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ABSTRACT

Smart materials and structures systems are increasingly being developed to handle more
complex problems. One of the main research schemes is the augmentation of the control
authority of the smart actuators used in such systems. The augmentation can be obtained by
constructing hybrid and multi- smart materials actuator systems and/or by the optimization of
the location and orientation of those actuators. In the first part of this study, the alteration of
the natural frequency of composite structures using Nitinol-based Shape Memory Alloy
(SMA) wires will be presented using the analyses of strain energy perturbations on a plate.
These governing strain equations were solved analytically and numerically to show the effect
of point forces acting in a distributive manner and the subsequent effect it has on the plate’s
stiffness and hence it’s natural frequency. In the second part of the thesis, a more complex
loading condition is considered to investigate piezoceramic actuator control authority in

relation to wing flutter control.

The advancement in the application of active material induced-strain actuation such as
piezoelectric materials in suppression of structural vibrations drew wide interest in its use for
wing flutter control. Higher flutter speed and hence wider operating envelope was achieved
by delaying the coalescence of the eigenvalues for plunge and twist modes. . This delay is
obtained by adding more strain energy to the system as a result of the activation of the
piezoelectric actuators. Most of the studies done were by controlling the plunge/bending
motion, where the piezoelectric actuators are bonded longitudinally to produce bending
moments. In this study, the control of the pitch/twisting motion was investigated and it
showed better control of flutter by using simultaneous multi-actuations compared to single
piezo actuations. It was shown that within the scope of the angular orientations of the
piezoelectric patches investigated in this study, piezoelectric patches oriented about +15°
from the beam’s longitudinal axis resulted in the most optimal piezo-configuration. This was
corroborated by both the numerical flutter speed and actuator moment evaluations. In
addition, the orientation of the piezoelectric patches was shown to significantly affect the
pitch angle of the beam relative to each other. The damping ratio was also investigated and
this showed greater instability for piezoelectric patches oriented at negative angles, thus
further supporting the finding of the aforementioned optimal orientation of +15°. These
findings confirmed the dominance of the base (closest to the fixed portion of the beam) piezo

when actuated with other piezos.
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Chapter 1. INTRODUCTION

1.1.Background
Although the static properties such as strength and stiffness are major considerations in
designing mechanical structures, the dynamic properties such as fatigue and resonance of the
structure have a significant role in the design process. For example, the importance of
considering the resonance comes from the fact that during the resonance, the amplitude of the
vibration is magnified to levels that may lead to a catastrophic event. While the usual design
process depends on the collected experiences and statistical data, a developing trend is to
implement smart technologies to develop smart structures that are capable of self-monitoring,

diagnostics and repair.

The technology of Smart materials and Structures has given a new face of development to the
fields of Aerospace, robotics and structural engineering due to which the demand for less
weight stand-alone systems is growing. Smart materials [1] represent a group of functional
materials, which can sense and respond to changes in their environment in a predefined
manner, they also have the flexibility to go back to their initial stage once the changes in the
environment come down. Smart Structures are structures that can sense certain stimuli and
respond accordingly, somewhat like Humans. They can interact with external environment
and have the ability to adapt to varying loading scenarios. Research on smart structures has
emphasized the incorporation of various devices in a structure to provide Smart functions like
Strain sensing (for structural vibration control and traffic monitoring), Damage sensing (for
Structural health monitoring), Temperature sensing (for Hazard mitigation & Structural
performance control), Structural vibration control. In the process of developing Smart
structures materials like piezoelectrics, Shape Memory Alloys (SMAs) and Electro
Rheological Fluids (ERFs) are used for sensing the different loading conditions and actuation

to deliver a required force to maintain the equilibrium.

Due to its importance and complexity, the aerospace discipline becomes one of the major
developers and utilisers of the smart materials and structures technology. Several applications
of smart structures were exploited such as (i) vibration and acoustic control; tail buffet
suppression, flutter damping, engine vibration control and active acoustic control, (ii) shape
control; adaptive smart wing, adaptive engine inlet, adaptive Micro Air Vehicles and vortex

wake control, (iii) multifunctional smart structures; smart skin and antenna, structure-power
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materials and (iv) morphing aircraft structures [2]. Most of these applications are to enhance
the aircraft performance however the most important application is the flutter damping or
control as it may lead to a catastrophic event. Traditionally, the wing flutter problem (and
other Aeroelasticity phenomena) was treated in design stages via altering the stiffness of the
structures, the mass distribution and the position of the flexural axes. The process outcome is
an operational envelop that limit the boundaries (basically the flutter critical speed) of the
operation of the aircraft to prevent catastrophic structure failure. Then in the event of the
flutter, it is controlled or damped using the conventional aerodynamic control surfaces
operated by servo-hydraulic actuators. To replace these heavy equipments several smart
actuators were investigated such as induced helicopter blade twist, active blade tip with
bending-torsion ISA actuator, rotor blade flap actuation, bimorph servo-flap actuation, C-
block and recurved flap actuators, and piezostacks actuated servo-flaps [3]. In aeroelastic
systems, the shape of the structure affects the aeroloading on that structure, and hence higher

actuator forces are required to control aerostructures effectively.

Each of smart sensor and actuator materials has its own advantages and disadvantages. For
example, SMA generates large forces but in low frequency, while the piezoelectrics generate
lower forces but at higher frequencies. However, by careful selection, numerous classes of
hybrid actuation systems can be synthesized to satisfy a broad range of performance

requirements [4], [5], [6].

1.2.0bjectives

The main theme of this study is to investigate the possible methods to augment the control
authority of smart structures and their applicability in complex structural dynamic problems
such as flutter suppression/control of aerostructures. Two streams were examined; hybrid
actuation system of SMA and Piezoelectric materials, and multi-actuation of an advanced

piezoelectric material technology, namely, the Active Fibre Composite (AFC).
The research questions are set as follows:

» Can SMA’s adequately control structures?

* How can SMA’s affect natural frequency?

» Can activated SMA’s be properly modeled?

» Can the optimized actuation of Piezoelectrics adequately control flutter?

16



» Is torsional control more effective than bending in overall flutter response?

1.3.Thesis Structure

Figure 1 shows the overview of the work conducted in the study. The thesis is structured to

follow the sequence of the research work.

Control authority augmentations through hybrid
actuation system, and multi-actuation system to

control structural flutter.

Surface-mounted
SMUA wires | PZT wafers
[

[ |

: | Analytical | Aeroelastic F.E. Model
Experiment i Solution ‘ (Bending-Torsion)

|
| _ _ 1

effect on control | Control

AFC skew angle | lMuIti-Actuation

Figure 1.1: The structure of the research work.

The organization of the thesis chapters are shown below:

Chapter 1: The Introduction chapter contains the background, the objective, publications that

have emerged from this work and the layout of the thesis.

Chapter 2: The literature reviews of the various disciplines of control and smart structures

that form the body of knowledge are compiled in this area.

Chapter 3: Mathematical modelling, analytical solution and experiment work of the alteration
of the dynamic properties of a strip using SMA wires are presented in this chapter. The
mathematical formulation starts from basic solid mechanics and ends with the comparison

with the experiment results.

Chapter 4: This chapter deals with the flutter phenomena and its control. The equations of
motion of the aeroelastic structure incorporating piezoelectric patches are derived in this
chapter. Also, this chapter contains the Finite Element model constructed to solve these

equations.
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Chapter 5: In this chapter the control law and the formulation of the aerodynamic forces and
actuators matrices are presented. The computer program validation and the numerical

simulation results and discussion are also presented in this chapter.

Chapter 6: This chapter is dedicated to the overall conclusion and the recommendations for

the further work.
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Chapter 2. LITERATURE REVIEW

2.1.The Concept of Smart Structures
Mechanical structures have evolved from passive load-carrying elements into interactive
systems known as Smart Structures which can be defined as “structures possessing the
capability to sense and actuate in a controlled manner in response to variable ambient
stimuli” [7]. In the same manner, Rogers and Giurgiutiu [8] defined the smart structures as “
the integration of actuators, sensors, and controls with material or structural component”.
These two definitions are limited to the description of the components comprise such systems
but not their functionality. Takahashi (cited in [9]) defined the smart structures as “those
which posses characteristics close to, and, if possible, exceeding, those found in biological
structures”. Such characteristics include sensing, actuation, adaptability, sustainability and
survival, selectivity, stability, self-diagnosis, self-repair, multifunctionality, reproduction,
memory, recognition, discrimination, etc [9]. This definition describes wide range of
functionalities that can be designed and implemented in mechanical structures by mimicking
biological structures. However, Rogers and Giurgiutiu [8] distinguish between the biological
and smart structures in that the biological structures serve themselves, while the smart
structures produce artefacts designed by human being to serve human needs. They define the
adaptronic structures as those to “be designed for a given purpose; and, by the transduction of
energy, must be able to modify its behaviour to create an envelope of utility.” Wadhawan [9]
summarized the definition of the smart structures in “Smart or adaptronic structures are
structures with an ability to respond in a pre-designed useful and efficient manner to

changing environmental conditions, including any changes in their own conditions.”

Although the smart structure functionalities go beyond those of the biological ones, full
mimicking of biological systems is still far from realization. The biological/living systems
comprise several subsystems as depicted in Figure (2.1). The sophistication (smartness) of
these systems depends on the level of the interaction between these subsystems. These
subsystems are the host structure (body), sensors (nerves), actuators (muscles), control centre
(brain), and the energy source [9]. One can add that those subsystems have the capabilities to

regenerate themselves and grow.

20



Actuators
(FAuscles)

Sensars
(Merves)

Host structure
(Body)

Energy
Source

Figure 2.1: Subsystems of living/biological systems.

Likewise, the smart structures employ distributed and on-line sensors, actuators and
microprocessors to measure (sense) the change in the surrounding environment and take

corrective or preventive actions.

Each of the smart structure subsystems leads to different line of applications. For example,
Structural Health Monitoring (SHM) which is one of the fastest emerging technologies is an
application emphasizing on the sensors subsystem. In SMH, loading capacity of the structure
(load carrying) is monitored and structural failure can be predicted allowing time to intervene
and prevent catastrophic consequences. SHM technology is well implemented in Nuclear
reactor walls and common bridges. It is also progressively used in maritime and aerospace
fields where the polymeric composite structures, which are prone to cracking, are becoming
dominant. Emphasizing on the muscles (actuators) leads to shape control functionalities. The
concepts of morphing wing and airfoil with variable cambers are promising in developing
efficient aircraft by optimizing airfoil shapes and replacing the heavy hydraulic equipments
[10], [11, 12], [12] & [3]. Intelligent structures capable of learning from the surrounding
environment and making decisions based on that learning are feasible by incorporating
Artificial Intelligence techniques such as Neural Networks, Fuzzy Logics and Genetic
Algorithms, in the control subsystem. The concept of self-healing structures, shown in Figure

(2.2) [13], currently grasps significant attention from the scientific community. Energy
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harvesting from vibrating structures is also an emerging technologies aiming to develop

efficient and stand alone structural systems.
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Figure 2.2: Sel-healing structures concept [13].

Smart Structures is an interdisciplinary technology which includes materials science and
engineering, electronics and signal processing, and control. The advancements in these
disciplines have broadened the scope of smart structures and helped in the development of
reliable and efficient smart structure systems. With the fundamental roles of the digital and
micro-electronics and —processors technologies in realizing of the smart structures,

nanotechnology will get these structures into unprecedented levels.

2.2.Smart Materials

2.2.1. Overview
In most of the literatures the materials used in smart structures and systems are called smart
materials. However, this term is debatable; “Is the material smart by itself?”” In engineering,
smart systems basically turn complex and surplus information into useful outcomes. In this
sense, Culshaw viewed that smartness requires some sort of entropy reduction [14]. First of
all, for the entropy reduction to take place an outside energy source is required, in other
words, “all smart system have some form of energy source associated with them” [14].
Another important aspect in defining the smartness is the requirement of information
reduction, where the complex information is refined to produce useful function(s). This
requirement is known as Information-reduction criterion [9]. These two requirements are
clear when comparing between the simple pressure transducer and the pressure transmitter.

The pressure transducer could not be regarded as smart because the input pressure produces a
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voltage in one-to-one relationship. In contrast, the pressure transmitter incorporating a
thermocouple that measures both the pressure and the temperature reduces this (surplus)
information to a single value of temperature-corrected pressure. Here, the temperature
fluctuation acts as a source of energy which is converted into mechanical forces and corrects
the apparent pressure [14]. The pressure transmitter satisfies both the energy and information-

reduction requirement of the smartness.

The materials used in smart systems come under the generic classification known as
functional materials which are those “can perform certain functions when triggered by
environmental stimuli or control signal” [15]. The functional materials can be categorized in
to passive and active groups. The passive functional materials are characterized by the
existence of anomalies in one or more of their physical properties or phase transition that can
be used as a function. For example, the fact that the volume of the mercury changes with
temperature is used in thermometer to measure the temperature. The active functional
materials are characterized by their capability to convert energy from one form to another
such as shape memory alloys, piezoelectric, magnetostrictive and electrostrictive materials
[15]. Wadhawan [9] redefined the smart materials as “that subset of functional materials

which satisfy Culshaw’s information-reduction criterion.”

2.2.2. Shape Memory Materials
Shape memory effect in alloys dates back to the 1930s, however it was the discovery of
Nickel Titanium alloy by Buehler and Wiley from the Naval Ordinance Laboratory in 1962
which proved that Shape Memory Alloys exhibit unique mechanical memory [16]. SMAs
have the ability to return to their predefined shape from large strains without undergoing
plastic deformation. This ability of recovering its shape after undergoing a shape change with
the help of a rise in temperature is called Shape Memory Effect (SME). This shape change

occurs due to changes in the atomic crystal structure as shown in Figure (2.3).

