they require complete plans. We also found that it is not easy to

adopt their approach to deal with selecting between alternative plans, as opposed to deciding

whether to adopt a goal.

Surprisingly, the specific problem of selecting between applicable plans in BDI agents

has not received much attention. One particular work that tackles this issue is presented in

[Dasgupta and Ghose, 2006]. They extend AgentSpeak(L) to deal with intention selection in

BDI agents. They also use a lookahead technique to work out the potential cost of a plan and

choose the best plan to execute, and their plan representation is also hierarchical. However,

there are several differences between their work and ours. Firstly, they impose a limit on

187 (28th August, 2008)

CHAPTER 7. PLAN SELECTION

the plan-goal tree by giving the depth of the tree as an input to their algorithm. Secondly,

they assume that the environment changes rapidly and expect the worst case scenarios when

looking ahead. In the domain that we are interested in, the environment is static so we

always choose the least cost plans. Finally, they do not consider costs in the context of

existing plans.

Our process for computing cost — performing lookahead over an and-or tree — clearly

resembles a planning problem, and it can be viewed as such, with a few rather specific

requirements. Firstly, because we have repair plans we want to use an HTN (Hierarchical

Task Network) planner. Secondly, we want to collect the set of all best (cheapest) plans,

so we need a planner that supports a notion of plan cost, and is able to collect all cheapest

plans. Finally, because we have a large, potentially infinite, search space, we want a planner

that does pruning and loop detection. Unfortunately, we do not know of any planner that

meets all three requirements.

Perhaps the closest is SHOP2 [Nau et al., 2003] which is an HTN planner that supports

collecting all best plans and that does branch and bound pruning. However, SHOP2 does

not do loop detection, and although it provides iterative deepening, which can be used to

avoid looping, this does not return the cheapest solution(s), as required. We encoded a UML

design11 and associated constraints and repair plans using SHOP2. Our experiments have

shown that SHOP2 gives the same results as our cost calculation if it terminates, but that

it is susceptible to looping, and that SHOP2 is slightly slower than our Java implementation

(0.172 seconds vs. 0.157 seconds12).

Optimal planning is an area clearly related to our work. Optimal planning extends

traditional plans by continuing to search for the optimal plan instead of stopping when

the first plan is found. There has been a range of work which applies decision theory to

classical planning to deal with optimal solutions [Blythe, 1999; Williamson, 1994]. They

are similar in terms of integrating a utility model to the plans. One significant trend in

extending classical planning in dealing with optimization is to use heuristics to guide the

search [Ephrati et al., 1996]. Each node in the state space is evaluated based on a heuristic

function. Heuristic planners then try to search the state space by looking at the most

promising branches first. Note that calculating heuristic functions can be computationally
11The video-on-demand system [Egyed, 2006], and see http://peace.snu.ac.kr/dhkim/java/MPEG/
12On a Windows XP PC with a 1.73Ghz CPU and 1GB RAM, using Java v.1.5.0 06 and SHOP2 v1.3

running with GNU CLISP v2.3 for Windows.

188 (28th August, 2008)

http://peace.snu.ac.kr/dhkim/java/MPEG/

CHAPTER 7. PLAN SELECTION

expensive, often in proportion to the accuracy of the heuristics.

7.6 Chapter summary

In this chapter, we have discussed in detail the cost calculation component, an important part

of our framework. This component deals with the issue of choosing between possible repair

plans. We have raised the challenges of repair plan selection and argued that our approach

using a notion of cost is effective. In addition, we have presented detailed formal definitions

of costs for repair plans, constraints and other related entities. We have also proved an

important property derived from those definitions, which indicates that regardless of the order

of constraints being fixed, the total cost of fixing all of them is the same. Furthermore, we

presented algorithms that perform cost calculation based on those definitions and properties,

and we have applied pruning techniques to improve the performance of the algorithms.

This chapter also concludes the details of our change propagation framework. In the next

section, we describe an implementation of the framework and in chapter 9 we discuss an

evaluation of our approach.

189 (28th August, 2008)

Chapter 8

Implementation

In the previous chapters, we have presented a theoretical foundation for our approach to

change propagation, and discussed its details. In this chapter, a proof-of-concept tool support

is presented for demonstrating how our approach works in practice. The prototype tool is

called Change Propagation Assistant and is integrated with the Prometheus Design Tool

(PDT)1, a modelling tool that supports the Prometheus methodology for designing agent-

based systems. First, we present an overview of the architecture of Change Propagation

Assistant (section 8.1). Next, a brief description of the Dresden OCL2 Toolkit, which provides

an important platform for our tool, is presented (section 8.2). We then explain two major

components of our tool, Repair Plan Generator and Change Propagation Engine, in sections

8.3 and 8.4 respectively.

8.1 Architectural overview

Figure 8.1 shows the architecture of the Change Propagation Assistant. The tool relies on

the Dresden OCL2 Toolkit2 platform in terms of using several OCL tools provided by the

Toolkit. All models and metamodels are stored in a metadata repository. We use NetBeans’

metadata repository implementation (hereafter referred to as MDR) as the Dresden OCL

Toolkit also uses this facility. Meta Object Facility (MOF) is an OMG standard [Object

Management Group, 2002] for defining metamodels and metadata repository, and NetBeans’
1http://www.cs.rmit.edu.au/agents/pdt
2The Dresden OCL Toolkit is an open source project providing various tools for OCL http://dresden-ocl.

sourceforge.net

http://www.cs.rmit.edu.au/agents/pdt
http://dresden-ocl.sourceforge.net
http://dresden-ocl.sourceforge.net

CHAPTER 8. IMPLEMENTATION

MDR3 is one of its well-known implementations. Using the MDR and our metamodels, we

are able to generate Java interfaces (JMI4 compliant) for accessing models in the MDR.

Constraint Library

PDT Interface
Communicator

Repair Plan
Generator

NetBeans Metadata
Repository (MDR)

Change Propagation
Engine

Prometheus
Design Tool

(PDT)

Prometheus
Model

Repair Plan
Library

Dresden OCL2
Toolkit

Key
Data flow
Dependency

Figure 8.1: Change propagation assistant tool architecture

The Repair Plan Generator module is responsible for the repair plan generation process.

This module parses input OCL constraints and a metamodel and creates a Constraint Library,

which contains our own data structure of the input constraints. Each constraint in the

Constraint Library has a Repair Plan Library, which stores plans for making the constraint

true and false.

The Change Propagation Engine module is mainly responsible for propagating changes.

It is integrated with the Prometheus Design Tool. We have developed a PDT Interface

Communicator that provides an API for connecting the Change Propagation Engine and

PDT. The PDT Interface Communicator also notifies the engine of user changes to the design

model and the request for help from our engine in propagating changes. At the same time,

the PDT Interface Communicator also sends the current (Prometheus) design model to the

engine, which converts it to a MOF-compliant model stored in a NetBean MDR repository.

The main processes in the Change Propagation Engine include identifying which con-
3http://mdr.netbeans.org
4The Java Metadata Interface (JMI) standard is available at http://java.sun.com/products/jmi.

191 (28th August, 2008)

http://mdr.netbeans.org
http://java.sun.com/products/jmi

CHAPTER 8. IMPLEMENTATION

straints in the Constraint Library are violated and if there are any, finding plans in the

Repair Plan Library for fixing them. The engine also performs plan selection which involves

look-ahead cost calculation, and presents a set of best repair options to the user. If the user

accepts one of the options proposed, it then instructs the PDT Interface Communicator to

apply those changes to the current Prometheus design model in PDT.

8.2 Dresden OCL2 Toolkit

The Dresden OCL2 Toolkit5 provides a platform with various forms of OCL tool support.

The Toolkit is an open source project, designed to support openness and modularity. One

of its major objectives is to allow other developers to integrate and adapt the existing OCL

tools (provided with the Toolkit) into their own environments. The Dresden OCL2 Toolkit

supports OCL 2.0 and UML 1.5, and consists of four major parts: the Metadata Repository,

base tools, tools working on the base tools, and end user tools (refer to figure 8.2).

• The Metadata Repository (MDR): all tools provided by the Toolkit are metamodel-

based and depend on a common metamodel derived from the MOF 1.4 and UML 1.5

metamodels. The Toolkit uses NetBeans’ MDR to store all models and metamodels,

including MOF 1.4, UML 1.5 and a common OCL metamodel. When models are

loaded into the MDR, Java APIs (JMI compliant) for accessing metadata described

by the specified MOF metamodel are automatically generated by the NetBeans’ MDR

infrastructure. The whole Toolkit uses these Java interfaces to access models stored in

the MDR. It is noted that NetBeans’ MDR is able to load only MOF 1.4 metamodels

in the form of an XMI document. Therefore, in order to use the Toolkit our models

and metamodels have to be compliant to MOF 1.4.

• The base tools of the Toolkit consist of three different modules. First, the OCL2Parser

transforms the input OCL 2.0 constraints into an abstract syntax tree. The abstract

syntax tree plays a key role in the whole Toolkit since it forms the common data repre-

sentation for all other tools in the Toolkit. The OCL2Parser uses the popular LALR(1)

parser generator SableCC6 to build lexer, syntax analyser and an abstract attribute

evaluator skeleton. Second, the OCL Base Library provides an implementation of the
5http://dresden-ocl.sourceforge.net
6http://www.sablecc.org

192 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

Figure 8.2: Packages and Tools of the Dresden OCL2 Toolkit (copied from http://dresden-
ocl.sourceforge.net)

193 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

OCL Standard Library including OCL types, constructs, and expressions. Third, the

Code Generator generates Java code for a given OCL expression (which can be either

a query or instrumented Java code that evaluates the OCL constraint).

• Tools working with base tools include an OCL Editor, which is a text editor for OCL

constraints, and OCL Declarative Code Generator which uses the Code Generator

component to generate declarative target code (e.g. Java or SQL) for a given expression

in OCL.

• End user tools are a series of stand-alone tools developed for a wide range of usage

scenarios, using the base Toolkit infrastructure. For example, OCL Fujaba4Eclipse is

an integration of parts of the Toolkit to Fujaba4Eclipse7, an integrated teaching envi-

ronment based on Eclipse. Other examples of end user tools include OCL22SQL, which

generates SQL code from a given UML 1.5 model and OCL invariants, or OCL22Java,

which is able to generate Java code from OCL expressions and instruments Java pro-

grams with the generated code. More details of end user tools and other tools provided

with the Toolkit are available at the project home page.

Our Change Propagation Assistant uses the base tools of the Dresden OCL Toolkit.

Details of how such tools are used in our implementation are discussed in the next sections.

8.3 Repair Plan Generator module

The plan generator module consists of three major packages. Figure 8.3 depicts how these

packages are connected to each other. Each of these packages is discussed below.

Constraint Processor package

The Constraint Processor uses the OCL2Parser provided by the Dresden OCL2 Toolkit to

process input OCL constraints and their associated metamodel in the form of an XMI doc-

ument. The OCL2Parser transforms the input OCL constraint into an abstract syntax tree

and a SableCC tree walker. Our Constraint Processor customizes this tree walker to build

up constraint objects, our own data structure that represents OCL constraints. Since the

current OCL2Parser only supports UML 1.5 models, only metamodels that conform to the
7http://wwwcs.uni-paderborn.de/cs/fujaba/projects/eclipse/index.html

194 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

Repair Plan Builder

Constraint
Processor

User
Interface

Text
Builder

Java
Code

Builder

OCL2Parser
(from Dresden
OCL2 Toolkit)

OCL2Java
(from Dresden
OCL2 Toolkit)

Constraint Library

Prometheus
Model

Repair Plan
Library

Key
Data flow
Dependency

Figure 8.3: Packages of the Repair Plan Generator module

UML 1.5 metamodel are accepted by the Constraint Processor. For example, the Prometheus

metamodel has been developed and serialized as an XMI representation of a UML 1.5 model.

In addition, we have also added several important features to the Constraint Processor.

Firstly, it automatically creates constraints corresponding to the cardinalities of associations

expressed in the metamodel. All constraints created by the Constraint Processor are stored

in the Constraint Library.

Another feature of the Constraint Processor is the ability to generate a MOF 1.4 compliant

model, which is equivalent to the input metamodel (UML 1.5 compliant). The need to have

a MOF 1.4 compliant metamodel is due to the fact that the NetBeans’ MDR only accepts

a MOF-compliant metamodel as input. As a result, we use the UML2MOF8 tool to convert

the input metamodel into a MOF-compliant metamodel.

Repair Plan Builder packages

The Repair Plan Builder uses the repair plan translation scheme defined in chapter 6 to

create repair plans for constraints stored in the Constraint Library. We support two types
8http://mdr.netbeans.org/uml2mof

195 (28th August, 2008)

http://mdr.netbeans.org/uml2mof

CHAPTER 8. IMPLEMENTATION

of repair plan builder: the Text Builder that generates textual representation of repair plans

(in the form of the AgentSpeak-based abstract syntax that we have defined), and the Java

Code Builder that generates repair plans in Java code. Both of the repair plan builders are

implemented using the Visitor pattern [Gamma et al., 1995] in which they contain visitor

methods which traverse the structure of a constraint object and build up several sets of

repair plans for each of the constraints (including one for making the constraint true, one for

making the constraint false, and the others for addition and deletion involving derived sets

if necessary). The Java Class Builder also uses the OCL22Java component of the Dresden

OCL2 Toolkit to generate fragments of Java code that perform constraint evaluation. Repair

plans generated from the Repair Plan Builder are stored in the Repair Plan Library.

User Interface package

Through the User Interface package, the user is able to provide inputs to the Repair Plan

Generator, and view and modify generated repair plans. Figure 8.4 shows a screenshot of

the user interface. The user (i.e. repair administrator) is required to provide an XMI file

containing a metamodel and a text file containing a set of OCL constraints9. The user can

also decide whether cardinality constraints in the input metamodel should be generated and

stored in the constraint library by checking the “Generate cardinality constraints from the

metamodel” option. There is also another checkbox that allows the user to choose whether

a MOF 1.4 compliant metamodel equivalent to the input metamodel is generated.

The user interface of the Plan Generator also allows the user to view and modify the

generated repair plans. Figure 8.5 shows a screenshot of the repair plan editor pane. On the

left hand side is a list of constraints. The constraints are arranged in a hierarchical structure.

It displays the context of a constraint which is a model entity. Below each context is a list of

constraints associated with the context. For each constraint, it displays the sub-constraints

and any other events posted within the top-level repair plans.

The right hand side contains two panes. The top pane displays the OCL expression of a

particular constraint that is currently selected on the left-hand side tree. The bottom pane

displays a textual representation of the repair plans of the selected constraint. There are

two types of repair plans: for making the constraint true, and for making it false. The user

can view each of them by switching between two tabs “Making-true plans” and “Making-false
9The user can create and edit OCL constraints using any available OCL Editor.

196 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

Figure 8.4: Screenshot of Repair Plan Generator’s inputs pane

Figure 8.5: Screenshot of Repair Plan Generator’s repair plan editor pane

197 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

plans”. Relevant plans for addition and deletion involving derived sets appear in both of the

two views. The user is allowed to modify the repair plans in terms of enabling or disabling

a particular repair plan by selecting or deselecting the checkbox next to each repair plan.

An advanced version of the tool will also allow the user to modify the context conditions

of repair plans, e.g. to include domain specific conditions. However, when modifying repair

plans, the user needs to be careful not to compromise the completeness of repair plans.

Once the user finishes viewing and editing, he/she can click on the “Generate Java Code”

button to trigger the Java Code Builder to generate Java classes forming the Repair Plan

Library.

8.4 Change Propagation Engine module

The Change Propagation Engine is responsible for checking constraints and finding repair

plans for resolving constraint violations. The engine works on a “live” design model which

is currently modified by the designer. As a result, the engine needs to be integrated with a

modelling tool. Figure 8.6 shows how the engine is integrated with the Prometheus Design

Tool (PDT). The Change Propagation Engine contains two major components, Constraint

Evaluator and Cost Calculator, which are discussed below.

Constraint Evaluator

This package is responsible for checking constraints stored in the Constraint Library. It begins

with creating constraint instances by binding each constraint type with its corresponding

context instances (i.e. model entity instances) in the model. For each constraint instance, the

Constraint Evaluator executes code (generated by Dresden Toolkit’s OCL2Java earlier) that

checks whether the constraint is violated or not with respect to the given model. Violated

constraints are presented to the user through the User Interface component of the PDT

Interface Communicator.

Cost Calculator

This component uses the “live” design model stored in the MDR and the repair plan instances

stored in the Repair Plan library to calculate repair plan costs. The component implements

the cost algorithms discussed in chapter 7. Cheapest repair plans are returned and presented

to the user through the User Interface component of the PDT Interface Communicator.

198 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

The PDT Interface Communicator provides a connection between the Change Propaga-

tion Engine and PDT. It contains the following components.

PDT Interface Communicator

Prometheus Design Tool (PDT)

Constraint Library

Cost
Calculator

Constraint
Evaluator

User
Interface

PDE2MOF
Transformer

Prometheus
Model

Repair Plan
Library

Prometheus Design Tool (PDT) Core

Change
Manager

Prometheus
Model

Prometheus
Model

NetBeans
MDR

MOF
Model

MOF
model

Figure 8.6: Packages of Change Propagation Engine and PDT Interface Communicator

PDE2MOF Transformer: Since our change propagation engine relies on models stored

in MDR, it is necessary to convert input models to MOF-compliant models. PDE2MOF

Transformer takes the current Prometheus (design) model and converts it to a MOF 1.4

compliant model (to be stored in the MDR). PDT is able to create a design model in terms

of an XML document (known as a PDE). As MOF models are also represented using XML,

we used XSLT10 to implement the PDE2MOF Transformer.

User Interface: This component is plugged into the user interface of PDT to allow the
10http://www.w3.org/TR/xslt.html

199 (28th August, 2008)

http://www.w3.org/TR/xslt.html

CHAPTER 8. IMPLEMENTATION

Figure 8.7: Screenshot of change propagation user interface in PDT

200 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

designer to interact with the change propagation engine. Firstly, through the user interface

the designer is able to invoke the change propagation engine when he/she wants to. Secondly,

violated constraints are presented to the designer through the user interface (as shown in the

“Change propagation tool” popup window in figure 8.7) . The designer is also able to decide

which violated constraints should be fixed or ignored by changing the evaluation result of

a constraint from false to true. Thirdly, the user interface is also responsible for presenting

cheapest repair plans and their details that are identified by the engine’s cost calculator.

Finally, through the user interface, the user is also able to configure the basic cost settings,

i.e. assign costs to primitive repair actions. Figure 8.7 shows a snapshot of the interaction

between the user and the change propagation engine through the user interface of PDT.

Change Manager: Change Manager is responsible for executing repair plans (chosen

by the designer through the user interface) onto the actual design model in PDT. In order to

do so, it has a mapping between primitive actions in our repair plans and the actual change

actions allowed in PDT. Change Manager also records primary changes made to the model,

and gives them to the Cost Calculator. In case there is a large number of cheapest repair

plans found by the Cost Calculator, primary changes are then used as input to a heuristic that

aims to make it faster for the user, by placing plans that are more likely to be chosen earlier

in the list. More specifically, new model entities that have been created by primary changes

are identified. The Cost Calculator then sorts the returned (cheapest) repair plans based

on the number of their contained repair actions that affect those new entities. Repair plans

that have more actions involving the new entities appear earlier in the list presented to the

user. This particular heuristic is based on the assumption that “desirable” secondary changes

are likely made to the newly created entities so that they form consistency relationships

with other existing entities in the model. This heuristic has not, however, been thoroughly

developed or evaluated, which is a topic for future work.

8.5 Chapter summary

In this chapter, we have introduced a prototype tool support for change propagation, our

Change Propagation Assistant tool, that is integrated with the Prometheus Design Tool

(PDT). We have presented the architecture of the tool, described its major components,

and explained how it is integrated into PDT. Since this tool is a proof-of-concept of the

ideas proposed in this dissertation, no experiments with end-users can be done because

201 (28th August, 2008)

CHAPTER 8. IMPLEMENTATION

of the primitive user interface of the tool. We recognise that there is a range of possible

improvements and extensions that can be applied to our tool.

However, we were able to show how our change propagation framework, as introduced

in chapter 3 and discussed in more detail in chapters 6 and 7, can be implemented and

realised by tool support. In addition, the implementation architecture indicates that Change

Propagation Assistant can not only be integrated with PDT, but also can be modified to be

plugged into other modelling environments. The tool is also used to evaluate the effectiveness

and efficiency of our approach, which is the topic of the next chapter.

202 (28th August, 2008)

Chapter 9

Evaluation

Having implemented our framework for a change propagation assistant, we would now like to

perform an empirical evaluation of the approach and tool. The focus of our evaluation is to

measure two critical aspects of our approach: effectiveness and efficiency. We first describe

our methods of evaluation and discuss the issues posed by the evaluation. We also introduce a

taxonomy of changes, present a change propagation process based on the designer’s behaviour,

and describe the evaluation process and metrics. We then discuss and analyse the results of

an evaluation application. Finally, we assess the efficiency of our approach and also examine

its scalability by looking at the application of our approach in artificial settings.

9.1 Issues in evaluation

Our evaluation needs to address the effectiveness and efficiency of our approach. This involves

answering several key questions. Firstly, how well this approach works in practice and,

specifically, how useful is it likely to be to a practising software designer who is maintaining

and evolving a system? In addition, how well does it scale to larger problems? Unfortunately,

an evaluation to answer these questions raises a number of challenges and further questions.

In this section we discuss the nature of these issues, and present and justify our solutions to

each of them.

Ideally, the evaluation would be done by giving the Change Propagation Assistant (CPA)

tool to a group of selected users, who would be asked to work with the tool to implement

requirement changes. We would then collect and analyse data such as their feedback, the

change outcomes, etc. to assess how much assistance the CPA tool provides them. However,

203 (28th August, 2008)

CHAPTER 9. EVALUATION

due to time and resource limits, we were not able to conduct such a comprehensive user study

evaluation.

In order to overcome this obstacle, we approached the evaluation by defining an abstract

user behaviour in maintaining/evolving an existing design. More specifically, we defined a

process of change propagation based on the user’s behaviour. The key item of this process

is a user’s change plan. We then simulated a real user by performing steps in this plan and

assessed the responses from the CPA tool. Details of this methodology will be discussed in

section 9.3.

Generate
repair plan

types
OCL constraints

Repair plan types
Repair Plan

Library

Modification
(e.g. change context conditions,

remove plan types,
change plan body)

Check
constraints Violated constraints

Calculate cost

Repair plan instances

Plan instances with least cost
Select one

plan to
execute

User selection

Chosen repair plan instances

Constraints
Repository

OCL
constraints

Basic cost
values

Basic costs User input

MetamodelMetamodel

Metamodel

Application’s
model

Execute plan

changes

model

Repair
administrator

Repair
administrator

Software designer

Generate repair
plan instances

Repair plan types

OCL constraints

Software designer

(Chapter 6)

(Chapter 7)

Figure 9.1: Change propagation framework

We now consider the specific issues that are raised by an evaluation (whether it involves

users or not). These issues relate to the choice of inputs to our change propagation framework

and the CPA tool (see figure 9.1) including: which methodology? which applications? which

requirement changes? which primary changes? and what basic costs?.

204 (28th August, 2008)

CHAPTER 9. EVALUATION

9.1.1 Which methodology should be used?

As discussed earlier, our approach is applicable to various design methodologies. However,

time and resource constraints do not allow us to investigate a large range of methodologies.

Rather, it is more feasible to select one or two prominent methodologies and apply our

approach to them. The candidate methodology, however, needs to satisfy several criteria.

It is important that the methodology’s metamodel and consistency constraints are available

or that they do not require substantial time and effort to develop. As a set of constraints

is an important input to our change propagation framework, it is also necessary to justify

the choice of constraints, e.g. using existing constraints or developing them based on the

methodology’s documentation. In addition, there are other issues that we should also take

into account: ideally, we want a mature and complete methodology that has been widely

used in academia and industry.

Given the popularity of UML in both academia and industry, an application of our

approach to UML1 would be ideal. In fact, our original plan was to use UML design models

to assess our approach, but the effort involved in implementing all of the constraints in the

UML standards was beyond our resources. Furthermore, we want to focus on assessing how

our approach helps improve support for software evolution in agent systems. As a result,

we have chosen to use the Prometheus methodology [Padgham and Winikoff, 2004] for the

design of agent systems as our key evaluation subject. Prometheus is a prominent agent-

oriented software engineering methodology that has been used in both academia and industry.

The Prometheus notation is simpler than UML, and in addition to local expertise, we had

easy access to the source code of the Prometheus Design Tool (PDT), allowing the Change

Propagation Assistant to be integrated with PDT. We defined a Prometheus metamodel and

a set of consistency constraints (see chapter 4) by examining the well-formedness conditions

of Prometheus models, the coherence requirements between Prometheus diagrams, and the

best practices proposed in [Padgham and Winikoff, 2004].

9.1.2 Which application(s) should be used?

The main input to the change propagation framework is the application’s existing design.

Therefore, in order to maintain the credibility of our evaluation, the choice of application

needs to meet several requirements. Firstly, it is important for the application to have a set of
1UML here is in fact a shorthand for something like “UML plus a suitable design process”.

205 (28th August, 2008)

CHAPTER 9. EVALUATION

justified, realistic, maintenance/evolution changes. Ideally, changes should be motivated by

actual change requirements of real applications. This makes the evaluation more convincing

since it avoids the possibility of bias by using existing change requirement. Secondly, the ap-

plication must have been developed using the chosen methodology. Thirdly, the application’s

existing design should either be available or be easily reverse engineered from the software

system. Furthermore, the application needs to be of a reasonable size: not too small (which

affects the credibility of the evaluation) but not too large (which makes the effectiveness

evaluation harder to perform). Finally, applications originating from industry would have a

higher preference because there is no need to justify that they are real applications.

However, it was difficult to access existing applications that satisfy all the above criteria.

Industrial applications do not usually have disclosed designs whilst open-source projects

often have limited design documentation and would require a substantial effort to reverse-

engineer. In addition, in the case of an agent-oriented methodology, there are few available

agent applications with designs.

As Prometheus is the selected methodology, the choice of application is within systems

that have been developed using the Prometheus methodology. We fortunately had access to

the design of an agent-based weather alerting system, which satisfies many of our criteria.

The original weather alerting system was developed between 2002 and 2005, as part of a

collaboration between the Australian Bureau of Meteorology2, RMIT’s Agents Group3, and

Agent-Oriented Software Pty Ltd4. This system was subject to various changes during its

evolution [Mathieson et al., 2004]. Our evaluation is, to some extent, based on this application

with such a source of real modifications. More specifically, we adopted simple versions of the

system that have been used in [Jayatilleke, 2007] and in a student project in the agent-oriented

programming course taught at RMIT University. Those versions of the system simplified

the original application but captured its essence by retaining the key characteristics. In

particular, the work in [Jayatilleke, 2007] specified several changes on a simple version of

the original system, some of which were actual real changes and others were similar in type,

suitable for the simplified system. We used this work as a major source to specify an initial
2The Australian Bureau of Meteorology is the National Meteorological Authority for Australia. Its role

is “to observe and understand Australian weather and climate and provide meteorological, hydrological and
oceanographic services in support of Australia’s national needs and international obligations.”. More details
are available at http://www.bom.gov.au.

