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Summary

Genomic search tools can provide valuable insights into the chemical structure, evolutionary

origin and biochemical function of genetic material. A homology search algorithm compares

a protein or nucleotide query sequence to each entry in a large sequence database and reports

alignments with highly similar sequences. The exponential growth of public data banks such

as GenBank has necessitated the development of fast, heuristic approaches to homology

search. The versatile and popular blast algorithm, developed by researchers at the US

National Center for Biotechnology Information (NCBI), uses a four-stage heuristic approach

to efficiently search large collections for analogous sequences while retaining a high degree of

accuracy. Despite an abundance of alternative approaches to homology search, blast remains

the only method to offer fast, sensitive search of large genomic collections on modern desktop

hardware. As a result, the tool has found widespread use with millions of queries posed each

day. A significant investment of computing resources is required to process this large volume

of genomic searches and a cluster of over 200 workstations is employed by the NCBI to

handle queries posed through the organisation’s website. As the growth of sequence databases

continues to outpace improvements in modern hardware, blast searches are becoming slower

each year and novel, faster methods for sequence comparison are required.

In this thesis we propose new techniques for fast yet accurate homology search that result

in significantly faster blast searches. First, we describe improvements to the final, gapped

alignment stages where the query and sequences from the collection are aligned to provide a

fine-grain measure of similarity. We describe three new methods for aligning sequences that

roughly halve the time required to perform this computationally expensive stage.

Next, we investigate improvements to the first stage of search, where short regions of

similarity between a pair of sequences are identified. We propose a novel deterministic

finite automaton data structure that is significantly smaller than the codeword lookup table

employed by ncbi-blast, resulting in improved cache performance and faster search times.
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We also discuss fast methods for nucleotide sequence comparison. We describe novel

approaches for processing sequences that are compressed using the byte packed format already

utilised by blast, where four nucleotide bases from a strand of DNA are stored in a single

byte. Rather than decompress sequences to perform pairwise comparisons, our innovations

permit sequences to be processed in their compressed form, four bases at a time. Our

techniques roughly halve average query evaluation times for nucleotide searches with no

effect on the sensitivity of blast.

Finally, we present a new scheme for managing the high degree of redundancy that is

prevalent in genomic collections. Near-duplicate entries in sequence data banks are highly

detrimental to retrieval performance, however existing methods for managing redundancy are

both slow, requiring almost ten hours to process the GenBank database, and crude, because

they simply purge highly-similar sequences to reduce the level of internal redundancy. We

describe a new approach for identifying near-duplicate entries that is roughly six times faster

than the most successful existing approaches, and a novel approach to managing redundancy

that reduces collection size and search times but still provides accurate and comprehensive

search results.

Our improvements to blast have been integrated into our own version of the tool. We

find that our innovations more than halve average search times for nucleotide and protein

searches, and have no significant effect on search accuracy. Given the enormous popularity

of blast, this represents a very significant advance in computational methods to aid life

science research.



Chapter 1

Introduction

Modern, high-throughput sequencing technologies and initiatives such as the Human Genome

Project have resulted in an explosion of genomic data in recent years. As a result, publicly

available data banks such as GenBank [Benson et al., 2005], EMBL [Kanz et al., 2005]

and DDBJ [Miyazaki et al., 2004] contain over 50 gigabytes of uncompressed sequence data

and continue to exhibit exponential growth. Mining such collections can provide valuable

insights into the characteristics of proteins and DNA and lead to important discoveries in

the fields of biology, medicine and agriculture. For example, an homology search is often

the first step towards understanding the function of a newly sequenced protein or strand

of DNA. Homology search tools compare a query sequence to every sequence in a collection

with the aim of identifying highly-similar and possibly related entries. A poorly-annotated or

unknown sequence may be used to query a large database of biological sequences with the aim

of identifying a related and well-annotated sequence in the collection. Similar sequences often

share a common three-dimensional structure, perform the same role in an organism and have

a common evolutionary origin. As a result, homology search can provide an insight into the

structure, function and evolutionary origin of a newly sequenced or poorly annotated protein

or strand of DNA. This can lead to discoveries in the fields of biochemistry and molecular

biology, resulting in new methods for crop production, and new medicines to combat diseases

such as cancer and HIV infection.

The degree of similarity between biological sequences is measured using a sequence align-

ment algorithm, a comparison method that models the process through which proteins and

DNA evolve and measures the number of elementary changes required to transform one

sequence into another. The Smith-Waterman algorithm [1981] is a dynamic programming
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technique commonly employed to compute the optimal alignment between two sequences.

However, a database search using the exhaustive and highly-sensitive Smith-Waterman app-

roach is not feasible for any collection of significant size — our tests show that a search of

GenBank can take hours or even days on a modern workstation. As a result, several heuristic

approaches have been developed that sacrifice a small amount of accuracy for substantially

faster search. The most successful heuristic approach is blast, which was first described by

Altschul et al. [1990] and later refined by Altschul et al. [1997].

Blast provides fast yet sensitive search of large genomic databases and is the most

popular homology search tool in widespread use. The blast tool is ubiquitous with copies

of the software installed in almost every medium- to large-scale molecular biology research

facility, and it has been widely-adapted to different hardware, operating systems, and tasks.

The online interface to the tool at the popular National Center for Biotechnology Information

(NCBI) website1 is used to evaluate over 120,000 queries each day [McGinnis and Madden,

2004], and the 1997 paper describing the algorithm [Altschul et al., 1997] has been cited more

than 10,000 times2. Blast remains the most successful approach to homology search despite

a plethora of more recent methods such as index-based approaches [Kent, 2002; Williams and

Zobel, 2002] and discontinuous seeds [Ma et al., 2002; Li et al., 2004].

Blast uses a four-stage approach to search that efficiently identifies collection sequences

with a high degree of similarity to the query [Altschul et al., 1997]. A filtering strategy

is employed, where each stage involves more computation per collection sequence than the

previous, but fewer collection sequences are considered in later stages. In the first stage,

blast identifies hits: short, fixed-length regions of similarity between the query sequence

and sequences in the collection. A compact lookup structure, which is derived from the

query sequence, is used to scan the collection and identity matching regions efficiently. In

the second stage, an ungapped alignment is performed, where the regions from the query

and collection sequences immediately surrounding a hit are aligned. An ungapped alignment

provides a coarse measure of similarity and does not consider the more complex gap events.

Collection sequences that produce a high-scoring ungapped alignment are passed on to the

third stage, where a more fine-grain gapped alignment is performed. The computationally

expensive gapped alignment stage compares the query to the remaining collection sequences

using a dynamic programming algorithm that is similar to Smith-Waterman [Zhang et al.,

1998a]. Statistically significant alignments are displayed to the user in the fourth stage.

1See http://www.ncbi.nlm.nih.gov/
2See: http://scholar.google.com/
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Despite the success of the blast approach, it is not perfect. Searches with blast are

becoming slower each year because of the well-known exponential growth in genomic collec-

tions, and despite improvements in hardware [Chen, 2004; Attwood and Higgs, 2004]. Chen

[2004] reports that searches of the entire GenBank nucleotide database are becoming roughly

64% slower each year. With millions of queries posed each day, blast searches represent a

very significant investment in computing resources; a cluster of 200 workstations is required

just to handle the volume of queries posed through the NCBI website [McGinnis and Mad-

den, 2004]. It is therefore imperative that the fundamental algorithms in blast continue to

be improved, and that new heuristics to improve search speed are discovered.

Despite the widespread appeal of blast, there has been little work since 1997 — other

than that of the original authors — into improving the fundamental algorithmic steps that

it uses to efficiently and accurately search genomic collections. We believe that further im-

provements to the algorithm have been hindered by three crucial factors. First, the algorithm

has already been carefully refined and optimised by a large team of developers at the NCBI

over many years, leaving few obvious yet significant improvements. Second, blast is an in-

credibly complex algorithm that is difficult to understand in detail, let alone improve upon.

A detailed description of the underlying algorithm has never been published, and we have

discovered that important aspects of the blast approach have not been described at all in

existing literature. Further, no in-depth analysis of the performance characteristics of each

stage has been carried out. Finally, we believe that many researchers are adverse to im-

proving existing approaches, and prefer to develop their own, novel algorithms for homology

search that often fail to find widespread use for one reason or another.

In this thesis we present a range of improvements to the fundamental blast algorithm.

Our innovations include new methods for aligning sequences, additional stages for filtering

collection sequences, novel data structures and algorithms for faster comparison, and new

methods for representing and storing sequence data. When combined, our improvements

increase the search speed of blast by a factor of two. Importantly, none of our improve-

ments have a significant effect on overall search accuracy; we believe that faster approaches

to homology search will be welcome by biologists, but not at the expense of accuracy. In-

deed, several novel search strategies have been proposed that provide significantly faster

search but reduced search accuracy, none of which have achieved the same level of success as

blast [Zhang et al., 2000; Ning et al., 2001; Kent, 2002]. Many of the concepts introduced

in this thesis are applicable to homology search in general, and can be trivially adapted for

use with other genomic search tools; we have chosen blast as our testbed due to its popu-
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larity and wide-spread use. Our improvements to blast are embodied in a new, open-source

version of the tool that is freely available for download at http://www.fsa-blast.org/.

1.1 Thesis Structure

We begin our motivation for fast and accurate genomic search techniques with an introduction

to existing sequence comparison and search methods in Chapters 2 and 3. In Chapter 2, we

provide an overview of genomics, proteomics, and sequence comparison methods that are

widely used in computational biology. We describe proteins and DNA, and the roles that

these two molecules play in living organisms. A vast quantity of protein and DNA sequence

data has been made available through public data banks such as GenBank, and the analysis

of such data can lead to important breakthroughs and discoveries by biologists.

The degree of similarity between a pair of sequences is commonly measured using a

pairwise sequence alignment algorithm that computes the minimum number of elementary

changes or mutations required to transform one sequence into another. Dynamic program-

ming techniques such as the Smith-Waterman algorithm [1981] are used to compute the

optimal or highest-scoring alignment between two sequences, and in Chapter 2 we review a

selection of sequence alignment algorithms that support varying alignment types and scoring

schemes. We also describe methods for recording the optimal alignment through traceback

and approaches to recording locally optimal alignments.

Algorithms for computing the optimal alignment between a pair of sequences are com-

putationally expensive in both space and time. In Chapter 2, we also describe two heuris-

tic approaches, called banded alignment and dropoff alignment, that aim to minimise the

computational cost of aligning sequences by dismissing unlikely paths through the dynamic

programming matrix. We also explain how substitution matrices are constructed and how

they are employed to score matching pairs of amino acids in protein sequence alignments.

In Chapter 3 we survey existing methods for searching genomic collections, also known

as homology search. We begin this chapter by introducing three classic approaches; Smith-

Waterman search, fasta [Pearson and Lipman, 1988] and blast [Altschul et al., 1990; 1997].

The Smith-Waterman search approach compares a single query to each sequence in a collec-

tion using the exhaustive Smith-Waterman alignment algorithm, and is impractical for any

collection of significant size because it is too slow; we show that a search of GenBank with

a typical query takes hours if not days. Fasta and blast both employ heuristic approaches

that dismiss the majority of collection sequences using more coarse-grain comparisons before
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aligning only a small number of remaining sequences using more time consuming methods.

Of these two methods, blast is substantially faster than fasta — at the expense of a small

loss in sensitivity — and is used to conduct millions of searches worldwide each day. In

Chapter 3, we describe the blast algorithm in detail, based on existing published descrip-

tions [Altschul et al., 1990; 1997] and our own analysis of the popular ncbi-blast software.

We also present our own in-depth analysis of the performance characteristics of each stage

of the algorithm, and an analysis of usage data for blast searches conducted through the

NCBI website3.

In Chapter 3, we also discuss a range of alternative approaches to homology search, each

of which provides advantages as well as disadvantages over the traditional approaches such

as blast. Indexed-based approaches such as cafe [Williams and Zobel, 2002], blat [Kent,

2002], PatternHunter [Ma et al., 2002; Li et al., 2004], and ssaha [Ning et al., 2001] rely on

an index structure such as those commonly employed in text retrieval [Witten et al., 1999] to

efficiently search large collections. Discontinuous seeds have received considerable attention

at late [Brown et al., 2004] and we survey existing literature concerning this approach to the

first, hit detection stage of homology search. We discuss existing distributed methods for

dividing the search task amongst a cluster of processors, and explain iterative methods such

as psi-blast [Altschul et al., 1997] and sam-t98 [Karplus et al., 1998] that use sequence

profiles.

Several important issues must be considered in the design of a homology search tool,

which we also discuss in Chapter 3. We survey methods for calculating an alignment E-value

that represents the likelihood that an alignment score is due to a chance similarity between

unrelated sequences. Measures of the statistical significance of an alignment are useful for

distinguishing true-positive matches between related sequences from false-positive matches

between unrelated sequences. We describe in detail how blast calculates alignment E-values

with respect to a scoring model and query and collection characteristics.

Low complexity regions in sequences adversely affect measures of the statistical signifi-

cance of alignments, and the quality of alignments themselves, thus we also discuss approaches

for identifying and removing low complexity regions during homology search in Chapter 3.

We also survey existing approaches for assessing the retrieval effectiveness of genomic search

tools that employ the sequence classifications found in databases such as SCOP [Murzin et al.,

1995; Andreeva et al., 2004]. Finally, we discuss the pernicious effects of internal redundancy

3See http://www.ncbi.nlm.nih.gov/BLAST/
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on search performance, in the form of near-duplicate entries, that is often found in genomic

collections such as GenBank. We review existing approaches for managing redundancy that

typically rely upon an all-against-all comparison of the collection to identify highly-similar

sequences, and then prune entries to reduce the amount of duplication.

We begin describing our improvements to the blast homology search algorithm in Chap-

ter 4. In this chapter, we describe three new approaches to the final stages of blast that

compute gapped alignments. Our first contribution is an optimisation to the dynamic pro-

gramming recurrence relations used to align sequences that reduces the amount of compu-

tation per cell with no effect on the result. The optimisation is based on a rearrangement

of the recurrence relations that was used to align protein sequences and DNA sequences in

Zhang et al. [1997], but has since received little attention. We show that our implementation

of the gapped alignment stages of blast that incorporates the optimisation is around 20%

faster than ncbi-blast for protein sequence alignments.

Our most significant contribution in Chapter 4 is a new step in the blast algorithm that

reduces the computational cost of searching with negligible effect on accuracy. This new step

— semi-gapped alignment — compromises between the efficiency of ungapped alignment and

the accuracy of gapped alignment, allowing blast to accurately filter sequences between

the second and third stages with lower computational cost. Semi-gapped alignment is a

dynamic programming technique that permits gaps only at certain residue positions in the

alignment, and closely approximates the more computationally expensive gapped alignment.

Our experiments reveal that when carefully tuned, the semi-gapped alignment approach

reduces average search times by 40% with no significant effect on accuracy.

In Chapter 4, we also propose an heuristic — restricted insertion alignment — that

avoids unlikely evolutionary paths through the alignment matrix with the aim of reducing

computational costs. The approach does not consider adjacent gaps during alignment, where

an insertion in one sequence is followed immediately by an insertion in the other; we show

that adjacent gaps are sufficiently rare that this has negligible effect on accuracy. Restricted

insertion can be applied either to the gapped alignment or the semi-gapped alignment stages

of blast, and provides a further 8% reduction in search time. When combined, our three

improvements more than double the speed of the gapped alignment stages in blast, and we

conclude that our techniques are important improvements to the algorithm. The results and

discussions presented in this chapter are based on work published in Cameron et al. [2004].

In Chapter 5, we focus on the first stage of blast that identifies short, fixed length regions

or words that match between the query sequence and sequences in the collection. We refer to
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a single matching region between two sequences as a hit. Blast uses a lookup structure to

identify the location of words in the query that match each of the words extracted from the

collection. We consider the effect of varying the word length and neighbourhood threshold

parameters that are used for hit detection, and demonstrate that a larger word length can

be used to achieve comparable search accuracy while reducing the amount of computation

required to detect hits. Unfortunately, larger word lengths also increase the size of the

lookup structure used to identify hits efficiently, resulting in poor cache performance and

slower search times in practice.

Ncbi-blast uses a codeword lookup approach to identify hits. Each word from the

collection is converted into a special codeword that provides a unique integer representation

of that word. The codeword is used to access an entry in a large lookup table that specifies

an offset into the query for each hit. Our main contribution in Chapter 5 is a new data

structure for identifying hits that is specifically designed for protein search. Our approach

employs a deterministic finite automaton (DFA) that is optimised for modern hardware,

making careful use of cache-conscious approaches to improve speed. For blast searches

with default parameters, the DFA is around 94% smaller than the codeword lookup table

used by ncbi-blast, and produces the same results as ncbi-blast but takes around 59%

of the time on Intel-based platforms; we also present results for other popular architectures.

Further, our method is practical for a word length of four, a parameter setting that is not

currently supported by ncbi-blast. We also perform a detailed comparison of the two

different search modes supported by blast, where either one hit or two hits are required

to trigger an ungapped extension in the second stage. Our analysis shows that the two-hit

mode provides faster search times than the one-hit mode with comparable search accuracy,

in agreement with Altschul et al. [1997]. A preliminary version of the results and discussions

presented in this chapter appeared in Cameron et al. [2006c].

In Chapter 6, we focus on the blast approach to searching nucleotide collections that

is embodied in the blastn tool. Surprisingly, blastn has had very little attention paid to

its algorithms, optimisations, and innovation, and the algorithms it uses do not follow those

described in the 1997 blast paper [Altschul et al., 1997]. It is important that blastn is

state-of-the-art, especially since nucleotide collections such as GenBank dwarf their protein

counterparts in size, and our analysis of the NCBI usage statistics reveal that the majority of

blast search conducted through their website are blastn searches. We propose several sig-

nificant improvements to the blastn algorithm. Each of our schemes is based on compressed

byte packed formats [Williams and Zobel, 1997], where four nucleotide bases are represented
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by a single byte. Our approach compares query and collection sequences four bases at a time,

permitting very fast query evaluation using lookup tables and numeric comparisons.

In Chapter 6, we describe improvements to each stage of blastn that utilise the byte

packed compression scheme. We present new methods for hit detection and ungapped align-

ment that compare collection sequences in their compressed form, leading to a 43% reduction

in average search time with no effect on the result. Our most significant innovations are two

new, fast gapped alignment schemes for accurate sequence alignment without decompress-

ing collection sequences. The first scheme, bytepacked alignment, places restrictions on the

location of gaps allowing collection sequences to be processed one byte, or four nucleotide

bases, at a time. This heuristic approach reduces the time taken to align sequences by 78%

with negligible effect on accuracy. The second scheme, table-driven alignment, uses a spe-

cially designed lookup table to align four nucleotide bases at a time, with consideration for

gaps, using an approach inspired by the Four Russians technique of Wu et al. [1996]. This

approach leads to 72% faster gapped alignment times and guarantees no loss in accuracy.

When combined, our innovations more than double the speed of blastn with no detectable

effect on search accuracy. The results and discussions presented in this chapter are based on

Cameron and Williams [2006].

Internal redundancy, in the form of near-duplicate entries, has several detrimental effects

on search performance including slower query evaluation times, more repetitive results, less

accurate measures of alignment significance and an increased likelihood of profile saturation

in iterative search tools such as psi-blast [Altschul et al., 1997]. In Chapter 7, we present

new methods for managing redundancy in genomic databases. Our first contribution is a

new approach for detecting highly similar sequences within large genomic collections. Near-

duplicate detection has several important applications such as the assembly of expressed

sequence tag data [Burke et al., 1999; Malde et al., 2003] and the comparison of entire

genomes [Delcher et al., 1999; Miller, 2001], in addition to managing redundancy. While

several approaches exist for this task, they are becoming infeasible — either in space or

in time — as genomic collections continue to grow at a rapid pace. The most successful

existing approaches use a form of all-against-all comparison that is quadratic in the number

of sequences in the database, and scales poorly with the exponential grown of collections

such as GenBank.

In Chapter 7, we present a novel approach for identifying highly similar sequences based

on document fingerprinting, an technique that has been successfully applied to collections

of text and web documents in Information Retrieval [Manber, 1994; Heintze, 1996; Broder
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et al., 1997; Shivakumar and Garcia-Molina, 1999]. Our approach is based on the lossless

spex algorithm [Bernstein and Zobel, 2004] that has been successfully employed to identify

near-duplicate entries in large text collections [Bernstein and Zobel, 2005]. We find that

genomic data has vastly differing characteristics to English text, rendering the original spex

approach unsuitable for sequence data. We address this problem with a variation of the

original approach, called slotted spex, that efficiently and accurately identifies pairs of highly-

similar sequences in large genomic collections. Further, our approach uses a modest amount

of memory and executes in a time roughly proportional to the size of the collection. We

demonstrate substantial speed improvements compared to the CD-HIT algorithm, the most

successful existing approach for clustering large protein sequence databases. Further, there

is no significant change in sensitivity between CD-HIT and our own approach based on

fingerprinting methods.

Our second contribution in Chapter 7 is a new approach for managing redundancy once it

has been identified. Existing schemes create a representative sequence database by removing

sequences so that no two entries share more than a certain level of similarity [Holm and

Sander, 1998; Park et al., 2000b; Li et al., 2001b]. This leads to less accurate and less

authoritative search results because the representative collection is not comprehensive. We

present a new approach for managing redundancy that identifies clusters of near-identical

sequences and uses a representative union-sequence to describe all members of a cluster. The

union-sequence contains special wildcard characters to denote residue positions where the

cluster members differ, so that it can represent all of the member sequences simultaneously.

During search, the query is compared to the union-sequence representing each cluster only;

cluster members are then aligned to the query if the union-sequence achieves a sufficiently

high score. This reduces the number of sequence comparisons, leading to significantly faster

search.

In addition to faster search times, our approach provides a form of compression. We store

each member of a cluster as the difference between that member and the corresponding union-

sequence. This edit information specifies how to transform the union-sequence representing a

cluster into each member of that cluster, and reduces on-disk collection size significantly. We

have applied our clustering strategy to blast and found that it affords a 27% reduction is

collection size and a corresponding 22% decrease in search time with no significant change in

overall search accuracy. When combined with our improvements to protein search described

in Chapters 4 and 5, our schemes more than halve average query evaluation times when

compared to ncbi-blast. The discussion and results presented in this chapter are based on
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the published papers Cameron et al. [2006b], Bernstein and Cameron [2006], and Cameron

et al. [2006a].

In Chapter 8, we discuss possible future extensions of the work presented in this thesis.

We consider applying our new methods for fast homology search to the iterative psi-blast

algorithm [Altschul et al., 1997]. We expect that our improvements to blast will deliver a

similar two-fold speed gain when applied to psi-blast, and our novel scheme for managing

redundancy will improve search accuracy by reducing the likelihood of profile saturation. We

also propose optimisations that are specific to the iterative process. Next, we consider inte-

grating the efficient comparison and filtering techniques employed by blast to index-based

approaches such as cafe [Williams and Zobel, 2002], and propose extending our work on

duplicate detection to nucleotide data. Finally, we discuss the benefits of applying our novel

fingerprinting algorithm described in Chapter 7 to English text, and consider tighter inte-

gration of the individual stages of blast. We also present concluding remarks in Chapter 8,

and reiterate our contributions to genomic search that halve average query evaluation times

for the popular blast homology search tool.



Chapter 2

Background

The study of biology at the molecular level has led to an in-depth understanding of life

and the biological processes embodied in living organisms. This has resulted in a range

of medical advances, including new medicines to combat a broad range of diseases such as

cancer, neurodegenerative conditions, heart disease and HIV infection. Further, research into

molecular biology has provided benefits to agriculture, with new methods for crop production

and raising livestock.

The field of bioinformatics provides computational methods that are an integral part of

research into genomics, biochemistry and molecular biology. A myriad of new approaches

have been proposed to assist in obtaining, analysing and comparing biological data. In this

chapter we describe some of the fundamental principles of genomics and molecular biology.

We describe DNA and protein sequences, and explain how such sequence data is recorded.

We also introduce basic methods for comparing genomic sequences through sequence align-

ment that are commonly employed. Sequence analysis can provide valuable insights into the

biological role, chemical structure, and evolutionary origin of proteins and related DNA, and

a sequence alignment provides a measure of similarity between two sequences by modelling

the process through which proteins and DNA evolve. We also describe existing methods for

reducing the computation involve in aligning sequences by dismissing unlikely evolutionary

events.

We begin in Section 2.1 with an overview of DNA, RNA, and proteins and their functions

in living organisms. We describe the universal genetic code and the process by which DNA

encodes proteins. We also present a brief overview of the publicly available sequence data

banks and methods for sequencing biological material.

13
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Genomic sequences are commonly compared using a sequence alignment algorithm that

models the process through which proteins and DNA evolve [Sankoff and Kruskal, 1983;

Durbin, 1998]. In Section 2.2 we describe methods for aligning sequences using dynamic

programming, and present commonly employed scoring schemes and alignment algorithms.

To reduce the time taken to align sequences, two heuristic approaches have been proposed

that dismiss unlikely regions of the search space. In Section 2.3 we describe these two

approaches, called banded alignment and dropoff alignment. We explain how these methods

reduce the computation involved in aligning sequences with only minor effect on accuracy.

Finally, in Section 2.4 we describe substitution matrices, which are commonly used to

score protein sequence alignments. We describe the general theory of substitution matrices

and how the popular PAM [Dayhoff et al., 1978] and BLOSUM [Henikoff and Henikoff, 1992]

matrices are constructed.

2.1 Genomic sequence data

The two types of genomic sequence data are nucleotide and protein sequences. A nucleotide

sequence is the series of nucleotide bases that form a strand of deoxyribonucleic acid (DNA)

or ribonucleic acid (RNA). There are four nucleotide bases. A protein sequence is an ordered

series of amino acids that form a protein, with each of the twenty commonly occurring amino

acids represented by a distinct character. We provide a brief introduction to proteins and

protein sequence data in Section 2.1.1. We describe nucleotide sequence data and the role

of DNA and RNA in living organisms in Section 2.1.2. Finally, in Section 2.1.3 we describe

some of the publicly available collections of sequence data and related biological information.

For more detailed introductions to genomics and the properties of proteins and DNA see

Lehninger et al. [1993] and Alberts et al. [1994].

2.1.1 Proteins

Proteins perform a wide range of functions in living organisms, including catalyzing reactions,

intra- and extracellular communication, and providing strength and protection to biological

structures. A protein is formed by a chain of naturally occurring molecules called amino

acids. An amino acid that forms part of the protein chain is often referred to as a residue.

There are twenty commonly occurring amino acids that are notated by the three-letter or

one-letter abbreviations listed in Table 2.1. Proteins can vary widely in length, however

most proteins are a few hundred residues long. Once assembled as a chain of residues, a



2.1. GENOMIC SEQUENCE DATA 15

Amino acid Abbreviations

Alanine Ala A

Cysteine Cys C

Aspartate Asp D

Glutamate Glu E

Phenylalanine Phe F

Glycine Gly G

Histidine His H

Isoleucine Ile I

Lysine Lys K

Leucine Leu L

Amino acid Abbreviations

Methionine Met M

Asparagine Asn N

Proline Pro P

Glutamine Gln Q

Arginine Arg R

Serine Ser S

Threonine Thr T

Valine Val V

Tryptophan Trp W

Tyrosine Tyr Y

Table 2.1: The twenty standard amino acids and their associated three-letter and one-letter

abbreviations.

protein forms a three-dimensional structure often referred to as the tertiary structure of the

protein. The three-dimensional structure of a human protein α1-antitrypsin is illustrated in

Figure 2.1. The tertiary structure can be broken down into commonly occurring secondary

structural elements that span several adjacent residues. Examples of secondary structural

elements include α-helices, β-sheets, coils, and turns. The example protein in Figure 2.1

primarily contains α-helices, that are shown in light grey, and β-sheets, that are shown in

dark grey.

At the simplest level, a protein can be represented as an amino acid sequence, which is

called the primary structure. A protein sequence is typically represented by a text string

using the one-letter amino acid abbreviations in Table 2.1. In addition to the twenty com-

monly occurring amino acids, the International Union of Pure and Applied Chemistry —

International Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) define four

additional character codes that are used to represent ambiguous residues [Liébecq, 1992]:

the letter B represents aspartic acid (D) or asparagine (N), the letter Z represents glutamate

(E) or glutamine (Q), and the letters X and U represent any of the twenty amino acids. These

extra codes are used to represent positions in a protein sequence where the exact residue

is unknown, possibly due to limitations when determining protein sequences in laboratory

experiments.

Two techniques are currently available to biologists for determining the precise tertiary
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Figure 2.1: Human α1-antitrypsin (PDB accession 1HP7) three-dimensional protein struc-

ture.

structure of a protein: X-ray crystallography and Nuclear Magnetic Resonance (NMR). Both

techniques are time consuming and costly, and currently available technologies cannot be

successfully applied to all proteins. Although more than three million protein sequences

have been deposited into the publicly available databases over the past fifty years1, the

tertiary structure of most proteins remains unknown. A publicly available database of protein

structures, the Protein Data Bank (PDB) [Berman et al., 2000], currently contains fewer than

40,000 entries2, equating to roughly 1% of all sequenced proteins.

Proteins with a common evolutionary origin are referred to as being homologous to one

another — a term that is often misused to refer to sequence similarity [Reeck et al., 1987].

Proteins with a shared evolutionary origin often have a similar tertiary structure and perform

similar biological functions. As a result, information about the structure of a protein can

provide useful insights into its origin and role in the organism. Further, proteins that share

a common structure tend to be similar at the sequence level. Therefore, similarity between

protein sequences can be used to infer common structure, function, and evolutionary origin.

1Based on number of sequences in the GenBank non-redundant protein database on November 23, 2005
2Based on statistics available at http://www.rcsb.org/pdb/ on November 23, 2005
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G T C A A C

C GGA T T

5’

3’
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5’

template (−) strand

nontemplate (+) strand

Hydrogen bonds

Figure 2.2: A pair of nucleotide strands form the DNA double helix structure. Each base

in the nontemplate (+) strand is linked to its complement in the template (-) strand via

a hydrogen bond. The two strands twist around each other to form a helix. A nucleotide

sequence is read from the 5’ terminus to the 3’ terminus.

2.1.2 Nucleic acids

Deoxyribonucleic acid (DNA) is a molecular repository for genetic information and is respon-

sible for encoding protein sequences in living organisms. A strand of DNA is a chemically

linked chain of nucleotide bases that include the pyrimidines, thymine (t) and cytosine (c),

and the purines, guanine (g) and adenine (a). The start of a nucleotide strand is denoted as

the 5’ terminus and the end of the strand is the 3’ terminus. A pair of anti-parallel nucleotide

strands form the DNA double helix, as illustrated in Figure 2.2. Each base in the plus (+)

or nontemplate strand is linked via a hydrogen bond to a base in the minus (−) or template

strand to form a base pair. Each pair of linked bases complement one another such that t is

always paired with a and c is always paired with g.

A DNA or nucleotide sequence is represented by a string composed of the letters a, c,

g, and t that are used to represent each of the four nucleotide bases. Nucleotide sequences

range widely in length and can be up to several million bases long. An example of a DNA

sequence is shown in Figure 2.3. As with protein sequences, the IUPAC-IUBMB define

eleven ambiguity codes that are used in nucleotide sequences at positions where the exact

base is unknown [Liébecq, 1992]. The complete set of nucleotide ambiguity codes is given

in Table 2.2. The frequency of wildcards in collections such as GenBank is extremely low:

over 99% of character occurrences are one of the four nucleotide bases, and almost 98% of

the wildcard occurrences are n [Williams and Zobel, 1997].
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tgcccaaatc gccaccggct tatttttggc tatacactat acagccgata cctccctcgc

attctcatct atcgcccaca tctgtcggga tgttaataac ggctgactcc ttcgtaatct

tcatgccaac ggtgcatcat ttttctttat ctgtatctac ttccacatcg gacggggcct

ttattacggc tcatacctct acaaagagac atgaaacatc ggagtaatcc tcttattctt

agtgatagcc acagcttttg tcggctacgt tcttccgtga gggcaaatgt cattttgagg

tgccacagta attactaacc ttctctcagc cgccccctac attggctacg acctcgtcca

atggatctga ggaggattct cagtagacaa tgctactctt acccgattct tcacattcca

ctttattctt ccgtttatta

Figure 2.3: A mitochondrial DNA sequence from the R. temporaria (the common frog).

GenBank accession number AY619564.

Code Meaning

R G or A (purine)

Y T or C (pyrimidine)

K G or T

M A or C

S G or C

W A or T

Code Meaning

B C, G or T

D A, G or T

H A, C or T

V A, C or G

N A, C, G, or T (any)

Table 2.2: Nucleotide ambiguity codes and their meanings.

During sequencing, the linear sequence of bases in DNA is read from the 5’ terminus to

the 3’ terminus. Either strand may be sequenced, although the nontemplate strand is more

commonly processed. Depending on which strand is processed, the resulting sequence may

have one of two different possible orientations. The minus strand sequence is the reverse

complement (also known as the Watson-Crick complement) of the plus strand sequence, that

is, equivalent to the former after the sequence has been reversed and each of the bases has

been replaced with its complement. For example, the plus strand sequence in Figure 2.2 is

GTCAAC and the minus strand sequence is its reverse complement GTTGAC.

Almost every cell in a living organism contains a copy of the entire DNA or genome

for that organism. Genomes vary in length between species; the human genome is roughly

three billion base pairs in length yet the genome for Haemophilus influenzae is less than two

million base pairs [Myers, 1999]. Short sections of the genome, referred to as exons, are used
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Amino acid Codon(s)

A GCT,GCC,GCA,GCG

C TGC,TGT

D GAT,GAC

E GAA,GAG

F TTT,TTC

G GGT,GGC,GGA,GGG

H CAT,CAC

I ATT,ATC,ATA

K AAA,AAG

L TTA,TTG,CTT,CTC,CTA,CTG

Amino acid Codon(s)

M ATG

N AAT,AAC

P CCT,CCC,CCA,CCG

Q CAA,CAG

R CGT,CGC,CGA,CGG,AGA,AGG

S TCT,TCC,TCA,TCG,AGT,AGC

T ACT,ACC,ACA,ACG

V GTT,GTC,GTA,GTG

W TGG

Y TAT,TAC

Table 2.3: List of codons that encode each amino acid.

to encode protein sequences. The remaining sections of DNA are non-coding regions and are

not responsible for encoding protein sequences.

DNA encodes for proteins through a two-stage process. First, the DNA is transcribed to

create Ribonucleic acid (RNA), and second, the coding regions of the RNA is translated to

produce a protein sequence. In an abstract sense, RNA has a similar structure to DNA and

is also composed of a series of nucleotide bases or base pairs. The only significant differences

are that RNA is generally composed of a single strand and that the base uracil (u) occurs

in RNA instead of thymine (t); in the context of nucleotide sequence analysis u and t are

interchangeable. During transcription, the encoding portion of the DNA is transcribed into

messenger RNA. The RNA transcript is a copy of the nontemplate strand of DNA. The

messenger RNA is then translated into a protein sequence, where each codon (sequence of

three consecutive nucleotide bases) maps to a single amino acid using the universal genetic

code.

The mapping between triplets of bases in DNA and amino acids in proteins that applies

to living organisms is listed in Table 2.3. The translation process is lossy due to degeneracy

in the genetic code, where multiple codons encode the same amino acid. This is because the

number of distinct nucleotide codons is 43 = 64 which is considerable larger than 20, the

number of amino acids that they encode. As a result, several different codons may translate

to the same amino acid; for example the codons, ATT, ATC, and ATA all encode for isoleucine.
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2.1.3 Genomic collections

In this section we briefly describe some of the frequently used genomic collections. A more

detailed list of publicly available genomic databases can be found elsewhere [Galperin, 2004].

Three publicly available services provide a major comprehensive collection of nucleotide

data from repositories worldwide:

• the GenBank nucleotide database that is maintained by the National Center for Biotech-

nology Information (NCBI) in the USA [Benson et al., 1993; 2005]; and

• the DNA Database of Japan (DDBJ) that is maintained by the National Institute of

Genetics in Japan [Miyazaki et al., 2004]; and

• the European Molecular Biology Laboratory (EMBL) that is based in the United King-

dom also provides an exhaustive collection of sequences [Kanz et al., 2005].

The three collections are regularly updated and mirror the contents of one another daily,

so that recently deposited sequences in one database will soon appear in all three collec-

tions [Rapp and Wheeler, 2005]. We use the GenBank database for the majority of experi-

ments in this thesis.

The GenBank nucleotide database currently contains more than 53 billion nucleotide

base pairs stored in almost 50 million sequences from over 150,000 different organisms3. The

collection has roughly doubled in size every 1.4 years, which is faster than improvements

in the processing power of modern workstations [Attwood and Higgs, 2004]. Further, this

trend is expected to continue with new technologies for high-throughput sequencing and

support from scientific journals, many of which now require new sequences to be submitted

to GenBank before the related work is published [Rapp and Wheeler, 2005]. The resulting

exponential growth of data in GenBank between 1982 and 2004 is illustrated in Figure 2.4.

The NCBI also distributes a compact version of the GenBank nucleotide collection that

is roughly one-quarter of the original size and does not include “high-throughput, patent,

genomic or sequence tagged cite (STS) sequences” [McGinnis and Madden, 2004] that are

typically of less interest to researchers. The pruned collection is the default database for

blast [Altschul et al., 1990; 1997] searches via the NCBI website4, with the complete Gen-

Bank database no longer supported by the online tool. We refer to the compact version

of the collection as the GenBank non-redundant (NR) nucleotide database throughout this

3GenBank Release 150, October 2005
4See: http://www.ncbi.nlm.nih.gov/BLAST/
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Figure 2.4: Size of GenBank between 1982 and 2004.

thesis and use a copy of the NR nucleotide database downloaded 4 April 2005 and containing

13,626,473,199 basepairs in 3,023,092 sequences for our experiments.

Several publicly available resources provide comprehensive collections of protein sequence

data and related functional and structural information, including:

• the SWISS-PROT protein database [Boeckmann et al., 2003] and Protein Information

Resource (PIR) [Wu et al., 2003] non-redundant (NREF) database, which are compre-

hensive protein sequence databases; and,

• the Protein Sequence Database (PSD) component of the PIR, which provides functional

annotation of proteins and contains over 280,000 entries5; and,

• the Protein Data Bank (PDB) [Berman et al., 2000], which is a collection of structural

data for over 33,000 proteins6.

Further, the GenBank non-redundant (NR) protein database [Wheeler et al., 2002] main-

tained by NCBI contains sequences from all of the above collections. For our experiments

in this thesis, we use a recent copy of the NR protein database that was downloaded 18

August 2005 and contains 2,739,666 sequences in around 938,574,629 characters of sequence

data unless reported otherwise. Although the quantity of protein sequence information in

5Release 80.0, December 2004
6Based on statistics from http://www.rcsb.org/pdb, November 2005
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GenBank is considerably less than the quantity of nucleotide data, protein sequences still

represents a sizeable portion of the data bank.

In addition to the primary genomic collections that we have described, several secondary

collections have been constructed that classify proteins into related families based on struc-

tural, functional, or sequence similarities. The SCOP database [Murzin et al., 1995; Andreeva

et al., 2004] uses structural information to classify proteins. Each protein in SCOP is hierar-

chically classified into a class, fold, superfamily, and family. The classifications are based on

structures of over 25,000 proteins from the PDB database7. The CATH database [Orengo

et al., 1997] also provides a hierarchical classification for proteins that is based on four levels:

protein class (C), architecture (A), topology (T), and homologous superfamily (H). Unlike

SCOP, the CATH database includes entries for proteins where the precise structure is un-

known. This is possible because the classification process is based on sequence as well as

structural similarities, leading to arguably less reliable classifications [Brenner et al., 1998].

In addition to shorter protein and nucleotide sequences, several complete genomes have

been sequenced and assembled as the result of large-scale genome sequencing projects. The

first organism to be completely sequenced was Haemophilus influenzae with the entire 1.83

million base pair genome recorded in 1995 [Myers, 1999]. Since then, over 300 genomes have

been sequenced and made publicly available through services such as the Genomes OnLine

Database [Bernal et al., 2001]. The number of sequenced genomes is roughly doubling every

1.3 years [Attwood and Higgs, 2004].

An increasing number of genomes have been sequenced, but technical limitations continue

to hamper the process. Current sequencing technologies are limited to reads of a few hundred

nucleotide bases at a time, so entire genomes cannot be sequenced directly [Myers, 1999;

Pop et al., 2002]. Instead, an approach called shotgun sequencing is used to acquire short

fragments of the longer sequence, which are then assembled into a larger sequence. The task

of fragment assembly is complicated by several issues including sequencing errors, incomplete

coverage, and unknown orientation of fragments. For a more detailed description of genome

sequencing see Myers [1999] and Pop et al. [2002].

2.1.4 Summary

In this section we have provided an overview of genomic sequence data. We have described

amino acid sequences and nucleotide sequences that are the primary structure of proteins and

7Version 1.69, July 2005
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DNA. Proteins perform a range of functions in biological organisms and are represented as a

sequence of the twenty commonly occurring amino acids. A strand of DNA is composed of a

sequence over an alphabet of four nucleotide bases. DNA is responsible for encoding proteins

through a two-stage process of transcription and translation, where a nucleotide triplet or

codon encodes for a single amino acid. Hence, the two forms of sequence data are closely

related and can provide valuable insights into the function, structure, and evolutionary origin

of proteins and DNA.

We have surveyed some of the important public repositories of genomic data. Comprehen-

sive sequence databanks such as GenBank contain more than fifty millions DNA sequences

and over three million protein sequences. Smaller collections such as the PDB, PIR, SCOP,

and CATH provide structural or functional annotations for a smaller number of proteins; the

precise structure, function, and evolutionary relationship of the vast majority of sequences

remains unknown. Recently, the sequencing of complete genomes has become possible with

several hundred genomes sequenced to date.

In the next section, we discuss methods for comparing sequences through sequence align-

ment, including methods for scoring alignments and algorithms for finding the optimal or

highest-scoring alignment between two sequences.

2.2 Sequence alignment

Homologous relationships between proteins are more easily detected using structures, rather

than sequences [Sierk and Pearson, 2004]. Unfortunately, the precise three-dimensional struc-

ture of most proteins remains unknown and biologists must often rely upon sequence data

for most computational or in silico studies. Homologous proteins typically share at least

20-25% identity at the sequence level [Pearson, 1996]. As a result, sequence similarity can

be used to infer similar structure, function and shared evolutionary origin of genetic mate-

rial. Sequence comparison is therefore an invaluable tool for directing research by providing

information about newly sequenced or poorly annotated proteins. For example, a biologist

may identify a high degree of sequence similarity between an unannotated protein found in a

human, and a protein that has been shown experimentally to perform a specific function in a

mouse. The sequence similarity suggests that the unannotated protein has a similar chemical

structure and evolutionary history, and is responsible for a similar function in humans. The

relationship can be used as the basis of experimental work to test this hypothesis. Sequence

comparison can also be used for a range of bioinformatic studies and can lead to the discovery
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of new families of proteins [Pearson, 1990].

The degree of similarity between genomic sequences is commonly measured using a se-

quence alignment score, a measure of similarity that is closely related to other measures for

approximate string matching such as the Levenshtein distance [Levenshtein, 1966] or Longest

Common Subsequence (LCS) [Needleman and Wunsch, 1970; Apostolico and Guerra, 1987].

(For a more detailed overview of approximate string matching algorithms see Hall and Dowl-

ing [1980] and Navarro [2001].) A sequence alignment provides a measure of the number

of point mutations, or elementary changes, required to transform one sequence into another

and has been shown to be an effective model of the evolutionary process [Pearson and Miller,

1992; Crooks et al., 2005].

Three basic types of changes are common in the evolution of biological sequences. First,

one nucleotide base or amino acid maybe be substituted for another. Second, a base or

residue may be inserted into the sequence. Last, a base or residue maybe be deleted from

the sequence. These three elementary changes are the basis of sequence alignment [Sankoff

and Kruskal, 1983; Durbin, 1998].

Consider the short pairwise alignment of the two nucleotide sequences in Figure 2.5. The

alignment contains five matches, where a base in sequence A matches the corresponding base

in sequence B, as denoted by the symbol | in the middle line. The alignment also contains a

single mismatch or substitution, where the third base G from sequence A does not match the

third base A from sequence B. Finally, the alignment contains two insertions in sequence A

that are represented by dashes (-). An insertion in one sequence is equivalent to a deletion

in the other; in this example, the insertions in sequence A can also be regarded as deletions

with respect to sequence B. Insertions and deletions are collectively referred to as indels,

and a series of adjacent insertions in an alignment is referred to as a gap. The alignment in

Figure 2.5 contains two indels, or a gap of length two. We discuss methods for scoring each

component of an alignment in Section 2.2.1.

Given an alignment scoring scheme, the highest scoring alignment between two sequences

is called the optimal alignment. To compute an optimal alignment, all possible evolutionary

pathways between two sequences are computed with respect to a scoring scheme [Sankoff

and Kruskal, 1983]. Two types of alignment algorithms are used to computing an optimal

alignment: global and local. A global pairwise alignment spans the entire length of both

sequences, starting at the beginning and finishing at the end of each sequence. We describe

methods for computing the optimal global alignment using dynamic programming in Sec-

tion 2.2.3. A local alignment does not need to cover the entire length of both sequences.
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| |   |     | |
A C G T − − C C

A C A T G G C C

Sequence A:

Sequence B:

Alignment score: +2+2−1+2−4−1+2+2 = 4

Figure 2.5: Pairwise alignment of nucleotide sequences ACGTCC and ACATGGCC. Insertion are

represented by a dash and matches are represented by a vertical line. The alignment contains

five matches, one mismatch, and a gap of length two. Using a scoring scheme of +2 for a

match, -1 for a mismatch and affine gap penalties of -3 for opening a gap and -1 for each

insertion the alignment score is 4.

Instead, a local alignment may span only a region from each sequence. We discuss methods

for computing optimal local alignments in Section 2.2.4.

2.2.1 Scoring sequence alignments

The optimal alignment score of two sequences provides a measure of their similarity. (Global

alignment also provides a measure of the distance between two sequences.) An alignment

scoring scheme consist of two main components: a method for scoring matches and mis-

matches between pairs of aligned bases or residues, and a method for scoring gaps. For

nucleotide alignments, a constant reward for each match and a constant penalty for each

mismatch are commonly applied [Altschul et al., 1990; Nicholas et al., 2000]. Matching bases

are rewarded and increase the alignment score by r while mismatching bases are penalised

and decrease the score by p, where r and p are positive integers. For protein sequences, a

substitution matrix is commonly employed to score the alignment of amino acid pairs [Day-

hoff et al., 1978; Henikoff and Henikoff, 1992]. The likelihood of substitution is greater for

some amino acids pairs then others and the substitution matrix encapsulates this informa-

tion. The matrix specifies an alignment score for every possible pair of residues. In general,

pairs of identical residues and residues with similar properties produce a positive alignment

score, while dissimilar residues produce a negative score. We discuss substitution matrices

and methods for their construction further in Section 2.4.

The two most common methods for scoring gaps in the alignment of biological sequences

are linear gap costs [Needleman and Wunsch, 1970] and affine gap costs [Gotoh, 1982]. For

linear gap costs, the cost c of a gap of length k is defined by c(k) = k × e, where e is
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the cost of each insertion in the gap and e > 0, k ≥ 1. The affine gap model applies an

additional penalty o for opening a gap as well as the penalty e for each insertion in that

gap. For affine gap costs, the cost c of a gap of length k is defined as c(k) = o + k × e.

The penalty for beginning a gap is typically high but the penalty for continuing the gap

is usually low. The affine gap model has been shown to be more effective than the linear

gap model because adjacent insertions are more likely to occur in the evolutionary process

than non-adjacent insertions [Fitch and Smith, 1983]. Further, we show in Section 2.2.5 that

optimal alignments can be computed relatively efficiently using affine gap costs. The choice

of gap open and extension penalties are typically made through empirical studies due to the

lack of solid statistical theory for penalising gaps [Pearson, 1996; Reese and Pearson, 2002].

To illustrate the popular methods for scoring sequence alignments let us return to the

example in Figure 2.5 and compute the score for this alignment using a scoring scheme with a

match reward of r = 2, a mismatch penalty of p = 1 and affine gap costs of o = 3 and e = 1.

The five matches, one mismatch, and gap of length two result in a cumulative alignment

score of (5× 2)− (1× 1)− (3 + 2× 1) = 4.

2.2.2 Protein versus nucleotide alignment

Because proteins are encoded by DNA through the genetic code, DNA sequence similarities

can also provide an insight into the relationship between proteins and their role in various

biological functions. However, protein sequence comparisons are generally more informative

and are preferred by biologists to DNA sequence comparisons [Pearson, 1990; 1996; Nicholas

et al., 2000]; protein sequence comparison can be used to identify a common ancestory

from more than 2.5 billion years ago, however it is difficult to identify similarities between

nucleotide sequences that diverged more than 200–600 million years ago [Pearson, 1996].

There are two main reasons why protein comparison is more sensitive to distantly related

sequences:

• Changes in DNA do not necessarily translate to changes in the encoded protein, due

to degeneracy in the genetic code [Pearson, 1996]. Nucleotide comparisons fail to

distinguish between the more probable base mutations that do not affect the encoded

protein sequence and the less probable mutations that do. For example, we would

expect that the nucleotide codon TTT that encodes phenylalanine is more likely to

mutate into the codon TTC that also encodes phenylalanine, than to the codon TTA that

encodes leucine, despite only one base change in both cases.
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• Protein sequence comparisons use a substitution matrix that reflects the varying like-

lihood of substitutions between differing amino acid pairs. Nucleotide alignments are

generally scored using match and mismatch penalties that do not take the properties

of the encoded amino acids into consideration [Pearson, 1996]. For example, the codon

AGA, which encodes for arginine, is more likely to mutate into AAA, which encodes for

lysine, than to mutate into GGA, which encodes for glycine, because arginine and lysine

are physico-chemically similar but arginine and glycine are not [Taylor, 1986]. In both

cases, only one base differs between the codons.

Further, a large quantity of available nucleotide data represents non-coding regions that does

not encode for proteins, and alignments with non-coding regions are probably less likely to

be of interest to biologists; nucleotide alignments do not distinguish between coding and

non-coding regions.

However, despite a preference for protein comparisons, nucleotide comparisons are some-

times necessary. DNA databases are generally more up-to-date due to annotation bottlenecks

and delays in translating coding regions in DNA to protein sequences [Anderson and Brass,

1998]. Further, errors sometimes appear in protein sequences due to errors when translat-

ing from a DNA sequence, and the non-coding regions of DNA may be of interest to some

biologists.

In addition to protein-protein and nucleotide-nucleotide comparisons, methods for align-

ing a nucleotide sequence with a protein sequence are also available [Zhang et al., 1997;

Ko et al., 2004]. A DNA sequence can be aligned with a protein sequence by translating

codons in the DNA and aligning the resulting protein sequence. Unfortunately, the transla-

tion process is ambiguous for two reasons. First, the exact start position of the coding region

of DNA is often unknown; because each nucleotide triplet encodes for a single amino acid,

three completely different sequences will result from the translation of a nucleotide sequence

at different offsets. Second, the orientation of the nucleotide strand from which a sequence

is derived is often unknown. If the sequence is derived from the template strand then the

sequence must be reversed and complemented before the encoding scheme in Table 2.3 is ap-

plied. As a result of these ambiguities, a total of six different reading frames (three possible

frames for each of the two possible strands) must be considered when decoding a nucleotide

sequence, and nucleotide-protein comparisons are therefore computationally more expensive.

To further complicate the task of aligning translated sequences, insertion and deletions in

DNA can cause frameshift errors (changes in the reading frame) [Ko et al., 2004].
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2.2.3 Global Alignment

The optimal alignment between a pair of sequences is computed using dynamic programming,

an algorithm design technique that finds solutions by decomposing a problem into a series of

tabular operations [Levitin, 2002]. A dynamic programming algorithm consists of three main

components: a recurrence relation that defines how to score a solution, a series of tabular

operations that compute the highest-scoring or optimal solution, and a traceback method

for discovering the solution or solutions with an highest score. In the context of sequence

alignment, the traceback provides the optimal sequence alignment that produces the highest

score.

Methods for aligning sequences using dynamic programming were independently discov-

ered by several researchers [Sankoff and Kruskal, 1983]. The original algorithms for aligning

biological sequences were described by Needleman and Wunsch [1970] and Sellers [1974]. In

this section, we describe the global alignment algorithm for aligning two sequences with lin-

ear gap costs. Our description follows the efficient approach by Sellers that requires O(mn)

time. For a more detailed review of sequence alignment algorithms see Waterman [1984].

When aligning a pair of sequences x and y, three possible evolutionary events are con-

sidered with respect to each possible pair of residues drawn from the two sequences: first,

the residues are aligned (meaning the residues are conserved because they are the same, or

one is substituted for the other); second, an insertion is made with respect to y; and, last,

an insertion is made with respect to x. As discussed in Section 2.2.1, the first class of events

is scored using an amino acid substitution matrix, or simple nucleotide match and mismatch

penalties.