The chemical composition of Ni-Ti alloys is 50%Ni / 50% Ti, with small additions of copper,
iron, cobalt, or chromium. The crystal structure of SMAs for example Ni-Ti is cubic when the
temperature is high, this cubic crystal structure is called austenite. When the SMA is cooled
the material then transforms to a monoclinic lattice structure, which looks like parallelogram
in two dimensions, and is called martensite. When the SMA, which contains many atoms, is
cooled the rows of atoms alternatively tilt in left and right directions. This property of

arrangement of atoms is called “twinning” as the atoms form mirror images of themselves
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through a symmetrical plane. Any four connected atoms in the low temperature structure
have martensite parallelogram shape. The stress required to rearrange the twinned SMA is
relatively low. Thus, the application of sufficient stress to deform the SMA leads to the atoms
being reoriented so that they all lie in the same direction. This property is called
“detwinning”. If the SMA is heated the deformed martensite will revert back to austenite
phase and the original shape of the piece will be obtained. This occurs as a result of atomic

positions always being maintained in the austenitic phase [17].
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Figure 2.3 Description of Shape Memory effect [17].

The SMA’s have very good corrosion resistance and biocompatibility, which enable them to
be widely used in the biomedical field. Plastic strains of 6-8 % may be completely recovered
by heating SMA, which can also change its properties reversibly especially Young’s Modulus
during the phase transformation. As a result of the Ti-Ni alloys being readily fabricated into
various forms or sizes, it is technically feasible to make them an active element in various
composites. In particular, Ti-Ni thin films, fibres, particles and porous bulks have been
successfully fabricated in recent years, hence these materials, either in the monolithic form or
in combination with other materials, have exhibited some exciting application potentials in
Micro-Electro-Mechanical systems (MEMs), medical implants, intelligent materials and
structural systems. Shape memory alloys have proven to be successful in many commercial
applications such as Hitachi’s Robotic Hand, radiator valves, greenhouse vents etc. In every
application, SMA has demonstrated large force and displacement capabilities and low power

consumption with lightweight added to the operating device [17].

C.A. Rogers et al. [18], [19] embedded SMA wires into composite plates and demonstrated
the ability to alter the effective stiffness, natural frequencies and mode shapes of the plates.

Two concepts were used; Active Strain Energy Tuning (ASET) and Active Modal
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Modification (AMM) or Active Property Tuning (APT). Using Rayleigh-Ritz method several

structural cases were analysed; bending deflection, buckling and acoustic transmission loss.

In the ASET technique the SMA wires are plastically elongated and embedded in to the
composite material at its neutral axis. By curing the composite material at high temperature
the SMA wires are constrained from contracting to their normal length. When the fibres are
heated, the SMA fibres try to contract to their memorized length generating a recovery force.
The resultant force will therefore adaptively change the structural response of the plate. On
the other hand the Active Property Tuning (APT) method avoids inducing large internal
stresses in a SMA composite plate. This method embeds the SMA wires to the composite
plate without plastic elongation. As the Young’s modulus of the embedded SMA fibres will
change from 4 to 12 Mpsi during the phase transformation, the embedded SMA fibres will
change the overall stiffness of the plate resulting in a change of structural response of the

plate [19].

In 1990, A Baz et al. [20] demonstrated both theoretically and experimentally, the feasibility
of utilizing SMA in controlling the flexural vibrations of a flexible cantilever beam. Unlike
the work done by Rogers et al, the SMA wires are placed external to the beams, in order to

enhance the cooling and dynamic response characteristics of the SMA.

Chaudhry et al. [21] demonstrated experimentally the ability to induce large bending
displacements of beams using SMA wire actuators. The SMA wires are placed externally in

two different configurations.

Two experiments were carried out by Srinivasan [22] (cited in [16]) to explore the use of the
SMAs in passive and active vibration control of structures. In the first experiment the
vibration control was obtained by using SMA wire fastened to the beam in V-configuration
and a forcing piezoelectric patch. Both actuators are located at the root of the beam. Multiple
SMA wires were used in the second experiment to demonstrate the ability to control the beam

in different frequencies.

2.2.3. Piezoelectric Materials
The piezoelectricity (piezein in Greek means press) goes back to the behaviour of the
Tourmaline stone which if it were put into hot ash, the ash particles are attracted to one side
and are rejected from the other side [23]. During their experiments on several crystals

(Tourmaline, Quartz, Topaz ...etc.), Pierre and Jacques Curie in 1880 discovered the direct
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piezoelectric effect; mechanical deformation in certain directions causes proportional
electrical charges at opposite faces of the crystals. Later the brothers Curie, through
experimentation, were able to confirm the converse effect (electrical charges cause
deformation) which is deduced mathematically by Lippmann in 1881 [23], [24]. The work on
piezoelectricity continued until the publication of ‘Lerbuch der Kristallphysik® (1910); a
standard reference defining the natural crystal classes associated with the piezoelectricity
effects and the macroscopic piezoelectricity coefficients. In 1917 and during World War I, P.
Langevin and French co-workers succeeded in developing an ultrasonic submarine detector
(sonar) using thin quartz crystals. Intense activities in developing piezoelectric devices were
motivated by the success of the sonar. During World War II, easily manufactured ceramic
materials, known as ferroelectrics, exhibiting astonishing dielectric characteristics (100 times
higher than common crystals) were discovered in isolated research groups in U.S., Japan and
Soviet Union [24]. The barium titanate and lead zirconate titanate piezoceramic families were
developed during this period. The commercial use of the piezoelectric materials grew
especially in Japan where several devices employing piezoceramics had been produced such
as signal filters used in televisions and communication equipments, audio buzzers in (smoke
alarms). Piezoelectricity has become the heart of solid-state motion technology aiming to

replace solenoid actuators with electrostatic actuators.

The generation of the piezoelectric effect in certain crystals is due to the nature of their
atomic structure where the positive and negative ions are bonded in asymmetric structure.
This asymmetry induces an electrical dipole (Polar). For example, the a-quartz crystal

structure shown in Figure (2.4) has a neutral electric charge.

Figure 2.4: Quartz crystal structure [23].
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Under deformation the positive and negative ions are displaced against each other causing the

electric polarization as in Figure (2.5) [23].

Figure 2.5: Direct piezoelectric effect of quartz cell due to applied deformation [23].

For the case of the piezoceramic (ferroelectric) materials, the crystal grain structure is
symmetrical (cube texture) above a certain temperature T, known as Curie temperature
whereas below this temperature the structure is distorted into tetragonal texture as in Figure

(2.6). This distortion is known as spontaneous deformation [23].

24

®: 4
e:B*
@

T, /i )3

Figure 2.6: Cube and tetragonal structure of a ferroelectric crystal grain [23].

Taking advantage of this characteristic, the piezoceramics are produced in two stages. In the
first stage the substrate is prepared at a temperature below T, to create the tetragonal texture
and hence induce the polarization in the grain. However, at this stage the substrate crystal has

no piezoelectric characteristics due to the random distribution of the polarized grains thus

eliminating the overall (crystal) polarization. In the second stage, sufficient electric field [E in
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defined directions is applied on the substrate to align the random grains polarization into the
direction of the electric field and hence produce a remnant polarization (piezoelectric
behaviour) in the substrate. Figure (2.7) shows the piezoceramic crystal before and after

polarization [23].
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Figure 2.7: Piezoceramic crystal before and after polarization [23].

One of the advantages of the piezoceramics is that they can be prepared in different
configurations to meet different requirements. These configurations are based on the
polarization direction and the direction of the applied voltage/forces as in Figure (2.8). Also
different configurations are based on the number of piezoceramic layers attached to each

other; single layer, two layers and multi-layer (stack) motors and generators [25].
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Figure 2.8: Different piezo-effect configurations [25] .

28



The configuration of more interest in this study is the bimorph (bending) motor/actuator.
When bonding a single piezoelectric patch on a beam and clamping it from one side
(cantilever) the activation of the patch will produce a bending moment on the beam. This is
called Monomorph action. If two patches were bonded on the opposite sides of the beam (no
clamping) and activated with opposite voltages in such a way that one patch is expanding
whilst the other is contracting the patches will produce a bending moment on the beam, this is

known as Bimorph action as shown in Figure (2.9).
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Figure 2.9: Mono & Bi-morph actions.

The easy and low cost manufacturing process in addition to the wide frequency coverage has
made the piezoceramics the most popular solid-state generator (sensor; generate electric
charge due to strain: direct piezo-effect) and motor (actuator; applying electric field to
produce strain: converse piezo-effect). The lead zirconate titanate (PZT) is the most common
piezoceramic and it is commercially available and is widely employed in different
applications. Several dynamic properties and performances of structures were enhanced by
implementing Smart Structures technology employing piezoelectric patches. Faria and
Almeida [26] studies proposed a strategy to enhance the non-linear pre-buckling response of
slightly crooked composite beams using PZT patches. Low-energy impacts on laminated
shells with distributed piezoelectric actuator and sensor layers were investigated by
Saravanos and Christoforou [27]. In their study the impact force, displacement and the sensor
responses were predicted. They also studied the feasibility active impact control which
looked at variation of the natural frequencies of composite laminated beams and plates using
the stiffening effect of surface bonded PZT actuators.[28], [29]. Shape control of composite
laminated beams using PZT patches were investigated by Sedaghati et al [30].

29



Suppression of the structures vibrations and acoustic control are the most investigated
applications using piezoelectric technology. Vibration and noise suppression is achieved by
passive and active techniques. The passive technique basically convert mechanical energy
into electrical energy through by connecting the PZT patches with an electrical resistive-
inductive shunt circuit [31]. Suleman [32] succeeded in attenuating the noise level in the
interior of a closed acoustic cavity using passively actuated PZT patches. In an active
technique the system states or the sensors output is fed to a control algorithm and driven the
piezoceramic actuators [33]. Moon and Kim [34] presented an active/passive hybrid control

design with piezoelectric actuators to suppress nonlinear composite panel flutter.

The major disadvantage of using the piezoceramic actuators in structural dynamics (Smart
Structures) is that the higher piezoelectric effect is in the (ds3 / Z) direction of the polarization
and the applied electric field however the action is required in the direction (dz; / X) of the
hosting structure as shown in Figure (2.10). With unsuccessful efforts of improving the
piezoceramic performance (control authority) composition wise, several novel ideas emerged.
Raja et al [35] used multilayered (bender) piezoelectric actuators to control the flutter of

composite plate.

Figure 2.10: Monolithic PZT action directions.

Another method of enhancing the performance of the piezoelectric actuator was achieved by
developing the Piezoelectric Fibre Composite (PFC) where composite lamina is constructed
using discrete piezoceramic fibres as shown in Figure (2.11) [36], [37], [38]. This method
allowed tailoring of the piezoelectric coefficient which enhanced the performance by
manipulating the fibre-to-matrix volume ratio and orientation of the fibres. Besides the
anisotropic actuation of the PFC, it solved the weak attributes of the monolithic PZT such as

low fracture strength, high stiffness and the difficulty in producing complex shapes [37].
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Fiber

Figure 2.11: PFC structure [38].

However, the multi-layered and the PFC actuators are still utilizing the d3; piezoelectric
coefficient. The exploitation of the actuation in the ds3 direction emerged when a novel
method of Active Fibre Composites (AFC) actuator was developed by MIT in the early
1990s. The actuator employed the novel Interdigitated Electrodes (IDE) and piezoceramic
fibres. As shown in Figure (2.12) the IDE is fabricated in a way that the electric field is in a
parallel direction to the longitudinal direction of the piezoelectric fibres which are polarized

in the same direction [37], [39].
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Figure 2.12: Active Fibre Composites (AFC) structure.
The Macro-Fiber Composite™ (LaRC-MFC™) [40] developed by NASA Langley Research

Centre is a similar device which retains the AFC features as well as incorporating other new
features. The main advantage of this actuator is the low-cost, uniform and repeatable

fabrication processes used in making it.

The MFC™/AFC actuators have mostly been employed in vibration and acoustic control.

Zhang and Shen [41] developed a three dimensional analytical model of laminated plates
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with AFC as damping layers for active control of in-plane axial and transverse vibrations.
Azzouz et al [42] studied the effect of the actuation of MFC™ in different locations and at
various orientations on the state modal bending and twisting amplitudes of a square and

triangular cantilever plates.

The Linear Theory of Piezoelectricity is the famous theory that describes the mathematical
relationships between the different piezoelectrics’ parameters and effects. The first law of

thermodynamics for a piezoelectric medium can be written as [43];

U =04+ ED; (2.1)
Where,
U is the stored energy density for the piezoelectric continuum [44]

0;;j is the stress components
€ j 1s the strain components

[E; is applied electric field

D is the electric displacement.

Then the linear piezoelectric constitutive equations are derived as [43], [44];

0; = CijEj — e Ex (2.2)
]D)i = €U€] + Eik[Ek (2.3)
e=d( (2.4)

strain developed
d= , — (2.5)
applied electric field

Where,

G j 1s the elastic stiffness matrix

€ is the permittivity constant.
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e is the piezoelectric coupling coefficient for Stress-Charge form, and

d is the piezoelectric strain coefficient for Strain-Charge form.

Eqgn. (2.2) is used in actuator mode (Stress-Charge/Voltage form) while Eqn. (2.3) is used in

sensor mode (Strain-Charge/Voltafe form).

2.3.Aeroelasticity
Aeroelasticity is a field which looks at the mutual interactions of the three force systems

namely; inertial, elastic and aerodynamic forces as depicted in Figure (2.13) [45].
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Figure 2.13: Aeroelasticity and the force systems.

Flight

Dynarmic
Aeroelasticity

Aeroelasticity results from the interaction between the airstream and the structure. By
extracting the energy from the airstream, the structure deforms/deflects and hence the air
pressure distribution over the structure is changed which in return produces different air-
loading and so on and if there is no equilibrium between them the system becomes instable.
There are static and dynamic aeroelasticity instabilities. The static instability is due to the
interaction between the aerodynamic and the elastic forces such as Structural divergence,
Reversal of Control and Aerodynamic load distribution [46]. The dynamic instabilities are
due to the interaction of the inertial, acrodynamic and elastic forces. Flutter, Buffeting and

Gust response are well known dynamic aeroelasticity instabilities.

Focusing on the flutter, it is an oscillatory motion which occurs due to the interaction of the
two modes of wing motion, namely, bending and torsional modes. In stable conditions the
plunge/bending and pitch/torsional motions are kept out of phase in a way that the plunge
motion is dampened by the pitch motion as shown in Figure (2.14). As the air speed increases

the extracted energy increases until a certain point (speed) where the plunge and pitch
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motions become in phase and destabilize the system putting it in divergent oscillation (flutter)
as shown in Figure (2.15). In other words, the system (lowest) eigenvalues coalesce at this

critical speed (flutter speed) as illustrated in Figure (2.16).
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Figure 2.14: Stable wing motion.
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Figure 2.15: Unstable wing motion (flutter).
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Figure 2.16: Bending and torsional frequencies approaching critical (flutter) speed.