3http://www.cs.rmit.edu.au/agents
4http://www.agent-software.com

206 (28th August, 2008)

CHAPTER 9. EVALUATION

system with various types of changes.

9.1.3 What changes to the application should be done?

In order to maintain the subjectiveness of evaluation, it is important to select and justify

the changes. This can be done by selecting changes that originate from well-motivated and

realistic change scenarios in a real application. In addition, changes need to cover a range

of different types. Even when the changes to be made originate in actual changes in a real

application, if the changes do not cover the different types of changes, then the generality of

the evaluation is weakened.

In order to ensure that we sufficiently cover different types of change, we developed

a taxonomy of changes by adopting existing classifications. We then checked how well a

proposed collection of changes covered the different types of change using the taxonomy. The

focus of our change taxonomy resides in the application’s design (i.e. the model) rather than

other aspects of software maintenance and evolution (e.g. management). We also want to

cover changes that reflect different purposes of maintenance. As a result, we adopt Swanson’s

classical taxonomy (described in chapter 2) as the primary, abstract, classification of change

types. In addition, based on the classification proposed by Chapin et al. [2001] we introduce

a second taxonomy where changes are categorised based on the types of modification made to

the behaviour of a software system. More specifically, they can be: adding a new functionality,

removing an existing functionality and modifying an existing functionality. For instance, the

inclusion of volcanic ash warnings in a weather alerting system can be classified as perfective

maintenance and functionality addition. By contrast, the removal of pressure alerts from

the same system due to pressure data from the forecasters no longer being available can be

regarded as adaptive maintenance and functionality removal.

Figure 9.2 depicts the change taxonomy that we used to classify requirement changes that

were used to evaluate applications. As a check of coverage, we classify changes according to

this taxonomy. It is, however, noted that in practice there is not always a clear-cut distinction

between different types of maintenance. For instance, when adapting the software to a new

environment (adaptive maintenance), functionality may be added to take advantage of new

facilities supported by the environment (perfective maintenance) or removing a functionality

may require modifying other existing functionalities that use the functionality to be deleted.

In addition, we do not look at other types of changes such as different forms of refactoring

207 (28th August, 2008)

CHAPTER 9. EVALUATION

 Perfective Adaptive Corrective
Addition Add a new functionality in

response to business change
Add a new functionality to
cope with an environmental
change

Add a new functionality
to fix bugs

Modification Modify an existing
functionality in response to
business change

Modify an existing
functionality to cope with an
environmental change

Modify an existing
functionality to fix bugs

Removal Remove a functionality in
response to business change

Remove a functionality to
cope with an environmental
change

Remove a functionality
to fix bugs

Figure 9.2: A taxonomy of software change

[Fowler and Beck, 1999; Opdyke, 1992] in which a software system is changed in such a way

that improves its internal structure but does not alter its external behaviour.

9.1.4 How do we select primary changes to perform?

The choice of primary changes is important because it affects the usefulness of the tool. If the

primary change is too small, then the design may remain consistent and consequently there is

little room for the tool to help. If the primary change is too large, then the tool again cannot

help because the work has been done. We deal with the issue of selecting primary changes

by not selecting: our evaluation process considers all of the possible primary changes.

In order to meet a new requirement, a given change to the system’s design has to be

made. We view such a change (denoted by D) as being a sequence of steps, with each step

being a primitive change to the model such as adding or removing a link between entities. For

each given change, D , we need to consider all possible primary changes P (with the actions

in P being a subset of those in D). Now in fact considering arbitrary subsets of D is not

meaningful as will be discussed in section 9.2: a designer will not select a random collection

of actions from D as a primary change. Instead, they will perform an initial segment of D

(i.e. P will be a prefix of D) and then invoke the CPA tool. Therefore, for each given change

plan the possible primary changes to be considered are the possible initial segments of the

change plan.

9.1.5 How are basic costs determined?

We need to select values for the basic costs of repair action. The costs assigned to basic

repair actions can affect the change options proposed by the CPA tool. For instance, we

208 (28th August, 2008)

CHAPTER 9. EVALUATION

can discourage deletion by assigning a high cost to the removal action. As a result, the

effectiveness of the tool may also depends on the basic costs. Therefore, it is important to

consider the determination of these costs.

The designer can adjust the basic costs. In this evaluation we do not explore a range

of costs, but instead select what we believe are reasonable values for each change scenario

(explained with more detail in section 9.5). A thorough exploration of the effects of varying

the basic costs is an interesting and important topic for future work.

9.2 A model of the change propagation process

As mentioned earlier, time and resource limits prevent us from conducting a real user vali-

dation of our approach in which we could understand how the user interacts with the CPA

tool and consequently assess the usefulness of the tool. One step towards dealing with this

issue is to model the change propagation process and thus capture the user’s behaviour in

changing the software. As discussed in section 2.1.4, several previous work have proposed

to model the change propagation process (e.g. [Arnold and Bohner, 1996; Rajlich, 1997]).

Based on the intuition and ideas proposed in these models, Hassan and Holt [2004] have

recently proposed a simplified model of the change propagation process (see figure 9.3) and

this is the one that we adopt.

Determine
Initial Entity to

Change

New Requirement,
Enhancement, or

Bug Fix

Change
Entity

Determine
Other Entities

to Change

Consult Guru
for Advice

No
Entities

No More
Changes

Suggested Entity

For Each Entity

Figure 9.3: A model of the Change Propagation Process (redrawn from [Hassan and Holt,
2004])

In this model, the developer is guided by a change request to perform primary changes

(i.e. determine initial entity to change and change entity) and some partial secondary changes

(i.e. determine other entities to change). When the developer cannot locate other entities

209 (28th August, 2008)

CHAPTER 9. EVALUATION

to change, she/he consults a Guru. If the Guru indicates that an entity was missed, then it

is changed and the change propagation process is repeated for that entity. This continues

until all appropriate entities have been changed. The Guru can be a senior developer, a

software development tool, or even a suite of tests. At the end of this process, the developer

has determined the change set for the new requirement at hand and ideally all appropriate

entities should have been updated to ensure consistent assumptions throughout the system.

We have used the intuitions and ideas proposed in the above change propagation model to

formally define a process that captures (abstractly) the designer’s anticipated behaviour and

use this in our evaluation. Figure 9.4 shows our model of the change propagation process.

In this model, the designer is guided by a change request which can be fulfilled by making

a given change to the system’s design. We view such a change plan (denoted by D) as

being a sequence of steps, with each step being a primitive change to the model such as

adding or removing a link between entities, which transforms the existing design model so

that it meets the requirements of the change request. Although the designer does not have

a complete knowledge of the change plan D , he/she may know some parts of it, especially

an initial segment of D (denoted as P) where he/she determines initial entities and makes

changes to them (i.e. performs a primary change). In addition, we also assume that the

designer has a general idea of the change propagation direction and thus given a number of

change options they are able to identify those which are compatible with the change plan.

We assume for evaluation that a specific change plan D plan is given.

Determine
Initial Entities

to Change

New Requirement,
Enhancement, or

Bug Fix

Change
Entities Invoke CPA

No More
Changes

Select
Change
Options

No More
Changes

Change
Options

Figure 9.4: Our model of the Change Propagation Process

As can be seen, our CPA tool is considered as the Guru, but unlike the Guru in figure

9.3 it suggests not only the entities to be changed but also the specific changes to be made

210 (28th August, 2008)

CHAPTER 9. EVALUATION

1. given a change plan D (sequence of actions)

2. select P v D and do the actions in P

3. update D (D := D − P)

4. invoke the tool yielding O = {C1, . . . ,Cn}

5. if ∃Ci ∈ O where Ci is compatible with D then

6. select a compatible Ci ∈ O (if more than one)

7. do actions in Ci and update D (D := D − Ci)

8. end if

9. goto step 2 if D is not empty.

Figure 9.5: A change propagation process

to them. The designer performs some primary changes and then invokes the CPA tool. The

tool then suggests a set of change options and the designer chooses one that is compatible

with his/her plan. The tool then performs the actions in the selected repair option. After

that the designer performs the next segment of his/her plan and this process continues until

the change requirement is implemented.

Figure 9.5 formally describes our change propagation process in more detail. Given a

change plan D , the designer selects an initial segment P of D and performs the actions in P

(step 2), updates D by removing the performed actions (step 3) and then invokes the tool,

which returns a set O of repair options (step 4). Each repair option Ci is a sequence of

actions. At this point (step 5) the user may select one of the Ci (step 6) and apply it to the

model (step 7), or they may decide that none of the Ci are suitable.

Deciding whether a Ci is suitable is done by comparing it with the designer’s plan: Ci is

compatible with D if all of the steps in Ci are in D (formally5 ∀ s ∈ Ci • s ∈ D). If all the

changes in D have been performed the process ends, otherwise the user continues to perform

more primary changes (step 9). We use D := D − P to denote removing the actions in P

from the sequence D , and we use P v D to denote that P is an initial segment of D (formally

∃X : P + X = D , where + is sequence concatenation).
5Alternatively, if viewed as sets, Ci ⊆ D .

211 (28th August, 2008)

CHAPTER 9. EVALUATION

We use the above interaction between the designer and the CPA to define our evaluation

process and metrics which are described in detail in the next section. Although this process

helps simulate the behaviour of a real user, it contains several limitations. The process is

relatively abstract and does not cover other (potentially useful) details such as reasons for

a design decision. In addition, the process is developed based on existing change propaga-

tion models [Arnold and Bohner, 1996; Hassan and Holt, 2004; Rajlich, 1997], but it is not

clear to what extent these models have been validated by studying the practice of software

maintenance and evolution by developers.

9.3 Experiment process and metrics

As pointed our earlier, efficiency and effectiveness are the two important criteria that we

used to assess our approach in general and the CPA tool particularly. We dealt with the

efficiency assessment by applying our approach in both real and artificial applications. In

particular, we examined the scalability of our approach by simulating designs with variable

numbers of model elements and constraints. With respect to the effectiveness evaluation, we

used a “simulated user” who follows the change propagation process defined earlier in figure

9.5. More specifically, our evaluation process consists of the following steps:

1. For each new requirement we develop a change plan D . Because the tool’s effectiveness

is sensitive to the choice of change (i.e. D) it is very important to justify the change

plan D with strong evidence showing that it is a reasonable design change. It is also

noted that for a requirement there may be several alternative valid change plans that

meet the requirement. In these cases, we should consider all of them. Furthermore,

within the change plan D we mark “obvious” and “side-effect” actions separately. The

differences between these two types of action are explained ahead.

2. We then apply the process described earlier (see figure 9.5), considering a partial change

P that expands by one step at a time. By doing this, we consider all possible choices

of primary change.

When the process terminates, we measure what proportion of the actions in the change

was done by the user, and what proportion was done by the CPA. More specifically, we count

how many actions ended up being in Cis along the way, compared with the total number of

212 (28th August, 2008)

CHAPTER 9. EVALUATION

actions in D so we calculate6 the metric M =| C | / | D | (where C is the union of the Cis).

It is noted that the value of M depends on our choices for P . Clearly, if P is the whole of D

then there is nothing left for the tool to do, and M will be 0. In some of the cases below we

will see that there is a “tipping point”: until enough of D is done the tool cannot help, but

once enough is done, the tool performs the remaining steps in D .

In order to further assess the usefulness of our CPA tool, we also distinguish “obvious”

change actions from “side-effect” actions. Obvious actions are changes that are part of the

main design flow and/or in the scope that the designer is currently working in. For instance,

if the designer creates a new agent, then his/her next steps would be developing the agent’s

internals, e.g. creating plans. In contrast, it is more difficult to identify “side-effect” actions,

changes that are needed in other parts of the system that are neither part of the main design

flow nor in the scope of the designer. As a result, the designer tends to miss those secondary

side-effect changes. In the previous example, side-effects could be assigning the newly created

agent with a role. It is clear that the tool is more useful if it can pick out such side-effect

actions. As a result, we consider not only the percentage of actions in the change done by the

CPA, but also their quality in terms of how many of them are side-effect actions. Therefore,

we classify the repair actions into two categories: “obvious” and “side-effect” change actions

and count them separately. In addition, since a repair option Ci returned by the CPA can

contain “side-effect” actions, we need, for evaluation purposes, to require that the change

plan D also contains all of the consequent side effects. In this sense, D is not really the

designer’s plan per se, but rather than the designer’s plan plus consequent side effects.

In addition to measuring M , an important factor in the usefulness of the tool concerns the

repair options, O. Specifically, we are interested in how many of the Ci in O are compatible

with D , and in the size of O (since it is clearly better if the designer is not being asked to

select an option from a very large list). We thus, in addition to M , also measure the number

of options and how many of the options are compatible with D .

9.4 An overview of the evaluation application

Our choice of application was the Bureau of Meteorology’s multi-agent system for weather

alerting (MAS-WA). The details, including the design and functions, can be found in [Math-

ieson et al., 2004]. The original system had been developed between 2002 and 2005, as part
6Note that, if viewed as sets, D = Ci ∪ P .

213 (28th August, 2008)

CHAPTER 9. EVALUATION

of a collaboration between the Australian Bureau of Meteorology, RMIT Agent Group7, and

Agent-Oriented Software8. As discussed previously, we built an evaluation application based

largely on simplified versions of this system which had been used for previous work in the

group and for teaching.

The aim of the original MAS-WA application is to enhance aviation forecasts with a

special focus on providing assistance in the rapid rectification of forecasts for airports and

pilots [Dance and Gorman, 2002; Mathieson et al., 2004]. The system subscribes to various

weather data sources such as terminal aerodrome forecasts (TAFs9) generated for airports,

automated weather station (AWS) readings, email notification on volcanic ash (e.g. from the

Volcanic Ash Advisory Center (VAAC)) and thunderstorm alerts. The system uses data from

those sources to extract important information and send alerts (or warnings) to interested

clients regarding situations such as extreme weather, inconsistencies between data sources, or

changes to observed weather that contradict previously issued forecasts. The initial version

of the system, which was developed using the JACK agent language [Busetta et al., 2000],

had undergone different changes to extend and further develop the system. For instance, the

alerts on volcanic ash levels and thunderstorms were introduced later.

In the rest of the thesis (and in chapter 4, pages 69-76 and 102-105), our description of

the weather alerting system is the simplified application which we have used in our work.

The weather alerting system monitors data from forecasts for airport areas (TAF) and from

automated weather stations (AWS). TAF and AWS readings contain information about tem-

perature, wind speed and pressure (see figure 9.6). In the (simplified) system alerts are issued

if there are significant differences between a prediction (TAF) and the actual weather (AWS).

There is a fixed discrepancy threshold for each data type for generating alerts for all alerting

regions. Alerts are provided to human operators (e.g. airport officials) via a GUI, which

subscribes to certain kind of alerts for particular airports, e.g. a subscription for tempera-

tures alert at Melbourne airport. It is also important that a GUI is not overwhelmed with

messages. As a result, a single airport should receive a single alert that contains multiple

messages. In addition, if a warning has been sent to a GUI in the last 30 minutes, it should

not be sent again if the situation is not changed.

The initial design of the system consists of five agent types: “Alerter”, “TAFManager”,
7http://www.cs.rmit.edu.au/agents
8http://www.agent-software.com.au
9TAFs stand for terminal aerodrome forecasts, highly abbreviated forecasts of weather around airports

intended for pilots [Mathieson et al., 2004].

214 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.6: MAS-WA System Overview Diagram (from [Jayatilleke, 2007])

AWSManager”, “Discrepancy” and “GUI”. Figure 9.7 shows the system overview diagram for

the application, as well as agent overview diagrams for the “Discrepancy” and “GUI” agent

types. The “TAFManager” processes the “TAF” percept that contains “TAF” data, which is

stored in the “TAFDataStore”. Similarly, the “AWSManager” is responsible for extracting

the “AWS” data in the incoming “AWS” percept and store this data in the “AWSDataStore”.

The “AWSManager” agent also notifies the “Discrepancy” agent by sending an “AWSData”

message whenever new AWS is obtained. In addition, when the “Discrepancy” agent asks

for new AWS (by sending a “RequestNewAWS” message) the “AWSManager” perform a

“NewAWSRequest” action to request an external weather station for this information. The

“Discrepancy” agent detects discrepancies between TAF and AWS, and sends an “AlertDis-

crepancy” message to the “Alerter” agent if a discrepancy above the threshold level occurs.

The “Alerter” agent then processes the alerts and sends to subscribed “GUI” agents.

215 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.7: MAS-WA Design
216 (28th August, 2008)

CHAPTER 9. EVALUATION

9.5 Change scenarios and results

In this section, we present a set of changes that have been made to the MAS-WA application.

Some of the changes were based on real changes but others were introduced by Jayatilleke

[2007] and ourselves, reflecting typical types of changes needed. In other words, the changes

were similar in type to actual changes that happened in the real application, but were sub-

stantially simplified to match the simplified system that we used. The changes to be made,

however, do not cover all categories in the classification of changes discussed in section 9.1.3.

Figure 9.8 shows how those changes are mapped against our change taxonomy. Of the 6

changes, 3 of them are perfective maintenance, 2 are adaptive maintenance and 1 for correc-

tive maintenance. In terms of the functionality dimension, 4 of the 6 changes are adding new

functionalities while 2 of them are related to functionality modification. We could not find

any real change examples involving removing functionalities as functionality removal rarely

happens in practice [Chapin et al., 2001].

 Perfective Adaptive Corrective
Addition Change 4, 6 Change 3 Change 1
Modification Change 2 Change 5
Removal

 Figure 9.8: Changes are classified based on our taxonomy

We followed the evaluation process defined in section 9.3 to assess the effectiveness of

our approach in each of the change scenarios described earlier. In terms of setting basic

costs10, for all six changes connection (between two entities) is assigned a cost of 1 and so

is modification. Most of the changes are perfective and/or adding new functionalities, which

tends to result in new entities in the design model. As a result, we set the cost of creation be

0 to encourage new entities to be created. In Prometheus, a creation of an entity, however,

usually takes place within another entity, for example creating a plan within an agent. For

such cases, we treat them as a single creation which also has a cost of 0. Disconnection and

deletion are assigned a slightly higher cost (of 3) for most of the changes. The special case

is change 5 which involves disconnecting entities and we set the cost of disconnection to be

equal to the cost of connection (i.e. 1) for this case. Although the assignments of basic
10As mentioned in chapter 3 and 8, our framework and its prototype implementation (i.e. the Change

Propagation Tool) allow the designer to change the basic cost configuration as a means of giving his/her

217 (28th August, 2008)

CHAPTER 9. EVALUATION

costs in these cases may be relatively arbitrary and example-specific, in our view they seem

reasonable since they reflect the general user preference to create and link entities, rather

than delete them. However, as discussed in chapter 10 more work is needed to explore the

effects of basic cost selection and to determine to what extent generally good basic costs can

be determined.

For each change we describe the change requirements, justify a change plan that meets

the change requirement, and present the result of executing that change plan using our CPA

tool.

9.5.1 Change 1: Adding wind speed alerting

The initial system only took care of discrepancies between weather readings (AWS) and

forecasts (TAF) for temperature and pressure data. The first requirement change is to add

discrepancy alerting for wind speed, given that relevant data values were available in the

AWS and TAF. This, therefore, involves performing the necessary modifications to process

wind data and generate alerts on any wind speed based discrepancies. We are viewing this

change as aiming to correct an error in the design (inconsistent with the requirements11)

by adding a new functionality. It is, therefore, classified into the category of corrective and

addition of our change taxonomy.

As the “Discrepancy” agent is responsible for detecting data discrepancies, it needs to be

changed to meet this change request. Similar to temperature and pressure, we need a plan

for checking wind speed discrepancies. This plan is triggered by a message that is sent by the

“HandleAwsDataPlan” and contains TAF and AWS wind speed data. This plan also sends

out the message “AlertDiscrepancy” to the “Alerter” agent if a discrepancy is detected.

The change actions presented ahead are also the actual changes that were made by all

participants in the user study evaluation performed in [Jayatilleke, 2007]. It is noted that

these actions are presumably performed by the designer using PDT, which may and may not

map directly to the metamodel on a one-to-one basis:

• Linking and unlinking between two entities in PDT corresponds to connection and

disconnection respectively. For instance, in PDT linking “HandleAwsDataPlan” plan

influence on the change propagation process.
11In fact the omission of wind speed handling in the design was not accidental, but we are viewing it as

accidental.

218 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.9: The agent overview diagram for “Discrepancy” agent after change 1

to “WindDataValues” message (send) means that make the plan send the message.

With respect to the metamodel, this action is actually connecting a Plan entity named

‘HandleAwsDataPlan” plan and a Message entity named “WindDataValues” using the

planSender–outgoingMessagesEntityReference association (refer to the Prometheus meta-

model in figure 4.16 on page 92).

• Creating an entity in another entity map corresponds to two changes to the metamodel.

For instance, creating “WindDataValues” message in “Discrepancy” agent implies cre-

ating “WindDataValues” message and linking it with the “Discrepancy” agent so that

it is owned by the agent (following the internalMessage–agentOwner association, refer

to figure 4.12 on page 87).

• Making a percept or message to be a trigger of a plan corresponds to connecting the

219 (28th August, 2008)

CHAPTER 9. EVALUATION

percept or message to the plan with respect to the triggersEntityReferencePercept–

triggeredPlan or triggersEntityReferenceMessage–triggeredPlan association in the meta-

model (refer to figure 4.16 on page 92).

Below are the specific change actions12, depicted in figure 9.913.

1. Create “WindDataValues” message in “Discrepancy” agent.

2. Create “CheckWindDiscrepancy” plan in “Discrepancy” agent.

3. Link “HandleAwsDataPlan” plan to “WindDataValues” message (send).

4. Make “WindDataValues” message to be a trigger of “CheckWindDiscrepancy” plan.

5. Link “CheckWindDiscrepancy” plan to “AlertDiscrepancy” message (send).

Result

The following sequence of actions captures the interaction between the “simulated” designer

and the tool in terms of what actions were performed by the designer and what actions were

proposed and executed by the tool.

1. Create “WindDataValues” message in “Discrepancy” agent (done by the designer).

After this, the tool identifies several violated constraints such as the new messages is

not sent and received by any plans. The tool then returns 9 options, one of which

matches the designer’s plan, resulting in the next three steps being done by the tool.

2. Create “CheckWindDiscrepancy” plan in “Discrepancy” agent (done by the tool)14.

3. Link “HandleAwsDataPlan” plan to “WindDataValues” message (send) (done by the

tool).

4. Make “WindDataValues” message to be a trigger of “CheckWindDiscrepancy” plan

(done by the tool).

After step 4 is done, the design is consistent: linking “CheckWindDiscrepancy” plan to

“AlertDiscrepancy” message is not needed since the new message already has its sender

and receiver, and the new plan already has its trigger.
12Some variations in order are possible, but they do not affect the outcome.
13Each number in the figure corresponds to a relevant step in the sequence of change actions.
14The tool creates a new plan and asks the designer to provide a name for the new plan.

220 (28th August, 2008)

CHAPTER 9. EVALUATION

5. Link “CheckWindDiscrepancy” plan to “AlertDiscrepancy” message (send) (done by the

designer).

This change is relatively straightforward and it does not involve any side-effect actions.

The tool is able to pick up three steps out of five steps contained in the change plan.

9.5.2 Change 2: Implementing a variable threshold alerting

Currently, the alerting thresholds are fixed and hard-coded for each data type (e.g. 2 for

pressure, 5 for temperature, and 10 for wind). For example, if a discrepancy between TAF

and AWS values for pressure is above 2, in any of the regions (e.g. Melbourne, Sydney and

Darwin), a warning is generated. However, the forecast personnel wants to be able to adjust

the alerting threshold levels. More specifically, different regions will show alerts based on

different discrepancies, for example in the Melbourne region the pressure threshold might be

3 whereas for Sydney might be 6. Such values are provided and can be changed by the user

(e.g. airport weather manager) in each region. Hence, a new requirement that the forecast

personnel should be able to set a threshold for alerting is requested. This requirement change

involves modification of the existing alerting functionality to respond to a business change.

Therefore, we place it in the category of perfective and modification of our change taxonomy.

This change request implies two major design changes: (1) alerting threshold levels should

be realised as the user’s input, and (2) these data should be stored and used when discrep-

ancy detection takes place. User inputs are usually represented as percepts. The current

design has only three percepts and each of them has its own purpose: “TAF” contains data

input from the forecaster, “AWS” is input from the automatic weather sensor and “Change

Subscription” is requested from the airport official to subscribe/unsubscribe to certain infor-

mation. Therefore, a new percept is needed to represent the user’s request for changing the

thresholds. This percept also contains a new threshold for either temperature or pressure.

Since the “GUI” agent is responsible for interacting with the system’s users, it should be

extended to handle this new percept and the agent thus needs a new plan which responds to

this percept (it can use existing plans but this would violate the cohesion principle). This

plan processes the alerting threshold input contained in the percept and stores it in a data

store. Because existing data stores are not for keeping the threshold information, a new data

store is needed. This data store is written by the “GUI” agent and its new plan. Finally, as the

“Discrepancy” agent is responsible for detecting discrepancies, it should be changed to meet

221 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.10: The system overview diagram after change 2

the second design change requirement. More specifically, the “Discrepancy” agent’s plans

for detecting discrepancies, i.e. “CheckTempDiscrepancy” and “CheckPressDiscrepancy”, will

need to use the new threshold data store to determine if a discrepancy warning should be

raised.

The above changes are made to the detailed design artefacts, and result in several side-

effects (see section 9.3 for a definition of side-effects) in architectural and system specification

artefacts. First, the new percept needs to be handled by a role played by the “GUI” agent.

Second, the new data should be written by a role played by the “GUI” agent and read by a

role played by “Discrepancy” agent.

The designer’s complete plan D thus consists of the following sequence15. Figures 9.10

and 9.11 shows the system overview diagram and the agent overview diagram for “GUI”

agent after these changes are made. Note that changes are also made to other diagrams (e.g.

side-effect actions are shown in the system roles diagram and the data coupling diagram, and

action steps 12 and 13 are done in the agent overview diagram for “Discrepancy” agent (not

shown)).
15Some variations in order are possible, but they do not affect the outcome of the evaluation.

222 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.11: The agent overview diagram for “GUI” agent after change 2

1. Create “SetNewThreshold” percept.

2. Create “ChangeThreshold” plan in “GUI” agent.

3. Link “SetNewThreshold” percept to “GUI” agent.

4.* Link “SetNewThreshold” percept to “User Interaction” role16.

5. Make “SetNewThreshold” percept to be a trigger of “ChangeThreshold” plan.

6. Create a new “AlertingLevels” data.

7. Link “GUI” agent to “AlertingLevels” data (write.)

8.* Link “User Interaction” role to “AlertingLevels” data (write).

9. Link “ChangeThreshold” plan to “AlertingLevels” data (write).

10. Link “AlertingLevels” data to “Discrepancy” agent (read).

11.* Link “AlertingLevels” data to “Check Discrepancies” role (read).