The alignment of two sequences of lengths lx and ly requires the tabulation of scores in an

alignment matrix of size (lx+1)×(ly+1) [Sankoff and Kruskal, 1983; Durbin, 1998]. Each cell

[i, j] in the matrix represents the highest scoring alignment between x and y that ends with

the ith residue in x and the jth residue in y. The value in each cell [i, j] is dependent on three

of the immediate neighbours of the cell at coordinates [i−1, j−1], [i−1, j], and [i, j−1], and

these map to the three possible evolutionary events that can affect the alignment of the ith

residue in x and the jth residue in y. This dependence is illustrated in Figure 2.6, where the

alignment of a pair of amino acids or bases is represented by a diagonal arrow and insertions

in y and x are represented by horizontal and vertical arrows respectively.

The Sellers algorithm for globally aligning sequences with linear gap costs records a

single value B(i, j) for each cell in the matrix; this value is the highest score for an alignment
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j=6

j=7

j=8

Sequence x

Sequence y

i=23i=22 i=24

Figure 2.6: Portion of the dynamic programming matrix used to align sequences x and y.

Diagonal arrows represent the alignment of a pair of amino acids or bases, and vertical

and horizontal arrows represent insertions in x and y respectively. Values for the cell at

i = 23, j = 7 are dependent on the three immediate neighbours at coordinates [22, 7], [22, 6]

and [23, 6].

ending at [i, j], that is, the alignment of the subsequences x1...xi and y1...yj . The following

recurrence relations are employed to compute B(i, j) for each cell and find the score of the

optimal global alignment between x and y using linear gap costs:

B(i, j) = max















B(i− 1, j − 1) + s(xi, yj)

B(i− 1, j)− e

B(i, j − 1)− e

where s(xi, yj) is the score resulting from the alignment of the ith character of x and the

jth character of y, and e is the insertion penalty. In addition to these recurrence relations,

initialisation rules are required to handle boundary conditions; for global alignment, all cells

where i = 0 or j = 0 are initialised to −∞, except for the alignment starting point [0, 0] that

is initialised to zero. These initialisation rules restrict sequence alignments to start at the

beginning of both sequences.

Let us consider globally aligning the sequences ACATGGCC and ACGTCC with a match score

of 2, a mismatch penalty of −1, and an insertion penalty of −1, as shown in Figure 2.7. First,

the starting point for the alignment at [0, 0] is initialised to zero, and the remaining cells in
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the first row and first column are initialised to −∞. Each cell in the alignment matrix is

then processed sequentially using the recurrence relations above; this is typically done by

scanning from top to bottom, and left to right, starting at [1, 1] and finishing at [lx, ly]. The

value B(i, j) is calculated for each cell, and an arrow pointing into the cell indicates which of

the three evolutionary events was considered when calculating the cell value. Consider, for

example, the processing of the cell at position [2, 2] that represents the intersection of base C

from the first sequence and C from the second sequence. Three events are considered using

the recurrence relations above: a match event that produces a score of B(1, 1)+2 = 2+2 = 4,

an insertion in the first (top) sequence that produces a score of B(1, 2)− 1 = 1− 1 = 0 and

an insertion in the second (left) sequence that produces a score of B(2, 1) − 1 = 1 − 1 = 0.

The largest of the three scores is recorded; in this case the largest value results from the

match event that is represented by a diagonal arrow from the cell at [1, 1] to the cell at [2, 2].

Once every cell in the alignment matrix has been processed in this manner, the final value

B(lx, ly) = 7 is the optimal global alignment score for the two sequences and corresponds to

the alignment shown on the right-hand side of the figure.

The algorithm we have described is suitable for calculating the score of the optimal

alignment only, and not the optimal alignment itself. We discuss methods for computing

optimal alignments by performing a traceback in Section 2.2.6. The score-only method we

have described requires O(lxly) time but only O(lx) space, because each row in the alignment

matrix is dependent on the previous row only. Consequently, only one row needs to be

retained to compute the optimal alignment score.

2.2.4 Local alignment

During the evolutionary process, portions of DNA or protein that are central to its role or

function in an organism, such as active or binding sites, often remain relatively unchanged

while other parts of the sequence vary considerably [Myers, 1991]. As a result, related se-

quences often share a partial region of localised similarity even though they are not similar

globally. Hence, local alignment algorithms that align regions of biological sequences are

more commonly used to perform sequence similarity searches than global alignment meth-

ods [Pearson, 1996].

To illustrate local alignment, let us consider aligning the sequences AAAACDEFGGGGG and

HHHHCDEFIIIII that share a region of local similarity; both sequences contain the motif

CDEF. Figure 2.8 shows the optimal global and local alignments for these two sequences using
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Figure 2.7: The dynamic programming matrix used to globally align sequences ACATGGCC

and ACGTCC with a match score of 2, a mismatch score of -1, and an insertion penalty of

-1. Arrows are used to indicate how the value for each cell is derived. Blank cells have an

initialised value of −∞. The dark arrows represent the traceback path corresponding to the

optimal alignment shown on the right. The optimal alignment score of 7 is recorded in the

bottom right cell.

| | | |
C D E F

C D E F

A A A A C D E F G G G G G

H H H H C D E F I I I I I
        | | | |        

Local alignment with four matchesGlobal alignment with four matches, nine mismatches

Figure 2.8: Optimal global and local alignments of the sequences AAAACDEFGGGGG and

HHHHCDEFIIIII using scoring scheme with +2 for a match and -1 for a mismatch.

a simple scoring scheme of +2 for a match and −1 for a mismatch. Despite the presence

of a locally conserved region in both sequences, the optimal global alignment contains four

matches and nine mismatches with an overall alignment score of −1. The local alignment

considers only the conserved region and contains four matches with an alignment score of 8.

Unlike global alignment, optimal local alignment scores for pairs of sequences cannot be

negative.

The Smith-Waterman algorithm [1981] performs a local alignment between two sequences.

Local alignment differs from global alignment in two ways: first, the alignment may start
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at any residue pair from the two sequences, and second, the highest scoring cell in the

alignment matrix provides an end-point for the optimal alignment. To consider alignments

starting at any point, negative cell values are disallowed. This involves minor adjustment

to the recurrence relations described in Section 2.2.3. The following recurrence relations are

used to find the score of the optimal local alignment between sequences x and y using linear

gap costs:

B(i, j) = max



























B(i− 1, j − 1) + s(xi, yj)

B(i− 1, j)− e

B(i, j − 1)− e

0

The largest value B(i, j) in the alignment matrix is the optimal local alignment score. The

local alignment algorithm requires different initialisation rules to handle boundary conditions

then global alignment: all cells where i = 0 or j = 0 are initialised to zero instead of −∞.

A handful of optimisations to the Smith-Waterman algorithm have been proposed. The

most commonly used optimisation was first used by Green in his SWAT implementation

of the algorithm8, but was never published. The optimisation is based on the observation

that most cells in the alignment matrix do not score above the open gap penalty o when

popular substitution matrices and affine gap costs are employed. This can be exploited to

avoid considering an open gap event when processing subsequent adjacent cells, resulting in

a reduction in computation for some cells. Rognes and Seeberg [2000] report that Green’s

optimisation roughly doubles the speed of Smith-Waterman when compared to the näıve

approach.

Myers and Durbin [2003] describe another approach to local alignment that uses a lookup

table to perform faster alignment. The authors report a speed increase of up to 1.5 times

when using the popular BLOSUM62 data mutation matrix [Henikoff and Henikoff, 1992] and

up to twice as fast with other matrices. Their approach also relies on the sparsity of high

scoring cells in the alignment matrix.

2.2.5 Alignment with affine gap penalties

The approaches described in Sections 2.2.3 and 2.2.4 align two sequences using linear gap

costs where each insertion in a gap is penalised using a fixed insertion penalty e. In this section

8http://www.phrap.org/phredphrap/swat.html
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we describe the algorithm by Gotoh [1982] for aligning sequences with affine gap costs. The

affine gap penalty system applies a fixed cost o for opening a gap and an extension penalty

e for each insertion in the gap. Specifically, the cost c of a gap of length k is defined by

c(k) = k× e+o, where e > 0, o > 0, k ≥ 1. We add to this definition the pre-computed cost

d of opening a gap and making the first insertion in that gap, that is, d = o + e. Affine gap

penalties provide a better approximation of the evolutionary process than linear penalties

and are widely used in sequence alignment [Fitch and Smith, 1983].

Gotoh’s algorithm uses dynamic programming and is similar to the Needleman-Wunsch

and Smith-Waterman approaches. Gotoh’s approach differs in two ways: first, three values

are recorded for each cell in the alignment matrix instead of one, and second, a different set of

recurrence relations are used to calculated the optimal alignment score. Gotoh’s algorithm

records the following values for each cell in the matrix when aligning sequences x and y;

B(i, j) is the best score for an alignment ending at [i, j], Ix(i, j) is the best score for an

alignment ending at [i, j] with an insertion in x and Iy(i, j) is the best score for an alignment

ending at [i, j] with an insertion in y. Using these values, the following recurrence relations

are employed to compute the score of the optimal alignment between x and y:

M(i, j) = B(i− 1, j − 1) + s(xi, yj)

Ix(i, j) = max

{

B(i− 1, j)− d

Ix(i− 1, j)− e

Iy(i, j) = max

{

B(i, j − 1)− d

Iy(i, j − 1)− e

B(i, j) = max















Ix(i, j)

Iy(i, j)

M(i, j)

where the scalar value M(i, j) represents the best score for an alignment ending at [i, j] with

a match. These recurrence relations are suitable for globally aligning two sequences; minor

modifications are required to dismiss negative values and perform local alignment with affine

gap costs [Durbin, 1998]. Gotoh’s algorithm requires O(lxly) time and O(lx) space and has

roughly three times the memory usage of the linear gap penalty approaches.

Two-state variation

Durbin [1998] describes a variation of Gotoh’s algorithm that records only two values for

each cell in the alignment matrix. The two-state variation combines Ix(i, j) and Iy(i, j) into
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AGCATT------AGGACCTTGAACATT

|| ||| ||| ||| ||

AGAATTCCATCT----CCTCGAAACTT

Figure 2.9: An example of the infrequent case where an alignment contains two adjacent

gaps.

a single maximum value, I(i, j), that represents the best score for an alignment ending at [i, j]

with an insertion in either direction. The following recurrence relations are employed by the

two-state approach:

M(i, j) = B(i− 1, j − 1) + s(xi, yj)

I(i, j) = max



























B(i− 1, j)− d

I(i− 1, j)− e

B(i, j − 1)− d

I(i, j − 1)− e

B(i, j) = max

{

I(i, j)

M(i, j)

The two-state variation is easier to implement and requires less memory than Gotoh’s

original algorithm. However, the approach is not guaranteed to provide the correct optimal

alignment score when aligning certain sequences with some scoring schemes. Specifically, the

result for the two-state variation differs when scoring adjacent gaps, that is, where a gap in

one sequence is followed immediately by a gap in the other, as illustrated in Figure 2.9. In

the two-state variation, a single open gap penalty is incurred for the pair of adjacent gaps,

unlike the original algorithm where two open gap penalties are applied. As a result, the

two-state variation may over-estimate the optimal alignment score. However, Durbin [1998]

report that adjacent gaps rarely appear in optimal alignments, and do not occur when the

lowest mismatch score is greater than or equal to −2e.

2.2.6 Recording traceback

The alignment algorithms we have described so far in this chapter calculate the score of the

optimal alignment, but do not provide the optimal alignment itself. In this section we de-

scribe methods for finding the optimal alignment between two sequences using the traceback

approach. See Durbin [1998] for a more in-depth introduction to traceback methods.
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To record the optimal alignment using traceback, additional information is recorded about

how scores are derived for each cell in the matrix. Once the entire matrix has been processed,

a traceback is performed to find the path resulting in the optimal score. When linear gap

costs are employed, one of three possible values are recorded for each cell to indicate whether

the score B(i, j) was derived through a match or mismatch, an insertion in x, or an insertion

in y. For affine gap costs, additional information is recorded indicating how the values Ix(i, j)

and Iy(i, j) were derived. To find the optimal global alignment, the series of events that led

to the optimal alignment score are followed back to the origin of the alignment; for global

alignment the origin is the cell [0, 0]. This process is illustrated in Figure 2.7 on page 29,

where an arrow is used to indicate how each cell value is derived. To find the optimal

alignment on the right-hand side of the figure, the series of arrows are followed backwards

from the bottom-right cell — the end-point of the alignment — to the origin at [0, 0].

For local alignment, the traceback process starts at the highest scoring cell in the align-

ment matrix and terminates at the first cell to be encountered with a zero value. In some

cases, the alignment matrix may contain several equally high-scoring cells that may be traced

to find several different, equally high-scoring alignments. Further, the traceback process may

be used to find locally optimal alignments, in different regions of the matrix with a score

less than the optimal alignment score, that may also be of interest. We discuss methods for

finding locally optimal alignments in Section 2.2.7.

Linear space methods

The basic approach for performing a pairwise alignment with traceback requires O(lxly) space,

because a matrix with lx columns and ly rows is required to store the traceback information

[Durbin, 1998]. Therefore, on a modern workstation the basic approach is unsuitable for

aligning very long genomic sequences, such as entire genomes or chromosomes that are often

millions of bases in length.

Hirschberg [1975] describes an algorithm that finds the longest common subsequences

between two strings using dynamic programming in linear instead of quadratic space. His

approach is a divide and conquer strategy, where the dynamic programming matrix is itera-

tively divided into smaller subsections that can be processed with less memory. The scheme

was later adapted by Myers and Miller [1988], who applied Hirschberg’s approach to Gotoh’s

alignment algorithm [1982], resulting in an algorithm for aligning sequences using affine gap

costs in linear space. For a more detailed description of linear-space alignment methods see
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Figure 2.10: Hirschberg’s divide and conquer approach. The optimal alignment is represented

by a black line running through the alignment matrix from the top-left to the bottom-right.

An initial pass calculates the alignment midpoint, where the optimal alignment passes through

the column i = lx
2 . The alignment matrix is then divided into two sections that can be solved

with less memory. The approach is repeated to further divide the matrix.

the survey by Chao et al. [1994].

The divide and conquer strategy by Hirschberg is illustrated in Figure 2.10 and works as

follows. First, the score-only alignment algorithm is used to find the alignment midpoint, that

is, the point where the optimal alignment passes through the column i = lx
2 . The alignment

matrix is then divided into four sections, where only the top-left and bottom-right sections

shown in grey are processed. These smaller subsections can be solved with less memory. The

two greyed sections are solved independently for a portion of the optimal alignment and the

results are combined to produce the optimal alignment for the entire two sequences. Further,

the division of the alignment matrix can be repeated any number of times to further reduce

memory requirements. In practice, the matrix is divided until the regions to be solved are

small enough to be processed with the available main-memory.

The scheme requires just O(lx) space, but takes about twice as long as the näıve scheme

to find the optimal pairwise alignment [Myers and Miller, 1988]. Indeed, we believe that
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linear space traceback methods are becoming less useful in practice: as sequences grow in

number but not in length9, it is execution speed rather than main-memory requirements

that is the limiting factor for many alignment tasks such as searching. Further, schemes that

explore a limited region of the alignment matrix, such as those described subsequently in

Section 2.3, are commonly employed and already significantly reduce the amount of main-

memory required to align sequences.

2.2.7 Locally optimal alignments

In this section we describe methods for identifying locally optimal alignments. Locally op-

timal alignments are alignments between two sequences with a score less than the optimal

alignment score that can provide valuable further insights into the relationship between se-

quences [Nicholas et al., 2000]. For example, a motif that represents a functional site in

one sequence may occur more than once in the other sequence, resulting in multiple high-

scoring alignments between the sequences that are of equal interest. Of greatest interest

are locally optimal alignments that are high-scoring and do not intersect with the optimal

alignment or one another [Waterman and Eggert, 1987; Barton, 1993]. Figure 2.11 shows an

example of a pair of sequences that produce an optimal alignment as well as a high-scoring,

non-intersecting locally optimal alignment. The path on the left-hand side of the alignment

matrix represents the optimal alignment that would be found with a local alignment algor-

ithm such as the Smith-Waterman algorithm described in Section 2.2.4. A second alignment

on the right-hand side of the matrix has a lower score but may still provide information about

the relationship between the two sequences. The optimal and locally optimal alignments are

shown to the right of the alignment matrix.

Several researchers have investigated methods for finding and displaying locally optimal

alignments [Waterman and Eggert, 1987; Zuker, 1991; Barton, 1993; Naor and Brutlag, 1993;

Chao, 1998]. The first such approaches were described by Waterman and Eggert [1987]

and Sellers [1984], which identify the highest-scoring alignment between two sequences as

well as all additional, non-intersecting alignments that score above a predefined threshold.

However, these original methods were slow because they required multiple passes through

the alignment matrix. Altschul and Erickson [1986b] later drew the distintion between two

different definitions of local optimality and in Altschul and Erickson [1986a] they provided

9The collection statistics presented in Table 7.5 on page 215 indicate that average sequence length in

GenBank has not changed greatly over time
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Figure 2.11: Two local alignments between the sequences AGTTCA and AGTTCAGTTC using

scoring scheme with a match score of 1. The path through the left-hand side of the matrix

corresponds to the optimal alignment (shown top-right) with a score of 6. The path through

the right-hand side of the matrix corresponds to a locally optimal alignment (shown bottom-

right) with a score of 5.

an O(mn) algorithm for finding locally optimal alignments in a single pass of the matrix for

one of these two definitions.

2.2.8 Summary

The most frequently employed approach to measure the degree of similarity between biolog-

ical sequences is to perform a sequence alignment. In this section, we described methods for

constructing and scoring sequence alignments. Sequence alignments model the three main

evolutionary changes in proteins and DNA; substitutions, insertions, and deletions. Align-

ments can be performed between pairs of protein sequences, between pairs of DNA sequences,

or between a DNA sequence and a protein sequence, although protein comparisons are more

sensitive and are generally preferred by biologists.

Sequence alignments can be either global, spanning the entire length of both sequences,

or local, spanning only a region of each sequence. We have reviewed methods for performing

global and local alignments using dynamic programming. We have also described methods

for aligning sequences using both linear and affine gap costs. If the optimal alignment

itself is required, in addition to the alignment score, then additional information must be

recorded during the alignment process. We have described methods for recording the optimal

alignment using traceback, as well as methods for recording traceback that require linear

instead of quadratic space. Finally, we have surveyed methods for finding additional, locally
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optimal alignments between two sequences.

In the next section, we describe methods that limit the explored region of the alignment

matrix to reduce the time taken to align sequences with minimal impact on sensitivity.

2.3 Limited exploration of the alignment matrix

The alignment algorithms described in Section 2.2 consider every possible path through the

alignment matrix and are guaranteed to find the optimal alignment between two sequences

(with the exception of Durbin’s two-state variation [1998] which may produce suboptimal

alignments). In this section we describe two schemes that limit the region of the alignment

matrix that is explored. The first scheme considers only cells that lie within a fixed diagonal

band [Chao et al., 1992] and is used by several alignment tools including the popular fasta

search algorithm [Pearson and Lipman, 1988]. The second scheme does not consider low-

scoring regions of the alignment matrix [Zhang et al., 1998a] and is used by the popular

blast search algorithm [Altschul et al., 1997]. Both schemes provide an heuristic approach

that is not guaranteed to find the optimal alignment. In practice, however, these approaches

reduce the time taken to perform an alignment with minimal loss in accuracy [Sankoff and

Kruskal, 1983; Pearson and Lipman, 1988; Altschul et al., 1997].

2.3.1 Banded alignment

The concept of aligning biological sequences by considering only a fixed diagonal band within

the alignment matrix was first proposed by Sankoff and Kruskal [1983] and Spouge [1991].

Chao et al. [1992] later presented an algorithm that incorporated Hirschberg’s insight [1975],

resulting in an approach to banded alignment in linear rather than quadratic space. The

general approach for aligning sequences within a fixed diagonal band works as follows. First,

an offset or diagonal d = i− j within the alignment matrix of interest is selected, usually due

to the presence of a high-scoring ungapped alignment between the two sequences with relative

offset d. One of the sequence alignment algorithms described in Section 2.2 is employed to

either locally or globally align the sequences, however only cells that lie within a band centered

around the relative offset d are considered. The band extends by w
2 cells in either direction of

diagonal d, where w is the fixed band width. Specifically, only cells in the alignment matrix

where d− w
2 ≤ i− j ≤ d + w

2 are processed.

The banded alignment approach is illustrated in Figure 2.12. The short black line repre-

sents the high-scoring ungapped alignment of interest that is used to select diagonal d that
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Figure 2.12: Alignment within a diagonal band. The short black line represents a high-scoring

ungapped alignment that is used to select the diagonal of interest, shown as a dotted line. The

grey region represents the band of width w in the alignment matrix that is processed.

is denoted by a dashed line. The grey area represents the region of the alignment matrix

that is processed. The banded approach fails to identify alignments that are not entirely

contained within the banded region; this may be due to a large number of insertions that

shift the alignment to a diagonal outside of the processed region. For example, an alignment

starting on diagonal d that contains more than w
2 insertions but no deletions in one of the

sequences will not be identified by the banded approach. When used with a carefully chosen

value for w, however, this approach is reasonably effective at reducing the time taken to align

sequences with minimal impact on the level of sensitivity to homologous relations because

optimal alignments between related sequences rarely contain a large number of gaps [Sankoff

and Kruskal, 1983].

2.3.2 Dropoff alignment

The dropoff technique [Altschul et al., 1997; Zhang et al., 1998a] is another successful app-

roach for reducing the number of cells processed during a sequence alignment. The dropoff

approach limits the region of the alignment matrix that is considered and is used in con-

junction with the global alignment recurrence relations described in Section 2.2.3. These

recurrence relations are not only applicable to global alignment; they can also be used to
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perform seeded alignment, where the alignment origin is a fixed point [i,j] that is not nec-

essarily the start of both sequences [Altschul et al., 1997]. We discuss seeded alignment in

more detail in Section 3.1.3.

The dropoff approach works as follows. During alignment, the value of the highest scoring

cell in the dynamic programming matrix processed so far, h, is recorded. Each row or

column in the alignment matrix is processed up until the point where the cell value is less

than the highest score observed minus the value of the dropoff parameter X, that is, where

B(i, j) < h − X. As a result, only regions of the alignment matrix with a score that is

greater than the best score observed so far minus X are considered. Cells at the boundry of

the explored region are initialised to −∞. Figure 2.13 illustrates how this technique limits

the area of the matrix to be processed. The alignment between two pairs of sequences is

illustrated; a pair of related lysozyme sequences are aligned on the left, while a lysozyme

and unrelated influenza virus sequences are aligned on the right. The grey shaded regions

represent cells in the alignment matrix that are process during alignment.

Like banded alignment, the dropoff approach is an heuristic that is not guaranteed to

find the optimal alignment between two sequences. Alignments that contain low-scoring

regions, that is, regions with a collective score below −X, are overlooked. In practice,

however, the dropoff scheme is effective in reducing the computational cost of alignment, while

being sensitive in finding homologous sequences because optimal alignments between related

sequences do not often contain massively low-scoring regions [Altschul et al., 1997]. The

approach is highly effective at reducing computational costs when aligning highly dissimilar

sequences, because lower alignment scores further limit the region of exploration. This is

illustrated in Figure 2.13; a large portion of the alignment matrix on the left is explored

when aligning the closely related lysozyme sequences, however the alignment of two unrelated

sequences on the right results in far more limited area of exploration. We believe that the

dropoff technique is more effective than banded alignment because it is adaptive, varying

both the direction and size of the region to be computed based on the alignment scores

determined so far. The dropoff approach is therefore a highly effective filtering component

of the blast genomic search algorithm, because the vast majority of pairwise alignments are

between dissimilar sequences as shown in Section 3.1.3. We discuss the application of the

dropoff approach to search, and to the blast algorithm in particular, further in Section 3.1.3.
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Figure 2.13: Pairwise alignment using the dropoff approach, where the grey shaded region

represents the portion of the alignment matrix that is explored. The matrix on the left is used

to globally align the human lysozyme sequence (PDB accession 1LZ1) to the closely related

silkworm lysozyme sequence (PDB accession 1GD6, chain A). The matrix on the right is used

to align the human lysozyme sequence to an unrelated influenza virus protein sequence (PDB

accession 1AA7, Chain A). Our own implementation of the dropoff heuristic, the BLOSUM62

substitution matrix, open gap penalty of 11, extension penalty of 1, and dropoff parameter

X = 38 were used.

2.3.3 Summary

In this section we have described two methods for limiting the explored region of the align-

ment matrix. The first method only processes cells that lie within a banded region centered

around a diagonal of interest. The second method uses a dynamic approach where the ex-

plored region is bounded by low-scoring cells. By limiting the number of cells processed, these

approaches reduce the time taken to perform an alignment. Neither approach is guaranteed

to find the optimal alignment between two sequences, however both schemes are reasonably

sensitive to homologous relationships as we show in Section 3.1. The dropoff approach is

arguably the more effective of the two schemes because the explored region is adaptive and

varies in direction and size based on the degree of similarity between the sequences.

In the next section, we discuss substitution matrices that are commonly used to score the

alignment of amino acids in protein comparisons.
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2.4 Substitution matrices

Substitution matrices (also known as scoring matrices or mutation data matrices) are com-

monly used to score the conservation and substitution of amino acids in protein sequence

alignments. For an alphabet of size a, a matrix of size a× a provides an alignment score for

every possible pair of amino acids [Dayhoff et al., 1978; Henikoff and Henikoff, 1992].

Substitution matrices quantify the likelihood of a given residue mutating into another

during the evolutionary process. Mutations between amino acids that conserve physical or

chemical properties are more likely during evolution because they are less likely to change the

structural or functional characteristics of the protein as a whole [Nicholas et al., 2000]. Scoring

matrices assign a high score for similar residue pairs that are more likely to be interchanged

and a low score for dissimilar residue pairs that are less likely to be interchanged [Dayhoff

et al., 1978; Henikoff and Henikoff, 1992]. Residue pairs where the two residues are the same,

and the residue is conserved, generally score highly.

In this section we describe methods for the construction and usage of the two most

popular series of mutation data matrices, the PAM series [Dayhoff et al., 1978] and the

BLOSUM series [Henikoff and Henikoff, 1992]. Both series of matrices are based on the

same fundamental theory, where alignments between related proteins are used to calculate

the probability of seeing residue pairs aligned, given that the residues are homologous. Let

pi be the frequency of occurrence of residue i in protein sequences. Next, we define qij to

be the frequency with which amino acids i and j are aligned within alignments of related

sequences between homologous proteins. For the construction of most matrices, including the

BLOSUM and PAM series, we assume that qij = qji. The probability Pij of seeing residues

i and j aligned, given that the residues are homologous, is calculated as Pij = qij/pipj . The

value s(i, j) that is recorded in the substitution matrix and used to score alignments is the

base two logarithm of the probability Pij , that is s(i, j) = log2(Pij). Logarithm of odds are

recorded in the matrix instead of the odds themselves to reduce the computation required

to score alignments; log values can be added to calculate statistical significance whereas the

odds themselves must be multiplied. In practice, scores are multiplied by a constant factor

(such as two for the BLOSUM series of matricies) and rounded to the nearest integer before

being recorded in the scoring matrix, so that integer values can be used for faster computation

yet still provide a sufficiently fine scale. The key difference between the PAM and BLOSUM

matrices is the approach used to estimate the homologous amino acid alignment frequencies,

qij , during construction. We discuss those differences next.
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2.4.1 PAM matrices

The PAM series of matrices were developed by Dayhoff and co-workers [1978]. To create the

matrices, a set of global alignments of closely related proteins were carefully constructed.

The alignments included gaps and spanned both highly conserved and more variable regions.

The alignments were then used to estimate transition frequencies for highly similar sequence

pairs containing only 1 in 100 amino acid substitutions. These frequencies formed the basis

of the PAM1 matrix, which was used to extrapolate other matrices in the PAM series by

successively multiplying a matrix containing the residue mutation probabilities by itself.

Using this method, a series of matrices suitable for aligning sequences across a range of

evolutionary distances were constructed. The PAM250 matrix, for example, was constructed

by multiplying the mutation probability matrix for PAM1 by itself 250 times. The matrix

is suitable for aligning sequences that diverge by 250 PAM units, that is, sequences with

approximately 250 point mutations per 100 residues. PAM values greater than 100 are

possible because a single amino acid may mutate several times.

2.4.2 BLOSUM matrices

Several years after the popular PAM matrices were constructed, the BLOSUM series of

matrices was proposed [Henikoff and Henikoff, 1992]. Rather than align closely related se-

quences and use extrapolation to model more distant relationships, transition frequencies for

the BLOSUM series were observed directly from clusters of more distantly related proteins.

This approach was feasible thanks to an increase in the quantity of available protein sequence

data since the PAM matrices were devised in the 1970’s.

To construct the BLOSUM matrices, mutation frequencies were observed from alignments

in the BLOCKS database [Henikoff and Henikoff, 1991]. The database contains protein re-

gions that have been clustered into highly conserved groups and aligned without gaps. An

example of an entry in the BLOCKS database is shown in Figure 2.14. The first twelve se-

quence regions in the block are shown, and the regions form an ungapped multiple alignment.

When constructing the BLOSUM series, mutation frequencies were observed from pairs of

residues in the same column of the alignment.

The BLOSUM series of matrices were constructed for a range of evolutionary distances

using the BLOCKS collection. This was achieved by clustering sequence pairs with at least

X% identity, and then counting only substitutions between clusters, weighted by the size of

each cluster. As a result, the value X represents the level of divergence the matrix is designed
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P97773 (202) SFTNGETSPTVSMAELEHLAQN

ROR4 HUMAN|P45445 (203) SFTNGETSPTVSMAELEHLAQN

ROR3 HUMAN|P35399 (283) SFTNGETSPTVSMAELEHLAQN

ROR2 HUMAN|P35398 (291) SFTNGETSPTVSMAELEHLAQN

ROR1 MOUSE|P51448 (258) SFTNGETSPTVSMAELEHLAQN

ROR1 HUMAN|P35397 (258) SFTNGETSPTVSMAELEHLAQN

ROR4 MOUSE|P70283 (194) SFTNGETSPTVSMAELEHLAQN

RORB RAT|P45446 (197) SFNNGQLAPGITMSEIDRIAQN

Q98934 (197) SFNNGQLAPGISMTEIDRIAQN

RORB HUMAN|Q92753 (197) SFNNGQLAPGITMTEIDRIAQN

Q61027 (253) SFCSAPEVPYASLTDIEYLVQN

RORG MOUSE|P51450 (253) SFCSAPEVPYASLTDIEYLVQN

Figure 2.14: A portion of entry IPB003079A in the BLOCKS database containing nuclear

receptor proteins. Each row contains the sequence name, a start offset in brackets, and a

subsequence beginning at that offset.

to detect. The popular BLOSUM62 matrix, for example, was constructed by clustering

sequences with at least 62% identity. Larger values of X are suitable for detecting less

distant relationships and smaller values are suitable for detecting more distant relationships.

Studies have shown that the BLOSUM series provides better accuracy than PAM ma-

trices [Henikoff and Henikoff, 1993; Pearson, 1995]. The BLOSUM62 matrix, shown in Fig-

ure 2.15, provides the best overall accuracy [Henikoff and Henikoff, 1993] and is the default

choice for many homology search tools. Positive values in the matrix represent amino acid

pairs that are likely to be exchanged through mutation, and negative values represent un-

likely mutations. For example, lysine (L) and isoleucine (I) produce an alignment score of 2

which indicates the pair of amino acids are frequently substituted for one another. The likely

substitution of these two residues is supported by their shared aliphatic and hydrophobic

properties [Taylor, 1986] and their co-occurrence in the fourth column from the right-hand

side of the alignment of nuclear receptor proteins in Figure 2.14.

2.4.3 Other approaches

In addition to the popular BLOSUM and PAM series, other less popular mutation data

matrices have been proposed. They include matrices that are based on the physico-chemical

properties of proteins and matrices that encapsulate the degree of similarity between the

codons that encode for each amino acid. However, none of these approaches have proved as

successful as methods based on observed frequencies of mutation in related proteins [Johnson
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A R N D C Q E G H I L K M F P S T W Y V B Z X U
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 -1 -4
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -1 -4
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -1 -4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 -1 -4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 -1 -4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -1 -4
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -4
U -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

Figure 2.15: BLOSUM62 substitution matrix.

and Overington, 1993]. Altschul [1993] describes a method for aligning sequences using a set

of substitution matrices that have been optimised for varying evolutionary distances instead

of a single matrix, however this approach is not widely employed. Although substitution

matrices are most commonly used for protein alignment, matrices have also been proposed for

nucleotide sequence comparisons; States et al. [1991] and Chiaromonte et al. [2002] describe

substitution matrices that scores transitions (interchanges between the pyrimidines C and T,

or the purines A and G) higher than transversions (interchanges between a pyrimidine and a

purine) based on the observation that transitions occur more frequently in related genomes.

2.4.4 Summary

Substitution matrices are commonly used to score protein sequence alignments. The matrices

provide an alignment score for each pair of amino acids that reflects the likelihood of mutation

between the residues. In this section, we have described the basic theory behind substitution

matrices and approaches used to construct them. The two popular series of matrices are the

PAM series and the BLOSUM series. The PAM matrices were constructed using mutation
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frequencies from a small collection of closely related and carefully aligned proteins. The

frequencies were extrapolated to derive matrices for a range of evolutionary distances. The

BLOSUM matrices were constructed from alignments in the BLOCKS database and mutation

frequencies were observed directly from alignments across a range of evolutionary distances.

In addition to the BLOSUM and PAM series, other methods for constructing substitution

matrices have been proposed, however they have proved less successful.

2.5 Conclusion

In this chapter, we have provided a background to genomic data and biological sequence

comparison. Publicly available databases such as GenBank contain a mass of genomic se-

quence data and these collections have exhibited exponential growth over the past three

decades. Molecular biologists, geneticists, and other life scientists use sequence comparison

methods as their first step for discovery of information about unknown or poorly annotated

genomic sequences. Therefore, sequence comparison is an important tool that aids in the

determination of the structure, function and evolutionary origin of proteins and DNA. We

have described algorithms by Sellers [1974] and Smith and Waterman [1981] for globally and

locally aligning biological sequences using dynamic programming. We have also presented

algorithms that support the two most commonly used gap penalty systems: linear gap costs

and affine gap costs.

The basic alignment algorithms record only the highest alignment score for two sequences.

If the optimal alignment itself is required, additional traceback information must be recorded.

We have described the basic traceback approach as well as a divide-and-conquer approach

that requires linear instead of quadratic space. We have also briefly described methods

for recording locally optimal alignments that may provide further insight into relationships

between sequences.

Pairwise sequence comparison is computationally expensive and requires quadratic time

in the length of the two sequences. We have presented two methods that allow faster com-

parisons by not calculating scores for some cells in the alignment matrix; we refer to these

methods as banded alignment and dropoff alignment. The banded and dropoff approaches

are able to reduce the time taken to align sequences with only minimal impact on the degree

of sensitivity to homologous relationships. We have also described the theory and applica-

tion of substitution matrices for scoring alignments. We have presented an overview of the

methods used to construct the popular PAM [Dayhoff et al., 1978] and BLOSUM [Henikoff
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and Henikoff, 1992] series of matrices, which model mutation rates between all possible pairs

of amino acids.

In the next chapter, we focus on methods for searching sequence databanks. We begin

with descriptions of the popular heuristic search algorithms such as fasta [Pearson and Lip-

man, 1988] and blast [Altschul et al., 1990; 1997] as well as index-based approaches such as

cafe [Williams and Zobel, 1996; 2002], PatternHunter [Ma et al., 2002; Li et al., 2004] and

blat [Kent, 2002]. We then describe distributed search schemes and iterative algorithms such

as psi-blast [Altschul et al., 1997] and sam [Karplus et al., 1998]. We also discuss impor-

tant issues related to database search such as methods for assessing the statistical significant

of alignments, the effect of low-complexity regions in collection sequences, and methods for

assessing the accuracy of search tools. Finally, we present the problem of redundancy in

genomic collections and discuss methods for identifying and managing redundancy.



Chapter 3

Searching Genomic Databases

A powerful tool for the discovery of information about sequences is homology search, where

genomic collections are searched for high-scoring alignments. In some cases, it can rapidly

accelerate gene discovery, allowing understanding of biochemical role, chemical function,

and physical structure. For example, querying a database with an unknown sequence can

in some cases reveal related, well-annotated sequences, providing an understanding of the

poorly known sequence. In turn, this can facilitate focused wet lab experimentation, reducing

the cost and time taken in tasks as diverse as drug discovery, cancer research, and crop

production.

In this chapter, we survey successful existing approaches to homology search. We begin

with an overview of exhaustive algorithms such as ssearch, fasta [Pearson and Lipman,

1988] and blast [Altschul et al., 1990; 1997]. We provide a detailed description and analysis

of each stage of the popular blast algorithm, and present usage data for the tool. In Sec-

tion 3.2 we discuss other approaches to search such as index-based approaches, discontinuous

seeds, distributed search, profiles, and iterative search algorithms. We conclude that blast

is the most versatile, fast and accurate search scheme, motivating our improvements to the

algorithm in Chapters 4, 5, 6 and 7.

In Section 3.3 we discuss several issues relating to homology search, beginning with an

overview of methods for assessing the statistical significance of pairwise alignments. Next, we

describe filtering schemes that mask low-complexity regions in sequences, and methods for

assessing the retrieval effectiveness of homology search tools. Finally, we discuss redundancy

in genomic data banks and methods for pruning near-identical sequences.

49
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3.1 Popular search algorithms

In this section, we describe the three popular genomic search algorithms: ssearch, fasta

and blast. All three algorithms use an exhaustive approach to search, where the query

is compared directly to each sequence in the collection. The ssearch algorithm, which

stands for Smith-Waterman search, uses the Smith-Waterman local alignment algorithm

[1981] described in the previous chapter to compare the query to each collection sequence.

fasta and blast are heuristic approaches that approximate the Smith-Waterman algorithm

by employing a series of filtering stages to eliminate collection sequences unlikely to produce a

high-scoring alignment. At the final stage, both schemes perform local alignment in a similar

manner to ssearch. Although slightly less accurate than ssearch, the heuristic schemes

provide much faster search.

3.1.1 SSEARCH: Smith-Waterman search

The ssearch algorithm compares a query sequence to each sequence in a collection and

displays alignments that are statistically significant to the user, sorted in order of score1. Ef-

ficient implementations of ssearch, such as the version distributed with the fasta [Pearson

and Lipman, 1988] package of search tools, use the following approach to search a collection.

First, the query sequence is aligned with each collection sequence using the efficient score-only

version of the Smith-Waterman algorithm described in Section 2.2.4. Next, the statistical

significance of each alignment, represented by an E-value, is calculated using the methods

described in Section 3.3.1. Sequences with an alignment E-value below the user specified

cutoff are re-aligned using the space-efficient traceback method described in Section 2.2.6.

The final list of alignments are sorted by score and displayed to the user.

The Smith-Waterman search approach is guaranteed to find optimal alignments between

the query and collection and is the most sensitive of the pairwise alignment algorithms [Shp-

aer et al., 1996; Brenner et al., 1998; Chen, 2003]. However, while it is accurate it is not

fast, and without specialised hardware a database search using the Smith-Waterman local

alignment is impractical for large genomic collections. On a general-purpose workstation,

a search of the GenBank NR protein database with a typical query takes just over 1 hour,

while a search of the GenBank NR nucleotide database with a typical query takes around 4.5

days, as shown in Table 3.1. This has necessitated heuristics for efficient search on desktop

workstations, and to enable institutes to provide search services to large numbers of users.

1Based on our analysis of FASTA version 3.4, released September 2, 2005
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Tool Protein Nucleotide ROC50

ssearch 64.45 6,473.51 0.467

fasta 4.45 45.58 0.436

blast 1.18 7.14 0.415

Table 3.1: Typical protein and nucleotide search times in minutes for ssearch, fasta,

and blast. Runtimes were recorded by searching the GenBank non-redundant protein data-

base with a human α1-antitrypsin protein sequence (GI accession 28966, 418 amino acids

in length) and the GenBank non-redundant nucleotide database with an mRNA nucleotide

sequence that encodes lysozyme in human (GI accession 4557893, 1,487 bases in length).

Experiments were conducted on a Intel Pentium 4 2.8GHz workstation using version 3.4 of

fasta and ssearch and version 2.2.11 of ncbi-blast. The ROC50 measure of search accu-

racy, which is described in Section 3.3.3, is also reported for each tool based on the analysis

by Chen [2004].

We describe two popular heuristic approaches to search, fasta and blast, next.

3.1.2 FASTA

The fastp algorithm [Pearson and Lipman, 1985] — which was later revised as fasta [Pear-

son and Lipman, 1988] — was the first successful heuristic approach to local alignment.

The fasta algorithm is slightly less accurate than the exhaustive Smith-Waterman search

[Shpaer et al., 1996; Brenner et al., 1998; Chen, 2003] but is roughly 14 times faster for a

typical protein search and over 140 times faster for a typical nucleotide search, as shown in

Table 3.1. The algorithm was popular amongst biologists in the late 1980s and early 1990s

when genomic collections were considerably smaller and fasta was the only popular tool

to generate gapped alignments. Today, a fasta search of large genomic collection is less

practical, with a search of the GenBank non-redundant nucleotide database taking over 45

minutes on a modern workstation (Table 3.1). However, the fasta algorithm is still used

to search smaller collections when a greater level of accuracy than that offered by blast is

required.

The fasta algorithm consists of four stages that combine to provide efficient yet sensitive

search of genomic collections. The first stage uses the approach of Wilbur and Lipman [1983]

to identify exact matches, or hits, of length W between the query and sequences in the

collection. For protein comparison, a word length of W = 1 or W = 2 amino acids is
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typically used; the shorter word length of W = 1 provides better sensitivity but roughly 3 to

4 times slower search than the longer word length of W = 2 [Pearson, 1996]. For nucleotide

comparisons, the word length typically ranges between 4 and 6 bases.

To identify hits, fixed-length overlapping subsequences of length W are extracted from

the query sequence q and the each collection sequence s. For example, suppose W = 3 and

the following short sequence is processed: ABCDEFGHIJKLMNOPQ. The words extracted from

the sequence are as follows: ABC, BCD, CDE, DEF, EFG, GHI, HIJ, and so on. In the first stage,

all sequences are exhaustively, sequentially processed from the collection being searched, that

is, each sequence is read from the database, parsed into words of length W , and matched

against the query.

To match query and collection sequence words, fasta uses a lookup table — as illustrated

in Figure 3.1 — constructed from the query sequence. The table contains an entry for every

possible word, of which there are aW for an alphabet of size a; the example in Figure 3.1

illustrates the table for an alphabet of size a = 3, with three symbols A, B, and C, and a word

length W = 2. Associated with each word in the table is a list of query positions that denote

the zero or more locations where that word appears in the query sequence. In the example

table, the word BC occurs at query positions 2 and 5. The query sequence is shown at the

base of the figure, where the word BC occurs once starting at position 2 and once starting at

position 5.

The search process using the lookup table is straightforward. First, the current collection

sequence is parsed into words. Second, each collection sequence word is located in the query

lookup table. Third, for each matching position in the query, a hit is recorded. Last, when

a hit is recorded, a pair of positions, i, j, that identify the match between the query and

collection sequence are passed to the second stage.

In the second stage, regions from the query sequence and current collection sequence that

share a high density of identical words are identified and realigned using a simple ungapped

alignment routine and a substitution matrix. To do this, the relative offset or diagonal of

each of the hits identified in the first stage is calculate as d = i − j. Hits that occur on the

same diagonal represent matches that may form part of a single alignment without gaps.

Next, the ten regions along a diagonal that contain the highest density of hits are identified

and rescored using a more fine-grain ungapped alignment. The alignment considers runs of

identities less than W in length as well as conservative substitutions that are overlooked in

the first stage, but does not consider insertions or deletions.

The first two stages of the fasta algorithm are illustrated in the top half of Figure 3.2.
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AA
AB
AC
BA
BB
BC
CA
CB
CC

4

1

3

Lookup table (W=2):

Query sequence:
1 2 3 4 5

A B C B B C
6

2, 5

Figure 3.1: The lookup table used by fasta to identify hits. In this example, the alphabet

contains 3 characters: A, B, and C. The lookup table on the left is constructed from the query

sequence on the right using a word size W = 2. The table contains aW = 32 = 9 entries, one

for each possible word, and each entry has an associated list of query positions. The query

positions identify the starting positions of that word in the query.

The figure shows four matrices that are used to compute the similarity between two sequences.

The width of each matrix is the length l1 of the query sequence q, that is, there is one column

for each residue in the query sequence. Similarly, the height of each matrix is the length l2

of the collection sequence s that is being considered. Therefore, each cell in the matrix

represents an intersection between a residue from each sequence, and is used to tabulate a

score on the optimal evolutionary pathway that considers those two residues. This process is

discussed in more detail in Section 2.2. At the top-left, short diagonal lines represent exact

matches between the query and collection sequence of length W . The ten diagonal regions

with the highest density of matches are then realigned as shown by the black lines at the

top-right of the figure.

In the third stage, high-scoring regions from the second stage are combined to construct

a longer alignment that contains gaps. An approximation of the optimal alignment score

is derived by linking the regions, then summing the alignment score for each region and

subtracting a special joining penalty that is analogous to a gap penalty. If the resulting score

is greater than a predefined threshold then the collection sequence is passed on to the fourth

and final stage. The third stage is illustrated at the bottom-left of Figure 3.2, where the

black lines represent high-scoring regions from the second stage and the grey lines represent
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Stage 4: Banded alignment

Stage 1: Hit detection Stage 2: Realign high−density regions

Stage 3: Link high−scoring regions
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Figure 3.2: The four stages of the fasta algorithm. In the first stage, short matches of a

fixed length W between the query and collection sequence are identified. In the second stage,

the ten diagonal regions with the highest density are realigned. In the third stage, high-scoring

regions are linked in an attempt to increase the alignment score. In the final stage, a banded

Smith-Waterman alignment is performed.
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the links between them.

In the final stage, the Smith-Waterman algorithm [1981] is used to find the optimal local

alignment between the query sequence and the collection sequence. The banded approach

described in Section 2.3.1 is used to explore only a limited region of the alignment matrix,

where the band is centered around the highest scoring region identified in the second stage.

Statistically significant alignments are ranked in order of score and displayed to the user. We

discuss the methods used by fasta to calculate the statistical significance of alignments in

Section 3.3.1.

3.1.3 BLAST: Basic Local Alignment Search Tool

Since 1990, blast [Altschul et al., 1990] has been the most popular heuristic local alignment

tool and in widespread use, first as the blast1 suite of tools, and since 1997 as the blast2

tools [Altschul et al., 1997]. It is used to evaluate over 120,000 homology search queries

each day [McGinnis and Madden, 2004] at the popular NCBI website2, and is installed

and maintained in almost all medium- to large-scale molecular biology research facilities.

We estimate that the widespread use of the tool within universities, research centres, and

commercial enterprises worldwide results in millions of queries being conducted daily. Indeed,

the 1997 blast paper [Altschul et al., 1997] has been cited over 10,000 times3 in electronically-

available manuscripts.

blast has also been widely adapted for different platforms, architectures, and tasks. Sev-

eral hardware-dependent implementations are available and many variations of its algorithms

have been published including psi-blast [Altschul et al., 1997], megablast [Zhang et al.,

2000], phi-blast [Zhang et al., 1998b] and impala [Schaffer et al., 1999]. We discuss these

variation of the blast algorithm in more detail later in this chapter.

The popularity of blast stems from its speed and accuracy. Several studies have shown

blast to be slightly less accurate than fasta [Shpaer et al., 1996; Park et al., 1998; Brenner

et al., 1998; Chen, 2003; 2004], however a typical search of the GenBank non-redundant

protein or nucleotide database takes 1.18 or 7.14 minutes respectively, as shown in Table 3.1

— this is between 3.7 and 6.4 times faster than fasta and roughly 50 to 600 times faster

than an exhaustive Smith-Waterman search.

The blast algorithm is a four-stage process that is both efficient and effective for search-

ing genomic databases. The steps progressively reduce the search space, but each is more

2See http://www.ncbi.nlm.nih.gov/
3See: http://scholar.google.com/
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fine-grain and takes longer to process each sequence than the previous. The first stage in-

volves identifying matches of a fixed length W between the query and collection sequences

called hits. In the second stage, these hits form the basis of ungapped alignments that do

not consider the more computationally expensive insertion and deletion events. In the third

stage, gapped alignments are performed between sequences using a similar approach to the

alignment algorithms described in Section 2.2. In the final stage the alignments themselves

are recorded using traceback and displayed to the user. Table 3.2 shows the average time

spent performing each stage of the algorithm.

Before searching a collection, the formatdb tool that is distributed with ncbi-blast is

used to convert the database from the human-readable fasta format to a binary represen-

tation that is read by blast4. The collection sequences are converted to a new format that

is more easily processed during search, where each of the twenty amino acids and each of

the four nucleotide bases are represented by a distinct numeric code. Additional codes are

used to represent the ambiguous characters described in Section 2.1. Further, nucleotide

sequences are converted to a compressed representation that is discussed in more detail in

Section 3.1.3.

The two most commonly used variants of the blast algorithm are blastp, which is used

to search a protein database with a protein query, and blastn, which is used to search a

nucleotide database with a nucleotide query (see Section 3.1.3 for a more thorough analysis

of blast usage). We begin this section with a description of the blastp algorithm based

on our analysis of version 2.2.11 of ncbi-blast that was released in June 2005 and closely

resembles the approach presented in the 1997 blast paper [Altschul et al., 1997]. We then

describe how the blastn approach for nucleotide search differs from the approach used for

protein search. Next, we describe some popular variations of the blast algorithm including

methods for performing translated searches between a protein query and nucleotide collection

and vice versa. Finally, we present usage statistics for the online blast service offered by

the NCBI.

Stage 1: Hit detection

In the first stage, blast identifies matches of a fixed length W between the query and

sequences in the collection using an approach similar to the first stage of fasta that was

described in Section 3.1.2. Each sequence s from the collection being searched is retrieved

4See: ftp://ftp.ncbi.nih.gov/toolbox/ncbi tools/docs/README
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Percentage of overall time

Stage Task Protein Nucleotide

1 Find high-scoring short hits 37% 85%

2 Identify pairs of hits on the same diagonal 18% —

2 Perform ungapped extensions 13% 5%

3 Perform gapped extension 30% 9%

4 Perform traceback and display alignments 2% 1%

Table 3.2: Average runtime for each stage of the blast algorithm for 100 randomly-selected

sequences from the GenBank NR protein or nucleotide database searched against the entire

database. Experiments were conducted using the NCBI implementation of blast with default

parameters and no query filtering.

and compared to the query sequence q using the algorithm of Wilbur and Lipman [1983].

This identifies exact matches (or hits) between fixed-length overlapping subsequences (or

words) of length W extracted from the query and collection sequences.

There are two important differences between the hit detection process used by blast

and the process used by fasta. First, a longer word length is typically used; whereas fasta

identifies hits using a word length of W = 1 or W = 2 for protein comparison, a word

length of W = 3 is typically used by blast [Altschul et al., 1997]. Second, the first stage of

blast considers inexact, high-scoring word matches in addition to exact matches as hits. A

match between a pair of words is considered high scoring if the match scores above a given

threshold T when scored using a mutation data matrix. Two words that score above the

threshold are referred to as neighbours. blast uses default parameter values of W = 3 and

T = 11 [Altschul et al., 1997].

To identify high-scoring word matches between the query and collection sequences, blast

uses a different approach to that employed by fasta and described in Section 3.1.2 to con-

struct the lookup table — this is shown in Figure 3.3 — that is dependent on the query

sequence and a substitution matrix. We use the same query sequence, alphabet, and word

length W = 2 as those used to illustrate the fasta lookup table in Figure 3.1 to illustrate

the blast lookup table. Instead of recording the position of exact matches only, each query

position in a list denotes the offset of a word of length W in the query sequence that either

matches or scores highly when aligned to the word represented by that list. For example, the

word AB has hits at query positions 1 and 3, because the exact word AB occurs at position 1
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Figure 3.3: The lookup table used by blast to identify hits. In this example, the alphabet

contains 3 characters: A, B, and C. The lookup table on the left is constructed using the

example scoring matrix and query sequence on the right with a word size W = 2 and threshold

T = 7. The table contains aW = 32 = 9 entries, one for each possible word, and each entry

has an associated list of query positions. The query positions identify the starting position of

words in the query that score above T when aligned to the collection sequence word.

and a close-matching hit (CB) occurs at position 3. We describe the design of the lookup

table in more detail in Section 5.1.

The search process used by blast to identify hits between the query and collection is the

same process used by fasta. The collection sequence is parsed into overlapping words of a

fixed length W , and each word is used to access an entry in the lookup table. Each query

position in the table represents a single hit and provides the offset into the query sequence i

for that hit. The offset i from the query sequence q and offset j from the collection sequence

s of each hit is passed to the second stage of the blast algorithm.

The use of neighbours to identify matching regions between the query and the collection

drastically increases the number of hits, and as a result the overall sensitivity and runtime of

blast. To illustrate, we conducted a simple experiment with 100 queries randomly extracted

from the GenBank non-redundanct (NR) protein database. When default parameters of

W = 3 and T = 11 were employed, on average 9.14 neighbours were generated for each word

in those queries.