2.3.1. Flutter Analysis

Traditionally, the wing flutter problem (and other Aeroelasticity phenomena) is treated in
design stages via altering the stiffness of the structures, the mass distribution and the position
of the flexural axes. The process outcome is an operational envelop that limits the boundaries
(basically the flutter critical speed) during operation of the aircraft to prevent catastrophic
structural failure. So the aim of the flutter analysis is to determine this critical air speed. In
general, scientists and design engineers studied and analysed the flutter problem as a dynamic

problem. The point-mass model shown in Figure (2.17) consists of wing mass concentrated in
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the centre of gravity, the flexural/bending stiffness, torsional stiffness and the control surface

stiffness.

Figure 2.17: Point-mass model used in flutter analysis.

The governing equations of motion derived from this mode are [47];

2 0%h 0%h 0%a
a—yz(EIa—yz)+mﬁ+mxaﬁ+L—0 (2.6a)

) da 9%a 9%h

5(6]5)—10(5—77196'“%4']\4—0 (2.6b)

Where,

U, is the free stream air speed.

L=f(a, Uy)and M = f(a,U,) are the lift and the pitching moment respectively.
EI and GJ are the flexural and torsional rigidity respectively.

L.E and T.E. are the leading and trailing edges respectively.

m and [, are the mass and mass moment of inertia per unit length.

X 1s the distance between the Elastic Axis (E.A.) and the Centre of Gravity (C.G.)
ea is the location of the elastic axis from the leading edge, and
c is the chord.

The lift and pitching moment are traditionally presented in different aecrodynamic models

such as steady, quasi-steady, unsteady and nonlinear models. The famous more accurate and
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complex one is the unsteady model derived by Theodorsen [48]. The other popular model is
the quasi-steady model. It is a simplified model and although its validity is questionable in
the analysis of the aeroelasticity of subsonic wings [49] it can be used for low-speed
applications [47] and for applications requiring a simple aerodynamic model. Several works

have used the quasi-steady aerodynamic model [50], [51].
The quasi-steady assumption states that [47];

0 The aerodynamic characteristics of an airfoil whose motion consists of variable linear
and angular motions are equal (at any time) to the characteristics of the same airfoil
moving with constant linear and angular velocities equal to the actual instantaneous
values.

0 The inclination of the flow-velocity vector to the profile is also taken to be constant

and equal to the actual instantaneous inclinations.

The quasi-steady lift and pitching moment coefficients are;

c, =Cl, [a+—h+a( c—ea)d] (2.7)
And,
.1
(Cdie. = =5, -4 =7 (2.8)
where,

Cl, is the slope of the Lift coefficient vs. Angle of attack curve.

C;, & Cyy are the lift and pitching moment coefficients respectively.

2.3.2. Control of Wing Flutter

With the increase in the operation and mission requirements of the aircraft the aeroelastic and
vibration control (Aeroservoelasticity) technology has emerged. The flutter and vibration
active control is conventionally obtained by using the aerodynamic control surfaces operated
by servo-hydraulic actuators [52], [53], [54]. However, this technology suffers several

limitations such as; (a) multiple energy conversion (mechanical, hydraulic, electrical); (b)
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potential failure sites due to large numbers of parts; (c) high vulnerability of the hydraulic
pipes network [3]. Another limitation is the limited actuation bandwidth of the aerodynamic
control surfaces. For example, the rudder bandwidth of the F/A-18 aircraft is less than 20 Hz
making it ineffective in reducing the buffet responses at the second mode around 45 Hz (first
torsion mode) [55], whilst the piezoelectric frequency bandwidth ranges from under 1 Hz to

more than 20 KHz [56].

In the last decade, another technique for using distributed piezoelectric patches as actuators
for active structural dynamic has emerged. Under the Flutter Research and Experimental
device (FRED) project at NASA Langley Research Centre (LaRC), Heeg [57] performed
analytical and experimental investigation of flutter suppression by piezoelectric actuation.
Two piezoelectric ceramic plates were bonded to opposing sides (poled to form a bimorph-
type actuator) and near the root of one of the plunge spring tines of the mount system to
actuate the test article. With a Single-Input Single-Output (SISO) gain feedback control law,
an increase in flutter speed analytically of 15.7% (from 560 in/sec to 648 in/sec) and
experimentally of 20% (from 58 in/sec to 697 in/sec) was achieved [57]. A joint program
between LaRC and Massachusetts Institute of Technology (MIT) named “The Piezoelectric
Aeroelastic Response Tailoring Investigation (PARTI),” was the first study using relatively
large, multi-degree-of-freedom aeroelastic testbed with cross sectional airfoil of NACA 66-
012 aimed to develop detailed analytical and experimental techniques and demonstrate the
ability of strain actuated adaptive wings to affect aeroelastic control. Thirty six pairs of
piezoelectric wafers were bonded on the top and the bottom surfaces of the model and poled
to give bimorph actuation. The piezoelectric wafers were arranged into fifteen groups (Figure
2.18) to perform several control configurations. Control law A of 6 states LQG and SISO
configuration actuating all fifteen groups increased the normalized flutter dynamic pressure
(speed) by approximately 12.5%, while control law B with gain feedback and SISO
configuration actuating groups number 3,4,6,7 & 10 increased it by 8% [58].
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Figure 2.18: Approximate locations of actuators and sensors on the PARTI model [58].

Costa et al [56] investigated the use of piezoelectric actuation technique in controlling flutter
and gust response and buffet alleviation of different wing configurations. For a rectangular
platform wing consisting of a NACA 0012 airfoil enveloped around a rectangular plate
structure a 6% increase in the critical flutter speed was attained. In this configuration, twelve
piezoelectric actuator patches were bonded to the top and bottom of the plate near the
cantilevered end. In a swept-back aluminium plate wing, an appreciable buffeting reduction
from 32% to 47.5% was obtained. Six piezoelectric actuators were bonded on the surfaces at
the wing mount root and two shape control actuators near the wing tip were used to control
the wing motion. Comparisons between the flutter control using piezoelectric actuators and
aerodynamic control surfaces were done on two wing configurations. The 3D piezoelectric
and aileron controlled wing has two flat aluminium sheets used as skin for the wing which are
activated by pairs of piezoelectric actuators bonded on each sheet surfaces. Two pairs
positioned vertically near the leading edge of the wing at the root and mid section and another
pair bonded horizontally at the tip of the wing between the outboard most brackets. A
maximum reduction in the wing dynamic response of 52% was obtained using the
piezoelectric actuators, while a maximum reduction of 15% was obtained by using the aileron
control. Also, the piezoelectric activated wing reduced the buffeting vibration amplitude by
41%. In the last configuration of piezoelectric and flaperon controlled CFRP wing, the
aluminium sheets were replaced by Carbon Fibre Reinforced Plates (CFRP) with the same
actuator positioning. The vibration reduction at 30 m/s of free stream velocity was 72.7%

using the piezoelectric control, in comparison to 16.5% using the flaperon control [56].
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The shape, location and orientation of the piezoelectric actuators are very important in plate
vibration control. Moon and Hwang [59] developed an optimal control strategy to suppress
the flutter of a supersonic composite panel using piezoceramic (PZT) actuators. In their
study, the PZT patches shape and location are determined using genetic algorithms. Bent,
Hagood and Rodgers [36] investigated the twist actuation in isotropic substructures by
incorporating several anisotropic plies of different piezoelectric actuators into laminated
structures. They showed that the transversely stiff actuators, those with Interdigitated
Electrode (AFC), have the high twist actuation capabilities with thin structures and even
higher with thicker ones. Cesnik, Ortega-Morales and Patil [60] studied the impact of
combined bending and twisting actuation on the aeroelastic performance of highly-flexible
active composite wing. They concluded that tailored anisotropic strain actuation improved the
performance (controlling aeroelastic instabilities and gust alleviation) of high aspect ratio
wings. Azzouz et al [42] compared the actuation effect of MFC™ with PZT actuators at
different orientations on the state modal bending and twisting amplitudes of a square and
triangular cantilever plates. They showed that in comparison to PZT actuators, the MFC™
provided well actuation of bending amplitudes for a large range of orientations and extremely
well actuation of twisting amplitudes for the full range of orientation. Sheta, Moses and
Huttsell [55] used skewed pairs of PZT patches over the inboard and outboard surfaces of a

full-scale F/A-18 vertical tail to alleviate its buffeting in the first bending and torsion modes.

2.4.Control Protocols
Several control theories and techniques have been used in the controlling task of smart
structures. Choi, Park and Fukuda [5] investigated active vibration control of two hybrid
smart structures with two different control schemes. One hybrid structure is featured by a
piezoceramic (PZT) actuator and a SMA actuator where a sliding mode controller is
employed. The other hybrid structure consists of a piezoelectric film (PF) actuator and an
electro-rheological fluid (ERF) actuator and controlled by a Neuro-sliding mode controller
(NSC). In their study, the goal of the NN learning process is to determine a desired controller
rather than a desired response. Since a desired controller cannot be known in advance a real-
time learning mechanism based on the idea of sliding mode and Lyapunov stability is
employed. Varadarajan, Chandrashekhara and Agrawal [61] designed a robust LQG/LTR-
based (Linear Quadratic Gaussian with Loop Transfer Recovery) controller for laminated
composite beams with integrated piezoelectric sensors and actuators. The performance of the

controller was investigated against the effect of the system parameters variation. In
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comparison to the negative velocity (proportional) feedback controller, LQG/LTR- based
controller proved to be more robust. Also, it was shown that its performance is better with
multimodal vibrations. Valoor, Chandrashekhara and Agrawal [62] developed a neural
network based hybrid control system for self-adapting vibration control of laminated plates
with piezoelectric sensors and actuators. This control system comprised of a feed-forward
Neural Network (NN) identifier and a dynamic diagonal recurrent NN controller. Shen and
Homaifar [63] investigated four control methods; rate-feedback control, hybrid fuzzy-PID
control, genetic algorithms-designed PID control, and LQG/LTR control and compared their
performances in attenuating vibration in structures using piezoelectric actuators. In the hybrid
fuzzy-PID controller both fuzzy logic controller and PID controller are combined together to
adjust the PID gains online. The same for the genetic algorithms (GA) designed control
where a chromosome comprising 15 genes represents a set of PID gains of the system. All
four control methods proved to be reliable and efficient in suppression of the steady-state
resonance vibrations. Saravanos and Christoforou [27] investigated the feasibility of active
control of low-energy impacts on laminated shells of double curvature with distributed
piezoelectric sensors and actuators. LQR (Linear Quadratic Regulator) state feedback and
output feedback controllers were used in their investigation. Both techniques showed the
possibility of reducing the impact force for at least medium mass impactors and for shells of
low and intermediate curvatures. Tadi [64] studied the effectiveness of a compensator design
for flutter suppression of panel using piezoelectric sensors and actuators. The compensator
comprises an observer to estimate online the system state from the sensors output and using it
in the feedback control law. The results indicated that the compensator is effective in
suppressing the amplitude of moderate flutter oscillations. Bhoir and Singh [65] derived a
control law based on back-stepping technique for the trajectory control of a linear
combination of the plunge displacement and pitch angle as output variable. Also, an observer
was designed to estimate the unavailable states using only the plunge displacement, pitch
angle and control surface deflection measurements. Han, Tani and Qiu [66] investigated

numerically and experimentally the active flutter suppression of a swept-back cantilever
lifting surface using piezoelectric actuation. H,- and u-synthesized control laws were used in
evaluation of the flutter suppression. While both laws showed comparable performance
around the flutter point, the u-synthesized law has improved behaviour over a wide flow

speed range. Reddy et al [67] designed an adaptive output feedback controller for suppressing

aeroelastic vibration on a nonlinear wing section using leading- and trailing-edge control
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surface actuation. With the only measurements of plunge and pitch displacements, the
algorithm is adaptively compensating for the nonlinearity and uncertainties in all parameters
of the model. Kim et al [68] constructed an output feedback controller to suppress nonlinear
panel flutter. The nonlinearity of the panel motion are compensated by the use of Extended

Kalman Filter (EKF).

2.5.Summary

The main historical background and the underlying theories of smart structures technologies
and aeroelasticity are presented in this chapter. The review of the past and more recent work
showed that most of the SMA smart structure work was based on embedding the SMA
materials in the host structures and in addition to that where the SMA materials are used as
external control actuators. The first part of this work will investigate the surface mounted
SMA materials and its effect on the mechanical behaviour of the host structure. Detailed
mathematical modelling and experimental work of this case are presented in Chapter 3. The
second part of this work will focus on the control of the flutter speed of aeroelastic structures
using patches of piezoelectric materials. The previous works in this field concentrated mainly
on the bending effect (morph and bimorph) of the activated patches. The effect of the
torsional effect was less investigated. In the second part of this work, deeper investigation of
the later effect will be conducted. To achieve this detailed mathematical modelling and
control protocol are developed and presented in Chapters 4 and 5 respectively. The

discussion of this chapter justifies the research questions identified in Chapter 1.

41



Chapter 3. ALTERATION OF DYNAMIC PROPERTIES OF STRIP

STRUCTURE USING SMA WIRES

3.1.Problem Statement

Minimal research has been performed on altering the natural frequency of composite
structures using Shape Memory Alloys. In most of the research using SMA’s in controlling
smart structures, the SMA’s were embedded within the structures. In this work, the alteration
of the natural frequency of composite plates will be obtained using surface mounted Shape
Memory Alloy wires. The SMA wires are used to change the strain energy of the composite
plates, this is shown experimentally and the governing strain equations are solved analytically
using Rayleigh-Ritz method. The experimental results and the numerical results are
compared. Different configurations of SMA placement, namely, straight and zigzag, are
studied and compared to computational and experimental findings in order to optimize the

control strategy.