12. Link “AlertingLevels” data to “CheckTempDiscrepancy” plan (read)17.

13. Link “AlertingLevels” data to “CheckPressDiscrepancy” plan (read)17.
16Side effect actions are marked with an asterisk (*) next to their numbers.
17This action takes place in the agent overview diagram for agent “Discrepancy” (not shown).

223 (28th August, 2008)

CHAPTER 9. EVALUATION

It is noted that changes should also be made to a plan’s internals (e.g. “CheckTempDis-

crepancy” plan and “CheckPressDiscrepancy” plan). However, such changes are not made at

the design level, but at the code level18.

Result

The following sequence of actions captures the interaction between the “simulated” designer

and the tool in terms of what actions were performed by the designer and what actions were

proposed and executed by the tool.

1. Create “SetNewThreshold” percept (done by the designer).

After this, the tool identifies three violated constraints since the new percept needs to

be handled by a role, an agent and a plan. The tool then returns 18 repair options,

one of which matches the designer’s plan, resulting in the next four steps being done

by the tool.

2. Create “ChangeThreshold” plan in “GUI” agent (done by the tool)19.

3. Link “SetNewThreshold” percept to “GUI” agent (done by the tool).

4.* Link “SetNewThreshold” percept to “User Interaction” role20 (done by the tool).

5. Make “SetNewThreshold” percept to be a trigger of “ChangeThreshold” plan (done by

the tool).

6. Create a new “AlertingLevels” data (done by the designer).

After this, the tool identifies violated constraints relating to the requirements of a new

data being needed to be accessed (either written or read) by an agent and plan. The

tool then returns 26 options, three of which match the designer’s plan. The first option

suggests steps 7-9, the second option recommends steps 10-12, and the third option

suggests steps 10, 11, and 13. The designer chooses one of these options, for example

the first option, resulting in the next 3 steps being done by the tool21.
18In PDT, such changes can be made in the plan descriptor’s body section in terms of specifying pseudo

code.
19The tool creates a new plan and asks the designer to provide a name for the new plan.
20Side effect actions are marked with an asterisk (*) next to their numbers.
21If the designer could select and execute more than one option at a time then in this particular change

case, the tool is even more effective: the designer could select all three matching options, and consequently
have all the remaining steps (7-13) be done by the tool.

224 (28th August, 2008)

CHAPTER 9. EVALUATION

7. Link “GUI” agent to “AlertingLevels” data (write) (done by the tool).

8.* Link “User Interaction” role to “AlertingLevels” data (write) (done by the tool).

9. Link “ChangeThreshold” plan to “AlertingLevels” data (write) (done by the tool).

After this step, the design is consistent because the new data is now accessed by an

agent, a plan and a role. Therefore, the next step is done by the designer.

10. Link “AlertingLevels” data to “Discrepancy” agent (read) (done by the designer).

After this, the tool returns 3 options, two of which match the designer plans. The first

option suggests steps 11 and 12, whilst the second option suggests steps 11 and 13.

The designer chooses one of these options, and manually performs the remaining step.

11.* Link “AlertingLevels” data to “Check Discrepancies” role (read) (done by the tool).

12. Link “AlertingLevels” data to “CheckTempDiscrepancy” plan (read) (done by the tool).

13. Link “AlertingLevels” data to “CheckPressDiscrepancy” plan (read) (done by the de-

signer).

The tool is able to identify and perform 9 actions out of 13 actions (including 3 side-effect

actions) in the change plan.

9.5.3 Change 3: Adding volcanic ash

One of the major updates made to the original application trialled at the Bureau of Meteo-

rology was the inclusion of volcanic ash alerts. A motivation behind this requirement change

was the availability of information on volcanic activities reported on special mailing lists.

In addition, apart from reporting on discrepancies between AWS and TAF data, it is useful

to add the ability to generate other forms of weather alerts related to airports. One such

alert is on volcanic ash effect due to volcanic activities in the vicinity. By subscribing to

these mailing lists, one could obtain data about possible volcanic ash effects on a given area,

where volcanic activity in the vicinity has occurred. Since this requirement change involves

the addition of a new functionality (i.e. alerts on volcanic ash) due to a change in the oper-

ational environment (i.e. the availability of volcanic ash data), we classify this change into

the category of adaptive and addition in our taxonomy.

225 (28th August, 2008)

CHAPTER 9. EVALUATION

The change required the addition of a new percept (i.e. “VolcanicAshEmail”) to repre-

sent the volcanic ash related data. Although we could in theory use existing agents (e.g.

“TAFManager”) for reading volcanic ash data and generating alerts when the ash levels are

above a certain limit, this violates modularity and cohesion principles. Therefore, we prefer

to create a new agent (i.e. “VolcanicManager”) to handle the new percept. Similarly, this

agent should contain a new plan which handles this percept. For debugging purposes and/or

future use, a new data store (“VolcanicAshData”) is created to keep the processed volcanic

ash data. This data store is written by the new agent and its only plan (i.e. “ProcessVol-

canicAshDataPlan”).

Similar to the normal alerts, volcanic alerts should be sent to subscribed GUIs by the

“Alerter” agent. Therefore, the “VolcanicManager” agent should notify the “Alerter” agent

with a message (“AlertVolcanicAshLevel”) which will trigger the process of sending out vol-

canic alerts to appropriate “GUI” agents. Currently, the “Alerter” has two plans and both of

them are already triggered by other messages. Hence, a new plan is needed to handle the

incoming message related to volcanic ash levels. This plan also uses data in the “Subscrip-

tionsStore” to work out the subscribed GUIs which should receive volcanic alerts. Changes

are also needed in the “NewAlerts” and “SubscribeChange” messages so that they include

volcanic ash related data and subscription respectively. However such changes should be

made at the implementation level, and thus we do not include them here22.

Below are the specific change actions23. Figures 9.12, 9.13 and 9.14 show the main action

steps.

1. Create “VolcanicManager” agent.

2.* Create “Manage Volcanic Ash” role.

3.* Link “VolcanicManager” agent to “Manage Volcanic Ash” role.

4. Create “VolcanicAshEmail” percept.

5. Create “ProcessVolcanicAsh” plan in “VolcanicManager” agent.

6. Link “VolcanicAshEmail” percept to “VolcanicManager” agent.

7.* Link “VolcanicAshEmail” percept to “Manage Volcanic Ash” role.
22In PDT, such changes can be made in the message descriptor in terms of specifying text description.
23Some variations in order are possible, but they do not affect the outcome.

226 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.12: The system overview diagram after change 3

8. Make “VolcanicAshEmail” percept to be a trigger of “ProcessVolcanicAsh” plan.

9. Create “VolcanicAshData” data.

10. Link “VolcanicManager” agent to “VolcanicAshData” (write).

11.* Link “Manage Volcanic Ash” role to “VolcanicAshData” (write).

12. Link “ProcessVolcanicAsh” plan to “VolcanicAshData” (write).

13. Create “AlertVolcanicAshLevel” message.

14. Link “VolcanicManager” agent to “AlertVolcanicAshLevel” message (send).

15. Link “ProcessVolcanicAsh” plan to “AlertVolcanicAshLevel” message (send).

16. Link “AlertVolcanicAshLevel” message to “Alerter” agent (receive).

17. Create “SendVolcanicAlertToSubscribedGUIs” plan in “Alerter” agent

18. Make “AlertVolcanicAshLevel” message to be a trigger of “SendVolcanicAlertToSub-

scribedGUIs” plan.

227 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.13: The agent overview diagram for “VolcanicManager” agent after change 3

19. Link “SendVolcanicAlertToSubscribedGUIs” plan to “NewAlerts” message (send).

20. Link “SubscriptionsStore” data to “SendVolcanicAlertToSubscribedGUIs” plan (read).

Result

The following sequence of actions captures the interaction between the “simulated” designer

and the tool in terms of what actions were performed by the designer and what actions were

proposed and executed by the tool.

1. Create “VolcanicManager” agent (done by the designer).

After this, the tool identifies a violated constraint: the new agent needs to play a role.

The tool returns one option that matches the designer’s plan, resulting in the next two

steps is done by the tool.

2.* Create “Manage Volcanic Ash” role (done by the tool)24.

3.* Link “VolcanicManager” agent to “Manage Volcanic Ash” role (done by the tool).

4. Create “VolcanicAshEmail” percept (done by the designer).

After this, the tool identifies three violated constraints since the new percept needs to
24The tool creates a new role and asks the designer to provide a name for the new role.

228 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.14: The agent overview diagram for “Alerter” agent after change 3

be handled by a role, an agent and a plan. The tool then returns 19 change options,

one of which matches the designer’s plan, resulting in the next four steps being done

by the tool.

5. Create “ProcessVolcanicAsh” plan in “VolcanicManager” agent (done by the tool)25.

6. Link “VolcanicAshEmail” percept to “VolcanicManager” agent (done by the tool).

7.* Link “VolcanicAshEmail” percept to “Manage Volcanic Ash” role (done by the tool).

8. Make “VolcanicAshEmail” percept to be a trigger of “ProcessVolcanicAsh” plan (done

by the tool).

9. Create “VolcanicAshData” data (done by the designer).

After this, the tool returns 26 options, one of which matches the designer’s plan, re-

sulting in the next three steps being done by the tool.

10. Link “VolcanicManager” agent to “VolcanicAshData” (write) (done by the tool).
25The tool creates a new plan and asks the designer to provide a name for the new plan.

229 (28th August, 2008)

CHAPTER 9. EVALUATION

11.* Link “Manage Volcanic Ash” role to “VolcanicAshData” (write) (done by the tool).

12. Link “ProcessVolcanicAsh” plan to “VolcanicAshData” (write) (done by the tool).

13. Create “AlertVolcanicAshLevel” message (done by the designer).

After this, the tool returns 25 options but none of them matched the change plan. This

can be explained by the fact that the tool presented only cheapest options, which in

this case is making the new message internal to an existing agent (consequently saving

the cost of making a link between an agent and the new message). The intended change

plan, in contrast, makes the new message external to all the agents.

14. Link “VolcanicManager” agent to “AlertVolcanicAshLevel” message (send) (done by the

designer).

After this, the tool returns 18 options, one of them matches the change plan, resulting

in the next four steps being done by the tool.

15. Link “ProcessVolcanicAsh” plan to “AlertVolcanicAshLevel” message (send) (done by

the tool).

16. Link “AlertVolcanicAshLevel” message to “Alerter” agent (receive) (done by the tool).

17. Create “SendVolcanicAlertToSubscribedGUIs” plan in “Alerter” agent (done by the

tool).

18. Make “AlertVolcanicAshLevel” message to be a trigger of “SendVolcanicAlertToSub-

scribedGUIs” plan (done by the tool).

After this, the model becomes consistent, i.e. the next two steps are not needed for

consistency. Therefore, these steps have to be done by the designer.

19. Link “SendVolcanicAlertToSubscribedGUIs” plan to “NewAlerts” message (send) (done

by the designer).

20. Link “SubscriptionsStore” data to “SendVolcanicAlertToSubscribedGUIs”plan (read)

(done by the designer).

The tool performs 13 out of 20 actions in the change plan. All the four side-effect actions

are also identified and performed by the tool.

230 (28th August, 2008)

CHAPTER 9. EVALUATION

9.5.4 Change 4: Logging sent alerts

As a means of tracking alerts generated, and also for verification purposes, a new requirement

is that all alerting messages sent to the GUI component of the system should be logged. This

change can be classified as perfective and addition of new functionality.

Since we need to store the data being logged, a new data store (called “AlertLogData”)

is introduced. At the moment, the “Discrepancy” agent detects significant differences be-

tween TAF data and AWS data and notifies the “Alerter” agent when this situation happens.

The “Alerter” agent is responsible for handling alerts and sending them to the registered

“GUI” agents as well as managing the alert subscriptions. Hence, there are two likely design

alternatives to meet this change request, corresponding to either the “Discrepancy” agent

or the “Alerter” agent being responsible for handling alert logging. Within the “Discrep-

ancy” agent, the two plans “CheckTempDiscrepancy” and “CheckPressDiscrepancy” notify

the “Alerter” agent when discrepancies happen. As a result, to meet the change request they

should be modified. Similarly, the “SendAlertToSubscribedGUIs” plan should be modified if

the “Alerter” agent is chosen to handle alert logging.

Below are the list of change actions that correspond to the first design alternative26.

Figure 9.15 shows how changes are made to the agent overview diagram for the “Alerter”

agent. It is noted that the action step 3, i.e. link “Manage Subscriptions” role to “AlertLog”

data, is considered a side-effect action and should be performed in the role diagram which

we do not show here.

Alternative 1: modifying “Alerter” agent

1. Create “AlertLog” data.

2. Link “Alerter” agent to “AlertLog” data (write).

3.* Link “Manage Subscriptions” role to “AlertLog” data (write).

4. Link “SendAlertToSubscribedGUIs” plan to “AlertLog” data (write).

Below are the list of change actions that correspond to the second design alternative27.

Figure 9.16 shows how changes are made to the agent overview diagram for the “Discrepancy”

agent. It is noted that the action step 3, i.e. link “Check Discrepancy” role to “AlertLog”
26Some variations in order are possible, but they do not affect the outcome.
27Some variations in order are possible, but they do not affect the outcome.

231 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.15: The agent overview diagram for “Alerter” agent after change 4

data, is considered a side-effect action and should be performed in the role diagram which

we do not show here.

Alternative 2: modifying “Discrepancy” agent

1. Create “AlertLog” data.

2. Link “Discrepancy” agent to “AlertLog” data (write).

3.* Link “Check Discrepancy” role to “AlertLog” data (write).

4. Link “CheckTempDiscrepancy” plan to “AlertLog” data (write) .

5. Link “CheckPressDiscrepancy” plan to “AlertLog” data (write).

Result

There are two alternative change plans to meet this change requirement. However, they share

the same first step, i.e. creating “AlertLog” data. The tool responds with 24 options, which

include matches for each of the two alternatives. However, if the designer decides to go with

alternative 2, he/she needs to manually perform either step 4 or 5. It is also noted that the

tool does pick up the side-effect action in each alternative.

232 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.16: The agent overview diagram for “Discrepancy” agent after change 4

Alternative 1: modifying “Alerter” agent

1. Create “AlertLog” data (done by the designer).

After this, the tool identifies violated constraints relating to the requirements of a new

data being needed to be accessed by an agent, plan, and role. The tool then returns

24 options, resulting in the next 3 steps being done by the tool.

2. Link “Alerter” agent to “AlertLog” data (write) (done by the tool).

3.* Link “Manage Subscriptions” role to “AlertLog” data (write) (done by the tool).

4. Link “SendAlertToSubscribedGUIs” plan to “AlertLog” data (write) (done by the tool).

Alternative 2: modifying “Discrepancy” agent

1. Create “AlertLog” data (done by the designer).

Similarly to the first alternative, the tool returns with 24 options, resulting in the next

2 steps and either step 4 or 5 being done by the tool.

233 (28th August, 2008)

CHAPTER 9. EVALUATION

2. Link “Discrepancy” agent to “AlertLog” data (write) (done by the tool).

3.* Link “Check Discrepancy” role to “AlertLog” data (write) (done by the tool).

4. Link “CheckTempDiscrepancy” plan to “AlertLog” data (write) (done by the tool).

After step 4 is done the design is consistent: linking “CheckPressDiscrepancy” plan to

“AlertLog” data is not needed for restoring consistency because the new data has been

accessed by a plan.

5. Link “CheckPressDiscrepancy” plan to “AlertLog” data (write) (done by the designer).

9.5.5 Change 5: Having multiple “TAF Manager” agents

The initial system has only one “TAFManager” agent instance to deal with forecast data

from different airports. As the number of airports participating in the system increases, it is

required to have multiple TAF Manager agents (instead of only one) to better deal with the

load. This requirement results from a change in the operational environment (i.e. the number

of airports growing), which may require a modification of existing functionality. Therefore,

we classify this change into the category of adaptive and modification.

With the current design, all “TAF” percepts are dealt with by a single “TAFManager”

agent, which processes “TAF” data and keeps them in a central “TAFDataStore”. The “Dis-

crepancy” agent accesses this data store to retrieve “TAF” data. This design is suitable

if there is only one “TAFManager” agent instance. However, we now need to have multiple

“TAFManager” agent instances and we do not want them all trying to write to one data store.

Instead, we want each of the “TAFManager” agents to send TAF data to the “Discrepancy”

agent, which will manage that “TAFDataStore”.

Although the above set of actions successfully meets the new requirement change, there

are still actions that need to be done to make the detailed design consistent with the specifi-

cation design. More specifically, changes have to be made to the scenario and roles as noted

below.

Below is the list of change actions28. Figures 9.17, 9.18, 9.19, and 9.20 depict some of the

main action steps.

1. Unlink “ProcessTAF” plan and “TAF Data Store” data
28Some variations in order are possible, but they do not affect the outcome.

234 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.17: The system overview diagram after change 5

2. Unlink “TAF Manager” agent and “TAF Data Store” data.

3.* Unlink “Manage TAF Data” role and ”TAF Data Store” data.

4.* Unlink “TAF Data Store” data and the last step in “Process TAF” scenario.

5. Create “TAFData” message.

6. Link “TAF Manager” agent with “TAFData” message (send).

7. Link “TAFData” message with “Discrepancy” agent (receive).

8. Link “ProcessTAF” plan with “TAFData” message (send).

9. Create “HandeTafDataPlan” plan in “Discrepancy” agent.

10. Link “TAF Data” message with ”HandeTafDataPlan” plan (trigger).

11. Link “Discrepancy” agent with “TAF DataStore” (write)29.

12.* Link “Check Discrepancies” role with “TAF Data Store” (write).
29Note that the “Discrepancy” agent already reads the “TAF DataStore”

235 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.18: The agent overview diagram for “TAFManager” agent after change 5

13. Link “HandeTafDataPlan” plan with “TAF Data Store” (write).

Result

This change scenario is triggered by a disconnection, which indicates further disconnections

are required. Therefore, the designer decides to encourage disconnection within the change

propagation process. He/she does so by setting the cost of disconnection be equal the cost

of connection (i.e. cost of 1).

The following sequence of actions captures the interaction between the “simulated” de-

signer and the tool in terms of what actions were performed by the designer and what actions

were proposed and executed by the tool.

1. Unlink “ProcessTAF” plan and “TAF Data Store” data (done by the designer).

After this, the tool identifies an inconsistency between plan “ProcessTAF” and its

owning agent “TAFManager” in terms of accessing “TAF Data Store”. The tool then

returns one option: linking “ProcessTAF” plan and “TAF Data Store” data again, which

does not match the designer’s plan.

2. Unlink “TAF Manager” agent and “TAF Data Store” data (done by the designer).

After this, the tool identifies an inconsistency between the “TAF Manager” agent and

its playing role “Manage TAF Data”. The tool then returns two options, one of which

matches the designer’s plan resulting in the next two steps being done by the tool.

236 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.19: The agent overview diagram for “Discrepancy” agent after change 5

3.* Unlink “Manage TAF Data” role and ”TAF Data Store” data (done by the tool).

4.* Unlink “TAF Data Store” data and the last step in “Process TAF” scenario (done by

the tool).

5. Create “TAFData” message (done by the designer).

After this, the tool returns 27 options, none of which match the change plan because

the cheapest options make the message an internal message of an existing agent.

6. Link “TAF Manager” agent with “TAFData” message (send) (done by the designer).

After this, the tool returns 18 options, one of them matches the change plan, resulting

in the next four steps being done by the tool.

7. Link “TAFData” message with “Discrepancy” agent (receive) (done by the tool).

8. Link “ProcessTAF” plan with “TAFData” message (send) (done by the tool).

9. Create “HandeTafDataPlan” plan in “Discrepancy” agent (done by the tool).

10. Link “TAF Data” message with “HandeTafDataPlan” plan (trigger) (done by the tool).

237 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.20: The “Process TAF” scenario after change 5

11. Link “Discrepancy” agent with “TAF Data Store” (write)30 (done by the designer).

The tool then returns 4 options, one of which contains all the remaining steps.

12.* Link “Check Discrepancies” role with “TAF Data Store” (write) (done by the tool).

13. Link “HandeTafDataPlan” plan with “TAF Data Store” (write) (done by the tool).

Of 13 actions in the change plan, 8 actions have been done by the tool. In addition, the

tool is able to identify and perform all three side-effect actions.

9.5.6 Change 6: Subscription

The initial system only alerted on discrepancies between weather readings (AWS) and fore-

casts (TAF). Forecast information is, however, important to pilots especially from the regions

that they are about to fly in. As a result, this change requires the necessary modifications

to be made to allow the pilots (i.e. the “GUI” agent) to have direct notification of TAF data

changes in the regions that they are interested in. We consider this change as perfective and

addition maintenance in our taxonomy.

As the “TAF Manager” agent is responsible for processing TAF data, we make it send

a “TAFData” message to notify the “GUI” agent. Furthermore, the internals of those two
30Note that the “Discrepancy” agent already reads the “TAF DataStore”.

238 (28th August, 2008)

CHAPTER 9. EVALUATION

agents need modifications. The “ProcessTAF” plan in the “TAFManager” agent now also

sends a “TAFData” message. A new plan is created within the “GUI” agent to receive this

message.

The above changes are the main actions. One important set of side-effect actions that the

designer tends to miss is to make the “GUI” agent subscribe with the “TAF Manager” agent.

This is to make sure that the “TAFData” message is sent to the right GUI agent instance.

Figure 9.21: The system overview diagram after change 6

Below is the list of change actions. Figures 9.21 and 9.22 depicts some of the main action

steps, including the side-effect ones.

1. Create “TAFData” message.

2. Link “TAFData” message with the “GUI” agent (receive).

3. Link “TAF Manager” agent with “TAFData” message (send).

4. Link “ProcessTAF” plan with “TAFData” message (send).

5. Create a “Use TAFData” plan in “GUI” agent31.

6. Make “TAFData” message to be a trigger of “Use TAF Data” plan31.
31This action takes place in the agent overview diagram for agent “GUI” (not shown).

239 (28th August, 2008)

CHAPTER 9. EVALUATION

Figure 9.22: The agent overview diagram for “TAF Manager” agent after change 6

7.* Link “SubscribeChange” message with “TAFManager” agent (receive).

8.* Create “NoteTAFSubscription” plan in “TAFManager” agent.

9.* Make “SubscribeChange” message to be a trigger of “NoteTAFSubscription” plan (re-

ceive).

10.* Create “SubscriptionsToTAFs” data in “TAFManager” agent.

11.* Link “SubscriptionsToTAFs” data with “ProcessTAF” (read).

12.* Link “NoteTAFSubscription” plan with “SubscriptionsToTAFs” data (write).

13.* Link “SubscriptionsToTAFs” data “Manage TAF Data” role to (read)32.

14.* Link “Manage TAF Data” role to “SubscriptionsToTAFs” data (write)32.

Result

1. Create “TAFData” message (done by the designer).

The tool returns with 22 options, none of them matches the designer’s plan since they
32This action takes place in the role diagram (not shown).

240 (28th August, 2008)

CHAPTER 9. EVALUATION

all aim to make the new message internal to one of the existing agents.

2. Link “TAFData” message with the “GUI” agent (receive) (done by the designer).

The tool identifies several violated constraints related to the new message and the

domain specific constraint concerning subscription. It then returns four options, all of

which aim, however, to make “TAFData” message sent by the “Alerter” agent, which

does not match the designer’s plan.

3. Link “TAF Manager” agent with “TAFData” message (send) (done by the designer).

The tool returns 6 options, one of which matches the designer’s plan, resulting in the

next 6 steps being done by the tool.

4. Link “ProcessTAF” plan (in “TAF Manager” agent) with “TAFData” message (send)

(done by the tool).

5. Create a “Use TAFData” plan in “GUI” agent33 (done by the tool).

6. Make “TAFData” message to be a trigger of “Use TAF Data” plan33 (done by the tool).

7.* Link “SubscribeChange” message with “TAFManager” agent (receive) (done by the

tool).

8.* Create “NoteTAFSubscription” plan in “TAFManager” agent (done by the tool).

9.* Make “SubscribeChange” message to be a trigger of “NoteTAFSubscription” plan (done

by the tool).

10.* Create “SubscriptionsToTAFs” data in “TAFManager” agent (done by the designer).

The tool returns 4 options, all of which matches the designer’s plan. However, each

option contains only two steps: (11, 13), (11, 14), (12, 13), (12, 14). The designer

chooses one of the options (e.g. 11 and 13) and manually perform the remaining steps

11.* Link “SubscriptionsToTAFs” data with “ProcessTAF” (read) (done by the tool).

12.* Link “NoteTAFSubscription” plan with “SubscriptionsToTAFs” data (write) (done by

the designer).
33This action takes place in the agent overview diagram for agent “GUI” (not shown).

241 (28th August, 2008)

CHAPTER 9. EVALUATION

13.* Link “SubscriptionsToTAFs” data “Manage TAF Data” role to (read)34 (done by the

tool).

14.* Link “Manage TAF Data” role to “SubscriptionsToTAFs” data (write)34(done by the

designer).

The tool is able to identify and perform 8 actions out of 14 actions in the change plan.

There are 8 side-effect actions and five of them have been performed by the tool35. Overall,

the side-effect actions identified by the tool are very important since they deal with the

domain specific requirement related to subscription which is easily missed by the designer

(as shown in [Jayatilleke, 2007]).

9.5.7 Summary of all changes

In this section we present and discuss the results. Table 9.1 shows the results of evaluation

for all changes. Each change has a row, where the entries marked with numbers show the

situation for the nth step of the user’s plan (D). An entry of the form nm indicates that

the user performed this step36 and the tool returned n options (i.e. O = {C1 . . .Cn}), where
m of the Ci were compatible with D . There are several cases where the value of m is 0,

corresponding to the fact that none of the returned options matched with D . Therefore, the

user had to continue performing the next step.

An entry “T” (or “Ts ”) indicates that an “obvious” (or “side-effect”) action is done by the

tool, that is, it is part of a selected repair plan from an earlier step. An entry “U” (or “Us ”)

indicates that the user performs this “obvious” (or “side-effect”) action; this occurs in several

places where D is non-empty (i.e. there are more changes to be done), but the design is

consistent, and in this situation the tool cannot assist the user. The final column gives the

value of the metric M =| C | / | D |. Figure 9.23 shows the portion of changes done by

the tool in each change scenario. Overall, for all of the changes the average value of M is

approximately 64%, that is, the tool performs on average nearly two-thirds of the actions.
34This action takes place in the role diagram (not shown).
35In fact, the tool is able to identify all of the side-effect actions since at step 10 it returns four options

all of which match some of the remaining side-effect actions. The designer who looks at the different options
could be reminded of all the side effects or he/she could select all four options returned by the tool (similar
to what could happen at step 6 in change scenario 2).

36The form ns
m indicates this is a side-effect action step.