To examine the performance of this first stage for protein comparisons, and produce

the results shown in the third column of Table 3.2, we carried out a simple experiment.
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We randomly extracted 100 sequences from the GenBank NR protein database and then

searched the entire database using each as query. We found that the first stage consumes

on average around 37% of the total time for all four stages, and that an average of 229 hits

were found per collection sequence; almost all sequences had at least one hit. The version

of the non-redundant protein database we used for this experiment was downloaded on 30

June 2004 and contains 1,873,745 sequences in around 622 megabytes of sequence data. The

experiment was carried out on an Intel Pentium 4 2.8GHz workstation with one gigabyte of

main-memory while the machine was under light-load using ncbi-blast version 2.2.8. The

best of three runs for each query was recorded.

Stage 2: Ungapped alignment

The second stage determines whether two or more hits h of length W could form the basis of

a local alignment that does not include insertions or deletions of residues. To determine this,

the diagonal d of each of the hits is determined by computing the difference in the query and

collection sequence offsets, d = j − i. If two hits, h[i1, j1] and h[i2, j2], are found to occur

on the same diagonal (since j1 − i1 = j2 − i2), are not overlapping, and i1 − i2 is less than

a constant A, then an ungapped extension is attempted. The parameter A, which defaults

to 40, influences the accuracy of blast and is one of many parameters that can be tuned in

the algorithm.

An ungapped extension links the two hits by computing scores for matches or substi-

tutions between the hits; it ignores insertion and deletion events, which are more compu-

tationally expensive to evaluate and calculated only in the third and fourth stages. After

linking the hits, the ungapped extension is processed outward until the score decreases by

a pre-defined threshold, using a dropoff approach that is similar to the scheme described in

Section 2.3.2. High-scoring ungapped alignments resulting from this process are then passed

on to the third stage.

The left side of Figure 3.4 illustrates the first two stages of the blast algorithm. The

figure shows the matrices that are used to compute the alignment between the query sequence

q and a collection sequence s similar to those illustrated in Section 3.1.2. The short black lines

in Figure 3.4 represent high-scoring hits of length W that match between both sequences.

That is, each such black line represents the beginning of the shortest possible evolutionary

pathway (of minimum length W ) that is considered by the blast algorithm. In the figure,

there are two cases where two hits are located on the same diagonal less than the maximum
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Stage 3Stages 1 & 2

Query sequence Query sequence

C
ollection sequence

C
ollection sequence

Figure 3.4: Illustration of the first three stages of the blast algorithm. In stages 1 and 2,

short high-scoring alignments or hits are identified, shown as short black lines. When two

hits occur near each other and on the same diagonal an ungapped extension is performed,

with the result shown as a longer grey line. In this example, the longer of the two ungapped

extensions scores above S1 and is passed on to stage 3, where it is used as a starting point

for constructing a higher-scoring gapped alignment.

distance A apart. For each of these pairs, an ungapped extension is performed to determine

if the hits are likely to form part of a high-scoring alignment, and the region covered by the

extension is illustrated by a grey line. If an ungapped extension scores above the value of S1

— another constant determined by an external parameter — it is considered successful and

is passed on to the third stage of the algorithm. In this example, the longer extension scores

above S1, while the shorter does not.

In addition to the default mode where two nearby hits on the same diagonal are required

to trigger an ungapped extension, blast can also be run in one hit mode, where a single hit

alone triggers an extension. This leads to an increase in the number of ungapped extensions

performed, increasing runtimes and improving search accuracy. To reduce the number of

hits, a larger value of the neighbour threshold T is typically used when blast is run in one

hit mode. The original blast algorithm [Altschul et al., 1990] used the one hit mode of

operation, and the approach of using two hits to trigger an ungapped extension was one of

the main changes introduced in the 1997 blast paper [Altschul et al., 1997]. The two hit

mode has been shown to provide faster search with comparable accuracy [Altschul et al.,
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1997], and is the default approach currently used by blast.

To identify pairs of nearby hits on the same diagonal, blast uses a array with |q|+ |s| −

2W + 2 entries, one for each possible diagonal where a hit can occur. Each entry is used

to record the location of the most recent hit on that diagonal; |q| + |s| − 2W + 2 entries

are required because a hit of length W can occur on any diagonal d = j − i ranging from

d = −|q| + W − 1 to d = |s| −W + 1. Each entry in the array records the position in the

collection where the last hit occurred on that diagonal. At the start of a database search, each

entry is initialised to point to the start of the collection, however the array does not need to

be reinitialized between collection sequences because the collection is processed sequentially

from start to end. As a result, blast occasionally identifies a nearby pair of hits that lie on

the same diagonal but are in fact related to different collection sequences. Our analysis of

blast revealed that in practice this is sufficiently rare and does not significantly impact the

performance or accuracy of the algorithm.

Once a pair of hits has been identified, an ungapped extension is performed along the

diagonal where the hits occurred. The algorithm used to perform an ungapped extension

using the dropoff heuristic is shown in Figure 3.5. Starting at the location of one of the

hits that triggered the extension [ihit, jhit], pairs of residues from the query and collection

sequence are aligned by traversing along the diagonal. Extension is abandoned when the total

score decreases by more than a threshold, that is when bestscore - score > dropoff, and

the highest scoring point of the extension is recorded. The extension process is then repeated

in the other direction by traversing backwards along the same diagonal.

The ungapped extension algorithm presented in Figure 3.5 does not explicitly terminate

when the end of the query sequence or current collection sequence is reached. blast uses an

unpublished method that automatically terminates the extension process through the use of

special character codes called sentinel codes [Sedgewick, 1990]. The sentinel codes are placed

at either end of the query sequence and each collection sequence. The alignment score of the

sentinel code to any residue is −∞ and the extension process will automatically terminate

when the start or end of either sequence is encountered. As a result, the computation

required to perform an ungapped extension is reduced by eliminating the need to continually

check when the sequence boundary has been reached. Sentinel codes are not employed for

nucleotide search because collection sequences are recorded in a compressed form, which we

describe later in this section.

We measured the performance of the second stage for protein searches, using the GenBank

NR protein database and the same 100 randomly-selected queries described previously. On
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/* Input: q, s, i, j, dropoff */

UngappedExtension

score ←− 0

bestscore ←− 0

ibest ←− 0, jbest ←− 0

while (bestscore − score ≤ dropoff)

score ←− score + s(qi, sj)

if score > bestscore then

bestscore ←− score

ibest ←− i

jbest ←− j

increment i

increment j

/* Output: ibest, jbest, bestscore */

Figure 3.5: Ungapped extension algorithm used by blast for aligning protein sequences.

average, 9.8 ungapped extensions are performed per collection sequence, but less than 0.01%

of these produce a score above the cutoff, S1. The effect is that around 11% of the database

sequences are passed on to the third stage. The second stage consumes on average 31% of

the total search time, as shown in Table 3.2.

Stage 3: Gapped alignment

In the third stage of the blast algorithm, a gapped alignment is performed to determine if

the high scoring ungapped region forms part of a larger, higher scoring alignment. The right-

hand side of Figure 3.4 illustrates an example where this is the case: the single, high-scoring

ungapped extension identified in Stage 2 is considered as the basis of a gapped alignment,

and the black line shows the alignment identified through this process.

Although blast identifies local alignments, the gapped alignment algorithm that is used

differs from Smith-Waterman approach described in Section 2.2.4. Rather than exhaustively
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computing all possible paths between the sequences, the gapped scheme explores only in-

sertions and deletions that augment the high-scoring ungapped alignment. This step begins

by identifying a seed point that lies within a high-scoring portion of the ungapped region.

The algorithm then performs a gapped extension beginning at the seed, and proceeding in

each direction, towards both the start and end of the sequences. The end-point and optimal

alignment score for an extension is recorded, and the final alignment score is the sum of the

scores resulting from extension in each direction.

A variation of global alignment algorithm is used to perform a gapped extension, with

two important differences to Gotoh’s algorithm [1982] that was described in Section 2.2.3.

First, the seed point provides an origin for the extension process, and second, the alignment

may end at any point in the alignment matrix. The alignment dropoff approach described in

Section 2.3.2 is also employed to limit the region of the alignment matrix that is processed;

the gapped extension does not consider low-scoring regions where the score falls by more

than the value of the dropoff parameter, X. This parameter controls the sensitivity and

speed trade-off of the gapped extension: the higher the value of X, the greater the alignment

sensitivity but the slower the search process.

The seeded gapped alignment process with dropoff is illustrated in Figure 3.6. The black

line in the center of the alignment matrix represents a high-scoring ungapped alignment

that has been identified in the second stage. A seed point is chosen partway along the

ungapped alignment and a gapped extension is performed in either direction from the seed.

The grey region represents the portion of the alignment matrix that is processed by the

dropoff approach.

The dropoff approach is highly effective in this context, since the majority of gapped

extensions are triggered by ungapped alignments that are not part of a longer gapped align-

ment. Because the dropoff approach only considers high-scoring regions in the alignment

matrix, the number of cells that need to be computed is greatly reduced. In our experiment

with 100 queries and the GenBank collection described previously, we found that on average

less than 2% of all cells in the matrix are processed when the dropoff technique is applied

using default parameters.

A single collection sequence may produce multiple high-scoring alignments. In some cases

these alignments represent separate, distinct regions of similarity between the two sequences

that should be displayed separately to the user. In other cases, the alignments can be joined

together to produce a longer alignment that was initially overlooked because it contains a

low-scoring region not considered by the dropoff approach. Figure 3.7 illustrates these two



64 CHAPTER 3. SEARCHING GENOMIC DATABASES

Seed

Query sequence

C
ol

le
ct

io
n 

se
qu

en
ce

Figure 3.6: Schematic of a seeded gapped alignment with dropoff. The black line represents a

high-scoring ungapped alignment between the query sequence and current collection sequence.

A point on the alignment is selected as the seed and a gapped extension is performed in each

direction, beginning at that point. The grey regions represent cells in the alignment matrix

that exceed the best score seen so far, less a constant dropoff value.

scenarios. On the left-hand side is an example where the collection sequence produces two

distinct high-scoring alignments. On the right-hand side is an example where a single high-

scoring alignment has been separated into two parts, separated by a low-scoring region. Each

part contains a high-scoring ungapped alignment and therefore has been identified separately.

blast employs an unpublished strategy called joining that is used to link such alignments.

Given a pair of alignments that are sufficiently close to each other to be joined, the collection

sequence is realigned using a large dropoff parameter in an attempt to link them. Our

analysis reveals that this joining approach increases the sensitivity of blast to alignments

that contain large, low-scoring regions.

A second important, again unpublished, optimisation is employed to reduce the time

required to align sequences, which we refer to as containment. The containment method

reduces the number of gapped alignments performed for a single collection sequence when

multiple high-scoring ungapped alignments are identified for that sequence. Any ungapped

alignment that lies within a region of the alignment matrix already covered by a high-scoring

gapped alignment is dismissed and not considered as the basis of a subsequent gapped align-

ment. Specifically, given a ungapped alignment starting at coordinates [si, sj ] and ending



3.1. POPULAR SEARCH ALGORITHMS 65

Query sequence

C
ol

le
ct

io
n 

se
qu

en
ce

Query sequence

C
ol

le
ct

io
n 

se
qu

en
ce

Figure 3.7: Multiple high-scoring alignments for a single collection sequence. The example

on the left contains two distinct alignments that are displayed separately to the user. The

example of the right contains a single alignment with an undetected low-scoring region, shown

in grey, in the middle. The joining procedure links the two alignments identified by the dropoff

approach that are shown as black lines to form a single alignment that is displayed to the user.

at [ei, ej ], and a gapped alignment starting at [ai, aj ] and ending at [bi, bj ], the ungapped

alignment is not processed if si ≥ ai, sj ≥ aj , ei ≤ bi and ej ≤ bj . The containment method

is illustrated in Figure 3.8. The ungapped extension labelled A is processed first and forms

the basis of the gapped alignment that almost entirely spans both sequences. The ungapped

extensions B, C, and D are all contained with the rectangular region bounded by the start and

end of the gapped alignment, shown in grey, and are subsequently not processed. Although

the ungapped alignment D does not form part of the gapped alignment, and may produce a

different high-scoring alignment, it is dismissed by the containment approach. In practice,

however, most alignments that are removed by the containment method form part of the

already identified gapped alignment, such as extensions B and C in Figure 3.8, and can be

removed with no effect on search accuracy. In our experiments with the GenBank NR protein

database, we have found that the containment method reduces the average number of gapped

alignments performed by approximately 9%.

The gapped alignment algorithm used to perform the third stage records only the score

of the optimal alignment between the query and collection sequences. If the alignment scores

at least S2 — the minimum score for the alignment to be deemed statistically significant —

it is passed on to the fourth and final stage of blast where the alignment itself is recorded.
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Figure 3.8: Illustration of the blast containment method. Four high-scoring ungapped align-

ments labelled A, B, C and D are identified in the second stage. The alignment A is processed

first and the gapped alignment shown as a thin black line is identified. The remaining un-

gapped alignments are contained with the rectangular region (shaded in grey) bounded by the

start and end of the gapped alignment and are subsequently not processed.

We discuss the methods used by blast to calculate an alignment E-value, which provides a

measure of the statistical significance of the alignment, in Section 3.3.1. On average, in our

experiment with the GenBank NR protein database described previously, we found that less

than 0.01% of the gapped alignments performed during the third stage produced an E-value

below the default cutoff of 10, and that this stage consumes on average 30% of the total

search time, as shown in Table 3.2 on page 57.

Stage 4: Traceback and display

In the final stage of the blast algorithm, the alignments to be displayed to the user are

rescored. During the rescoring, the alignment traceback pathway itself is recorded so that it

can be displayed in the format shown in Figure 2.9; the third stage records only scores, and

not the evolutionary pathway that leads to that score. We describe methods for recording

the optimal alignment through traceback in Section 2.2.6. The other important difference

during rescoring is that the value of the dropoff parameter, X, is increased in an attempt to

find a higher scoring alignment [Altschul et al., 1997].
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The number of alignments processed during this final stage of the algorithm is limited

by two important factors. First, it is determined by the number of sequences found to

score above the E-value cutoff in the third stage of the algorithm. Second, the value of

the parameter V — which defaults to 500 — limits the total number of alignments to be

displayed to the user. Around half of the 100 queries we evaluated in our experiment with

the GenBank protein database described previously produced more than 500 high-scoring

alignments. In this case, only the 500 highest scoring alignments from the third stage are

rescored in this stage and subsequently displayed to the user. On average, the final stage

consumes only 2% of the total search time.

Nucleotide search

The description of blast that we have presented so far pertains to blastp, the algorithm

used to search a protein database with a protein query. The approach to searching nucleotide

collections is similar, however some aspects diverge due to fundamental differences between

the two types of sequence data such as alphabet size and alignment scoring scheme. We now

describe the approach used to search nucleotide collections, which includes three important

variations to protein search. First, the two-hit mode of operation is not employed, that is,

only one hit is required to trigger an ungapped extension for nucleotide search. A longer

word length is employed, by default W = 11, so that a single match of length eleven is

considered as the basis of an alignment. Second, high-scoring matches between neighbouring

words are not considered during the hit detection process; exact matches only of length

W between the query and collection sequence are identified between nucleotide sequences.

Third, nucleotide collection sequences are stored using a special bytepacked representation

that reduces collection size by roughly 75% [Williams and Zobel, 1997].

The bytepacked representation is employed as follows. The formatdb tool converts a

collection of nucleotide sequences from uncompressed FASTA format to a specially formatted

file that encodes the sequences using bytepacked compression; sequences are stored using two

bits per base, that is, each byte represents four nucleotide bases. This approach was shown

by Williams and Zobel [1997] to yield storage space savings and, importantly, reduce retrieval

times from disk when processing sequences.

We believe that bytewise compression is an important innovation in blastn. A diagram

illustrating the approach further is shown in Figure 3.9. The figure shows three bytes that

store a sequence of ten bases in length: the first byte stores four two-bit codes for ATGA, the
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Figure 3.9: Bytepacked representation of the sequence ATGACNTGCG. The 6th base is an

unambiguous, therefore a randomly selected base (in this case A) is recored in its place, and

an ambiguity code edit is stored at the end of the sequence.

second four codes for CATG, and the third two codes for CG. The sequence length is stored

separately, so decoding of the final byte is unambiguous. Note that the original sequence

includes the ambiguity character N at position 6, which is replaced in the compressed repre-

sentation by a random choice of the nucleotides represented by N. The additional structure

shown to the right of the figure can optionally be decoded to restore the original sequence. In

experiments investigating the relative sequential retrieval costs of compressed versus uncom-

pressed representations, it has been shown that retrieval of the compressed representation

is typically more than three times faster than retrieving the uncompressed representation

regardless of whether ambiguity codes are decoded [Williams and Zobel, 1997].

blast searches a nucleotide collection by reading compressed sequences from disk and

decompressing individual basepairs as required. The only exception to this is the first stage,

which we discuss next, where collection sequences are processed partially in their compressed

form. For the remaining three stages, each nucleotide base is extracted from the compressed

sequence immediately before it is aligned. The ambiguity codes at the end of the compressed

sequence are not decoded during the second and third stages of search, so that the ungapped

and gapped alignments do not take the ambiguous characters into account. In practice,

however, the ambiguous characters are sufficiently rare that this has little impact on accuracy

[Williams and Zobel, 1997]. Only in the fourth stage, where a traceback is performed and

the alignment itself is recorded, is the complete original sequence decoded and aligned to the

query.

A modified approach is used to perform hit detection where sequences are compressed

using the bytepacked representation. Instead of extracting each overlapping subsequence of

length W from sequences in the collection, which would involve decompressing the sequences,

blast extracts every fourth subsequence of length n where n is the largest value such that

n ≡ 0, modulo 4 and n ≤W − 3. For the default value of W = 11, n = 8 and blast extracts
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Figure 3.10: The ncbi-blast approach to detecting hits of length W = 11. A byte aligned

initial match of length n = 8 is identified first, then the query and collection sequences are

inspected each side of the match to check if it forms part of a longer hit of length W = 11.

two adjacent bytes from the collection at a time. The query lookup structure is therefore

for subsequences of length n = 8, and not length W = 11. When an initial match of length

n = 8 is found between a collection sequence and query, the original sequences are inspected

W − n bases in both directions surrounding the match to identify if a contiguous match of

length W exists and, if this is the case, a hit is detected. This approach, which is illustrated

in Figure 3.10, has two speed advantages: it allows two bytes to be compared in compressed

form (that is, two collection sequence bytes do not need to be decompressed), and it permits

whole bytes to be retrieved from the collection rather than fractions of bytes. In practice,

W = 7, 11, 15 are the optimal choices to take advantage of this bytewise approach, since each

must span at least 1, 2, or 3 bytes respectively.

blast also considers alignments between DNA sequences with differing orientations, that

is, alignments between the query sequence and the reverse complement of a collection se-

quence. We discuss orientation and the reverse complement of sequences in Section 2.1.2

on page 17. Alignments with both orientations are considered in a single pass through the

collection by searching for matches with the original query, and the reverse complement of

the query simultaneously. A new query is created that is twice the length of the original, by

appending the reverse complement of query sequence to the original sequence. For example,

given the query sequence GTCAAC, the extended query GTCAACGTTGAC is constructed. The

extended query is then used to perform all four stages of search as usual. When presenting

results to the user, any alignment between a collection sequence and second half of the new

query is reversed and complemented to produce an alignment between the original query and

the reverse complement of the collection sequence.

To measure the percentage of time spent by blast performing each stage of a nucleotide

search we conducted 50 searches using a test collection constructed from half of the sequences
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in the GenBank non-redundant nucleotide database. Our NR/2 collection was created by

randomly extracting half of the sequences from the NR collection and contains 6,862,797,036

basepairs in 1,511,546 sequences, ranging in length from 6 to 36,192,742 basepairs. A set

of 50 test queries were randomly extracted from the NR database. Queries longer than

10,000 basepairs (typically entire genomes or chromosomes) were excluded from the selection

process; blast searches with longer queries are too slow to be practical and less sensitive

genome search tools such those discussed in Section 3.2.2 are better suited to such searches.

The time taken to perform each stage was measured using ncbi-blast version 2.2.11 and

the results of this experiment are shown in Table 3.2 on page 57. The best of three runs for

each query was recorded.

The results highlight some interesting differences between the performance characteristics

of protein and nucleotide searches. The first three stages of protein search each consume

roughly one-third of the total search time, suggesting that improvements to the hit detection,

ungapped alignment and gapped alignment algorithms could all reduce overall execution

times and are worth investigated. In contrast, the dominant time cost for nucleotide searches

is clearly the first stage, which consumes around 85% of the total time. It is therefore not

suprising that new approaches for detecting hits between nucleotide sequences have received

considerable attention at late, many of which are discussed in Section 3.2.

The number of hits, ungapped extensions and gapped extensions also varies considerably

between searches with protein and nucleotide data. For nucleotide searches, an average of

3.5 hits are found per collection sequence; this contrasts with protein search where 229 hits

on average are found per collection sequence. In the second stage, on average 3.1 ungapped

extensions are performed per nucleotide collection sequence (not all hits trigger an ungapped

extension because in some cases multiple hits are contained within a single ungapped align-

ment). This contrasts with protein search where on average 9.8 ungapped extensions are

performed per collection sequence. In the third stage, gapped alignments are performed for

7% of nucleotide collection sequences, compared to 11% of collection sequences for protein

searches.

BLAST variants

The blast algorithm forms the basis of a wide range of sequence analysis tools offered by

the NCBI [McGinnis and Madden, 2004]. Several variations of tool have been developed or

published, and we describe some of the more important advances here.
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The blastx, tblastn and tblastx tools are provided by the NCBI5 for translated

searches, where a protein query is compared to a nucleotide collection or vice versa using the

same fundamental algorithm as blastp that is described earlier in this section. The blastx

tool compares a nucleotide query to a protein sequence database by first translating the

sequence in all six reading frames as described in Section 2.2.2. The tblastn tool compares

a protein query to a nucleotide sequence database by translating each collection sequence in

all six reading frames during the search. Finally, the computationally expensive tblastx

tool compares a nucleotide query to a nucleotide collection by translating both query and

collection in all six reading frames, resulting in a total of 36 possible combinations of query

and collection reading frames. In Section 3.1.3 we observe that translated searches are slower

than regular blast searches; we speculate that this is due to the inherent ambiguity in the

translation process that increases the search space and search times accordingly.

The popular megablast tool is publicly-accessible for online nucleotide searches through

the NCBI website6. It uses a less sensitive but efficient greedy alignment algorithm [Zhang

et al., 2000], a longer word length than typical tools, and compares multiple query sequences

to each collection sequence in a single scan of the collection7 (thereby reducing the costs

when multiple queries are simultaneously posed by one or more users). It is not designed as

a replacement for blastn, but is instead designed for quickly finding very similar sequences

[McGinnis and Madden, 2004]. In particular, its default word length is W = 28, meaning that

the minimum number of contiguous identical bases is 28 before any subsequent processing

stage is attempted. The tool is generally faster than blast for searches with a large word

length, long queries or multiple queries, however it is often slower than blast for sensitive

searches with a word length of 16 or less [Gotea et al., 2003]. megablast also supports

discontinuous matches using spaced seeds, which we discuss in Section 3.2.3.

The Pattern-Hit Initiated blast (phi-blast) tool [Zhang et al., 1998b] is also available

for searches through the NCBI website. The user provides a protein or DNA sequence and a

pattern contained within that sequence as input. The pattern is a short sequence that may

contain wildcards or gaps, and typically represents a motif such as a functional site that is

conserved in the family of interest. Databases such as PROSITE [Hulo et al., 2004] provide

patterns in this format for a range of families. phi-blast then searches for sequences in the

collection that are similar to the query and contain the specified pattern. The phi-blast

5See: http://www.ncbi.nlm.nih.gov/blast/blastcgihelp.shtml#translations
6See: http://www.ncbi.nml.nih.gov/BLAST/
7See: http://www.ncbi.nlm.nih.gov/blast/megablast.shtml
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algorithm begins by searching for occurrences of the pattern in the collection, and performs

a gapped alignment using the dropoff approach between the query and collection sequence

for each occurrence. High-scoring alignments are then displayed to the user.

Several tools have also been developed that provide post-processing and graphical visu-

alisation of blast results [Plewniak et al., 2000]. For example, the AntiHunter [Lavorgna

et al., 2005] tool post-processes blast output to aid in the identification of express sequence

tag antisense transcripts. Powerblast adds functionality to blast so that it is suitable for

annotating whole genomes [Zhang and Madden, 1997].

An alternative version of blast has been developed by Gish called Washington University

blast (wu-blast)8. Although the author claims better sensitivity and faster search times

than ncbi-blast, the precise details of the algorithm and source code have never been

published and are not publicly available. An outdated evaluation of the tool by Rognes

and Seeberg [1998] found wu-blast to be roughly 3 times slower than ncbi-blast but

more accurate. A more detailed investigation that considers speed and accuracy results for

varying parameter values, using a recent version of the tool on modern hardware, has not

been conducted.

Usage statistics

The NCBI operate a complex network of machines that provide blast search services to users

through the organisation’s webpage. McGinnis and Madden [2004] recently reported that a

farm of 200 linux machines is used to the perform searches using a distributed approach.

Because blast performs best when the collection is small enough to reside in main memory,

to avoid reading the database from disk for each search, large collections are divided amongst

the available processors [Madden, 2005]. A collection such as the NR nucleotide database

is divided amongst 10 to 20 machines in the farm, where each machine is responsible for

searching a portion of the database and then the results from each machine are merged and

displayed to the user.

We recently obtained detailed blast usage statistics from the NCBI for the online search

service offered by the organisation [Madden, 2005]. The usage data included the query length,

target database and search tool used for all blastn, blastp, blastx, tblastn and tblastx

searches conducted between 6:00AM on 22 September and 6:00AM on 23 September, 2005

(UTC-05). A total of 142,822 searches were performed and an overview of the usage data is

8See: http://blast.wustl.edu/
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blastn blastp blastx tblastn tblastx All

Searches against NR 53,747 15,326 16,190 4,129 458 89,850

Searches against other 27,038 21,304 3,252 746 632 52,972

Total searches 80,785 36,630 19,442 4,875 1,090 142,822

Average query length 1,225 288 1,164 64 1,829 1,004

Time per query (secs) 58.54 42.71 80.62 439.52 2404.55 89.29

Total time NR (days) 36.42 7.58 15.11 21.00 12.75 92.86

Table 3.3: Summary of usage statistics for blast searches conducted during a 24 hour period

through the NCBI web service. Estimates of the average query length, average query time

and total processing time for all searches against the NR database are also reported.

presented in Table 3.3. The data shows that blastn is the most frequently used member of

the blast suite of tools, accounting for around 80,785 or 57% of the total number of searches

conducted. blastp and the three translated search tools, which all used the same underlying

protein comparison algorithm, account for a further 62,037 searches. Around 63% of queries

are for searches against the protein or nucleotide non-redundant database.

We used this data to estimate the amount of CPU processing required to perform searches

against the GenBank NR database each day. For each tool, we calculated the average query

length from the available data and randomly selected ten queries with an average length from

the relevant NR database. We used the ten queries to measure the average search time against

the GenBank NR protein and nucleotide databases for each tool. The versions of GenBank

used for the experiment were those described in Section 2.1.3 that are slightly older than the

usage data, but should still provide a good approximation of search times. For nucleotide

searches, we used the NR/2 collection described in Section 3.1.3 that contains half of the

sequences from the NR database, and doubled the resulting search times as an estimate of

the time required to search the complete NR database. We used the reduced NR/2 collection

because it is small enough to fit into the main-memory of our test machine, which provides a

better model of the total processing time in the NCBI search environment where the database

is divided into sections that are small enough to be cached in main-memory. The experiment

was conducted using ncbi-blast version 2.2.11 on a Intel Pentium 4 2.8GHz workstation with

two gigabytes of main-memory — we do not have detailed information about the machines

used at the NCBI so our test machine represents a typical high-end workstation in 2005.

The results of our timing experiments are shown in Table 3.3. The results show that



74 CHAPTER 3. SEARCHING GENOMIC DATABASES

blastn searches against the NR database consume roughly 36.42 days of processing power

on a single machine and that searches with the remaining four tools consume a further 56.44

days of processing. This represents a total of around 93 workstations performing searches

for 24 hours to handle the load of searches against the NR database — searches against

other collections represent a further 37% of queries that are not included in our runtime

calculations. Further, queries are not evenly distributed through the day; for example, only

2,447 queries were posed between 8:00 PM and 9:00 PM yet 5,195 queries were posed between

4:00 PM and 5:00 PM. Our analysis also does not take into account overheads associated with

distributing searches amongst the machines in the cluster and collating results for display

to the user. These additional factors explain why a cluster of around 200 linux machines is

required to handle the volume of searches conducted at the NCBI.

The results presented in Table 3.3 also prompt speculation about the relationship between

the average search time and the volume of queries for each tool. Searches with blastn,

blastp and blastx are considerably faster than searches with tblastn and tblastx – the

latter takes around 40 minutes on average to search the non-redundant nucleotide database.

Far fewer searches were conducted with these slower tools, with an apparent inverse rela-

tionship between the number of queries posed and average search time across the different

versions of blast. This suggests that users will conduct fewer searches using tools that are

slower. Therefore, improvements to the speed of search algorithms not only increase user

satisfaction, but also lead to an increase in the number of searches conducted, potentially

resulting in new insights and discoveries.

Weaknesses of the BLAST approach

Despite the success of blast as a general purpose, accurate and fast homology search

tool, there are several weaknesses with the approach. First, blast searches are becom-

ing slower each year with increases in collection sizes outpacing improvements to modern

hardware [Chen, 2004; Attwood and Higgs, 2004]. In a study of the performance of blast,

Chen [2004] reports that a query on the entire 2003 GenBank nucleotide database using a

2003 Intel-based server takes an average of around 260 seconds. In 2001, the same task took

only 83 seconds on a 2001 GenBank collection and 2001 hardware, and in 1999 only 36 sec-

onds. Indeed, the trend is that blast is becoming around 64% slower each year, and scales

poorly when compared to index-based approaches such as those described in Section 3.2.1.

This poor scalability is partly because blast is an exhaustive approach that requires enough
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resources to store the entire collection in main-memory for reasonable search performance.

As GenBank outgrows the available main-memory on most modern workstations, search

times increase drastically, and perhaps because of this searches against the entire GenBank

nucleotide database are no longer supported through the NCBI website9. Instead, a pruned

version of the collection that is roughly one quarter the size and does not include “high-

throughput, patent, genomic or sequence tagged cite (STS) sequences”, which we refer to as

the GenBank NR nucleotide database, is available for search [McGinnis and Madden, 2004].

The blast approach is also highly obscure. The algorithm relies on multiple heuristic

methods to efficiently filter collection sequences while maintaining a high degree of sensitivity

to distant homologies. Each heuristic adds another layer of complexity to the overall system.

Further, an abundance of parameters accompany the heuristic approach, such as the word

length and neighbourhood threshold used for hit detection, the score threshold used to trigger

gapped alignments, and the dropoff parameter used to align sequences — each of these

parameters provides a tradeoff between search speed and search accuracy. To further add to

the complexity, some parameter settings are input as normalised scores, which are comparable

across varying scoring schemes, while others are input as nominal scores, which are not (we

discuss nominal and normalised scores in more detail in Section 3.3.1). Indeed, the ncbi-

blast tool supports a total of 19 different parameters that control search behaviour and the

alignment scoring scheme10. Each parameter must be carefully tuned to balance accuracy

and search runtimes.

3.1.4 Summary

Exhaustive search methods such as Smith-Waterman search, fasta and blast remain the

most popular means of searching genomic databases. In this section, we described these

three approaches. The ssearch algorithm compares the query to each sequence in the col-

lection using the rigorous Smith-Waterman dynamic programming algorithm and is guaran-

teed to identify optimal alignments for a given scoring scheme. However, the highly sensitive

approach is impractical for any collection of significant size — a search of the GenBank

non-redundant nucleotide database takes 4.5 days.

Heuristic approaches such as fasta and blast are considerably faster than ssearch,

but are less sensitive to distant homologies where the percentage sequence identity is in the

“twilight zone” of 25% to 40% [Chen, 2003]. The fasta algorithm uses an heuristic approach

9See: http://www.ncbi.nml.nih.gov/BLAST/
10

ncbi-blast version 2.2.10
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to achieve significantly faster search with only a small loss in accuracy, however still requires

around 45 minutes for the same search. The blast algorithm uses a four stage approach

to search, where each stage filters out collection sequences that are unlikely to produce a

high-scoring alignment. The four stages are hit detection, ungapped alignment, gapped

alignment, and traceback and display. These stages combine to provide significantly faster

search times than ssearch and fasta with a small loss in accuracy. We have described each

stage in detail, the different variations of the algorithm, and the underlying approaches to

nucleotide and protein search. We have also presented the results of our runtime analysis of

the algorithm, and a summary of usage statistics for the blast web service offered by the

NCBI.

In the next section, we discuss other approaches to search, such as index-based ap-

proaches, algorithms for whole-genome alignment, methods that use discontinuous seeds,

parallel and distributed search methods, and iterative search algorithms such as psi-blast

[Altschul et al., 1997].

3.2 Alternative search methods

In the previous section, we described the popular ssearch, fasta and blast algorithms that

perform an exhaustive search where the query is compared to each sequence in a collection.

In this section, we describe several alternative approaches to search that have also proven

successful. We begin with a description of index-based approaches that employ an on-disk

inverted index to quickly identify collection sequence with a broad similarity to the query.

We then describe algorithms for comparing whole genomes in Section 3.2.2, that typically

employ an index structure that resides in main-memory to search smaller collections. Spaced

seeds have been shown to provide better sensitivity and runtimes when searching entire

genomes [Li et al., 2004] and we describe their application to search in Section 3.2.3. We

describe methods for distributing the search task across multiple processors in Section 3.2.4.

In Section 3.2.5 we describe iterative search algorithms, where the results from each iteration

are used to update a profile describing the query for the next iteration. Finally, we describe

some genomic search algorithms of interest that were not covered in the previous sections in

Section 3.2.6 .
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3.2.1 Index-based approaches

Several researchers have proposed genomic search schemes that use inverted indexing tech-

niques commonly employed in text retrieval [Witten et al., 1999], which are most well-known

now for their use in web search engines such as Google11. These schemes avoid exhaus-

tive search through the use of a disk-based inverted index to support fast identification of

sequences with broad similarity to a query. Unlike the exhaustive schemes, index-based ap-

proaches do not rely on the entire collection fitting into main-memory for reasonable search

performance [Williams, 2003]. Early approaches to indexed-base search included scan [Or-

cutt and Barker, 1984], flash [Califano and Rigoutsos, 1993], ramdb [Fondrat and Dessen,

1995], rapid [Miller et al., 1999] and the work by Myers [1994], however the most successful

approach is the cafe indexed-based homology search tool [Williams and Zobel, 1996; 2002].

The significant difference between cafe and algorithms such as fasta and blast is in the

first stage: cafe uses a large, disk-based structure to identify hits (matching substrings of

length W ) between the query and collection sequences without exhaustively processing each

sequence in response to the query. The approach used by cafe to identify hits is conceptually

the opposite of the approach used by fasta and blast, which construct a lookup table from

the query sequence, read overlapping words of length W from the collection, and then use the

table to identify the offset of each occurrence of that word in the query. The cafe approach

constructs a large index from the entire collection, reads overlapping words of length W from

the query, and then uses the index to identify the sequence and offset of each occurrence of

that word in the collection.

An index is constructed once for each collection and includes a postings lists for each word

of length W that occurs in the collection. The postings list contains the ordinal number of

each sequence in the collection containing that word. In addition, the number of occurrences

of the word, and the offset in the collection sequence of each occurrence is also recorded. This

structure of postings lists is commonly used in information retrieval [Witten et al., 1999]. For

example, consider the following postings list associated with the word ACTT of length four:

ACTT (5,2,[76,206]),(19,4,[35,79,184,203])

where the 5th and 19th sequences contain the word ACTT. The word occurs twice in the 5th

11See: http://www.google.com/
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sequence, at offsets 76 and 206, and four times in the 19th sequence, at offsets 35, 79, 184,

and 203.

To search the collection for high-scoring alignments to a query sequence, overlapping

words of length W are extracted from the query. For each word, a postings list is retrieved

from disk and the location of each hit is recorded using a set of accumulators. An accumulator

is a data structure that stores the number and location of hits for a single collection sequence.

Collection sequences are then ranked using the frames metric, which is the keystone of the

cafe system. The frames score for a collection sequence is based on the number and

location of hits associated with the collection sequence and provides a coarse measure of

similarity to the query. Collection sequences that score highly are subsequently retrieved

from disk and aligned to the query, and the resulting alignments are presented to the user.

Results showed that cafe was around eight times faster than blastn and over eighty

times faster than fasta [Williams and Zobel, 2002]. However, despite its promise, cafe

has not found widespread acceptance due to several drawbacks with the cafe approach and

index-based schemes in general [Williams, 2003]:

• The index structure consumes a large amount of disk space with Williams and Zobel

[2002] reporting an index size for nucleotide data that is around 2.2 times larger than

the original, uncompressed collection. This equates to almost 9 times larger than the

size of the collection after it has been compressed using the bytepacked format employed

by blast.

• The set of accumulators used by cafe to perform ranking with the frames metric is

large and must reside in main-memory [Williams, 2003]. The data structure increases

in size with longer queries and larger collections. Williams and Zobel [2002] report

runtimes for queries with an average length of less than 500 characters that is not

representative of typical queries today. Further, the current GenBank collection is

considerably larger than the 1998 version tested in the paper.

• The cafe system is a research prototype that does not support much of a functionality

offered by tools such as blast. In particular, no method is currently provided for

efficiently updating the index [Williams, 2003], which is an important aspect given

that genomic databases are updated daily.

• Chen [2004] reports experimental results that show cafe to be less accurate than

popular exhaustive methods such as blast and fasta.
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Despite these shortcomings of the cafe system, the idea of using an inverted index for

faster search is a promising one. Unlike the exhaustive methods, cafe scales well with the

continued exponential growth of genomic data [Williams and Zobel, 2002], and index-based

approaches are likely to be the only practical method for searching genomic collections in

the future. Exhaustive methods such as blast rely on collections fitting into main-memory

for reasonable search times [Williams, 2003] which is becoming increasingly infeasible. We

expect that many of the drawbacks with index-based approaches will be addressed by future

research, including proposed methods for ranking sequences that require less main-memory,

support for index updates, and efficient alignment using schemes such as the dropoff method

employed by blast.

3.2.2 Whole-genome alignment

The recent sequencing of entire genomes has created new, interesting problems and appli-

cations in genomic search and alignment. With the sequencing of highly-similar complete

genomes such as human and mouse the comparison of two complete genomes is especially

insightful [Couronne et al., 2003], and the alignment of entire genomes is a valuable aid to

finding protein coding regions and assembling genomes from the output of shotgun sequencing

methods [Miller, 2001].

Algorithms for comparing genomes must be able to deal with complications such as

sequence rearrangements, motif duplications, incomplete drafts of genomes and provide ap-

propriate visualisation for the mass of information generated by the comparison [Bray et al.,

2003]. They must also be capable of aligning very long sequences with a large effective search

space. As a result, popular search algorithms such as blast and fasta that are designed

for searching a large collection with a short query [Couronne et al., 2003] are not suitable for

aligning large sequences such as entire genomes [Delcher et al., 1999; Miller, 2001]. Further,

genomes are a fraction of the size of large data banks such as GenBank, which permits the

use of large in-memory indexing structures.

Early approaches for aligning very long sequences such as entire chromosomes include

the sim algorithm [Huang et al., 1990; Chao et al., 1995], which uses a fast, space-efficient

dynamic programming algorithm to align long sequences and is also capable of detecting high-

scoring, suboptimal alignments that commonly result from large sequence comparisons. More

recently, several tools that use suffix structures to compare and search whole genomes have

been proposed. The popular mummer tool [Delcher et al., 1999; Kurtz et al., 2004] constructs
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a suffix tree [Gusfield, 1997] from genomic data and uses the tree to identify matching regions.

The more recent avid tool [Bray et al., 2003] also employs suffix trees for whole-genome

alignment. Suffix trees are capable of efficiently comparing millions of nucleotides but are

space-inefficient main-memory structures that are not practical for searching large collections,

as we discuss further in Section 3.3.4.

Index-based approaches similar to those described in Section 3.2.1 have also been applied

to the alignment of very long genomic DNA sequences. The blat [Kent, 2002], Pattern-

Hunter [Ma et al., 2002; Li et al., 2004] and ssaha [Ning et al., 2001] algorithms construct

a main-memory index, which is only practical for searching smaller collections that contain

at most a few hundred megabytes of data. Main-memory index-based approaches are partic-

ularly fast for less sensitive searches where the number of matching regions identified by the

index is small because search time is dependent on the number of matches, rather than the

size of the collection and number of matches when an exhaustive search is performed [Ning

et al., 2001].

blat and ssaha are staggeringly fast for the task of finding near-identical matches be-

tween longer queries and whole genomes [Ning et al., 2001; Kent, 2002]. Both tools create an

index of non-overlapping words from the collection, which leads to significantly faster search

but poor sensitivity. blat, for example, records the location of non-overlapping words in the

collection with a default word length of W = 12. Overlapping words of length W from the

query are then extracted and used to identify hits. This approach produces an index that is

significantly smaller — roughly 1
W

the size of an index that records every overlapping word

— however a matching region of 2W −1 bases between two sequences is required before blat

is guaranteed to detect it. Further, while the blat scheme has been tested on whole genomes

— which are typically one to two orders of magnitude smaller than GenBank — it could not

be applied on current desktop hardware to larger scale search problems because it relies on

a main-memory index of the collection [Kent, 2002].

The PatternHunter approach also relies on a main-memory index to identify matching

regions between the query and collection sequence efficiently [Ma et al., 2002; Li et al., 2004],

however uses a novel approach to this first stage. Rather than searching for exact, contiguous

matches between sequences, the PatternHunter algorithm searches for matching bases

that follow a template or seed, which we discuss in more detail in Section 3.2.3. Using this

approach, Li et al. [2004] report that PatternHunter is 5 to 100 times faster than blast

and more accurate. However, similarly to blat, PatternHunter relies on a main-memory

index of the collection and is impractical for very large scale database search; the reported
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results in Ma et al. [2002] and Li et al. [2004] are for searches of collections in the order of a

few tens of megabytes in size, using a query of similar size. The PatternHunter approach

is patented and no openly-configurable versions are available.

Schwartz et al. [2002] have recently developed the blastz tool which employs a variation

of the blast algorithm for aligning entire genomes. This tool also employs spaced seeds

and less sensitive alignment methods than the original blast algorithm to permit efficient

comparison of very long sequences.

3.2.3 Discontinuous seeds

Ma et al. [2002] introduced the concept of discontinuous or spaced seeds with their Pat-

ternHunter approach. Spaced seeds provide a novel approach to matching in the first

stage. Rather than requiring exact, contiguous matches of length n, matches between n

bases within a window of length m are detected, where m > n. In addition, the n matching

bases must follow a template or seed, that is, the offset of each of the n matches in the

window of size m is important. The seed can be represented as a binary mask string, such

as 111010010100110111, where matches in all of the 1 positions are required for a hit and

0 denotes positions where either a match or a mismatch is allowed. For example, given the

short seed 10101, the short sequences AAAAA and AGAGA would produce a hit because the

first, third and fifth bases match and the seed specifies that the second and fourth positions

do not need to match. The sequences AAAAA and AAAAC would not produce a hit because the

fifth base differs.

Search algorithms that use discontinuous seeds have received considerable attention lately;

see Brown et al. [2004] for a recent survey covering the area. Indeed, the concept of allowing

mismatches at fixed positions has some appealing properties, especially for DNA sequence

alignment where changes to some bases do not affect the encoded protein sequence. Spaced

seeds have been shown to provide better sensitivity because they do not rely on a matching

region of W consecutive bases for an alignment to be considered [Brown et al., 2004]. Further,

spaced seeds better accommodate for nucleotide substitutions that do not affect the encoded

protein sequence. Indeed, Brown et al. [2004] report that spaced seeds produce fewer chance

matches between unrelated sequences than continuous seeds (and as a result, faster search

times) at the same level of sensitivity.

Spaced seeds have been employed in several search tools, and variations of the basic app-

roach have been proposed. The most popular tools to employ spaced seeds are Pattern-
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Hunter and megablast [Zhang et al., 2000]. Buhler [2001] investigate the use of multiple

spaced seeds to improve the performance of their lsh-all-pairs tool for multimegabase

genomic DNA sequence alignment. Their approach uses a set of randomly generated dis-

continuous seeds, where a match with any of the seeds is required to trigger a hit. Brejova

et al. [2005] describe another extension of the spaced seed model called vector seeds, where

positions in the seed are weighted differently and mismatches are permitted at variable po-

sitions. Methods for selecting seeds that maximise sensitivity while minimising search times

have also received considerable attention of late [Gotea et al., 2003; Buhler et al., 2003; Sun

and Buhler, 2004; Choi et al., 2004; Brejova et al., 2004]. Spaced seeds have been more com-

monly applied to nucleotide alignments, although Brown [2004; 2005] presents a framework

for using spaced seeds in protein search and shows that they can achieve comparable search

accuracy to the continuous seed used in blast and produce roughly 25% as many hits.

However, despite their attractive properties, spaced seeds appear to have limited applica-

tions. Sun and Buhler [2004] observe that discontinuous seeds are most effective for homology

search when words are extracted from the collection only once to construct an index, using

the schemes described in Sections 3.2.1 and 3.2.2. They appear to be less practical for ex-

haustive search algorithms such as fasta and blast, perhaps because these tools extract

words from the collection each time it is searched, and discontinuous words are more costly to

extract than continuous words. The most successful applications of spaced seeds have been

algorithms that record an index of the entire collection in main-memory such as Pattern-

Hunter and lsh-all-pairs. Main-memory indices have limited applications, as discussed

in Section 3.2.2, and it is unclear how much of the performance gain reported for tools such

as PatternHunter is due to spaced seeds as opposed to the use of an main-memory index.

The only popular exhaustive search tool to employ discontinuous seeds is a variation of the

megablast search tool, however it is unclear if megablast is faster than regular blast,

and it is considerably less sensitive [Gotea et al., 2003]. One interesting area of research that

has not been considered, however, is the application of spaced seeds to disk-based indexing

schemes such as cafe [Williams and Zobel, 2002].

3.2.4 Parallel and distributed search

The task of searching a genomic collection can be parallelised and distributed across a collec-

tion of processors. Hughey [1996] provides an overview of different approaches to parallelising

homology search, and defines two alternative methods. The first method is the coarse-grain
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approach where collection sequences are divided amongst the available processors, and each

processor is responsible for searching its allocated portion of the collection. High-scoring

alignments are then collated and displayed to the user. This approach is attractive because

the processors can be loosely coupled, for example, a cluster of linux workstations connected

via Ethernet such as the arrangement described in Section 3.1.3 can be used. However, the

coarse-grain approach is not suitable for aligning a smaller number of very long sequences

[Hughey, 1996]. The second method is the fine-grain approach, where the alignment of a

single collection sequence is divided amongst the processors. Each processor is responsible

for a portion of the alignment matrix, such as cells on a specific diagonal, and calculates

values for those cells only. The fine-grain approach requires a tightly-coupled system due to

a high inter-dependence between cells in the dynamic programming matrix [Hughey, 1996].

We describe some applications of the coarse-grain and fine-grain approaches in this section.

Yap et al. [1998] describe a system that divides collection sequences amongst processors

in a parallel computer and reports a reduction in search times by a factor of almost N,

where N is the number of available processors. Lin et al. [2005] describe a similar system for

distributing blast searches across a cluster of loosely-coupled workstations with analogous

results. Similarly, Deshpande et al. [1991] describe a distributed implementation of the

fasta algorithm. Several researches have also described parallel homology search tools for

specific hardware. Brutlag et al. [1993] describe the blaze system that performs a Smith-

Waterman search using the fine-grain distributed approach on the massively parallel MasPar

computer with 4096 processors and report a substantial speed gain. Alpern et al. [1995] use

microparallelism by conceptually dividing the 64-bit registers on the Intel Paragon i680 into

four 16-bit parts that permits four cells in the alignment matrix to be processed at a time.

The authors report a five-fold speed increase when aligning protein sequences.

Several commercial, special-purpose hardware solutions have also been developed includ-

ing Paracel’s GeneMatcher, Compugen’s Biocellerator and TimeLogic’s DeCypher [Rognes

and Seeberg, 2000]. White et al. [1991] describe another special-purpose hardware solution

that provides a 1000-fold speed-up over regular dynamic programming software solutions.

Unfortunately, these approaches rely on expensive purpose built hardware and as a result

they have not been widely adopted.

Rognes and Seeberg [2000] investigated the use of the MultiMedia eXtensions (MMX)

and Streaming SIMD Extensions (SSE) instructions available on modern Intel processors and

managed to achieve a six-fold speed increase when performing Smith-Waterman alignments.

However, their approach has two main limitations; not all processors support the special
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instructions and alignment scores greater than 255 are not considered. Further, the authors

concede that their approach would be less effective if used in conjunction with the blast

drop-off heuristic that is described in Section 2.3.2.

3.2.5 Profiles and iterative search

The homology search algorithms described so far in this chapter identify high-scoring pairwise

alignments between a query sequence and sequences in a collection. Unfortunately, distantly

related sequences often do not generate statistically significant pairwise alignments that can

be distinguished from chance similarities [Pearson, 1996]. In this section we describe sequence

profiles, that can be used to represent a family of related sequences. Sequence profiles provide

greater sensitivity to evolutionary relationships because they encapsulate information about

a family of sequences rather than a single member of that family alone [Aravind and Koonin,

1999]. For example, a profile can specify which regions of a sequence are more conserved than

others, based on the degree of conservation between members of the same family. The two

most commonly employed type of profiles are Position Specific Scoring Matrices (PSSMs)

[Altschul et al., 1997; Schaffer et al., 1999] and profile Hidden Markov Models (HMMs)

[Karplus et al., 1997; 1998; 2003]. We describe the sam [Karplus et al., 1998] and psi-blast

[Altschul et al., 1997] iterative search methods that use profiles and are highly sensitive to

subtle protein relationships. Profiles are commonly employed for protein sequence analysis

and are less frequently used for the analysis of nucleotide data.

Sequence profiles

A sequence profile is constructed from a multiple alignment of related sequences. A profile

encapsulates information about the group of related sequences, and can be used to efficiently

search large collections [Altschul et al., 1997; Karplus et al., 1997]. The two most successfully

employed types of profiles are PSSMs and HMMs. A PSSM is an array of numeric values

with a rows and |q| columns, where a is the alphabet size and |q| is the length of the profile.