3.2.Mathematical Model

The aim of the mathematical model is to construct the equations of motion of the structure
under study which relate the stresses/strains with external loadings. These equations are then
solved to give the behaviour of the structure under certain loading conditions. To construct

the governing equations of motion different relations are used. These relations are:

3.2.1. Kinematic Relations
These are geometrical relations which relate the body strains to its displacements. The

rectangular Cartesian form of the Green-Lagrange strain tensor “E” [69]:

1(0U;j = dug , 0Uy U
Ei = -2 e 1
jk =2 \ax, T X + oX; dXy G-

Where,
the displacement U(X,t) = x(X,t) — X,

X = (X,, X,, X3) is the particle position before the deformation, and

x = (x4, X, x3) is the particle position after deformation .
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Let (x1, x2, x3) = (x, y, 2), also, (U;, Uy, Us) = (u, v, w), equation (3.1) can be expanded in

explicit form as:

E - u N 1 '<6u>2 N <6v>2 N (aw>2'
¥ 9x o 2 |\ox ax ox/ |
E - v N 1 '(au>2 N (av)z N (GW)Z'

> 9y 2|\ay y ay/ |

E - ow N 1 (au)z N (017)2 N <6W)2'
= 9z 2|\oz 0z 9z) |

B 1 <6u dv oOJudu Jdvidv ow OW)

v =72\ay " ox T oxay " oxay | ax oy

Exzzi

1 <6u+6w+auau+6vav+awaw>
dz Ox O0x0z 0x0z O0x 0z

1 /ov iw ou du dv dv aw ow
e A
vz = 5\ 5, + + +

-— 2
ay dyodz 0dyoz dy 0z (32)

3.2.2. Classical Laminated Plate Theory
The formulation of the mathematical model in this work is based on the Classical Laminated
Plate Theory (CLPT). The CLPT is an extension of the Classical Plate Theory (CPT) to
composite laminates and basically defines the displacements of the structure. The formulation

process requires several assumptions of which the fundamental assumptions in the CLPT are

that the Kirchhoff hypothesis holds [69]:

1) Straight lines perpendicular to the midsurface (i.e., transverse normals) before
deformation remain straight after deformation.

2) The transverse normals do not experience elongation (i.e., they are inextensible).

3) The transverse normals rotate such that they remain perpendicular to the midsurface

after deformation.

These assumptions lead to the fact that the transverse displacement is independent of the

transverse (thickness) coordinate and the transverse normal strain and shear strains are zero;
€:=0, &;=0 §&,=0 (3.3)

And the displacements (u, v, w) are;

43



d
u(x;y;z; t) = uo(x,y, t) _Z%

ow
v(x,y,z,t) =vy(x,y,t) — ZW

w(x,y,z,t) =wy(x,y,t) (3.4)
For the laminated plate/structure the following assumptions/restrictions are considered:

1) The layers are perfectly bonded together.

2) The material of each layer is linearly elastic and has three planes of material
symmetry (orthotropic).

3) Each layer is of uniform thickness.

4) The strains and displacements are small.

5) The transverse shear stresses on the top and bottom surfaces of the laminate are zero.

By assuming that the components of the displacement gradients are of the order €, i.e,

du du ow 09 ow
) ) ) ) = (6) (3'5)
dx 0y 0x 0y’ 0z

Then the terms of order €” are negligible;

(a_u)z (@)2 uou wav (3.6)
ox/) ’'\ox/ ’'oxoy’oxoy T ’
. owg Ow
And for moderate rotation; —~, — = (10°-15°),
dox = 0dy
ow 2 ow 2 ow ow o
Then, (E) , (E) " ox 3y are small but not negligible compared to €.

Thus (3.2) take the form:

_Ou , 1 (0w 2 __ov 1(6w)2 _ 1(6u v 6w6w)
Exx_ax-l_z(ax) ’gyy_6y+2 oy ’Exy_+2 ay+8x+6x6y

aw 1/0u  ow 1(dv A ow
E,, =, E,=-|\T—T— Ev, = \—T— 3.7
2z gz’ X2 2 (az + ax) 7Yz 2 (az + ay) (3.7

By applying the displacements of Eqn. (3.4) into Eqn. (3.7) the known Von Kdrmdn strains

are;
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du, 1/0we\> 92w,
o = oy 2< >_

ox d O0x?

1/0uy, 0vy Jdwydw, 2w,
Exy = 2( * ) B

dy + 0x dx OJy z dx0dy

Oy 1 (aW())Z 2w,

Gy =5y Y25y ) T ax
1/ dwy, Odwy
EXZ‘E<_E+W)‘O
1/ dwy 0dwy
7(‘@*@) =0

£, =0 (3.8)
The strains in Eqn. (3.8) comprise of the membrane strains (€°) and the curvatures (&) or

flexural/bending strains, here &,,, is replaced by the engineering shear strains (Vy, =2&4y);

e=¢g"+ 2zt (3.9)
Or,
0 1
Exx Exx Exx
0 1
Eyyt =< &py b+ 2{ &y (3.10)
0 1
Yoyl Yy
Where,
dug 1(aw0)2 _9%wq
ggx ax 2\ dx , g;x $1x2
0 _ av 1 (0w 1 _ _9"Wo
Gyi=1 S, —(—0) & &y = 272 (3.11)
0 y 2\0y 1
Vxy QEQ QEQ 0wy 0wg Vxy __262W0
dxdy

dy dx dx 0y

3.2.3. Lamina Constitutive Equations
These equations relate the material reaction/deformation (strains) to applied forces (stresses)

and are known as Hook’s Law. The generalised form of Hook’s law can be written in the
following matrix form [69];
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or,

((71\ Ci1 Gz Gs G Gs Gel &
%) Ca1 Gz Gz G Gs Gl | &2
O3 C31 Gaz Gz Gaa Ggs Gsel) Es

= 3.12
04 Car Gz Gz Cuse Gs Cuel | € ( ( )
Os Cs1 Gsz Gss Csx Gss Cse||Es

O6 [Co1 Coz Co3 Coa Cos  Cod \Eg/

where C is known as the Stiffness tensor.

For beams and plate strips cases the plane stress state is applied and (3.12) can be written as
01 Qi1 Q2 0 ](&
O2t=[Q12 Q22 0 |{E; (3.13)
O6 0 0 Qeel (&

Where Q;; is known as Plane stress-reduced stiffness, and given by

Q. = _ B 0y, = _V12B2
1 1-vqVz1 12 1-v12V21
E; v12Ep
= =G Uy = 3.14
Q22 1-V1,U21 s Q66 12 » 21 E; ( )

For laminated composite structure the stiffness must be transformed from the material

coordinate system into problem/structure coordinate system as follow [69];

Oyyt = gu QZZ gze Eyy (3.15)
Oxy Q16 Q26 Qgel Yy

{Uxx} 611 le 616 Exx

where,
((211‘
912 Q11
Q22 Q12
~““+=1L. 3.16
< Q16 Q22 ( )
Q6 Qss
\ Qs
and,
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cos* @ 2sin? 0 cos? 0 sin* 6 4sin% @ cos? 6
sin? 0 cos? 6 sin* @ + cos* 6 sin? 0 cos? 8 —4sin? 0 cos? 0
sin* @ 2sin? @ cos? @ cos* 0 4 sin? 0 cos? 6
" |sin@cos30 —sinBcos30 +sin30cosf® —sin®Ocosf —2sin6 cos? O + 2sin3 6 cos
sin®@cosf® —sin®0Ocosh +sinBcos®@ —sinBcos?0 —2sin®0 cosh + 2sinb cos®

sin? 6 cos? 8

—2sin? 6 cos? 6

sin? 6 cos? 8

3.2.4. Laminate Constitutive Equations

sin* 8 +cos* 6 —2sin? 6 cos? @

(3.17)

For a laminate structure comprising “n”” laminas/layers the strains are continuous through the

thickness. But due to the change in material coefficients through the thickness (different

lamina orientations) the stresses are varied. By lamina-wise integration of the stresses

through the thickness the force and moment resultants are [69];

Nxx

Ny,

O-XX
_\n Zk+1
=Xk=1 [, " {Oyyidz

Oxy

Substituting Eqn’s. (3.15) and (3.10) into Eqn. (3.18);

Nyx L gn
Nyy = f Q12
Ny k=1"%k  |Qy4
Nix A Ag
Nyy = A12 Azz
ny A16 A26
And,

Mxx

Myy

Mxy

My N Zkar gn
Myy :Zf Q12
Mxy k=1"%k Q16
My Bi1 By
Myy = [B1z Bz
Mxy Bl6 BZé

~ ~ 1k 0 1
Q12 Q16 Exx Exx
= = 0 1
Q22 Q2 Eyy ¢+ 2y |dz
A A 0 1
Q26 Qe Yxy Yxy
0 1
A16 gxx Bll B12 B16 gxx
0 1
Aze|{€yy ¢ +|Biz B2z Bas|{Eyy
Aged (12, Bie Bazs Besl \yj,
O-XX
Zk+1
=Xk=1 [, " {Ovy(zdz
Oy
A ~ 1k 0 1
Q12 Q16 Exx Exx
= = 0 1
Q22 Q2 Eyy ¢ +2z{&y |2zdz
A A 0 1
Q26 Qoo Vxy Vxy
0 1
B16 SXX Dll D12 D16 gxx
0 1
BZG Eyy ¢+ D12 D22 D26 Eyy
Besl \y2, Dig D26 Decl \y2,

(3.18)

(3.19)

(3.20)

(3.21)

where A;; are called Extensional stiffnesses, B;; the Bending-extensional coupling stiffnesses

and D;; the Bending stiffnesses and are defined in terms of the lamina stiffnesses Q; ;as;
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h
(4ij, Bij, Dyj) = J2,0:(1,2,28)dz = ¥, fZZkkHQ{;(Lz,zZ)dz (3.22)
2
or,

— Ak _1 Ak
Aj; = Dk=1 Qi (Zis1r — 2x) dz, B;j = 52%:1 Qi; (ZIE+1 - ZIE)

Dij = 3 3K=1 QF (zR41 — 20) (3.23)
And in matrix form:
{N}) _ [[A] [B]]({e%}
{{M}}_[[B] [D]]{{el}} (3:24)

3.2.5. Equations of Motion
The Hamilton’s principle, which is a generalization of the principle of virtual displacements
[69], is used to derive the equations of motion. The Hamilton’s principle states that [70]; “all
of possible paths that a material particle could travel from its position at time t; to its

position at time t,, its actual path will be one for which the integral (1) is extremum.”
Where, I= fff (K — W)dt (3.25)

Here, the difference between the kinetic “K” and potential “W” energies is known as the
Lagrangian function. The potential energy consists of internal which is the strain energy “U”

and external which is the work due to the applied forces “}”’.

For extremum |,
8 = [ (6K — (8U + 6V))dt = 0 (3.26)
or,
[ (8U + 8V — §K)dt = 0 (3.27)
The Strain energy can be written as;
U= J, o &;dV (3.28)

then,
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oU = fvo (Uxx5€xx + 0y, 8¢y, + 20xy6£xy) dzdxdy (3.29)
Note that from eqn. (3.8); &, = &, = &;; = 0.
Eqn. (3.29) can be written as;
h
8U = [, [*u(0xx0xx + 0yy8eyy, + 204,66y, ) dzdxdy (3.30)
2

from Eqn. (3.10);

h

8U = [, {ffﬁ[axx(és,?x + z8eky) + 0y, (80, + 28€k,) + 0y, (6Yy + 26V5)] dz} dxdy
2

(3.31)
For one layer; n=1 Eqn’s. (3.18) and (3.20) can be written as;
NXX E axx MXX E O-.X'.X'
Nyy b = f_zﬁ {UYY} dz & My b = f_zﬁ {Uyy} zdz (3.32)
Ny 2Oy M.y 2Oy

in Eqn. (3.31);

8U = [, [Nex el + My Oty + N,y 80, + M,y ek, + Ny 8¥2, + My, Syi))] dxdy

(3.33)
The Work done by the applied forces is:
V=—[, qx,y)wodxdy (3.34)
where, ¢(x,y) is the external force per area. Then,
8V =~ [, qéwodxdy (3.35)
Since the Kinetic energy is:
K = mv? (3.36)

or,

49



1 (w2
K=, 3P0 (55) av (3.37)
and from Eqn. (3.4) then,
1 . avrg) 2 . )% | .
K=, ps [(uo _, (;/;o) n (Uo — BVLO) + Wg] dv (3.38)

Taking “6” therefore,

5K = J, Lo (it #2) (50— #22) + (i~ £ 2) (5 — £ 22) +
woawo] dzdxdy

(3.39)

Let,
IO n 1
{11} = fjﬁ{ z } podz (3.40)

in Eqn. (3.39);

. . . . . . 08wyq . ow . advwy . ow .
0K = fv [Io(u06u0 + 1706170 + W06W0) + 11 (_ axouo—a—;Suo - ayo Vo — 6_31051]0) +

BVrg B8, . Vg AW
L (5ot + 5o 7o) | dxdy (3-41)

Substituting JU, JV, and SKinto Eqn. (3.27),

T
0= [7{f, [NexOel + My Sek, + NyyOdy, + My 885y + Nyy ¥, + My 873y, — q6wo —

Io(l:t05110 + 1.]051.]0 + W06W0) + 11 (62:0 ﬂ0+%6u0 + ag‘;;o 1.70 + aa_v;oé‘"}o) -
g A8VW, . Oy A8V,
, (E_ax o )] dxdy} dt (3.42)
Taking “8” of Eqn. (3.11);
ddu, Owyodw 926w,
0 _ 0 0 0 1 _ 0
O 0x + ox Ox ' O€xx dx? '’
06v, 0wy 08w, 926w,
6 0 = , 1 = —-—,
gyy ay + ay ay gyy ayz
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_ 65110 66170 + 66W0 aWO aWO 66W0

0 1 _ _
6ny dy dx dx dy ax ady '’ 0¥xx 9xdy

(3.43)

into Eqn. (3.42);

adu owg 96w 926w, a6V, owg déw 926w,
N ( O hdd*) O)_M hiiadd ') N ( 0 0 O)_M 0
{f [ XX\ ox ax ox XX gx2 + oy + dy ady Yy oay2 +

N

odu 1YY 8wy daw owg 96w, 226w,
xy( 04 o 4 0 o 4 o o)_ 0

— qéwy — Ih(yduy + VooV
ay ox dx Jy dx 0dy XY axdy q 0 0( 00Ug + VoOVo +
36W0 aWO

0+_5 +

d
66W0 3W0 aWO 36W0 3W0 36W0
0+_5 0)_12(E ox +6y dy )]ddy}d

Wodwy) + I (

(3.44)

Integrating by parts of the terms of Eqn. (3.44) to relieve the virtual displacements (du, JV,

and ow) of any differentiation;

T 3} 0
fo {fv [Nxx,x6u0 - (Nxx %)x 6W0 - Mxx,xx 5W0 - Nyy,y 5 (Nyy aWO) y 6W0

]
M,y 5y EWo — Nyyyy 6Ug — Ny, 5 SV — (Ny,, 6ly°)

aWO

X 6W0 - (N )y 6W0

2Miey xy SWo — q 8w + Lo (lhoSug + V8vg + Wodwo) + Iy (% Swo— awo —-6uy +
2y, v 92 52
55 5, — 288 550 — 1, (220 4 255) | vy + B.C's e = 0 (3.45)

Collecting the coefficients of each virtual displacement;

Suy = 0Ny, ON, 0%uq a% (0w,
XX =], — =, —(—— 3.46
ax T dy lo 5¢2 IlatZ(ax) (3.46)
Sv, = oN. oN 0%v a2 0w,
Vo w Ty _ 20 11_2<_0> (3.47)
dy 0x Jt Jat% \ dy
Swy = 0°M,, 9°M,, 0°M,,
N
dx? + dydx + dy? TN (wo) +4
92w, 0% (0u, OJv,
=l Gt (5 + )
9% (9%w, 0%w,
29t2\ 9x2 = dy? (3.48)

Where,
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3.3.Analytical Solution Using Rayleigh-Ritz Method

In most practical applications of thin plates the magnitude of the stresses acting on the

surface parallel to the middle plane are small compared to the bending and membrane

stresses. Since the plate is thin, this implies that the tractions on any surface parallel to the

middle plane are small.