242 (28th August, 2008)

CHAPTER 9. EVALUATION

C
h
a
n
g
e

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M

1
.
W

in
d
S
p
ee
d
A
le
rt

9
1

T
T

T
U

6
0
%

2
.
V
a
ri
a
b
le

T
h
re
sh
o
ld

1
8
1

T
T

T
s

T
2
6
3

T
T

s
T

3
2

T
s

T
U

6
9
%

3
.
V
o
lc
a
n
ic

A
sh

1
1

T
s

T
s

1
9
1

T
T

T
s

T
2
6
1

T
T

s
T

2
5
0

1
8
1

T
T

T
T

U
U

6
5
%

4
.
L
o
g
g
in
g
(a
lt

1
)

2
4
1

T
T

s
T

7
5
%

4
.
L
o
g
g
in
g
(a
lt

2
)

2
4
1

T
T

s
T

U
6
0
%

5
.
M
u
lt
ip
le

T
A
F
s

1
0

2
1

T
s

T
s

2
7
0

1
8
1

T
T

T
T

4
1

T
s

T
6
2
%

6
.
S
u
b
sc
ri
p
ti
o
n

2
2
0

4
0

6
1

T
T

T
T

s
T

s
T

s
4

s 4
T

s
U

s
T

s
U

s
5
7
%

T
ab
le

9.
1:

Su
m
m
ar
y
of

ev
al
ua

ti
on

re
su
lts

de
ri
ve
d
fr
om

th
e
si
x
ch
an

ge
sc
en

ar
io
s

243 (28th August, 2008)

CHAPTER 9. EVALUATION

0

10

20

30

40

50

60

70

80

1 2 3 4-alt1 4-alt2 5 6
Change

M
(%

)

Figure 9.23: The portion of changes done by the tool in each change scenario

This result implies that compared with maintenance without our tool, the user would have

to perform roughly triple as many change actions.

Furthermore, for the first five changes, the tool is able to identify and perform all the

side-effect actions in the change plan. For change 6, the tool identifies more than half of the

side-effect actions. This result implies that without using our tool the user would have to

carefully examine the design in order to find and carry out those side-effect actions. In terms

of the number of options returned by the tool each time it is used, there are several cases

where this number is relatively large (e.g. 26 options after step 6 in change 2). However,

due to our mechanism of prioritizing repair plans presented to the user, (i.e. repair plans

that affect primary changed entities appear first, as discussed in section 3.3 of chapter 3),

the matching option(s) is listed first, which is easily identified by the designer. Nonetheless,

it is ideal not to overwhelm the designer with such a large number of options and this issue

is part of our future work (discussed in chapter 10).

Overall, these results implies that the tool is effective in terms of helping the designer

244 (28th August, 2008)

CHAPTER 9. EVALUATION

identify and perform actions according to a change plan. Especially, for most cases the tool

is able to pick out side-effect actions, which tend to be missed by the designer. In the next

section, we will investigate the efficiency aspect of our CPA tool.

9.6 Efficiency analysis

In the previous section, we have presented the results of an effectiveness evaluation which

shows that our framework is able to produce good recommendations for a real application

and change scenarios. However, another key issue that we need to address is the efficiency

aspect of our approach.

Generation of repair plans is performed ahead at “compile” time, and is thus not an issue.

At runtime, the following steps are performed:

1. Check the design for consistency with respect to provided OCL constraints and a meta-

model.

2. Generate repair plan instances for violated constraints.

3. Compute the cost of different repair options.

4. Execute the selected repair plan, where selection is either choosing the cheapest plan

or asking the user (if there is more than one cheapest plan).

The fourth step is executing a selected repair plan which is simply a matter of running

the plan and performing the changes, and this is quite cheap, since costs have already been

computed for the plan and all sub-plans. Therefore, it is not necessary to examine the

fourth step in the efficiency analysis. As we discussed in chapter 7, cost calculation (step

3) also involves consistency checking (step 1) and plan instance generation (step 2) because

it simulates the change propagation process in doing a look-ahead planning. As a result,

the efficiency of the first three steps are considered together in the third step. In addition,

the third step is critical since it has the major impact on the performance of our approach.

Therefore, the focus of our efficiency analysis is on the cost algorithm. We need to assess

how practical the algorithm is, specifically, how well does it scale to larger problems?

In order to investigate this issue we perform a number of experiments where we “stress

test” the algorithm in an artificial setting. As discussed in section 7.4 (on page 177), the cost

algorithm operates with plan-goal trees, where a goal has as children the plans that can be

245 (28th August, 2008)

CHAPTER 9. EVALUATION

used to achieve it. The need to fix a violated constraint is represented as a goal node and

different repair instances for fixing it are represented as plan nodes in the plan-goal tree.

Furthermore, when calculating the cost of fixing a constraint, the algorithm also considers

other constraints in the same repair scope. The need to fix each of those constraints is

represented as a subgoal. As a result, two key parameters that we vary are the number of

repair plan instances (for one constraint), which corresponds to the width of the plan-goal

tree; and the overall size of the tree, which we do by varying the number of constraints,

and hence the depth of the tree. We measure the running time, and how many nodes the

algorithm avoided having to explore through pruning. In addition to considering an artificial

setting, we also perform some experiments with a non-artificial application.

Our simple artificial setting involves a design that has some number of roles, and some

number of agents. All of Prometheus’ consistency constraints (as listed in section 4.4) and

multiplicity constraints in Prometheus metamodel (section 4.3) are used. However, the only

constraint that will be violated in this artificial setting is the one that states that all roles

should be associated with an agent: Context Role inv c : self.agent→size()≥ 1. This

constraint is translated to the following repair plans37, where sa is short for self .agent

P1 ct(self)← for each i ∈ {1 . . . (1− size(sa))} !c′t(self)

P2 c′t(self) : x ∈ Type(sa) ∧ x 6∈ sa ← Add x to sa

P3 c′t(self)← Create x : Type(sa) ; Add x to sa

In order to explore how the algorithm performs as the number of repair plan instances

is increased we have a design with a single role and N agents. This gives a single violated

constraint to fix, and by increasing N we increase the number of repair options (since there

is always a single instance of P3, but there are N instances of P2, one for each agent).

Figure 9.24 shows the runtime (in milliseconds) for the first experiment38. In this exper-

iment pruning made no significant difference, since there is nothing to distinguish between

the agents (the results in the graph are from the no-pruning run). Most of the time was taken

up with checking for violated constraints in the repair scope (line 20 of figure 7.5 on page

181); for instance, for 160 agents, the total execution time was 1,964ms, of which 1,915ms
37The translation is not optimal because it also caters for constraints of the form size() ≥ n.
38 All experiments were performed on a laptop running Windows XP and Java v1.5.0 06, with an Intel

Centrino 1.73Ghz CPU and 1GB RAM. Times (reported in milliseconds) are an average of 30 runs (we
ignored the first run, since it was inconsistent due to JVM startup). For each run we collected the number of
goal and plan nodes explored, the total time (broken down into the constraint evaluation time, time taken to
update models, and other time), and the number of constraint instances.

246 (28th August, 2008)

CHAPTER 9. EVALUATION

was taken in constraint evaluation. In addition, the figure also shows that the algorithms

are exponential in the number of violated constraints in a repair scope due to an extensive

look-ahead planning as discussed in section 7.4.4.

One technique (proposed by [Egyed, 2006]) which we have not applied, but which we

expect to make a big difference to execution time, is to track which entities are used to

evaluate each constraint, and then use this information to work out which constraints might

be affected by a change to the design, and only re-evaluate these constraints. However, even

without this, the algorithm is able to deal with a reasonable number of repair plan instances

quite rapidly (just under two seconds for 161 design entities and 1,606 constraints).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 20 40 80 160

Number of agents

T
im

e
(m

il
li

se
co

n
d

s)

total time eval time

Figure 9.24: Performance of the cost algorithm in the first experiment

We now consider the algorithm’s performance as the number of constraints, and conse-

quently the depth of the tree, is increased. We create an artificial situation with N constraints

by having N roles and one agent. Since each role has a single violated constraint, this gives

N constraints, and consequently a tree of depth N .

In this case pruning made a significant difference: for N = 8 without pruning the algor-

ithm considered 10,590 goal nodes and 31,736 plan nodes taking a total of 21,594 milliseconds,

whereas with pruning the algorithm considered 1,673 goal nodes and 3,753 plan nodes taking

247 (28th August, 2008)

CHAPTER 9. EVALUATION

1,360 milliseconds. On the other hand, the heuristic of sorting plans by their basic cost (line

5 of figure 7.6 on page 182) made no difference. As figure 9.25 shows39, the algorithm (with

pruning) performs well for N = 8. In this experiment the evaluation time was a smaller

component of the total time.

0

5000

10000

15000

20000

25000

1 2 4 8 10
Number of roles

Ti
m

e
(m

ill
is

ec
on

ds
)

pruning eval time (pruning) no pruning

Figure 9.25: Performance of the cost algorithm in the second experiment

Finally, in order to assess the performance of the algorithm in a non-artificial situation, we

conducted experiments on the design of the weather alerting system that we used to assess the

effectiveness of our approach40. We report here the six change scenarios that are discussed in

section 9.5. The existing design model contains 85 elements, and 64 consistency constraints

and multiplicity constraints are considered. With regard to the no-pruning case, the tool

does not terminate as the algorithm fell into a cycle41 . We report here the performance
39For N = 10 the no pruning case ran out of memory.
40All experiments were performed on a laptop running Windows XP and Java v1.5.0 06, with an Intel

Centrino 1.73Ghz CPU and 1GB RAM. Times (reported in milliseconds) are an average of 5 runs (we ignored
the first run, since it was inconsistent due to JVM startup). For each run we collected the number of goal and
plan nodes explored, the total time (broken down into the constraint evaluation time, time taken to update
models, and other time), and the number of constraint instances.

41The version that fell into the loop was the algorithm with the loop detection turned off, and the version
with loop detection enabled successfully avoided an infinite loop.

248 (28th August, 2008)

CHAPTER 9. EVALUATION

Change Invoke Constraint Goal Nodes Plan Nodes Total Time Eval Time
Instances (ms) (ms)

1. Wind Speed Alert 1 306 475 1034 860 783

2. Variable Threshold
1 307 674 1093 1297 1141
2 320 1143 1808 1578 1391
3 320 117 185 250 218

3. Volcanic Ash

1 322 61 91 265 233
2 331 2848 4830 4984 4467
3 344 2161 3609 2437 1906
4 346 3539 5602 5234 4739
5 346 4713 7755 52203 46016

4. Logging42 1 306 2794 4355 4922 4249

3. Multiple TAFs

1 304 21 34 93 47
2 304 79 118 359 312
3 346 3593 5698 5359 4907
4 346 5665 9458 7984 6537
5 317 111 179 313 266

6. Subscription
1 306 2764 4382 3859 3545
2 311 2884 4795 4438 4001
3 311 3514 6512 6203 5485
4 335 2723 4369 5609 3630

Table 9.2: Efficiency results from the six change scenarios

of the algorithm that has pruning and the plan sorting heuristic. Table 9.2 shows how the

algorithm performs each time the tool is invoked (column 2) during every change scenario

(column 1) in terms of the number of constraint instances (column 3), goal nodes (column 4),

and plan nodes (column 5), the total time (column 6), and evaluation time (column 7). It is

noted that “invocations” of the tool correspond to the entries in Table 9.1 that have numbers.

For instance, in the second change scenario (Variable Threshold) the tool is invoked three

times at steps 1, 6, and 10.

The results implies that, despite a worse case exponential complexity, the algorithm is

practical for small to medium designs. Note that there are still a number of techniques

for improving the algorithm’s efficiency which we have not yet implemented (which will be

discussed in chapter 10).

9.7 Discussion

The evaluation demonstrated that the approach is effective if a reasonable amount of primary

changes is provided. One issue that arises in the proposed approach relates to the use of

inconsistency as a driver for change. As seen in the evaluation, not all changes result in

inconsistency, and in these cases the approach will not be able to completely identify the

249 (28th August, 2008)

CHAPTER 9. EVALUATION

desired secondary changes. An opposite issue is that, as argued by [Fickas et al., 1997],

not all inconsistency should be fixed; this is easy to deal with by simply allowing certain

constraint types or instances to be marked as “to be ignored”.

In some cases there may be a large number of repair options returned by the tool, which

makes it hard for the user to select which one to use. In practice this can be dealt with

by ignoring the tool’s list of options and performing further changes (which often provides

the tool with information that enables it to return fewer options). A better approach which

needs to be investigated is reducing the number of options by “staging” questions. Suppose

we need to link a percept with a plan and with an agent, then instead of presenting a set of

options, where each option specifies both a plan and an agent (which gives a cross product),

specify first the choice of agent, and then based on that choice ask for a choice of (relevant)

plan.

Overall, our conclusion is positive since the evaluation shows that the approach is able

to (on average) perform (approximately) more than two-thirds of the actions in maintenance

plans, across a number of changes motivated by experience with a real application.

However, there are several issues and limitations in our evaluation study. Firstly, our

goal was to maximize the internal validity of our approach. We have used a range of change

scenarios in the context of the designer using Prometheus to evolve an agent-oriented design.

Since our approach performed well for all these change scenarios, we believe that there is

little threat to the internal validity of the effectiveness evaluation outcome. However, we

were not able to directly observe the designers in their use of our approach. As a result,

future work is needed to conduct the usability study.

Another issue is related to the generalization of the results of our study. There are several

questions related to this issue. Firstly, can we generalize the approach to other software

engineering methodologies, design models or even source code? Secondly, can we generalize

our results to other software systems and change scenarios in practice?

We have tried to address the first question by showing the applicability of our approach to

a representative of an object-oriented methodology (UML) and an agent-oriented method-

ology (Prometheus). However, it was not possible to perform an extensive study on the

application to UML, which is a target for our future work. We have also performed a pre-

liminary investigation (not reported here) on how our approach can be extended to support

design and source code change propagation and found that it is feasible provided that the

250 (28th August, 2008)

CHAPTER 9. EVALUATION

gap between design and code is relatively small. For instance, UML 2.0 (object-oriented)

[Object Management Group, 2004] and CAFnE43 (agent-oriented) [Jayatilleke et al., 2005]

have such a potential.

In order to answer the second question, we performed a case study based on a real

application. In addition, the set of changes are motivated by real change request and cover

most of the change types. However, there are several threats to the external validity of our

study. Firstly, the changes that we investigated in our evaluation may not be representative

of all changes in reality. In addition, we need to test the approach with different application

types and sizes. However, the efficiency evaluation has shown that our cost algorithms are

practical for small to medium realistic examples. Future work is needed to make the approach

more scalable, and applicable to larger designs.

Finally, how well our approach performs depends on the number of constraints and their

quality. A large number of constraints may make the tool slow to respond because more

time is spent on checking constraints and working out different plans for fixing violated

constraints. By the same token, having more constraints tends to make the tool more helpful

in terms of identifying necessary secondary changes that are possibly missed by the designer.

With regard to the quality of constraints, our approach assumes that constraints are correctly

specified and that they come from a reasonable source (as discussed in chapter 3).

9.8 Chapter summary

In this chapter, we have reported on an evaluation which was performed to assess the effec-

tiveness and efficiency aspects of our framework and its prototype implementation, i.e. the

Change Propagation Assistant (CPA) tool. We have first identified the key issues that we

faced when carrying out the evaluation. These issues include choosing the methodology to

which our framework is applied, selecting the application to test with our approach, iden-

tifying different change scenarios which may occur to the evaluation application, selecting

primary changes, and determining basic costs. We have discussed and proposed our solutions

to those issues. Furthermore, one of the major obstacles during the evaluation is the lack of

a user study due to limited time and resources. The solution that we have proposed to deal

with this issue is defining an abstract user behaviour in maintaining/evolving an existing
43CAFnE is an extension of the Prometheus Design Tool that allows more design details to be specified and

produces fully executable code.

251 (28th August, 2008)

CHAPTER 9. EVALUATION

design. With respect to this definition, the change propagation process is driven by a user’s

change plan. We then simulated a real user by performing steps in this plan and assessed

the responses from the CPA tool.

In addition, we have discussed an experimental process and several metrics that we have

used to assess our approach in general and our CPA tool in particular. An important metric

is to measure what proportion of the actions in the change were identified and performed by

the CPA. We have also distinguished “obvious” change actions from “side-effect” actions in

order to further assess the usefulness of our CPA tool.

Finally, we have described how the experimental process and those metrics are applied

in a case study involving the maintenance of the Prometheus design of a weather alerting

system. We have discussed and analysed the results of six different change scenarios occurring

in that application. Furthermore, an efficiency analysis based on artificial settings and the

evaluation application have also been reported.

This chapter completes the description of the research carried out in this thesis. In the

next chapter, we will highlight the main problems that we wanted to solve and summarise our

key contributions in addressing those problems. We will also discuss some major limitations

in our approach and then propose future work to deal with them.

252 (28th August, 2008)

Chapter 10

Conclusions and Future Work

Software maintenance and evolution are inevitable activities since almost all software that is

useful and successful stimulates user-generated requests for change and improvements. One

of the most critical problems in software maintenance and evolution is to maintain consis-

tency between software artefacts by propagating changes correctly (i.e. change propagation).

Although many approaches have been proposed, automated change propagation is still a

significant technical challenge in software engineering.

As agent-oriented approaches represent an emerging paradigm in software engineering, an

increasing number of agent applications have been developed in the past few years. Similar

to conventional software systems, agent-based applications also evolve to meet ever-changing

user requirements and environment changes. Therefore, it is important to investigate solu-

tions that help improve the practice of maintaining and evolving agent systems.

However, there has been very little work that we are aware of on software maintenance

in agent-oriented software engineering. Our work aims to fill that gap, as well as apply

agent technology to the problem of software maintenance in a broader context. This chapter

concludes the work that has been carried out, puts it back into context and provides some

pointers to possible future lines of research.

10.1 Summary of contributions

Our major objective was to provide (semi-)automated support for change propagation in

and between design models. We followed an inconsistency-based approach in which change

propagation is carried out by fixing inconsistencies in a design. In other words, we propagate

253 (28th August, 2008)

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

changes by finding places in a design where the desired consistency relationships are violated,

and fixing them until no inconsistency is left in the design. The following research questions

were raised in chapter 1:

1. What type of consistency relationships can be derived from design artefacts to support

change propagation and how can they be identified and represented?

2. How to effectively represent and implement a mechanism for propagating changes by

fixing those consistency relationships when they are violated?

3. (a) What is an appropriate representation for capturing different options of repairing

an inconsistency? (b) What kinds of automation can be provided to generate such

repair options?

4. How to select between different applicable repair options to fix a given consistency

violation?

5. What type of tool support can be given to designers to assist in the process of under-

standing and modifying an existing agent system?

We developed an agent-based change propagation framework, addressing each of those

research questions as summarised below.

We view the central asset of the design as being a model, a high-level description of

the system under development. Design artefacts correspond to different views of the model

which describe various aspects of the system (chapter 3). From our perspective, a model

must be an integrated, consistent and coherent unit, which requires each view of a model to

be both syntactically and semantically consistent. We used a metamodel (as a form of the

model’s abstract syntax) to define syntactic consistency conditions that each model’s view

must obey to guarantee that the overall model is well-formed (research question 1). We used

the Unified Modelling Language (UML) to specify metamodels, although other modelling

languages such as the Meta-Object Facility (MOF) can also be used.

In addition, we employed a set of constraints to define consistency conditions that can-

not be expressed using a metamodel (research question 1). Such constraints are used to

describe syntactic relationships between metamodel elements. They may also be used to pre-

scribe coherence relationships (semantically consistent) between different views of a model,

i.e. intra-model or horizontal consistency. Although we did not fully investigate this, our

254 (28th August, 2008)

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

approach is also applicable to constraints that express consistency between different models,

i.e. inter-model or vertical consistency, provided that those models are defined based on the

same metamodel. Constraints are also used to describe domain-specific requirements, and

impose best practices or industry standards on designers. We used the Object Constraint

Language (OCL), which is also part of the UML standards, to specify constraints. In order to

illustrate how consistency relationships can be identified and represented following the above

approach, we developed a metamodel and a set of consistency constraints for the Prometheus

methodology (chapter 4).

The novel aspect of our framework is the underlying change propagation mechanism which

uses agent technology (research question 2). Specifically, the change propagation engine in

our framework is represented and implemented using the well-known Belief-Desire-Intention

(BDI) agent architecture (chapter 3). Although we did not use the full capabilities of the BDI

model, the adoption makes use of various properties of BDI agents to gain advantages over

more traditional approaches to change propagation. BDI agents operate in an event-triggered

manner, where events trigger plans, which in turn can create new events resulting in further

plans being triggered. We exploit this to reflect the cascading nature of change propagation,

where performing an action to fix an inconsistency can cause further inconsistencies (side-

effects) which require further actions. In addition, an event can have multiple plans that

it can trigger, with plan selection being made at run-time. This allows us to represent

multiple ways of resolving a given inconsistency as separate plans, with the choice between

them determined by plans’ context condition, corresponding to available information such as

the cause of inconsistencies, design heuristics and (possibly) human intervention. Moreover,

another advantage is that new (or alternative) ways to resolve an inconsistency can be added

via additional plans without changing the existing structure.

As a result, we represented constraint violation as events and the strategies of propagat-

ing changes to resolve model inconsistencies (caused by constraint violation) are represented

as (repair) plans. We proposed a formal abstract syntax for repair plans based on AgentS-

peak(L) (research question 3a). This allows for repair plans to be abstractly represented

as a way to reasonably enumerate the otherwise large number of concrete ways of fixing

inconsistencies.

Nonetheless, the number of repair plan types can be very large, especially for designs

that are restricted by a substantial number of consistency constraints. In these cases, hand-

255 (28th August, 2008)

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

crafting sound and complete repair plans for all constraints becomes a difficult and labour

intensive task. To address this issue, we proposed and implemented the repair plan generator

(chapter 6), an important and novel component in our change propagation framework (re-

search question 3b). The key idea of this generator is automatically producing repair plans

for a given OCL constraint. The repair plan generator is driven by the set of generation rules

for common OCL expressions including navigations, attributes, set operations, and boolean

connectives. Those rules were carefully designed to ensure that the generated plans are of

high quality and not faulty. In fact, we formally proved that the repair plans generated fol-

lowing our rules are correct, minimal and complete. The repair plan generator was developed

and tested with a subset of UML well-formedness constraints and a set of OCL consistency

constraints that we developed for the Prometheus methodology.

Our framework has a plan library that contains repair plan types, which are all created by

the repair plan generator. However, we also allow the designer to use their domain knowledge

and expertise to modify generated repair plans or remove plans that should not be executed.

In such cases, the user must be responsible for checking the correctness and completeness of

their plans.

Repair plan types are instantiated at run time to become plan instances. For a given

constraint violation, there can be different applicable (repair) plan instances that are able

to fix it. This leads to the general problem of (applicable) BDI plan selection in the context

of change propagation: how to select between different applicable repair plans to fix a given

constraint violation (research question 4). We investigated this issue and observed that the

decisions upon which repair plans are chosen can depend on various factors which require

extra knowledge provided by the software designer. Therefore, we argued that it is not feasible

to have a completely automated mechanism for selecting repair options. As a result, our

solution is to develop a semi-automated mechanism for repair option selection: options that

are considered infeasible and costly are automatically filtered out, and the user is presented

with a set of “quality” repair options for selection.

Those ideas were developed in terms of a (repair) plan cost calculation component within

our framework (chapter 7). The mechanism of plan selection is based on a notion of repair

plan cost. In addition, it provides a simple mechanism for the user to adjust the change

propagation process in terms of assigning costs for basic repair actions. Moreover, our notion

of cost considers the side-effects of a repair plan as a component of the repair plan’s cost. In

256 (28th August, 2008)

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

this context, positive side-effects decrease the cost of a repair plan whilst negative side-effects

augment its cost.

We provided formal definitions for the cost of actions, plans, constraints and (sub)goals.

In addition, we were able to prove an important property derived from those definitions,

which indicates that the total cost of fixing a set of constraints in a repair scope does not

depend on the order in which constraints are fixed. This has enabled us to derive algorithms

that calculate the cost of fixing violated constraints. We presented and discussed two ver-

sions of the cost algorithms: one involving an exhaustive search and the other with pruning

capabilities which improve the performance of the algorithms. The cost algorithms were

developed to find cheapest repair options and propose them to the user for final selection.

In order to demonstrate the applicability and practicality of our approach, we developed

a proof-of-concept tool support in the form of a prototype tool called Change Propagation

Assistant (CPA) (research question 5, chapter 8). The CPA tool was integrated with the

Prometheus Design Tool (PDT) to support software designers in maintaining and evolving

Prometheus designs. Although the implementation is specific to the Prometheus methodol-

ogy, our framework is generic and can be applied to a range of design types. In fact, the

implementation architecture implies that Change Propagation Assistant can not only be in-

tegrated with PDT, but also be modified to be plugged into other modelling environments.

In addition, we also showed that our approach is applicable not only to agent-oriented models

(e.g. Prometheus models) but also to object-oriented design models such as UML models

(chapter 5).

Finally, we used the CPA tool to perform an empirical evaluation to assess the efficiency

and effectiveness of our change propagation framework (chapter 9). The evaluation’s re-

sults demonstrated that the approach is effective given that a reasonable amount of primary

changes are provided. In terms of efficiency, the evaluation showed that checking for violated

constraints takes up most of the execution time (which can be improved by applying more

advanced techniques), and that the algorithms are practical for small to medium realistic ex-

amples. The evaluation’s results also lead us to some potential future work that is discussed

in the next section.

257 (28th August, 2008)

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.2 Future work

Our approach can be further improved by addressing some of the limitations where further

research and extensions to the change propagation framework are required.

Our repair plan generator has rules that cover a subset of OCL expressions. Although

those rules are currently sufficient to deal with consistency constraints defined in Prometheus,

we are aware that other OCL expressions (that we have not covered) may be needed. For

instance, let and if-then-else expressions, the iterate operation, and collection types other

than Sets like Sequences and Ordered Set are not yet addressed. Therefore, potential future

work may involve an extension to the repair plan generator to fully support all forms of OCL

expressions. In addition, the main focus of our work is on syntactic well-formedness and

coherence between models. However, in practice, consistency can involve not just syntactic,

but also semantic constraints and domain models. Further, it is not clear to what extent

OCL is suitable to capture such constraints. Therefore, a topic for future work is to explore

such constraints and investigate how to extend our framework to support them.

Our algorithms for calculating repair plan costs require an extensive look-ahead search

which is expensive. In fact, our complexity analysis and efficiency evaluation showed that

our cost algorithms are only practical for small to medium realistic examples. As a result,

future work is needed to make the approach more scalable, and applicable to larger designs.

This may include an investigation of the interaction between constraints in order to limit

the number of plans to be explored and to allow for pruning more quickly. In addition, the

evaluation showed that checking for violated constraints takes up most of the execution time.

Therefore, future work may involve applying more advanced constraint checking techniques

to improve the overall performance. For example, an approach recently proposed by Egyed

[2006] uses a form of model profiling to quickly, correctly, and automatically decide when to

evaluate consistency constraints. We expect that employing such techniques would make a

substantial difference to the execution time of our cost algorithms.

The evaluation assessing the effectiveness of our CPA tool showed that in some cases the

tool proposed a large number of repair options, which makes it difficult for the user to decide

which one to use. This issue leads to a topic for future work concerning a method to reduce

the number of repair options presented to the user. An approach that we mentioned earlier is

“lazy” selection (or “staging” questions). For example, assume that we need to link a percept

with a role and with an agent, then instead of presenting a set of options, where each option

258 (28th August, 2008)

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

specifies both a role and an agent (which gives a cross product), specify first the choice of

role, and then, based on that choice, ask for a choice of (relevant) agent.