Each column Ki of the PSSM represents a single residue position, and each value in the

matrix Kij represents the score resulting from the alignment of residue j from a collection

sequence to residue position i in the profile. The alignment scores for each column Ki of the

PSSM are derived from the residue frequencies at position i in the multiple alignment that

was used to construct the profile, based on a similar approach to the construction of scoring

matrices that is described in Section 2.4.
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K V F E R C E L A R T L K R L G M D G Y R G I S L A N W M
K I F R K C E F A E L L E R R Y R L S R E D I K - - N W V
K V F R K C E F A Q L L E T K Y Y L S R N D I K - - N W V
K V F R E C E F A E L L E T R Y C L S R N D I K - - N W V
K H F S R C E L V H E L R R - - - Q G F P E N L M R D W V
K K F D K C S L A K A L L - - - A Q G F S K A D L R N W V

A -1 -1 -3 -1 -2 -1 -1 -2 0 -2 0 -2 -2 -1 -1 -1 0 -2 0 -2 -1 -1 0 -1 -1 0 -2 -3 -1
R 2 -1 -3 4 5 -4 -1 -3 5 3 1 -3 3 5 3 -1 1 -1 0 4 2 -1 1 0 -1 2 -1 -3 -3
N -1 -2 -4 0 -1 -3 -1 -4 -2 -1 -2 -4 -1 -1 -1 -1 2 -1 -2 -2 3 0 -3 -1 -2 4 6 -4 -3
D -1 -3 -4 3 -1 -4 1 -4 -2 -1 -2 -4 0 -1 -1 -1 -2 2 0 -3 0 4 2 3 -2 -1 3 -5 -4
C -4 -2 -3 -3 -4 10 -4 -2 -3 -4 -2 -2 -4 -2 -2 -2 -2 -3 -1 -3 -3 -4 -2 -3 -1 -1 -4 -3 -1
Q 1 -1 -4 0 1 -4 1 -3 -1 3 -2 -3 1 0 0 -1 4 4 -2 -1 0 0 -2 0 -1 -2 -1 -3 -2
E 0 -2 -4 2 2 -4 5 -4 -2 3 -1 -4 4 -1 0 -1 -1 0 -2 -2 2 3 -2 0 -1 0 0 -4 -3
G -2 -3 -4 -2 -3 -3 -2 -4 -2 -3 2 -4 -3 -2 -1 2 -1 -3 -2 -3 -2 2 -2 -2 -2 0 -1 -3 -4
H -1 4 -2 -1 -1 -4 -1 -3 -1 5 -2 -3 -1 -1 -1 0 -2 -1 5 -1 -1 -2 -2 -2 -2 -1 0 -3 -3
I -3 2 -1 -4 -4 -2 -4 1 -3 -4 -2 1 -2 -2 -1 -1 -1 -1 -2 -2 -4 -4 -2 -2 1 -1 -4 -3 2
L -3 0 0 -3 -3 -2 -3 4 -1 -3 0 5 1 -2 1 -1 -1 2 -4 -1 -3 -4 4 1 3 -2 -4 -2 1
K 6 2 -4 1 4 -4 0 -3 -1 3 2 -3 2 1 2 -1 -1 -1 -4 0 0 2 0 3 -1 -1 -1 -4 -3
M -2 0 0 -2 -2 -2 -3 1 -2 -2 -1 2 -1 -1 0 -1 -1 0 -1 -1 -3 -3 -2 -1 4 1 -3 -2 4
F -4 -2 7 -4 -4 -3 -4 5 -1 -3 0 0 -3 -2 -1 1 3 -2 -3 5 -4 -4 0 -3 0 -1 -4 1 -1
P -2 -3 -4 -2 -2 -4 -2 -4 -3 -2 -2 -4 -2 -2 -1 -1 -1 -3 -4 -4 4 -2 -1 -2 -1 -2 -3 -4 -3
S -1 -2 -3 2 -1 -1 2 -3 -2 -1 -2 -3 -1 0 -1 -1 -2 -1 -2 -2 2 -1 -3 1 -1 -1 0 -3 -2
T -1 -1 -3 -1 -1 -1 -1 -2 0 -2 -1 -2 -2 2 -1 -1 -1 -2 3 -2 -1 -2 -1 -1 -1 0 -1 -3 -1
W -4 -3 1 -4 -4 -3 -4 -1 -1 -3 2 -2 -3 -2 -1 1 -1 -3 -1 0 -4 -4 -1 -3 -1 -1 -5 12 -3
Y -2 -1 3 -3 -2 -3 -3 1 -3 -1 -3 -2 -2 -2 -1 5 -1 -2 -3 4 -3 -3 -3 -2 -1 -2 -3 2 -2
V -3 3 -1 -3 -3 -1 -3 0 -2 -3 -2 0 -2 -2 -1 -1 2 -1 -3 -2 -3 -4 -2 -2 0 -1 -4 -4 5

Figure 3.11: A Position Specific Scoring Matrix constructed from a multiple alignment

of related lysozyme protein sequences. The multiple alignment at the top contains subse-

quences from lysozyme proteins with GI accessions 27261765, 20159661, 7327646, 30088921,

28465341, and 4557894 (listed from top to bottom). The PSSM at the bottom was constructed

from the multiple alignment by psi-blast

Figure 3.11 shows a multiple alignment of related lysozyme sequences and a PSSM that

was constructed by psi-blast [Altschul et al., 1997] from that multiple alignment. Each

column in the PSSM corresponds to a residue position in the multiple alignment. Generally,

residues that occur frequently at each position in the multiple alignment also score highly at

that position in the PSSM, while residues that do not appear at a position score poorly in

the corresponding column in the PSSM. For example, the far right column of the multiple

alignment contains the residues M and V. Accordingly, residues M and V both score highly in

the last column of the PSSM with alignment scores of 4 and 5 respectively.

A PSSM records information about the characteristics of a protein family that cannot
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be represented by a single member of the family on its own. As a result, PSSMs can be

used to dramatically increase the sensitivity of sequence alignment methods to homologous

relationships when compared to basic pairwise methods [Park et al., 1998; Chen, 2003].

Further, dynamic programming algorithms that compute the optimal alignment between

two sequences such as those described in Section 2.2 are easily adapted to align a PSSM

to a sequence with little or no change in computational cost, and the blast algorithm is

easily adapted to search a database of collection sequences with a PSSM instead of a query

sequence and scoring matrix [Altschul et al., 1997].

Profile-based search methods

One important application of profiles is iterative search, where several passes through the

collection are made, and each pass identifies high-scoring alignments between the profile and

the collection that are used to update the profile for the next iteration [Altschul et al., 1997;

Karplus et al., 1998]. This iterative approach is similar to the query expansion or relevance

feedback schemes that have received much attention in information retrieval [Billerbeck and

Zobel, 2004]. The popular psi-blast algorithm performs iterative blastp searches using a

PSSM as follows.

1. Perform regular blast search with user-provided query sequence and collection.

2. Construct a Position Specific Score Matrix from high-scoring alignments with an E-

value below the threshold t.

3. Use the PSSM constructed from high-scoring alignments to search the collection.

4. If the list of high-scoring alignments is unchanged between this iteration and the last,

or the maximum number of iterations j has been reached, then stop, otherwise return

to Step 2.

The PSSM is updated with similar (and likely related) sequences from the collection

during each iteration, which increases sensitivity to more distantly related sequences. When

default parameters are employed, only alignments with an E-value less than t = 0.002 are

used to update the profile (where an E-value reflects the likelihood an alignment was due to

chance, and a lower E-value indicates greater similarity as discussed in Section 3.3.1) and a

maximum of j = 20 iterations are performed12.

12
ncbi-blast version 2.2.10
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Park et al. [1998] compare the accuracy of several homlogy search tools using the SCOP

database, which classifies sequences into related groups, and methods for assessing retrieval

accuracy similar to those described in Section 3.3.3. They found that iterative methods such

as psi-blast detect twice as many homologous matches and three times as many remote

homologues than standard pairwise approaches such as fasta and blast. However, this

increased sensitivity comes at a cost — each iteration of psi-blast takes roughly as long as

a single blast search [Altschul et al., 1997], resulting in an overall search time up to around

j times longer. Further, the accuracy of iterative methods is degraded by two common prob-

lems. First, psi-blast searches can go astray with false positive alignments contaminating

the profile [Schaffer et al., 2001]. This problem occurs when an alignment to a unrelated

collection sequence produces an E-value below j, and the sequence is used to update the

PSSM for the next iteration. As a result, the new profile no longer represents only sequences

related to the query and may produce high-scoring alignments to other unrelated sequences

in subsequent iterations. The likelihood of contamination can be reduced by improved esti-

mates of the statistical significance of alignments, such as those discussed in Section 3.3.1.

The second problem with iterative methods is profile saturation [Li et al., 2002], where a

large number of near-identical sequences dominate the profile so that it no longer represents

the original query. Such saturation can be caused by the over-representation of proteins

with numerous entries in the collection. Altschul et al. [1997] describe measures to counter

this problem by applying varying weights to collection sequences during profile construction,

however research by Li et al. [2002] suggests that redundany in collections continues to pose a

problem for iterative search techniques. We discuss this issue in more detail in Section 3.3.4.

Profiles can also be used to build a database of protein families, where each entry in the

database is a profile that represents a single family. For example, the BLOCKS database

provides a collection of profiles that are used to represent conserved regions in protein families

[Pietrokovski et al., 1996]. The impala algorithm [Schaffer et al., 1999] uses a complementary

approach to psi-blast and compares a single query sequence to a collection of PSSMs.

However, unlike psi-blast which uses the heuristic blast approach, impala compares the

query to each PSSM using the rigorous Smith-Waterman algorithm. Since collections of

PSSMs are typically much smaller than collections of sequences, this approach is feasible

in practice [Schaffer et al., 1999]. impala is roughly as sensitive as psi-blast, however, it

is limited to the comparison of proteins that have been annotated and grouped into related

families and is not as comprehensive as regular sequence database search tools [Schaffer et al.,

1999]. Recently, a new yet unpublished heuristic variation of the impala approach has been
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devised called rps-blast that uses the blast algorithm instead of Smith-Waterman and is

provided as a component of the cd-search tool for annotating protein domains [Marchler-

Bauer and Bryant, 2004]. Another approach by Panchenko [2003] compares two profiles for

even greater sensitivity to weak similarities, however the approach relies on sufficient data

to construct a pair of profiles.

Hidden Markov Models

The second common profile representation is through the use of Hidden Markov Models

[Karplus et al., 1997]. Profile HMMs are attractive because they are able to capture additional

information about a group of related sequences that is not supported by PSSMs, such as the

likelihood of insertions and deletions at different residue positions. A solid statistical theory

is also available for scoring alignments with HMMs, which form the basis of the sam sequence

analysis toolkit [Karplus et al., 1997; 1998; 2003]. HMMs have been shown to provide better

sensitivity to homologous relationships than PSSMs [Park et al., 1998], however are more

computationally expensive to align. The sam-t98 method [Karplus et al., 1998] is an iterative

search algorithm that is similar to psi-blast but uses HMMs instead of PSSMs. The sam-

t98 algorithm works as follows. First, a blast search with a high E-value cutoff is used to

identify collection sequences with a broad similarity to the query. Next, collection sequences

with a low E-value are used to construct an initial profile HMM. The HMM is then used to

rescore the longer list of collection sequences with a broad similarity to the query, and the

resulting high-scoring alignments are used to update the HMM. This process is repeated for

another three iterations, and the results of the final iteration are displayed to the user. The

sam-t98 is slower but more sensitive than psi-blast [Park et al., 1998].

3.2.6 Other search algorithms

In this section we describe three homology search algorithms that were not covered in previous

sections. We describe the salsa [Rognes and Seeberg, 1998] and sensei [States and Agarwal,

1996] tools that are exhaustive search methods with similarities to blast. We also describe

the Intermediate Sequence Search approach that uses an intermediate sequence to detect

homologous relationships.

Rognes and Seeberg [1998] describe the salsa algorithm that uses a three stage approach

similar to the exhaustive algorithm used by blast. High-scoring word matches between

the query and collection are identified in the first stage, and the second stage identifies
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high-scoring ungapped alignments. In the third stage, salsa attempts to link high-scoring

ungapped regions to produce a longer alignment with gaps. Rognes and Seeberg [1998] report

that salsa is almost as sensitive as a Smith-Waterman search and is faster than fasta.

States and Agarwal [1996] proposed some novel approaches to search in their blast-like

alignment tool sensei. They propose the use of filtering techniques, such as those described

in Section 3.3.2 on page 95, to remove low-complexity regions from the query sequence and

this approach has since been integrated into blast. They also describe a one-bit per base

representation for nucleotide sequences that indicates if the base is a purine or a pyrimidine

(thus A and G, and C and T, are indistinguishable), which enables faster search but has not

been widely adopted.

Park et al. [1997] and Gerstein [1998] describe a transitive method to sequence comparison

that uses an intermediate sequence to detect homology. Their approach is based on the

following observation; given a high-scoring alignment between sequences A and B, and a high-

scoring alignment between sequences B and C, homology between sequences A and C can be

inferred. The Intermediate Sequence Search (ISS) method uses the original query sequence to

search the collection with an algorithm such as fasta or blast, and then performs additional

searches with each collection sequence that produced a high-scoring alignment as the query.

This transitive approach is more accurate than simple pairwise algorithms such as fasta and

blast, however not as accurate as iterative centroid-based methods such as psi-blast and

sam [Park et al., 1998]. Further, the method involves several passes through the collection

and is prohibitively slow for large databases.

3.2.7 Summary

This section presented alternative methods for searching genomic collections. We began

with a description of index-based approaches that use an inverted index to identify collection

sequences with broad similarity to the query. cafe is the most successful such approach,

which is around eight times faster than blast. Unfortunately, index-based approaches suffer

from several drawbacks including high main-memory and disk usage, and reduced search

accuracy.

In Section 3.2.2 we discussed algorithms for comparing entire genomes. In this area,

several staggeringly fast approaches have been developed that rely on greatly reduced sen-

sitivity, or an index of the entire collection residing in main-memory. As a result, many of

these approaches are applicable only to limited search tasks. One significant development in
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this area, however, is the use of discontinuous seeds for the first, word-match stage of search.

Discontinuous seeds provide faster and more accurate search for alignment algorithms that

employ a main-memory index.

We surveyed parallel and distributed approaches in Section 3.2.4. These schemes divide

collection sequences, or region of the alignment matrix, amongst a cluster of processors for

very fast search. However, they rely on purpose-built or expensive hardware and are not in

widespread use. In Section 3.2.5 we described sequence profiles, including Position Specific

Scoring Matrices and profile Hidden Markov Models, that capture the characteristics of a

group of related sequences. Profiles are used in iterative search algorithms such as psi-blast

and the sam-T99 method. These tools perform multiple passes of the collection and use high-

scoring alignments to construct a profile, which is used as a query in subsequent iterations.

Iterative search algorithms are slower but more sensitive than basic pairwise approaches

such as blast. Finally, we discussed other important search algorithms not covered in the

previous sections in Section 3.2.6.

In the next section, we discuss issues related to genomic search including measures of

alignment significance, low-complexity regions in sequences, methods for assessing the accu-

racy of homology search tools and the management of redundancy in sequence databases.

3.3 Issues in genomic search

In this section we describe some general issues and considerations that relate to the design of

a homology search tool. We begin with an overview of methods used to assess the statistical

significance of alignments, and the probability that an optimal alignment score is due to a

chance similarity rather than a homologous relationship. We describe the methods used by

popular homology search tools such as fasta and blast to convert an alignment score to

a measure of statistical significance. In Section 3.3.2 we describe low-complexity regions in

biological sequences and explain how these regions skew alignment scores and the assessment

of statistical significance. We describe algorithms for filtering regions with a low-complexity

for more robust search. We also present methods for assessing the accuracy of genomic search

tools such as measures based on classifications in the SCOP database [Murzin et al., 1995]

in Section 3.3.3. Finally, we explain how redundancy in genomic collections, in the form

of near-duplicate entries, can affect search performance and survey techniques for managing

redundancy in Section 3.3.4.
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3.3.1 Statistical significance of alignments

Homology search tools such as blast align the query to sequences in a collection and report

high-scoring alignments to the user. In this section we discuss methods for calculating the

statistical significance of an alignment, which forms an important component of homology

search algorithms. Blast uses alignment E-values to distinguish alignments between ho-

mologous sequences from alignments between unrelated sequences. The alignment E-value

reflects the probability that a given alignment score results from a chance similarity, and we

detail the approach used by blast to calculate E-values.

Popular methods for assessing the significance of alignments rely upon the random in-

dependence model that considers genomic sequences to be string of letters randomly drawn

from the relevant alphabet [Karlin and Altschul, 1990; Altschul and Gish, 1996]. Although

each amino acid and nucleotide base has a different frequency of occurrence [Robinson and

Robinson, 1991], this model assumes that there is no relationship between adjacent amino

acids and that genomic sequences can be represented by a zero-order Markov model. This

assumption is supported by the poor compressibility of protein and DNA sequence data

[Nevill-Manning and Witten, 1999; Weiss et al., 2000; Korodi and Tabus, 2005]. Under this

assumption, Karlin and Altschul [1990] show analytically that optimal alignment scores be-

tween random or unrelated sequences follow an extreme value or Gumbel distribution when

gaps are not permitted. That is, the probability of a pair of unrelated sequences having an

optimal alignment score S that is greater than a specific alignment score s is defined as

P (S > s) = 1− exp(−Kmne−λs)

where m and n are the lengths of the sequences being compared and the constants K and λ are

synonymous to the location and scale of the distribution, and are dependent on the alignment

scoring scheme. For ungapped alignments, the values of K and λ can be derived for any

scoring scheme analytically. Although the analytical results do not extend to alignments that

contains gaps, Waterman and Vingron [1994] and Collins et al. [1988] have show empirically

that gapped alignments such as those generated by the Smith-Waterman algorithm also

follow an extreme value distribution, assuming the gap penalty is sufficiently high. For

gapped alignments, however, empirical methods must be employed to estimate the values of

K and λ for each scoring schemes.

Figure 3.12 shows the alignment scores generated by fasta [Pearson and Lipman, 1988]

for a database search and illustrates that they follow an extreme-value distribution. For this
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Figure 3.12: Distribution of actual and expected alignment scores for a fasta (version 3.4)

search using a freshwater prawn lysozyme protein as the query (GI accession 30088921) to

search the pruned version of the ASTRAL database described in Section 3.3.3. The actual

distribution of alignment scores is represented by the solid line and the expected extreme-value

distribution is shown as a dotted line.

search, fasta calculated values of K = 0.024 and λ = 0.168 and used these to estimate the

distribution of alignment scores, which is shown as a dotted line. The solid line represents

the observed alignment scores, which closely follows the expected distribution (the dotted

line). In addition to the scores shown, 13 collection sequences produced optimal alignments

with a score above 120. Such large scores have a low probability of occurence in the expected

distribution of scores due to chance similarities and this suggests that these collection se-

quences are related to the query. Collection sequences with an optimal alignment score below

120 may also be related to the query, because not all homologous sequence pairs produce a

statistically significant alignment during a database search [Pearson, 1996].

Values of K and λ that define the distribution of alignment scores can be calculated

for any arbitrary scoring scheme that does not permit gaps. However, for alignments with

gaps such as those generated by the Smith-Waterman algorithm and search tools such as

fasta and blast, values of K and λ must be calculated empirically. Earlier versions of

the fasta algorithm estimated these parameters by observing the alignment scores resulting

from random permutations of the query and collection sequences [Pearson, 1996]. This
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random shuffling approach was effective because it accounted for the composition of the

sequences, however it was also time consuming. Later releases of fasta use the actual

alignment scores resulting from the database search to estimate the location (K) and scale

(λ) of the extreme value distribution [Pearson, 1998]. This is achieved by first pruning outliers

from the alignment scores, these are likely to be true homologues, and then curve fitting an

extreme value distribution to the remaining scores. The result of this curve fitting exercise

is shown in Figure 3.12.

The curve fitting approach is applicable to fasta and ssearch because both algorithms

generate an alignment score for every sequence in the collection (in the case of fasta, the third

stage produces an approximation of the alignment score for every sequence). However, blast

does not generate alignment scores for every collection sequence, rendering this approach

infeasible [Altschul et al., 1997]. Instead, values of K and λ are pre-computed by way of

random simulation for each scoring matrix and gap penalty combination [Altschul and Gish,

1996]. The Smith-Waterman algorithm is used to align randomly generated sequences with

a typical composition (that is, they are constructed by randomly selecting residues using

the Robinson and Robinson background amino-acid frequencies [Robinson and Robinson,

1991]) and the resulting parameters are hard-coded into the blast program [Waterman and

Vingron, 1994; Altschul et al., 2001]. This approach has two main drawbacks. First, it

relies upon the query and collection sequence having a typical amino acid composition for an

accurate assessment of significance, which is often not the case as we discuss next. Second,

only a limited selection of scoring matrices and gap penalties have been simulated and are

available to blast users [Altschul and Gish, 1996].

Two additional values are hard-coded into the blast program, α and β, that are calcu-

lated for every supported combination of scoring matrix and gap penalties. These parameters

are used to perform edge effect correction when calculating the statistical significance of an

alignment [Altschul and Gish, 1996; Altschul et al., 2001]. The correction takes into consid-

eration that high-scoring alignments have a non-negligible length and generally cannot start

a short distance from the end of either sequence, which affects the distribution of alignment

scores between unrelated or random sequences.

During a database search, blast reports the statistical significance of each alignment to

the user as an E-value, which represents the chance that an alignment with at least the same

score would be found if a randomly constructed query with typical amino-acid composition

was searched against a randomly generated database. A smaller E-value results from a

higher-scoring alignment and indicates that the sequences are more likely to be related. The



94 CHAPTER 3. SEARCHING GENOMIC DATABASES

length of the query sequence and the size of the collection are taken into consideration when

calculating the E-value. There are three stages used by blast to determine the statistical

significance of a alignment:

1. A alignment score of nominal score S is determined for each alignment using a mutation

data scoring matrix and a function for penalising gaps. Nominal scores are generally

written without units.

2. The nominal score is converted to a normalized score S ′ as:

S′ =
λS − ln K

ln 2

Scores in this normalized form are expressed in bits, and are comparable across different

scoring schemes. A bit is the amount of information that is necessary to distinguish

between two possibilities, such as whether or not two sequences are related. An increase

in the normalized score of 1 bit indicates that an alignment is twice as likely to be

statistically significant.

3. The normalized score is converted into an E-value as:

E =
Q

2S′

where Q is the search space size, that is, Q ≈ mn where m and n are the total number

of residues in the query and the collection respectively. blast uses the values of α

and β to calculate the exact value of Q [Altschul and Gish, 1996; Altschul et al., 2001],

taking into consideration that high-scoring alignments generally cannot start a short

distance from the end of either sequence.

The resulting value of E is reported to the user as the alignment E-value. The equations

can also be inverted to determine the minimum nominal score required to achieve a specific

E-value. This approach is used by blast to determine the cutoff parameter S2 from the

user-specified E-value. For a more detailed description of the approach used by blast to

calculate alignment E-values see Altschul and Gish [1996].

More recently, new methods for assessing the significance of an alignment have been pro-

posed that improve the accuracy of E-value calculations in the presence of compositional

bias. Schaffer et al. [2001] found that query and collection sequences often contain a large
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degree of compositional bias that skews the distribution of alignment scores. Since values of

K and λ used by blast are based on simulations of randomly generated sequences with an

average composition, query sequences with a non-standard composition render these param-

eters inaccurate. This can lead to inflated E-values, which has a particularly detrimental

effect on the psi-blast algorithm; the iterative approach relies on accurate assessments of

significance to determine which sequences should be used to construct a profile for the next

iteration of search [Schaffer et al., 2001]. Inaccurate E-values can lead to contamination of

the profile, resulting in the further false positives, as discussed in Section 3.2.5.

Schaffer et al. [2001] describe an approach that rescales alignment scores to better reflect

the amino acid composition of the sequences being aligned. Their approach calculates the

value λu that is the scaling parameter for the extreme distribution of scores where gaps

are not permitted. The value of λu can be calculated analytically and reflects the actual

composition of the sequences being aligned. The scaling parameter λ′u is then calculated

for the ungapped alignment of sequences with a standard composition. Finally, the scoring

matrix is rescaled so that λu = λ′u. Assuming that the non-standard composition of the

sequences has a similar magnitude effect on gapped alignment scores as ungapped alignment

scores, this rescaling will improve the accuracy of the E-value measure. Indeed, Schaffer

et al. [2001] find that their approach, which they refer to as composition-based statistics,

greatly improves the accuracy of psi-blast and it has been included as a default option for

the tool. Yu et al. [2003] describe an approach that goes one step further by adjusting the

values in the substitution matrix, rather than simply rescaling it, so that it is suitable for

non-standard residue frequencies.

3.3.2 Filtering low-complexity regions

In the previous section, we described methods for measuring the significance of an alignment.

These measures are based on the random independence model, where it is assumed that

sequences have a standard composition and each amino acid or base in the sequence has an

independent probability of occurence. Unfortunately, many sequences contain low-complexity

or repeat regions, containing a bias towards certain amino acids, that strongly violate this

model [Kreil and Ouzounis, 2003]. This leads to less meaningful alignments, spurious matches

between unrelated sequences that share a similar compositional bias, and inflated measures

of alignment significance [Altschul et al., 1994]. One solution to this problem is the use of

composition-based statistics, which was described in the previous section. Another approach



96 CHAPTER 3. SEARCHING GENOMIC DATABASES

MESIFHEKQEGSLCAQHCLNNLLQGEYFSPVELSSIAHQLDEEERMRMAEGGVTSEDYRTFLQQPSGNMDDSGFF

SIQVISNALKVWGLELILFNSPEYQRLRIDPINERSFICNYKEHWFTVRKLGKQWFNLNSLLTGPELISDTYLAL

FLAQLQQEGYSIFVVKGDLPDCEADQLLQMIRVQQMHRPKLIGEELAQLKEQRVHKTDLERVLEANDGSGMLDED

EEDLQRALALSRQEIDMEDEEADLRRAIQLSMQGSSRNISQDMTQTSGTNLTSEELRKRREAYFEKQQQKQ

QQQQQQQQQGDLSGQSSHPCERPATSSGALGSDLGDAMSEEDMLQAAVTMSLETVRNDLKTEGKK

Figure 3.13: Human ataxin-3 protein (GI accession 13518019) with a low-complexity region
identified by seg that is shown in bold face.

is to use a low-complexity filter, which we describe next.

Altschul et al. [1994] report that more than half of proteins contain a low-complexity

region, and these regions are usually relatively short, typically ranging in length from 15

to 50 residues [Wootton and Federhen, 1993]. Common types of low complexity regions

include short period repeats, aperiodic mosaics and homopolymers [Wootton and Federhen,

1993]. Many search tools process the query with a low-complexity filter before performing

a database search. The filter removes these regions by replacing them with the ambiguous

residue character X for protein, or N for nucleotide data. Kreil and Ouzounis [2003] provide a

good overview of different methods for detecting biased regions. In this section, we describe

the popular seg [Wootton and Federhen, 1993; 1996; Altschul et al., 1994] algorithm for

identifying low-complexity regions in protein sequences that is the default option for filtering

blast protein query sequences.

Figure 3.13 shows an example of a protein sequence with a low-complexity region that was

identified by seg. The glutamine repeat in the human protein ataxin-3, which is highlighted

in bold face, is associated with a neurodegenerative disease [Chow, 2004]. Glutamine repeats

commonly occur in a wide range of proteins with differing evolutionary origin, structure and

function. As a result, a high-scoring alignment may result from two sequences that contain

a repeat region even if they are not biologically related. By removing low-complexity regions

from the query sequence before a database search, such spurious matches are avoided.

The seg algorithm identifies low-complexity regions as follows. First, a window of length

L is passed across the sequence, where L typically ranges between 10 and 40 amino acids.

For the region of the sequence in the window, a complexity state vector is constructed. The

vector has a elements {n1...na} where a is the alphabet size, and represents the number of

occurrences of each amino acid in the region. The vector is defined by

0 ≥ ni ≥ L,
a

∑

i=1

ni = L
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and elements in the vector are sorted in descending order. For example, given a nucleotide

alphabet of size a = 4, the complexity vector of the sequence AGCAAAC is (4,2,1,0) because the

most common letter, A, appears four times, the next most common letter, C, appears twice,

the next most common letter, G, appears once and T does not appear at all. The sequence

AAAAAA has a low complexity with the vector (6,0,0,0) and the sequence AGCTAGCT has a high

complexity with the vector (2,2,2,2). Wootton and Federhen [1993] present several methods

for converting the complexity state vector to a single value that represents the complexity of

the subsequence. If the measure exceeds a threshold then residues in the window are masked

using the X character.

A similar filter called dust is used to mask repeat and low-complexity regions in DNA

sequences [Hancock and Armstrong, 1994], and is the default tool for nucleotide blast

searches. The dust algorithm is similar to seg, but slides a larger window with a default

length of L = 64 across the sequence and identifies frequently occurring nucleotide triplets

in the region.

3.3.3 Assessing retrieval accuracy

In this section, we discuss methods for assessing the accuracy of homology search tools.

Assessments are usually based on the retrieval performance for searches of a collection of

proteins that have been classified into groups of related sequences. The SCOP [Murzin et al.,

1995; Andreeva et al., 2004] and PIR [Wu et al., 2003] databases both provide sequence

classifications that can be used to determine whether a pair of sequences are homologous

or not. Measures such as the Receiver Operating Characteristic (ROC) score [Gribskov and

Robinson, 1996], which rewards matches between related proteins and penalises matches

between unrelated proteins, can then be applied to the output of a genomic search to assess

search accuracy.

The Structural Classification of Proteins, or SCOP database [Murzin et al., 1995; An-

dreeva et al., 2004], that was described in Section 2.1.3, has been used widely to measure the

accuracy of homology search techniques [Park et al., 1997; Brenner et al., 1998; Park et al.,

1998; Gerstein, 1998; Müller et al., 1999; Park et al., 2000a; Chen, 2003]. Measures based on

the SCOP database are considered to be unbiased and highly rigorous. The collection con-

tains proteins that have been hierarchically classified into four levels: class, fold, superfamily

and family, based on information about the three-dimensional structure of each protein. To

test the retrieval effectiveness of a search tool, sequences from the database are extracted
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and used to search the entire database. The results from the search are annotated using

the classifications in SCOP; matches to sequences from the same superfamily are correct

and considered true-positives, while matches to sequences from a different superfamily are

incorrect and considered false-positives.

The commonly-used Receiver Operating Characteristic (ROC) provides a measure of

accuracy based on the ranked list of alignments returned by each search [Gribskov and

Robinson, 1996]. The ROC score provides a measure between 0 and 1, where higher values

reflect better sensitivity and selectivity. A list of true positives of length L is used to determine

the score. For the SCOP test, this list is comprised of SCOP sequences from the same

superfamily as the query. When measuring the ROC score, the list of alignments is truncated

after the first n false positives, where n is typically 50 or 100. The ROCn score is calculated

as:

ROCn =
1

nL

∑

1≤F≤n

uF

where F is the position of the F th false positive in the list of reported alignments, and uF

is the number of true positives that ranked ahead of that false positive. For example, a

search that ranks all true positives before any false positives receives a perfect ROC score

of 1. A search that does not return any true positives receives a ROC score of 0. The ROC

score measures both search sensitivity, that is the detection of true homologous relationships,

and search selectivity, that is the ranking of homologous relationships above non-homologous

relationships.

The ROC measure can be applied in one of two ways. First, a ROC score may be derived

from the results for each query and then averaged across all queries to provide an overall

measure of accuracy, or second, the search results for each query can be combined into a single

results list sorted by E-value and the ROC measure applied [Chen, 2003; Kann et al., 2005].

We conjecture that the latter approach is better suited to assessing the accuracy of alignment

E-values which should be comparable across queries. However, the former is arguably a

better method for assessing the accuracy of underlying search algorithms rather than scoring

schemes, because it considers each search independently, which reflects how search results

are presented to the user. For our experiments throughout this thesis, the reported ROC

score is determined by the former method of averaging scores across all queries where L ≥ 1.

We report ROC scores rounded to three decimal places, as is the practice used by Schaffer

et al. [2001]. We contend that any effect on overall accuracy that affects ROC scores by less
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than 0.001 is practically insignificant, given that variations in ROC greater than 0.01 are

evident when existing search algorithms such as BLAST, FASTA and Smith-Waterman are

compared [Chen, 2004] (as shown in Table 3.1 on page 51).

Generally, not all sequences in the SCOP database are used to assess retrieval effectiveness

because the collection has a high degree of internal redundancy, as we show next. Because

alignments between highly similar sequences are easy to detect, and homology search tools

vary most significantly in their ability to detect more distant relationships, pruned versions

of the SCOP database are commonly used for assessments [Park et al., 1997; 1998; Gerstein,

1998; Brenner et al., 1998; Park et al., 2000a]. The ASTRAL Compendium for Sequence and

Structure Analysis [Chandonia et al., 2004] is derived from SCOP and provides subsets of

the collection that have been filtered so that no two sequences share more than X% identity,

where X typically ranges between 40 and 95. For our accuracy assessments, we use the

ASTRAL compendium filtered at 90% identity and perform searches with every sequence in

the database as the query. The most recent version 1.69 of the ASTRAL collection is 82%

smaller when filtered at 90% identity13; this illustrates that the SCOP database has a high

degree of internal redundancy and contains a large number of near-duplicate sequences.

In addition to ROC, several other measures of retrieval effectiveness have been proposed,

mostly in the area of information retrieval. These include Mean Average Precision, Recall-

Precision, Macro-averaged measurement schemes, Coverage versus Error, R-precision, and

Mean Reciprocal Rank. Chen [2004] compares these different measures and concludes that

they are all almost equally effective for assessing search accuracy.

Some researchers have used the classifications of the Protein Information Resource (PIR)

instead of SCOP to assess search accuracy [Shpaer et al., 1996], however Brenner et al.

[1998] and Chen [2004] believe that assessments based on PIR are untrustworthy due to three

shortfalls with using the collection for this task. First, the superfamily classifications in the

PIR database are based on sequence alignments, and have been defined with the aid of the

same tools they are being used to evaluate, leading to a bias in favour of some tools. Second,

classifications in PIR are based on sequence as well as structural similarities, which are a

less reliable measure of relatedness and can lead to erroneous classifications. Third, some

closely related sequences are categorised by the PIR database into different superfamilies,

due to rigid classification boundaries. The PIR database defines smaller, more closely related

groups of proteins and does not use a hierarchical classification system. Brenner et al. [1998]

13Based on pre-filtered releases of version 1.69 of ASTRAL available at http://astral.berkeley.edu/
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found that as a result of this arrangement, each superfamily in the database is homologous

to on average another 1.6 superfamilies. For these reasons, we have chosen to use the SCOP

database to assess retrieval effectiveness in our work.

Although annotated protein sequence collections such as the SCOP and PIR databases

provide sequence classifications that are ideal for evaluating the retrieval effectiveness of

protein homology search tools, we are not aware of any similar classifications that exist for

nucleotide sequence data. As a result, the assessment of nucleotide search tools has been

recognised as a difficult task that has not been adequately solved [Miller, 2001]. Anderson

and Brass [1998] describe a method for assessing the accuracy of DNA search tools, however

their approach only tests sensitivity to alignments between protein coding regions and is based

on artificial rather than real sequence data. Li et al. [2004] describe a method for assessing

the accuracy of nucleotide search tools which they used to assess their PatternHunter

approach. Their measure of retrieval effectiveness compares the search results for each query

to the complete set of alignments identified by the exhaustive Smith-Waterman algorithm.

The proportion of Smith-Waterman alignments that are identified with at least half the

optimal score is recorded. This provides a measure of sensitivity but not selectivity, because

it does not distinguish homologous from non-homologous relationships. Nonetheless, we

believe this is the best approach currently available to assess the accuracy of nucleotide

search tools.

3.3.4 Managing redundancy

Comprehensive genomic databases such as the GenBank non-redundant database contain a

large amount of internal redundancy [Holm and Sander, 1998; Park et al., 2000b; Li et al.,

2001b; Rapp and Wheeler, 2005]. Although exact duplicates are removed from such collec-

tions, there remains large numbers of near-identical sequences. Such near duplicate sequences

can appear in genomic databases for several reasons, including the presence of:

• closely-related homologues in the database with only minor sequence variations,

• partial sequences that do not span the entire length of the protein or genome,

• sequences with expression tags and fusion proteins, where one protein has been added

by biologists to the start or end of another to aid in purification or production,

• post translational modifications that cause changes in the protein sequence allowing it

to attain its functional state,
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PQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156103)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156105)

QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVLRFRSNTKER (gi 156121)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDVLRFRSNTK (gi 552059)

KNQVAMNPQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552055)

Figure 3.14: Example of highly-similar heat shock protein sequences in the GenBank NR

database. Residue positions that differ between the sequences are shown in bold face, and the

GI accession numbers are shown in brackets.

• and sequencing errors that are caused by experimental errors when determining a pro-

tein or DNA sequence.

These minor sequence variations lead to the over-representation of protein domains, par-

ticularly those that are under intensive research. For example, we have found that the

GenBank database contains several thousand protein sequences from the human immunode-

ficiency virus. Figure 3.14 shows a group of highly-similar sequences found in the GenBank

non-redundant protein database. The sequences vary in length and have been aligned to

highlight their similarities. Residue positions where the sequences differ are shown in bold

face. The five closely related sequences are from heat shock proteins in differing strains of

the pinewood nematode.

Database redundancy has several pernicious effects that can “confound efforts to analyze

and understand the data and to apply further research purposes” [Rapp and Wheeler, 2005].

First, a collection that contains redundancy is larger and therefore takes longer to query.

Second, redundancy can lead to highly repetitive search results for any query that produces

high-scoring alignments to a cluster of over-represented sequences. This results in spurious

near-identical alignments that can obscure matches of interest [Altschul et al., 1994]. Third,

large-scale redundancy has the effect of skewing the statistics used to determine alignment

significance, by inflating the search space size that is used to calculate E-values, ultimately

leading to decreased search effectiveness [Nicholas et al., 2000]. Fourth, the psi-blast algor-

ithm [Altschul et al., 1997] can be misled by redundant matches during iteration, causing it

to bias the profile towards over-represented domains; this can result in a less sensitive search

or even profile saturation [Park et al., 2000b;a; Li et al., 2002].

Reducing redundancy in a sequence database is essentially a two-stage process: first, re-

dundancy within the database must be identified by grouping similar sequences into clusters;
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then, the clusters must be managed in some way. In this section we describe past approaches

to these two stages.

The first stage of most clustering algorithms involves identifying similar sequence pairs,

that is, identify arbitrary pairs of highly-similar sequences in the database. Besides managing

redundancy, the identification of similar sequence pairs is useful in many other area of bioin-

formations including clustering of EST (expressed sequence tag) data [Burke et al., 1999;

Malde et al., 2003] and genome comparison [Kurtz et al., 2004]. An obvious approach to this

is to align each sequence with every other sequence in the collection using a pairwise align-

ment scheme such as Smith-Waterman local alignment [Smith and Waterman, 1981]. This

is the approach taken by several existing clustering algorithms, including d2 cluster [Burke

et al., 1999], owl [Bleasby and Wootton, 1990], kind [Kallberg and Persson, 1999], and

Itoh et al. [2004]. However, this approach is impractical for any collection of significant size;

each pairwise comparison is computationally intensive and the number of pairs is quadratic

in the number of sequences. In our own tests with blast, we found that an all-against-all

comparison of a 100 Mb collection takes several days on a modern workstation.

Several schemes, including cleanup [Grillo et al., 1996], nrdb90 [Holm and Sander,

1998], rsdb [Park et al., 2000b], cd-hi [Li et al., 2001a] and cd-hit [Li et al., 2001b],

use fast clustering approaches based on greedy incremental algorithms. In general, each

proceeds as follows. To begin, the collection sequences are sorted by decreasing order of

length. Then, each sequence is extracted in turn and used as a query to search an initially-

empty representative database for high-scoring matches. If a similar sequence is found, the

query sequence is discarded; otherwise, it is added to the database as the representative of

a new cluster. When the algorithm terminates, the database consists of the representative

(longest) sequence of each cluster. This greedy approach reduces the number of pairwise

comparisons but has three drawbacks: first, a match is only identified when one sequence is

a substring of another; second, cases where the prefix of one sequence matches the suffix of

another are neglected; and, third, clusters form around longer sequences instead of natural

centroids, potentially leading to a suboptimal set of clusters.

Existing greedy incremental algorithms also use a range of blast-like heuristics to quickly

identify high-scoring pairwise matches. The cleanup [Grillo et al., 1996] algorithm builds a

rich inverted index of short substrings or words in the collection and uses this structure to

score similarity between sequence pairs. nrdb90 [Holm and Sander, 1998] and rsdb [Park

et al., 2000b] use in-memory hashtables of decapeptides and pentapeptides for fast identifica-

tion of possible high-scoring sequence pairs before proceeding with an alignment. cd-hi [Li
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et al., 2001a] and cd-hit [Li et al., 2001b] use lookup arrays of very short subsequences to

more efficiently identify similar sequences. However, despite each scheme having fast meth-

ods for comparing sequence pairs, the algorithms still operate on a pairwise basis and remain

O(n2) in time. Indeed, we show in Section 7.1.5 that cd-hit — the fastest of the greedy

incremental algorithms mentioned and most successful existing approach — scales poorly,

with superlinear complexity in the size of the collection, and requires over 9 hours to process

the current GenBank non-redundant protein database.

icass [Parsons, 1995] and Itoh et al. [2004] reduce the number of pairwise comparisons

by partitioning the collection according to phylogenetic classifications and clustering only

sequences within each partition. This reduces the number of pairwise comparisons; however,

the approach assumes that the database has been pre-classified and ignores possible matches

between taxonomically distant species. Further, the number of phylogenetic divisions is

growing at a far slower rate than database size. Therefore, a quadratic growth rate in

computation time remains a limitation.

Another way to avoid an all-against-all comparison is to pre-process the collection using

an index or suffix structure that can be used to efficiently identify high-scoring candidate

pairs. Malde et al. [2003] and Gracy and Argos [1998] investigated the use of suffix structures

such as suffix trees [Gusfield, 1997] and suffix arrays [Manber and Myers, 1993] to identify

groupings of similar sequences in linear time. However, suffix structures also require large

main-memories and are not suitable for processing large sequence collections such as GenBank

on desktop workstations as we discuss next. Malde et al. [2003] report results for only a few

thousand EST sequences. In our experiments with the freely available xsact software, this

was confirmed: the software required more than 2 Gb of main memory to process a 10 Mb

collection of uncompressed nucleotide data. Similarly, the algorithm described by Gracy

and Argos [1998] requires several days to process a collection with around 60,000 sequences.

Alternative approaches that are suitable for processing larger collections, such as external

suffix structures and compressed suffix arrays, have also been proposed [Grossi and Vitter,

2000; Mäkinen and Navarro, 2004; Tata et al., 2004; Cheung et al., 2005]. However, these

data structures also appear to be unsuitable in practice because they either use a large

amount of disk space, are slow for searching, or have slow construction times. Nonetheless,

we conjecture that investigating data structures for identifying all pairs of similar sequences

in a fixed number of passes is the correct approach.

Once a set of clusters have been identified, most existing approaches retain a single

representative sequence from each cluster and delete the rest [Holm and Sander, 1998; Park
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et al., 2000b; Li et al., 2001a;b]. The result is a representative database with fewer sequences

and less redundancy. However, purging near-duplicate sequences can significantly reduce the

quality of results returned by search tools such as blast. There is no guarantee that the

representative sequence from a cluster is the sequence that best aligns with a given query.

Therefore, some queries will fail to return matches against a cluster that contains sequences

of interest, which reduces sensitivity. Further, results of a search lack authority because

they do not show the best alignment from each cluster. Also, the existence of highly-similar

alignments, even if strongly mutually redundant, may be of interest to a researcher.

Itoh et al. [2004] describe a system that retains all members of each cluster. This approach

calculates an upper bound on the difference in score between aligning a query to any sequence

in a cluster and aligning the same query to a chosen representative. During search, the query

is compared to the representative and the upper bound is added to the resulting alignment

score; if the increased score exceeds the scoring cutoff, all sequences in that cluster are loaded

from an auxiliary database and individually aligned to the query. While this approach ensures

there is no loss in sensitivity, it comes at a substantial cost: unless a high scoring cutoff

is used during search—Itoh et al. use a nominal score cutoff of 150 in their experiments—

there will be numerous false positives resulting in longer query evaluation times. They report

experiments using Smith-Waterman [1981] alignment and it is unclear if their approach would

work well if applied to an heuristic search tool such as blast.

3.3.5 Summary

In this section, we discussed a range of issues relating to the performance of homology search

tools. First, we described methods for assessing the statistical significance of high-scoring

alignments resulting from a database search. The optimal alignment score of unrelated or

random sequences follows an extreme-value distribution. Search tools such as fasta and

blast report the likelihood that an alignment was due to chance, called the E-value, from

calculations based on this distribution. Accurate calculations of the alignment E-value rely

on sequences conforming to the random independence model, which is violated by sequences

with a compositional bias. We described more advance measures of significance that attempt

to accommodate for this bias. Another approach to correct for composition bias and low-

complexity regions is query filtering. In Section 3.3.2 we described filtering algorithms such

as seg that identify regions of the query sequence with low-complexity and mask them prior

to search.
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In Section 3.3.3 we discussed methods for assessing the accuracy of homology search

tools. The SCOP database provides classifications of protein sequences that can be used to

distinguish homologous matches from non-homologous matches. We described ROC scores,

which provide a measure of search accuracy at identifying related proteins. We also discussed

methods for assessing nucleotide search tools and their limitations.

Finally, we discussed redundancy in genomic collections and existing approaches to man-

aging redundancy in Section 3.3.4. Although exact duplicates are removed from collections

such as GenBank, a large number of near-duplicate sequences remain. Such redundancy has

several negative effects on homology search, and we discussed methods for identifying and

managing redundancy. Many of these schemes rely on an all-against-all comparison which is

prohibitively slow for large collections, while others rely on index and suffix structures that

require too much memory. Further, most schemes reduce redundancy by creating a repre-

sentative database which is not as comprehensive. We present new approaches for managing

redundancy in Chapter 7.

3.4 Conclusion

Homology search is a key tool for understanding the role, structure, and biochemical function

of genomic sequences. In this chapter, we surveyed existing approaches to homology search

focusing on their efficiency, accuracy, and applicability to large-scale database search. We

began with an overview of popular exhaustive methods, and described the blast algorithm

in detail. We also presented our own detailed analysis of each stage of the algorithm, and

discussed usage data provided by the NCBI. Next, we discussed some alternative approaches

to search. We considered index-based approaches such as cafe, and the advantages and dis-

advantages of such schemes. We also considered main-memory index systems that are highly

successful for whole-genome alignment and the recent flurry of research into discontinuous

seeds. We briefly described distributed approaches to search that offer substantial speed

gains but require expensive hardware. We also investigated highly sensitive iterative search

algorithms such as psi-blast.

In Section 3.3, we discussed issues relating to genomic search. We began this section

with a discussion of alignment significance and methods for calculating the likelihood of an

optimal alignment score resulting from chance. We explained that alignment scores between

unrelated sequences follow an extreme value distribution and how this trend can be used

to derive an alignment E-value that reflects the statistical significance of an alignment.
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We discussed methods for handling low-complexity regions in sequences including filtering

algorithms such as seg. Next, we showed how the SCOP database and ROC scores are

commonly employed to assess the retrieval accuracy of homology search tools. We presented

approaches that measure both sensitivity (the detection of homologous sequences) as well as

selectivity (distinguishing between homologous and non-homologous sequences). Finally, we

discussed redundancy in the form of near-duplicate entries in genomic data banks and the

affects this has on search. We surveyed existing approaches to managing redundancy that

typically prune sequences to create a representative database.

Despite a plethora of new approaches to homology search, including index-based schemes,

discontinuous seeds and distributed approaches, the exhaustive blast algorithm remains the

most successful, practical and versatile tool for searching large collections such as GenBank.

Indeed, the survey we have presented in this chapter only covers a small selection of ap-

proaches that have been proposed in the past decade. Many new tools have been developed

where the authors claim improvements over algorithms such as blast but the approach fails

to find widespread appeal. Miller [2001] recently commented that several areas within bioin-

formations, such as homology search, are cluttered with mediocre tools that have not been

thoroughly evaluated or compared. Miller believes this is because many researchers “find it

much easier and more fun to develop a new program than to adequately verify that it actually

improved upon earlier work” and that this can hinder, rather than assist, the research efforts

of the biomedical community.

In the remainder of this thesis we present new approaches to homology search, and apply

our new schemes to the hugely popular and successful blast algorithm with a thorough

assessment of each concept. We aim to improve the efficiency of blast with no effect on

search accuracy — we believe that faster search times are welcomed by biologists, but not at

the expense of search accuracy. Indeed, many new schemes have been proposed that provide

less sensitivity search but faster search times, such as cafe, megablast and blat, none of

which have found the same level of appeal as blast.

In Chapter 4 we describe three improvements to the gapped alignment stage of blast

that roughly halve the time taken to align protein sequences. In Chapter 5 we describe a

new data structure for protein hit detection that provides an 41% speed gain for the first

stage of blast. In Chapter 6 we present methods for comparing nucleotide sequences in

their compressed form that more than doubles the speed of blastn searches. Finally, we

present a new scheme for managing redundancy in Chapter 7 that increases search speed by

a further 22%, reduces collection size by 27% and provides more meaningful search results.
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Importantly, we show that none of our schemes affect search accuracy.

When combined, our improvements roughly double the speed of nucleotide and pro-

tein blast searches with no significant change in accuracy. Our methods have been inte-

grated into our own release of the blast software that is freely available for download at

http://www.fsa-blast.org/. Further, the ideas presented in this thesis are not only ap-

plicable to blast; most of the concepts are general and can be easily adapted for use with

other homology search tools.
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Chapter 4

Improved Gapped Alignment

Despite the success of blast, there have been no fundamental changes to the algorithm since

1997. Several new approaches to genomic search have been proposed, however none offer the

same degree of sensitivity and speed for searching large collection such as GenBank. Further,

most of these new schemes are distinct in their approach to the first stage of homology search

where short matching regions between the query and collection are identified. For example,

index-based techniques such as cafe are unique in their use of an inverted index to identify

matching words. Discontinuous seeds are another recent, novel approach to identifying short,

similar regions between the query and the collection. However, there has been little focus on

improving the final stages of search methods such as blast that compute alignments.

We showed in Section 3.1.3 that computing gapped alignments consumes an average of

32% of the total processing time for protein sequence blast searches. Therefore, optimisation

and innovation in the final stages of blast warrants investigation. This chapter proposes two

such innovations, semi-gapped alignment and restricted insertion alignment. Both reduce the

computational cost of alignment with no detectable effect on accuracy.

Semi-gapped alignment is a fundamental, new step in the blast algorithm. This step

compromises between ungapped and gapped alignment: insertions and deletions are permit-

ted only every N residues, that is, gaps are allowed but not always at the optimal position.

In the overall blast process, semi-gapped alignment follows the ungapped alignment stage,

aiming to efficiently and accurately reduce the number of gapped alignments required in the

stage that follows. When carefully parameterised, this new technique reduces the average

time taken to compute gapped alignments in the third and fourth stages of blast by 40%

without affecting accuracy.

109
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Restricted insertion alignment is an heuristic that can be applied to semi-gapped or

gapped alignment. We have observed that in optimal alignments, insertions in one sequence

are very rarely adjacent to insertions in the other. By preventing this event, it is possible

to make a saving in computation following each alignment between two residues that occurs

through insertion or deletion. This reduces the time taken for the gapped alignment stages in

blast by around 8%. When semi-gapped alignment is used together with restricted insertion

alignment and the optimisation we describe next, the speed of the gapped alignment stage

in blast is more than doubled.

Our improvements to blast include an overlooked optimisation described by Zhang et al.

[1997]. This optimisation was proposed to reduce the number of accesses to previously

computed values. However, we observe that this optimisation permits a rearrangement of the

recurrence relation used to compute gapped alignments, reducing the number of arithmetic

and comparison operations per alignment with no effect on the result. We describe and

explain this optimisation, and show that it reduces the cost of the alignment stages by

around 20%. The NCBI implementation of blast does not use this optimisation.

This chapter is organised as follows. Section 4.1 describes our two new gapped alignment

techniques, and illustrate how they can be employed by blast. We also present the optimised

recurrence relations and explain how they reduce the computation involved per alignment. In

Section 4.2, we present and discuss the results of comparing our new techniques to the existing

methods used by blast. Our analysis is based on our own implementation of the gapped

alignment stages that we have integrated into ncbi-blast. Finally, Section 4.3 presents a

summary of this work. A preliminary version of the results and discussions presented in this

chapter appeared in Cameron et al. [2004].

4.1 New Approaches to Gapped Alignment

In this section, we propose three improvements to the gapped alignment stages of blast.

The first is an optimisation to the dynamic programming recurrence relations used to align

sequences that reduces the computation for each cell in the alignment matrix with no effect on

the result. The second is a new stage in the blast algorithm that filters alignments between

the second and third stages. The third aims to reduce the time taken to generate gapped

alignments in the third stage by disallowing unlikely events. All of the novel approaches differ

from traditional gapped alignment by reducing the computation required for each cell in an

alignment matrix. This approach is orthogonal to the dropoff technique already employed
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by blast, which instead limits the number of cells that need to be processed. Therefore, a

significant advantage of our novel techniques is that they can be used in combination with

the existing dropoff heuristic. We report results of integrating our alignment scheme into the

final stages of blast in Section 4.2.

4.1.1 Optimised gapped alignments

In Section 2.2.5 on page 32 we describe Gotoh’s algorithm [1982] for globally aligning se-

quences using affine gap costs. blast uses Gotoh’s algorithm to perform a gapped extension

in each direction from a seed point, as discussed in Section 3.1.3 on page 62. In this section,

we describe an optimisation to Gotoh’s algorithm that was previously employed by Zhang

et al. [1997] for aligning a protein sequence with a DNA sequence. We show that this optimi-

sation can also be applied to blast, and that it affords a reduction in computation for some

cells in the alignment matrix. The optimisation has not been previously applied to blast,

or any of the other popular search tools described in Chapter 3 to our knowledge, most of

which use Gotoh’s algorithm to align sequences.

The following recurrence relationships (with base cases omitted for clarity of presentation)

are used by blast to perform gapped alignments between the query x and a collection

sequence y in the third stage:

M(i, j) = B(i− 1, j − 1) + s(xi, yj)

B(i, j) = max















Ix(i, j)

Iy(i, j)

M(i, j)

Ix(i, j) = max

{

B(i− 1, j)− d

Ix(i− 1, j)− e

Iy(i, j) = max

{

B(i, j − 1)− d

Iy(i, j − 1)− e

where M(i, j), Ix(i, j), Iy(i, j), and B(i, j) represent the best score for an alignment ending

at [i, j] with a match, an insertion in x, an insertion in y, or any of these events, respectively.

Once again, s(xi, yj) is the score resulting from aligning the ith residue of x and the jth

residue of y, d is the penalty incurred for the first insertion in a gap and e is the penalty

incurred for each subsequent insertion.

Consider now the computational cost of computing a gapped alignment using this re-

currence. The processing of each cell requires arithmetic operations — for the addition of
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match scores or subtraction of gap penalties — as well as comparisons for determining the

maximum of either two or three values. Therefore, a careful implementation of the rules

results in an algorithm that uses five arithmetic operations and four comparisons for each

cell in the matrix. (Two comparisons are required to find the maximum of three values.)