A standard coordinate system as shown in Figure (3.1) is considered [17]. The displacements

in x, y, z directions are denoted by u, v, w. The following assumptions are made:

1.

The plate is thin, i.e., the thickness h is much smaller than the other physical
dimensions of the plate.

The displacements u, v, w are small compared to the plate thickness.

3. Inplane strains €y, €y, and €y, are negligible.

In order to include in plane force effects, non linear terms in the equations of motion
involving products of stresses and plate slopes are retained. All other nonlinear terms
are neglected.

The transverse shear stresses 0y, 0, vanish on the surfaces = + h/ 2
z

lu ? Ny

[y

My

X M

Figure 3.1: Coordinate system of plate [17].

For a symmetric type lay-up of the laminate the B; = 0 as coupling is eliminated and

therefore, the third equation of motion can be solved separately [71].

The third equation of motion in terms of displacements takes the following form:

w
D11 W‘l-o + Z(Dlz + 2D66)6— + D

o* *w, 0*w, 2w, 02w, 02w,

- — 2N —N
x20y2 = % gyt * 0x2 Voxoy 7Y 0y?

_ 62W0+ 0w, N 0w,
0 9tz T 2\ 9x20t? T 0y20t?

(3.49)
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3.3.1. Mathematical Modelling of Surface Mounted SMAs

The solution for the equation in the case of natural vibration can be assumed as:

wo(x,y,t) = w(x,y)el®t (3.50)

Substituting in the governing equation (3.49) the equation takes the form:

0*w, 0*w, 0*w, 02w, 02w, 02w,
Dyy—— It ©+ 2(Dy5 + 2Dgg) 26y2+D22 Iyt gxz -2 oxay Y a2

0°w, 0%*w -
— w? leo — 1, (—0 + —°>l el®t = o

dx?  0dy?
(3.51)
The minimum potential energy form of the above equation is expressed as [70]:
0= f f w626W+D 62W625W+62W d%6w D d%w 926w
- D5 522 12\ 0y2 ax2 = 9x2 0y? 6 9x0y dxdy
N ow déw N ow dsw N 6W66W+D d%w 926w
*0x Ox Y dy dy XV 0x dy 22 gy2 dy?
2[ 15 ; <6W66W+6W06W>] dxd
@7 [Wioow 2\ox 9x  dy dy xay
(3.52)

The solution for the above differential equation is obtained by using the Rayleigh-Ritz
method.

For rectangular plates the Rayleigh-Ritz approximation is [70]:

w(x,y) = W (x,y) = B X151 GiXi(0)Y(0) (3.53)
Substituting in equation (3.52) the energy equation takes the form:
{[R] - w?*[BI{C} =0 (3.54)
Where,
Riji =
fob foa{Dll c(ii )ilddXZkYYl + Dy, (?12 2 qyz U1 J ) + 4D66 dx (fi};/] dd};k?;l
v ‘z;"; e AT “;Yf ‘;lexk 2ny‘f1 - XY} dady
(3.55)
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dx;dx 2y dz?
l]kl f f {I()Xl Xle+12( d_ka]Yl-I_dyZ d—yZXiXk)}dxdy

(3.56)

3.3.2. Analytical solutions of Surface Mounted SMAs

The composite plate in the experiment is clamped at one end and free at the other three ends
(CFFF). The SMA wires are mounted on the plate with the help of bolts of 2mm diameter.
The approximation function for CFFF plates will be of the form [70]:

=) =) 057

The values of the natural frequencies are obtained by substituting the approximation function
into equation (3.54) and then solving it. The values of in plane forces tend to be zero until the
SMA wires are actuated. By substituting the values of the in plane forces in the governing

equation of motion the changed values of natural frequencies can be determined.
Straight orientation

Figure (3.2) represents the arrangement of the SMA wires on the composite in a straight

orientation.

i

Clamped End a7

al : " /

Y
Figure 3.2: SMA wires on the composite in a straight orientation [17].

When the SMA wires are actuated the recovery force T is generated and is represented

by N,.

Figure 3.3: SMA recovery forces distribution.

54



This in-plane force will be acting in the x direction only. Ny, and Ny,, tend to be zero. Figure

(3.3) shows the T recovery forces acting at the bolt holes, and hence the values of N, are:

(0eee e {0y < (by — 1)}
—T .. {(by—7r)<y<(by+1)}
N, =5 0....{(by+1r) <y < (b, —71)}
—T ...{(by,—1) <y < (b, + 1)}
N O v v {(By + 1) <y < b}

Zigzag orientation

(3.58)

Figure (3.4) represents the arrangement of the SMA wires on the composite in a Zigzag

orientation. The in plane forces acting on the composite plate are N,, Ny they are determined

by resolving the SMA wire force in X, Y directions. The effect of the recovery forces is

calculated for one element which is a control volume of each leg of the zigzag and its

dimensions are: (b2-bl) % (a2-al) and is generalised for the entire plate by multiplying the

number of the Zigzag legs. The values of N, Ny for boundary conditions of the plate are:

N,=<-TcosO .. {(by—1r)<y<(by+7)} (3.59)
0viicivevee e {(b + 1) <y < b}
I (| P s (a, — 1)}
N, ={-Tsinf.. {(a; —7) <x < (a, +1)} (3.60)
0vivviii v {(ag + 1) < x < a}
Clamped End =7 2
L~ al

T //Iﬂ
Tx 2 /l}
a3 2 t /%

=y

Figure 3.4: Arrangement of the SMA wires on the composite in a Zigzag orientation

[17]

3.3.3. Recovery force of the Shape Memory Alloy wires

The recovery force SMA wire is determined by subjecting them to a tensile test on UNITED

testing machine. The SMA wires are clamped as shown in Figure (3.5) and voltage is applied.

The recovery force generated by the SMA wires is recorded using a computer. The average
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force of 6N is observed and the same is used in calculation of natural frequencies of the

composite plate when the SMA wires are actuated [17].

il

Figure 3.5: Tensile test of SMA wires on UNITED testing machine [17].

3.3.4. Experiments

Two SMA wires in straight configuration and one in zigzag configuration are mounted on the
composite plates made of carbon fibre as shown in Figures (3.3) and (3.4) respectively. The
plate is a 4-Ply plain woven epoxy resin pre-preg and was fabricated using cold vacuum

bagging as in Figure (3.6). The experiment setup is shown in Figure (3.7).

Figure 3.7: Experiment setup of surface mounted SMA wire.
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The plate mechanical properties are shown in Table 3.1.

CFRP[72] Nitinol-SMA [73]

E(GPa) 42 27-82 (N/A- Activated.)
V12 0.3 /
Diameter (m) / 0.0001
p (kg/m’) 1702 /
Length (m) 0.185 /
Width (m) 0.04 /
Thickness (m)  0.0005 /

al (m) 0.03 /

a2 (m) 0.15 /

a3 (m) 0.02 /

bl (m) 0.005 /

b2 (m) 0.035 /

Table 3.1: Composite plate and SMA wire properties [72].

The composite plates are then subjected to a white noise forcing function of 1.4 KHz with the
help of a mechanical shaker from the bottom. The response of the composite plates, when the
SMA wires are not actuated, is recorded by using a Polytech laser vibrometer as shown in
Figure (3.8). The SMA wires, as said in the ASET technique, are connected to a DC supply

source for actuation.

i B Polytech
2 Vibrometer

Mechanical
shaker

The responses of the composite plates after actuation are recorded. The peaks of the plotted
graph are identified and recorded as natural frequencies. Figure (3.9) shows the shift of the

natural frequencies of the plate when SMA wires are activated. The shift is expected to be
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forward where here the shift was backward. This was due to the pre-strain of the plate

induced during fabrication.

Amplinude

12E-03
1 0E-03
S .0E-04

£.0E-04 ﬂ}

4 0E-04

T
Z0E-04 7“

0.0E+0Q0 .

— sma_cf2_st 2w SMA activated

— sma_cf?_st_ 2w ShiA not activated

0 200

400 GO0
Hz

1000 1200

Figure 3.9 : Plots of the response of the carbon fiber plate before and after actuation of
SMA wires placed in straight orientation

The experimental and analytical values of natural frequencies for the carbon fibre plate after

actuation of the straight oriented SMA wires and the percentage of changes from the natural

frequencies with and without activation are described in Table (3.2) and Table (3.3). The

comparison between experimental and analytical values is shown in Table (3.4).

S.No Experimental
o before activation after activation % Change
1 398.906 398.438 -0.11732
579.219 569.688 -1.64549
3 830.938 817.469 -1.620
Table 3.2: Experimental result of Carbon fiber composites with SMA in straight
orientation.
S.No Analytical
o before activation o after activation % Change
1 460.5621 419.963 - 8.8
2 552.9948 563.438 1.8
3 786.0057 860.662 9.49
Table 3.3: Analytical results of Carbon fiber composites with SMA in straight
orientation.
S.No Experimental Analytical
® ® % difference
1 398.438 419.963 5.40
2 569.688 563.438 -1.09
3 817.469 860.662 5.2

Table 3.4: Comparison between Experimental and Analytical results of Carbon fiber
composites where, the SMA wires in straight orientation are activated.
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Figure (3.10) shows the shift in the natural frequencies of the plate due to the activation of the
wire in zigzag configuration. The corresponding values for the zigzag orientation are shown
in Tables (3.5) & (3.6) and the comparison between the experimental and analytical values

are shown in Table (3.7).

1.20E-03

——sma_cf2_zg: SMA activated
1.00E-03 sma_cf2_zg: SMA not activated
8.00E-04 i
6.00E-04 ”
4.00E-04 '
wooeo / \M]‘wﬂl\j\j\%
0.00E+00 T T T T

T
0 200 400 600 800 1000 1200

Figure 3.10: Plots of the response of the carbon fiber plate before and after actuation of
SMA wires placed in Zigzag orientation.
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S.No Experimental

o before activation o after activation % change
1 303.125 295.938 -2.37097
2 412.969 406.719 -1.51343
3 724.531 717.344 -0.99195
Table 3.5: Experimental results of Carbon fiber composites with SMA in Zigzag
orientation.

S.No Analytical

o before activation  ® after activation % change
1 354.1872966 360.8557681 1.882753
2 475.1917858 496.8088893 4.549132
3 725.8666473 729.9676982 0.564987
Table 3.6: Analytical results of Carbon fiber composites with SMA in Zigzag
orientation.
S.No Experimental Analytical
® ® % difference
1 303.125 354.187 1.883
2 536.406 475.192 0.252
3 724.531 725.867 0.565

Table 3.7: Comparison between Experimental and Analytical results of Carbon fiber
composites where, the SMA wires in Zigzag orientation are not activated.

In comparison to the straight SMA configuration, it was surprising that the natural frequency
shift was not more significant for the zigzag configuration. In Tables 3.2-3.7 above, only the
first three modes are compared because it was considered that the other modes were not
considered significant from energy and prospective applications perspectives. A prospective
application area is in the flutter suppression of aerodynamic structures where a shift in the
natural frequencies might attenuate the amplitudes of vibration. Other application areas
include active vibration of low frequency (<5 Hz) structures such as in slow turning wind
turbine blades. However, as seen in Figures (3.9) and (3.10), the most significant shift,
relatively, in frequencies for both the configurations in this study, occurred at the 4th mode
and higher.

There are a few interesting findings from the experiments. Firstly it is noted that for both the
straight and zigzag SMA configurations, the post-activation plate natural frequencies are
affected only a little and is reduced slightly. This might be accounted for by the fact that the
SMA’s contract on activation and when anchored to a plate that might have a slightly
fabrication-induced tensile strain, the effective stiffness of the plate will drop as evidenced in
these plots. Secondly, it seemed that the straight SMA configuration induced a higher plate
stiffness compared to that from the zigzag configuration which is almost contrary to

expectations, at least from, strain energy considerations since the zigzag configuration has
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more spatial coverage. Also, from Tables 3.4 & 3.7 it is clear that the analytical modelling of
this actuation process matches the experimental findings well for both the straight and zigzag

SMA configurations [72].

3.4.Summary
The effect of various configurations of surface mounted SMA wires on a composite strip is
presented in this chapter. Detailed mathematical modelling based on various theories and
relations incorporating motion and strain energy of the materials were used. The effect of
tensioning the SMA wires on the natural frequencies of the strip is obtained analytically and

experimentally. A good match is observed between the analytical and experimental results.