We would also like to perform a more extensive study on the applicability of our approach

to other design types such as UML models. This may result in an implementation of a CPA-

like tool that can be integrated with existing UML modelling tool (e.g. ArgoUML1). Since

the UML metamodel is already available [Object Management Group, 2005], we will not need

to develop a metamodel for UML models. Consistency constraints in the form of OCL are

also included as part of the UML standard [Object Management Group, 2005], which can

be input to our framework. In addition, an interesting topic for future work is to apply our

approach to change propagation between design models and source code.

Finally, there are several potential extensions to our evaluation for assessing the effective-

ness of our approach. Firstly, assigning costs to basic repair actions (e.g. creation, connection,

disconnection, etc.) is a means for the user to adjust the change propagation process. The

results of our evaluation also indicate several places where the outcome may be sensitive to

the basic costs. As a topic for future work, we want to perform a more thorough exploration

of the effects of varying the basic costs. Moreover, we have used a cost algorithm to esti-

mate and drive the inconsistency repair process in such a way that we assume the cheapest

repair plans are preferable from the perspectives of the user. Although in the case study

reported in chapter 9 the cheapest solution also turns out to be the one that is intuitively the

most appropriate, the cheapest cost heuristic may not always lead to the best way to resolve

inconsistencies. As part of future work, we would like to perform more detailed user experi-

ments to have more understanding on this issue. In addition, we would also like to test our

approach with a range of different realistic applications and change scenarios. Furthermore,

we want to improve the usability of the CPA tool and perform an evaluation study which

involves real software designers using our tool. This would give us much more information

on how helpful the tool is in practice. Since the tool is still a prototype that is not ready

for industry use, one area of future work is to develop an industry-grade tool. Nonetheless,

although the results obtained from the evaluation we conducted are relatively preliminary

and necessarily limited, they are quite encouraging and serve as concrete indication that the

approach developed is promising.

1http://argouml.tigris.org

259 (28th August, 2008)

http://argouml.tigris.org

Appendix A

Proof

In this appendix we prove that theorem 11 (in section 6.6 on page 155) holds for all basic OCL

constraints that we cover in section 6.4, with respect to the translation schemas for making

a constraint true (i.e. ct) or false (i.e. cf). Our proof uses induction over the structure of a

constraint.

The proofs follow the same style which starts by examining the repair plan types derived

in each rule. We need to show that R generates a representative permutation for each correct

and minimal action sequence for repairing constraint c. First, we examine a set of possible

action sequences AS obtained from instantiating and resolving the plan types generated for a

given constraint. We then identify all possible minimal ways of fixing the violated constraint.

Finally, we argue that the set of action sequences resulting from the generated repair plans

for each constraint are precisely the possible minimal action sequences that fix the constraint.

The proofs are presented following the structure of the presentation of the repair plan

generation rules in section 6.4 (on page 132), i.e. rules are organised into various groups

including navigation, constraints on attributes, constraints on Boolean-valued set expressions,

constraints on non-Boolean-valued set expressions, Boolean connectives, and addition and

deletion involving derived sets.
1“For any given OCL constraint C which is satisfiable, the set of repair plans R(C) produced by the repair

plan generator is correct and complete. That is, it generates a representative permutation for each correct
and minimal action sequence, and does not generate any incorrect action sequences, and all generated action
sequences are minimal.”

260 (28th August, 2008)

APPENDIX A. PROOF

A.1 Proofs for generated repair plans for making a constraint true, i.e. R(ct)

A.1.1 Navigation

In this section, we provide proofs for basic constraints concerning navigations leading to a

single entity.

• P t(c
def= E.aend = x) =

{ct : E.aend = null ← Connect E and x (w.r.t aend),

ct : E.aend = y2 ← Disconnect E and y (w.r.t aend); Connect E and x (w.r.t. aend)}

Proof: This rule assumes that E .aend leads to a single entity, which can result in two

cases.

Case 1: E is not connected to any entity with regard to association end aend

In this case, E .aend = null and consequently from the plan definitions only the first plan

is applicable. Therefore, AS has a single as which contains only one action that connects E

to x (w.r.t. aend).

Constraint c is violated if and only if E is not connected to x with regard to aend , i.e.

E .aend 6= x . Also, we know that E is not connected to any entity with regard to aend .

Therefore, any action sequence that correctly (and minimally) repairs c must ensure that

E .aend = x which necessarily involves connecting E and x (w.r.t. aend). As can be seen

from the plan generated byR in this case, the generated plan exactly follows this pattern, and

thus the action sequence resulting from the plan generated by R(ct) correctly and minimally

repairs c in this case. Furthermore, we have argued that any action sequence that correctly

and minimally repairs c must connect E and x (w.r.t. aend), and this is exactly what

is generated by R. Hence, R generates a representative permutation for each correct and

minimal action sequence for repairing c in this case3.

Case 2: E is connected to entity y with regard to association end aend

In this case, E .aend = y and consequently from the plan definitions only the second plan

is applicable. Therefore, AS has a single as which contains only two actions that disconnect

E and y (w.r.t. aend), and connect E to x (w.r.t. aend).
2In this case, E .aend is implicitly not null , i.e. y 6= null .
3In fact, there is only a single action sequence, which contains only a single action, so there are not really

any permutations, and the resulting set of actions is complete in the stronger sense of containing all action
sequences rather than containing representative permutations.

261 (28th August, 2008)

APPENDIX A. PROOF

Constraint c is violated if and only if E is not connected to x with regard to aend , i.e.

E .aend 6= x . Also, we know that E is connected to y with regard to aend . Therefore, any

action sequence that correctly (and minimally) repairs c must ensure that E .aend = x which

necessarily involves first disconnecting E from y since E .aend1 can only connect to one entity,

and then connecting E and x (w.r.t. aend). As can be seen from the plan generated by R
in this case, the generated plan exactly follows this pattern, and thus the action sequences

resulting from the plan generated by R(ct) correctly and minimally repair c in this case.

Furthermore, we have argued that any action sequence that correctly and minimally repairs

c must follow this pattern, which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for repairing c in this case. �

• P t(c
def= E.aend1.aend2 = x) =

{ct : E.aend1 = y ← !(y .aend2 = x)t ,

ct : z.aend2 = x ← !(E .aend1 = z)t ,

ct : z ∈ Type(E.aend1) ∧ z.aend2 6= x ← !(E .aend1 = z)t ;!(z .aend2 = x)t ,

ct ← Create z : Type(E.aend1); !(E .aend1 = z)t ; !(z .aend2 = x)t }

Proof: This rule assumes that E .aend1 leads to a single entity and so does E .aend1.aend2,

which results in the following cases. It is noted that the fourth plan type is always applicable

since it does not have any context condition.

Case 1: There is no entity connected to x with regard to aend2

In this case, there does not exist any entity z such that z .aend2 = x and thus the second

plan type is not applicable. By contrast, the third plan type is applicable and generates plan

instances, each of which corresponds to an entity z that has the same type as E .aend1. We

now consider the following sub-cases.

Case 1.1: E is connected to an entity y (w.r.t. aend1)

In this case, E .aend1 = y and consequently the first plan is applicable. Hence, we now

have three applicable repair plan types. From the definitions of these plans, any action

sequence as in AS contains actions that either make y .aend2 = x true (as in the first plan),

or make both E .aend1 = z and z .aend2 = x true, where z is either an existing entity that

has the same type as y (as in the third plan) or z is a newly created entity (as in the fourth

plan).

Making y .aend2 = x true can yield further action sequences as previously discussed

262 (28th August, 2008)

APPENDIX A. PROOF

in the case of making a constraint in the form of E .aend = x true. For instance, if y is

not currently connected to any entity (w.r.t. aend2), then making y .aend2 = x true is

achieved by connecting y and x (w.r.t. aend2). Otherwise, we need to disconnect y with its

connected entity (w.r.t. aend2) first, and then connect y and x (w.r.t. aend2). Similarly,

making E .aend1 = z (or z .aend2 = x) can yield further action sequences. We have already

proved that such action sequences are complete, correct and minimal (refer to the proof for

c def= E.aend = x on page 261). We use this result to prove by induction that repair plans

posting the events of making y .aend2 = x true, or making E .aend1 = z and z .aend2 = x

true also yield complete, correct, and minimal action sequences.

Constraint c is violated if and only if E is not connected to x with respect to aend1.aend2,

i.e. E .aend1.aend2 6= x . Also, we know that there is no entity connected to x with regard to

aend2, i.e. we cannot find any existing entity z such that z .aend2 = x . Therefore, any action

sequence that correctly (and minimally) repairs c must ensure that E .aend1.aend2 = x which

necessarily involves ensuring that E .aend1 = z for some z and that z .aend2 = x . There are

three specific possible patterns of action sequences depending on the choice of z : z can be a

newly created entity, or it can be an existing entity. In the latter case there are two distinct

situations: z can be the (unique) entity for which E .aend1 = z currently holds, or it can

be another existing entity. As can be seen from the plans generated by R in this case, the

generated plans exactly follow these possibilities, and thus the action sequences resulting from

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore,

we have argued that any action sequence that correctly and minimally repairs c must follow

one of three patterns, each of which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for repairing c in this case.

Case 1.2: E is not connected to an entity (w.r.t. aend1)

In this case, E .aend1 = null and consequently the first plan type is not applicable. As a

result, only the third and fourth plan types are applicable. Therefore, the only minimal way

to make c true is making E .aend1 = z and z .aend2 = x true, where z is either an existing

entity that has the same type as y or a newly created entity. We use a similar proof to show

that AS is complete, correct and minimal.

Case 2: There are entities connected to x with regard to aend2

We also consider the two cases as above and use a similar proof. It is, however, noted

263 (28th August, 2008)

APPENDIX A. PROOF

that the second plan type is now applicable and generates plan instances, each of which

corresponds to an entity z such that z .aend2 = x . Therefore, AS also contains action

sequences that make E .aend1 = z where z .aend2 = x already holds. �

• P t(c
def= E1.aend1 = E2.aend2) =

{ct : E2.aend2 = x ← !(E1.aend1 = x)t ,

ct : E1.aend1 = x ← !(E2.aend2 = x)t ,

ct : x ∈ Type(E1.aend1) ∧ x 6= E1.aend1 ∧ x 6= E2.aend2

← !(E1.aend1 = x)t ; !(E2.aend2 = x)t ,

ct ← Create x : Type(E1.aend1); !(E1.aend1 = x)t ; !(E2.aend2 = x)t}

Proof: From the plan definitions, any action sequence as in AS contains actions that make

E1.aend1 = x and E2.aend2 = x true, where x can be either a new entity (as in the fourth

plan) or an existing entity4. For the latter case, x can be either the current value of E2.aend2

(as in the first plan), or the current value of E1.aend1 (as in the second plan) or an existing

entity that has the same type of E1.aend15. Making E1.aend1 = x (E2.aend2 = x) true

can yield further action sequences as previously discussed for making constraints in the form

of E .aend = x true. We have also proved that such action sequences are complete, correct

and minimal. We use this result to prove by induction that repair plans posting the events of

making E1.aend1 = x (E2.aend2 = x) true also yield complete, correct, and minimal action

sequences.

Constraint c is violated if and only if E1.aend1 does not lead to the same entity as

E2.aend2 does, i.e. E1.aend1 6= E2.aend2. Therefore, any action sequence that correctly

(and minimally) repairs c must ensure that E1.aend1 = E2.aend2 which necessarily involves

ensuring that E1.aend1 = x and E2.aend2 = x for some x . There are four specific possible

patterns of action sequences depending on the choice of x : x can be a newly created entity,

or it can be an existing entity. In the latter case there are three distinct situations: x can be

the (unique) entity for which either E1.aend1 = x or E2.aend2 = x currently holds, or it can

be another existing entity. As can be seen from the plans generated by R in this case, the

generated plans exactly follow the four patterns, and thus the action sequences resulting from

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore, we
4We assume that a solution that sets both E1.aend1 and E2.aend2 to null is not desirable, but that if it

is acceptable, then it can be added as an extra repair plan.
5Here, we assume that E1.aend1 and E2.aend2 leads to entities that have the same type.

264 (28th August, 2008)

APPENDIX A. PROOF

have argued that any action sequence that correctly and minimally repairs c must follow these

patterns, each of which is generated by R. Hence, R generates a representative permutation

for each correct and minimal action sequence for repairing c in this case. �

A.1.2 Constraints on attributes

In this section, we present proofs for basic constraints concerning attributes of model entities.

• P t(c
def= E.attr = val) =

{ct ← Change attr of E to val}

Proof: This plan has no context condition, and thus it corresponds to exactly one plan

instance. Therefore, AS contains single action sequence as that has one action which changes

attr of E to val .

Constraint c is violated if and only if the value of attribute attr of entity E is not equal

to val , i.e. E .attr 6= val . Therefore, any action sequence that correctly (and minimally)

repairs c must ensure that E .attr = val which necessarily involves changing the value of

attr to val . As can be seen from the plans generated by R in this case, the generated plans

exactly follow this pattern, and thus the action sequences resulting from the plans generated

by R(ct) correctly and minimally repair c in this case. Furthermore, we have argued that

any action sequence that correctly and minimally repairs c must follow this pattern, which

is generated by R. Hence, R generates a representative permutation for each correct and

minimal action sequence for repairing c in this case. �

• P t(c
def= E.attr > val)6 =

{ct : Ask(userVal, “> val”) ∧ userVal > val ← Change attr of E to userVal}

Proof: This plan has a context condition, which contains a function asking the user to

provide a value (i.e. userVal) which is greater than val . If the value provided by the user

satisfies this condition (i.e. userVal > val) then there is an action sequence as in AS that

changes the value of attr of E to userVal . Otherwise, i.e. userVal ≤ val , the plan is not

applicable and nothing is done, resulting in the constraint still being violated. We, however,

know that Rt(c) also contains two other plans {fixCt : c ← true, fixCt : ¬ c ← ct ; fixCt}.
This means that plan fixCt is called recursively until c becomes true and thus the plan ct is

6A similar proof can be used for c
def
= E.attr < val

265 (28th August, 2008)

APPENDIX A. PROOF

called again until the user provides a value userVal that satisfies userVal > val . Therefore,

AS ultimately contains an action sequence as that changes the value of attr of E to userVal .

Constraint c is violated if and only if the value of attribute attr of entity E is less than or

equal to val , i.e. E .attr ≤ val . Therefore, any action sequence that correctly (and minimally)

repairs c must ensure that E .attr > val which necessarily involves changing the value of attr

to a value that is greater than val . As can be seen from the plans generated by R in this case,

the generated plans exactly follow this pattern, and thus the action sequences resulting from

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore, we

have argued that any action sequence that correctly and minimally repairs c must follow this

pattern, which is generated by R. Hence, R generates a representative permutation for each

correct and minimal action sequence for repairing c in this case. �

• P t(c
def= E1.attr1 = E2.attr2)7 =

{ct : E1.attr1 = val ← !(E2.attr2 = val)t ,

ct : E2.attr2 = val ← !(E1.attr1 = val)t ,

ct : Ask(userVal, “ 6= E1.attr1 and 6= E2.attr2”) ∧ userVal 6= E1.attr1 ∧ userVal 6= E2.attr2

← !(E1.attr1 = userVal)t ; !(E2.attr2 = userVal)t}

Proof: The above plan types generate action sequences that either make E2.attr2 = val

true or make E1.attr1 = val true or make both E1.attr1 = userVal and E2.attr2 = userVal

true, where userVal is a value provided by the user which is different from both E1.attr1

and E2.attr2. Making E2.attr2 = val (or E2.attr1 = val) can yield further action sequences

as previously discussed for making a constraint in the form of E .aend = x true. We have

also proved that such action sequences are complete, correct and minimal. We use this result

to prove by induction that repair plans posting the events of making E2.attr2 = val (or

E2.attr1 = val) true also yield complete, correct, and minimal action sequences.

Constraint c is violated if and only if the value of attr1 of E1 is not equal to the value

of attr2 of E2, i.e. E1.attr1 6= E2.attr2. Therefore, any action sequence that correctly

(and minimally) repairs c must ensure that E1.attr1 = E2.attr2 which necessarily involves

ensuring that E1.attr1 = val and E2.attr2 = val . There are three specific possible patterns

of action sequences depending on the choice of val : it is either the current value of E1.attr1

or the current value of E2.attr2 or a new value provided by the user (i.e. userVal). As can

7A similar proof can be used for c
def
= E1.attr1 > E2.attr2

266 (28th August, 2008)

APPENDIX A. PROOF

be seen from the plans generated by R in this case, the generated plans exactly follow these

three possible patterns, and thus the action sequences resulting from the plans generated by

R(ct) correctly and minimally repair c in this case. Furthermore, we have argued that any

action sequence that correctly and minimally repairs c must follow one of three patterns,

each of which is generated by R. Hence, R generates a representative permutation for each

correct and minimal action sequence for repairing c in this case. �

A.1.3 Constraints on Boolean-valued set expressions

In this section, we present proofs for basic constraints concerning set expressions that return

Boolean values. The proofs generally follow an induction approach in which we assume that

the set of generated repair plans for adding (or removing) an entity to (or from) a derived

set is correct and complete8.

• Pt(c
def= SE→includes(x)) = {ct ← !+(x, SE)}

Proof: From the above plan type definition, any action sequence as in AS contains actions

that add x to SE .

Constraint c is violated if and only if x does not belong to SE . Therefore, any action

sequence that correctly (and minimally) repairs c must ensure that SE→includes(x) which

necessarily involves adding x to SE . As can be seen from the plans generated by R in this

case, the generated plans exactly follow this pattern, and thus the action sequences resulting

from the plans generated byR(ct) correctly and minimally repair c in this case. Furthermore,

we have argued that any action sequence that correctly and minimally repairs c must follow

this pattern, which is generated by R. Hence, R generates a representative permutation for

each correct and minimal action sequence for repairing c in this case. �

• P(c def= SE→includesAll(SE’)) =

{ct ← for each x in (SE’ - SE) !c′t(x)

c′t(x) ← !-(x, SE’),

c′t(x) ← !+(x, SE)}

Proof: Let {x1, . . . , xn} = SE ′ − SE (where we know that n > 0, else the constraint is

already true), and, because it is a set, we also know that xi 6= xj for i 6= j .

8We prove this assumption in section A.3.

267 (28th August, 2008)

APPENDIX A. PROOF

From the above plan type definitions, any action sequence as in AS contains actions that

for each xi either remove it from SE ′ or add it to SE .

The above constraint can be written as:

c def= ∀ x ∈ SE ′ • x ∈ SE

Assume that c is violated, i.e. ¬ c is true, expressed as follows.

¬ c def= ¬ (∀ x ∈ SE ′ • x ∈ SE)
def= ∃ x ∈ SE ′ • x 6∈ SE

Now, SE ′ − SE is the set of xi for which the condition xi ∈ SE ′ ∧ xi 6∈ SE holds.

Therefore, constraint c is violated if and only if there is an xi which is in SE ′ and not in

SE . Hence to fix c (minimally) must ensure that no such xi exists. We do this by finding

all xi for which the condition holds (which is given by SE ′− SE) and for each xi making the

condition false, which can be done by either deleting it from SE’ (to make xi ∈ SE ′ false)

or adding it to SE (to make xi 6∈ SE false). As can be seen from the plans generated by R
in this case, the generated plans exactly follow this pattern, and thus the action sequences

resulting from the plans generated by R(ct) correctly and minimally repair c in this case.

Furthermore, we have argued that any action sequence that correctly and minimally repairs

c must follow this pattern, which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for repairing c in this case. �

• P(c def= SE→excludes(x)) =

{ct ← !−(x, SE)}
Proof: From the above plan type definition (and the plans for !−(x,SE)), any action

sequence as in AS contains actions that remove x from SE .

Constraint c is violated if and only if x belongs to SE . Therefore, any action sequence

that correctly (and minimally) repairs c must ensure that SE→excludes(x) which necessarily

involves removing x from SE . As can be seen from the plans generated by R in this case,

the generated plans exactly follow this pattern, and thus the action sequences resulting from

268 (28th August, 2008)

APPENDIX A. PROOF

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore, we

have argued that any action sequence that correctly and minimally repairs c must follow this

pattern, which is generated by R. Hence, R generates a representative permutation for each

correct and minimal action sequence for repairing c in this case. �

• P(c def= SE→excludesAll(SE’)) =

{ct ← for each x in SE ∩ SE’ !c′t(x),

c′t(x) ← !− (x ,SE ′),

c′t(x) ← !− (x ,SE)}

Proof: Let {x1, . . . , xn} = SE ′ ∩ SE (where we know that n > 0, else the constraint is

already true), and, because it is a set, we also know that xi 6= xj for i 6= j .

From the above plan type definitions, any action sequence as in AS contains actions that

for each xi either remove it from SE ′ or remove it from SE .

The above constraint can be written as:

c def= ∀ x ∈ SE ′ • x 6∈ SE

Assume that c is violated, i.e. ¬ c is true, expressed as follows.

¬ c def= ¬ (∀ x ∈ SE ′ • x 6∈ SE)
def= ∃ x ∈ SE ′ • x ∈ SE

Now, SE ′∩SE is the set of xi for which the condition xi ∈ SE ′ ∧ x ∈ SE holds. Therefore,

constraint c is violated (i.e. ¬ c is true) if and only if there is an xi which is in both SE ′ and

SE . Therefore to fix c (minimally) must ensure that no such x exists. We do this by finding

all xi for which the condition holds (which is given by SE ′ ∩ SE) and for each xi making the

condition false, which can be done by either deleting it from SE’ (to make xi ∈ SE ′ false) or

deleting it from SE (to make xi ∈ SE false). As can be seen from the plans generated by R
in this case, the generated plans exactly follow this pattern, and thus the action sequences

resulting from the plans generated by R(ct) correctly and minimally repair c in this case.

Furthermore, we have argued that any action sequence that correctly and minimally repairs

269 (28th August, 2008)

APPENDIX A. PROOF

c must follow this pattern, which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for repairing c in this case. �

• P t(c
def= SE→isEmpty()) =

{ct ← for each x in SE !−(x, SE)}
Proof: Let {x1, . . . , xn} = SE (where we know that n > 0, else the constraint is already

true), and, because it is a set, we also know that xi 6= xj for i 6= j .

From the above plan type definitions, any action sequence as in AS contains actions that

for each xi remove it from SE .

Constraint c is violated (i.e. ¬ c is true) if and only if the SE is not empty. Hence,

the only minimal way to prevent ¬ c from being true (or c from being false) is: for each

xi in SE we delete it from SE. This is the minimal way of fixing c since it does not involve

removing any redundant elements. This matches exactly with an action sequence as in AS .

Furthermore, we have argued that any action sequence that correctly and minimally repairs

c must follow this pattern, which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for repairing c in this case. �

• P t(c
def= SE→notEmpty()) =

{ct : x ∈ Type(SE) ← !+(x, SE),

ct ← Create x : Type(SE) ; !+(x, SE)}

Proof: The first plan type has the context condition x ∈ Type(SE), which generates a

number of plan instances corresponding to each entity in the set of Type(SE). The second

plan type does not have any context condition, thus it corresponds to exactly one plan

instance. From the above plan type definitions, any action sequence as in AS contains

actions that add an existing entity to SE (the first plan), or that create a new entity of the

same type as entities contained in the set SE (the second plan).

Constraint c is violated if and only if the set SE is empty. Hence, the only minimal

way to make c true is adding any entity that has the same type as entities contained in the

set SE . This is the minimal way of fixing c since it does not involve adding any redundant

elements. This can be done by either adding an existing entity to SE or creating a new

entity of the same type as SE and adding it to SE . This matches exactly with an action

sequence as in AS . Furthermore, we have argued that any action sequence that correctly and

minimally repairs c must follow this pattern, which is generated by R. Hence, R generates

270 (28th August, 2008)

APPENDIX A. PROOF

a representative permutation for each correct and minimal action sequence for repairing c in

this case. �

• P t(c
def= SE→forAll(c1)) =

{ct ← for each x in SE if ¬ c1(x) then !c′t(x),

c′t(x) ← !−(x, SE),
c′t(x) ← !c1t(x)}

Proof: Let {x1, . . . , xn} = SE1 be the set of entities in SE for which constraint c1 does

not hold (where we know that n > 0, else the constraint is already true), and, because it is

a set, we also know that xi 6= xj for i 6= j .

From the above plan type definitions, any action sequence as in AS contains actions that

for each xi either remove it from SE or make c1(xi) true.

The constraint c can be written as:

c def= ∀ x ∈ SE • c1(x)

Assume that c is violated, i.e. ¬ c is true, expressed as follows.

¬ c def= ¬ (∀ x ∈ SE • c1(x))
def= ∃ x ∈ SE • ¬ c1(x)

Constraint c is violated if and only if SE contains an entity that constraint c1 does not

hold. Hence, the only minimal way to prevent c from being false (i.e. make c true) is for

each such xi in SE we either delete it from SE (to make xi ∈ SE false) or make c1(xi)

true (to make ¬ c1(xi) false). This is the minimal way of fixing c since it does not involve

removing any redundant elements. This matches exactly with an action sequence as in AS .

As can be seen from the plans generated by R in this case, the generated plans exactly follow

this pattern, and thus the action sequences resulting from the plans generated by R(ct)

correctly and minimally repair c in this case. Furthermore, we have argued that any action

sequence that correctly and minimally repairs c must follow this pattern, which is generated

271 (28th August, 2008)

APPENDIX A. PROOF

by R. Hence, R generates a representative permutation for each correct and minimal action

sequence for repairing c in this case. �

• P t(c
def= SE→exists(c1)) =

{ct : x ∈ SE ← !c1t(x),

ct : x ∈ Type(SE) ∧ x 6∈ SE ← !+(x, SE) ; !c1t(x),

ct ← Create x : Type(SE) ; !+(x, SE) ; !c1t(x),

c1t(x) : c1(x) ∨ c ← true }

Proof: It is noted that the fourth plan makes c1(x) true if needed, otherwise (i.e. c1(x) or

c already holds) it does nothing.

Let {x1, . . . , xn} = Type(SE) be the set of existing entities that have the same type as

entities in the set SE , and {x1, . . . , xk} = SE be the set of entities in the set SE (where

k ≤ n, and noting that SE ⊆ Type(SE)).

From the above plan type definitions, any action sequence as in AS contains actions that

either make c1(xi) true for any xi (where 1 ≤ i ≤ k), or add xj to SE and make c1(xj) true

if it does not hold (where k < j ≤ n), or create a new entity x , add it to SE and make c1(x)

true.