Zhang et al. [1997] propose an optimisation where Ix(i, j) and Iy(i, j) store scores for

[i + 1, j] and [i, j + 1] respectively. The motivation of this is to reduce accesses to previ-

ously computed values. However, there is an important additional advantage that — to

our knowledge — has not been previously observed: it permits rule reorganisation that can

reduce the computation required to produce gapped alignments, leading to the savings in

computation that we discuss next. In addition, the reorganisation forms the first step in our

new semi-gapped alignment scheme.

Let the values of Ix and Iy include the gap penalty associated with the next insertion in

the alignment. That is, Ix(i, j) represents the best score for an alignment ending at [i + 1, j]

with an insertion with respect to y, and Iy(i, j) represents the best score for an alignment

ending at [i, j +1] with an insertion with respect to x. With this modification, the recurrence

relations described previously in this section are modified as follows:

(1) M(i, j) = B(i− 1, j − 1) + s(xi, yj)

(2) B(i, j) = max















Ix(i− 1, j)

Iy(i, j − 1)

M(i, j)

(3) Ix(i, j) = max

{

M(i, j)− d

Ix(i− 1, j)− e

(4) Iy(i, j) = max

{

M(i, j)− d

Iy(i, j − 1)− e

These rules afford a performance advantage over the original recurrence relations in two

ways. First, the processing of each cell requires four instead of five arithmetic operations,

since the value of M(i, j) − d in equation (3) can be reused in equation (4). Second, the

number of comparisons that need to be performed can be reduced from four to three for

some cells. To illustrate this, consider the case where the computation of B(i, j) reveals

that Ix(i − 1, j) ≥ M(i, j), that is, when Ix(i − 1, j) is found to be the largest of the three

values in equation (2). In this event, it can be deduced that Ix(i − 1, j) − e > M(i, j) − d

since e < d, avoiding the need to compare these two values when calculating Ix(i, j) in
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equation (3). Similarly, the computation of B(i, j) may reveal instead that Iy(i, j − 1) is the

largest of the three values considered in equation (2). In this case, it can be deduced that

Iy(i, j − 1) ≥M(i, j) and, therefore, that Iy(i, j − 1)− e > M(i, j)− d. This avoids the need

to compare these two values when calculating the value of Iy(i, j) in equation (4). For this

work, we have implemented this more efficient recurrence relation and used this as a baseline

in our experiments in Section 4.2.

4.1.2 Semi-gapped alignment

In this section, we propose a new semi-gapped algorithm that compromises between the

speed of ungapped alignment and the accuracy of gapped alignment. Our motivation is to

add a new stage in the blast algorithm that efficiently and accurately reduces the subset of

sequences identified by ungapped alignment to a very small set that are subsequently aligned

using the computationally expensive gapped alignment stage. Specifically, we aim to reduce

the computation at each cell in the alignment matrix while still producing alignment scores

similar to those found using the Gotoh algorithm.

Our idea is to restrict where insertions and deletions can occur in an alignment, leading to

an approach that combines the features of fast, heuristic ungapped alignment and the slower,

more rigorous gapped alignment. The basic approach is as follows: we allow insertions in

sequence y only at every N th character (characters yj , where j ≡ 0, modulo N) and insertions

in sequence x at every N th character (characters xi, where i ≡ 0, modulo N). Figure 4.1

illustrates the effect these two constraints have on how values are derived for each cell in the

matrix. We explain the rationale behind this approach next, and discuss the reduction in

computational cost and the effect of varying N later.

We propose that semi-gapped alignments be attempted only after an ungapped alignment

exceeds a cutoff, and that a successful semi-gapped alignment be used to trigger a further

gapped alignment as the final stage of blast. We believe that this semi-gapped alignment

stage should be an effective and efficient additional step in blast for three reasons:

1. We have observed that most gapped alignments calculated using affine gap costs con-

tain long ungapped regions separated by gaps of more than one indel that move the

alignment from one matrix diagonal to another; semi-gapped alignment still permits

these gaps, but forces the gap start and end points to be moved. In the worst case,

the optimal position for opening the gap is midway between rows or columns where

the insertion is allowed, and the gap position must be moved by bN
2 c residues from
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Sequence x

Sequence y

i=3 i=4 i=5 i=6 i=7 i=8

j=13

j=12

j=11

j=10

Figure 4.1: Portion of the dynamic programming matrix used to perform a semi-gapped

alignment where N = 4. Arrows indicate how values are derived for each cell. For most cells

only the match operation is considered. For columns where i = 4 or i = 8, insertions with

respect to x are also considered. Similarly, insertions with respect to y are also considered

for the row where j = 12.

this optimal position. On average, a move of
dN

2
e×bN

2
c

N
residues is required. Unless

the optimal gap is surrounded by high-scoring matches or the neighbouring ungapped

regions are flanked by low-scoring matches, this shift has little influence on the overall

score.

2. The scoring penalty associated with opening and extending a gap often outweighs any

reduction in score that may be caused by opening the gap at a sub-optimal location.

3. It has been observed by Altschul [1998] that when aligning distantly related protein

sequences, “conserved residues frequently fall into ungapped blocks separated by rel-

atively non-conserved regions”. This suggests that gaps often occur in less conserved

regions and that the exact location of the gap is of less importance, given that the

surrounding matches are likely to be low scoring anyway.

We now explain how the constraints imposed by our semi-gapped scoring technique affect

the recurrence relations and the processing required for each cell in the alignment matrix.
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M(i, j) = B(i− 1, j − 1) + s(xi, yj)

B(i, j) = max















Ix(i− 1, j)

Iy(i, j − 1)

M(i, j)

Ix(i, j) = max

{

M(i, j)− d

Ix(i− 1, j)− e

Iy(i, j) = max

{

M(i, j)− d

Iy(i, j − 1)− e

M(i, j) = B(i− 1, j − 1) + s(xi, yj)

B(i, j) = max

{

Iy(i, j − 1)

M(i, j)

Iy(i, j) = max

{

M(i, j)− d

Iy(i, j − 1)− e
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M(i, j) = B(i− 1, j − 1) + s(xi, yj)

B(i, j) = max

{

Ix(i− 1, j)

M(i, j)

Ix(i, j) = max

{

M(i, j)− d

Ix(i− 1, j)− e

B(i, j) = B(i− 1, j − 1) + s(xi, yj)

Table 4.1: Recurrence relations for each cell type in semi-gapped alignment. For all recurrence

relations, cells where i = 0 or j = 0 are initialised to −∞ except for the alignment starting

point [0, 0] that is initialised to zero

Observe that, depending on its location in the matrix, each cell in a semi-gapped alignment

permits one of four cases:

1. Insertion in either the query or collection sequence is permissible, that is, the standard

gapped alignment recursion applies; or,

2. Only insertion with respect to the query sequence is allowed; or,

3. Only insertion with respect to the collection sequence is allowed; or,

4. No insertion is permissible, that is, the standard ungapped alignment recursion applies.

Therefore, different recurrence relations are applicable depending on what operations are

permitted. We consider these operations with respect to the four cases next.

The semi-gapped recurrence relations are shown in Table 4.1. The original recurrence

described in Section 4.1.1 is used for the first case, that is, for cells where j ≡ 0, modulo N

and i ≡ 0, modulo N , and where insertion in both sequences is allowed; these relations are

shown at the intersection of the row labelled “Iy allowed” and the column “Ix allowed”.
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Ix allowed Ix not allowed

Iy allowed

Arithmetic operations = 4

Comparisons = 3 or 4

Cell type frequency = 1
N2

Arithmetic operations = 3

Comparisons = 1 or 2

Cell type frequency = N−1
N2

Iy not

allowed

Arithmetic operations = 3

Comparisons = 1 or 2

Cell type frequency = N−1
N2

Arithmetic operations = 1

Comparisons = 0

Cell type frequency = (N−1)2

N2

Table 4.2: Frequency of each type of cell in a semi-gapped alignment and number of associated

operations.

When insertion in sequence y is not permitted, that is, j 6≡ 0, modulo N and the second case

applies, then there is no need to compute the value of Ix and the recursion is simplified to

that shown at the intersection of the row labelled “Iy not allowed” and the column labelled

“Ix allowed”. Similarly, when i 6≡ 0, modulo N , then the third case applies and there is no

need to compute the value of Iy and the recursion is simplified to that at the intersection of

the row “Iy allowed” and the column “Ix not allowed”. Last, when only ungapped alignment

is permitted, the fourth case applies and the simple recursion at the intersection of “Iy not

allowed” and “Ix not allowed” is used.

Computational Costs

Table 4.2 shows the number of arithmetic operations and comparisons required for each

of the four different recurrence relations. In addition, it shows how varying N affects the

number of cells in an alignment matrix that are computed using each of the four relations.

For example, the table shows that in the regular gapped alignment case — shown as the

intersection of “Ix allowed” and “Iy allowed” — four arithmetic operations are required per

cell, and either three or four comparisons (as described for the optimisation in Section 4.1.1)

are required. The table also shows that only 1 in every N 2 cells require this fully-gapped

alignment. For the cases where Ix is allowed but Iy is not, and where Iy is allowed but Ix is

not, only three arithmetic operations and two comparisons are required. We can also apply

optimisations similar to those used in the regular gapped alignment case that reduces the

number of comparisons for some cells further, from two down to one. Importantly, ungapped

alignment is inexpensive — requiring only one arithmetic operation — and for N ≥ 4 the
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N 1 2 3 4 5 6

Arithmetic operations 4.00 3.75 3.22 2.94 2.76 2.64

Comparisons 4.00 3.00 2.33 2.00 1.80 1.67

N 7 8 9 10 11 12

Arithmetic operations 2.55 2.48 2.43 2.39 2.36 2.33

Comparisons 1.57 1.50 1.44 1.40 1.36 1.33

Table 4.3: Average number of operations per cell for varying values of N.

majority of cells are in this class.

When N ≥ 2, an additional overhead is required to determine the class of each cell.

Since the value of j does not change while processing each row in the matrix, there is no

need to determine for each cell whether insertion in sequence y is allowed; this can be done

once for each row at negligible cost. In contrast, the value of i must be checked for each

cell individually to determine if i ≡ 0, modulo N . This involves an additional arithmetic

operation and comparison per cell to determine its class.

Table 4.3 illustrates how the average number of operations per cell varies as N is increased

from 1 to 12, including the overhead of determining the class of each cell. When N = 1,

only gapped alignment is used and, as N increases, the average computational cost per cell

decreases. However, the reduction in computational cost as N is increased has an effect on

accuracy. Therefore, similarly to other parameters in blast, the value of N must be carefully

chosen. We report experiments with varying values of N in Section 4.2.

Triggering Gapped Alignment

Semi-gapped alignment is an additional stage in blast that follows ungapped alignment

and precedes gapped alignment. Therefore, similarly to all other non-final stages, a criterion

must be established to trigger processing of an alignment in a subsequent stage.

After experimentation, we found the following approach is effective for deciding whether

semi-gapped alignments should be passed to the final, gapped alignment stage in blast. We

score each candidate sequence using semi-gapped alignment and, if the score exceeds R×S2,

then we proceed to gapped alignment. The value of S2 is the existing blast nominal score

required to achieve cutoff that was discussed in Section 3.3.1, and R is a new constant such
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that 0 < R ≤ 1. Using the existing S2 constant has an important advantage: if the score

from semi-gapped alignment exceeds S2, then there is no requirement for gapped alignment

and the sequence can be passed to stage four of the blast algorithm where the refined score

and traceback information is determined. We report experiments that vary R in Section 4.2.

Figure 4.2 illustrates how the semi-gapped alignment stage is incorporated into the blast

algorithm. First, an ungapped extension is performed (Figure 4.2a) and the resulting align-

ment scores above an S1 cutoff score of 40. Second, a semi-gapped alignment (Figure 4.2b) is

performed. The light grey lines highlight the columns and rows in the semi-gapped alignment

matrix where insertions are allowed; we show that the two gaps in the alignment occur in

these permitted regions. The resulting score of 87 is recorded, and because this lies between

R × S2 = 63 and S2 = 90, a gapped alignment is required to determine if the alignment

scores more than S2. The resulting gapped alignment (Figure 4.2c) scores 95, and is therefore

statistically significant and displayed to the user.

4.1.3 Restricted insertion alignment

In this section, we describe our third technique to improve gapped alignment in blast. This

novel approach — which we refer to as restricted insertion alignment — is orthogonal to

semi-gapped alignment, and can be applied either to it or to the gapped alignment stage in

blast.

Restricted insertion alignment aims to reduce computation for unlikely evolutionary

events. We have experimentally observed that, in optimal gapped alignments, gaps in one

sequence are very infrequently adjacent to gaps in the other. Figure 2.9 on page 34 illustrates

the rare case where two gaps occur adjacent to one another in the optimal alignment be-

tween two sequences. In our experiments with 100 random sequences from the GenBank NR

protein database described in Section 3.1.3 we found that this event is extremely rare: less

than 0.02% of gapped alignments generated by blast contain adjacent gaps. Importantly,

in 99% of these rare cases, an alignment that does not contain adjacent gaps and scores no

more than 5% less than the optimal also exists. As a result, only 17 of the 1,013 million

alignments scoring below an E-value cutoff of 10 are not detected when restricted insertion

is imposed.

We propose taking advantage of the infrequency of adjacent gaps, and propose that these

are not permitted in the alignment process. This works as follows. If the best score for

the current cell [i, j] is derived from Iy(i, j − 1), that is, from an insertion with respect to
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Gapped alignment
Score = 95, S2 = 90

Query sequence
C

ollection sequence

Query sequence

C
ollection sequence

a) b)

c)

Query sequence

C
ollection sequence

Semi−gapped alignment
Score = 87, R   S2 = 63

Ungapped alignment
Score = 52, S1 = 40

Figure 4.2: The new process for scoring sequences. a) First, an ungapped extension is per-

formed. b) If the resulting alignment scores above the S1 cutoff, a semi-gapped alignment is

then performed. The grid overlay shows the rows and columns where insertions are permit-

ted. c) Finally, if the semi-gapped alignment scores between R × S2 and S2 then a gapped

alignment is performed. In this example, the alignment scores above the cutoff at each stage,

and its final score is high enough for it to be displayed to the user.
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sequence x, then the value of Ix(i, j) is not calculated. Similarly, the value for Iy(i, j) is not

determined if the best score for the cell is derived from Ix(i− 1, j).

With these new constraints, the recurrence relations from Section 4.1.1 are rewritten as

follows:

M(i, j) = B(i− 1, j − 1) + s(xi, yj)

B(i, j) = max















Ix(i− 1, j)

Iy(i, j − 1)

M(i, j)

if B(i, j) = Iy(i, j − 1)

then Ix(i, j) = −∞

else Ix(i, j) = max

{

M(i, j)− d

Ix(i− 1, j)− e

if B(i, j) = Ix(i− 1, j)

then Iy(i, j) = −∞

else Iy(i, j) = max

{

M(i, j)− d

Iy(i, j − 1)− e

The outcome of this new restriction is a saving in computation per cell. For cells where

either M(i, j) ≤ Iy(i, j−1) or M(i, j) ≤ Ix(i−1, j), there is a reduction from four arithmetic

operations and three comparisons to two arithmetic operations and two comparisons.

Our restricted insertion alignment algorithm is similar to the two state variation of the

Gotoh algorithm [Durbin, 1998] described in Section 2.2.5 on page 33, which stores only

the larger of Ix and Iy for each cell in the matrix. However, the aim and effect of this

other approach is different: it aims to reduce main-memory requirements for alignments

with traceback, and the effect is that adjacent gaps are treated as a single gap with only

one opening penalty. There are no computational savings in the approach and it does not

offer any savings for score-only alignment without traceback. However, importantly, Durbin

observes — in support of both our and their approach — that heuristics for adjacent gaps

rarely affect the resulting alignment.

We have applied the restricted insertion approach to the semi-gapped and gapped align-

ment filtering stages of blast. However, when recording optimal alignments in the final stage

using the traceback approach we do not employ this new technique. As a result, adjacent

gaps may occur in the final alignments that are reported to the user.
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4.1.4 Summary

In this section, we presented three new approaches to gapped alignment in blast. First, we

described an optimisation to the original recurrence relations that reduces the computation

for cells in the alignment matrix with no effect on the result. Next, we introduced a new

method for aligning sequences called semi-gapped alignment that compromises between the

speed of ungapped alignment and sensitivity of gapped alignment. Our approach permits

insertions at only some positions in the alignment matrix, resulting in less computation

per cell. Our new method is employed as an addition filtering stage in blast between the

ungapped and gapped alignment stages. Finally, we described an optimisation to gapped

alignment called restricted insertion that reduces computation by dismissing unlikely events.

In the next section, we experimentally compare our new methods to the existing alignment

algorithms used by blast. We show that our methods more than halve the time taken to

align sequences in the third and fourth stages.

4.2 Results

In this section, we present the results of experiments with our semi-gapped and restricted

insertion alignment schemes. We begin by describing the collections and measurement tech-

niques we used to quantify performance, and then present an overall comparison of results.

The result summary is followed by detailed presentations of the effect of parameter choices

for our schemes.

4.2.1 Collections, Measurements, and Environment

For our evaluation, we measure search accuracy using the classifications in the SCOP data-

base based on the approach described in Section 3.3.3 on page 97. We used version 1.65

of the ASTRAL Compendium for Sequence and Structure Analysis [Chandonia et al., 2004]

that was released on 19 December 2003. The database has been filtered so that sequences

with greater than 90% identity are removed, resulting in a collection that contains 8,759

structurally classified protein sequences that have each been assigned to one of 1,293 super-

families.

Each sequence from the ASTRAL database was extracted and used to search the entire

collection. An alignment with a sequence from the same superfamily as the query is con-

sidered correct and an alignment with a sequence from a different superfamily is considered
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incorrect. For our experiments, the ranked list of alignments returned by blast were scored

using the ROC50 measure, and the reported score represents the average across all queries.

Unfortunately, the SCOP database is too small to allow meaningful comparison of the

speed of alignment algorithms. Therefore, we used the GenBank non-redundant protein data-

base for timing experiments and, as described previously, randomly selected 100 sequences

from the collection that were then used as queries to search that collection. We used the

30 June 2004 release of GenBank NR, which contains 1,873,745 sequences in around 622

megabytes of sequence data.

When searching the ASTRAL database, we use the size of the GenBank NR database for

the calculation of E-values. We did this to ensure that the cutoff scores used when measuring

the speed of searching NR and accuracy of searching ASTRAL are comparable. Without this

adjustment, the values of S2 (and, therefore, R×S2) are lower when measuring the accuracy

of the semi-gapped alignment technique which, in turn, increases the number of alignments

that are rescored and improves ROC scores. Using the same effective database size when

measuring speed and accuracy avoids this bias.

For our timing experiments with GenBank NR, we ran each of the 100 queries and

recorded all high-scoring ungapped extensions reported using the first two stages of ncbi-

blast with default parameters. These ungapped alignments were then used as input to all

algorithms we tested, and timings reported are for all stages following ungapped alignment

only; these timings therefore include all non-ungapped alignment stages, collecting traceback

information, and preparation of alignments for display in the blast standard format. The

best elapsed time of three runs was reported for each query.

The results presented are based on experiments carried out on an Intel Pentium 4 2.8GHz

workstation with one gigabyte of main-memory while the machine was under light-load, that

is, no other significant processes were running. All schemes — with the exception of ncbi-

blast — include our gapped alignment recursion optimisation proposed in Section 4.1.1.

For baseline comparisons, we used ncbi-blast version 2.2.8. All code was compiled with the

same compiler flags and optimisations as ncbi-blast.

Our implementations of the gapped alignment stages used the same Karlin-Altschul statis-

tics to score the alignments as ncbi-blast, which were described in detail in Section 3.3.1 on

page 91. Specifically, the pre-computed values of λ, K, α and β were taken from ncbi-blast

version 2.2.8. The composition of collection sequences was not used for scoring, that is, we

did not use the composition-based statistics described by Schaffer et al. [2001] that are by

default disabled in ncbi-blast. No filtering was applied to the query sequences.
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Scheme GenBank NR ASTRAL

Time Alignments

(secs) Reported ROC50

Combined 4.90 31,160 0.339

Semi-gapped alignment only 5.02 31,160 0.339

Restricted insertion only 7.67 31,163 0.339

Baseline 8.34 31,163 0.339

ncbi-blast 10.34 31,161 0.339

Table 4.4: Average runtime and number of high-scoring alignments for 100 queries on the

the GenBank non-redundant database, and SCOP ROC50 scores for the ASTRAL collection.

All alignment techniques use default parameters.

4.2.2 Overall Results

Table 4.4 shows a comparison of our techniques to ncbi-blast. Our results show that the

combination of semi-gapped and restricted insertion alignment — labelled as combined —

better than halves the average time taken to carry out alignments compared to ncbi-blast.

On average, over five seconds is saved per query when searching GenBank NR. Importantly,

all schemes we tested have indistinguishable ROC scores, and this is supported by the total

number of alignments reported from the queries on the GenBank NR collection. (We report

the total number of alignments returned from the GenBank search as an indicator of overall

accuracy performance, and have found that these alignments are almost identical for all

schemes. However, we believe that ASTRAL ROC scores are a more definitive indicator of

performance.)

We compared our schemes to our own baseline and ncbi-blast. Our baseline — which is

optimised by the recursion reorganisation described in Section 4.1.1 — is around 20% faster

than ncbi-blast. However, importantly, our heuristic approaches are still much faster: in

particular, the combination of schemes is around 40% faster than our optimised baseline. We

have also found that the semi-gapped alignment stage is efficient and effective: it discards an

average of 87% of the high-scoring database sequences from Stage 1 and each semi-gapped

alignment is performed in less than half the time of a gapped alignment.

In the experiments reported in Table 4.4, default blast parameters were used. These

include a gapped trigger score of 22.0 bits (which affects S1), scoring dropoff of X = 15.0
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E=100 E=10 E=0.1

ROC50 Time ROC50 Time ROC50 Time

Combined 0.360 5.67 0.339 4.90 0.300 4.39

Semi-gapped alignment only 0.360 5.85 0.339 5.02 0.300 4.46

Restricted insertion only 0.360 7.78 0.339 7.67 0.300 7.53

Baseline 0.360 8.46 0.339 8.34 0.300 8.19

ncbi-blast 0.360 10.36 0.339 10.34 0.300 10.37

Table 4.5: Average query evaluation time in seconds for searching the GenBank non-

redundant database, and results of a SCOP accuracy test for ROC50. Each alignment tech-

nique is reported for a range of E-value cutoffs.

bits, an E-value cutoff of E = 10.0, and a maximum number of alignments to be reported

of 500. For semi-gapped alignment, we use N = 10 and R = 0.68, and open and extend gap

penalties of os = 7 and es = 1 respectively. We discuss parameter choices further in the next

sections.

Our schemes can be alternatively parameterised to improve accuracy while having run-

times similar to ncbi-blast. For example, by lowering the scoring required to trigger gapped

alignment from the default value of 22.0 to 20.2 bits, the ROC50 score of the combination

scheme increases from 0.339 to 0.342, and the average runtime increases to 10.24 seconds.

However, since our primary aim is to reduce the computational cost of blast without affect-

ing its accuracy, we do not discuss this in detail further here.

4.2.3 Varying the E-value

Table 4.5 shows the effect of varying the E-value cutoff on different schemes. As described

in Section 3.3.1, an E-value represents the chance that an alignment with at least the same

score would be found if a randomly constructed query with typical amino-acid composition

was searched against a randomly generated database. blast uses a default E-value cutoff of

10, however a lower cutoff is often selected by users to reduce false positives that have chance

similarities to the query. By default, the psi-blast algorithm only considers alignments with

an E-value below 0.002 for inclusion in the next iteration of search, because false positives

have an even greater detrimental effect on search accuracy.

The results in Table 4.5 show that as E decreases, the reduction in processing costs
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varies between different schemes; indeed, in unreported experiments with smaller values of

E, this same trend continues. For semi-gapped alignment schemes, query evaluation times

fall: when E = 0.1, the query evaluation is around 10%–25% faster than for E = 100,

and almost two and a half times faster than ncbi-blast when E = 0.1. This is because

a smaller cutoff increases S2, resulting in rescoring of fewer semi-gapped alignments using

the slow gapped scheme. For the other schemes — ncbi-blast, our optimised baseline, and

restricted insertion only — reducing E has almost no effect on speed, because none have the

additional filtering step of semi-gapped alignment.

In terms of accuracy, the cutoff has the same effect on all schemes: the ROC50 scores

achieved by all techniques are the same for all cutoffs we tested, including for cutoffs up to

three magnitudes smaller than reported in Table 4.5. We also found that ROC scores vary

depending on the E-value cutoff used. This is because a larger cutoff leads to an increase

in the number of reported alignments which in turn improves ROC scores. Our results show

a 17% reduction in ROC score for an E-value cutoff of 0.1 compared to the less selective

cutoff of 100. This suggests that care must be taken when comparing homology search tools

to ensure that measures of statistical significance and cutoff scores are comparable across

different schemes. When performing a comparison, one tool may be unfairly penalised if a

more stringent cutoff is applied.

We also measured the effect of varying the maximum number of reported alignments for

each scheme. We found no distinguishable difference in accuracy between the schemes when

a maximum of 5, 50, 500, or 5000 alignments were reported.

4.2.4 Varying N and R

Semi-gapped alignment is parameterised by two constants, N and R. The value of N controls

the ratio of gapped to ungapped alignment: small values of N favour gapped alignment, and

large values of N favour ungapped alignment. The value of R influences the number of

semi-gapped alignments that are subsequently rescored using the gapped stage in blast.

In our previous overall results, we report experiments with N = 10 and R = 0.68. This

section shows how these values were derived experimentally, how the choices of N and R are

dependent, and that they are robust when other parameters are varied.

Figure 4.3 shows how increasing the ratio of ungapped to gapped alignment affects align-

ment scores. As N increases, the score produced by semi-gapped alignment becomes increas-

ingly lower, falling to around 15% less for values of N ≥ 11. This is as expected: semi-gapped
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Figure 4.3: Average decrease in score between semi-gapped alignments and gapped alignments

for varying values of N . The same gap penalties were used for both methods. Only gapped

alignments with an E-value below 10 were considered.

alignment forces insertions to occur in suboptimal locations, and the average distance be-

tween the optimal gap location and the closest permitted gap location increases with N .

However, as semi-gapped alignments are only performed to identify regions that must be

rescored with gapped alignment, differing scores only affect which alignments are considered

in the next stage and not what is returned to users. In practice, we have found that N = 10

affords an excellent tradeoff between speed and accuracy.

The score reduction effect is compounded by the dropoff technique, which processes only

cells that score above a dynamic threshold. Decreasing scores from semi-gapped alignment

leads to a reduction in the number of matrix cells processed and, in turn, this can lead to

high scoring alignments not being considered during the semi-gapped alignment stage. As

we show later, lowering the open gap penalty provides an effective solution to the problem.

Figure 4.4 shows the effect of varying R for different values of N . Each curve in the figure

shows the accuracy and speed tradeoff for a fixed value of N but with varying R. For all

curves, decreasing R improves the ROC score and increases average query evaluation time.

Interestingly, for values of N ≤ 10, the curve has a characteristic shape, where the ROC

score improves significantly as R is decreased from one and then reaches a near-maximum

for values of approximately R ≤ 0.5. The point on each curve shows the setting R = 0.68,

which we advocate as the default setting and use in all experiments reported throughout our

results.
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Figure 4.4: Accuracy versus query evaluation times for combined semi-gapped alignment

and restricted insertion alignment using different values of N and R. The default value of

R = 0.68 is highlighted on each curve.

4.2.5 Varying the Gap Open Penalty

As discussed in Section 4.1.2, our semi-gapped alignment algorithm additionally penalises

gaps by forcing them to occur in suboptimal locations. Specifically, on average, gaps occur
dN

2
e×bN

2
c

N
residues from their optimal open position. To compensate for this, we have explored

lowering the open gap penalty for semi-gapped alignment.

Let og and eg denote the open gap penalty and extend gap penalty used for gapped

alignment respectively. Similarly, let os and es denote the open and extend gap penalties

used for semi-gapped alignment. Because gap length has no effect on the constraints imposed

by semi-gapped alignment, we let es = eg. However, for open gap penalties, we propose

os = og−C, where C is a constant value that reduces the open cost for semi-gapped alignment.

We use a normalized value for C to ensure that this compensation is comparable across

different scoring schemes.

Table 4.6 shows the effect of varying the open gap penalty os and its related value of

C. The combined scheme, and default values of og = 11, N = 10, and R = 0.68 are used

for all results shown. In addition, because changing the open gap penalty affects the region

explored by the dropoff technique, we have chosen a value of X for each value of C that
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Semi-gapped open gap penalty (os) 6 7 8 9

C (bits) 6.53 6.15 5.76 5.38

Dropoff X parameter (bits) 14.4 15.0 16.5 19.2

ROC50 score 0.338 0.339 0.339 0.339

Time (secs) 5.35 4.93 5.23 6.18

Table 4.6: Average query evaluation time for varying semi-gapped alignment open gap penal-

ties os and the related value C. For each penalty, a value of X that produces equivalent

ROC50 scores was chosen.

provides an ROC score approximately equal to the baseline; this allows comparison of og

values to identify the minimum query evaluation time. Our results show that C ≈ 6.0 bits

works well, that is, os = 7 is a suitable value for the blast default parameters.

In unreported experiments, we have also found that C = 6.0 bits, N = 10, and R = 0.68

provides a good compromise between accuracy and speed for most popular scoring schemes

and choices of open gap penalty, og. We recommend and use C = 6.0 bits to calculate open

gap penalties throughout our experiments.

4.2.6 Varying the Mutation Data Matrix

The two commonly used families of data mutation matrices are the PAM series and the

BLOSUM series, which are both supported by blast and discussed in Section 2.4 on page

43. The BLOSUM62 substitution matrix is the most commonly used for blast searches,

however other scoring matrices are included in the default blast distribution:

• the BLOSUM45 matrix is constructed from alignments between distantly related pro-

teins and is suitable for detecting distant homology;

• the BLOSUM80 matrix is constructed from closely related proteins and is suitable for

detecting close homology; and

• the older PAM30 and PAM70 matrices are still occasionally used because they can

provide better sensitivity for searches conducted with short queries.

We consider the effect of using these matrices in this section.

Table 4.7 shows a comparison of the various gapped alignment techniques for the four

additional scoring matrices; results for the BLOSUM62, with og = 11, eg = 1, os = 7, and
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Scoring matrix BLOSUM45 BLOSUM80

Gapped costs (og,eg) 14,2 10,1

Semi-gapped costs (os,es) 10,2 5,1

ROC50 Time ROC50 Time

Combined 0.331 6.58 0.332 4.07

Semi-gapped only 0.331 6.73 0.332 4.21

Restricted insertion only 0.331 10.59 0.332 6.11

Baseline 0.331 11.23 0.332 6.72

ncbi-blast 0.331 14.31 0.330 7.95

Scoring matrix PAM30 PAM70

Gapped costs (og,eg) 10,1 9,1

Semi-gapped costs (os,es) 3,1 4,1

ROC50 Time ROC50 Time

Combined 0.238 1.75 0.292 2.91

Semi-gapped only 0.238 1.84 0.293 3.01

Restricted insertion only 0.238 3.20 0.294 7.04

Baseline 0.238 3.59 0.294 7.91

ncbi-blast 0.236 3.87 0.293 9.85

Table 4.7: Comparison of the gapped alignment techniques when used in combination with

the scoring matrices included with blast. For each matrix, the recommended gap penalties

were used with C = 6.0.

es = 1 are reported in Section 4.2.2. For each matrix, the recommended open gap and extend

gap penalties taken from the NCBI online version1 were used and are listed in the table. As

previously, we report ROC values for searching SCOP, and average query evaluation times

for searching GenBank NR.

The results show that our schemes are robust for all matrices. As for BLOSUM62, the ac-

curacy of our schemes compared to our baseline and ncbi-blast is mostly indistinguishable.

For PAM70, the combined approach has an ROC score that is 0.001 less than ncbi-blast,

but it is staggeringly more than three times as fast; simple parameter tuning can alter this

1See http://www.ncbi.nlm.nih.gov/BLAST/
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tradeoff as required. For BLOSUM80, ncbi-blast has an ROC score 0.002 less than the

other approaches, which we have attributed to a minor difference in the implementation

of the dropoff scheme. Overall, our semi-gapped schemes are relatively faster for detecting

distant homologs.

4.2.7 Summary

In this section, we presented the results of experimental evaluations for our new alignment

methods. Our semi-gapped alignment method, combined with an optimised rearrangement

of the recurrence relations and our novel restrict insertion heuristic more than halve the

time taken to identify high-scoring gapped alignments in blast while retaining the same

accuracy. We have carefully parameterised the semi-gapped stage and chosen values for N

and R that maximise accuracy and speed. We have also shown that lowering the open gap

penalty improves the accuracy of the method. The results demonstrate that our schemes are

robust across a range of scoring schemes and E-value cutoffs.

4.3 Conclusion

Very little work has addressed the fundamental algorithmic steps that algorithms such as

blast use to accurately and efficiently compute gapped alignments. In this chapter, we

proposed two improvements to gapped alignment in blast. The first improvement is an

new stage in the blast algorithm called semi-gapped alignment that efficiently identifies

candidate sequences with a broad similarity to the query. The novel semi-gapped alignment

algorithm permits gaps, but only at specific positions in the two sequences. The second

improvement is a heuristic scheme that dismisses unlikely evolutionary events, called adjacent

gaps, to reduce computation involved in aligning sequences. We show experimentally that —

together with an optimisation of the alignment recursion — these techniques halve the query

evaluation time of the gapped alignment stages of blast with negligible effect on accuracy.

We conclude that these steps are a valuable addition to blast and have integrated them

into our own version of the tool called fsa-blast (which stands for Faster Search Algorithm

- blast) and is available for download from http://www.fsa-blast.org/.

In the next chapter, we propose a new approach to the first, hit detection stage of blast.

We focus on optimising the lookup table used to identify hits in protein searches and inves-

tigate the effect of parameter choices such as word length on this initial stage.
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Protein Hit Detection

The first stage of blast — and many other homology search tools — involves identifying

hits: short, high-scoring matches between the query sequence and the sequences from the

collection being searched. The hit detection stage represents a large proportion of the total

search time; our results in Section 3.1.3 on page 55 show that this first stage consumes 37%

of the total search time for protein queries, and 85% of the search time for nucleotide queries.

It is therefore not surprising that hit detection has received considerable attention at

late with a range of new approaches to this first stage of homology search. In Section 3.2 on

page 76 we describe several such approaches, including indexed-based methods and the use of

discontinuous seeds to detect inexact matches between the query and collection subsequences.

Unfortunately, these new approaches have limited application and are either unsuitable for

searching large collections such as GenBank or are significantly less sensitive, for reasons

presented in Section 3.2. Further, as discussed in Section 3.2.3, discontinuous seeds have

only been applied in practice to nucleotide data and do not appear to be as effective for

protein searches. As a result, the blast approach of scanning the entire collection for exact

matches of a fixed length W remains the most successful approach to homology search.

The definition of a hit and how they are identified differs between protein and nucleotide

searches, mainly because of the difference in alphabet sizes. For example, for blast nu-

cleotide search, an exact match of length eleven is required. However, for protein search,

it requires a match of length three and inexact matches are permitted. Indeed, blast uses

an algorithmically different approach to hit detection for protein and nucleotide searches, as

discussed in Section 3.1.3.

In this chapter, we investigate algorithmic optimisations that aim to improve the speed of

131
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protein search. Specifically, we investigate the choice of data structure for the hit matching

process, and experimentally compare an optimised implementation of the current ncbi-blast

codeword lookup approach to the use of a deterministic finite automaton (DFA). Our DFA

is highly optimised and carefully designed to take advantage of CPU cache on modern work-

stations. Our results show that the DFA approach reduces total search time by 6%–30%

compared to codeword lookup, depending on platform and parameters. This represents a

reduction of around 41% in the time required by blast to perform hit detection; this is an

important gain, given the millions of searches that are executed each day. Further, the new

approach can be applied to a range of similar protein search tools. We also explore the effect

of varying the word length and neighbourhood threshold on the hit detection process.

This chapter is organised as follows. We describe the codeword lookup structure used

for hit detection in blast and experiment with varying the word size and match threshold

in Section 5.1. In Section 5.2 we describe our new approach based on a carefully optimised

DFA structure. In Section 5.3, we compare our new DFA approach to the original codeword

lookup scheme. Finally, we provide concluding remarks in Section 5.4. A preliminary version

of the results and discussions presented in this chapter appeared in Cameron et al. [2006c].

5.1 Identifying Hits in BLAST

As discussed in Section 3.1.3, blast identifies high-scoring matches of a fixed length W

between the query sequence and sequences in the collection as the first stage of search. A

match is considered high-scoring if the pair of words (subsequences of length W ) score at least

the threshold constant T when aligned using a substitution matrix. Formally, blast identifies

all hits between the query sequence q at position i and the current collection sequence s at

position j such that
∑

0≤n<W

s(qi+n, sj+n) ≥ T

where s(qi, sj) is the score resulting from aligning the ith amino acid in q and the jth amino

acid in s.

Hits are identified with the aid of a lookup table that is constructed from the query

sequence and a substitution matrix. Given an alphabet of size a and a word length W the

table contains aW entries, where each entry represents a possible word w = w1...wW . Each

entry specifies the location of words in the query that match w, that is, the entry contains a



5.1. IDENTIFYING HITS IN BLAST 133

list of query positions I = i1, ..., i|I| such that for each position i,

∑

0≤n<W

s(qi+n, wn) ≥ T

The lookup table is illustrated in Figure 3.3 on page 58.

During search, overlapping substrings or words of length W are extracted from the current

collection sequence. Each word is used to lookup an entry in the table, which specifies the

offset into the query, or query position, of zero or more hits. The query and collection sequence

offsets [i, j] of each hit are then passed on to subsequent stages of the blast algorithm.

The word length and threshold parameters, W and T , have considerable effect on the

sensitivity of blast and amount of computation involved in the hit detection process and

subsequent stages. In this section, we analyse the effect of varying parameter choices and

illustrate that a longer word length can be used to achieve comparable accuracy with less

computation. We then describe in detail the codeword lookup table used by ncbi-blast

to identify hits efficiently, and show that the main drawback with large word lengths is an

increase in the size of this data structure.

5.1.1 Varying the word size and threshold

The threshold parameter T that defines a high-scoring match between words affects the speed

and accuracy of blast. Consider the example mutation data matrix and query sequence

shown in Figure 3.3 on page 58 and a setting of T = 7. Observing the matrix, a match

between the word BA and BC scores 8, since the intersection of the row and column labelled

B is a score of 6 and between A and C is 2 in the example scoring matrix shown. Since the

threshold is T = 7, a match between BA and BC is a hit, and so occurrences of BA or BC in

the query match occurrences of BA or BC in the collection sequence. High values of T restrict

the number of non-identical neighbourhood words that match a word with a score below the

threshold T , resulting in less sensitive but faster search. Low values of T expand the number

of neighbourhood words, with the opposite effects. Careful choice of T , for each W and

scoring matrix pair, is crucial to blast performance.

ncbi-blast uses default values of W = 3 and T = 11 for protein search [Altschul et al.,

1997]. To investigate the effect of varying these two parameters we conducted the following

experiment: for each value of W = 2, 3, 4, 5, we identified a value of T that provides a similar

degree of accuracy to the defaults of W = 3 and T = 11. We then used our own implemen-

tation of blast to perform 100 searches for each parameter pair between queries selected
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Settings Total Hits Total Extensions ROC50

(Ungapped) (Gapped) score

W = 2, T = 10 812,500,081 80,571,433 53,063 0.382

W = 3, T = 11 428,902,038 17,785,578 47,264 0.380

W = 4, T = 13 219,446,068 6,113,409 43,682 0.380

W = 5, T = 15 111,574,045 3,670,768 40,116 0.378

Table 5.1: A comparison of blast search statistics for pairs of W and T that result in

similar accuracy. The average number of hits, ungapped extensions, and gapped extensions

and SCOP test ROC50 scores are shown.

randomly from the GenBank non-redundant protein database and the entire database. We

recorded the average number of hits, ungapped extensions, and gapped extensions for each

parameter pair. The results of this experiment are shown in Table 5.1.

Accuracy was measured using the SCOP test that is discussed in Section 3.3.3. For

the test, we used version 1.65 of the ASTRAL Compendium for Sequence and Structure

Analysis [Chandonia et al., 2004]. The test provides a Receiver Operating Characteristic

(ROC) score between 0 and 1, where a higher score reflects better sensitivity and selectivity.

The version of the GenBank database used throughout this chapter was downloaded 17

November 2004 and contains 2,163,936 sequences in around 712 megabytes of sequence data.

Our version of blast that was used for testing is fsa-blast that uses the semi-gapped and

gapped alignment algorithms described in the previous chapter.

Table 5.1 shows that a longer word length W can be used to achieve comparable accuracy

with far less computation. For example, the parameter settings W = 5 and T = 15 achieve

similar accuracy to W = 2 and T = 10, while generating 86% fewer hits, 95% fewer un-

gapped extensions, and 14% fewer gapped extensions. We show in Section 5.3, however, that

the reduction in computation for long word lengths does not necessarily translate to faster

runtimes. This is because the data structures required for lookups with long word lengths

are much larger and cannot be maintained in CPU cache.

CPU caches are typically no more than one megabyte in size, and store data that has

been recently accessed (temporarily local) or is located near recently-accessed data (spatially

local). CPU cache performance, design, and characteristics vary across platforms and archi-

tectures. However, in general, for memory-based tasks, data structures that are smaller and

cluster related data make better use of cache and are faster on most architectures. Such data
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Collection sequence: TQACIV

Words: TQA

QAC

ACI

CIV

Figure 5.1: Words extracted from a collection sequence during search.

structures and algorithms are referred to as being cache conscious.

Next, we describe the codeword lookup table used by ncbi-blast to perform hit detec-

tion. We show that the structure is too large to fit into the CPU cache of a modern work-

station for word sizes of W = 4 or greater. In Section 5.2 we present our cache-conscious

data structure for the first stage of blast. Our aim in developing this new structure is to

improve caching, resulting in longer word lengths and faster runtimes.

5.1.2 NCBI-BLAST Codeword Lookup

We have shown a schematic of the lookup table used by blast in Figure 3.3 on page 58.

This section describes the implementation in more detail.

In ncbi-blast, each collection to be searched is pre-processed once using the formatdb

tool and each amino-acid coded as a 5-bit binary value. The representation is 5 bits because

there are 24 symbols — 20 amino-acids and 4 IUPAC-IUBMB amino-acid ambiguity character

substitutions — and 24 < 25. For fast table lookup, a codeword is constructed by reading and

concatenating W 5-bit values together. The codeword is used as an offset into the codeword

lookup table; this provides unambiguous, perfect hashing, that is, a guaranteed O(1) lookup

for matching query positions to each collection sequence word. The table contains space for

a × 32(W−1) slots, for an alphabet of size a and word length W , however only aW of these

correspond to valid codewords and are actually used. For a = 24 symbols and W = 3, a word

is represented by 15 bits and the table contains space for a×322 = 24, 576 slots; 243 = 13, 824

of these correspond to valid codewords and are actually used, whilst the remaining 10,752

slots represent unused space inside the lookup table.

During search, collection sequences are read code-by-code, that is, 5-bit binary values

between 0 and 23 decimal inclusive are read into main-memory. Since codewords overlap,

each codeword shares W −1 symbols with the previous codeword. For example, when W = 3

each codeword shares two symbols with the previous codeword as shown in Figure 5.1. To

construct the current codeword, 5 bits are read from the sequence, and binary mask (&),
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bit-shift (<<), and OR (|) operations applied. These three binary operations are used to

remove a residue from the start of the word, promote each of the remaining residues to its

new position, and add a new residue to the end of the word. Consider the example collection

sequence in Figure 5.1 that is processed using a word length of W = 3. After reading codes for

the first three letters T, Q, and A, the current codeword contains a 15-bit representation of the

first three-letter word TQA. The code for C is read next, and the codeword needs to be updated

to represent the second word QAC. To achieve this, three operations are performed: first, a

binary masking operation is used to remove the first 5 bits from the codeword, resulting in

a 10-bit binary representation of QA; second, a left binary shift of 5 places is performed; and,

last, a binary OR operation is used to insert the code for C at the end of the codeword,

resulting in a binary representation of the new codeword QAC. The new codeword is then

used to lookup an entry in the table.

Each slot in the lookup table specifies the location of zero, one, or more query positions.

A query position is the offset into the query where a matching word occurs. We describe

the design of the lookup table employed by ncbi-blast now. Each slot in the lookup table

contains four integers. The first integer specifies the number of hits in the query sequence

for the codeword, and the remaining three integers specify the query positions associated

with up to three of these hits. In cases where there are more than three hits, the first query

position is stored in the slot and the remaining query positions are stored outside the table,

with their location recorded in the slot in place of the second query position. Figure 5.2

illustrates the design of the lookup table: the example shows a fraction of the table including

two codewords that have two and zero query positions, and one codeword that uses the

external structure to store a total of five query positions.

Storing up to three query offsets in each slot in the lookup table improves spatial locality

and, therefore, takes advantage of CPU caching effects; a codeword with less than three hits

can be processed without jumping to an external main-memory address. Assuming slots are

within cache, the query positions can be retrieved without accessing main-memory. However,

storing query positions in the table increases the table size: as the size increases, fewer slots

are stored in the CPU cache.

In addition to the primary lookup table, ncbi-blast uses a secondary table to reduce

search times. For each word, the secondary table contains one bit that indicates whether or

not any hits exist for that word. If no hits exist, the search advances immediately to the next

word without the need to search the larger primary table. This potentially results in faster

search times because the smaller secondary table is compact (it stores aW bits compared to
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Query pos. 1 = 330
    No. hits = 2

Query pos. 3 = <unused>
Query pos. 2 = 471

    No. hits = 0
Query pos. 1 = <unused>

Query pos. 3 = <unused>
Query pos. 2 = <unused>

Query pos. 1 = 37

Query pos. 3 = <unused>

132

243

330

511    No. hits = 5

Query pos. 2 = ext. address

QTA

QTB

QTC

Figure 5.2: Three slots from the lookup table structure used by ncbi-blast. In this example,

W = 3 and the words QTA, QTB, and QTC have two, zero, and five associated query positions

respectively. Since QTC has more than three query positions, the first is stored in the table

and the remaining positions are stored at an external address.

aW × 4 32-bit integers) and can be accessed faster than the larger primary table.

The average size of the ncbi-blast codeword lookup table for values of W and T that

were used previously in this chapter are shown in the column labelled codeword lookup of

Table 5.2. For word sizes of W = 2 and W = 3 the primary table is less than half a megabyte

and small enough to reside in the CPU cache of most modern workstations. However, as

W increases, so does the table size: when W = 4, the table is around 12 Mb in size, much

larger than the available cache on most modern hardware. This is probably why word sizes

of W = 4 or larger are disabled by default in ncbi-blast. Further, we show in Section 5.3

that a word size of W = 4 provides slower searches than the default of W = 3 despite a

reduction in computation as shown in Section 5.1.1. The results in Table 5.2 also show that

the secondary table is considerably smaller than the primary table across the range of word

lengths, so that codewords that do not generate a hit are less likely to result in a cache miss.

5.1.3 Summary

The first stage of blast involves identifying sort matching regions, also known as hits,

between the query and sequences from the collection. A lookup structure that is constructed

from the query sequence and scoring matrix is used to identify hits quickly. During search,
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blast parameters Codeword lookup Deterministic finite

Primary Secondary automaton

W = 2 T = 10 13 Kb ¿ 1 Kb 2 Kb

W = 3 T = 11 392 Kb 3 Kb 22 Kb

W = 4 T = 13 12,329 Kb 96 Kb 257 Kb

W = 5 T = 15 393,374 Kb 3,072 Kb 3,011 Kb

Table 5.2: Average size of the codeword lookup and DFA structures for 100 queries randomly

selected from the GenBank non-redundant protein database. Values of W and T with compa-

rable accuracy were used. Experiments were conducted using our own implementation of the

DFA structure and the codeword lookup structure used by ncbi-blast version 2.2.10 with

minor modifications to allow word sizes 4 and greater.

words are extracted from the collection for which the lookup structure specifies the location

of matching words in the query. In this section, we have described this process for detecting

hits in detail. We have described the codeword lookup approach used by ncbi-blast and

investigated the effect of varying the two key parameters in this process: the word length

and neighbourhood threshold.

In the next section, we describe an alternative data structure — a deterministic finite

automaton — for fast hit detection. We carefully optimise our new automaton to minimise

its size and improve search performance.

5.2 Deterministic finite automaton

The original version of ncbi-blast [Altschul et al., 1990] used a deterministic finite automa-

ton (DFA) [Sudkamp, 1997] similar to the one we describe next, but it was abandoned in 1997

for the lookup table approach described in the previous section. In this section, we propose

a new cache-conscious DFA design for fast codeword lookup. We first describe the original

DFA structure used by blast, and then describe our new cache-conscious DFA design and

several optimisations that can be applied to the new structure. Results for our new DFA are

presented in Section 5.3.
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Figure 5.3: The original DFA structure used by blast. In this example a = 3 and the query

sequence is BABBC. The three states shown are those visited when the collection sequence

CBABB is processed.

5.2.1 Original automaton

The DFA approach is fundamentally different to the lookup table scheme. Rather than

generating a unique numeric codeword for each word, the automaton represents the query

as states and transitions between those states. The DFA employed by the original blast is

as follows: each possible prefix of length W − 1 of a word is represented as a state, and each

state has transitions to a possible next states. Associated with each transition is a list of

zero or more query positions.

Figure 5.3 shows a portion of a DFA that has been constructed using a simplified alphabet

with size a = 3, a word length of W = 3 and an example query sequence BABBC. In this

example we assume that only identical words score above the threshold T , that is, we do

not consider neighbourhood words. Three states with a total of nine transitions are shown

in the figure. The B transition from the BA state contains the single query position i = 1

because the word BAB appears in the query beginning at the first character. Similarly, the B

transition from the AB state contains the single query position i = 2 because the word ABB

appears in the query beginning at the second character.

The structure is used as follows. Suppose the collection sequence CBABB is processed.

After the first two symbols C and B are read, the current state is CB. Next, the symbol A is

read and the transition A from state CB is followed. The transition does not contains any

query positions and the search advances to the BA state. The next symbol read is B and the

B transition is followed from state BA to state AB. The transition contains the query position

q = 1, which is used to record a hit at query and collection sequence offsets [1, 2]. Finally, the

symbol B is read and this produces a single hit at offsets [2, 3] because the B transition out



140 CHAPTER 5. PROTEIN HIT DETECTION

of state AB contains the query position i = 2 that matches the collection sequence at offset

j = 3. The automaton contains a state for every possible prefix of length W − 1, regardless

of whether any words with that prefix appear in the query or not.

The structure we have described is that used in the original version of blast. The original

DFA implementation used a linked list to store query positions and stored redundant infor-

mation1, making it unnecessarily complex and not cache-conscious. This is not surprising:

in 1990, general-purpose workstations did not have onboard caches and genomic collections

were considerably smaller, making the design suitable for its time.

However, despite the shortcomings of the original DFA implementation, the automaton

structure has several important advantages. First, the DFA is more compact. The lookup

table structure has unused slots, since eight of the 5-bit codes are unused. The table contains

space for a × 32(W−1) entries however only aW of these correspond to valid codewords and

are actually used. For the default word length of W = 3 and an alphabet size of a = 24, this

means that 10,752 out of 24,576 slots or 44% of the overall structure is unused. The DFA

does not suffer from this problem because the scheme does not rely on codewords. Further,

a range of optimisations can be applied to the DFA which we discuss in Section 5.2.3.

5.2.2 New automaton

A drawback of the original DFA is that is requires an additional pointer for each word to

the next state, resulting in a significant increase in the size of the lookup structure. To

examine this effect, we experimented with 100 query sequences randomly selected from the

GenBank database and found that pointers consume on average 61% of the total size of the

structure when default parameters are used and the relevant optimisations from Section 5.2.3

are applied to the original DFA. However, it is possible to reduce the number of pointers as

we discuss next.

The next state in the automaton is dependent only on the suffix of length W − 1 of the

current word and not the entire word. We can therefore optimise the structure further: we let

each state correspond to the suffix of length W − 2 of the current word, and each transition

correspond to the suffix of length W − 1. Each transition has two pointers: one to the next

state, and one to a collection of words that share a common prefix of length W − 1. The

words are represented by entries that each contain a reference to a list of query positions.

When a symbol is read, both pointers are followed: one to locate the query positions for the

1Based on our own analysis of NCBI-BLAST 1.1
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Figure 5.4: The new DFA structure. In this example a = 3 and the query sequence is BABBC.

The figure shows the portion of the new structure that is traversed when the example collection

sequence CBABB is processed.

new word and the other to locate the next state in the structure.

This new DFA is illustrated in Figure 5.4. Again, we use the example query sequence

BABBC and the diagram only shows the portion of the structure that is traversed when the col-

lection sequence CBABB is processed. Consider now the processing of the collection sequence.