The same theories and approach will be used in mathematical modelling the beam flutter
control using piezoelectric wafers. However, the solution will be obtained numerically by

using the Finite Element method.
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Chapter 4. AEROELASTIC STRUCTURES INCORPORATING

PIEZOELECTRIC WAFERS

4.1.Problem Statement
The aeroelasticity of the structures, such as bridges and aircraft wings, are traditionally
treated as dynamic problems rather than structural dynamics where the point-mass modelling
method is used for the analysis. In this chapter, a solid mechanic based formulation of a
bending-torsion structure problem incorporating piezoelectric patches is derived. The
formulation enables the piezoelectric patches to be oriented (skewed) in different angles

relative to the host structure.

4.2.Mathematical Model
A simple model is used in aeroelasticity problems analysis. This model is known as Typical
Section. As in Figure 4.1, the typical section is a system of rigid, flat plate airfoil mounted on

a torsional and flexural springs to wind tunnel walls [45].

277,

Centre of
Gravity

Angle of =
Attack . Elastic Axis

I

Figure 4.1: Typical section airfoil.

This model helped in determining the basic aeroelasticity design criteria such as wing flutter
speed, wing divergence speed, reversal of control surface and gust response. However, since
the aeroelasticity is a function of the span-wise aeroloading and mass distribution a 3D
model, as shown in Figure 4.2, is used to account for it. For small twist angle (ac<< 1) the
cantilevered wing displacement “h” in the Z-axis consists of two displacements; translational
(also known as plunge and flap) displacement “w” and torsional (also known as pitch)

displacement “yo. So Eqn. (3.4) can be written as:
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ow

ulx,y,z,t) = uy(x,y,t) — z3, (4.1a)
ow

v(x,y,z,t) = vy(x,y,t) — z55 (4.1b)

w(x,y,z,t) = h(x,y,t) +y a(x,y,t) (4.1c)

Substituting Eqn. (4.1) into Von Kdrmdn strains of Eqn. (3.8);

I
/]

Figure 4.2: 3D Model of cantilevered wing.
_ Oy 1 (ah N aa)z 0*h  0%a
G = 9x T2\ox TV ox ax? Yoz dx2

_6190+ (6h+ N 6a> 62h+26a 0%a
vy = dy 2\oy yay 0y dy y(’)y

_1 Jug 6190 (ah a_a) (a_n a_a)] . ( 0%h 6_a 0%a )
Sxy 2[ 6x+y6y ay+“+yay z 6x6y+6x+yax6y

(4.2)

4.2.1. Equations of Motion

As in chapter 3, the governing equations of motion for the flutter problem is obtained by

applying the Hamilton’s principle as in Eqn. (3.27);
T
J, (BU + 8V — 6K)dt = 0 (4.3)

Taking the variation “0 ” of the strains in Eqn. (4.2) and putting it in the form of Eqn. (3.9);
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50 _66u0+16(6h)2+6( 8!160()4_1(S 2<6a)2
G = o T 2%\ox yaxay 2%\ \ox

0 65u0 dh d5h dSh da dhdda | 5 0adda
Oxx = T ox axox "V axax  Yaxax Y axax Y
22n _ 9%a 826h _ 9%5a
68’%’6 =0 (_ﬁ_ yaxZ) - axz 7 ox? (4.5)
dv, 1 /0h oa
0o —_ 4 [—
Oeyy oy 2(6x+a Y3 )
L 09, 1[h  \* _ da soh , (0’
9y T2 (Ge+e) * ya—(@“‘) Y (@)
99, 1[goh\? oh ] dadh  da 1, da\’
—Wﬁl(@) ”“@”l”a Vet (@)
0 _ 988  2hdbh ash L
el = y+ayay+ “Sa+a + aba+y Syt
déa 650.' Jda
% V% = Sa+y? = 4.6
ya 3’ By 9y (4.6)
Sel — _ [2%sh 266(1 825a
Syy =~ [ayz + Ty ayz] (4.7)
1/0u, 09, O0hodh dh dh aa aa ah Ja
9 ( +—F——ta—+y— ay —
v =2\9y " 9x ' oxay - ox  ’ox ay Y ox ay 0x
N ,0a 60()
v dx 0y
0 _ 1(66110 969, _ dhd8h | dh dsh ash
0 6y+6x +6y6x+6x6 + 6 ta +

da d6h oh c’)5a) n 0h déa da d6h
yay 0x yax dy yay dx yax dy
2 a_aada 2 0a dba

9 05
+y£ 8a+yaa—:+

dx 0y y @ ox (4.8)
581 _ (626h n dda 6260.’) 40
xy o 0xdy = 0x yaxay (4.9)

64



Since (Yyy = 2&4y), substituting Eqn’s (4.4) to (4.9) in Eqn. (3.33) the Strain Energy is:

oou 6h aé‘h 06h o« 0h déa Jda 06x
SU = [N ( 0 90h oa 2——)
f xx Bx Bx y dx O0x yax dox y Jox Ox

M, (— aazfzh —y a; 52“) +N,, (6530 + 3—5% + 2L 5q + a— + ada +
ya;%)+ny(%+ajf°+g—z%+g—:%ﬂ+ s+ a a‘Sh+yZ—§‘ %+
yg—: % yg—ﬁ%wg—j %ﬂ+y£5a+3’a%+yzzz 6:; yzz—; %) -
2Msy (S 5 Y 5] ey .10
Let;

Yo, i, Yo = [ ora(L Y, ¥H)dy (4.11)

Eqn. (4.10) can be rewritten as;

oU =
fo (e [¥o (2 + 52 50) + 1 (S5 + 5150) + e 5 5| M (V5 +
) (5 25) ] )
v, 2% | Ny [Yo (G + S5 + o 8a + a S+ ada) +1; (5255 +
Z—z%+ “_“+— 5a) + Y, a:“g“] +N,, [YO (65“° +%+Z—z%+
et Tsatat )+ Y (A T T S T TS +
a%) +1, (5 % + g—z 29|} ax 4.12)
For the Kinetic Energy Eqn. (3.37) can be written as;

K= fvo %po(uz + 9% + Ww?)dzdxdy (4.13)

Taking the variation of Eqn. (4.13);
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5K = [, %p0(5i£2 + 692 + 8Ww?)dzdxdy (4.14)

By substituting Eqn. (4.1c¢) in Eqns. (4.1a & 4.1b);

oh 6a>

u=u0—z<§+ya

w=h+ya (4.15)

By differentiating Eqn. (4.15) the displacement velocities are;

. ah{_ da
U=t—2 0x yax

9 =19 ah+ 4y
BRI PR yay
W =h+yd (4.16)

Taking the variation “dJ™* of the square velocities in Eqn. (4.16);

PN ah+ aa\]*
W =0t Zax yax

2 __8h a_a)( __8sh asa)
ou” = Z(uo Z——ZY - Oy — 2z PR (4.17a)
5§92 =69y —Z ah+ + i\’
B 0 d0x * yay

52 — 9 (4. — ;00 _ . _ . 00 y _ ,0h_ . 0
69 —2(190 z3, ~Za zyay)(6190 z5, "z zyay) (4.17b)

sw? = 8(h+ya)”

sw? = 2(h + ya)(8h + ydc) (4.17c)
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Substituting Eqn. (4.17 in Eqn. (4.14);

SK = f —Po[z(uo Z%—Zy )(6 O—Zaf;ﬂ—zyatﬁa)+2(190—zg—z_

zd — zy2 ) (89, - 28R _ 4y a‘5"‘) +2 (h +ya)(6h + y5d)| dxdydz

dy
(4.18)
_ 1oty — 1gZ 22 — 1jogy 202 _ 2 2 01 25
6K = [, po [uO(SuO WZ———Upzy o~ — 20Uy +2° ———+
2, 0h08a _ o 0udSh | 5 506084 _ 5 oo g 08 _
Y ox ox y 8u0+ ya o —4z % O 196190 79()Zy
66_0:_ ah ¢ 20R 90k 0k 2. 0hBSG . o
9pz8a — 9yzy z— 69y + z oy T %5 oa + z 3 3y —zadd, +
2 . O(S_h 2 . . 2 : ac‘S_a _ a_a A 2 da 65h 2 da
zia 5 +z%ada + z°ya 3y Zyay5190+ Yo oy 5, tz7y o> 6a+
- 23“665“+h5h+yh5a+ya5h+y @8c| dxdydz
(4.19)
Let;
Ioo, o1, 1oz =]p0(1,y,y2)dydz
v
Lio, 111,11, = f po(1,y,y*)zdydz
v
Iy, Ir1, 122 = f po(L,y,y*)z*dydz
v
(4.20)
Using Eqn. (4.20) in Eqn. (4.19);
0K =
'3 . . P Lot P . o1 P . 06h
fO [[00(u05u0 + 196190 + h5h)+101(h5a + (X(Sh)+]02(x5a _110 (uog +
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0h 06h 0h 06h 6h66a da d6h
—519)+120(a 6x+56_+ 5 + a —+a8 )+121(a P +ag+

oh 08¢ . 06a  0a dSh Ja 66a E)a 650:
dy dy ay dy dy ay ox ax 6y ay

(4.21)
For the work done by external applied forces and moments (lift and pitching moment) as

shown in Figure (4.3) can be written as;

Aerodynamic

Centre Lift Distribution

Mass

Figure 4.3: External applied (Lift) forces.

V=—[ pdxdyw (4.22)
c

Y
—j fp (h + ya)dydx
0 0

c

°
—j f(ph + py a)dydx
0 0

£ c c
——j jphdy+jpydya dx
0 \o 0
V=- f(f (Lh+ M, a) dx (4.23)
Taking the variation;
V=- f(f (LSh + My 6a) dx (4.24)
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Substituting Eqns. (4.12), (4.21) & (4.24) in Eqn. (4.3), integrating by parts and setting the
coefficients of duy, 89y, 6h & Sa  separately to zero, the Equations of Motion (Euler-

Lagrange) are:

ONyy , ON . oh doa

6u0:> —Yo(ax + a;y)'l' IOOuO_ 110 a_llla =0

(4.25)
dN ON .

89, YO( 5y T ox ) T oo Yo — 110( + a)—1, - =0

(4.26)
_ 0*Myx | 0*Myy O Myxy\ _ i[ ( o o
Oh = YO( oxz T dy? +26x6y) ax |10 Nxxax+nya +

nya)+Y1(Nxxa +Nx3’ay)]_ %[YO(NWE) +aN, +nya )+

o1 a9
A >  Nyy S5)] oo b= Togéi + g (52 + 2

oa 0“a 0%
5) —’21(ﬁ+a—yz) -L=0

- Lo (52 2+—+

(4.27)
My 5]
ba = Y (252 + Nyy 5o+ Ny + Ny 52+ 2522 4, (N 3% -
azMxx _ 92 My, azMxY) _ il: a_h a_h
dx? 9y?2 t ny dx —2 9xdy dx h (Nxx ox + nya N

any)+Y2 (Nxxa +nyay)]_ ay[yl( 3’3’6 +aN +ny3 )+

Vo (Nyy 5o+ Ney 55) | #lon = loo + g [6”0 80| +
L7 9% +120( +Z—';) —I (%+ Z;) —1,, 2% Py & M=0 (4.28)

4.3.Uniform Beam Wing Model

To model the bending-torsion motion of a uniform cantilever beam wing the following

assumptions are considered:
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e Bending and twisting displacements are only functions of span-wise distance and

time; h(x,t)& a(x,t), therefore,

oh 0%h da d%a
dy dy? dy dy?

e To account for the actions of the piezoelectric actuators in both X and Y directions the

following forces and moments (as shown in Figure 4.4) are considered:

Ny, N

YY’N

xy’ Mxx’ Myy & Mxy

e The in-plan displacements are neglected; u, = 9, = 0, therefore, only Eqns. (4.27)
and (4.28) are used.
e For linear analysis Eqns. (4.27) and (4.28) are solved separately.

le

M,y 7<M

Figure 4.4: Forces and Moments on a beam element.

Using these assumptions, Eqns. (4.27) and (4.28) can be reduced to:

9%*M 0°M OZMx 0%h 0%a o .
—Y( x ¥ 4 o y)—N (Y— Y—)—YN % Lo —
0\ ox2 t dy? t 0xdy xx \ 70 gy2 th 0x2 077Xy 9x *loo h

. 9%h 9%
lywa—lo— —I;1=— -L=0
0182057 T12152

(4.29)

oM. oM, 02 0°M 02 M, 0? 02
o, (e 2) i (e e 250~ (54 E) ¢

dx dx? dy? dx0y
oh 5 . 9%h %
YoaNyy - YOnya-l_IOl h + (102+120)(X _121ﬁ _122 ﬁ -M =0
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(4.30)

For piezoelectric layers, as in Eqn. (2.2), the piezoelectric effects are added to Eqns. (3.19)
and (3.21) [69];

Nix A1 A1z Age] (Exx B11 Biz  Bie] (Exx
Nyy b =[A12 Az Ay 5393/ +|Biz Bz Bye 531/3/ —{N} (431
Nyy Ate Aze Ased 12, 1B Bae  Beol |y,
M [Bi1 Biz  Bis] gfc’x D11 D1z Dis g;x
Myy b =B, Biz Bae 3393/ + (D12 D2z Dy 531/3/ —{MP}  (432)
M, |Bis Bs Beel y,gy D16 Dz6  Des y,gy

And in a combined matrix form:

{{{1]\2} N [{g% {gﬂ {Eg} N &1\]\/[12} 4.33)
Where,

N}?
{NF} = NP 1fz"+1 [e32] E;dz (4.34)
€36

P
Ny

Mz
{MFP} = M§ = 1fzk+1 [egzl E; zdz (4.35)
M}C’y €36

Here the piezoelectric stress coefficient € is related to the strain coefficient d as follows [74],

[75];

€32 Qz Q2 Qa6 |ds2 (4.36)

[églr Q11 Q12 Ql6k
€36 Q16 Q26 Qssl lds6

and,
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dsq d31c05%0 + d3,sin%6
ds,| = |d3;sin?0 + d3,cos%6 (4.37)
dse (d31 — d3,)cos0siné

And writing the membrane strains (€°) and the curvatures flexural/bending strains (£!) in

Eqn. (4.2) in matrix form as in Eqn. (3.11);