Constraint c is violated if and only if SE does not contain an entity for which constraint

c1 holds. To fix c (minimally) involves making the condition hold for some x , i.e. x ∈
SE ∧ c1(x). There are three cases: (1) x is already in SE : make c1(x) true; (2) c1(x) is

already true: add x to SE; (3) neither: make c1(x) true and add x to SE (note that x can be

existing entity or a new one). As can be seen from the plans generated by R in this case, the

generated plans exactly follow these patterns, and thus the action sequences resulting from

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore,

we have argued that any action sequence that correctly and minimally repairs c must follow

one of these patterns, each of which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for repairing c in this case. �

A.1.4 Constraints on non-Boolean-valued set expressions

In this section, we present proofs for basic constraints concerning set expressions that return

non-Boolean values. The proofs generally follow an induction approach in which we assume

272 (28th August, 2008)

APPENDIX A. PROOF

that the set of generated repair plans for adding (or removing) an entity to (or from) a

derived set is correct and complete9.

• P t(c
def= SE→size() = m) =

{ct ← for each i in {1,2,...,|m − s|} !c′t ,

c′t : m < s ∧ x ∈ SE ← !−(x, SE),
c′t : m > s ∧ x ∈ Type(SE) ∧ x 6∈ SE ← !+(x, SE),

c′t : m > s ← Create x : Type(SE) ; !+(x, SE)}

where s = SE→size()

Proof: We now examine the following cases.

Case 1: (m < s, i.e. SE is too large)

The second and third plan types for handling c′t are not applicable since their context

conditions do not hold. Only the first plan type for c′t is applicable and generates a number of

plan instances, each of which corresponds to an entity in SE . From the plan type definitions,

any action sequence as in AS contains actions that remove s −m entities from SE .

To fix c (minimally) must reduce the size of SE by removing s − m elements. As can

be seen from the plans generated by R in this case, the generated plans exactly follow

this pattern, and thus the action sequences resulting from the plans generated by R(ct)

correctly and minimally repair c in this case. Furthermore, we have argued that any action

sequence that correctly and minimally repairs c must follow this pattern, which is generated

by R. Hence, R generates a representative permutation for each correct and minimal action

sequence for repairing c in this case.

Case 2: (m > s, i.e. SE is too small)

In this case, the second and third plan types for handling c′t are applicable but the first

plan type is not. From the plan type definitions, any action sequence as in AS contains

actions that add m − s entities to SE by using an existing entity (not belonging to SE) or a

newly created one.

To fix c (minimally) must increase the size of SE by adding m− s elements which can be

either existing or newly created. As can be seen from the plans generated by R in this case,

the generated plans exactly follow this pattern, and thus the action sequences resulting from

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore, we
9We prove this assumption in section A.3

273 (28th August, 2008)

APPENDIX A. PROOF

have argued that any action sequence that correctly and minimally repairs c must follow this

pattern, which is generated by R. Hence, R generates a representative permutation for each

correct and minimal action sequence for repairing c in this case. �

• P t(c
def= SE→size() ≥ m) =

{ct ← for each i in {1,2,...,(m − s)} !c′t ,

c′t : x ∈ Type(SE) ∧ x 6∈ SE ← !+(x, SE),

c′t ← Create x : Type(SE) ; !+(x, SE)}

where s = SE→size()

Proof: We know that s < m, else the constraint is true. From the plan type definitions,

any action sequence as in AS contains actions that add m − s entities to SE by using an

existing entity (not belonging to SE) or a newly created one.

To fix c (minimally) must increase the size of SE by adding m− s elements which can be

either existing or newly created. As can be seen from the plans generated by R in this case,

the generated plans exactly follow this pattern, and thus the action sequences resulting from

the plans generated by R(ct) correctly and minimally repair c in this case. Furthermore, we

have argued that any action sequence that correctly and minimally repairs c must follow this

pattern, which is generated by R. Hence, R generates a representative permutation for each

correct and minimal action sequence for repairing c in this case. �

• P t(c
def= SE→size() ≤ m) =

{ct ← for each i in {1,2,...,(s −m)} !c′t ,

c′t : x ∈ SE ← !−(x, SE)}
where s = SE→size()

Proof: We know that s > m, else the constraint is true. From the plan type definitions,

any action sequence as in AS contains actions that remove s −m entities from SE .

To fix c (minimally) must reduce the size of SE by removing s − m elements. As can

be seen from the plans generated by R in this case, the generated plans exactly follow

this pattern, and thus the action sequences resulting from the plans generated by R(ct)

correctly and minimally repair c in this case. Furthermore, we have argued that any action

sequence that correctly and minimally repairs c must follow this pattern, which is generated

274 (28th August, 2008)

APPENDIX A. PROOF

by R. Hence, R generates a representative permutation for each correct and minimal action

sequence for repairing c in this case.

A.1.5 Boolean connectives

An OCL constraint is ultimately a combination (and , or , not , xor and implies) of basic

constraints. We have proved that theorem 1 holds for all basic constraints. We now use

that to prove, by induction, that theorem 1 holds for the basic connectives: and , or , and

not . Since the other connections (xor and implies) can be written using the three basic

connectives (i.e. and , or , and not), their proof can also be derived from the basic ones.

• P t(c
def= c1 or c2) =

{ct ← !c1t ,

ct ← !c2t}

Proof: Assume that theorem 1 holds for R(c1t) and R(c2t), i.e. both of them are correct

and complete sets. Now we need to prove that it also holds for R(ct).

As above, we have:

Pt(c) = {ct : ¬ c1←!c1t , ct : ¬ c2←!c2t}

and we also have:

R(ct) = Pt(c) ∪R(c1t) ∪R(c2t) ∪ . . .

Because of our induction assumption R(c1t) is correct and complete, i.e. it contains plans

that correctly (and minimally) fix c1, and similarly for R(c2t) and c2. Therefore, plan ct :

¬ c1 ← !c1t is able to repair c1 and plan ct : ¬ c2 ← !c2t is able to repair c2. Since the

constraint c holds if either of c1 or c2 holds, any plan that is able to fix c1 or c2 can fix c.

As a result, we can conclude that R(ct) contains plans that correctly fix c. These plans are

also minimal because they do not contain redundant repair actions. For instance, plan ct :

¬ c1 ← !c1t fixes only c1 when c1 is false, which just sufficiently repairs c without the need

to fix c2.

275 (28th August, 2008)

APPENDIX A. PROOF

We have proved that R(ct) contains correct and minimum repair plans for c. Now we

prove the completeness of the set R(ct). Assume that there is a minimum plan P that fixes

c and does not belong to R(ct). Plan P must fix either c1 or c2 (but not both, otherwise it is

not minimal), and without loss of generality we assume that P aims to fix c1. Therefore, plan

P is also the minimum plan for fixing c1, which results in, due to the induction assumption,

that P belongs to R(c1t). Since R(ct) contains R(c1t), P also belongs to R(ct), which

contradicts our previous assumption. Hence, there does not exist any minimum plan P that

fixes c and does not belong to R(ct), i.e. the set R(ct) is complete. �

• P t(c
def= c1 and c2) =

{ct : ¬ c1 ∧ c2 ← !c1t ,

ct : ¬ c2 ∧ c1 ← !c2t ,

ct : ¬ c1 ∧ ¬ c2 ← !c1t
10}

Proof: Firstly, the complete set of repair plans for making constraint c true is:

Rt(c) = {fixCt : c ← true, fixCt : ¬ c ←!ct ; !fixCt} ∪ R(c1t) ∪R(c2t) ∪

{ct : ¬ c1 ∧ c2←!c1t , ct : ¬ c2 ∧ c1←!c2t , ct : ¬ c1 ∧ ¬ c2←!c1t}

Because of our induction assumption R(c1t) is correct and complete, i.e. it contains plans

that correctly (and minimally) fix c1, and similarly for R(c2t) and c2.

Fix c2
Fix c1

Fix c2

Fix c1

Fix c1

done
done

done

done

Figure A.1: An example of fixing constraint c def= c1 and c2

10In the case where both constraints c1 and c2 are false, without the loss of generality we only fix c1 first.

276 (28th August, 2008)

APPENDIX A. PROOF

In order to fix constraint c, we begin by fixing either c1 or c2 (if initially both are false

we can pick one of them, otherwise we begin with the one that is false). Then, depending on

the precise fix used, either we are done (i.e. c is repaired) or the other constraint needs to

be fixed. This situation repeats (potentially endlessly) and can be visualised as a tree (see

figure A.1). The plans generated (including the fixCt plans) generate this sort of behaviour:

repeatedly select a violated sub-constraint and fix it, repeating until “c1 and c2” (i.e. both

constraints) are fixed. From this description it is easy to see that the process is correct: we

continue until done, and at each point we fix something that needs fixing. Although it is not

guaranteed that this process actually terminates11, any finite action sequence generated by

R is correct. With regard to minimality, it is noted that at each point we fix c1 or c2. The

fix is only done if needed (otherwise we are done), and by induction the details of the fix are

minimal.

We have proved that R(ct) contains correct and minimum repair plans for c. Now we

prove the completeness of the setR(ct). Let as be an action sequence that is both correct (for

fixing c) and minimal. Due to theorem 2 (on page 176), we can reorder as into “as1 ; as2” (i.e.

action sequence as1 followed by action sequence as2) where as1 (correctly and minimally)

repairs c1 and as2 (correctly and minimally) fixes c2. As argued earlier, “as1 ; as2” can be

generated by R. Hence, there does not exist any minimum action sequence as that fixes c

and does not have a representative permutation that belong to R(ct), i.e. the set R(ct) is

complete. �

• P t(c
def= not c1) = { ct ← !c1f }

Proof: Firstly, the complete set of repair plans for making constraint c true is:

R(ct) = Pt(c) ∪R(c1f) ∪ . . .

Because of our induction assumption R(c1f) is correct and complete, i.e. it contains

plans that correctly (and minimally) make c1 false. Therefore, plan ct ← !c1f is able to

make c1 false. Since the constraint c holds if c1 is false, any plan that is able to make c1

false can fix c. As a result, we can conclude that R(ct) contains plans that correctly (and
11If “c1 and c2” is satisfiable then it is possible for this process to terminate. In addition, our plan selection

mechanism (discussed in chapter 7) is able to find terminating action sequences.

277 (28th August, 2008)

APPENDIX A. PROOF

minimally) fix c.

We have proved that R(ct) contains correct and minimum repair plans for c. Now we

prove the completeness of the set R(ct). Assume that there is a minimum plan P that fixes c

and does not belong to R(ct). Plan P should aim to make c1 false. Therefore, plan P is also

the minimum plan for making c1 false, which results in, due to the induction assumption,

that P belongs to R(c1f). Since R(ct) contains R(c1f), P also belongs to R(ct), which

contradicts our previous assumption. Hence, there does not exist any minimum plan P that

fixes c and does not belong to R(ct), i.e. the set R(ct) is complete. �

A.2 Proofs for generated repair plans for making a constraint false, i.e. R(cf)

Since many of the proof cases here are analogous to those for making constraint true, similar

proof can be used to prove the theorem’s correctness. We now examine only the cases that are

not analogous. Note that we consider that the constraints currently hold and the generated

plans are for making them false.

• P f (c
def= E.aend = x) =

{cf ← Disconnect E and x (w.r.t aend)}

Proof: From the rule definition, there is only one generated repair plan type which has no

context condition, i.e. it is always applicable and generates a single plan instance. Therefore,

AS has a single as which contains only one action that disconnects E and x (w.r.t. aend).

Constraint c holds if and only if E is connected to x with respect to aend . The only

minimal way of making c false is disconnecting E and x (w.r.t. aend). As can be seen from

the plan generated byR in this case, the generated plan exactly follows this pattern, and thus

the action sequence resulting from the plan generated by R(ct) correctly and minimally make

c false in this case. Furthermore, we have argued that any action sequence that correctly

and minimally make c false must disconnect E and x (w.r.t. aend), and this is exactly what

is generated by R. Hence, R generates a representative permutation for each correct and

minimal action sequence for making c false in this case. �

• P f (c
def= E.aend1.aend2 = x) =

{cf ← Disconnect E.aend1 and x (w.r.t aend2),

cf ← Disconnect E and E.aend1 (w.r.t. aend1)}

278 (28th August, 2008)

APPENDIX A. PROOF

Proof: This rule assumes that E .aend1 leads to a single entity and so does E .aend1.aend2.

From the rule definition, there are two generated repair plan types which have no context

condition, i.e. they are always applicable and generate two plan instances. From the defi-

nitions of these plans, any action sequence as in AS contains actions that either disconnect

E .aend1 and x (w.r.t. aend2) or disconnect E and E .aend1 (w.r.t. aend1).

Constraint c holds if and only if E is connected to x with respect to aend1.aend2, i.e.

E .aend1.aend2 = x . That means E is currently connected to only a y (w.r.t. aend1) and y

is currently connected to only x (w.r.t. aend2). It is emphasized that with respect to aend1,

entity E is not connected to any other entity except y . Therefore, any action sequence

that correctly (and minimally) makes c false must ensure that E .aend1.aend2 6= x which

necessarily involves ensuring either that E .aend1 6= y or that y .aend2 6= x . The former

involves disconnecting E and y (w.r.t. aend1) and the latter involves disconnected y and x

(w.r.t. aend2). As can be seen from the plans generated by R in this case, the generated

plans exactly follow these possibilities, and thus the action sequences resulting from the

plans generated by R(ct) correctly and minimally make c false in this case. Furthermore, we

have argued that any action sequence that correctly and minimally make c false must follow

these two patterns, both of which is generated by R. Hence, R generates a representative

permutation for each correct and minimal action sequence for making c false in this case. �

A.3 Rules for addition involving derived sets, i.e. Q+

In this section we prove that the set of repair plans for addition involving a derived set (i.e.

Q+), which are produced by our the repair plan generator based on the translation schemas

described in figure 6.14 (on page 148), is correct and complete. That is, it generates all

correct and minimal action sequences, and does not generate any incorrect action sequences,

and all generated action sequences are minimal.

Similar to the previous proofs, we examine the repair plan types derived in each rule. We

need to show that Q+ generates a representative permutation for each correct and minimal

action sequence for adding an entity to a (derived) set. First, we examine a set of possible

action sequences AS obtained from instantiating and resolving the plan types generated for

a given set expression. We then identify all possible minimal ways of adding an entity to

that set expression. Finally, we argue that the set of action sequences resulting from the

generated repair plans for each constrain are precisely the possible minimal action sequences

279 (28th August, 2008)

APPENDIX A. PROOF

for adding an entity to the set.

Furthermore, we will follow an induction approach. Firstly, we correctness for for the base

cases SE def= E.aend and SE def= E.aend1.aend2. For sets that are derived from another set,

for example SE def= S1→union(S2), we assume that generated action sequences for addition

and deletion involving S1 and S2 are correct. We then prove, by induction, correctness for

addition (and deletion) involving SE .

• Q+(SE def= E.aend12) =

{+(x ,SE) ← Connect E and x (w.r.t aend)}

Proof: Since the above plan type has no context condition, it corresponds to exactly one

plan instance. Therefore, AS contains a single action sequence as that has one action which

connects E to x with regard to association end aend .

Note that E .aend leads the set of entities that E are connected to with regard to aend .

Hence, there is only one minimal way of adding an entity x to this set: connecting x with

E (w.r.t. aend). This matches exactly with the action sequence as in AS . Furthermore, we

have argued that any action sequence that correctly and minimally add x to SE must follow

this pattern, which is generated by Q+. Hence, Q+ generates a representative permutation

for each correct and minimal action sequence for adding an entity to SE in this case. �

• Q+(SE def= E.aend1.aend2) =

{+(x ,SE) : isSingle(E.aend1) ∧ E.aend1 = y ← !+(x, y.aend2),

+(x ,SE) : isSingle(E.aend1) ∧ x ∈ y.aend2 ← !(E .aend1 = y)t ,

+(x ,SE) : isSingle(E.aend1) ∧ y ∈ Type(E.aend1) ∧ y 6= E.aend1 ∧ x 6∈ y.aend2

← !(E .aend1 = y)t ; !+(x, y.aend2),

+(x ,SE) : isSingle(E.aend1)← Create y : Type(E.aend1) ; !(E .aend1 = y)t ; !+(x, y.aend2),

+(x ,SE) : ¬ isSingle(E.aend1) ∧ y ∈ E.aend1 ← !+(x, y.aend2),

+(x ,SE) : ¬ isSingle(E.aend1) ∧ x ∈ y.aend2 ← !+(y, E.aend1),

+(x ,SE) : ¬ isSingle(E.aend1) ∧ y ∈ Type(E.aend1) ∧ y 6∈ E.aend1 ∧ x 6∈ y.aend2

← !+(y, E.aend1) ; !+(x, y.aend2),

+(x ,SE) : ¬ isSingle(E.aend1)

← Create y : Type(E.aend1) ; !+(y, E.aend1) ; !+(x, y.aend2)}

Proof: We consider the following cases:
12E .aend here returns a set of entities that are connected to E with regard to association end aend .

280 (28th August, 2008)

APPENDIX A. PROOF

Case 1: E .aend1 leads to a single entity13

In this case, the first four plan types are applicable, which generate a number of plan

instances. According to the plan definitions, any action sequence as in AS contains actions

that either add x to the set y .aend2, i.e. +(x , y .aend2), where y is an existing entity for

which E .aend1 = y holds (as in the first plan), or make E .aend1 = y true for some y for

which x ∈ y .aend2 holds (as in the second plan), or make E .aend1 = y true and add x to

y .aend2 where y is an existing entity or a newly created one. Making E .aend1 = y true (or

adding x to y .aend2) can yield further action sequences as previously discussed for making

a constraint in the form of E .aend = x true (or addition involving a derived set in the form

of E .aend) . We have also proved that such action sequences are complete, correct and

minimal. We use this result to prove by induction that repair plans posting the events of

making E .aend1 = y true (or adding x to y .aend2) also yield complete, correct, and minimal

action sequences.

On the other hand, E .aend1.aend2 is the set of entities that E .aend1 is connected to

with respect to aend2. Hence, the only minimal way of adding x into this set is: (i) adding

x to y .aend2 and (ii) making E .aend1 = y true for some y . Depending on the choice of y we

may need to do either (i) – for y that E is currently connected to w.r.t. aend1, or (ii) – for

y that is currently connected to x w.r.t. aend2, or both of them – for another existing entity

y or a newly created one. Hence, the minimal way of adding x to the set E .aend1.aend2

matches exactly with an action sequence as in AS . Furthermore, we have argued that any

action sequence that correctly and minimally add x to SE must follow this pattern, which

is generated by Q+. Hence, Q+ generates a representative permutation for each correct and

minimal action sequence for adding an entity to SE in this case.

Case 2: E .aend1 leads to multiple entities

In this case, E .aend1 is a set of entities. The proof is similar to the first case.

• Q+(SE def= S→select(c))14 =

{ +(x ,SE) : x ∈ S ← !ct(x),

+(x ,SE) : x 6∈ S ∧ c(x) ← !+(x, S),
13Note that E .aend1 is not null, otherwise the set E .aend1.aend2 is not valid since “any property call

applied on null results in OclInvalid, except for the operation oclIsUndefined()” [Object Management Group,
2006].

14Since there is not much difference in plans for SE
def
= S→reject(c), we can use a similar proof for them.

281 (28th August, 2008)

APPENDIX A. PROOF

+(x ,SE) : x 6∈ S ∧ ¬ c(x) ← !+(x, S) ; !ct(x)}

There are several cases that we need to consider.

Case 1: Entity x belongs to the set S

In this case, only the first plan type is applicable, which corresponds to a single plan

instance. Any action sequence as in AS contains actions that make c(x) true. Which actions

are contained in such action sequences depends on the nature of constraint c. We, however,

have proved previously that for any given constraint c (that we support), the generated action

sequences for making c true are correct, complete, and minimal. As a result, by induction

we can conclude that AS is also correct, complete, and minimal.

We know that SE is the set of entities in S for which the constraint c holds. Entity x

belongs to S but is not contained in SE if and only if c(x) does not hold. Therefore, the

only minimal way to add x to SE is to make c(x) true. This is the minimal way of adding

x to SE since it does not involve adding any redundant elements. This matches exactly

with an action sequence as in AS . Furthermore, we have argued that any action sequence

that correctly and minimally add x to SE must follow this pattern, which is generated by

Q+. Hence, Q+ generates a representative permutation for each correct and minimal action

sequence for adding an entity to SE in this case.

Case 2: Entity x does not belong to the set S

In this case, we consider two other cases: c(x) holds and c(x) does not hold. In the case

where c(x) holds the only minimal way of adding x to SE is adding x to S . Meanwhile, in

the case where c(x) does not hold, the only minimal way of adding x to SE is adding x to S

and making c(x) true. For either of these cases, we use a similar proof as in the first case. �

• Q+(SE def= S→excluding(e))15 =

{+(x ,SE) : x 6∈ S ∧ x 6= e ← !+(x, S)}

Proof: From the plan definitions, in the case in which x belongs to S or x is e, then there

is no applicable plan and consequently no action sequence for adding x to SE . In contrast,

where x does not belong to S and x is different from e, the plan type is applicable and

corresponds exactly to one plan instance. Hence, any action sequence as in AS contains

actions that add x to S .
15A similar proof can be used for SE

def
= S→including(e)

282 (28th August, 2008)

APPENDIX A. PROOF

From its definition, SE is the set of entities in S minus the entity e. If x is e, then

we cannot add x to SE because SE always does not contain x . If x is not equal to e but

x belongs to S , then x also belongs to SE and consequently adding x to SE results in no

effect. However, from our perspective this case does not occur since we assume that when

we post the event to add an entity to a set, the set must currently not contain the entity.

Now where x does not belong to S and x is different from e, then the only minimal way to

add x to SE is adding x to S . This is the minimal way since it does not involve adding any

redundant entities. This matches exactly with an action sequence in AS . Furthermore, we

have argued that any action sequence that correctly and minimally add x to SE must follow

this pattern, which is generated by Q+. Hence, Q+ generates a representative permutation

for each correct and minimal action sequence for adding an entity to SE in this case. �

• Q+(SE def= S1→union(S2)) =

{ +(x ,SE) : x 6∈ S1 ← !+(x, S1),

+(x ,SE) : x 6∈ S2 ← !+(x, S2)}

Proof: It is noted that x is neither in S1 nor in S2, otherwise x is already in SE . Hence,

from the plan definitions both plan types are applicable. As a result, any action sequence as

in AS contains actions that either add x to S1 or add x to S2.

From its definition, SE is the union of entities in S1 and S2, i.e. any entity that is in

SE must be in either S1 or S2 or both of them. Therefore, the only minimal way to add

x to SE is adding x to either S1 or S2. This is the minimal way since it does not involve

adding any redundant entities or adding x to both S1 and S2. This matches exactly with an

action sequence in AS . Furthermore, we have argued that any action sequence that correctly

and minimally add x to SE must follow this pattern, which is generated by Q+. Hence,

Q+ generates a representative permutation for each correct and minimal action sequence for

adding an entity to SE in this case. �

• Q+(SE def= S1→intersection(S2)) =

{ +(x ,SE) : x 6∈ S1 ∧ x ∈ S2 ← !+(x, S1),

+(x ,SE) : x ∈ S1 ∧ x 6∈ S2 ← !+(x, S2),

+(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S1) ; !+(x, S2)}

Proof: It is noted that x is not in both S1 and S2, otherwise x is already in SE . This

leaves us three cases to be considered: x is in S1 but not in S2, x is in S2 but not in S1,

283 (28th August, 2008)

APPENDIX A. PROOF

and x is in neither S1 nor S2. For the first two cases, without the loss of generality we can

consider only one of the first two cases. For the third case, we can use a similar proof. Hence,

we consider here only the first case, i.e. x is in S1 but not in S2.

In this case, only the second plan type is applicable. From the plan’s definition, any

action sequence as in AS contains actions that add x to S2.

From its definition, SE is the intersection of entities in S1 and S2, i.e. any entity that

is in SE must be in both S1 and S2. As x is already in S1, the only minimal way to add

x to SE is adding x to S2. This is the minimal way since it does not involve adding any

redundant entities. This matches exactly with an action sequence in AS . Furthermore, we

have argued that any action sequence that correctly and minimally add x to SE must follow

this pattern, which is generated by Q+. Hence, Q+ generates a representative permutation

for each correct and minimal action sequence for adding an entity to SE in this case. �

• Q+(SE def= S1 - S2) =

{ +(x ,SE) : x 6∈ S1 ∧ x ∈ S2 ← !+(x, S1) ; !−(x, S2),
+(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S1),

+(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S2)}
Proof: It is noted that x is not in SE , i.e. x must either not be in S1, or, if it is in S1, it

must also be in S2. This leaves us three cases to be considered: x is not in S1 but in S2, x

is in both S1 and S2, and x is in neither S1 nor S2. We consider here only the first case,

i.e. x is not in S1 but in S2. For the remaining two cases, a similar proof can be applied.

In this case (i.e. x is not in S1 but in S2), only the first plan type is applicable. From

the plan’s definition, any action sequence as in AS contains actions that add x to S1 and

remove x from S2.

From its definition, SE contains the substraction of entities in S1 and S2, i.e. any entity

that is in SE must be in S1 but not S2. As x is not in S1 but already in S2, the only minimal

way to add x to SE is adding x to S1 and removing x from S2. This is the minimal way since

it does not involve adding or removing any redundant entities. This matches exactly with an

action sequence in AS . Furthermore, we have argued that any action sequence that correctly

and minimally add x to SE must follow this pattern, which is generated by Q+. Hence,

Q+ generates a representative permutation for each correct and minimal action sequence for

adding an entity to SE in this case. �

284 (28th August, 2008)

APPENDIX A. PROOF

• Q+(SE def= S1→symmetricDifference(S2)) =

{ +(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S1),

+(x ,SE) : x 6∈ S1 ∧ x 6∈ S2 ← !+(x, S2),

+(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S1),
+(x ,SE) : x ∈ S1 ∧ x ∈ S2 ← !−(x, S2)}
Proof: From its definition, SE contains all the entities that are either in SE1 or SE2 but

not in both, i.e. any entity in SE must be either in SE1 or SE2 but not in both of them.

This leaves us two cases to be considered: x is in both S1 and S2, and x is in neither

S1 nor S2 (for the other cases, x is in SE and consequently adding x to SE will result in no

effect). We consider here only the first case, i.e. x is in neither S1 nor S2. For the other

case, a similar proof can be applied.

In the case for which x is not in either S1 or S2, only the first two plan types are

applicable. From the plan’s definition, any action sequence as in AS contains actions that

either add x to S1 or add x to S2.

Based on the definition of SE and because x is not in either S1 and S2, the only minimal

way to add x to SE is either adding x to S1 or adding x to S2. This is the minimal way since

it does not involve adding or removing any redundant entities. This matches exactly with an

action sequence in AS . Furthermore, we have argued that any action sequence that correctly

and minimally add x to SE must follow this pattern, which is generated by Q+. Hence,

Q+ generates a representative permutation for each correct and minimal action sequence for

adding an entity to SE in this case. �

A.4 Rules for deletion involving derived sets, Q−

Since many of the proof cases here are analogous to those for addition involving a derived

set (i.e. Q+), similar proof can be used to prove the theorem’s correctness. We now examine

only the cases that are not analogous.

• Q−(SE def= E.aend) =

{−(x ,SE) ← Disconnect E and x (w.r.t aend)}

Proof: Since the above plan type has no context condition, it corresponds to exactly one

plan instance. Therefore, AS contains a single action sequence as that has one action which

disconnects E from x with regard to association end aend .