After the first symbol C is read, the current state is C. Next, the symbol B is read and the B

transition is considered. It provides two pointers: the first to the new current state, B, and

the second to the CB prefix words. The next symbol read is A and two events occur: first, the

word CBA from the CB prefix words is checked to obtain the query positions for that word, of

which there are none in this example; and, second, the current state advances to A. Next, the

symbol B is read, the word BAB in the collection of BA prefix words is accessed and a single

hit is recorded with query position i = 1. The current state then advances to B. Finally, the

symbol B is read, the word ABB of the AB prefix words is consulted and a single hit is recorded

with query position i = 2.

This new DFA structure requires more computation to traverse than the original: as each

symbol is read, two pointers are followed and two array lookups are performed. In contrast,

the original DFA structure requires one pointer to be followed and one array lookup to

be performed. However, the new DFA is considerably smaller and more cache-conscious,

since the structure contains significantly fewer pointers. Despite each state containing two
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pointers, there are a(W−2) instead of a(W−1) states. Further, this rearrangement affords

additional optimisations that we describe next.

5.2.3 Optimising the automaton

In this section, we present several optimisations that can be applied to our novel DFA struc-

ture described in the previous section. Our optimisations are designed to reduce the overall

size of the structure and increase internal locality with the aim of improving cache perfor-

mance. Importantly, our strategies reduce the DFA size without any computational penalty.

Storing query positions

We have devised a new system for storing query positions in the automaton structure. Unlike

the more rigid codeword lookup table, the location of each entry in the DFA is not fixed and

we take advantage of this flexibility. Consider the new DFA structure illustrated in Figure 5.4.

Each state has a transitions that must be grouped together into an array. Similarly, words

that share a common prefix must be grouped together into an array with a entries. However,

because these states and blocks are located by following pointers in the automaton, they

may be placed anywhere in memory. This allows flexibility in their arrangement that is not

possible when the location of each entry is governed by its associated codeword. Further, it

permits query positions to be embedded in the DFA itself.

We take advantage of this in our DFA structure and we propose that query positions

are stored outside of each entry, immediately preceding each block. That is, query positions

are stored before each collection of words with a common prefix. This reduces the size of

each entry — only one value must be recorded per word to indicate the location of the list

of query positions — but minimises the likelihood of a cache miss when accessing that list

because it is located nearby. We have implemented our approach as follows. Lists of query

positions for every entry in the block are recorded before that block, and query position lists

are terminated with a zero value. The distance between the first entry in the block and the

start of the query positions list is recorded for each word, where a zero value indicates an

empty list.

This new arrangement is illustrated on the left-hand side of Figure 5.5. In this example,

the alphabet size is a = 3 and the block of words with a AB prefix is shown. The word ABA

occurs at offset 16 in the query: the ABA entry contains a list offset of two indicating that the

list of query positions for this word commences two positions before the start of the block,
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Figure 5.5: Example of query position reuse. The word ABB produces a hit at query positions

16, 67, and 93, the word ABA produces a hit at query position 16 and the word ABC does

not produce any hits. A simple arrangement is shown on the left. A more space efficient

arrangement that reuses query positions is shown on the right.

where the zero-terminated list {16} appears. The word ABB occurs at offsets 16, 67, and 93

in the query: the list offset of six points to the list of query positions {16, 67, 93}. Finally,

the word ABC does not appear in the query, which is indicated by the list offset value of zero.

As part of this new structure, we have developed a technique for reusing query positions

between words with a common prefix. An existing list of query positions M = m1, ..., m|M |

can be reused to store a second list N = n1, ..., n|N | in memory if |N | ≤ |M | and N is

the suffix of M , that is, M|M |−i = N|N |−i for all 0 ≤ i ≤ |N |. Because the order of the

query positions within an entry is unimportant, the lists can be rearranged to allow more

reuse. We have employed a greedy algorithm that produces a near-optimal arrangement for

minimising memory usage. The algorithm processes the new lists from shortest to longest,

and considers reusing existing lists in order from longest to shortest. An example of query

position reuse that results from our method is shown in Figure 5.5. A simple and less space

efficient arrangement is shown on the left-hand side. On the right-hand side, the query

positions are rearranged to permit reuse between the words ABA and ABB. The list {16, 67,

93} is reordered to {67, 93, 16} so that the last value in the list can be reused to produce the

zero-terminated list {16}. Using this approach, the number of list items and zero-terminators

to be stored for the block of words is reduced from six to four.

To measure the effectiveness of our list reuse scheme, we experimented with 100 query
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sequences randomly selected from GenBank. We observed an average reduction in list size

of 39% for our reuse scheme compared to a baseline where no query position reuse was

performed. This confirms that the approach successfully reduces the overall size of the DFA.

Utilising background amino acid frequencies

We have also optimised the arrangement of the overall DFA structure to improve cache per-

formance, by clustering more frequently accessed states together. This approach is possible

using the automaton because words do not map to codewords, that is, to offsets within the

structure, resulting in flexibility in the arrangement of states in the structure.

We have chosen to cluster together frequently-accessed states, maximising the chances

that these states will be cached. In the DFA we propose, the most-frequently accessed states

are clustered at the centre of the structure; to do this we use the Robinson and Robinson

background amino-acid frequencies [Robinson and Robinson, 1991].

Similarly, entries within each prefix block can be arranged from most- to least-frequently

occurring amino-acid residue, improving caching effects and minimising the size of the offset

to the query positions for more commonly accessed states. Within each group of entries

that share a W − 1 residue prefix, entries with more common suffices are positioned at

the beginning of the block, minimising the distance between more common entries and the

associated list of query positions. We accomplish this in our DFA by assigning binary values

to amino-acids in descending order of frequency.

Further optimisations

The new DFA also offers the ability to reuse a single block of entries for two or more different

prefixes. If the lists of query positions is the same for each of the a suffix symbols for a

pair of prefixes, then a single block of entries can be used for both. In this event, the words

block field of the two transitions point to a single block of words. This is illustrated in

Figure 5.6, using an example where a single block is used for both the prefixes BB and CB.

In this example, the words BBA, CBA, BBC, and CBC do not produce any hits. The words

BBB and CBB both produce a single hit at query position i = 35, indicating that both words

produce a high-scoring match at this position in the query. Because the query position lists

are the same for each suffix symbol for the BB and CB prefixes, a single block can be used

for both. This reuse leads to a further reduction in the overall size of the DFA structure: in

our experiments with 100 random queries described previously we found that the scheme on
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Figure 5.6: Illustration of block reuse in the DFA. A single block of entries, shown on the

right, is used for both the BB and CB prefixes.

average reduces the number of blocks by 16%.

To further optimise the new structure for longer word lengths, we have reduced the

alphabet size from a = 24 to a = 20 during construction of the structure by excluding

the four ambiguity characters: V, B, Z, and X. We have observed that these four characters

are highly infrequent, contributing a total of less than 0.1% of symbol occurrences in the

GenBank non-redundant database. To do this, we replace each ambiguity character with an

amino-acid symbol that is used only during the first stage of blast. This has a negligible

effect on accuracy: Table 5.3 shows there is no perceivable change in ROC score for the

SCOP test, despite a small change in total hits between the queries and collection sequences.

The approach of replacing ambiguity characters with bases is already employed by blast for

nucleotide searches, as originally proposed by Williams and Zobel [1997].

Our final optimisation is to store query positions as 16-bit integers where possible, instead

of 32-bit integers as used in ncbi-blast. In the case where 32-bit integers are required —

because the query exceeds 65,536 symbols in length — we use those instead.

The size of this optimised deterministic finite automaton for values of W = 2, 3, 4, 5 is

shown in Table 5.2. The new structure is considerably smaller than the ncbi-blast codeword
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No ambiguity substitution Ambiguity substitution

Total hits ROC50 Total hits ROC50

W = 2, T = 10 812,500,081 0.382 815,203,770 0.382

W = 3, T = 11 428,902,038 0.380 429,296,279 0.380

W = 4, T = 13 219,446,068 0.380 219,705,636 0.380

W = 5, T = 15 111,574,045 0.378 111,785,042 0.378

Table 5.3: Effect on search accuracy of substituting non-ambiguity characters for ambiguity

characters during the first stage of blast search. ROC50 scores were measured using the

SCOP database and number of hits was measure by searching 100 randomly selected queries

against the entire GenBank non-redundant database. Our blast implementation was used.

table: for the default word length of W = 3 it is roughly 6% of the size of the codeword

lookup table. The difference in size is even greater for larger word lengths: when W = 4 it

is roughly 2% of the size of the lookup table and when W = 5 it is less than 1% of the size

of the original data structure. Importantly, the new DFA is less than half a megabyte in size

when a word length of W = 4 is used, making it small enough to fit into the available cache

on most modern processors. In the next section, we show that this reduction in size leads to

significantly faster search times due to better cache performance.

5.2.4 Summary

In this section, we described a new approach to hit detection in blast that employs a deter-

ministic finite automaton (DFA) for fast word matching. We have presented a new automaton

structure that requires more computation to traverse than the original, but contains fewer

pointers and is significantly smaller. We have applied several optimisations to our new DFA

to further reduce its size. As a result, our new data structure is roughly 6% of the size of the

codeword lookup table when default parameters are employed.

In the next section, we evaluate our new automaton and compare the performance of this

structure to the original codeword lookup approach used by ncbi-blast.

5.3 Results

This section presents the results of our experiments with various implementations of the first

stage of blast.
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We present a comparison of the ncbi-blast codeword lookup approach, our optimised

implementation of the ncbi-blast approach, and an implementation of our optimised DFA

scheme. All code was compiled using the same compiler flags as ncbi-blast. The ncbi-

blast implementation is version 2.2.10 with a minor modification to permit experimentation

with word lengths W = 4 and greater. All experiments used default SEG filtering [Wootton

and Federhen, 1993] of the query sequences and ncbi-blast default parameters except where

noted.

Collections and queries are as described in Section 5.1.1. The best elapsed time of three

runs was recorded for each query, and then query times averaged across 100 queries. All

experiments were carried out on machines under light load, with no other significant processes

running. Four modern workstations were used in the experiments: an Intel Pentium 4 2.8

GHz with 16Kb L1 cache, 1Mb L2 cache and 2 Gb of RAM; an Intel Xeon 2.8GHz with

16Kb L1 cache, 512Kb L2 cache, 1Mb L3 cache and 2 Gb of RAM; an Apple PowerMac G5

dual processor 2.5GHz with 64Kb L1 cache, 512Kb L2 cache and 1.5 Gb of RAM; and, a

Sun UltraSPARC-IIIi 1280 MHz with 96Kb L1 cache, 1Mb L2 cache and 1 Gb of RAM.

Table 5.4 shows a comparison of our implementation of the NCBI table-based approach

to the original ncbi-blast version. With our optimisations — including minor changes to

reduce the computation involved in constructing codewords and accessing the primary and

secondary lookup tables — elapsed query times for stage one are typically around 70% to

80% of the ncbi-blast times. The exception is the PowerMac G5, where our optimisations

result in an 8% speed up. We believe the different performance on the PowerMac is due to

a relative difference in fundamental costs — of shifts, additions, binary OR, and increments

— between it and the other platforms. We use our implementation as a baseline in the

experiments reported in the remainder of this section.

Figure 5.7 shows a comparison of the optimised table-based and DFA schemes using our

own implementation of blast. These results show overall blast search times for each of

the W and T parameters pairs with similar accuracy, except for W = 5 and T = 15 which

did not produce a runtime below 50 seconds on any of the architectures tested. The DFA is

significantly faster: for the default W = 3 setting, it results in 10% faster average runtimes,

and is around 15% faster on the commonly-used Intel platforms. Given that the hit detection

process accounts for 37% of the average search time, this is equivalent to a 41% speedup in

the first stage of blast. Importantly, because the compact DFA structure caches effectively,

it is practical for W = 4, where the elapsed query times are almost identical to W = 3 and

35%–50% faster than the table-based scheme for the same setting; the DFA is therefore a
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Machine ncbi-blast Optimised Codeword

(secs) (secs) (%)

Intel Pentium 4 10.92 8.63 79%

Intel Xeon 10.60 8.26 78%

Sun UltraSPARC 18.58 13.27 71%

PowerMac G5 9.56 8.75 92%

Table 5.4: A comparison of blast stage one times between ncbi-blast and our own imple-

mentation of table-based codeword lookup hit detection, using default parameters of W = 3

and T = 11. The percentage of the ncbi-blast runtime is also shown.
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Figure 5.7: A comparison of blast total search times for table-based codeword lookup and

optimised deterministic finite automaton (DFA) designs. Experiments were conducted using

W and T parameters pairs with similar accuracy on four different hardware architectures.

practical structure for W = 4, a parameter disabled by default in ncbi-blast.

One of the main innovations in the 1997 blast paper [Altschul et al., 1997] was the

introduction of a two hit mode of operation, where two hits on the same diagonal instead of

only one hit are required to trigger an ungapped extension. Altschul et al. [1997] compared

the sensitivity of these two different modes of operation towards high-scoring alignments, and

concluded that the two hit mode is more sensitive and faster. However, their investigation

only measured search sensitivity and not overall accuracy to homologous relationships and
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considered only the default word length of W = 3.

We have conducted our own, more detailed investigation of these two different modes

of operation across a range of word lengths using the SCOP database. Figure 5.8 shows a

comparison between the one hit and two hit modes of operation using our new implementation

of blast and our optimised DFA structure. The results show overall blast search times for

values of W and T with comparable accuracy. For two hit mode we used the same values of

W and T listed in Table 5.2. For one hit mode we used parameters W = 3, T = 13 that result

in a ROC50 score of 0.384, and parameters W = 4, T = 15 that result in a ROC50 score of

0.383. Results for word lengths of W = 2 and W = 5 are not shown because they did not

produce runtimes below 60 seconds for one hit mode of operation on any of the architectures

tested.

The results confirm that blast is faster when run in two hit mode, in agreement with

the 1997 blast paper [Altschul et al., 1997]. However, we note that for W = 4 the speed

difference between one hit and two hit is significantly smaller than for W = 3. For the Intel

platform in particular, the one hit mode of operation with a word length of W = 4 is roughly

as fast and slightly more accurate than the default word length of W = 3 using the two hit

mode.

Table 5.5 shows an overall comparison between ncbi-blast and fsa-blast: our own

implementation of the blast algorithm. fsa-blast uses the new optimised DFA and our

improvements to the gapped alignment stages of blast described in Chapter 4. Our imple-

mentation is around 30% faster on Intel and Sun platforms, and 20% faster on the Apple

PowerMac G5. Around 15% of this speedup can be attributed to our improvements to the

gapped alignment stages, while the remainder is due to the work described in this chapter.

Importantly, there is no significant effect on accuracy: the ROC50 score for ncbi-blast is

0.379 compared to 0.380 for our implementation.

5.4 Conclusion

We have proposed, explained, and optimised structures for the first, hit detection phase in

blast with the aim of improving overall blast runtimes for protein search. Hit detection

matches words extracted from collection sequences against a structure derived from the query

sequence, and blast uses an algorithmically different approach to hit detection for protein

and nucleotide data. For protein searches, ncbi-blast uses a table-based lookup approach,

a structure we have investigated and optimised for our experiments.
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Figure 5.8: A comparison of blast total search times for one hit and two hit modes of

operation, using our implementation of blast and the optimised DFA structure. Experiments

were conducted using W and T parameters pairs with similar accuracy on four different

hardware architectures.

ncbi-blast fsa-blast

(secs) (secs) (%)

Intel Pentium 4 30.58 20.89 68%

Intel Xeon 30.22 20.54 68%

Sun UltraSPARC-IIIi 46.42 32.21 69%

PowerMac G5 22.83 18.33 80%

Table 5.5: Runtime comparison between ncbi-blast and fsa-blast using default parame-

ters. The percentage of ncbi-blast runtime is also shown.
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We have explored varying word lengths and parameter settings in an attempt to optimise

the first stage of search. Our results show that longer word lengths can result in comparable

accuracy and a substantial reduction in computation. However, longer word lengths also

result in larger lookup structures, which reduces the effectiveness of CPU cache and results

in poor search performance in practice. It is therefore important to minimise the size of data

structures used to perform hit detection.

We have proposed using a deterministic finite automaton (DFA) for fast, cache-conscious

matching. Our scheme is optimised based on properties of the matching process and designed

to make effective use of modern hardware. Our experiments show this approach works

well: it typically improves overall blast search times by around 15% compared to our

implementation of the ncbi-blast approach; our implementation of the table-based scheme

is in turn around 20% faster than the NCBI implementation. Further, our scheme is practical

for blast searches with a word length of four, a parameter value not supported by ncbi-

blast.

We have also considered the effectiveness of the two hit mode of operation, where two hits

on the same diagonal are required to trigger an ungapped extension. Our results confirm

that the two hit mode offers better accuracy and search times than the original one hit

approach, although the performance difference between the two schemes is smaller when the

non-default word length of four is employed.

Our improvements to hit detection can also be applied to other variants of blast that use

the same underlying protein comparison algorithm, including psi-blast, blastx, tblastn

and tblastx, and to other protein search tools that use word matches to trigger alignment.

We have integrated the deterministic finite automaton into our new implementation of

blast. When combined with our improvements to the gapped alignment stages of blast

that were described in the previous chapter, our methods are 20-30% faster than ncbi-blast

for protein searches with no significant effect on accuracy.

In the next chapter, we present several new methods that enable faster nucleotide search

by comparing collection sequences in their compressed form. Our new approaches to each

stage of blastn more than halve overall nucleotide search times. We also present new

approaches to hit detection for nucleotide data.
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Chapter 6

Compressed Sequence Comparison

Amino-acid or protein search is preferred by biologists over nucleotide search: protein se-

quence collections are well-annotated, the collections are small and targeted, and rich tools

and scoring schemes are available for the search process. Nucleotide search is less preferable

than protein search, but often used: very large databases are available, many queries are from

non-coding regions (and so do not have a protein equivalent), genome to genome comparisons

are beginning to yield interesting results, and the queries return much broader result sets. As

a result, nucleotide searches represent a sizeable proportion of the queries posed by biologists.

Our analysis of usage data for the online blast service offered by the NCBI in Section 3.1.3

on page 72 reveals that around 57% of searches conducted by users were blastn searches

between a nucleotide query and nucleotide collection. Further, we found that nucleotide

searches represent a very significant investment of computing resources, equating to roughly

39% of the overall processing time involved in searches against the GenBank NR protein or

nucleotide databases.

It is therefore not surprising that fast methods for nucleotide sequence comparison have re-

ceived considerable attention at late. Methods that rely on spaced seeds, such as megablast

[Zhang et al., 2000] and patternhunter [Ma et al., 2002; Li et al., 2004], or construct a

main-memory index of the collection, such as blat [Kent, 2002] and ssaha [Ning et al.,

2001], are specifically geared towards nucleotide search. Many of these methods are ideal for

querying small collections, making them suitable for tasks such as whole-genome alignment,

but fail to provide fast, sensitive search of large collections. Therefore, blastn remains the

only practical tool for accurately searching any significant fraction of the GenBank database.

Surprisingly, little attention has been paid to the blastn, its innovations and its optimi-

153
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sations, and the approach varies considerably from the description of the blast algorithm

presented in the 1997 paper [Altschul et al., 1997]. As discuss in Section 3.1.3, blast uses an

algorithmically different approach to amino acid and nucleotide comparisons. For blastn

searches, matches between highly-similar, non-identical words are not considered during the

first stage and only one hit, rather than two nearby hits on the same diagonal, is required to

trigger an ungapped alignment. Further, a longer word length is commonly employed, and

matches between DNA sequences with different orientations are considered. Importantly,

blast records nucleotide sequences using the byte packed compression scheme, which we

describe next and is the focus of this chapter. Indeed, the blastn and blastp algorithms

are implemented separately, even though both tools are accessible through the blastall

application interface of ncbi-blast.

In this chapter, we propose innovations in blastn searching. Each of our schemes is

based on the simple, practical byte packed compression scheme employed by blast to store

nucleotide collection sequences that was described in Section 3.1.3. Using this approach, each

of the four nucleotide bases is stored as a two-bit binary value, permitting four bases to be

stored per byte; the ambiguity codes are stored in a separate structure. This compression

scheme allows for very fast searching: compressed sequences are faster to read from disk

than uncompressed sequences, they require less main-memory to store, and they can be com-

pared without decompression. This latter point is important and unique to our work: our

innovations allow a compressed query sequence to be compared to a compressed collection

sequence in each of the first three stages of the blast algorithm. Specifically, our approach

permits hit detection and ungapped hit extension without sequence decompression. We pro-

pose two techniques for performing gapped alignments on sequences without decompression:

bytepacked alignment and table-driven alignment. Both techniques are used as a new stage

before gapped alignment, with the result that only the final gapped alignment stages —

which are performed for less than 1% of collection sequences — requires a decompression

step.

Our work on the hit detection and ungapped hit extension stages focuses largely on re-

engineering the blastn approach. We propose practical improvements to the NCBI blastn

algorithms and data structures, and show that our compression based schemes improve search

times significantly without affecting accuracy. For the first stage — where exact subse-

quences, typically of length N = 11, are identified between the query and each collection

sequence — our approach reduces search times by almost 50%. For the second stage —

where hits are extended using an ungapped alignment algorithm that does not permit in-
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sertions or deletions — our approach reduces alignment times by around 43%. Together,

since both stages consume around 90% of the entire search process, our schemes reduce total

blastn search times by around 43%.

Our major innovations in this chapter are two novel approaches to gapped alignment.

The first scheme — which we refer to as bytepacked alignment — allows the computation of

alignment scores between a compressed query sequence and a compressed collection sequence.

To do this, we compress the query sequence into four compressed representations, one for

each possible position of a two-bit nucleotide code in a byte. We are then able to compute

alignments between two sequences based on an ungapped extension from the previous stage,

beginning at any offset without decompression. The bytepacked alignment method is heuris-

tic because each collection sequence is compressed only once, requiring that insertions and

deletions only occur at one in four offset positions. (However, insertions and deletions are

permitted anywhere in the query because it is compressed into four representations.) Reg-

ular gapped alignment is then performed for high-scoring alignments using uncompressed

sequences to compute the optimal alignment. Overall, with very little modification to the

underlying blastn parameters, our bytepacked alignment scheme is around 78% faster than

the NCBI blastn gapped alignment stage. Importantly, there is no significant difference in

accuracy.

The second scheme — which we refer to as table-driven alignment — aligns sequences

using a novel variant of the Four Russians [Wu et al., 1996] approach. This involves divid-

ing the alignment matrix into blocks and using precomputed values from a lookup table to

calculate alignment scores for each block. We use the Four Russians approach to calculate

alignment scores for four adjacent characters, or a single byte, in the compressed sequence at

a time. Using this approach, we are able to compare the query to sequences in the collection

without decompression. When applied to blast, our table-driven alignment approach re-

duces the time taken to perform gapped alignment by 72%, and unlike bytepacked alignment,

the approach is guaranteed to find the optimal alignment between two sequences.

Overall, our improvements to the hit detection, ungapped alignment, and gapped align-

ment stages more than double the speed of blastn with no significant effect on accuracy.

Further, our improvements can be applied to other tools that use a two bits per base repre-

sentation of nucleotide sequences.

This chapter is structured as follows. In Section 6.1, we describe our approaches for

comparing compressed sequences. We present accuracy and performance results for our

approaches in Section 6.2. Finally, we provide concluding remarks in Section 6.3. The
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results and discussions presented in this chapter are based on Cameron and Williams [2006].

6.1 Novel bytepacked approaches

During nucleotide search ncbi-blast retrieves each sequence in the collection from disk,

where it is stored using the bytepacked representation, and decompresses it partially or

entirely to perform each of the four search stages. In this section, we describe new approaches

to each stage of blast that permit sequences in the collection to be processed in their

compressed form. We have investigated new methods for performing the first three stages of

blast, including approaches to hit detection, ungapped alignment, and gapped alignment

that can be applied to bytepacked collection sequences.

There are two major advantages in processing collection sequences in their compressed

form. First, not every sequence in the collection needs to be decompressed, that is, converted

from its on-disk bytepacked representation to a string of characters where each nucleotide base

is represented by a single character. blast uses a filtering approach to search, where each

stage takes longer to process a collection sequence than the previous but fewer sequences are

processed in later stages. Our novel approaches to alignment in blast permit us to delay the

decompression of sequences until later in the search process, and as a result fewer sequences

need to be decompressed. Second, we are able to reduce the computation required to compare

the query to collection sequences by processing the sequences in their compressed form. We

present new methods for aligning collection sequences four bases at a time, effectively reducing

sequence length by a factor of four and increasing the size of the sequence alphabet from 4

to 256. As a result, aligning bytepacked collections sequences has the potential to reduce

search times by up to 75% compared to aligning the original sequences.

6.1.1 Stage 1: Hit detection

As described in Section 3.1.3 on page 55, blastn performs nucleotide hit detection by search-

ing for occurrences of n matching characters between the query and collection sequences, then

extending this initial match in each direction to determine if it forms part of an W -basepair

hit . To identify matches quickly, blastn uses a lookup table to find byte-aligned exact

matches of length n and then examines four bases from the collection sequence on each side

of the match. This involves reading the compressed or packed bytes on each side of the initial

match, unpacking them, and aligning the adjacent nucleotide bases with the respective query

characters. If W−n adjacent bases are found to match then a W -base hit has been identified;
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the coordinates of the hit are then passed onto the second stage and an ungapped extension

is performed.

We have optimised the hit detection process by developing a faster method for extending

the initial hit of length n in each direction to check for a W -basepair hit. Rather than

decompress bytes from the collection sequence that are adjacent to the initial match, our

approach uses a pair of fast lookup tables and a special representation of the query to extend

the hit without decompressing the collection sequence and in fewer operations.

Given a query sequence q = q1...q|q|, let us define a special byte packed representation

of q, where each overlapping quadruplet from the query is packed into a byte, that is Q =

{q[1:4], q[2:5], ..., s[|q|−3:|q|]}. This representation can be used to extract a portion of the query

starting at any offset in compressed form by selecting every fourth byte. For example, consider

the query sequence ACTTGACAGTAGGACC. The special overlapping byte packed representation

of this sequence is Q = {ACTT, CTTG, TTGA, TGAC, ..., GACC}. To extract a substring

from the query of length 12 starting from the second character in compressed form, we extract

the second, sixth, and tenth bytes from Q; this provides the string CTTGACAGTAGG in a byte

packed representation.

We can use the special byte packed representation of the query to perform fast compar-

isons between four adjacent characters from the query sequence and four characters from a

collection sequence. Given a collection sequence s = s1...s|s|, let us define →M (q[i:i+3], s[j:j+3])

as the number of matching characters between the two bytes q[i:i+3] and s[j:j+3] going from

the first character to the last before the first mismatch. Similarly, we define ←M (q[i:i+3], s[j:j+3])

as the number of matching characters between the bytes going from last character to the first

before the first mismatch. For example, →M (ACTT, ACAT ) = 2 and ←M (ACTT, ACAT ) = 1.

Both functions can be computed quickly by performing a binary XOR operation between the

pair of bytes; this provides a single value between 0 and 255 that specifies which character

positions within the bytes differ. The result can then be used to fetch pre-computed values

for →M and ←M in a specially designed lookup table.

Given an initial hit of length n between bases qi . . . qi+n−1 from the query and bases

sj . . . sj+n−1 from the collection sequence we use the new query representation Q and lookup

tables for →M and ←M to extend the hit. The new length of the hit N is calculated using the

equation:

N = n +←M (q[i−4:i−1], s[j−4:j−1]) +→M (q[i+n:i+n+3], s[j+n:j+n+3])
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If N ≥ W then the location of the hit is passed on to the second stage where an ungapped

extension is performed.

We have also optimised the codeword lookup table used to identify the initial n-character

match. The ncbi-blast lookup table contains four 32-bit integer fields for each entry; one to

store the number of hits, and the remaining to store up to three query positions in the table

entry itself. If a word produces more than three hits then a list of query positions is stored

outside of the table, and the table entry instead contains a pointer to the external list. As a

result, if a word produces three hits or less then the list of query positions can be accessed

without the cache penalty associated with jumping to an external address. This is the same

table design used by blast for protein searches and is described in detail in Section 5.1.2.

The table design is reasonably efficient for the first stage of protein searches, where blast

considers inexact but high-scoring matches as well as exact matches between words as hits.

For protein data, our experiments in Section 3.1.3 revealed that blast identifies on average

229 hits per collection sequence and many words produce at least one hit. This contrasts with

nucleotide searches where, as discussed in Section 3.1.3, blast identifies on average 3.5 hits

per collection sequences and the lookup table is considerably more sparse. We conducted a

simple experiment to illustrate this by constructing a blast word lookup table using default

parameters for 100 nucleotide queries chosen randomly from the GenBank NR database. We

found that on average 97.1% of words generated zero hits, 2.6% generated a single hit, and

less than 0.3% generated more than one hit.

To address the differing characteristics of nucleotide searches, we have designed a new

lookup table that is optimised for nucleotide search. The table records a single integer for each

entry; a positive value provides the query position of a single hit, a negative value provides

the location of an external, zero-terminated list of query positions, and a zero value indicates

that there are no hits for that word. We use 16-bit integers when sufficient, that is, when the

query is less than 32,768 bases in length, otherwise 32-bit integers are used. We have also

found that the auxiliary lookup table described in Section 5.1.2 does not improve nucleotide

search times and we do not employ the auxiliary table in our own implementation. We also

considered employing our deterministic finite automaton scheme described in Chapter 5 to

nucleotide data, however a preliminary experimental investigation revealed that the approach

is unsuitable for processing compressed nucleotide sequences.
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6.1.2 Stage 2: Ungapped alignment

As described in Section 3.1.3, ncbi-blast performs an ungapped extension in each direction

from the initial hit until the score decreases by more than the dropoff parameter. During

the extension process, blast keeps track of the best alignment score observed so far. To

perform ungapped extensions on compressed nucleotide sequences, each byte from the col-

lection sequence is unpacked as required, and the sequence is aligned one basepair at a time.

Figure 6.1 provides a pseudo-code description of the ungapped extension algorithm used by

ncbi-blast for aligning uncompressed collection sequences. The algorithm presented here

is similar to the protein alignment routine presented in Figure 3.5 on page 62; the most

significant difference is that sentinal codes are employed during protein sequence alignment

to automatically terminate the extension process at either end of the sequences. Starting

at the location of the hit that triggered the extension [i, j], pairs of bases from the query

and collection sequences are progressively aligned. The variable bestscore records the best

alignment score so far, and the alignment process terminates at the end of either sequence or

if the alignment score decreases by more than dropoff. Note that the psuedo-code given here

performs the forward extension of an alignment only; some minor variations are required to

perform the backwards extension of a hit.

We have developed a new ungapped alignment algorithm for blastn that permits align-

ment of compressed collection sequences. Using our approach, ungapped alignment is per-

formed four bases at a time. The pseudo-code description of our new algorithm is shown in

Figure 6.2. In addition to the →M and ←M lookup tables described previously, the algorithm uses

a third table to compute =
M (q[i:i+3], s[j:j+3]), which we define as the total score for matching

bases between a pair of bytes. For example, =
M (ACTT, ACAT ) = 2 if a match score of

1 and mismatch score of −1 is used. The function =
M is also calculated by performing a

binary XOR between a pair of bytes and consulting a specially designed lookup table with

256 entries for pre-computed values of =
M .

The new algorithm aligns collection sequences one byte at a time using the =
M lookup

table. The algorithm also considers the alignment of individual bases at the start and end

of the alignment. The partial alignment of the next byte is considered during the extension

process when this may increase the optimal alignment score, that is, when score > bestscore−

(3×matchscore). This partial alignment is considered by consulting the →M lookup table, and

the variable finescore records the score resulting from the partial alignment of the next byte.

Again, some minor variations are required to perform the backwards extension including the
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/* Input: q, s, i, j, dropoff */

UngappedExtension

int score = 0

int bestscore = 0

int ibest = 0, jbest = 0

while i ≤ |q| and j ≤ |s|

if qi = sj then

score ←− score + matchscore

else

score ←− score − mismatchscore

if score > bestscore then

bestscore ←− score

ibest ←− i

jbest ←− j

else if bestscore − score > dropoff then

stop

increment i

increment j

/* Output: ibest, jbest, bestscore */

Figure 6.1: Original ungapped extension algorithm used by ncbi-blast for aligning nu-

cleotide sequences.
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/* Input: q, s, i, j, dropoff */

BytePackedUngappedExtension

int score = 0

int bestscore = 0

int ibest = 0, jbest = 0

while i ≤ |q| and j ≤ |s|

if score > bestscore − (3 × matchscore) then

finescore ←− score + →
M (q[i:i+3], s[j:j+3])

if finescore > bestscore then

bestscore ←− finescore

ibest ←− i

jbest ←− j

else if bestscore − score > dropoff then

stop

score ←− score + =
M (q[i:i+3], s[j:j+3])

increment i by 4

increment j by 4

/* Output: ibest, jbest, bestscore */

Figure 6.2: Improved ungapped extension algorithm for aligning compressed collection se-

quences four bases at a time.
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use of the ←M instead of the →M lookup function.

Our approach is similar to the ungapped alignment method used by sensei [States and

Agarwal, 1996], which also aligns sequences one byte at a time with the aid of a lookup table.

However, their approach only considers alignments that start and end on the byte boundary

and so may result in suboptimal alignments. Unreported experiments found that the sensei

approach leads to a loss in search performance or accuracy when used to perform the second

stage of blast.

We have employed another minor optimisation to the ungapped extension process that

reduces the number of bytes processed. The region covered by the initial match detected in

Stage 1 is already known to contain n
4 matching bytes and we avoid realigning this region

when performing an ungapped alignment.

6.1.3 Stage 3: Gapped alignment

Computing optimal gapped alignments between a query sequence and compressed collection

sequences is significantly more complicated than computing ungapped alignments; there are

several ways to align a packed byte from the collection with the query sequence when gaps

are also considered. For example, optimal gapped alignments may include insertions or

deletions in the middle of the packed byte. To illustrate this, consider the example gapped

alignment between query sequence ATGCAGTT and collection sequence ATGGTT at the top-left

of Figure 6.3. The first four characters of the collection sequence, ATGG, are represented by

a single packed byte and the optimal alignment involves two insertions in the middle of the

byte. A scheme that aligns sequences one byte at a time without considering insertions in

the middle of a byte does not produce this optimal alignment. We discuss Figure 6.3 in more

detail later in this section.

In this section, we propose two new approaches to gapped alignment that address this

problem, bytepacked alignment and table-driven alignment. Bytepacked alignment restricts

the location of gaps in an alignment so that they only occur on the collection sequence byte

boundary. As a result, collection sequences can be aligned a byte at a time, however the

approach generates suboptimal alignments. Table-driven alignment considers all possible

alignments between a single base from the query sequence and a packed byte from the col-

lection sequence through the use of a specially designed lookup table. Although table-driven

alignment is lossless, our approach is only suitable for aligning sequences using non-affine

gap costs. As we show later, both techniques provide a good approximation of the gapped
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alignment score and work well when employed as a filtering step between the ungapped and

gapped alignment stages of blast.

The advantages of our new approaches are two-fold. First, both techniques process the

collection sequence one byte at a time, rather than one base at a time, providing a significant

reduction in processing when compared to gapped alignment. Second, collection sequences

do not need to be decompressed to perform bytepacked or table-driven alignment. Because

both techniques provide an additional filtering step between ungapped alignment and gapped

alignment, fewer collection sequences need to be decompressed before being realigned using

gapped alignment. We consider each in turn.

Bytepacked alignment

In this section we propose our novel bytepacked alignment scheme. With restrictions, it

enables bytepacked alignment to be performed on compressed collection sequences. Specif-

ically, gaps can only start and end on the collection sequence byte boundary, that is where

j ≡ 0, modulo 4, and as a result bytepacked alignment provides an approximation of the

optimal gapped alignment score.

Bytepacked alignment is performed in a similar manner to gapped alignment. The key

difference is that bytepacked alignment uses one row in the dynamic programming matrix

for each packed byte in the collection sequence, rather than one row for each individual base.

By restricting the start and end of gaps to lie on the byte boundary, it is possible to consider

four bases at a time during alignment, as illustrated in Figure 6.4. The y-axis of the figure

represents the sequence in its compressed form and the query is represented as a series of

overlapping quadruplets along the x-axis; this is the same representation of the query, Q,

described previously. Three events are considered for each cell in the matrix; a match of

four bases — or a single byte — from the query sequence and collection sequence, a single

insertion in the collection sequence, or a series of four insertions in the query sequence.

Figure 6.3 illustrates bytepacked alignments for two example sequence pairs, with the

optimal gapped alignments and corresponding bytepacked alignments shown at the top and

bottom of the figure respectively. The example on the left-hand side illustrates the case where

the alignment contains insertions in the collection sequence. In Figure 6.3 (a) the optimal

gapped alignment contains two insertions in the collection sequence that move the alignment

from one diagonal to another. Bytepacked alignment still permits the insertions, however

they must occur on the sequence byte boundary as illustrated in Figure 6.3 (b). The example
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Figure 6.3: Effect of the bytepacked alignment constraints on an pair of example align-

ments. a) illustrates a gapped alignment containing insertions in the collection sequence

and b) shows the equivalent bytepacked alignment with the insertions shifted to the collec-

tion sequence byte boundary c) illustrates a gapped alignment containing insertions in the

query and d) shows the equivalent bytepacked alignment that uses adjacent gaps to change

diagonal.
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Figure 6.4: Portion of the dynamic programming matrix used to perform bytepacked align-

ment. A diagonal arrow represents a match between four bases, or a single byte, from the

query and collection sequences, a horizontal arrow represents a single insertion in the collec-

tion sequence, and a vertical arrow represents four insertions in the query.

on the right-hand side illustrates the case where the optimal alignment contains insertions

in the query sequence. In Figure 6.3 (c) the optimal alignment contains two insertions in

the query. However, gaps can only start and end on the collection sequence byte boundary

in a bytepacked alignment and, as a result, only insertions in the query of length i where

i ≡ 0, modulo 4 are permitted. Therefore, the bytepacked alignment must contain a pair

of adjacent gaps — one in the query of length four followed immediately by another in

the collection sequence of length two — to move the alignment to the new diagonal in

Figure 6.3 (d).

To minimise the scoring penalty associated with adjacent gaps in bytepacked alignments

we have employed the two state variation of the Gotoh gapped alignment algorithm [Durbin,

1998] that was described in Section 2.2.5 on page 33. The two state variation produces iden-

tical alignment scores to the original approach except for alignments that contain adjacent

gaps. In the two state variation a single open gap penalty is incurred for the pair of adjacent

gaps, whereas two open gap penalties are applied in the original approach. By reducing the

scoring penalty for adjacent gaps, bytepacked alignment provides a better approximation of

gapped alignment scores.
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The alignment algorithm described in Section 2.2.5 that supports affine gap costs and is

employed by blast records three values for each cell in the dynamic programming matrix;

B(i, j) is the highest score for any alignment ending at [i, j], Iq(i, j) is the highest score

for any alignment ending at [i, j] with an insertion in the query, and Is(i, j) is the highest

score for an alignment ending at [i, j] with an insertion in the collection sequence. The

two state variation combines Iq(i, j) and Is(i, j) into a single maximum value, I(i, j), that

represents the best score for an alignment ending at [i, j] with an insertion in either direction.

The following recurrence relations are used to perform bytepacked alignment between a

compressed collection sequence s and the query sequence q that is represented using the

special overlapping quadruplet representation Q:

M(i, j) = B(i− 4, j − 4) + =
M (q[i−3:i], s[j−3:j])

I(i, j) = max



























M(i− 1, j)− d

I(i− 1, j)− e

M(i, j − 4)− d− 3e

I(i, j − 4)− 4e

B(i, j) = max

{

I(i, j)

M(i, j)

where the temporary scalar M(i, j) represents the best score for any alignment ending at

[i, j] with four matching bases. In addition to the recurrence relations, initialisation rules are

used to handle boundary conditions in the matrix; all cells where j = 0 or −3 ≥ i ≥ 0 are

initialized to −∞, except for the starting point [0, 0] which is initialised to zero.

Bytepacked alignment places restrictions on the location of gaps in the alignment. How-

ever, we expect the restrictions to have a minor effect on alignment scores for similar reasons

to those presented in Section 4.1.2 in relation to semi-gapped alignment:

1. Bytepacked alignment still permits gaps, but forces them to occur in a suboptimal

location or with a different arrangement. In cases where the optimal alignment contains

a gap in the collection sequence, bytepacked alignment shifts the start and end location

by no more than 2 bases to ensure the gap occurs on the collection sequence byte

boundary. Unless the optimal gap is adjacent to high-scoring bases, the shift will not

significantly change the alignment score. In cases where the optimal alignment contains

a gap of length G in the query sequence, the corresponding bytepacked alignment will
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contain a gap of length dG
4 e × 4 in the query and a gap of length 4 − G modulo 4 in

the collection sequence. Assuming gap lengths are uniformly distributed, this results

in an average additional gap penalty of 3e when the two state algorithm is used. If the

recurrence relations described in Section 2.2.5 were used instead, the average increase

in gap penalty would be d+2e. This illustrates the advantage of the two state variation,

since d is usually much larger than e.

2. The scoring penalty associated with a gap typically outweighs any additional penalty

incurred by opening the gap at a suboptimal location or increasing the length of the

gap. Further, the additional penalty can be compensated for by decreasing the open

gap penalty, as shown in our previous work with protein alignments in Chapter 4. We

report experiments with varying the open gap penalty used for bytepacked alignment

in Section 6.2.

In terms of computational cost, bytepacked alignment represents a significant saving when

compared to gapped alignment. The number of cells in the dynamic programming matrix is

reduced approximately by a factor of four and the amount of computation per cell is almost

unchanged. Some additional computation is required to match a pair of bytes, instead of a

pair of characters, when calculating =
M (q[i−3:i], s[j−3:j]) for each cell. However, =

M can be

calculated quickly by performing a binary XOR and using a specially designed lookup table

to calculate the score. Further, our results in Section 6.2 show that bytepacked alignment

offers a substantial speed gain.

Similar to our semi-gapped alignment technique that is described in Section 4.1.2, we have

found that bytepacked alignment is best employed as an additional filtering step between the

ungapped and gapped alignment stages of blastn. Therefore, we need a method for deciding

which bytepacked alignments should be passed on to the gapped alignment stage. Once again,

we have chosen to perform gapped alignment on collection sequences with a bytepacked

alignment score above R×S2, where S2 is the nominal score required to achieve the E-value

cutoff and 0 < R ≤ 1. Figure 6.5 illustrates the new process for scoring sequences using

bytepacked alignment. In the example, an ungapped extension is performed first, followed

by a bytepacked alignment where gaps can start and end only on the byte boundary. The

bytepacked alignment scores above R × S2 and the collection sequence is unpacked and

realigned using gapped alignment. The choice of R affects the speed and sensitivity of

blast, and we report experiments with varying values of R in Section 6.2.
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Figure 6.5: Process for scoring sequences using bytepacked alignment. First, an ungapped

extension is performed and the resulting alignment scores above the S1 cutoff (a). Next, a

bytepacked alignment is performed where gaps can start and end only on byte boundaries,

illustrated by grey horizontal lines (b). The resulting alignment scores above R × S2 and is

passed onto the last stage, where an unrestricted gapped alignment is performed (c).
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Table-driven alignment

In this section, we propose our novel table-driven alignment, which is an alternative to the

bytepacked alignment approach. The approach is based on the Four Russians concept [Wu

et al., 1996] that involves dividing a problem into subsections and solving each subsection

using precomputed answers found in a lookup table. In the context of sequence alignment,

the dynamic programming matrix is divided into blocks of adjacent cells that are processed

simultaneously. The values of proceeding cells are used as input into the table and alignment

scores for each cell in the current block are provided as output.

The Four Russians concept has previously been applied to general string matching prob-

lems [Wu et al., 1996], regular expression pattern matching [Myers, 1992], protein sequence

alignment [Myers and Durbin, 2003], and the alignment of nucleotide sequences compressed

using the Lempel-Ziv compression scheme [Crochemore et al., 2002]. The latter application is

closely related to our approach, however it is unclear if Lempel-Ziv compression is suitable for

use with the first two stages of blast. Instead, we have applied the Four Russians approach

to the alignment of byte packed nucleotide sequences permitting four rows of the alignment

matrix to be processed at a time. This is achieved by dividing the alignment matrix into

subsections of size 1 × 4 that correspond to the alignment of one base from the query and

one packed byte from the collection sequence. Similar to the other techniques discussed in

this chapter, this provides two major advantages over gapped alignment; first, the collection

sequence does not need to be decompressed for the alignment to be performed, and second,

a significant reduction in computation is achieved by using a lookup table to process four

characters from the collection sequence at a time.

Figure 6.6 illustrates the table-driven alignment approach to processing four cells in the

matrix at a time with consideration of all possible alignments, including gaps, between a

single query base qa+1 and a packed byte s[b+1:b+4] from the collection sequence. A byte

packed collection sequence and uncompressed query sequence are used as input. On the

left-hand side of Figure 6.6, the alignment matrix is divided into blocks of adjacent cells.

Values for the preceeding grey cells have already been computed, and values for the four

empty cells shown on the right-hand side of the figure are calculated by consulting a lookup

table. The input into the table consists of values for the six neighbouring grey cells and a

match vector that specifies which bases in the packed byte s[b+1:b+4] match the query base

qa+1. The arrows in the right-hand side of the figure represent the match, mismatch and

insertion events that are considered for each block.
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Figure 6.6: Illustration of table-driven alignment. The alignment matrix is divided into

blocks of four adjacent cells, and alignment scores for each block are calculated using a lookup

table. Previously computed values in the six neighbouring grey cells and a match vector that

specifies whether the query base qa+1 matches each base in the collection sequence byte

s[b+1:b+4] are used as input into the table, which provides values for the four white cells.

A significant problem in implementing the Four Russians approach is keeping the lookup

table small; a large table will not fit into CPU cache, leading to poor performance due to

an increase in latency associated with accessing main memory. Gotoh’s alignment algorithm

[1982] that is described in Section 2.2.5 records three values, B(i, j), Ix(i, j) and Iy(i, j), for

each cell. The values for six cells are used as input into the table, as illustrated in Figure 6.6,

resulting in a total of 18 distinct inputs and a prohibitively large table. Therefore, we have

made two optimisations to reduce the size of the table.

Our first optimisation is to use the simplified recurrence relations presented in Sec-

tion 2.2.3 that do not allow for affine gap costs when performing the alignment:

B(i, j) = max















B(i, j) + s(qi, sj)

B(i− 1, j)− e

B(i, j − 1)− e

where e is the cost of each insertion, and no penalty is applied for the opening of a gap. As
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a result, only one value is recorded for each cell in the matrix; B(i, j) represents the highest

score for any alignment ending at [i, j]. This reduces the number of scores used as input into

the lookup table from 18 to 6. Our results in Section 6.2 show this approach still provides a

good approximation of affine gap cost alignment scores, and works well in practice.

Our second optimisation is to use the difference between neighbouring values rather than

absolute values as input into the table, an approach best described by Jones and Pevzner

[2004]. Encoding differences rather than absolute values reduces the size of the lookup

table, because the differences are limited to a smaller range. Let us define the difference in

score ∆B(iC , jC , iD, jD) = B(iD, jD)−B(iC , jC) where [iC , jC ] and [iD, jD] are immediately

neighbouring cells such that iD = iC , jD = jC + 1 or jD = jC , iD = iC + 1. When the above

recurrence relations are used, the value of ∆B is limited such that −e ≤ ∆B(iC , jC , iD, jD) ≤

e + r where r is the alignment score for two matching bases, r > 0. When the default blast

values of m = 1 and e = 2 are used, the difference between any cell and its immediately

proceeding neighbour is no less than −2 and no more than 3, a range of 6 possible values.

To illustrate how our second optimisation is applied to table-driven alignment, let us

return to the illustration in Figure 6.6. The cell [a, b] acts as a reference, with other inputs

and outputs encoded relative to its value. The remaining values in the qa column are encoded

as ∆B(a, j − 1, a, j) where b + 1 ≥ j ≥ b + 4. Similarly, the value for cell [a + 1, b] is encoded

as ∆B(a, b, a + 1, b). This provides a total of 5 inputs into the table, each with 2e + r + 1

possible values. The only remaining input necessary for calculating scores for the empty cells

is the match vector, the 4-bit value specifying if the query base qa matches or mismatches

each of the bases sb+1 . . . sb+4. Using this optimised design, the lookup table contains a total

of (2e + r + 1)5 × 24 or 124,416 entries when default blastn parameters are used.

We have carefully implemented the Four Russians approach to minimise the amount

of computation per block. The match vector is generated efficiently by performing a bi-

nary XOR between the packed byte s[b+1:b+4] from the collection sequence and a special

byte packed representation of qa+1 that contains the single query base repeated four times,

q[a+1,a+1,a+1,a+1]. The result of the binary XOR operation is then used to fetch the match

vector from a small, specially designed lookup table. We have also used the carry in, carry

out method when implementing our Four Russians approach [Wu et al., 1996]. A row carry

in codeword specifies the four values ∆B(a, j − 1, a, j) | b + 1 ≥ j ≥ b + 4 and is used as

input into the lookup table. The output of the table, which we refer to as row carry out,

includes a codeword formatted in the same manner as row carry in and specifies the four

values ∆B(a + 1, j− 1, a + 1, j) | b + 1 ≥ j ≥ b + 4. The row carry out codeword can then be
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used as a row carry in when processing the next column in the dynamic programming matrix

without the need to decode it; this provides a significant computational saving. Similarly,

the value ∆B(a, b, a + 1, b) is the column carry in used as input into the table, and the table

outputs a column carry out specifying the value of ∆B(a, b + 4, a + 1, b + 4). The column

carry out can then be used as the column carry in when processing the next four rows in the

current column.

Unlike our bytepacked alignment scheme, table-driven alignment considers all possible

paths through the alignment matrix without any restriction on the locations of gaps. Al-

though the table-driven approach does not support affine gaps costs, we set the table-driven

alignment insertion penalty et to equal the gapped alignment extension penalty et = eg. As-

suming the dropoff regions explored by gapped alignment and table-driven alignment are the

same, the latter produces alignment scores equal to or greater than those produced by the

former. Any table-driven alignment that scores above the nominal score required to achieve

cutoff S2 is rescored using gapped alignment, guaranteeing no loss in accuracy when table-

driven alignment is used. The main drawback with table-driven alignment is its reliance

on fast access to main-memory to consult the lookup table when calculating values for each

subsection of the alignment matrix. This relies upon the lookup table fitting into CPU cache

for reasonable performance.

6.1.4 Summary

In this section, we have proposed novel approaches for comparing nucleotide sequences. Our

schemes permit collection sequences to be processed in their compressed byte packed form

and compare four bases at a time with the aid of numeric comparisons and specially de-

signed lookup tables. We have described novel approaches to the first two stages of blastn

that produce identical results to the conventional approach employed by ncbi-blast where

collection sequences are decompressed before each stage of the search. Our most significant

contribution are two new, alternative approaches to gapped alignment. The first permits

insertions and deletions to start and end on the byte boundry only, allowing matches be-

tween four bases at a time. The second employs the Four Russians technique of Wu et al.

[1996] to align four consecutive bases, with consideration for gaps, using a lookup table of

precomputed answers.

In the next section, we present an experimental evaluation of our novel approaches by

integrating them into our own implementation of blast.
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6.2 Results

In this section we compare ncbi-blast to fsa-blast, our own version of blast that incor-

porates the improvements to nucleotide search described in this chapter. First, we describe

the collections and performance and accuracy measures used for our experiments. We then

present overall results for our approaches, including bytepacked and table-driven alignment.

Finally, we present results for varying parameter choices for our schemes.

6.2.1 Test collection, environment and measurements

Annotated protein sequence collections such as the SCOP [Murzin et al., 1995; Andreeva

et al., 2004] and PIR [Wu et al., 2003] databases provide sequence classifications that are ideal

for evaluating the retrieval effectiveness of protein homology search tools using assessment

techniques such as those discussed in Section 3.3.3. Unfortunately, no similarly annotated

collections exist for measuring the accuracy of nucleotide search tools and their ability to

identify related sequences. Therefore, we have employed the approach described by Li et al.

[2004] for measuring retrieval effectiveness by comparing search results to the complete set

of alignments identified by the exhaustive Smith-Waterman algorithm [1981].

A reduced version of the GenBank non-redundant (NR) nucleotide database1 is the largest

collection available for search through the NCBI online blast interface, and the default

collection for search. For our evaluation, we used a copy of the NR database downloaded on

4 April 2005. To minimise the time spent generating Smith-Waterman alignments for our

experiments, we used only half of the NR database by randomly extracting sequences from

the collection and creating our own test collection, which we refer to as NR/2. The NR/2

collection contains 6,862,797,036 basepairs in 1,511,546 sequences, ranging in length from 6

to 36,192,742 basepairs. We use the NR/2 database to measure both search runtime and

accuracy in our experiments.

A set of 50 test queries were randomly extracted from the NR database. Queries longer

than 10,000 basepairs — typically entire genomes or chromosomes — were excluded from

the selection process; blast searches with longer queries are too slow to be practical and

less sensitive genome search tools such as blat and megablast are better suited to such

searches. Queries were pre-filtered using our own implementation of the dust filter, identical

in output to the version of the filter used by ncbi-blast. Each query was searched against the

1This does not include EST, STS, and GSS sequences, environmental samples, or phase 0, 1, or 2 HTGS

sequences.
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entire NR/2 database using our own implementation of the Smith-Waterman algorithm that

is distributed with fsa-blast. We use our implementation of Smith-Waterman instead of the

ssearch tool distributed with fasta to ensure identical scoring and statistical calculations

between our baseline and blast [Karlin and Altschul, 1990; Altschul and Gish, 1996].