( 1 (oh a2\ 2 \
0 > (_ + y—)
gxx 2 \0x dx
2
£y b = 4 1(% +a+ ya—“) ; (4.38a)
0 2 \0dy dy
Vxy (ah da\ (dh da
\6x+y6y)(6y+a+y6y)i
2 2
1 ( - (6—2 + ya—j) ) 9*h o’a
Exx ox ox —\== + Yy
1 a%h da 2%a ox ox
eyt =1 —(B+2Z4yDs) b= 0 (4.38b)
dy ay dy 2 2
1 0°h da 0“a
Yay —2(62h +224 aZ_a) _z(axa tox T Vo )
\ oxdy = 0x y axdy// Y Y
) ) oh Oa ) )
With the assumption of %’ 9 O (€), this means that the terms of order € are
negligible;
dn\% (da\? ohda
GG 5a =0 (4.39)
Therefore, Eqns. (4.38) can be rewritten as;
0 1 _ (% &)
EJ(C)x laz gjlcx ((’)x2 ty x>
Eyy ¢ = 2 , and Eyy ¢ = 0 (4.40)
0 _ a_a 1 Jda
Vxy 2 Vxy -2

The {N} and {M} for symmetrical laminated (B;; = 0) cantilever beam wing are:

Ny, = A;, Gaz) + Ayg (aZ—Z + ay g—Z) — NP (4.41a)
Ny, = Ay, Gaz) + Ay (ag—’; + ay Z—Z) —NJ (4.41a)

72



And,
a2h ) p
Myx = —Dy3 (55 +y25) — 2D16 5o — M
— 0%h 2 P
Myy _D12 (axz + y dx 2) - D26 My
0%h 0%a oa P
Mxy = —Dss (axz + Yﬁ) - 2D66a - Mxy
For (a < 1);
2 02 oh ~
a ox ' ox =0
Eqns. (4.41) are reduced to:
P
Ny [ =Ny |
P
Ny, | = —N,,
N. P
Xy _ny

Substituting Eqns. (4.42) and (4.44) in Eqn. (4.29);

02 9%h 0%a 92 9%h
_Yo[ ( D116x2 Dllyaz 2D16a MP) az( D1262

62
2D56 25— M]) + 2 e

9%h 0%a oa 9%h
NJICJ(YOQ-FY].@)-'_YONP +100h+101a 12062 —L=O

( Di6 giz D16yg 2 2D66a Mf:y)]

(4.41a)

(4.42a)

(4.42a)

(4.42a)

(4.43)

(4.44)

9%a
12Y %2

(4.45)

Differentiating and letting [% (N, M) = 0], the equation of the bending motion “h” is:
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0* 0*a 3a 0*ME o, 0°h 0%a
YOD11 W + Y1D11 W + 4Y0D16 ax3 + YO axz + Nx YO W + Y1 ﬁ

02h 02d

Jda .. .
+ Yonya‘l'Ioo h + IOla_Izoﬁ _121ﬁ —L - 0

(4.46)

The same procedure for Eqn. (4.30);

9%h %a

a%a 92
ax? 2D16a M’I;) 62( Dlzaxz Dlzyaxz_

_Y1[a2 ( Dy, 222 D11y

92 9%h 9%a
2D26a MP)+Zaxa ( D162z ~ D1eY 52 2D66a M’fy)]

0 0%h 0 0%h 0’a
ZYO[a(Dlzaxz Dlzya2 2D26 MP) ax( Di6 gxz = D16¥ oz —

oh
2Dgs 2 —MPN+N50%2+W%3) YoaNy + YoN£, 2=+l b +

. 0%h 0%a
oz +120)0 —lp1 5 —lp 5= -M =0

(4.47)
And therefore, the equation of the torsional motion “a” is:

0*h 0*a 0:M~ 0%a 03h
Y1D11a 4+Y2D116 = th 9x2 2Y0D1za 2 2Y0D16a 3

3a 0%a oMy, o, 0°h 0%a
+ 2Y1D16 a 3 4YOD66 a 2 ZYO a N Y1 axz + YZW

P p Oh
- YoNy a+Y0ny a +101 h

. 0%h 0%d
+ (loz +1z0)d _121W _Izzﬁ -M=0

(4.48)
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4.4.Finite Element Model

The derivation of finite element equations of a differential equation f (X, t) is done in three

steps [76];

1. Development of the weighted-residual or weak form of the differential equation;
which involves:

a. Constructing the Weighted-integral statement by multiplying the entire
differential equation by weighted function w(x) and integrate it over the
element length; fol f(x,t).v(x)dx =0,

b. Shifting half of the derivatives from f* to v by integrating by parts,

c. Imposing the problem actual boundary conditions.

2. Assumption of the approximate solution, using the separation of variables technique,
the differential equation is approximately equal to the summation of the multiplication

of time dependent function f{t) by shape function v(x);
ft) = Xjoq i (©.v7 (x) (4.49)
3. Substitution of the approximate solution to derive the finite element equations.

Applying the previous steps on Eqn. (4.46);

l o*h 0*a a°M~ p0°h p0ia
.fo (Y()Dllw v+ YlDlly U+YOW v+ YONxW v+ +Y1Nva
a da .
+ 4Y0D16ﬁ v+ YoN,}:yav + 100 hv
azh 2.
+ IOldv_IZOW U—121ZTCZ( v-L v)dx= 0
(4.50)

Integrating by parts;
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l 9°h 9%v 0%a 0% 0’y » dvoh p
fo <Y0D11 32 92 1Du—— ——+Yog 7 M 2Yg7-a- Nx
0*voa ov p -
+ 4Y0D16$a - Yoaa ny +100 hv

oh ov da dv

+101av+1206 ax+121ax a LU)dX—O

(4.51)

The same for Eqn. (4.48);

L 9*h 2*a 02m§ 2% 93h
fO < YlDllﬁ 1% + Y2D11 ax4_ v + Ylm VU — ZYODlzﬁ U — 2Y0D16ﬁ v —

P

63a 62 P P 62
2Y1D16$ v — 4YOD66 dx 2 ZYO + YlN + YzN -

Xaz x62

YON av+Y0ny +101hv+

. 9%h 0%a
(102 +120)a vV — ]216 2 v— 122 92 v-M U) dx == O (452)
Integrating by parts;
0%h 0%v 0%a 0%v da v
Jy (D1 28 415Dy, 2222 4y, 0 MP 4+ 2Dy, 2 2

0°h 0 %a 0 da 9
2YoD16 == 9%2 av + 2Y; D¢ ox Z av + 4Yy D¢ aa av + ZYO - MP Ylaa NP —

NP S22 — Yy N v — YohNE, 224 I h v + (o +120)d v +
b1t i1, 2% 2 M y)dx =0 4.53)

Assume the approximate solutions as:

h(x t) = ] 1Y (t)l/)] (X) (4~54)
a(x, t) = Yo, ap ()@ (x) (4.55)
And, v(x) = Pf(x), by (%) (4.56)

Substituting (4.54), (4.55) and (4.56) in Eqn. (4.51);
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! d*pg PP d2pg d2y
f0< 1YoD11—— ¥ ]he(t)+zm1Y1D11 L ep 24 ag(t) +

dx 2 dx 2 dx 2

azyf d arypi aypi 11)
;"=14Y0D16d—‘”2d¢k ag(t) + Yo ot "’ M = %7 27, “’ =L he(NE -

dyé dyi d
T 2N, U peag (6) - S, 21, NP S4Bk e +
n | lgo 8 I Iy S5 L e
=1 loo lpilpj F(8) + Xz loai ok di(t) + Xi=1 Lz (1) +

dyé d
1121;” ‘f{" e (t) - Lw) dx =0 (4.57)

Rewrite Eqn. (4.57);
0 =

"_1(KH;; — GHyj) he () + Xy (Kag + Gay) af(t) + X7_; Mhh; he () +
Yk=1 Mhay, @i (t) + Ff + Fhp;

(4.58)
Where,
@i Y7
f YODll dx? dx? X
l dyf dvj
GHU = fO YONf Ed_x] dx
Pk 21!’1 a*yi d¢
Kag = [y (YD1 T8 S0 4 4v,p, <00 k) dx
L aypyi ayi dog
Gay = fo (Yo Ngy =+ o bf + V1N ™ dxk) dx
l dy? ayp;
by = J; (oo E05 + 1o 2L 22)
l aps dgf
Mhay, = fo (1011/Jied),i + 1 ax d—xk) dx
e L e e L, A2y . p
Ff = [-Lyfdx and, Fhp{ = [, Yo—3 My dx (4.59)
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Substituting (4.54), (4.55) and (4.56) in Eqn. (4.53);

l d 1/) d e d2 e d2 e
f(,( 1Y1D11 2] ¢l - hi () + Xkeq Y2Diq d¢ djzl ag(t) + Yl?qbzl My +

e e 2
ke12YoDs; &di;k agp(t) + Z 2Y0D16 LD, d¢k he(t) +

k=1 2Y1Dyg dd ¢2k djl ap(t) + Xreq 4Y0D66 ai dq;l ai(t) + ZYOMP ddil

dp dys doy d
nVNE LS e () -y vy Np L0k SO g ) —

STy Yo NESE g (6) — Xioy YoND, SLLypehe (6) + X7y Loy pE5 s (6) +

dlp}' e
— hi (t) +

.. do;
k=1 Uoz +120) OF PRt (6) + Xio1 o1 %

dpé dof ..
k=1 Izz% %“ﬁ(t)—M Cl)le) dx =20

(4.60)
Rewrite Eqn. (4.60);
0 = X UAy + KAy — GAy) ag(t) + X7, (Khyj — Ghyj) b7 (8) +
YI_i Mahy; hf (t) + Xje, Maay, @ (t) + Faf, + Fapy (4.61)

Where,

dgt d
]Alk=f 4YoDg6 — ¢k ¢ld

dx

dx? dx dx? dx?1

l d¢e d¢e d2¢e d¢e d2¢e d2¢e
KAy = [} (2¥oDy, L9 | gy p (LR y py | SOF L0 ) g

l d¢s do
Gh = [y (YoNE Sk 24 ¥oNS 965 dx

l a*y; def a*y; aze¢f¢
Khl] = fO <2Y0D16 d.XZJ dxl + Y1D11 dxzj dle) dx
l def do¢ dy;
o = 52 (1, 22 gt 4 g 2190 g
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! def ds
Mahl] == fO (101 (l)lelp]e + 121 dxl dx]) dx

l dpf des
Maay, = fo ((102 +120) L Pk + 122 dxl d_xk> dx

Faf = fol—M ¢f dx

l dof d2¢¢
Fapg = | (ZYOM,fy dxl +Y; dle M,f) dx (4.62)

4.4.1. Beam Element Characteristic Matrices and Vectors
The wing element is shown in Figure 4.5. The element has two nodes and six degrees of
freedom (three per node). The three nodal degrees of freedom are; translational (x;, X4),

rotational/angular (X;, xs) and torsional (x3, X¢) displacements.

X4 X4

| !

<

)(1 X5

Figure 4.5: Nodal degrees of freedom.

The characteristic matrices and vectors listed in Eqn’s (4.59 & 4.62) are evaluated by
considering the Hermite Interpolation Functions [77, 78] as the shape functions of the
translational and angular displacements;

2 3
1—3%+2%‘
2x2 x3
x_ — —
1 2
YW =HW=5 , 5 (4.63)
35 -2%
l l
xz x3
\ T "EZ )

and the interpolation function for the torsional displacement is given by [78];

1-%
¢f(x)={ . ’} (4.64)
l

Where, i,j=1,2,4& 5,and k, [ =3 & 6.
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Applying Eqn’s (4.63 & 4.64) into Eqn’s (4.59 & 4.62) the characteristic matrices and

vectors are;

12 6l —12 6l
_YoDi; | 6l 412 -6l 2I?
KHi;="5"1212 61 12 —el
6 212 —6l 4l
36 31 —36 3l
_YNE| 31 412 =31 -2
GHij =0 | =36 —31 36 -3I
31 —12 —3] 42
0 0
4Y oD —
Kaik: oD16 (1) 01
11
1 -1 —6 —6
_wnnPlo o, NG| 1 =1
Gaw=—""121 1|7 = |6 6
0 0 11
- 156 221 54 —13l 36 31 -36 3l
_dol| 220 42 131 -3 | Lol 31 412 -3 -I
Mhhi; =251 s 131 156 —221| T30i|-36 —31 36 —3i
131 =312 —221 42 3l —12 —3] 42
21 9 1 -1
_ml| 30 20|, m|0 0
Mhagw =19 21T 7T|-1 1
21 —3I 0 0
6
e -Ll| 1 . o g e .
Fy = =16 , for uniform lift distribution over the element. And,
—1
0
Fhp¢ = YoM? | 7! (4.65)
1

And,

JAu = 4%Des [ 1, ]

KAy = ZYOZDIZ [_11 _11]
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oan=E[4, 4P

o, =20} 10 ]
o = 8 e ]

Mahlj = E

Maay, = Ugp+120)1 [2 1] + 12_2[ 1 —1]

[21 3l 9 —21] 121[1 0 -1 o]

9 2021 30" le1 0 1 o

6 1 2 -1 1
e —Mi[1 o : o g
Fap = —~ [ 1] , for pitching moment due to uniform lift distribution over the element.
Fapg = 2Y,MP, [~} 4.66
apy = 0 xy 1 ( . )
Letting;

KHa]-k = Kajk + Gajk
KAAlk :]Alk + KAlk - GAlk
KAhkj = th] — th] (4.67)

The global stiffness matrix (for m, n =1, 2 ...6) can be written as;

'KHH,, KHH,, KHa;; KHH,, KHHys KHajs
KHH,, KHH,, KHa,; KHH,, KHH,. KHayg
K _|KAhsy KAy, KAAs;  KAhy,  KAhys  KAAsg 4.68)
mn = |\KHH,, KHH,, KHa,s KHH,, KHH,s KHa, '
KHHe, KHH., KHas; KHH., KHHs: KHas,

| KAhg;  KAhg; KAAgz KAhg, KAhgs KAAged

In the same manner, the global mass matrix can be written as;

‘Mhhyy Mhhy, Mha;3 Mhh;, Mhhys Mhayg)
Mhh,; Mhh,, Mhay3 Mhh,, Mhh,s Mhay,
Mo = Mahz; Mahs, Maazz Mahsy, Mahss Maasg (4.69)
mn\Mhh,; Mhh,, Mhay; Mhhy, Mhhys Mhayg '
Mhhs; Mhhs, Mhas; Mhhs, Mhhss Mhasg

| Mah61 Mah62 Maa63 Mah64 Mah65 Maa66_
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The global external (Aerodynamic) forces (AF:) and the piezoelectric control forces (PFg)
vectors are;

Fe Fhpg|
F; Fhp3
Fa§ Fap$
e _ 3 e _ 3
AF; = Fe | and PEF; = Fhpe (4.70)
F¢ Fhp¢
[Fag | | Fapé |

Therefore, Eqns. (4.58 & 4.61) can be written in global form as;
[Kinnl[x] + [Minn][%] — [AER] — [PE3] = 0 (4.71)

4.4.2. Aerodynamic Forces Model
The lift forces (F¢) in Eqn. (4.65) and the corresponding pitching moments (Fay) in Eqn.

(4.66) which construct the elemental aerodynamic forces (AFy) are evaluated based on a

uniform aerodynamic distribution over the element as shown in Figure (4.6) [79].