285 (28th August, 2008)

APPENDIX A. PROOF

Note that E .aend leads to the set of entities that E is connected to with regard to aend .

Hence, there is only one minimal way of removing an entity x from this set: disconnecting x

from E (w.r.t. aend). This matches exactly with the action sequence as in AS . Furthermore,

we have argued that any action sequence that correctly and minimally remove x from SE

must follow this pattern, which is generated by Q−. Hence, Q− generates a representative

permutation for each correct and minimal action sequence for removing an entity from SE

in this case. �

• Q−(SE def= E.aend1.aend2) =

{−(x ,SE) : isSingle(E.aend1) ∧ E.aend1 = E1

← Disconnect E1 and x (w.r.t aend2),

−(x ,SE) : isSingle(E.aend1) ∧ E.aend1 = E1

← Disconnect E and E1 (w.r.t aend1),

−(x ,SE) : ¬ isSingle(E.aend1) ∧ E.aend1 = SE1

← for each y in SE1 if x ∈ y.aend2 then !aux(x, SE, y),

aux (x ,SE , y) ← Disconnect y and x (w.r.t. aend2),

aux (x ,SE , y) ← Disconnect E and y (w.r.t. aend1)}

Case 1: E .aend1 leads to a single entity

In this case, the first two plan types are applicable, which generate a number of plan

instances. According to the plan definitions, any action sequence as in AS contains actions

that either disconnect E1 and x (w.r.t. aend2) or disconnect E and E1 (w.r.t. aend1),

where E1 = E .aend1 (i.e. E is currently connected to E1 w.r.t. aend1).

On the other hand, E .aend1.aend2 is the set of entities that E .aend1 (i.e. E1) is con-

nected to with respect to aend2. Hence, the only minimal way of removing x from this set

is either disconnecting E1 and x (w.r.t. aend2), or disconnecting E and E1 (w.r.t. aend1)

– so that E .aend1 will become null and E .aend1.aend2 is invalid. Therefore, the minimal

way of removing x from the set E .aend1.aend2 matches exactly with an action sequence as

in AS . Furthermore, we have argued that any action sequence that correctly and minimally

remove x from SE must follow this pattern, which is generated by Q−. Hence, Q− generates

a representative permutation for each correct and minimal action sequence for removing an

entity from SE in this case.

Case 2: E .aend1 leads to a set of entities

286 (28th August, 2008)

APPENDIX A. PROOF

In this case, the third plan type is applicable. Let {y1, . . . , yn} = SE2 be the set of

entities that E is connected to with regard to aend1, and that are connected to x (w.r.t.

aend2), i.e. x ∈ yi .aend2 (see figure A.2). From the above plan type definitions, any action

sequence as in AS contains actions that for each yi either disconnect it and x (w.r.t. aend2)

or disconnect E and it (w.r.t. aend1).

E
...

y2

y1

yn

x

SE2

aend1

aend2

Figure A.2: An example showing how E is connected to x (w.r.t. aend1.aend2)

On the other hand, E .aend1.aend2 is the set of entities that E is connected to with

respect to aend1.aend2, i.e. for x to be in E .aend1.aend2 there needs to be a path from E

to x that follows aend1 and then aend2. Now, since E .aend1 can be a set, in fact there are

multiple possible paths. Hence, to remove x from the set E .aend1.aend2 we need, for each

such path, to break the path. SE2 is the set of middle points of these paths, from E to x

(see figure A.2). For each middle point, yi , we need to break the path, which can be done by

either disconnecting E and yi (w.r.t. aend1), or by disconnecting yi and x (w.r.t. aend2).

Therefore, the minimal way of removing x from the set E .aend1.aend2 matches exactly with

an action sequence as in AS . Furthermore, we have argued that any action sequence that

correctly and minimally remove x from SE must follow this pattern, which is generated by

Q−. Hence, Q− generates a representative permutation for each correct and minimal action

sequence for removing an entity from SE in this case. �

287 (28th August, 2008)

Bibliography

A. Abran and K. Nguyen. Measurement of the maintenance process from a demand-based

perspective. Software Maintenance and Evolution: Research and Practice, 5(2):63–90,

1993.

E. Al-Hashel, B. M. Balachandran, and D. Sharma. A comparison of three agent-oriented

software development methodologies: ROADMAP, Prometheus, and MaSE. In B. Apol-

loni, R. J. Howlett, and L. C. Jain, editors, KES (3), volume 4694 of Lecture Notes in

Computer Science, pages 909–916. Springer, 2007. ISBN 978-3-540-74828-1.

J. A. T. Álvarez, V. Requena, and J. L. Fernández. Emerging OCL tools. Software and

System Modeling, 2(4):248–261, 2003.

P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press,

New York, NY, USA, 2008. ISBN 0521880386, 9780521880381.

T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient and precise dynamic impact

analysis using execute-after sequences. In ICSE ’05: Proceedings of the 27th International

Conference on Software Engineering, pages 432–441, New York, NY, USA, 2005. ACM.

ISBN 1-59593-963-2. doi: http://doi.acm.org/10.1145/1062455.1062534.

D. J. Armstrong. The quarks of object-oriented development. Communications of the ACM,

49(2):123–128, 2006. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1113034.1113040.

R. Arnold and S. Bohner. Software Change Impact Analysis. IEEE Computer Society Press,

1996. ISBN 978-0-8186-7384-9.

R. S. Arnold. An introduction to software restructuring. In R. S. Arnold, editor, Tutorial on

Software Restructuring. IEEE Press, 1986.

288 (28th August, 2008)

BIBLIOGRAPHY

R. S. Arnold and S. A. Bohner. Impact analysis - towards a framework for comparison.

In ICSM ’93: Proceedings of the Conference on Software Maintenance, pages 292–301,

Washington, DC, USA, 1993. IEEE Computer Society. ISBN 0-8186-4600-4.

D. Astels. Refactoring with UML. In Proceedings of the 2nd International Conference on

eXtreme Programming and Flexible Process in Software Engineering, pages 67–70, 2002.

Alghero, Sardinia, Italy.

C. Atkinson and T. Kühne. Model-driven development: A metamodeling foundation. IEEE

Software, 20(5):36–41, 2003. ISSN 0740-7459. doi: http://dx.doi.org/10.1109/MS.2003.

1231149.

R. Balzer. Tolerating inconsistency. In ICSE ’91: Proceedings of the 13th international

conference on Software engineering, pages 158–165, Los Alamitos, CA, USA, 1991. IEEE

Computer Society Press. ISBN 0-89791-391-4.

K. Beck. Embracing change with extreme programming. IEEE Computer, 32(10):70–77,

1999. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.796139.

S. S. Benfield, J. Hendrickson, and D. Galanti. Making a strong business case for multiagent

technology. In AAMAS ’06: Proceedings of the fifth international joint conference on

Autonomous agents and multiagent systems, pages 10–15, New York, NY, USA, 2006.

ACM. ISBN 1-59593-303-4. doi: http://doi.acm.org/10.1145/1160633.1160938.

K. H. Bennett. Software maintenance: A tutorial. In R. H. Thayer and M. J. Christensen,

editors, Software Engineering, Volume 1: The Development Process, volume 1. IEEE Com-

puter Society Press, 3rd edition edition, November 2005.

K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: a roadmap. In

A. Finkelstein, editor, The Future of Software Engineering, pages 73–87. ACM Press,

Limerick, Ireland, 2000.

F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies and Software Engi-

neering for Agent Systems. The Agent-Oriented Software Engineering Handbook. Kluwer

Publishing, 2004. ISBN 1-4020-8057-3.

C. Bernon, M. Cossentino, and J. Pavón. Agent-oriented software engineering. Knowledge

Engineering Review, 20(2):99–116, 2006. ISSN 0269-8889.

289 (28th August, 2008)

BIBLIOGRAPHY

X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting model inconsistency through

operation-based model construction. In ICSE ’08: Proceedings of the 30th International

Conference on Software Engineering, pages 511–520, New York, NY, USA, 2008. ACM.

ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.1145/1368088.1368158.

J. Blythe. Decision-theoretic planning. AI Magazine, 20(2):37–54, 1999.

J.-P. Bodeveix, T. Millan, C. Percebois, C. L. Camus, P. Bazex, and L. Feraud. Extending

OCL for verifying UML models consistency. In Kuzniarz et al. [2002], pages 75–90.

M. Boger, T. Sturm, and P. Fragemann. Refactoring browser for UML. In NODe ’02:

Revised Papers from the International Conference NetObjectDays on Objects, Components,

Architectures, Services, and Applications for a Networked World, pages 366–377, London,

UK, 2003. Springer-Verlag. ISBN 3-540-00737-7.

S. A. Bohner. Software change impacts - an evolving perspective. In ICSM ’02: Proceed-

ings of the International Conference on Software Maintenance (ICSM’02), pages 263–272,

Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1819-2.

S. A. Bohner and R. S. Arnold. Software Change Impact Analysis, chapter An Introduction

to Software Change Impact Analysis, pages 1–26. IEEE Computer Society Press, 1996.

R. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J. Gomez-Sanz, J. Leite,

G. O’Hare, A. Pokahr, and A. Ricci. A survey of programming languages and platforms

for multi-agent systems. In Informatica 30, pages 33–44, 2006.

R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-Agent

Programming: Languages, Platforms and Applications. Springer, 2005.

J. M. Bradshaw. An introduction to software agents. In J. M. Bradshaw, editor, Software

Agents, pages 3–46. AAAI Press / The MIT Press, 1997.

M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, Cam-

bridge, MA, 1987. ISBN 978-1575861920.

M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded practical

reasoning. Computational Intelligence, 4:349–355, 1988.

290 (28th August, 2008)

BIBLIOGRAPHY

B. Breech, M. Tegtmeyer, and L. Pollock. A comparison of online and dynamic impact

analysis algorithms. In CSMR ’05: Proceedings of the Ninth European Conference on

Software Maintenance and Reengineering, pages 143–152, Washington, DC, USA, 2005.

IEEE Computer Society. ISBN 0-7695-2304-8. doi: http://dx.doi.org/10.1109/CSMR.

2005.1.

B. Breech, M. Tegtmeyer, and L. Pollock. Integrating influence mechanisms into impact

analysis for increased precision. In ICSM ’06: Proceedings of the 22nd IEEE International

Conference on Software Maintenance, pages 55–65, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2354-4. doi: http://dx.doi.org/10.1109/ICSM.2006.33.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Sys-

tems, 8(3):203–236, 2004. ISSN 1387-2532. doi: http://dx.doi.org/10.1023/B:AGNT.

0000018806.20944.ef.

R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner. Towards

a formalization of the Unified Modeling Language. In M. Aksit and S. Matsuoka, editors,

ECOOP’97 – Object-Oriented Programming, 11th European Conference, volume 1241 of

LNCS, pages 344–366. Springer, 1997.

L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sowka. Automated impact analysis

of UML models. Journal of Systems and Software, 79(3):339–352, March 2006. ISSN

0164-1212. doi: http://dx.doi.org/10.1016/j.jss.2005.05.001.

J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy of software

change. Journal on Software Maintenance and Evolution: Research and Practice, 17(5):

309–332, September-October 2005.

B. Burmeister, M. Arnold, F. Copaciu, and G. Rimassa. BDI-Agents for agile goal-oriented

business processes. In Padgham, Parkes, Müller, and Parsons, editors, Proceedings of the

7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2008), pages 37–44, Estoril, Portugal, May 2008.

P. Busetta, N. Howden, R. Rönnquist, and A. Hodgson. Structuring BDI agents in functional

clusters. In Agent Theories, Architectures, and Languages (ATAL-99), pages 277–289.

Springer-Verlag, 2000. LNCS 1757.

291 (28th August, 2008)

BIBLIOGRAPHY

J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the formal verification of

UML/OCL models using constraint programming. In ASE ’07: Proceedings of the

twenty-second IEEE/ACM international conference on Automated software engineering,

pages 547–548, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4. doi:

http://doi.acm.org/10.1145/1321631.1321737.

J. Cabot, R. Clarisó, and D. Riera. Verification of UML/OCL class diagrams using constraint

programming. In Proceedings of 2008 IEEE International Conference on Software Testing

Verification and Validation, Workshop on Model Driven Engineering, pages 73–80, Los

Alamitos, CA, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3388-9. doi: http:

//doi.ieeecomputersociety.org/10.1109/ICSTW.2008.54.

F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-oriented

data modelling with a rule-based programming paradigm. SIGMOD Rec., 19(2):225–236,

1990. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/93605.98732.

M. Cadoli, D. Calvanese, G. De Giacomo, and T. Mancini. Finite satisfiability of UML class

diagrams by constraint programming. In Proceedings of the CP 2004 Workshop on CSP

Techniques with Immediate Application, 2004.

S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic generation of production

rules for integrity maintenance. ACM Transaction Database Systems, 19(3):367–422, 1994.

ISSN 0362-5915. doi: http://doi.acm.org/10.1145/185827.185828.

N. Chapin. Do we know what preventive maintenance is? In ICSM ’00: Proceedings of the

International Conference on Software Maintenance (ICSM’00), pages 15–17, Washington,

DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0753-0.

N. Chapin, J. E. Hale, K. M. Kham, J. F. Ramil, and W.-G. Tan. Types of software evolution

and software maintenance. Journal of Software Maintenance, 13(1):3–30, 2001. ISSN 1040-

550X.

M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman. A change impact model

for changeability assessment in object-oriented software systems. Science of Computer

Programming, 45(2-3):155–174, 2002. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/

S0167-6423(02)00058-8.

292 (28th August, 2008)

BIBLIOGRAPHY

E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: A taxonomy. IEEE

Software, 7(1):13–17, 1990. ISSN 0740-7459. doi: http://dx.doi.org/10.1109/52.43044.

B. J. Clement and E. H. Durfee. Top-down search for coordinating the hierarchical plans

of multiple agents. In AGENTS ’99: Proceedings of the third annual conference on

Autonomous Agents, pages 252–259. ACM Press, 1999. ISBN 1-58113-066-X. doi:

http://doi.acm.org/10.1145/301136.301205.

M. Cossentino. From requirements to code with the PASSI methodology. In H.-S. B. and

P. Giorgini, editors, Agent-Oriented Methodologies, pages 79–106. Idea Group Inc., 2005.

P. Cuesta, A. Gómez, and J. C. González. Agent oriented software engineering. In A. Moreno

and J. Pavón, editors, Issues in Multi-Agent Systems, Whitestein Series in Software Agent

Technologies and Autonomic Computing, pages 1–31. Birkhauser Basel, December 2007.

K. H. Dam and M. Winikoff. Comparing agent-oriented methodologies. In Giorgini et al.

[2004], pages 78–93.

S. Dance and M. Gorman. Intelligent Agents in the Australian Bureau of Meteorology. In

Challenges in Open Agent Systems Workshop at AAMAS02, Bologna, Italy, July 2002.

A. Dasgupta and A. K. Ghose. CASO: a framework for dealing with objectives in a constraint-

based extension to AgentSpeak(L). In Twenty-Ninth Australasian Computer Science Con-

ference (ACSC 2006), pages 121–126. Australian Computer Society, Inc., 2006. ISBN

1-920682-30-9.

S. A. DeLoach. Engineering organization-based multiagent systems. In A. F. Garcia,

R. Choren, C. J. P. de Lucena, P. Giorgini, T. Holvoet, and A. B. Romanovsky, editors,

Software Engineering for Multi-Agent Systems IV, Research Issues and Practical Applica-

tions, volume 3914 of Lecture Notes in Computer Science, pages 109–125. Springer, 2005.

ISBN 3-540-33580-3.

D. Dennett. The Intentional Stance. MIT Press, Cambridge, Mass., 1987. ISBN 978-

0262540537.

L. Deruelle, M. Bouneffa, N. Melab, and H. Basson. A change propagation model and plat-

form for multi-database applications. In ICSM ’01: Proceedings of the IEEE International

293 (28th August, 2008)

BIBLIOGRAPHY

Conference on Software Maintenance (ICSM’01), pages 42–51, Los Alamitos, CA, USA,

2001. IEEE Computer Society. doi: http://doi.ieeecomputersociety.org/10.1109/ICSM.

2001.972710.

M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS. In

ATAL ’97: Proceedings of the 4th International Workshop on Intelligent Agents IV, Agent

Theories, Architectures, and Languages, pages 155–176, London, UK, 1998. Springer-

Verlag. ISBN 3-540-64162-9.

K. Dohyung. Java MPEG player at http://peace.snu.ac.kr/dhkim/java/mpeg, 1999.

A. Egyed. Instant consistency checking for the uml. In ICSE ’06: Proceedings of the 28th

International Conference on Software Engineering, pages 381–390, New York, NY, USA,

2006. ACM. ISBN 1-59593-375-1. doi: http://doi.acm.org/10.1145/1134285.1134339.

A. Egyed. Fixing inconsistencies in UML models. In ICSE ’07: Proceedings of the 29th

International Conference on Software Engineering, pages 292–301, Washington, DC, USA,

May 2007. IEEE Computer Society. ISBN 0-7695-2828-7.

A. Egyed and D. S. Wile. Support for managing design-time decisions. IEEE Transactions

on Software Engineering, 32(5):299–314, 2006.

M. Elaasar and L. Briand. An overview of UML consistency management. Technical Report

SCE-04-18, Carleton University, Department of Systems and Computer Engineering, 2004.

A. H. Elamy and B. H. Far. On the evaluation of agent-oriented software engineering method-

ologies: A statistical approach. In M. Kolp, B. Henderson-Sellers, H. Mouratidis, A. Garcia,

A. Ghose, and P. Bresciani, editors, Agent-Oriented Information Systems IV, 8th Interna-

tional Bi-Conference Workshop, volume 4898 of Lecture Notes in Computer Science, pages

105–122. Springer, 2006. ISBN 978-3-540-77989-6.

G. Engels, J. M. Kuster, R. Heckel, and L. Groenewegen. Towards consistency-preserving

model evolution. In Proceedings of the International Workshop on Principles of Software

Evolution (IWPSE), pages 129–132. ACM Press, 2002. ISBN 1-58113-545-9. doi: http:

//doi.acm.org/10.1145/512035.512066.

294 (28th August, 2008)

BIBLIOGRAPHY

E. Ephrati, M. E. Pollack, and M. Milshtein. A cost-directed planner: Preliminary report.

In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI), pages

1223–1228, 1996.

K. Erol, J. Hendler, and D. S. Nau. HTN planning: complexity and expressivity. In AAAI’94:

Proceedings of the twelfth national conference on Artificial intelligence (vol. 2), pages 1123–

1128, Menlo Park, CA, USA, 1994. American Association for Artificial Intelligence. ISBN

0-262-61102-3.

J. Ferber. Multi-agent Systems: An Introduction to Distributed Artificial Intelligence.

Addison-Wesley, 1999. ISBN 978-0201360486.

S. Fickas, M. Feather, and J. Kramer, editors. Proceedings of the Workshop on Living with

Inconsistency, Boston, USA, 1997.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints: A

framework for integrating multiple perspectives in system development. International

Journal of Software Engineering and Knowledge Engineering, 2(1):31–57, 1992. URL

http://dblp.uni-trier.de/db/journals/ijseke/ijseke2.html#FinkelsteinKNFG92.

A. Finkelstein, G. Spanoudakis, and D. Till. Managing interference. In Joint proceedings

of the second international software architecture workshop (ISAW-2) and international

workshop on multiple perspectives in software development (Viewpoints ’96) on SIGSOFT

’96 workshops, pages 172–174, New York, NY, USA, 1996. ACM. ISBN 0-89791-867-3.

doi: http://doi.acm.org/10.1145/243327.243646.

A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency

handling in multiperspective specifications. IEEE Trans. Softw. Eng., 20(8):569–578, 1994.

ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.310667.

R. K. Fjeldstad and W. T. Hamlen. Application program maintenance study: Report to our

respondents. In N. Z. G. Parikh, editor, Tutorial on Software Maintenance, pages 13–30.

IEEE Computer Society Press, Los Alamitos, LA, 1982.

M. Fowler and K. Beck. Refactoring: improving the design of existing code. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-48567-2.

295 (28th August, 2008)

http://dblp.uni-trier.de/db/journals/ijseke/ijseke2.html#FinkelsteinKNFG92

BIBLIOGRAPHY

S. Franklin and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. In Intelligent Agents III. Agent Theories, Architectures and Languages (ATAL’96),

volume 1193, Berlin, Germany, 1996. Springer-Verlag.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley Pro-

fessional, January 1995. ISBN 0201633612.

M. Georgeff. Service orchestration: The next big challenge. DM Direct Special Report, June

2006.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings of the

Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677–682, 1987.

M. Gertz and U. W. Lipeck. An extensible framework for repairing constraint violations. In

Proceedings of the IFIP TC11 Working Group 11.5, First Working Conference on Integrity

and Internal Control in Information Systems, pages 89–111. Chapman & Hall, Ltd., 1997.

ISBN 0-412-82600-3.

A. K. Ghose. Formal tools for managing inconsistency and change in RE. In IWSSD ’00: Pro-

ceedings of the 10th International Workshop on Software Specification and Design, pages

171–181, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0884-7.

P. Giorgini, B. Henderson-Sellers, and M. Winikoff, editors. Agent-Oriented Information

Systems, 5th International Bi-Conference Workshop, AOIS 2003, Melbourne, Australia,

July 14, 2003 and Chicago, IL, USA, October 13th, 2003, Revised Selected Papers, volume

3030 of Lecture Notes in Computer Science, 2004. Springer.

R. L. Glass. The naturalness of object orientation: Beating a dead horse? IEEE Software,

19(3):104, 2002. ISSN 0740-7459. doi: http://dx.doi.org/10.1109/MS.2002.1003467.

J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency management for multiple-view

software development environments. IEEE Transactions on Software Engineering, 24(11):

960–981, 1998. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.730545.

S. Gwizdala, Y. Jiang, and V. Rajlich. JTracker - a tool for change propagation in Java.

In 7th European Conference on Software Maintenance and Reengineering (CSMR 2003),

pages 223–229. IEEE Computer Society, 26-28 March 2003. Benevento, Italy.

296 (28th August, 2008)

BIBLIOGRAPHY

I. Hadar and U. Leron. How intuitive is object-oriented design? Communications of the ACM,

51(5):41–46, 2008. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/1342327.1342336.

R. Haesen and M. Snoeck. Implementing consistency management techniques for conceptual

modeling. In Proceedings of the International Conference on the Unified Modeling Language

2004 (Workshop 7: Consistency Problems in UML-based Software Development), Lisbon,

Portugal, October 10–15 2004.

J. Han. Supporting impact analysis and change propagation in software engineering en-

vironments. In STEP ’97: Proceedings of the 8th International Workshop on Software

Technology and Engineering Practice (STEP ’97) (including CASE ’97), pages 172–182,

Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-7840-2.

A. E. Hassan and R. C. Holt. Predicting change propagation in software systems. In ICSM

’04: Proceedings of the 20th IEEE International Conference on Software Maintenance,

pages 284–293, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2213-

0.

D. Hearnden, M. Lawley, and K. Raymond. Incremental model transformation for the evo-

lution of model-driven systems. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,

editors, MoDELS’06: Model Driven Engineering Languages and Systems, volume 4199 of

Lecture Notes in Computer Science, pages 321–335. Springer, 2006. ISBN 3-540-45772-0.

B. Henderson-Sellers and P. Giorgini, editors. Agent-Oriented Methodologies. Idea Group

Publishing, 2005. ISBN 978-1591405818.

P. V. Hentenryck and V. Saraswat. Strategic directions in constraint programming. ACM

Computing Surveys, 28(4):701–726, 1996. ISSN 0360-0300. doi: http://doi.acm.org/10.

1145/242223.242279.

K. V. Hindriks, F. S. D. Boer, W. V. D. Hoek, and J.-J. C. Meyer. Agent programming in

3apl. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999. ISSN 1387-2532.

doi: http://dx.doi.org/10.1023/A:1010084620690.

J. F. Horty and M. E. Pollack. Evaluating new options in the context of existing plans.

Artificial Intelligence, 127(2):199–220, 2001. ISSN 0004-3702. doi: http://dx.doi.org/10.

1016/S0004-3702(01)00060-1.

297 (28th August, 2008)

BIBLIOGRAPHY

M.-P. Huget and J. Odell. Representing agent interaction protocols with agent UML. In

AAMAS ’04: Proceedings of the Third International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 1244–1245, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 1-58113-864-4. doi: http://dx.doi.org/10.1109/AAMAS.2004.

230.

IEEE. IEEE standard for software maintenance, IEEE Std 1219-1998. In IEEE Standards

Software Engineering, Volume Two: Process Standards, volume 2. IEEE Press, New York,

NY, 1999.

IEEE. International Standard - ISO/IEC 14764 IEEE Std 14764-2006. Software Engineering,

Software Life Cycle Processes, Maintenance (Revision of IEEE Std 1219-1998), 2006.

F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning and

system control. IEEE Expert: Intelligent Systems and Their Applications, 7(6):34–44,

1992. ISSN 0885-9000. doi: http://dx.doi.org/10.1109/64.180407.

ISO/IEC 14764. Information technology - software maintenance. ISO: Geneva, Switzerland,

1999.

I. Ivkovic and K. Kontogiannis. Tracing evolution changes of software artifacts through model

synchronization. In Proceedings of the 20th IEEE International Conference on Software

Maintenance (ICSM), pages 252–261. IEEE Computer Society, 2004. ISBN 0-7695-2213-0.

G. Jayatilleke, L. Padgham, and M. Winikoff. Component agent framework for non-experts

(CAFnE) toolkit. In R. Unland, M. Calisti, and M. Klusch, editors, Software Agent-

Based Applications, Platforms and Development Kits, Whitestein Series in Software Agent

Technologies and Autonomic Computing, pages 169–195. Birkhauser Basel, 2005.

G. B. Jayatilleke. A Model Driven Component Agent Framework for Domain Experts. PhD

thesis, RMIT University, Australia, March 2007.

N. R. Jennings. An agent-based approach for building complex software systems. Commu-

nications of the ACM, 44(4):35–41, 2001. ISSN 0001-0782. doi: http://doi.acm.org/10.

1145/367211.367250.

N. R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. In F. J. Garijo and

M. Boman, editors, Proceedings of the 9th European Workshop on Modelling Autonomous

298 (28th August, 2008)

BIBLIOGRAPHY

Agents in a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-99), volume

1647, pages 1–7. Springer-Verlag: Heidelberg, Germany, 30– 2 1999. URL http://citeseer.

nj.nec.com/article/jennings00agentoriented.html.

N. R. Jennings and M. J. Wooldridge. Applications of intelligent agents. In N. R. Jennings

and M. J. Wooldridge, editors, Agent Technology: Foundations, Applications, and Markets,

pages 3–28. Springer-Verlag: Heidelberg, Germany, 1998.

N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and develop-

ment. Journal of Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

M. Kajko-Mattsson. Preventive maintenance! do we know what it is? In ICSM ’00:

Proceedings of the International Conference on Software Maintenance (ICSM’00), pages

12–14, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0753-0.