To evaluate the accuracy of blastn, we used each of our 50 test queries to search the NR/2

collection using default parameters, including v = 250 where a maximum of v alignments

are displayed to the user. We compared the alignments returned by blast to the best

L alignments returned by Smith-Waterman, ranked by nominal score. We used L = v

by default, except for queries where the set of v best alignments was ambiguous because

alignments had identical scores. For these queries we set L to the smallest value such that

L ≥ v and aL > aL+1 where ai is the score of the ith alignment.

For each query we measured search accuracy with the commonly-used Receiver Operating

Characteristic (ROC) [Gribskov and Robinson, 1996], using the best L Smith-Waterman

alignments as the set of true positives. The ROC score is calculated as:

ROC =
1

nL

∑

1≤F≤n

uF

where F is the ranked position of the F th false positive in the list of alignments returned by

blast, uF is the number of true positives that are ranked ahead of the F th false positive,

and n is the number of false positive alignments returned by blast. We only consider an

alignment to be positive if the score returned by blast is at least half the optimal Smith-

Waterman alignment score, an approach also used by Li et al. [2004]. The final reported

ROC score is calculated by taking the average across all queries where L > 1. This provides

a good measure of the sensitivity of blast and the level of accuracy for identifying the best

v alignments.

For our timing experiments, we compared each of the 50 test queries to the NR/2 database

and recorded the best elapsed time of three runs. We report the average search time for

50 queries throughout this section. Experiments were carried out on a Pentium 4 2.8GHz

workstation with 2 Gb of main-memory under light load. We used version 2.2.10 of ncbi-

blast as our baseline and all code was compiled with default ncbi-blast compiler flags and

optimisations. All experiments were conducted using default blast parameters including a

gapped alignment trigger score of 25.0 bits, an ungapped extension dropoff of 20.0 bits, a

gapped extension dropoff of 30.0 bits, and an E-value cutoff of 10.0. Stage 3 search times

include table-driven and bytepacked alignment times when these approaches were used.
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NCBI-BLAST FSA-BLAST

Bytepacked alignment Table-driven alignment

Stage 1 (secs) 21.85 11.22 11.22

Stage 2 (secs) 1.23 0.70 0.70

Stage 3 (secs) 2.25 0.37 0.46

Stage 4 (secs) 0.34 0.19 0.26

Total (secs) 25.67 12.48 12.64

ROC 0.973 0.974 0.973

Table 6.1: Average runtime in seconds for each stage of BLAST and ROC search accuracy

when searching the NR/2 database. All alignment techniques use default parameters.

6.2.2 Overall results

An overall comparison between ncbi-blast and our own implementation of blast based

on the improvements described in this chapter is presented in Table 6.1. Our results show

that fsa-blast is more than twice as fast as ncbi-blast for nucleotide searches regardless

of whether table-driven alignment or bytepacked alignment is employed. Our new method

for extending hits without decompressing collection sequences and our new lookup table

design reduce average search times by 10.63 seconds, equivalent to a 49% reduction in Stage

1 search time. Our new algorithm for performing ungapped alignment using compressed

collection sequences results in a further saving of 0.53 seconds per query, with Stage 2 times

reduced by 43%. Our bytepacked alignment scheme results in a 78% reduction in time for

the gapped alignment stages of blast, and our table-driven alignment scheme results in

an 72% reduction in time for the final two stages. Although both schemes align collection

sequences one byte at a time, bytepacked alignment provides slightly better performance than

table-driven alignment; this is likely due to the latency incurred by table-driven alignment

when accessing the in-memory lookup table. Importantly, there is no significant change in

accuracy between ncbi-blast and fsa-blast when either scheme is employed. (A wilcoxon

sign-ranked test on pairs of ROC scores for each query produced a p-value of p ≤ 1.0.)

Further experiments reveal that table-driven and bytepacked alignment are indeed accu-

rate approximations of gapped alignment and effective for detecting potentially high-scoring

alignments. When bytepacked alignment is employed on average only 1,039 out of 107,076

bytepacked alignments score above R×S2 and are realigned using gapped alignment. Roughly
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Figure 6.7: Average runtime and ROC search accuracy for searches against NR/2 database

using bytepacked alignment and varying values of R.

99% of high-scoring ungapped alignments are discarded by the bytepacked approach. Since

bytepacked alignment does not lead to a loss in search accuracy (Table 6.1), this indicates

that it provides a good approximation of optimal alignment scores. When table-driven align-

ment is employed on average only 322 out of the 107,076 table-driven alignments score above

S2, with less than 0.5% of table-driven alignments rescored using the gapped alignment app-

roach. The result indicates that alignment using non-affine gap penalties can provide a good

approximation of the optimal alignment score with affine gap costs.

Experiments were conducted using default bytepacked alignment parameters ob = 0 and

R = 0.85, where ob is the open gap penalty used for bytepacked alignment and R controls

the rescoring of collection sequences using gapped alignment as discussed in Section 6.1.3.

We present the results of our experiments with varying values of R and ob next.

6.2.3 Varying R

The bytepacked alignment scheme is parameterised by the constant R that provides a trade-

off between alignment speed and accuracy. As discussed in Section 6.1.3, only collection

sequences with a bytepacked alignment score above R × S2, where S2 is the nominal score

required to achieve cutoff and 0 < R ≤ 1, are realigned using gapped alignment. Figure 6.7

shows the effect of varying R on the runtime and accuracy of fsa-blast when bytepacked

alignment is employed. As R decreases, more collection sequences are rescored using gapped
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Open gap penalty (ob) 0 1 2 3 4 5

R 0.85 0.80 0.75 0.75 0.55 0.55

ROC 0.974 0.974 0.973 0.973 0.973 0.973

Time (seconds) 0.28 0.30 0.32 0.32 0.33 0.34

Table 6.2: Average query evaluation time (stages 3 and 4 only) for varying bytepacked align-

ment open gap penalties. For each penalty, and value of R that produces an equivalent ROC

score was chosen.

alignment resulting in improved accuracy and longer search times. A larger value of R results

in fewer gapped alignments and reduced search times at the expense of search accuracy, with

blast more likely to miss high-scoring alignments. The highlighted value R = 0.85 provides

a good compromise between search speed and accuracy, and we have chosen this value as our

default setting.

6.2.4 Varying the Open Gap Penalty

Bytepacked alignment places restrictions on the location of gaps, resulting in suboptimal

alignments as discussed in Section 6.1.3. Therefore, in most cases where the optimal align-

ment contains insertions or deletions, the bytepacked alignment score and gapped alignment

score differ. To compensate for this, we consider lowering the open gap penalty used for

bytepacked alignment, with the aim of providing a better approximation of the gapped

alignment score. Let us define ob and eb as the open and extend gap penalties used for

bytepacked alignment. Because gap length has little effect on the constraints imposed by

bytepacked alignment, we let eb = e. Next, we select pairs of values for ob and R with similar

accuracy and measure the average search time. The results for this experiment are shown in

Table 6.2. The results indicate that a lower open gap penalty provides faster average search

times with comparable accuracy, and that the minimum penalty ob = 0 provides best results;

we use this value as our default. Note that an open gap penalty of zero implies a non-affine

gap cost, with the added advantage of simplifying the alignment algorithm and reducing the

computation per cell in the alignment matrix. We have exploited this in our implementation

of bytepacked alignment.
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6.2.5 Summary

In this section, we evaluated our novel schemes for comparing byte packed nucleotide se-

quences in blast. When intergrated into fsa-blast, we found that our improvements to

the first and second stages reduce average query evaluation times by 43%. Further, our

bytepacked alignment and table-drive alignment methods, when employed as additional fil-

tering steps between the ungapped and gapped alignment stages, reduced the time required

to align sequences by 78% and 72% respectively. We also experimented with varying the

R parameter that controls the minimum bytepacked alignment score required to trigger a

gapped alignment, and found that a lower bytepacked alignment open gap penalty provides

faster runtimes with comparable search accuracy.

6.3 Conclusion

With such a large number of nucleotide searches being performed each day, it is important

that blastn is both efficient and accurate, especially given the rapid grown of sequence

databanks such as GenBank. In this chapter, we have described several improvements to

blastn that permit faster nucleotide searches. Our schemes rely on comparing nucleotide

sequences using a simple byte packed representation, leading to reduced search times in two

ways: first, collection sequences can be processed using their on-disk representation without

the need to decompress them, and second, sequences can be aligned much faster by comparing

four nucleotide bases at a time.

We have presented optimisations to the first two stages of blast that result in a 43%

reduction in average search time. We have also described two new approaches to gapped

alignment that allow the alignment of compressed collection sequences. Our first alignment

algorithm, bytepacked alignment, places restrictions on the location of gaps permitting four

bases to be aligned at a time. Although the scheme is a heuristic, our results indicate that

when carefully applied to blast, bytepacked alignment reduces the time taken to perform

gapped alignment by 78% with no significant effect on accuracy. Our second alignment

algorithm, table-driven alignment, uses the Four Russians approach of dividing the alignment

matrix into sections and solving each section using precomputing values from a lookup table.

Table-driven alignment is lossless, and reduces the time taken by blast to perform gapped

alignment by 72%.

When combined, our improvements to blastn more than halve average query evaluation

times for nucleotide searches. Further, the ideas described in this chapter are not only
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applicable to blast. Indeed, several other search tools use byte packed compression to

store collection sequences including PatternHunter [Li et al., 2004], blat [Kent, 2002],

megablast [Zhang et al., 2000], sensei [States and Agarwal, 1996], and ssaha [Ning et al.,

2001]. We expect that many of the schemes presented in this chapter would yield similar

speed improvements when applied to these algorithms.

In the next chapter, we describe new methods for managing internal redundancy that is

prevalant in genomic collections such as GenBank.
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Chapter 7

Managing Redundancy

This chapter contains material that appeared in Cameron et al. [2006b], Bern-

stein and Cameron [2006] and Cameron et al. [2006a] and is based on research

conducted in collaboration with fellow PhD candidate Yaniv Bernstein. Yaniv

Bernstein adapted the deco package to process genomic sequence data and pro-

vided an implementation of the slotted spex approach. I implemented the clus-

tering algorithm and adapted blast to search clusters defined by our method.

We both contributed equally to the invention of the slotted spex algorithm, our

scheme for managing redundancy using union-sequences and wildcards, and to

the experimental evaluations presented in this chapter.

Genomic data banks often contain a large amount of internal redundancy with the pres-

ence of near-duplicate entries [Holm and Sander, 1998; Park et al., 2000b; Li et al., 2001b;

Rapp and Wheeler, 2005]. Highly-similar sequences may appear in collections for several

reasons, including the existence of closely-related homologues or partial sequences, sequences

with expression tags, fusion proteins, post translational modifications, and sequencing errors.

Database redundancy has several pernicious effects on genomic search; a larger database

that contains redundant entries takes longer to query, produces repetitive results for any over-

represented domain that matches the query, skews measures of the statistical significance of

alignments [Park et al., 2000b], and can lead to profile saturation in iterative search tools

such as psi-blast [Park et al., 2000b; Li et al., 2002].

The issue of redundancy in genomic collections is often addressed by creating representative-

sequence databases (RSDBs); culled collections in which no two sequences share more than

a given level of identity. As discussed in Section 3.3.4 on page 100, such databases have been
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shown to significantly improve profile training in iterative search tools such as psi-blast by

reducing over-representation of certain protein domains and consequently minimising profile

saturation.

However, there are two major drawbacks with existing methods for managing redundancy

in large collections. First, methods for identifying near-identical entries are either too slow,

or require too much main-memory to be practical for large collections such as GenBank. The

most successful existing algorithms use a form of all-against-all comparison that has time

complexity quadratic in the number of sequences in the database [Grillo et al., 1996; Holm

and Sander, 1998; Park et al., 2000b; Li et al., 2001a;b]. As discussed in Section 3.3.4, They do

not scale well with collection size; despite efficient methods for discounting highly dissimilar

sequence-pairs most of these algorithms still have a fundamental O(n2) time complexity in the

size of the collection, rendering them increasingly infeasible as genomic databases continue

their exponential growth. Other successful approaches based on suffix structures [Manber

and Myers, 1993; Gusfield, 1997] do not suffer from the quadratic complexity problem [Gracy

and Argos, 1998; Malde et al., 2003], however suffix structures have significant memory

overheads and long construction times, making them unsuitable for large genomic collections

as discussed in Section 3.3.4 on page 100.

In the first part of this chapter, we describe and apply fingerprinting techniques [Manber,

1994; Brin et al., 1995; Heintze, 1996; Broder et al., 1997; Shivakumar and Garcia-Molina,

1999] to isolate candidate pairs of highly similar sequences. Our approach is fast, scales

with time linear to the collection size, and has modest memory requirements. We describe

our method for applying fingerprinting to genomic sequences and find that it is remarkably

accurate for this task. We also apply fingerprinting to the creation of representative-sequence

databases [Holm and Sander, 1998; Park et al., 2000b; Li et al., 2001b]. We are able to

process the GenBank non-redundant database in around 1.5 hours, while the fastest existing

approach, cd-hit [Li et al., 2001b], requires over 9 hours for the same task. Importantly,

there is no detectable change in accuracy.

The second major drawback with existing methods for managing redundancy is that they

are less suitable for regular search algorithms such as blast [Altschul et al., 1990; 1997] and

fasta [Pearson and Lipman, 1988; 1985] and the final iteration of iterative tools such as psi-

blast because, by definition, RSDBs are not comprehensive. This leads to search results

that are both less accurate, because the representative sequence for a cluster may not be

the one that aligns best with a given query, and less authoritative, because the user is only

shown one representative sequence from a family of similar sequences.
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In the second part of this chapter, we describe a sequence clustering methodology that

lacks the drawbacks of previous approaches for creating a representative-sequence database.

Most of the approaches described in Section 3.3.4 identify clusters of near-duplicate sequences,

choose one sequence from each cluster as a representative to the database, and delete the other

sequences. In contrast, we generate a special union-sequence for each cluster that—through

use of wildcard characters—represents all of the sequences in the cluster simultaneously.

Through careful choice of wildcards, we are able to achieve near-optimal alignments while

still substantially reducing the number of sequences against which queries need to be matched.

Further, we store all sequences in a cluster as a set of edits against the union-sequence. This

achieves a form of compression and allows us to retrieve cluster members for more precise

alignment against a query should the union-sequence achieve a good alignment score. Thus,

both space and time are saved without loss in accuracy.

Our method supports two modes of operation: users can choose to see all alignments or

only the best alignment from each cluster. In the former mode, the clustering is transparent

and the result is comparable to searches when the collection has not been clustered. In the

latter mode, the search output is similar to the result of searching a culled representative

database, except that our approach is guaranteed to display the best alignment from each

cluster and is also able to report the number of similar alignments that have been suppressed.

To investigate the effectiveness of our clustering approach we have integrated it with our

freely available open-source software package, fsa-blast. When applied to the GenBank

non-redundant (NR) database, our method reduces the size of sequence data in the NR

database by 27% and improves search times by 22% with no significant effect on overall

search accuracy.

This chapter is organised into two main components as follows. In Section 7.1 we de-

scribe existing fingerprinting techniques and introduce our novel slotted spex algorithm for

efficiently identifying near-duplicate sequences in a large collection. We assess the accuracy of

our fingerprinting method towards high-scoring pairwise alignments and show that our app-

roach is faster than existing methods for creating a representative database. In Section 7.2

we present our new scheme for managing redundancy that uses a union-sequence contain-

ing special wildcard characters to represent a cluster of similar sequences. We describe our

methodology for building clusters and present methods for selecting and scoring wildcards.

Finally, we present experimental results for our new method. In Section 7.3 we conclude this

chapter with some final remarks.
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7.1 Fingerprinting for near-duplicate detection

There are several applications for which it is necessary to perform an all-against-all similarity

comparison; that is, identify arbitrary pairs of highly-similar sequences in a collection. For

example, the assembly of EST (expressed sequence tag) data involves arranging a collection

of overlapping sequences into a longer consensus sequence [Burke et al., 1999; Malde et al.,

2003]. Unlike in previous chapters, for this application there is no apparent query sequence:

rather, we are interested in similarity between any pair of sequences in the collection. An-

other application where an all-against-all comparison is required is the construction of a

representative-sequence database (RSDB), where highly redundant sequences are removed

from a collection resulting in faster, more sensitive search for distant homologies [Park et al.,

2000b; Li et al., 2002] using search algorithms such as psi-blast [Altschul et al., 1997]. The

RSDB can be simply constructed by extracting each sequence from the collection in turn,

and comparing it to an initially empty representative collection. If the sequence is highly

similar to a sequence in the representative collection then it is deleted, otherwise it is added

to the new collection.

Although it is possible to use an algorithm such as blast to detect all pairs of similar

sequences in a collection, such an approach is prohibitively time-consuming. In Section 3.3.4

we discuss several past solutions that use a simple pairwise approach to identify pairs of

similar sequences including Holm and Sander [1998] and Li et al. [2001b]. These schemes use

fast blast-like heuristics to compare each sequence in the collection to the entire collection.

The representative-sequence database tool cd-hit [Li et al., 2001b] is the fastest approach

based on this method. However, despite fast methods for comparing each sequence pair, such

approaches require time that is quadratic in the size of the collection and are increasingly

infeasible as genomic collections continue to grow. We show in Section 7.1.5 that the cd-hit

tool requires over 9 hours to process the current GenBank non-redundant protein database.

We propose a method that takes advantage of the following trend for sequence databases

such as GenBank: of all the sequence-pairs in a collection, only a very small fraction have

any significant level of mutual redundancy. In this section we describe a novel, alternative

approach for identifying highly-similar sequences in a collection called fingerprinting that has

linear time complexity and modest memory requirements.

This section is organised as follows. First, we describe document fingerprinting methods

that are commonly applied to Information Retrieval. Next, we present the spex algorithm

[Bernstein and Zobel, 2004] that provides efficient, lossless fingerprinting of large collections
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Original document Collection of six word chunks

[the quick brown fox jumped over]

the quick brown fox jumped [quick brown fox jumped over the]

over the lazy dog [brown fox jumped over the lazy]

[fox jumped over the lazy dog]

Figure 7.1: Set of chunks that are six words in length for a document containing the text “the

quick brown fox jumped over the lazy dog”

in Section 7.1.2. In Section 7.1.3 we adapt existing fingerprinting methods to genomic data

with our new slotted spex method. In Section 7.1.4 we assess the accuracy of our app-

roach for identifying pairs of sequences with greater than 90% identity; we find that it is

remarkably accurate for this task. In Section 7.1.5 we apply fingerprinting to the creation of

representative-sequence databases or RSDBs [Holm and Sander, 1998; Park et al., 2000b; Li

et al., 2001b]. We are able to construct an RSDB for the GenBank non-redundant database

in around 1.5 hours, while the fastest existing approach, cd-hit [Li et al., 2001b], requires

over 9 hours for the same task. Importantly, we observe no significant effect on accuracy.

7.1.1 Document fingerprinting

Document fingerprinting [Manber, 1994; Brin et al., 1995; Heintze, 1996; Broder et al., 1997;

Shivakumar and Garcia-Molina, 1999] is an effective and scalable technique for identifying

pairs of documents within large text collections that share portions of identical text. Finger-

printing has been used for several applications, including copyright protection [Brin et al.,

1995], document management [Manber, 1994] and web search optimisation [Broder et al.,

1997; Fetterly et al., 2003; Bernstein and Zobel, 2005].

The fundamental unit of document fingerprinting techniques is the chunk, a fixed-length

unit of text such as a series of consecutive words or a sentence. The full set of chunks

for a given document is formed by passing a sliding window of appropriate length over the

document; this is illustrated in Figure 7.1 for a chunk length of six words.

The set of all chunks in a collection can be stored in an inverted index [Witten et al., 1999],

similar to that described in Section 3.2.1, and the index can be used to calculate the number

of shared chunks between pairs of documents in a collection. Two identical documents will

naturally have an identical set of chunks. As the documents begin to diverge, the proportion
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of chunks they share will decrease. However, any pair of documents sharing a run of text

as long as the chunk length will have at least one chunk in common. Thus, the proportion

of common chunks is a good estimator of the quantity of common text shared by a pair of

documents. The quality of this estimate is optimised by choosing a chunk length that is

long enough so that two identical chunks are unlikely to coincidentally occur, but not so long

that it becomes too sensitive to minor changes. In the duplicate detection deco package, for

example, the default chunk length is eight words [Bernstein and Zobel, 2004].

In theory, one could simply store the full set of chunks for each document in a collection,

and directly compute the degree of text reuse between documents as above. However, such

an approach is highly inefficient and slow. Therefore, practical document fingerprinting

techniques apply a number of optimisations to make the process more efficient. First, chunks

are generally hashed before storage in order to make their representation more compact. The

use of hashing is fairly straightforward and has few attendant problems; as long as the hash

is of a sensible size, there will be few collisions and the performance of the algorithm will be

largely unaffected. Second, some sort of selection heuristic is normally applied so that only

some chunks from each document are selected for storage. The choice of selection heuristic

has a very significant impact on the general effectiveness of the fingerprinting algorithm.

Most fingerprinting algorithms have used simple feature-based selection heuristics, such as

selecting chunks only if their hash is divisible by a certain number, or selecting chunks that

begin with certain letter-combinations. (See Bernstein and Zobel [2004] for an overview of

existing chunk selection methods.)

However a major drawback with these chunk selection schemes is that they are lossy; if

two documents share chunks, but none of them happen to satisfy the criteria of the selection

heuristic, the fingerprinting algorithm will not identify these documents as sharing text. For

example, consider the processing of two documents with a chunk length of one word and a

chunk selection heuristic that only selects words starting with a vowel. Given a pair of highly

similar documents with the following text:

Document 1 The yellow cat ran between the tall trees.

Document 2 The brown cat ran between the tall towers.

Not a single chunk would be selected from either of these two documents because all of the

words contained in them start with a consonant. As a result, the similarity between these two

documents would be overlooked. As the degree of desired selectivity increases, this problem

only worsens.
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7.1.2 The spex chunk selection algorithm

Bernstein and Zobel [2004] introduced the spex chunk selection algorithm, which allows for

lossless selection of chunks, based on the observation that singleton chunks (chunks that

only occur once and represent a large majority in most text collections) do not contribute

to identifying text reuse between documents. The spex algorithm takes advantage of the

following observation: if any subchunk (subsequence) of a chunk is unique, the chunk as a

whole is unique. For example, an occurrence of the chunk two brown cats must be unique in

the collection if the subchunk brown cats is also unique. Using a memory-efficient iterative

hashing technique, spex is able to select only those chunks that occur multiple times in the

collection. Using spex can yield significant savings over selecting every chunk without any

degradation in the quality of results [Bernstein and Zobel, 2004; 2005].

The spex algorithms works as follows. In the first iteration, each chunk that is one

word in length in the document is processed. A hashtable records for each chunk whether it

appears multiple times, just once, or not at all. In the second iteration, the entire document

is processed again this time considering chunks that are two words in length by passing a

sliding window over the document. Each two word chunk is only inserted into the hashtable

if both one word subchunks appear multiple times in the collection. For example, the two

word chunk brown cats is only processed if both brown and cats are non-unique. A second

hashtable records whether each two word chunk appears multiple times, just once, or not at

all. The process is then repeated for increasing chunk lengths until the final desired length

is reached.

Figure 7.2 provides a pseudocode sketch of how spex identifies duplicate chunks of length

finalLength within a collection of documents (or genomic sequences) S. The algorithm

iterates over chunk lengths from 1 to finalLength, the final chunk length desired. At each

iteration, spex maintains two hashtables (referred to as lookup in the figure): one recording

the number of occurrences of each chunk for the previous iteration, and one for the current

iteration. As we are only interested in knowing whether a chunk occurs multiple times or

not, each entry in lookup takes one of only three values: zero, one, or more than one (2+).

This allows four hashtable entries to be fit into a single byte, significantly reducing the size of

the table. A chunk is only inserted into lookup if its two subchunks of length chunkLength

- 1 both appear multiple times in the hashtable from the previous iteration.

Figure 7.3 illustrates how the spex algorithm works when applied to the pair of documents

shown at the top of the figure. First, one word chunks are counted as shown in the far left
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column. The words yellow, brown, trees, and towers appear only once in the collection

and the remaining words appear at least twice. In the second iteration, two work chunks

are extracted from the collection and inserted into the hashtable. However, chunks such as

The yellow that contain at least one unique subchunk from the previous iteration are not

processed, nor are they inserted into the hashtable, as indicated by the letters np. As a

result, fewer entries are made into the hashtable and the number of collisions is minimised.

Finally, three word chunks are extracted in the third iteration, and any chunk that contains

a unique subchunk of length two is dismissed. The end result after three iterations is that all

three word chunks that are shared between the two documents (that is, cat ran between,

ran between the, and between the tall) are identified.

Although collisions caused by different chunks hashing to the same value are not resolved,

Bernstein and Zobel [2004] report that this has minimal impact on the performance of the

algorithm. Collisions introduce false positives to the process, that is, cause unique words

to be considered as non-unique. However, the iterative process tends to remove such false

positives and helps prevent the hashtables from reaching too high a load. As a result, the spex

algorithm is able to process quite large collections of text and indicate reasonably quickly

whether a given chunk occurs multiple times, and consumes a relatively modest amount of

memory [Bernstein and Zobel, 2004].

Bernstein and Zobel [2004] have written a fingerprinting package, deco, that implements

the spex algorithm. They show that deco is effective at identifying documents that share

text [Bernstein and Zobel, 2004] and have successfully applied it for detecting and filtering

redundant documents from search results on web data [Bernstein and Zobel, 2005].

7.1.3 Fingerprinting for genomic sequences

The spex algorithm (and, indeed, any fingerprinting algorithm) can be trivially adapted for

use with genomic sequences by simply substituting documents with sequences. However,

the properties of a genomic sequence are quite different from those of a natural language

document, and these differences present a number of challenges to the spex algorithm. The

most significant difference is the lack of any unit in genomic data analogous to natural

language words, given that a genomic sequence is represented by an undifferentiated string

of characters with no natural delimiters such as whitespace, commas or other punctuation

marks.

The lack of words in genomic sequences has a number of immediate impacts on the
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for chunkLength ←− 1 to finalLength

foreach sequence in the collection

foreach chunk of length chunkLength in sequence

if chunkLength = 1 then

increment lookup[chunk]

else

subchunk1 ←− chunk prefix of length chunkLength - 1

subchunk2 ←− chunk suffix of length chunkLength - 1

if lookup[subchunk1] = 2+ and lookup[subchunk2] = 2+ then

increment lookup[chunk]

Figure 7.2: The spex algorithm.

Document 1 The yellow cat ran between the tall trees.

Document 2 The brown cat ran between the tall towers.

Iteration 1 Iteration 2 Iteration 3

(One word) (Two words) (Three words)

The 2+ The yellow np The yellow cat np

yellow 1 The brown np The brown cat np

brown 1 yellow cat np yellow cat ran np

cat 2+ brown cat np brown cat ran np

ran 2+ cat ran 2+ cat ran between 2+

between 2+ ran between 2+ ran between the 2+

the 2+ between the 2+ between the tall 2+

tall 2+ the tall 2+ the tall trees np

trees 1 tall trees np the tall towers np

towers 1 tall towers np

Figure 7.3: Three iterations of the main loop in the spex algorithm. The pair of documents

at the top are processed to identify duplicate chunks of one, two and three words in length.

For each chunk, 1 denotes that it appears once only in the collection, 2+ denotes that it

appears multiple times, and np indicates that the chunk was not processed because it contains

a unique subchunk.
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operation and performance of the spex algorithm. First, the granularity of the sliding window

must be increased from word-level to character-level. An increased granularity results in a

far greater number of chunks in a genomic sequence than in a natural-language document of

similar size. This increase becomes apparent when one considers that — assuming an average

word length of five — the spex sliding window increments over a total of six bytes, including

a whitespace, of a natural language document at each move. By contrast, the base-pairs

in nucleotide sequence data each represent only two bits, or 0.25 of a byte, of data. Thus,

a nucleotide sequence can be expected to produce roughly 24 times as many chunks as a

natural language document of the same size. As a result, the spex algorithm is less efficient

and scalable for genomic data than for natural language documents.

Processing genomic sequences also involves performing more iterations as part of the

spex algorithm. To identify chunks that are eight words in length spex must perform eight

iterations; for a similar-length chunk containing 30 characters of sequence data, spex would

need to perform 30 iterations. This obviously increases the total running time significantly.

The distribution of subsequences within genomic data is also less highly skewed than the

distribution of words in English text. Given a collection of natural language documents, we

expect some words (such as ‘and’ and ‘or’) to occur extremely frequently, while other words

(such as perhaps ‘alphamegamia’ and ‘nudiustertian’) will be hapax legomena: words that

occur only once. This permits the spex algorithm to be effectual from the first iteration

by removing word-pairs such as ‘nudiustertian news’. In contrast, given a short string of

characters using the amino acid alphabet of size 20, we expect that it is far less likely that

the word will occur only once in any collection of nontrivial size. Thus, the first few iterations

of spex are likely be entirely ineffectual.

One simple solution to these problems is to introduce ‘pseudo-words’, effectively seg-

menting each sequence by moving the sliding window several characters at a time. However,

this approach relies on sequences being aligned along segment boundaries. This assumption

is not generally valid and makes the algorithm highly sensitive to insertions and deletions.

Consider, for example, the following sequences given a chunk length of four and a window

increment of four:

Sequence Chunks

Sequence 1 ABCDEFGHIJKLMNOP ABCD EFGH IJKL MNOP

Sequence 2 AABCDEFGHIJKLMNOP AABC DEFG HIJK LMNO

Sequence 3 GHAACDEFGHIJKLMQ GHAA CDEF GHIJ KLMQ
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1 chunkLength ←− finalLength - Q × (numIterations - 1)

2 for iteration ←− 1 to numIterations

3 foreach sequence in the collection

4 foreach chunk of length chunkLength in sequence

5 if lookup[chunk] 6= 0 then

6 increment lookup[chunk]

7 else

8 count number of subchunks of length chunkLength - Q

9 where lookup[subchunk] = 2+

10 if count ≥ 2 or iteration = 1 and

11 number of chunks processed since increment lookup ≥ Q then

12 increment lookup[chunk]

13 increment chunkLength by Q

Figure 7.4: The slotted spex algorithm

Despite all three of these sequences containing an identical subsequence of length 11 (in bold

above), they do not share a single common chunk. This strong correspondence between the

three sequences will thus be overlooked by the algorithm.

We propose a hybrid of regular spex and the pseudo-word based approach described

above that we call slotted spex. Slotted spex uses a window increment greater than one but

is able to ‘synchronise’ the windows between sequences so that two highly-similar sequences

are not entirely overlooked as a result of a misalignment between them. Although slotted

spex is technically a lossy algorithm, it provides a guarantee that a pair of sequences with a

minimum length match will share at least one common chunk. We discuss this guarantee in

more detail later in this section.

Figure 7.4 describes the slotted spex algorithm. As in standard spex, we pass a fixed-

size window over each sequence with an increment of one. However, unlike spex, slotted

spex does not consider inserting every chunk into the hashtable. In addition to decomposing

the chunk into subchunks and checking that the subchunks are non-unique, slotted spex

also requires that one of two initial conditions are met. First, that it has been at least Q

window increments since the last insertion; or second, that the current chunk already appears

in the hashtable. The parameter Q is the quantum, which can be thought of as the window

increment used by the algorithm. Slotted spex guarantees that at least every Qth overlapping
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substring from a sequence is inserted into the hashtable. The second precondition — that

the chunk already appears in the hashtable — provides the synchronisation that is required

for the algorithm to work reliably.

Let us illustrate the operation of slotted spex with an example. Using the same set of

sequences as above, a quantum Q = 4 and a chunk length of four, slotted spex produces the

following set of chunks:

Sequence Chunks

Sequence 1 ABCDEFGHIJKLMNOP ABCD EFGH IJKL MNOP

Sequence 2 AABCDEFGHIJKLMNOP AABC ABCD EFGH IJKL MNOP

Sequence 3 GHAACDEFGHIJKLMQ GHAA CDEF EFGH IJKL

For the first sequence, the set of chunks produced does not differ from the näıve pseudo-

word technique. Let us now follow the process for the second sequence. The first chunk,

AABC, is inserted as before. When processing the second chunk, ABCD, the number of chunks

processed since the last insertion is one, fewer than the quantum Q. However, the condition

lookup[chunk] 6= 0 on line 5 of Figure 7.4 is met: the chunk has been previously inserted.

The corresponding entry in the hashtable is therefore incremented, effectively synchronising

the window of the sequence with that of the earlier, matching sequence. As a result, every Qth

identical chunk will be identified across the matching region between the two sequences. In

this example, the slotted spex algorithm selects two chunks of length four that are common

to all sequences.

Unlike the original spex algorithm which incremented the chunkLength by one for each

iteration, the slotted spex algorithm uses a larger increment that equals the quantum Q.

In the slotted spex approach, a match of length chunkLength + Q between two sequences

is guaranteed to contain at least two matches of length chunkLength identified during the

previous iteration. As a result, slotted spex must increase the chunk length by at least the

quantum Q between iterations to ensure the scheme is lossless.

In comparison to the ordinary spex algorithm, slotted spex requires fewer iterations,

consumes less memory and builds a smaller index, as shown in Section 7.1.4. This makes it

suitable for the higher chunk density of genomic data. While slotted spex is a lossy algorithm,

it does offer the following guarantee: for a window size finalLength and a quantum Q, any

pair of sequences with a matching subsequence of length finalLength + Q - 1 or greater

will have at least one identical chunk selected. As the length of the match grows, so will the
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guaranteed number of common chunks selected. Thus, despite the lossiness of the algorithm,

slotted spex is still able to offer strong assurance that it will reliably detect highly similar

pairs of sequences.

We have modified the deco software to be able to read genomic data files and have

implemented the slotted spex algorithm using default parameters of finalLength = 30 and

Q = 9.

7.1.4 Fingerprinting for identity estimation

In this section, we analyze the performance of slotted spex for distinguishing sequence pairs

with a high level of identity from those that do not.

Following Holm and Sander [1998] and Li et al. [2001b], we calculate the percentage iden-

tity between a pair of sequences by performing a banded Smith-Waterman alignment [Sankoff

and Kruskal, 1983; Chao et al., 1992] that is described in Section 2.3.1 on page 39 using a

band width of 20, match penalty of 1, and no mismatch or gap penalty. The percentage

identity I for the sequence pair si, sj is calculated as I = S(si, sj)/L(si, sj) where S(si, sj)

is the alignment score and L(si, sj) is the length of the shorter of the two sequences. This

score can be functionally interpreted as being the proportion of characters in the shorter

sequence that match identical characters in the longer sequence. We define similar sequence

pairs as those with at least 90% identity (I ≥ 0.9); this is the same threshold used in Holm

and Sander [1998] and is the default parameter used by cd-hit [Li et al., 2001b].

For experiments in this section we use version 1.65 of the ASTRAL Compendium [Chan-

donia et al., 2004]. We do not use the associated SCOP family classifications in our exper-

iments, rather we use the ASTRAL database because it is a relatively small yet complete

database that allows us to experiment with a wide range of parameterisations. The ASTRAL

database contains 24,519 sequences, equating to 300,578,421 unique sequence-pair combina-

tions. Of these, 139,716 — less than 0.05% — have an identity of 90% or higher by the above

measure, despite the database having a high degree of internal redundancy as shown in Sec-

tion 3.3.3 on page 97. A vast majority of sequence pairs in any database can be assumed to

be highly dissimilar.

Although we do not expect fingerprinting to be as sensitive as a computationally intensive

dynamic-programming approach such as Smith-Waterman, we hope that the method will

effectively distinguish sequence-pairs with a high level of identity from the large number of

pairs that have very low identity. Our aim is to use document fingerprinting to massively
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Figure 7.5: spex index size as a function of final chunk length and quantum when processing

the ASTRAL collection.

reduce the search space within which more sensitive analysis must be pursued. For example,

even if fingerprinting identifies three times as many false positives (dissimilar sequences)

as true positives (similar sequences), less than 0.2% of all sequence pairs in the ASTRAL

collection would need to be aligned.

In choosing a chunk length and quantum to use with the slotted spex algorithm we are

making a compromise between execution speed, memory use and accuracy. In general we

would expect memory use to decrease as chunk length and quantum increase, but accuracy

will likewise decrease. As is generally the case in classification tasks, an increase in sensitivity

(proportion of true positives) can be obtained at the expense of a decrease in specificity

(proportion of true negatives).

In order to find a good compromise between resource consumption and effectiveness, we

have experimented with different parameter combinations. Figure 7.5 shows the spex index

size for varying chunk lengths and quantums. The results show that increasing the chunk

length does not result in a large reduction in index size, however increasing the quantum

results in a marked and consistent decrease in the size of the index.

Figure 7.6 plots the average precision [Buckley and Voorhees, 2000] as a function of chunk
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Figure 7.6: Average precision as a function of final chunk length and quantum when process-

ing the ASTRAL collection.

length and quantum. Average precision is a measure of retrieval accuracy that is similar to

the ROC measure described in Section 3.3.3 on page 97 and is commonly used in the field

of information retrieval1. The average precision measure was calculated by sorting pairs in

decreasing order of spex score — the number of matching chunks divided by the length of

the shorter sequence — and using sequence pairs with an identity of 90% or above as the set

of positives. We observe that increasing the chunk length results in a small loss in accuracy,

however increasing the quantum has almost no effect on average precision. This indicates

that slotted spex — even with a high quantum — is able to estimate sequence identity

nearly as well as the regular spex algorithm with reduced costs in memory use, index size

and index processing time.

The result in Figures 7.5 and 7.6 make a strong case for using a shorter chunk length;

however, shorter chunks place a greater loading on the hashtable. With larger collections,

memory bounds can lead to an unacceptably large hashtable load resulting in a large number

of collisions and poor performance. Thus, when shorter chunk lengths are employed the

1Chen [2004] reports that the ROC and average precision measures are roughly equally effective for eval-

uating retrieval effectiveness.
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approach is less scalable. Similarly, longer quanta are in general beneficial to performance.

However, a larger quantum reduces the number of iterations possible in slotted spex. Thus,

a very high quantum can result in more collisions in the hashtable due to fewer iterations,

suggesting once again that a compromise is required. Guided by these observations along

with the other data, chunk lengths of 25 or 30 with a quantum of 5 to 9 appear to provide a

good compromise between the various considerations in all-against-all identity detection for

large collections.

The high average precision results indicate that slotted spex provides an accurate predic-

tion of whether sequence pairs have a high level of identity. What is particularly surprising

is that the average precision stays high even with reasonably long chunk lengths and high

quanta. Earlier efforts by Holm and Sander [1998] and Li et al. [2001b], and Li et al. [2001a]

are extremely rigorous and rely upon short matching chunks, typically less than ten charac-

ters in length, between sequence-pairs before proceeding with alignment. Every sequence-pair

that may possibly exceed the identity threshold is fully aligned. This limits the possibilities

for the preprocessing step: for example, a sequence-pair with 90% identity is not guaranteed

to have any common chunks of length greater than nine; thus nine was the natural upper

bound on chunk length. Li et al. [2001b] found that loosening this rigour has only minor neg-

ative impact on result quality. Our results extend on this observation, as the chunk lengths

we use are considerably longer than for any previous work.

In our experiments we have focused on identifying sequence-pairs with greater than 90%

identity, and we have shown that fingerprinting is effective at this task. However, it is

probable that fingerprinting will prove less useful as the identity threshold is lowered and

number of similar sequence pairs increases.

7.1.5 Removing redundant sequences

Holm and Sander [1998], Park et al. [2000b] and Li et al. [2001b] have all investigated

techniques for creating representative-sequence databases (RSDBs), culled collections where

no two sequences share more than a given level of identity. RSDBs are typically constructed

by identifying clusters of similar sequences and retaining only one sequence from each cluster,

the cluster representative. Such databases are more compact, resulting in faster search

times. More significantly, they have been demonstrated to improve the sensitivity of distant-

homology search algorithms such as psi-blast [Li et al., 2002; Park et al., 2000b].

The most recent and efficient technique for constructing an RSDB, cd-hit [Li et al.,
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2001b], uses a greedy incremental approach based on an all-against-all comparison. The

algorithm starts with an empty RSDB. Each sequence is processed in decreasing order of

length and compared to every sequence already inserted into the RSDB. If a high-identity

match is found, where I exceeds a threshold, the sequence is discarded; otherwise it is added

to the RSDB. To reduce the number of sequence pairs that are aligned, cd-hit first checks

for short matching chunks — typically of length four or five — between sequences before

aligning them. The approach is still fundamentally quadratic in time complexity.

We have replicated the greedy incremental approach of cd-hit, but use fingerprinting

with slotted spex as a preprocessing step to dramatically reduce the number of sequence

comparisons performed. Slotted spex is used to build a list of candidate sequence pairs,

where the spex score exceeds a specified threshold. We only perform alignments between

sequence pairs in the candidate list. This is significantly faster than comparing each sequence

to all sequences in the RSDB.

We have employed the spex algorithm to remove redundant sequences as follows. First,

spex is used to identify short substrings or chunks that appear more than once in the

collection. The spex algorithm outputs a inverted index that contains a postings list for

each chunk that appears more than once in the collection. Each postings list contains a list

of sequence number and sequence offset pairs. For example, consider the following postings

list:

QTWR (7,13),(9,4),(11,8)

where the chunk QTWR appears three times in the collection, once in sequence 7 at offset 13,

once in sequence 9 at offset 4, and once in sequence 11 at offset 8. Only the first occurrence

of the chunk in each sequence is considered.

We use the inverted index to find pairs of highly-similar sequences in the collection. We

proceed through each list in the index linearly, maintaining an accumulator for every sequence

pair that co-occurs in at least one of the postings lists. The accumulator records the number

of matching chunks that co-occur in the two sequences (see Section 3.2.1 for a more detailed

description of accumulators). Each postings list is expanded to provide a list of sequence

pairs. For example, the expansion of the postings list above would result in the following

pairs of sequences: sequences 7 and 9, sequences 7 and 11, and sequences 9 and 11.

Once we have processed every postings list in the index, each pair of sequences with an

accumulator shares at least one chunk. This provides a list of candidate sequence pairs. This
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information is used to identify near-duplicate sequences by aligning each of the candidate

pairs. A new representative collection is then created where no pair of sequences share more

than X% identity, where X is an input parameter. This is achieved using the same approach

as existing RSDB tools such as cd-hit: each sequence is processed in order from longest to

shortest and is only added to the new representative database if it does not share above X%

identity with a sequence already present in the new collection.

One hurdle with our approach, however, is that large collections often include a small

number of chunks with a very high frequency of occurrence. For example, the subsequence

WRKLVDFRELNKRTQDFWEVQLGIPHPAGL appears in over 20,000 sequences relating to human im-

munodeficiency virus in the GenBank non-redundant database. Expanding the postings lists

of frequently occurring chunks involves processing a large number of sequence-pairs. For

example, expanding a postings lists with 500 entries involves considering 124,750 possible

sequence pairs. In order to minimise the number of times we must expend such an effort, we

delay the expansion of long postings lists—those with more than M entries where M = 20

by default—until a sequence in the list is processed, that is, the sequence is considered for

inclusion in the new representative database. We call this approach deferred postings list

expansion. Each time a redundant sequence is identified and deleted from the new repre-

sentative database it is also removed from any long postings lists, substantially reducing

the number of sequence pairs in each list that must be subsequently processed. A reference

between each sequence and the long postings lists it appears in is maintained so that entries

can be removed quickly.

Using this approach, our algorithm has a worst-case time complexity of O(n2) for a col-

lection of n sequences, in the event that a single chunk appears in every sequence in the

collection yet no sequences are removed to create the new representative database, that is,

no pair of sequences in the collection have at least X% identity. In practice, however, such

a scenario is unlikely when sensible parameters are employed to process real sequence data,

because sequence pairs that share a long matching region are typically similar globally. Fur-

ther, our experimental results presented next demonstrate that our algorithm scales roughly

linear with collection size.

We measured the performance and scalability of our approach by comparing it to cd-

hit — which is freely available for download — using several releases of the comprehensive

Genbank non-redundant (NR) protein database over time2. We used the cd-hit default

2Ideally, we would have had more datapoints for this experiment. However, old releases of the NR database

are not officially maintained, and thus we could only find four different releases of the database.
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threshold of T = 90% and the four releases of GenBank NR database from July 2000 until

August 2005 described in Table 7.1. For tests with cd-hit we used default parameters except

for max memory which we increased to 1.5 Gb. For our approach, we used a final chunk length

finalLength of 25, a quantum of 9 and 3 iterations. Our threshold for identifying a candidate

pair is one matching chunk between the pair. We use this low threshold because we have

found that it provides improved accuracy with a negligible increase in execution time. In

our experiments with the ASTRAL database described previously and our chosen default

parameters, slotted SPEX identifies only 10,143 false positives out of 147,724 sequence pairs

identified.

The results in Table 7.1 show no significant difference in representative collection size

between our method and cd-hit, indicating the two approaches are roughly equivalent in

terms of sensitivity to pairs of highly-similar sequences. Figure 7.7 shows the runtime for our

approach and cd-hit for the releases of GenBank tested. A visual inspection reveals that our

approach scales roughly linearly with the size of the collection while cd-hit is superlinear.

When processing the recent August 2005 collection, our approach is more than six times

faster than cd-hit.

7.1.6 Summary

The identification of highly-similar sequence pairs in genomic collections has several impor-

tant applications in bioinformatics. Previous solutions to this problem involve either an all-

against-all comparison with O(n2) complexity or the use of suffix structures that suffer from

large main-memory overheads or long construction times. Therefore, existing approaches are

not suitable for processing large collections such as GenBank.

We have applied document fingerprinting techniques to genomic data with the aim of

more efficiently identifying pairs of similar sequences in large collections. We have described

a new algorithm called slotted spex that requires less main-memory and CPU resources when

processing genomic collections. We show that slotted spex is highly accurate for identifying

high-identity sequence pairs, even with long chunk lengths and large quanta. We have also

tested the effectiveness of our slotted spex approach for removing redundant sequences from

large collections. When processing the recent GenBank non-redundant protein database our

scheme is more than six times faster than the previous fastest approach, cd-hit, with no

significant change in accuracy. Further, our approach scales approximately linearly with

collection size.
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Original Size reduction

Release date Size (Mb) cd-hit Our approach

16 July 2000 157 61.71 Mb (39.56%) 61.72 Mb (39.57%)

22 May 2003 443 164.38 Mb (37.33%) 165.07 Mb (37.48%)

30 June 2004 597 217.80 Mb (36.71%) 218.76 Mb (36.87%)

18 August 2005 900 322.98 Mb (36.08%) 324.92 Mb (36.30%)

Table 7.1: Reduction in collection size for cd-hit and our approach for various releases of

the GenBank NR database.
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Figure 7.7: Time required to identify and remove redundant sequences from various releases

of the GenBank NR database.
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In the next section, we present a new approach to managing redundancy in genomic

collections. Our scheme clusters highly-similar sequences into groups using the fingerprinting

techniques described in this section. Each cluster is then represented using a special union-

sequence that contains wildcard characters to represent all of the sequences in the cluster

simultaneously.

7.2 A new approach for managing redundancy

The most commonly employed approach to reducing redundancy in genomic collections is to

remove near-duplicate entries from the collection resulting in a smaller, representative version

of the original database. Algorithms such as nrdb90 [Holm and Sander, 1998], rsdb [Park

et al., 2000b], cd-hi [Li et al., 2001a] and cd-hit [Li et al., 2001b] identify pairs of highly-

similar sequences in the original collection and create a representative sequence database

(RSDB) where no two sequences share more than a certain level of similarity.

Representative collections can be used to perform profile training in iterative search tools

to reduce the chance of profile saturation and improve search accuracy [Park et al., 2000b; Li

et al., 2002]. However, representative collections are not ideal for use with regular pairwise

genomic search tools such as blast because they are not comprehensive. Searches against

a RSDB are less accurate because a deleted sequence from the original collection may share

greater similarity with the query than its retained representative. Further, search results are

less authoritative because the user is only presented with a single alignment from a cluster

of related sequences.

In this section, we propose a new method for managing redundancy that is suitable

for search algorithms such as blast. Our method identifies clusters of related sequences

using fingerprinting techniques described in the previous section. Each cluster is represented

by a union-sequence that contains special wildcard characters to denote residue positions

where the member sequences differ. During search, the query is initially compared to the

union-sequence of each cluster, and the member sequences are only aligned to the query if

the union-sequence produces a high-scoring alignment. Our method reduces overall search

time because the vast majority of union-sequences do not produce a statistically significant

alignment, resulting in fewer sequence comparisons. We have integrated our approach into

our own implementation of blast and found that our method reduces search times against

the GenBank database by 22% with no affect on search accuracy.

This section is organised as follows. First, we describe our new method for clustering
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sequences through the use of wildcards and union-sequences in Section 7.2.1. We explain

how clusters are derived using fingerprinting techniques in Section 7.2.2. In Section 7.2.3 we

describe our methodology for scoring alignments between residues in the query and wildcards

in a union-sequence during search. In Section 7.2.4 we present two approaches for selecting a

good set of wildcards to be used for clustering. Finally, we analyse the effect of our clustering

method on blast search times and present other experimental results in Section 7.2.5.

7.2.1 Clustering using wildcards

Let us define E = e1, ..., e|E| as an ordered collection of sequences where each sequence is a

string of residues drawn from the alphabet R, that is ei = r1...r|ei|. Our approach transforms

the collection into a new representation by grouping sequences into clusters. The collection

is therefore represented as a set of clusters C, where each cluster contains a union-sequence

U and edit information for each member of the cluster. The union-sequence is a string of

residues and special wildcard characters U = u1...u|U ||uj ∈ R ∪ K, where K is the set of

characters used to represent the available wildcards.

Rather than use a single wildcard character to create the clusters, we use a set of n

wildcards, W , where each wildcard has a different meaning and is represented by a distinct

character in K. By default we use a set of size n = 7, for the reasons discussed in Section 7.2.4.

Each wildcard is defined as a distinct set of residues, and can only be substituted for those

residues. The ordered set of wildcards W used to perform the clustering is defined as W =

{w1, ..., wn | wx ⊆ R}. By convention, the last wildcard in this set wn is assumed to be the

default wildcard wd that can represent any residue; that is, wn = wd = R. We present two

different sets of wildcards for use in our experiments that are listed in Table 7.2 on page 211,

and we discuss the selection of wildcards in Section 7.2.4.

Figure 7.8 shows an example cluster of heat shock proteins that was constructed using our

clustering method. The union-sequence is shown at the top and cluster members are aligned

below. Columns where the member sequences differ from each another and a wildcard has

been inserted are shown in bold face. In this example, W = {wd}— that is, only the default

wildcard is used and it is represented by an asterisk.

When a cluster is written to disk, the union-sequence — shown at the top of the figure —

is stored in its complete form, and each member of the cluster is recorded using edit informa-

tion. The edit information for each member sequence consists of start and end offsets that

specify a range within the union-sequence, and a set of residues that replace the wildcards
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10 20 30 40 50 (position)
| | | | |

KNQVAMN * QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV * QAEVDV * RFRSNT * ER (union-seq)

P QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156103)

KNQVAMNP QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEV (gi 156105)

QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDV L RFRSNTKER (gi 156121)

KNQVAMNP QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDV L RFRSNTK (gi 552059)

KNQVAMNP QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552055)

KNQVAMNP QNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 552057)

P QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDV L RFRSNTKER (gi 156098)

QNTVFDAKRLIGRKFDEPTVQADMKHWPFKVVQAEVDV L RFRS (gi 156100)

VFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTRE (gi 156111)

NQNTVFDAKRLIGRKFDEPTVQADMKHWPFKV I QAEVDVQRFRSNTR (gi 552056)

Figure 7.8: Example cluster of heat shock proteins from GenBank NR database. The union-

sequence is shown above, followed by ten member sequences with GI accession numbers shown

in brackets. Residue positions within the union-sequence are shown at the top.

in that range. For example, the first member of the cluster with GI accession 156103 would

be represented by the tuple (8,44,PI); the member sequence can be reconstructed by copying

the substring between positions 8 and 44 of the union-sequence and replacing the wildcards

at union-sequence positions 8 and 40 with characters P and I respectively. Note that our

clustering approach does not permit gaps; this is because insertions and deletions are heavily

penalised during alignment, and our approach relies upon conformity between the alignment

score produced by a cluster member and the alignment score produced by the corresponding

representative union-sequence. If our scheme were to permit gaps, the union-sequence repre-

senting a cluster and the members of that cluster would produce greatly varying alignment

scores, resulting in reduced search accuracy.

Our clustering method is designed so that each union-sequence aligns to the query with

a score that is typically equal to or higher than the best score for aligning the query to

members of the cluster. This relies upon an effective system for scoring matches between

query residues and wildcards, which we discuss in detail in Section 7.2.3. During search, the

query is compared to the union-sequence of each cluster, and if the union-sequence produces

a statistically significant alignment, then the members of the cluster are restored from their

compressed representations and aligned to the query. Our approach supports two modes of

operation: users can choose to see all high-scoring alignments, or only the best alignment

from each cluster. The latter mode reduces redundancy in the results.
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7.2.2 Clustering algorithm

In this section we describe our approach to efficiently clustering large sequence collections.