B.-K. Kang and J. M. Bieman. A quantitative framework for software restructuring. Journal

of Software Maintenance, 11(4):245–284, 1999. ISSN 1040-550X.

A. G. Kleppe, J. B. Warmer, and W. Bast. MDA explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley, Boston, MA, 2003. ISBN 978-0321194428.

J. Koskinen. Software maintenance costs, September 2004. http://users.jyu.fi/ koski-

nen/smcosts.htm.

A. Krishna, S. A. Vilkomir, and A. K. Ghose. Consistency preserving co-evolution of formal

specifications and agent-oriented conceptual models. Information and Software Technology,

51(2):478–496, 2009. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2008.05.015.

P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42–50, 1995. ISSN

0740-7459. doi: http://dx.doi.org/10.1109/52.469759.

D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen. Change impact identifica-

tion in object oriented software maintenance. In ICSM ’94: Proceedings of the International

Conference on Software Maintenance, pages 202–211, Washington, DC, USA, 1994. IEEE

Computer Society. ISBN 0-8186-6330-8.

L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors. UML 2002, Model Engi-

neering, Concepts and Tools. Workshop on Consistency Problems in UML-based Software

Development, 2002:06, Ronneby, 2002. Blekinge Institute of Technology.

299 (28th August, 2008)

http://citeseer.nj.nec.com/article/jennings00agentoriented.html
http://citeseer.nj.nec.com/article/jennings00agentoriented.html

BIBLIOGRAPHY

L. Kuzniarz, G. Reggio, J. L. Sourrouille, and Z. Huzar, editors. UML 2003, Modeling

Languages and Applications. Workshop on Consistency Problems in UML-based Software

Development II, 2003:06, Ronneby, 2003. Blekinge Institute of Technology.

J. Law and G. Rothermel. Whole program path-based dynamic impact analysis. In ICSE ’03:

Proceedings of the 25th International Conference on Software Engineering, pages 308–318,

Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X.

M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings of the

IEEE, Special Issue on Software Evolution, 68(9):1060–1076, September 1980.

M. M. Lehman. Laws of software evolution revisited. In EWSPT ’96: Proceedings of the 5th

European Workshop on Software Process Technology, pages 108–124, London, UK, 1996.

Springer-Verlag. ISBN 3-540-61771-X.

M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software change.

Academic Press Professional, Inc., San Diego, CA, USA, 1985. ISBN 0-12-442440-6.

M. M. Lehman and F. N. Parr. Program evolution and its impact on software engineering.

In ICSE ’76: Proceedings of the 2nd International Conference on Software Engineering,

pages 350–357, Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Metrics and

laws of software evolution - the nineties view. In METRICS ’97: Proceedings of the 4th

International Symposium on Software Metrics, page 20, Washington, DC, USA, 1997.

IEEE Computer Society. ISBN 0-8186-8093-8.

B. P. Lientz and E. B. Swanson. Software Maintenance Management: a Study of the Mainte-

nance of Computer Application Software in 487 Data Processing Organizations. Addison-

Wesley Publishing Company, Reading, MA, USA, 1980. ISBN 0201042053.

W. Liu, S. Easterbrook, and J. Mylopoulos. Rule based detection of inconsistency in UML

models. In Kuzniarz et al. [2002], pages 106–123.

M. Ljungberg and A. Lucas. The OASIS air-traffic management system. In Proceedings of

the Second Pacific Rim International Conference on Artificial Intelligence (PRICAI ’92),

Seoul, Korea, 1992.

300 (28th August, 2008)

BIBLIOGRAPHY

M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as

Interaction (A Roadmap for Agent Based Computing). AgentLink, 2005. URL http://

www.agentlink.org/roadmap/al3rm.pdf.

Luqi. A graph model for software evolution. IEEE Transactions on Software Engineering,

16(8):917–927, 1990. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.57627.

H. Malik and A. E. Hassan. Supporting software evolution using adaptive change propaga-

tion. In ICSM ’08: Proceedings of the 24th IEEE International Conference on Software

Maintenance, Beijing, China, September 2008.

I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff. An open meteorological

alerting system: Issues and solutions. In V. Estivill-Castro, editor, Proceedings of the 27th

Australasian Computer Science Conference, pages 351–358, Dunedin, New Zealand, 2004.

E. Mayol and E. Teniente. A survey of current methods for integrity constraint maintenance

and view updating. In Proceedings of the Workshops on Evolution and Change in Data

Management, Reverse Engineering in Information Systems, and the World Wide Web and

Conceptual Modeling, pages 62–73, London, UK, 1999. Springer-Verlag. ISBN 3-540-66653-

2.

E. Mealy and P. Strooper. Evaluating software refactoring tool support. In Proceedings of the

Australian Software Engineering Conference (ASWEC), pages 331–340. IEEE Computer

Society, April 2006. doi: 10.1109/ASWEC.2006.26.

S. J. Mellor, A. N. Clark, and T. Futagami. Guest editors’ introduction: Model-driven

development. IEEE Software, 20(5):14–18, 2003.

T. Mens. Introduction and roadmap: History and challenges of software evolution. In T. Mens

and S. Demeyer, editors, Software Evolution. Springer Berlin Heidelberg, 2008.

T. Mens and T. D’Hondt. Automating support for software evolution in UML. Automated

Software Engineering, 7(1):39–59, 2000. ISSN 0928-8910. doi: http://dx.doi.org/10.1023/

A:1008765200695.

T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on Software

Engineering, 30(2):126–139, 2004. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.

2004.1265817.

301 (28th August, 2008)

http://www.agentlink.org/roadmap/al3rm.pdf
http://www.agentlink.org/roadmap/al3rm.pdf

BIBLIOGRAPHY

T. Mens and R. Van Der Straeten. Incremental resolution of model inconsistencies. In J. L.

Fiadeiro and P.-Y. Schobbens, editors, Algebraic Description Techniques, volume 4409,

pages 111–127. Springer-Verlag, 2007.

T. Mens, R. V. D. Straeten, and J. Simmonds. A framework for managing consistency of

evolving UML models. In H. Yang, editor, Software Evolution with UML and XML, pages

1–31. Idea Group Publishing, 2005. ISBN 1591404630.

T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and resolving model inconsis-

tencies using transformation dependency analysis. In O. Nierstrasz, J. Whittle, D. Harel,

and G. Reggio, editors, Model Driven Engineering Languages and Systems, volume 4199,

pages 200–214. Springer-Verlag, October 2006.

D. L. Métayer. Describing software architecture styles using graph grammars. IEEE

Transactions on Software Engineering, 24(7):521–533, 1998. ISSN 0098-5589. doi:

http://dx.doi.org/10.1109/32.708567.

H. W. Miller. Reengineering legacy software systems. Digital Press, Newton, MA, 1998.

ISBN 978-1555581954.

J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group, 2003.

G. Moerkotte and P. C. Lockemann. Reactive consistency control in deductive databases.

ACM Transaction Database Systems, 16(4):670–702, 1991. ISSN 0362-5915. doi: http:

//doi.acm.org/10.1145/115302.115298.

L. Monostori, J. Váncza, and S. Kumara. Agent based systems for manufacturing. CIRP

Annals-Manufacturing Technology, 55(2):697–720, 2006.

M. G. Morris, C. Speier, and J. A. Hoffer. An examination of procedural and object-oriented

systems analysis methods: Does prior experience help or hinder performance? Decision

Sciences, 30(1):107–136, 1999.

H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. D. Storey, S. R. Tilley, and K. Wong. Reverse

engineering: a roadmap. In ICSE ’00: Proceedings of the 22th International Conference

on Software Engineering (Future of Software Engineering track), pages 47–60, New York,

NY, USA, 2000. ACM. doi: http://doi.acm.org/10.1145/336512.336526.

302 (28th August, 2008)

BIBLIOGRAPHY

S. Munroe, T. Miller, R. A. Belecheanu, M. Pěchouček, P. McBurney, and M. Luck. Crossing

the agent technology chasm: Lessons, experiences and challenges in commercial applica-

tions of agents. Knowledge Engineering Review, 21(4):345–392, 2006. ISSN 0269-8889. doi:

http://dx.doi.org/10.1017/S0269888906001020.

N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote agent: to boldly go where

no AI system has gone before. Artificial Intelligence, 103(1-2):5–47, 1998. ISSN 0004-3702.

doi: http://dx.doi.org/10.1016/S0004-3702(98)00068-X.

D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. SHOP2:

An HTN planning system. Journal of Artificial Intelligence Research (JAIR), 20:379–404,

2003.

C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a consistency checking and

smart link generation service. ACM Transactions on Internet Technology, 2(2):151–185,

2002. ISSN 1533-5399. doi: http://doi.acm.org/10.1145/514183.514186.

C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with repair actions.

In ICSE ’03: Proceedings of the 25th International Conference on Software Engineering,

pages 455–464. IEEE Computer Society, 2003. ISBN 0-7695-1877-X.

M. Nowostawski, M. Purvis, and S. Cranefield. A layered approach for modelling agent

conversations. In Proceedings of the 2nd International Workshop on Infrastructure for

Agents, MAS, and Scalable MAS, 5th International Conference on Autonomous Agents,

pages 163–170, Montreal, 2001.

B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency in software develop-

ment. Computer, 33(4):24–29, 2000. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.

839317.

H. S. Nwana. Software agents: An overview. Knowledge Engineering Review, 11(2):205–244,

1995.

Object Management Group. Meta Object Facility Specification (MOF 1.4). http://www.

omg.org/technology/documents/formal/mof.htm, 2002.

Object Management Group. Object Constraint Language (OCL) 2.0 Specification. http:

//www.omg.org/docs/ptc/03-10-14.pdf, 2006.

303 (28th August, 2008)

http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf

BIBLIOGRAPHY

Object Management Group. UML 2.0 Superstructure and Infrastructure Specifications. http:

//www.omg.org/technology/uml/, 2004.

Object Management Group. Unified Modeling Language (UML) 1.4.2 specification (ISO/IEC

19501). http://www.omg.org/technology/uml/, 2005.

Object Management Group. XML Metadata Interchange (XMI) Specification (Version 2.0).

http://www.omg.org/technology/documents/formal/xmi.htm, 2003.

J. Odell. Objects and agents compared. Journal of Object Technology, 1(1):41–53, 2002.

URL http://www.jot.fm/issues/issue_2002_05/column4.pdf.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In G. Wagner,

Y. Lesperance, and E. Yu, editors, The Agent Oriented Information Systems Workshop at

the 17th National conference on Artificial Intelligence, pages 3–17. ICue Publishing, 2000.

W. F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-Oriented

Application Frameworks. PhD thesis, University of Illinois at Urbana-Champaign, 1992.

L. Padgham and M. Perepletchikov. Prioritisation mechanisms to support incremental devel-

opment of agent systems. International Journal of Agent-Oriented Software Engineering,

1(3/4):477–497, 2007. ISSN 1746-1375. doi: http://dx.doi.org/10.1504/IJAOSE.2007.

016269.

L. Padgham and M. Winikoff. Developing intelligent agent systems: A practical guide. John

Wiley & Sons, Chichester, 2004. ISBN 0-470-86120-7.

L. Padgham, J. Thangarajah, and M. Winikoff. Tool support for agent development using

the Prometheus methodology. In First international workshop on Integration of Software

Engineering and Agent Technology (ISEAT 2005), Melbourne, Australia, September 2005.

L. Padgham, M. Winikoff, S. DeLoach, and M. Cossentino. A unified graphical notation for

AOSE. In M. Luck and J. J. Gomez-Sanz, editors, Proceedings of the Ninth International

Workshop on Agent Oriented Software Engineering, pages 61–72, Estoril, Portugal, May

2008.

D. L. Parnas. Software aging. In ICSE ’94: Proceedings of the 16th International Conference

on Software Engineering, pages 279–287, Los Alamitos, CA, USA, 1994. IEEE Computer

Society Press. ISBN 0-8186-5855-X.

304 (28th August, 2008)

http://www.omg.org/technology/uml/
http://www.omg.org/technology/uml/
http://www.omg.org/technology/uml/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.jot.fm/issues/issue_2002_05/column4.pdf

BIBLIOGRAPHY

M. Perepletchikov and L. Padgham. Use case and actor driven requirements engineering: An

evaluation of modifications to prometheus. In M. Pechoucek, P. Petta, and L. Z. Varga,

editors, Multi-Agent Systems and Applications IV, 4th International Central and East-

ern European Conference on Multi-Agent Systems, CEEMAS 2005, Budapest, Hungary,

September 15-17, 2005, Proceedings, volume 3690 of Lecture Notes in Computer Science.

Springer, 2005. ISBN 3-540-29046-X.

T. M. Pigoski. Practical Software Maintenance: Best Practices for Managing Your Software

Investment. John Wiley & Sons, Inc., New York, NY, USA, 1996. ISBN 0471170011.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In R. Bordini,

M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-Agent Programming,

pages 149–174. Springer Science+Business Media Inc., USA, 9 2005. Book chapter.

M. Polo, M. Piattini, and F. Ruiz, editors. Advances in software maintenance management:

Technologies and solutions. Idea Group Publishing, U.S.A, 2003. ISBN 978-1591400479.

I. Porres. Model refactorings as rule-based update transformations. In P. Stevens, J. Whittle,

and G. Booch, editors, UML 2003 - The Unified Modeling Language, 6th International

Conference, volume 2863 of Lecture Notes in Computer Science, San Francisco , CA, USA,

Oct 2003. Springer.

D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using design

artifacts: the case of interaction protocols. In AAMAS ’02: Proceedings of the first inter-

national joint conference on Autonomous agents and multiagent systems, pages 960–967,

New York, NY, USA, 2002. ACM. ISBN 1-58113-480-0. doi: http://doi.acm.org/10.1145/

544862.544966.

V. Rajlich. Changing the paradigm of software engineering. Communications of the ACM,

49(8):67–70, 2006.

V. Rajlich. Theory of data structures by relational and graph grammars. In Proceedings of the

Fourth Colloquium on Automata, Languages and Programming, pages 391–411, London,

UK, 1977. Springer-Verlag. ISBN 3-540-08342-1.

V. Rajlich. A methodology for incremental changes. In Proceedings of the 2nd International

305 (28th August, 2008)

BIBLIOGRAPHY

Conference on eXtreme Programming and Flexible Process in Software Engineering, pages

10–13, Cagliary, Italy, May 2001.

V. Rajlich. A model for change propagation based on graph rewriting. In Proceedings of the

International Conference on Software Maintenance (ICSM), pages 84–91. IEEE Computer

Society, 1997. ISBN 0-8186-8013-X.

V. Rajlich. Software change and evolution. In SOFSEM ’99: Proceedings of the 26th Con-

ference on Current Trends in Theory and Practice of Informatics on Theory and Practice

of Informatics, pages 189–202, London, UK, 1999. Springer-Verlag. ISBN 3-540-66694-X.

LNCS 2863.

V. Rajlich. Modeling software evolution by evolving interoperation graphs. Annals of Soft-

ware Engineering, 9(1-4):235–248, 2000. ISSN 1022-7091.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In MAA-

MAW ’96: Proceedings of the 7th European workshop on Modelling autonomous agents in

a multi-agent world : agents breaking away, pages 42–55. Springer-Verlag, 1996. ISBN

3-540-60852-4.

A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In J. Allen,

R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd International Conference on

Principles of Knowledge Representation and Reasoning (KR’91), pages 473–484. Morgan

Kaufmann, 1991. ISBN 1-55860-165-1.

A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In C. Rich,

W. Swartout, and B. Nebel, editors, Proceedings of the Third International Conference on

Principles of Knowledge Representation and Reasoning, pages 439–449, San Mateo, CA,

1992. Morgan Kaufmann Publishers.

A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of the

First Intl. Conference on Multiagent Systems, San Francisco, 1995.

S. P. Reiss. Incremental maintenance of software artifacts. In ICSM ’05: Proceed-

ings of the 21st IEEE International Conference on Software Maintenance, pages 113–

122, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2368-4. doi:

http://dx.doi.org/10.1109/ICSM.2005.54.

306 (28th August, 2008)

BIBLIOGRAPHY

G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test selection tech-

nique. IEEE Transactions on Software Engineering, 24(6):401–419, 1998. ISSN 0098-5589.

doi: http://dx.doi.org/10.1109/32.689399.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd

edition, 2003.

B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In Proceedings

Program Analysis for Software Technology (PASTE), pages 46–53, June 2001.

D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer, 39(2):

25–31, 2006. doi: http://dx.doi.org/10.1109/MC.2006.58.

R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing Legacy Systems: Software Technolo-

gies, Engineering Process and Business Practices. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2003. ISBN 0321118847.

S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-driven

software development. IEEE Software, 20(5):42–45, 2003. ISSN 0740-7459. doi: http:

//dx.doi.org/10.1109/MS.2003.1231150.

W. Shen and D. H. Norrie. Agent-based systems for intelligent manufacturing: A state-of-

the-art survey. Knowledge and Information Systems, 1(2):129–156, 1999.

Y. Shoham. Agent-Oriented Programming. Artificial Intelligence, 60(1):51–92, 1993.

G. Spanoudakis and A. Zisman. Inconsistency management in software engineering: Survey

and open research issues. In K. S. Chang, editor, Handbook of Software Engineering and

Knowledge Engineering, pages 24–29. World Scientific, 2001.

J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1989. ISBN 0-13-983768-X.

R. V. D. Straeten and M. D’Hondt. Model refactorings through rule-based inconsistency

resolution. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing,

pages 1210–1217, New York, NY, USA, 2006. ACM. ISBN 1-59593-108-2. doi: http:

//doi.acm.org/10.1145/1141277.1141564.

307 (28th August, 2008)

BIBLIOGRAPHY

A. Sturm and O. Shehory. A framework for evaluating agent-oriented methodologies. In

Giorgini et al. [2004], pages 94–109.

E. B. Swanson. The dimensions of maintenance. In ICSE ’76: Proceedings of the 2nd In-

ternational Conference on Software Engineering, pages 492–497, Los Alamitos, CA, USA,

1976. IEEE Computer Society Press.

A. A. Takang and P. A. Grubb. Software maintenance : concepts and practice. International

Thomson Computer Press, London ; Boston, 2nd edition, 2003. ISBN 978-9812384263.

J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding resource conflicts in

intelligent agents. In Proceedings of the 15th European Conference on Artificial Intelligence,

ECAI’2002, pages 18–22. IOS Press, 2002.

Q.-N. N. Tran and G. C. Low. Comparison of ten agent-oriented methodologies. In

B. Henderson-Sellers and P. Giorgini, editors, Agent-Oriented Methodologies, chapter

Chapter XII, pages 341–367. Idea Group Publishing, 2005.

L. Tratt. A change propagating model transformation language. Journal of Object Technol-

ogy, 7(3):107–126, March 2008. URL http://www.jot.fm/issues/issue_2008_03/article3/.

J. J. P. Tsai, T. Weigert, and H.-C. Jang. A hybrid knowledge representation as a basis

of requirement specification and specification analysis. IEEE Transactions on Software

Engineering, 18(12):1076–1100, 1992. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.

184762.

S. Urban, A. Karadimce, and R. Nannapaneni. The implementation and evaluation of

integrity maintenance rules in an object-oriented database. Proceedings of the Eighth

International Conference on Data Engineering, pages 565–572, February 1992. doi:

10.1109/ICDE.1992.213152.

R. Van Der Straeten. Inconsistency Management in Model-Driven Engineering. PhD thesis,

Vrije Universiteit Brussel, 2005.

R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using description logics to

maintain consistency between UML models. In P. Stevens, J. Whittle, and G. Booch,

editors, UML 2003 - The Unified Modeling Language, pages 326–340. Springer-Verlag,

2003. ISBN 3-540-20243-9. LNCS 2863.

308 (28th August, 2008)

http://www.jot.fm/issues/issue_2008_03/article3/

BIBLIOGRAPHY

A. van Deursen, E. Visser, and J. Warmer. Model-driven software evolution: A research

agenda. In D. Tamzalit, editor, Proceedings 1st International Workshop on Model-Driven

Software Evolution (MoDSE), pages 41–49. University of Nantes, 2007.

A. van Lamsweerde, E. Letier, and R. Darimont. Managing conflicts in goal-driven require-

ments engineering. IEEE Transactions on Software Engineering, 24(11):908–926, 1998.

ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.730542.

H. Van Vliet. Software engineering: principles and practice. John Wiley & Sons, Inc., 2nd

edition, 2001. ISBN 0471975087.

I. Vessey and S. A. Conger. Requirements specification: learning object, process, and data

methodologies. Communications of the ACM, 37(5):102–113, 1994. ISSN 0001-0782. doi:

http://doi.acm.org/10.1145/175290.175305.

A. von Knethen and M. Grund. Quatrace: a tool environment for (semi-) automatic

impact analysis based on traces. ICSM’03: Proceedings of 19th International Con-

ference on Software Maintenance, pages 246–255, Sept. 2003. ISSN 1063-6773. doi:

10.1109/ICSM.2003.1235427.

R. Wagner, H. Giese, and U. Nickel. A plug-in for flexible and incremental consistency man-

agement. In UML 2003: Modeling Languages and Applications. Workshop on Consistency

Problems in UML-based Software Development II, San Francisco, CA, USA, 2003.

J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models Ready

for MDA. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. ISBN

0321179366.

M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th International Conference

on Software Engineering, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press. ISBN

0-89791-146-6.

M. Williamson. Optimal planning with a goal-directed utility model. In K. J. Hammond,

editor, Proceedings of the Second International Conference on AI Planning Systems, pages

176–181. AAAI, 1994. URL citeseer.ist.psu.edu/williamson94optimal.html.

309 (28th August, 2008)

citeseer.ist.psu.edu/williamson94optimal.html

BIBLIOGRAPHY

M. Winikoff. Defining syntax and providing tool support for agent uml using a textual

notation. International Journal of Agent-Oriented Software Engineering, 1(2):123–144,

2007.

M. Wooldridge and P. Ciancarini. Agent-oriented software engineering: the state of the art.

In Proceedings of the 1st international workshop on Agent-oriented software engineering

(AOSE 2000), pages 1–28. Springer-Verlag New York, Inc., Limerick, Ireland, 2001.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The Knowledge

Engineering Review, 10(2):115–152, 1995.

S. Yau, J. Collofello, and T. MacGregor. Ripple effect analysis of software maintenance. Com-

puter Software and Applications Conference, 1978. COMPSAC ’78. The IEEE Computer

Society’s Second International, pages 60–65, 1978.

S. S. Yau, R. A. Nicholl, J. J.-P. Tsai, and S.-S. Liu. An integrated life-cycle model for software

maintenance. IEEE Transactions on Software Engineering, 14(8):1128–1144, 1988. ISSN

0098-5589. doi: http://dx.doi.org/10.1109/32.7624.

F. Zambonelli and A. Omicini. Challenges and research directions in agent-oriented software

engineering. Autonomous Agents and Multi-Agent Systems, 9(3):253–283, 2004. ISSN

1387-2532. doi: http://dx.doi.org/10.1023/B:AGNT.0000038028.66672.1e.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems: The

Gaia methodology. ACM Transactions on Software Engineering and Methodology, 12(3):

317–370, 2003. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/958961.958963.

J. Zhang, Y. Lin, and J. Gray. Model-Driven Software Development, chapter Generic and

Domain-Specific Model Refactoring Using a Model Transformation Engine, pages 199–217.

Springer Berlin Heidelberg, 2005.

310 (28th August, 2008)

	Abstract
	Introduction
	Research questions
	Research outcomes and main contributions
	Existing work
	Thesis structure

	Background
	Software maintenance and evolution
	Overview
	Classification of changes
	Change propagation in a change mini-cycle process
	Program comprehension
	Change impact analysis
	Change propagation
	Restructuring
	Verification and validation
	Re-documentation

	Related work on change propagation
	Formalisation of change propagation process
	Inconsistency-based change propagation
	Change propagation and model transformation

	Agent-based computing
	Intelligent agents
	The Belief-Desire-Intention (BDI) model
	Agent-Oriented Software Engineering

	Object Constraint Language
	Chapter summary

	Change Propagation Framework
	Building consistency relationships in design models
	What is a model?
	How to define consistency in models?

	An inconsistency based approach to change propagation
	Inconsistency management
	Classification of repair actions

	Architectural overview of our change propagation framework
	Chapter summary

	Case Study I: Prometheus
	Overview of the Prometheus methodology
	System specification
	Architectural design
	Detailed design
	Prometheus diagrams

	The four-layer metamodel hierarchy
	A metamodel for Prometheus
	ModelEntity
	Actor
	Role
	Percept
	Action
	Data
	Goal
	Scenario
	Step
	Agent
	Capability
	Message
	Protocol
	Pelement
	Plan

	Consistency constraints
	Role
	Agent
	Capability
	Percept
	Step
	Message
	Pelement
	Plan
	Data

	Example
	Chapter summary

	Case Study II: UML
	Overview of UML
	UML metamodel
	Case study application
	Initial system
	A proposed change
	Change propagation process
	Generate repair plan types
	Check constraints
	Generate repair plan instances
	Calculate cost
	Select one plan to execute and execute plan

	Chapter summary

	Plan Generation
	Formally defining repair actions
	Automatic repair plan generation: issues and solutions
	Extended repair plan syntax
	Plan generation rules
	Navigation
	Constraints on attributes
	Constraints on Boolean-valued set expressions
	Constraints on non-Boolean-valued set expressions
	Boolean connectives
	Rules for addition and deletion involving derived sets
	Discussion

	Example
	Correctness and completeness
	Related work
	Chapter summary

	Plan Selection
	Issues and solutions in repair plan selection
	Cost definition
	Example

	Properties of the cost definitions
	Cost calculation algorithms
	Initial algorithms
	Advanced algorithms with pruning capabilities
	Example
	Complexity analysis

	Related work
	Chapter summary

	Implementation
	Architectural overview
	Dresden OCL2 Toolkit
	Repair Plan Generator module
	Constraint Processor package
	Repair Plan Builder packages
	User Interface package

	Change Propagation Engine module
	Constraint Evaluator
	Cost Calculator

	Chapter summary

	Evaluation
	Issues in evaluation
	Which methodology should be used?
	Which application(s) should be used?
	What changes to the application should be done?
	How do we select primary changes to perform?
	How are basic costs determined?

	A model of the change propagation process
	Experiment process and metrics
	An overview of the evaluation application
	Change scenarios and results
	Change 1: Adding wind speed alerting
	Change 2: Implementing a variable threshold alerting
	Change 3: Adding volcanic ash
	Change 4: Logging sent alerts
	Change 5: Having multiple ``TAF Manager'' agents
	Change 6: Subscription
	Summary of all changes

	Efficiency analysis
	Discussion
	Chapter summary

	Conclusions and Future Work
	Summary of contributions
	Future work

	Proof
	Proofs for generated repair plans for making a constraint true, i.e. R(ct)
	Navigation
	Constraints on attributes
	Constraints on Boolean-valued set expressions
	Constraints on non-Boolean-valued set expressions
	Boolean connectives

	Proofs for generated repair plans for making a constraint false, i.e. R(cf)
	Rules for addition involving derived sets, i.e. Q+
	Rules for deletion involving derived sets, Q-

	Bibliography