Our approach is based on the slotted spex fingerprinting algorithm described in Section 7.1,

and has linear-time performance and low main-memory overheads.

For each chunk, the slotted spex algorithm outputs a postings list of sequences that

contain the chunk and the offset into each sequence where the chunk occurs. Our clustering

algorithm uses these lists to identify candidate pairs: pairs of sequences that share at least

one chunk. Each pair of sequences is aligned using the similarity score measure we describe

next — this measure is specific to our new clustering strategy and represents the number and

type of wildcards that would be inserted into the new union-sequence representing that pair

of sequences. This measure is designed to limit the number of wildcard characters that occur

in union-sequences. Highly similar candidate pairs with a similarity score below threshold T

are recorded.

Given the list of candidate pairs, we use a variation on single-linkage hierarchical clus-

tering [Johnson, 1967] to identify clusters. Our clustering methods works as follows. First,

each sequence is initially considered as a cluster with one member. Candidate pairs are then

processed in increasing order of similarity score, from most- to least- similar, and the pair of

clusters that contains the highly-similar candidate sequences are potentially merged.

In general, given two candidate clusters CX and CY with union-sequences X and Y

respectively, the following process is used to determine whether the clusters should be merged:

1. X and Y are aligned and the sequence space partitioned into a prefix, an overlap region,

and a suffix.

2. The union sequence candidate U for the new cluster is created by replacing each mis-

matched residue in the overlap region with a suitable wildcard w.

3. The union-sequence candidate U is accepted if the mean alignment score increase Q̄

in the overlap region is below a specified threshold T — this prevents union-sequences

from containing too many wildcards and reducing search performance.

If the clusters are merged, a new cluster CU is created consisting of all members of CX

and CY . This process is repeated for all candidate pairs. When inserting wildcards into the

union-sequence, if more than one wildcard w from the set of wildcards W is suitable then

the one with the lowest expected match score e(w) =
∑

R s(w, r)p(r) is selected, where p(r)

is the background probability of residue r [Robinson and Robinson, 1991], and s(w, r) is the
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GRKV*MN*QNT*MF

GRKVIMNCQNTQ
VAMNPQNTVMF

GRKVIMNEQNTQ
GRKVIMNCQNTQ
GRKVIMN*QNTQ

VAMNPQNTVMF
VAMNPQNTVMF (union−sequence)

(union−sequence)

Cluster X sequence 1:

Cluster Y sequence 1:
Cluster Y sequence 2:

New cluster sequence 1:
New cluster sequence 2:
New cluster sequence 3:

(union−sequence)

Figure 7.9: Merge of two example clusters. Cluster X contains a single sequence and cluster

Y contains two sequences. A new cluster is created that contains members of both clusters

and has a new union-sequence to represent all three member sequences.

alignment score for matching wildcard w to residue r. Note that we have not yet defined how

wildcards are chosen; this is discussed further in Section 7.2.4. We discuss how the wildcard

alignment vectors s(w, ·) are calculated in Section 7.2.3.

The mean alignment score increase, Q, for a wildcard w is calculated as

Q(w) =
∑

R

s(w, r)p(r)−
∑

R×R

s(r1, r2)p(r1)p(r2)

where s(r1, r2) is the score for matching a pair of residues as defined by a scoring ma-

trix such as BLOSUM62 [Henikoff and Henikoff, 1992].
∑

R s(w, r)p(r) represents the av-

erage score resulting from aligning a randomly selected query residue r to the wildcard w.
∑

R×R s(r1, r2)p(r1)p(r2) represents the average score for aligning a randomly selected query

residue with a random collection residue. Therefore, the value of Q(w) provides an estimate

of the average increase in alignment score for a single residue position that one can expect

when an arbitrary collection residue is replaced with the wildcard w.

Figure 7.9 illustrates the process of merging clusters. In this example, cluster X (which

contains one sequence) and cluster Y (which contains two sequences) are merged. A new

cluster containing the members of both X and Y is created, with a new union-sequence that

contains wildcards at residue positions where the three sequences differ.

The above approach works extremely well for relatively small databases; however, as

discussed in Section 7.1.5 some chunks appear frequently in larger collections resulting in
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long postings lists. Unfortunately, the deferred postings list expansion technique described

in Section 7.1.5 cannot be applied to our clustering method, which relies upon a complete,

sorted list of candidate pairs for the clustering process. Instead, we have chosen to process

frequently occurring chunks —those with more than M occurrences in the collection, where

we use M = 100 by default for our clustering strategy—in a different, top-down manner

before proceeding to the standard hierarchical clustering approach discussed previously.

The top-down approach identifies clusters from a list of sequences l that contain a

frequently-occurring chunk as follows:

1. All sequences in l are loaded into main-memory and aligned with each other.

2. An exemplar sequence is selected; this is the sequence with a highest average percentage

identity to the other sequences in l.

3. A new cluster C is created with the exemplar sequence as its first member.

4. Each sequence in l is compared to the union-sequence of the new cluster. Sequences

where Q̄ < T are added to the cluster in order from most- to least- similar using the

approach we describe above.

5. All of the members of the new cluster C are removed from l and the process is repeated

from step 1 until |l| < M .

The top-down clustering is illustrated in Figure 7.10. In this example, a list of five

sequences that contain the chunk RTMCS is process using the top-down method. The sequence

S1 has the highest average percentage identity to the other sequences in l and is selected as

the exemplar. A new cluster is created with S1 as the first member, and sequences S2 and

S4 are subsequently added. The three members of the new cluster are removed from l, and

the process is repeated until |l| < M .

Once the postings lists has been processed using the top-down method the shortened list

is processed using the hierarchical clustering method described above. While the top-down

process is laborious, it is performed for fewer than 0.2% of postings lists when clustering

the version of the GenBank non-redundant database described in Section 7.2.5 with default

parameters.
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Figure 7.10: Illustration of top-down clustering where sequences l = {S1, S2, S3, S4, S5} con-

tain the chunk RTMCS. Each sequence is compared to every other sequence in the list and the

sequence with the highest average percentage identity (S1) is selected as the first member of

a new cluster. Sequences S2 and S4 are highly similar to S1 and are also included in the

new cluster. The remaining sequences l = {S3, S5} are used to perform another iteration of

top-down clustering if |l| ≥M .

7.2.3 Scoring wildcards

We have modified blast to work with our clustering algorithm as follows. Instead of com-

paring the query sequence to each member of the database, our approach compares the query

only to the union-sequence representing each cluster, where the union-sequence may contain

wildcard characters. If a high-scoring alignment between the union-sequence and query is

identified, the members of the cluster are reconstructed and aligned to the query. In this sec-

tion we discuss how, given a set of wildcards W , we determine the scoring vectors s(w, ·) for

each w ∈W that are used during search. The scoring vector constructed using our approach

for one of the wildcard sets derived in Section 7.2.4 is shown in Figure 7.11.

Ideally, we would like the score between a query sequence Q and a union-sequence U to be

precisely the highest score that would result from aligning Q against any of the sequences in

cluster CU . This would result in no loss in sensitivity and no false positives. Unfortunately,

such a scoring scheme is not likely to be achievable without aligning against each sequence

in every cluster, defeating much of the purpose of clustering in the first place.

To maintain the speed of our approach, scoring of wildcards against residues must be on

the basis of a standard scoring vector s(w, ·) and cannot take into consideration any data

about the sequences represented by the cluster. Thus, scoring will involve a compromise

between sensitivity (few false negatives) and speed (few false positives). We describe two

such compromises below, and finally show how to combine them to achieve a good balance
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Wildcard residues Scoring vector

L A G S V E T K D P I R N Q F Y M H C W B Z X U

L,V,I,F,M 3 -1 -3 -2 3 -2 -1 -2 -3 -2 3 -2 -3 -1 2 0 4 -2 -1 -1 -3 -2 -1 -4

G,E,K,R,Q,H -2 -1 1 0 -2 3 -1 4 0 -1 -3 3 0 3 -3 -1 -1 3 -3 -2 0 2 -1 -4

A,V,T,I,X 1 2 -1 0 3 -1 3 -1 -2 -1 3 -2 -2 -1 -1 -1 0 -2 -1 -3 -2 -1 -1 -4

S,E,T,K,D,N -2 0 0 2 -2 2 2 2 4 -1 -2 0 4 1 -3 -2 -1 0 -2 -3 3 1 -1 -4

L,V,T,P,R,F,Y,M,H,C,W 1 -1 -2 -1 1 -1 1 -1 -2 2 0 1 -1 0 2 3 2 2 2 3 -2 -1 -1 -4

A,G,S,D,P,H -2 3 3 3 -1 0 0 0 2 2 -2 -1 1 0 -2 -2 -1 1 -1 -3 1 0 0 -4

All residues 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1 -1 -3

Figure 7.11: Scoring vectors for the minimised alignment score wildcards in Table 7.2. The

set of residues represented by each wildcard is given in the left-hand column. The scoring

vector provides an alignment score between each of the twenty-four amino acid symbols and

that wildcard.

of sensitivity and speed.

During clustering, wildcards are inserted into the union-sequence to denote residue posi-

tions where the cluster members differ. Given a collection of union-sequences, let us order the

wildcards that have been inserted into them during clustering by some arbitrary approach.

Next, let us define S = s1...sy | sk ∈W where S is the ordered sequence of y wildcards. Each

occurrence of a wildcard sk is used to represent a set of residues that appear in the cluster

members at that position. We define ok ⊆ R as the set of residues represented by the kth

occurrence of a wildcard in the collection and O = o1...oy | ok ⊆ R as the ordered sequence

of represented residue sets. That is, sk is the kth wildcard in the collection, which has been

inserted into a union-sequence to replace the set of residues ok in the cluster members. For

example, if we consider the wildcard at union-sequence position 8 in Figure 7.8 on page 203

to be the first wildcard in the collection, then s1 = wd (because the default wildcard has been

inserted into the union-sequence) and o1 = {P, N}. Since a wildcard can only be used to

replace residues that it represents, sk must be selected during clustering such that ok ⊆ sk.

Our first scoring scheme, sexp, builds the scoring vector for each wildcard w by considering

the actual occurrence pattern of residues represented by the wildcard w throughout the

collection. Formally, we calculate the expected best score sexp as:

sexp(w, r) =

∑

k∈Pi

max
f∈ok

s(r, f)

|Pi|
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where Pi is the set of ordinal numbers of all substitutions using the wildcard wi:

Pi = {j | j ∈ N, j ≤ y , sj = wi}

This score can be interpreted as the mean score that would result from aligning residue

r against the actual residues represented by the wildcard w. This score has the potential to

reduce search accuracy; however, it distributes the scores well, and our experimental results

in Section 7.2.5 indicate that it provides an excellent tradeoff between accuracy and speed.

The second scoring scheme, sopt, calculates the optimistic alignment score of the wildcard

w against each residue. The optimistic score is the highest score for aligning residue q to any

of the residues represented by wildcard w. This is calculated as follows:

sopt(w, r) = max
f∈w

s(r, f)

The optimistic score guarantees no loss in sensitivity: the score for aligning against a

union-sequence U using this scoring scheme is at least as high as the score for any of the

sequences represented by U . The problem is that in many cases the score for U is significantly

higher, leading to false-positives where the union-sequence is flagged as a match despite none

of the cluster members being sufficiently close to the query. This results in substantially

slower search.

The expected and optimistic scoring schemes represent two different compromises between

sensitivity and speed. We can adjust this balance by combining the two approaches using a

mixture model. We define a mixture parameter, λ, such that 0 ≤ λ ≤ 1. The mixture-model

score for aligning wildcard w to residue r is defined as:

sλ(w, r) = λsopt(w, r) + (1− λ)sexp(w, r)

The score sλ(w, r) for each w, r pair is calculated when the collection is being clustered

and then recorded on disk in association with that collection. During a blast search, the

wildcard scoring vectors are loaded from disk and used to perform the search. We report

experiments with varying values of λ in Section 7.2.5. An example set of scoring vectors

s(wi, ·) that were derived using our approach is shown in Figure 7.11.

7.2.4 Selecting wildcards

Having defined a system for assigning a scoring vector to an arbitrary wildcard, we now

describe a method for selecting a set of wildcards to be used during the clustering process.
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Each wildcard w is defined by a set of residues w ⊆ R where each wildcard can only be used in

place of the residues it represents when inserted into a union-sequence. Our wildcard scoring

scheme that is described in Section 7.2.3 is dependent on the set of residues represented by

w, so that each wildcard has a unique scoring vector. A set of wildcards, W = {w1, ..., wn} is

used during clustering. We assume that the last of these wildcards wn is the default wildcard

that can be used to represent any of the 24 residue and ambiguous codes, that is wn = R.

The remaining wildcards must be selected carefully; large residue sets can be used more

frequently but provide poor discrimination with higher average alignment scores and more

false positives. Similarly, small residue sets can be used less frequently, thereby increasing

the use of larger residue sets such as the default wildcard.

The first aspect of choosing a set of wildcards to use for substitution is to decide on the

size of this set. It would be ideal to use as many wildcards as necessary, so that for each

substitution si = oi. However, each wildcard must be encoded as a different character and

this approach would lead to an very large alphabet. An enlarged alphabet would in turn

lead to inefficiencies in blast due to larger lookup and scoring data structures. Thus, a

compromise is required. blast uses a set of 20 character codes to represent residues, as well

as four IUPAC-IUBMB ambiguous residue codes and the end-of-sequence sentinel code that

was described in Section 3.1.3 on page 55, resulting in a total of 25 distinct codes. Each code

is represented using 5 bits, permitting a total of 32 codes; this leaves 7 unused character

codes. We have therefore chosen to use |W | = 7 wildcards.

We have investigated two different approaches to selecting a good set of wildcards. The

first approach to the problem treats it as an optimisation scenario, and works as follows.

We first cluster the collection as described in Section 7.2.2 using only the default wildcard,

W = {wd}. We use the residue-substitution sequence O from this clustering to create a set

W ∗ of candidate wildcards. Our goal can then be defined as follows: we wish to select the set

of wildcards W ⊆W ∗ such that the total average alignment score A =
∑

w∈S

∑

r∈R

s(w, r)p(r) for

all substitutions S is minimised. A lower A implies a reduction in the number of high-scoring

matches between a typical query sequence and union-sequences in the collection, thereby

reducing the number of false-positives in which cluster members are fruitlessly recreated and

aligned to the query.

In selecting the wildcard set W that minimises A we use the following greedy approach:

first, we initialize W to contain only the default wildcard wd. We then scan through W ∗

and select the wildcard that leads to the greatest overall reduction in A. This process is
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Minimum alignment score Physico-chemical classifications

L,V,I,F,M L,V,I (aliphatic)

G,E,K,R,Q,H F,Y,H,W (aromatic)

A,V,T,I,X E,K,D,R,H (charged)

S,E,T,K,D,N L,A,G,V,K,I,F,Y,M,H,C,W (hydrophobic)

L,V,T,P,R,F,Y,M,H,C,W S,E,T,K,D,R,N,Q,Y,H,C,W (polar)

A,G,S,D,P,H A,G,S,V,T,D,P,N,C (small)

All residues All residues (default wildcard)

Table 7.2: Two different sets of wildcards to be used for clustering. Each list is sorted in order

from lowest to highest average alignment score, A, and contains seven entries including the

default wildcard. The left-hand list is selected to minimise the average alignment score, A,

using a hill-climbing strategy, and the right-hand list is based on the amino acid classifications

described in Taylor [1986]

repeated until the set W is filled, at each iteration considering the wildcards already in W

in the calculation of A. Once W is full we employ a hill-climbing strategy where we consider

replacing each wildcard with a set of residues from W ∗ with the aim of further reducing A.

A set of wildcards was chosen by applying this strategy to the GenBank NR database

described in Section 7.2.5. The left-hand column of Table 7.2 lists the wildcards that were

identified using this approach and used by default for reported experiments in this chapter.

We also consider defining wildcards based on groups of amino acids with similar physico-

chemical properties. We used the amino acid classifications described in Taylor [1986] to

define the set of seven wildcards shown in the right-hand column of Table 7.2. In addition to

the default wildcard, six wildcards were defined to represent the aliphatic, aromatic, charged,

hydrophobic, polar and small classes of amino acids. We present experimental results for this

alternative set of wildcards in the following section.

7.2.5 Results

In this section we analyse the effect of our clustering strategy on collection size and search

times. For our assessments, we used version 1.65 of the ASTRAL Compendium [Chandonia

et al., 2004] that uses information from the SCOP database [Murzin et al., 1995; Andreeva

et al., 2004] to classify sequences with fold, superfamily, and family information. The data-



212 CHAPTER 7. MANAGING REDUNDANCY

base contains a total of 67,210 sequences classified into 1,538 superfamilies.

A set of 8,759 test queries were extracted from the ASTRAL database such that no two

queries share more than 90% identity. To measure search accuracy, each query was searched

against the ASTRAL database and the commonly-used Receiver Operating Characteristic

(ROC) score was used [Gribskov and Robinson, 1996] following the approach described in

Section 3.3.3 on page 97. A match between two sequences is considered positive if they are

from the same superfamily, otherwise it is considered negative. The ROC50 score provides

a measure between 0 and 1, where a higher score represents better sensitivity (detection of

true positives) and selectivity (ranking true positives ahead of false positives).

The SCOP database is too small to provide an accurate measure of search time, so we use

the GenBank non-redundant (NR) protein database to measure search speed. The GenBank

collection was downloaded August 18, 2005 and contains 2,739,666 sequences in around 900

megabytes of sequence data. Performance was measured using 50 queries randomly selected

from GenBank NR. Each query was searched against the entire collection three times with

the best runtime recorded and the results averaged. Experiments were conducted on a

Pentium 4 2.8GHz machine with two gigabytes of main memory.

We used fsa-blast—our own version of blast—with default parameters as a baseline.

To assess the clustering scheme, the GenBank and ASTRAL databases were clustered and

fsa-blast was configured to report all high-scoring alignments, rather than only the best

alignment from each cluster. All reported collection sizes include sequence data and edit

information but exclude sequence descriptions. cd-hit version 2.0.4 beta was used for ex-

periments with 90% clustering threshold and maximum memory set to 1.5 Gb. We also report

results for ncbi-blast version 2.2.11 and our own implementation of Smith-Waterman that

uses the exact same scoring functions and statistics as blast [Karlin and Altschul, 1990;

Altschul and Gish, 1996]. The Smith-Waterman results represent the highest possible degree

of sensitivity that could be achieved by blast and provides a meaningful reference point.

No sequence filtering was performed for our experiments in this chapter.

The overall results for our clustering method are shown in Table 7.3. When used with

default settings of λ = 0.2 and T = 0.25, and the set of wildcards selected to minimise align-

ment score in Table 7.2, our clustering approach reduces the overall size of the NR database

by 27% and improves search times by 22%. Importantly, the ROC score indicates that there

is no significant effect on search accuracy, with the highly redundant SCOP database reduc-

ing in size by 80% when clustered. If users are willing to accept a small loss in accuracy,

then the parameters λ = 0 and T = 0.3 improve search times by 27% and reduce the size of
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Scheme GenBank NR ASTRAL

Time Sequence data

secs (% baseline) Mb (% baseline) ROC50

fsa-blast

No clustering (baseline) 28.75 (100%) 900 (100%) 0.398

Cluster λ = 0.2, T = 0.25 22.54 (78%) 655 (73%) 0.398

Cluster λ = 0, T = 0.3 20.97 (73%) 650 (72%) 0.397

ncbi-blast 45.75 (159%) 898 (100%) 0.398

Smith-Waterman — — 0.415

Table 7.3: Average runtime for 50 queries searched against the GenBank NR database, and

SCOP ROC50 scores for the ASTRAL collection.

the sequence collection by 28% with a decrease of 0.001 in ROC score when compared to our

baseline. Since we are interested in improving performance with no loss in accuracy we do

not consider these non-default settings further. Overall, our clustering approach with default

parameters combined with improvements to the gapped alignment and hit detection stages

of blast desribed in Chapters 4 and 5 more than double the speed of fsa-blast protein

searches compared to ncbi-blast with no significant effect on accuracy. Both versions of

blast produce ROC scores 0.017 below the optimal Smith-Waterman algorithm.

The results in Table 7.3 also show that our scheme is an effective means of compressing

protein sequences, a task that has been deemed difficult by previous researchers [Nevill-

Manning and Witten, 1999; Weiss et al., 2000]. Assuming a uniform, independent distribution

of amino acids, protein sequence data can be represented with 4.322 bits per symbol [Nevill-

Manning and Witten, 1999]. Our clustering scheme is able to reduce the space required to

store protein sequence data in the GenBank non-redundant database to around 3.15 bits per

symbol; to our knowledge, this is significantly less than the current best compression rate of

4.051 bits per symbol [Nevill-Manning and Witten, 1999].

The results presented in Table 7.3 also show a 37% reduction in search time for our fsa-

blast baseline, without clustering, when compared to the ncbi-blast implementation. This

compares with a 32% reduction in runtime observed for an Intel workstation in Section 5.3 for

our fsa-blast implementation that employs the new gapped alignment algorithms and the

optimised DFA. The small variation in speed gain observed between these two experiments
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Wildcard set GenBank NR ASTRAL

Time Sequence data

secs (% baseline) Mb (% baseline) ROC50

Minimum alignment score 22.54 (78%) 655 (73%) 0.398

Physico-chemical classifications 23.25 (81%) 656 (73%) 0.398

Default wildcard only 23.49 (82%) 663 (76%) 0.398

Table 7.4: Average runtime and SCOP ROC50 scores for varying sets of wildcards. The first

two rows contain results for the wildcard sets defined in Table 7.2. The third row contains

results for clustering with only the default wildcard W = {wd}

is likely due to changes in the test collection; our earlier experiments were conducted on

the smaller June 2004 release of GenBank, whilst the August 2005 release of GenBank was

used for experiments in this chapter. This suggestions that our novel protein alignment

methods scale at least linear with collection size, and will continue to provide a significant

improvement to search times as collections continue to grow.

In Table 7.4 we compare search accuracy and performance for varying wildcard sets.

The set of wildcards that were selected to minimise the average alignment score using the

approach described in Section 7.2.4 provide the fastest search times and smallest collection

size. The set of wildcards based on the physico-chemical classifications of Taylor [1986] do

not perform as well, with 3% slower search times. Finally, search performance was worse

still when the collections were clustered using only the default wildcard; this supports our

approach of using multiple wildcards to construct clusters.

Figure 7.12 shows a comparison of clustering times between cd-hit and our novel clus-

tering approach that uses union-sequences and wildcards for four different releases of the

GenBank NR database; details of the collections used are given in Table 7.5. The results

show that the clustering time of our approach is roughly linear with the collection size and

the cd-hit approach is superlinear (Figure 7.12). On the recent GenBank non-redundant

collection, cd-hit is around 9 times slower than our approach and we expect this ratio to

further increase with collection size. The performance of our clustering system is similar to

the results presented in Figure 7.7 on page 200 for our RSDB system; this is to be expected

given that the slotted spex algorithm described in Section 7.1.1 is used to identify pairs of

similar sequences in both cases.
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Figure 7.12: Clustering performance for GenBank NR databases of varying sizes.

Number of Collection Overall size Percentage

Release date sequences Size (Mb) reduction (Mb) of collection

16 July 2000 521,662 157 45 28.9%

22 May 2003 1,436,591 443 124 28.1%

30 June 2004 1,873,745 597 165 27.4%

18 August 2005 2,739,666 900 245 27.3%

Table 7.5: Redundancy in GenBank NR database over time.

Table 7.5 shows the amount of redundancy in the GenBank NR database as it has grown

over time, measured using our clustering approach. We observe that redundancy is increasing

at a rate roughly proportional to collection size with the percentage reduction through clus-

tering remaining almost constant at 27%–29% across versions of the collection tested. This

suggests that redundancy will continue to plague genomic data banks as they grow further

in size.

Figure 7.13 shows the effect on accuracy for varying values of λ and T . We have chosen

λ = 0.2 as a default value because smaller values of λ result in a larger decrease in search

accuracy, and larger values reduce search speed. We observe that for λ = 0.2 there is little

variation in search accuracy for values of T between 0.05 and 0.3.

Figure 7.14 shows the effect on search times for varying values of T where λ = 0.2. As T
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Figure 7.13: Search accuracy for collections clustered with varying values of λ and T . Default

values of λ = 0.2, T = 0.25 are highlighted.

increases the clustered collection becomes smaller, leading to faster search times. However, if

T is too large then union-sequences with a high percentage of wildcards are permitted, leading

to an increase in the number of cluster members that are recreated and a corresponding

reduction in search speed. We have chosen the value T = 0.25 that maximises search speed.

Figure 7.15 shows the distribution of cluster sizes for GenBank, which appears to closely

follow a power-law distribution. Around 55% of clusters contain just two members, and the

largest cluster contains 488 members. Of the ten largest clusters identified by our approach,

five relate to human immunodeficiency virus proteins, three relate to cytochrome b, one

relates to elongation factor 1α, and one relates to cytochrome oxidase subunit I. This supports

our previous observation that cluster size is proportional to the interest in a research area.

7.3 Conclusion

Sequence databanks such as GenBank contain a large number of near-identical entries. Such

internal redundancy has several negative effects including larger collection size, slower search

times, and difficult-to-interpret results. Redundancy within a collection can lead to over-

representation of alignments within particular protein domains, distracting the user from

other potentially important hits. In this chapter we describe two improvements to existing
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Figure 7.14: Average blast search time using λ = 0.2 and varying values of T .

1 10 100 1000

Size of cluster (number of members)

1

10

100

1000

10000

100000

1000000

N
um

be
r 

of
 c

lu
st

er
s

Figure 7.15: Distribution of sizes for clusters identified in the GenBank NR database.
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methods for managing redundancy.

Our first contribution is a new system for identifying pairs of similar sequences in a large

collection that uses fingerprinting [Manber, 1994; Brin et al., 1995; Heintze, 1996; Broder

et al., 1997; Bernstein and Zobel, 2004]: a technique that has been used for grouping highly

similar documents in extremely large collections. Fingerprinting operates by selecting fixed-

length subsequences—known as chunks—from each document. This set of chunks is known

as the document fingerprint and acts as a compact surrogate for the document. As highly

similar documents are expected to share a large number of chunks, fingerprints are used to

efficiently detect similar documents in a collection.

Fingerprinting has been successfully applied to text and web data for several applications

including plagiarism detection, copyright protection, and search-engine optimisation. We

have adapted existing fingerprinting methods to biological sequence data with our slotted

spex algorithm. Our approach is suitable for processing genomic data that has different

characteristics to English text; for example, genomic sequences do not contain natural word-

delimiters such as punctuation and whitespace. Our approach can identify pairs of similar

sequences in the entire GenBank NR protein database in around 1.5 hours on a standard

workstation and appears to scale linearly in the size of the collection. This is a major

improvement on the existing best approach, cd-hit [Li et al., 2001b], that performs an

all-against-all comparison, requires over 9 hours for the same task and scales superlinearly.

Further, there is no notable change in accuracy.

Our second contribution is a novel approach for representing and managing redundancy

in the collection. Instead of discarding near-duplicate sequences, our approach identifies

clusters of highly-similar sequences and constructs a special union-sequence that represents

all members of the cluster simultaneously through the use of special wildcard characters. We

present a new approach for searching clusters that, when combined with a well-chosen set of

wildcards and a system for scoring matches between wildcards and query residues, leads to

faster search times without a loss in accuracy. Moreover, by recording the differences between

the union-sequence and each cluster member using edit information our approach compresses

the collection. Our scheme is general and can be adapted to most homology search tools.

We have integrated our clustering strategy into fsa-blast, our own implementation of

blast that incorporates improvements to the algorithm described in previous chapters. Our

experimental results for protein data show that our clustering scheme reduces blast search

times against the GenBank non-redundant database by 22% and compresses sequence data by

27% with no significant reduction in overall search accuracy. We propose that pre-clustered
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copies of the GenBank collection are made publicly available for download, resulting in faster

search and collection download times. Overall, our new approach for managing redundancy,

coupled with improvements to the gapped alignment and hit detection stages of blast that

were described in previous chapters more than halve the average protein query evaluation

time. Similarly, our improvements to nucleotide search described in Chapter 6 roughly halve

average nucleotide query evaluation times.

In the next chapter, we describe possible extensions to our work and present our conclu-

sions.
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Chapter 8

Conclusion and Future Work

In this chapter, we discuss possible extensions to the work presented in this thesis and provide

some concluding remarks. In Section 8.1 we proposed several new research directions. First,

we comment on the application of our novel search strategies to iterative search tools such

as psi-blast [Altschul et al., 1997]. We also discuss methods for faster iterative search

that reuse data between iterations. We consider applying the fast methods for sequence

comparison that are embodied in blast to index-based approaches, and propose that our

novel strategies for managing redundancy be applied to nucleotide data. We also consider

employing our slotted spex algorithm to identify duplicates in text and web collections, and

suggest that tighter coupling of the blast search stages be investigated. Finally, we present

a summary of our research and our conclusions in Section 8.2.

8.1 Future Work

Iterative search

Iterative search algorithms such as psi-blast [Altschul et al., 1997] and sam-t98 [Karplus

et al., 1998] use a recursive feedback approach that is similar to query expansion in infor-

mation retrieval [Billerbeck and Zobel, 2004] and results in highly sensitive search of protein

collections [Park et al., 1998; Chen, 2003]. The psi-blast algorithm employs blast in an it-

erative fashion as follows. First, the collection is searched with a user-specified query sequence

and alignments with an E-value below the default cutoff of e = 10 are displayed to the user1.

High-scoring alignments with an E-value below the threshold t, where t = 0.002 by default,

1Default parameters for NCBI-BLAST version 2.2.12

221



222 CHAPTER 8. CONCLUSION AND FUTURE WORK

are used to construct a profile or Position Specific Scoring Matrix (PSSM), which represents

sequences in the collection that are highly similar to the query. In the second iteration, the

collection is searched with the newly-constructed profile and the resulting high-scoring align-

ments are used to update the profile. This process is repeated until the maximum number

of iterations is reached or the process converges, that is, no new high-scoring alignments

are identified. Each iteration of psi-blast takes roughly as long as a single blast search

[Altschul et al., 1997], so that the overall iterative process is substantially slower than regular

pairwise approaches such as blast.

Our innovations relating to blast could also be applied to the iterative psi-blast app-

roach. We expect that our improvements would yield similar speed gains when applied to

psi-blast, since the underlying blast search process, rather than the profile construction

stages, appears to consume the vast majority of the overall search time [Altschul et al.,

1997]. One interesting extension of our work would involve developing our own version of

the psi-blast tool based on our existing fsa-blast implementation that incorporates our

innovations to blast. In addition to providing faster iterative search, this would permit a

more detailed analysis of the psi-blast approach and the performance characteristics of this

tool. Further, we believe that several speed-related optimisations to psi-blast are possible,

as we describe next. Faster psi-blast searches would be of enormous benefit to the biological

community; the iteration approach is highly sensitive but often infeasible for large batches

of queries because it is significantly slower than conventional pairwise methods.

We have considered two speed-related optimisations to psi-blast. Our first proposed

optimisation reduces the number of passes through the entire collection by introducing in-

termediate iterations where statistically significant collection sequences are realigned to the

updated profile before another complete scan of the collection is performed. In our own

preliminary study of psi-blast2 with the GenBank NR database and 50 randomly selected

queries, we found that around 28% of collection sequences initially incorporated into the pro-

file at iteration n also produced a statistically significant alignment at a prior iteration when

n > 1. That is, collection sequences with an E-value below the default threshold for profile

inclusion of t = 0.002 were often already reported in a previous iteration with an E-value

between the default cutoff of e = 10 and the default threshold for inclusion of t = 0.002.

This suggests that the iterative process could be hastened by inserting intermediate itera-

tions, where all reported alignments are rescored and possibly added to the profile, before

2NCBI blastpgp tool version 2.2.10
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another complete scan of the collection is performed. As a result, more sequences would be

incorporated into the profile sooner, thereby reducing the number of computationally costly

searches of the collection before the search converges.

Our second proposed optimisation to the psi-blast approach involves reusing data from

individual blast stages between iterations for faster search. We expect psi-blast profiles to

be highly similar from one iteration to the next, as only a handful of alignments are typically

added to the profile at each iteration. In our preliminary study of psi-blast described

previously, we found that 86% of sequences incorporated into the profile at iteration n were

also incorporated in the previous iteration when n > 1. Therefore, the results from each

stage of search, such as the location of hits, high-scoring ungapped extensions and high-

scoring gapped extensions, are unlikely to vary significantly between iterations. Faster psi-

blast searches may be achieved by storing and reusing the results from each stage of blast

in subsequent iterations and considering only the effect of changes in the search profile on

alignment scores. This method of information reuse would be most effective when changes

to the profile are small, and may lead to a substantial reduction in overall psi-blast search

times.

The psi-blast algorithm offers highly sensitive search and is able to detect roughly three

times as many remote homologies as basic pairwise approaches such as blast [Park et al.,

1998]. However, despite the success of profile-based methods, several problems continue to

plague iterative search schemes such as psi-blast. Two highly detrimental problems are

profile contamination, where false positive sequences are incorporated into the profile, and

profile saturation, where over-represented protein families dominate the profile so that it is no

longer general enough to detect distant relationships. Park et al. [2000b] and Li et al. [2002]

describe a solution to the latter problem, where a representative database that has fewer

redundant entries is used to perform profile training in the earlier iterations of search, before

a complete database such as the PDB or SCOP is searched in the final iteration. Previous

research has shown that this approach drastically improves profile quality, leads to more

accurate search, and reduces search times [Park et al., 2000b; Li et al., 2002]. Unfortunately,

existing representative databases are unsuitable for the final iteration of search because they

are not sufficiently comprehensive. Further, the two-database approach proposed by Park

et al. [2000b] is not practical for searching large collections such as GenBank because the

original and the representative collections must both reside in main-memory for reasonable

search performance.

In Chapter 7, we described a new approach for managing redundancy that identifies
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clusters of high-similar sequences and represents all members of a cluster simultaneously

using a special union-sequence. We propose that our new clustering scheme for managing

redundancy be applied to iterative search algorithms such as psi-blast. When applied

to regular pairwise methods such as blast, our clustering strategy supports two modes of

operation; either the single highest-scoring alignment only from a cluster is reported, or

alternatively all high-scoring alignments from a cluster are displayed. The former mode

reduces redundancy in search results and could be applied to earlier iterations of psi-blast

to remove redundant entries from the PSSM and reduce profile saturation. In the final

iteration of search, the latter mode could be employed to identify all statistically significant

alignments and provide the user with a comprehensive set of results. We would expect this

strategy to yield similar improvements in search accuracy to those reported by Li et al. [2002]

without the need to maintain two versions of the target database in main-memory. Further,

by removing redundant entries at search time our approach ensures that the closest matching

sequence from each cluster is incorporated into the profile.

Despite the success of search tools such as psi-blast and sam-t98, iterative search

algorithms remain poorly understood and we believe that further refinements to existing

approaches are possible. Many of the design aspects of iterative tools appear ad-hoc and

warrant scrutiny. For example, psi-blast iterates until convergence and employs a fixed

threshold for profile inclusion whereas sam-t98, which uses Hidden Markov Models (HMMs)

instead of PSSMs, performs four iterations and varies the inclusion threshold between it-

erations; it is unclear why different strategies have been employed for each tool. Further,

in an initial study where we compared the sensitivity of iterative homology search tools we

found that for a search with the same query and target database, psi-blast and sam-t98

frequently report greatly varying sets of alignments, despite both approaches being highly

sensitive to homologous relationships [Park et al., 1998]. This poor agreement suggests that

both tools fail to identify homologous relationships and that iterative search has consider-

able room for improvement. A search strategy that incorporates both PSSMs and HMMs

certainly warrants investigation.

Index-based approaches

Several index-based methods for homology search have been proposed, where an inverted

index of the collection is used to identify hits without exhaustively scanning the entire data-

base. Schemes such as cafe [Williams and Zobel, 1996; 2002], scan [Orcutt and Barker,
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1984], flash [Califano and Rigoutsos, 1993], ramdb [Fondrat and Dessen, 1995], and rapid

[Miller et al., 1999] employ an on-disk index and are suitable for searching large collections

such as GenBank. Cafe is the most successful approach to employ an on-disk index with

substantially faster search times and a small reduction in search accuracy when compared to

blast [Chen, 2004]. In contrast, blat [Kent, 2002], PatternHunter [Ma et al., 2002; Li

et al., 2004] and ssaha [Ning et al., 2001] employ an index that resides in main-memory and

offers staggeringly fast search times, but is unsuitable for searching large collections such as

GenBank.

We propose combining the sensitive blast approach with fast on-disk index based schemes

such as cafe. One of the main drawbacks with the existing cafe approach is that it em-

ploys inefficient methods for aligning collections sequences in the later stages of search. We

expect that by incorporating the ungapped and gapped extension methods used by blast

to align collection sequences, the search performance and accuracy of cafe could be further

improved. A variation of the blast algorithm that employs an in-memory index is also

worth investigating. Although in-memory indices are unsuitable for processing large collec-

tions such as GenBank, such a scheme may serve well if used for coarse-grain distributed

searches where the collection is divided amongst several processors and each node processes

only a fraction of the entire collection [McGinnis and Madden, 2004].

Existing research and our own preliminary investigations suggest that index-based ap-

proaches are generally faster but less sensitive than exhaustive search schemes such as blast

[Chen, 2004; Kent, 2002]. Further, index-based approaches are substantially faster for highly

insensitive searches where a long word length is employed because search times are dependent

on the number of hits rather than the size of the collection when an index is employed [Ning

et al., 2001]. Therefore, we propose a two-stage approach to search that combines an index-

based scheme such as cafe with an exhaustive search method such as blast. Our proposed

scheme works as follows. First, a fast but insensitive search is performed using an inverted

index. If at least v statistically significant alignments are identified, where v is the maximum

number of alignments reported to the user, then the search terminates. Otherwise, a more

sensitive, slower exhaustive search is performed to identify more distantly-related homologs.

Since not all queries must be processed using the slower exhaustive approach, average search

times would be reduced. This two-stage approach is an automated variation of the manual

procedure proposed by McGinnis and Madden [2004], who suggest that users “first find the

very obvious similarities with a fast algorithm [and then] use more sensitive algorithms on

the [query] sequences that did not have strong matches in the earlier step”.
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Managing redundancy in nucleotide collections

In Chapter 7 we described novel methods for managing redundancy in genomic collections.

We confined our investigation to protein data, however the application of our methods to

nucleotide sequences is certainly worth investigating. We expect to find a higher degree of

duplication in nucleotide collections with large batches of expressed sequence tag sequences

and parts of entire genomes prevalent in databases such as GenBank. Altschul et al. [1994]

and Rapp and Wheeler [2005] both comment on the high degree of duplication in nucleotide

collections due to the presence of thousands of overlapping sequence fragments from rapid

sequencing techniques.

We do not believe our methods are trivially adapted to nucleotide data: collections such

as the GenBank NR nucleotide database are larger than their protein counterparts, and

DNA sequences exhibit different characteristics to protein sequences with a smaller alphabet

size and longer average sequence length. Our fingerprinting strategy may require further

tuning before it is successfully applied to nucleotide collections. Further, it is unclear how

our clustering strategy could be applied to DNA sequences that are compressed using the

byte packed scheme. Without decoding ambiguous codes (which is time consuming and

currently only performed for a fraction of collection sequences in the final stage of blast)

the compression scheme only supports an alphabet of size four that leaves no unassigned

codes for the extra wildcard characters embedded in union-sequences. This problem would

need to be addressed for our clustering strategy to be applied to nucleotide data.

Other possible extensions

We described a new fingerprinting algorithm in Chapter 7 that is based on the lossless spex

approach by Bernstein and Zobel [2004]. Our slotted spex algorithm is suitable for genomic

sequence data that must be processed with a higher granularity than English text, which does

not contain natural delimiters such as whitespace. Slotted spex reduces the number of chunks

inserted into the hashtable but ensures synchronisation between the chunks processed from

similar sequences. As a results, fewer entries are made into the hashtable, less main-memory

is required, each iteration is faster and fewer iterations are required. Although slotted spex

was designed specifically to process sequence data, we propose that our novel algorithm

also be applied to English text; we expect that similar benefits would also result when text

documents and web data is processed. Further, slotted spex is likely to perform well at

processing text in other languages such as Chinese that lack delimiters such as whitespace.
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Finally, we propose that tighter coupling between the individual stages of blast be inves-

tigated. For example, information about the location of hits could be used for faster ungapped

alignment by avoiding the need to realign these matching regions. Similarity, the location of

high-scoring ungapped alignments could be used for faster and more sensitive gapped align-

ment, perhaps using a scheme that links the ungapped regions and only employs dynamic

programming for joining these already aligned regions. The authors of PatternHunter

[Ma et al., 2002] describe a scheme where short, matching regions between the query and a

collection sequence are identified and then joined together to construct a local alignment; a

more detailed evaluation of this approach in the context of exhaustive search strategies such

as blast would certainly be worthwhile.

8.2 Conclusion

Our aim in this research project has been to investigate new methods for fast, accurate

homology search. Continuing the evolution of search algorithms such as blast, by improving

its algorithms and optimisations, is essential to reduce query evaluation times in the face of

exponentially-increasing collection sizes. However, we wish to retain the high degree of

sensitivity offered by the blast approach.

We have successfully met our aim with a wide range of innovations that afford faster

search of genomic collections. We have described new methods for sequence alignment,

new approaches for identifying hits, faster methods for comparing nucleotide sequences, and

novel strategies for managing redundancy. The result of our improvements is a two-fold speed

improvement to the blast algorithm for both protein and nucleotide searches. Importantly,

none of our schemes have a detrimental effect on search accuracy.

To motivate the need for fast yet accurate homology search methods, we described ge-

nomic sequence data and existing methods for comparing sequences and searching data banks

in Chapters 2 and 3. We began Chapter 2 with an overview of genomics and proteomics:

we explained how sequence data is derived from proteins and DNA, and the roles that these

molecules play in living organisms. We also described popular biological sequence repositories

such as GenBank [Benson et al., 2005] and highlighted the exponential growth in sequence

data over the past two decades. Next, we discussed techniques for comparing biological se-

quences through a sequence alignment. We presented methods for global [Sellers, 1974] and

local [Smith and Waterman, 1981] alignment that support linear and affine gap costs [Gotoh,

1982]. We also described linear space methods for recording the optimal alignment through
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traceback [Hirschberg, 1975] and methods for recording all high-scoring alignments, rather

than only the best alignment, between a pair of sequences.

Pairwise sequence alignments are computationally expensive in time as well as space, and

we presented two heuristics in Chapter 2 that reduce the time required to align sequences

with minimal impact on accuracy. The first is the banded alignment strategy [Chao et al.,

1992] that is employed in the fasta homology search tool and the second is the dropoff

alignment method [Zhang et al., 1998a] employed by blast. Finally, we explained how data

mutation matrices such as BLOSUM [Henikoff and Henikoff, 1992] and PAM [Dayhoff et al.,

1978] are constructed and used to score protein sequence alignments.

Genomic search methods have a long history with early approaches such as fastp [Pear-

son and Lipman, 1985] dating back to more than two decades ago. In Chapter 3 we surveyed

the most successful approaches to homology search. We began by describing the popular

fasta [Pearson and Lipman, 1988] and blast [Altschul et al., 1990; 1997] exhaustive pair-

wise methods. We presented a detailed description of the blast algorithm based on original

research papers describing the approach [Altschul et al., 1990; 1997] and our own analysis of

the ncbi-blast source code. Our description of blast incorporated a study of the perfor-

mance characteristics of each stage that provided us with a valuable analysis of the filtering

mechanisms that it employs. We also provided an overview of blast usage based on our

analysis of query data that were provided to us by researchers at the NCBI.

In Chapter 3 we also described a range of alternative approaches to homology search. We

surveyed approaches for identifying hits efficiently that employ an index of the collection,

similar to those commonly used for text retrieval in search engines such as Google3. Index-

based search tools such as cafe [Williams and Zobel, 1996; 2002], blat [Kent, 2002] and

PatternHunter [Ma et al., 2002; Li et al., 2004] avoid scanning the entire collection and

are considerably faster than exhaustive approaches such as fasta and blast. Unfortunately,

these methods are less sensitive, or are unsuitable for processing large collections. We also

considered distributed approaches to search, whereby the task is divided amongst a cluster of

processors to reduce query evaluation times, and iterative search methods such as psi-blast

[Altschul et al., 1997] that employ profiles for highly sensitive but time consuming search.

We considered a range of issues relating to genomic search in Chapter 3. We discussed

methods for assessing the statistical significance of alignments, based on the observation

that optimal pairwise alignment scores for random or unrelated sequences follow an extreme

3See: http://www.google.com/



8.2. CONCLUSION 229

value distribution. We described in detail the methods by which blast calculates an E-

value for each alignment that represents the likelihood the alignment score was due to a

chance similarity. We also discussed the effect of low-complexity sequence regions on the

quality of search results, and surveyed existing approaches for identifying and managing

such compositional bias. Next, we presented methods for assessing the accuracy of homology

search tools that employ protein classification databases such as SCOP [Murzin et al., 1995;

Andreeva et al., 2004]. Finally, we discussed the detrimental effects of internal redundancy in

genomic collections on search and surveyed existing approaches for identifying and managing

near-duplicate sequences.

The gapped alignment stages of blast consume on average around 32% of the total query

evaluation time for protein searches, and improvements to this stage warrant investigation.

In Chapter 4 we described three methods that reduce the time taken to align sequences

with negligible effect on accuracy. First, we considered a rearrangement of the dynamic

programming recurrence relations that was described by Zhang et al. [1997] however is not

well-known. We demonstrated that the new arrangement affords a reduction in computation

for each cell in the alignment matrix and leads to a 20% reduction in the time taken to

perform the gapped alignment stages of blast.

Our most significant innovation in Chapter 4 was a novel sequence comparison method

called semi-gapped alignment that, when carefully parameterised, leads to 40% faster align-

ment. Our approach only considers insertions and deletions at fixed intervals in each sequence

by dividing cells in the alignment matrix into one of four classes. A different set of recur-

rence relations is employed to solve cells in each class, depending on whether insertion or

deletion events are permitted. We found that semi-gapped alignment closely approximates

gapped alignment, and employ our novel technique as an additional search stage between the

ungapped and gapped alignment stages of blast.

Finally, we described an alignment heuristic called restricted insertion that does not

consider adjacent gaps — an insertion follow immediately by a deletion — and leads to

a reduction in computation for some cells in the alignment matrix. Our novel restricted

insertion approach reduces the time taken to align sequence by roughly 8%. Importantly,

all three of our approaches can be used in conjunction with the dropoff heuristic already

employed by blast to minimise search times. We have integrated the three new methods

into our own implementation of the gapped alignment stages of blast and show that, when

combined, they halve the time taken to align sequences with no significant effect on search

accuracy.
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The first stage of a blast search involves identifying hits; short, fixed-length subsequences

or words from the query sequence and the current collection sequence that are identical

or highly similar. For protein searches, the task of identifying hits consumes on average

around 37% of the total search time, however very little analysis of the blast hit detection

process has been conducted. In Chapter 5 we considered the effect of the word length and

neighbourhood threshold parameters on this first stage. We found that larger word lengths

permit a high degree of search accuracy with far less computation, but also increase the size

of the lookup structure employed to identify hits. As a result, word lengths of four or greater

result in slow search times because the lookup structure does not fit into cache.

Our most significant contribution in Chapter 5 was a novel data structure for identifying

hits. Our approach employs a cache conscious deterministic finite automaton that has been

carefully optimised to minimise its size and improve search performance. The automaton is

significantly smaller than the lookup table employed by ncbi-blast; it is between 1% and

15% of the size of the original data structure for the parameters settings tested. Furthermore,

our new approach reduces the average time taken to identify hits by 41% when default

parameters are employed and is substantially faster when a word length of four is used. We

also compared the two-hit and one-hit modes of operation supported by blast in Chapter 5

and confirm earlier conjecture that the two-hit mode affords faster search with comparable

accuracy [Altschul et al., 1997].

Our analysis of blast usage data in Chapter 3 revealed that around 57% of queries related

to blastn nucleotide searches, and that evaluating nucleotide queries represents a significant

investment of computing resources. However, little attention has been paid to the process

through which blast processes nucleotide collections. In Chapter 6 we described a series of

innovations that permit faster nucleotide query evaluation. Each of our schemes is based on

the special byte packed representation already employed by blast, whereby a single byte is

used to store four nucleotide bases. Whereas ncbi-blast decompresses collection sequences

for each stage of search, we proposed novel approaches to each stage that employ lookup

tables and numeric comparisons to process sequences in their compressed form and compare

four nucleotide bases at a time. Our improvements to the hit detection and ungapped

alignment stages are relatively straight forward; we described simple algorithms that provide

a substantial reduction in search time with no affect on the result. However, byte-wise

comparisons in the gapped alignment stages, where insertions and deletions complicate the

alignment of a single byte from the collection, requires more sophisticated methods. We

described two alternative techniques, called bytepacked alignment and table-driven alignment,
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for aligning compressed collection sequences. The former allows gaps to start and end only

on the collection sequence byte boundary, permitting four bases to be processed at a time

without consideration for gaps. The latter uses a lookup table, which contains pre-computed

answers, to align four bases from the collection to a single base from the query at a time.

When combined with our improvements to the first and second stages of blast, our schemes

more than halve the average time taken to search nucleotide collections.

Genomic collections such as GenBank contain a large number of near-duplicate or re-

dundant entries. Such internal redundancy leads to larger collection sizes and longer search

times; near duplicate sequences consume extra disk space but rarely contribute any insightful

information during search, and homology search tools compare the query to multiple near-

duplicate entries that are likely to produce a very similar result. In Chapter 7, we described

new methods for managing redundancy in genomic collections. Our first contribution was

a new approach for identifying pairs of highly similar sequences in a large collection that

employs fingerprinting, a technique that has been successfully applied to near-duplicate de-

tection for web and text data [Manber, 1994; Heintze, 1996; Broder et al., 1997; Shivakumar

and Garcia-Molina, 1999]. We introduced the slotted spex algorithm that efficiently iden-

tifies redundancy in large genomic collections. Our approach is designed to be suitable for

processing genomic data, which exhibits different characteristics to English text. When ap-

plied to GenBank, our method is around six times faster than the most successful existing

approaches that rely upon an all-against-all comparison. Further, we show that our method

scales linearly with collection size and is equally sensitive to existing methods.

Our second contribution in Chapter 7 was a new method for representing and searching

redundant entries in protein collections. We group highly similar sequences into clusters, and

represent each cluster using a special union-sequence. The union-sequence contains wildcard

characters to denote positions in the sequence that vary between the cluster members. We

carefully selected a set of seven wildcards for our clustering strategy, whereby each wildcard

represents a distinct set of residues and may only be substituted in place of residues that it

represents. We also described our method for scoring matches between amino acids in the

query sequence and wildcard characters in the union-sequences during search that ensures our

clustering approach maintains a high degree of sensitivity. When applied to the GenBank NR

protein database, our method reduces collection size by 27% and leads to 22% faster search

times, with no noticeable loss in accuracy. Table 8.1 provides an overview of the reductions

in blast search times that were presented in this thesis.

In this chapter, we discussed several possible extensions to our work. First, our methods
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Improvement Percent original runtime Cumulative percentage

Protein Nucleotide Protein Nucleotide

Improved gapped alignment 83 % – 85 % –

New DFA for hit detection 85 % – 68 % –

Clustering with wildcards 78 % – 49 % –

Bytepacked alignment methods – 49 % – 49 %

Table 8.1: Summary of speed improvements to the blast algorithm presented in this thesis

for an Intel workstation. Cumulative speed gains are based on reported experimental results

rather than interpolated.

for fast sequence comparison could also be applied to the iterative psi-blast tool. Further, we

proposed inserting intermediate iterations into the psi-blast process where similar sequences

are rescored, thereby reducing the number of scans of the entire collection. The results from

each stage of search could also be reused between the iterations of psi-blast when changes

to the profile are small. Next, our scheme for managing redundancy could be applied to

psi-blast to minimise the likelihood of profile saturation. The efficient filtering steps of the

blast algorithm could also be applied to index-based schemes such as cafe [Williams and

Zobel, 1996; 2002] and PatternHunter [Ma et al., 2002; Li et al., 2004]. Our innovations

for managing redundancy could also be applied to nucleotide data. The application of our

slotted spex approach to English text is also worth investigating. Finally, we propose tighter

integration of the individual stages of blast to reuse comparison information.

In this thesis, we have proposed new methods for efficient, sensitive search of genomic

sequence databases. Our innovations have enabled us to increase the speed of the pop-

ular blast homology search tool without sacrificing search accuracy. When combined,

our new methods for faster sequence comparison more than halve average query evalua-

tion times and are general enough to be applied to other tools. Our improvements to blast

are embodied in a new, open-source distribution of the tool that is available for download

at http://www.fsa-blast.org/. With a significant advancement in search performance

achieved, we expect that our contributions will form an integral part of state-of-the-art ho-

mology search tools in the future.
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