L
F: :: F 9 F 8 F F 3 F 3 [ 3 I3 F 3 F-3 F :: F:
Fa; Fa’ | M
3 as
e M e
F, Fs

Figure 4.6: Nodal forces due to uniform aerodynamic loading.

However, since the element is under twisting motion (in addition to the bending motion) this
means that each node has a different twist angle (Angle of Attack). Therefore, the
aerodynamic loading with linear varying distribution can be considered as shown in Figure

(4.7).
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1
L
L
£y ’"E
F: * & Fd
Fa\ Fat Hn?
3 [ 2
e MT
e
Fy Fs

Figure 4.7: Nodal forces due to linear varying aerodynamic loading.

And hence, the clemental aerodynamic forces (AES) can be rewritten as a function of
Ly, Ly, M; and M, (see A.1);

- FE - 3(7Ly + 3Ly) T
F$ I(3L, + 2L,)
Fag L |102M, + M)
e _ 3| _ 1 1 2
Abm = F¢ | 60| 3(3Ly +7L,) (4.72)
Fa¢] [ 10(M, + 2M,).

Using the quasi-steady aerodynamic model in Eqns. (2.7 & 2.8) the aerodynamic forces and
moments are calculated as;

hl ~1
Ly = qeClo(a’ + -+ Ceg;“ ) (4.73)
hZ 22
Ly = qcCly(a® + -+ £ eg;“ ) (4.74)
And,
o r—adal 1, ' ceayal
M; = qc“| TR ea,Cl,(a toot— ) ] (4.75)
2 r—ad? 2 h?  ceaya?
M, = qc?| Tt ea,Cl,(a to—t— )] (4.76)
where,
ea; = ea—0.25 and ea, =0.75 —ea 4.77)

h, h? and at, a? are the flexural (plunge) and torsional (pitch) displacements at element

nodes 1 and 2 respectively.
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4.5.Summary

Detailed mathematical model of the bending-torsion behaviour of the cantilever beam (wing)
incorporating piezoelectric patches with varying orientations. The model was then derived in
a Finite Element form to find the effect of the activation of the piezoelectric patches on the
onset of the flutter and the corresponding critical speeds. The model incorporates the
aerodynamic loading - based on the quasi-steady theory and control forces. The control law
modelling will be presented in the following chapter as well as the numerical results and

discussion.
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Chapter 5. CONTROL OF BEAM FLUTTER

This chapter is about the investigation of the controllability range of the beam using the

attached piezoelectric patches.

The well known Multi-Input Multi-Output (MIMO) Full State Feedback control law in
particular, the Linear Quadratic Regulator (LQR) theory has been employed to realize the

objective of flutter suppression of an Aeroelastic beam.

5.1.LOR Control Law
The LQR method is basically finding the optimal state feedback control gain matrix G which

minimizes a performance function J of the problem [80]. The process of finding G can be

summarized as following [79];

For a dynamic system represented in a state-space form;

{x} = [Al{x} + [B{C} (5.1)

Where,

{x, X }: are the state variables, and {X} = [ xl], {x} = [xl]
l i

[A] : is the system matrix generated from the stiffness and mass matrices[K] & [M],
[B] : is the control/actuator matrix generated from control forces matrix[F], and
{C} : is the control input calculated by LQR method.

The control input is resulted from multiplying the gain matrix by the state vector;

{€}=-[Gl{x} (5.2)

For the performance function of;

J =3 {@T1Q1x} + (€} [RI{C)dt (5.3)

The Hamiltonian of the system is;
H = ({(x3T[QI{x} + {C)T[RICH + (T (Al + [BICH)  54)
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Applying the optimality conditions of;

()= -5 = -1 - 1", ()} =0 55)
= = —[RI{c} + [BI™{A} 5.6)

Thus, the optimal control input is;
{€} = —[RI7[B]"{2} (5.7)

Using the Riccati matrix S, the Lagrange multiplier A can be written as;

{4} = [SHx} (5.8)

Substituting Eqn. (5.8) into Eqn. (5.5) and for the steady state of the system where the Riccati

matrix satisfies [S ] = 0, the so-called Algebraic Ricatti Equation (ARE) is obtained;
[0] = [S1[A] + [AI"[S] — [SI[BI[R]~'[B]"[S] + [Q] (5.9)

Solving Eqn. (5.6) to find the Riccati matrix S, then the control input € in Eqn. (5.7) is

written as;

{€} = —[RI7[BI"[SI{x} (5.10)

Therefore, the gain matrix is;
[G] = —[R]7'[B]"[S] (5.11)

5.2.Aerodynamic Forces in State-Space Form
Revisiting the quasi-steady aerodynamic forces in Eqns. (4.73 — 4.76) it can be seen that these
forces are function in the system states, namely, h, @ & @. In other words, the aerodynamic
forces have components that depend on the system state velocities which are considered as
aerodynamic damping components. Therefore, it is obvious to rewrite these forces in state-

space form to be added to its mechanical counterparts in the system Equations of Motion

(Eqn. 4.71) [81, 82].

The state-space form of the element states of Figure (4.5) is;
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X rl
X3 al
X4 h?
Xs 12
X6 a?
{x} = %, | or in physical variables; {X} = i (5.12)
562 1:.1
X3 @l
X4 h?
Xs 72
| X Lr 2

Where,
7: 1s the rotational (bending) displacement of the element nodes.

For numerical simulation purposes, initial condition of lift coefficient (Cl,) is added to the

aerodynamic forces equations (4.73 — 4.76);

H 1 ~1
L, = qcCl,, (a1 + 3: + CelZa ) + qcCl, (5.13)
2 22
L, = qcCly, (az + STO + Cea;“ ) + qcCl, (5.14)
And,
M, = qcz[ Cly(a? + — + Ceaza —2)]+ qgea,c*Cl, (5.15)
M, = qcz[ Cl,(a? + — + Ceaza )] + gea cCly  (5.16)

Applying Eqns. (5.13 — 5.16) into Eqn. (4.72) the aerodynamic forces in can be written as;

— Fle -
F7
Fa$ .

AFg = e | = [Kal e + [Cal (3 + {Clo,) (5.17)
Fg

[Fag |

Where,
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0 0 21 0 0 9
0 0 3l 0 0 21
_ _lgcCly |0 0 20cea; 0 0 10ceaq
Kl=="a"lo 0 9 00 21 (5.18)
0 0 =2l 0 0 -3l
0 0 10cea; 0 0 20ceaq.
21 0 21cea, 9 0 9cea,
3l 0 3lceay 21 0 2lcea,
a a
] lgecty 20cea; 0 20c(ceazea, —C—la) 10cea; 0 10c(ceazea, o 5.19)
a 60Uc 9 0 9cea, 21 0 21cea; '
=21 0 —2lcea, -3l 0 —3lcea,
10cea; 0 10c(ceazea, —Cila) 20cea; 0 20c(ceazea, —Cila |
30a,
S5la,
1qcCly | 30ceaa
{Cloy = -T2 300:) 0 (5.20)
_Slao
[30cea; ay
- . 1_
_hl_ h
rl i
al . at
{xi} = 21> and {xi} =1. 2 (521)
h h
2 .
r2 72
a-- -C(Z-

Eqn. (4.71) can then be written as;
[Km = Kallx] + [Cn = Calli] + M ][] = [Clo, ] - [PES] = 0 (5.22)
Where the mechanical proportional damping component is [83, 84], [84];
[Cn] = {[Km] + B[M] (5.23)
Where,
¢ ,and f3: are the frictional and the structural damping constants respectively.

5.3.Piezoelectric Actuator/Control Matrix
Considering the mechanical and aerodynamic damping and initial lift condition components

in Eqn. (5.22), Eqn. (5.1) can be rewritten as;
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[x] = [Al[x] + [clo,] + [Mp ] [PE2] (5.24)
By comparing Eqn. (5.24) with Eqn. (5.1);
[BI{C} = +[M,]7*[PES] (5.24)
Or from Eqn. (5.2),
—[BI[G1{x} = [My,] "} [PF7,] (5.26)

From Eqns. (4.65, 4.66 & 4.70) the actuator force matrix in element domain is;

_thf— [ O
14
Fh e _Mx
e Fazg _2M§y
PE; = Fhpe =Y, 0 (5.27)
Fhp¢ M
LFapg] | 2M%, |

Since the actuator forces are a function of the applied electric field E5 (E; in Micro Fibre

Composite MFC actuator case) Eqn. (5.27) can be rewritten as;

0
_é_31
PES =Y, ], _20636 zdz . Es (5.28)
P
€31
L 2é36 _
Substitute Eqn. (5.28) into Eqn. (5.26);
— 0 -
—€31
-1 _2é36
[B] = —v,[M,,] ft,, o |zdz (5.29)
€31
L 2?36 -
And the input control (electric field) is,
E; = [G]{x} (5.30)
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For the purpose of multi-control of each elemental actuator, the global control matrix PF is

modified by assembling each element control matrix PF€¢;

PC1 PCy
& Y

MEC

PC3 PCg
;: Wc 7

PC2 PCs

Figure 5.1: Basic control effects due to MFC actuation.

Figure (5.1) shows the general notation of the control forces and moments generated from the
actuation of the MFC layers. Similar to Eqn. (4.70) element control matrix PF¢ can be

written in the form of;

PC,
PC,
PC
PF€ = PCj (5.31)
PC;

.pC, ]

For example, the global control matrix of the multi-control input of two MFC-elements as in

Figure (5.2) is;

4 Es
4/
fu'zfaulal |
éf Fi >
7

Figure 5.2: Multi-control inputs.

90



PCE o 1
PC} 0
pci 0
PC} PC}
PF = |Pc} PC? (5.32)
pPct PC?
0 PC;
0 PC?
| 0 PCZl

And consequently, the control matrix B will be;
[B] = [My,] 7' [PF] (5.33)

This leads to a modified control input vector;

€= (2] = [E3] = t6matmns 534

5.4.Numerical Simulation
A six-element beam is used to simulate the flutter case and its control. The control effect is
generated from a pair of piezoelectric MFC wafers bonded on top and bottom surfaces of the
beam which are polarized in the same manner to produce a bi-morphing action at each
element under actuation. The flutter control was investigated in six MFC placements
configurations. In each configuration the orientation (skew) angle of the MFC was varied.
Table 5.1 shows the free six-elements beam, the MFC skew angle variation and the six

actuation configurations.
The simulation configurations are;

a. Three configurations; each is for individual actuation of elements 1, 2 and 3 with
MFC skew angle variation ranges from -90° to 90°,
b. Three configurations; each is a combination of two actuated elements (1+2, 1+3 and

2+3) with MFC skew angle variation ranges from -60° to 60°.
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ANANNNRRANNNRNY
E
=

Top-View

1
—

ee beam MFC skew angle variation

NNNARRANNARNRNY
NNNARRNNRNRN

Case I: Element 1 Actuation Case IV: Elements 1 & 2 Actuation

ANNNNNNNNNY
ANNNNNNNNNY
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Table 5.1: Simulation configurations and MFC skew angle variation.

A MATLAB program was constructed to conduct these simulations. The flow chart and the

listing of the simulation program are shown in appendix A.3.

5.4.1. Program Validation
The MATLAB© program constructed in this study was validated based on previous
numerical work. The program algorithm must obtain the effect of the piezoelectric actuators
on a bending-torsion (aeroelastic) beam model. Most of the work done in the control of smart
structures using piezoelectric actuators was conducted on bending beam models and on the
other hand, most of the aeroelastic problems incorporating piezoelectric actuators were
numerical and/or experimental customized treatments. Because of these reasons, the
validation process was conducted in two parts; validation of the piezoelectric effect and

validation of the bending-torsion beam model.

Piezoelectric Effect Validation
The validation of the program code for the piezoelectric effect is conducted on a

[0°/90°/90°/0°] cross-ply symmetric laminated (AS/3501) beam with one layer of
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piezoceramic material (G-1195) bonded on the top and the bottom of the beam. The tip
deflections of the beam due to applied voltages are shown in Figure (5.3). It shows good
agreement between the current model and the work done by Donthireddy and

Chandrashekhara [85].
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Figure 5.3: Effect of actuator on tip deflection.

Aeroelastic Model Validation

The majority of the work conducted in wing flutter control is validated and compared with
the well-known work (Goland’s wing) by Martin Goland [86]. The exact Goland’s solution
for flutter speed of a uniform cantilever wing employs the aerodynamic forces derived by
Theodorsen [48]. This is not the case for the present work where the aerodynamic forces are
based on the quasi-steady aerodynamic theory. Moosavi et al. [51] developed a procedure to
predict the flutter speed and frequency based on Galerkin’s method and quasi-steady

aerodynamic theory and used Goland’s wing to validate the proposed model.

The validation of the present aeroelastic FE model is done in two steps. In the first step the
Galerkin’s method presented in Fung [47] is constructed using Mathcad© software (see
Appendix A2.1) to solve the Goland’s wing and then it is compared the work by Moosavi et

al. [51] . Table 5.2 shows good correlation between the two models.

Model Flutter Speed (Mach#) Flutter Frequency (Hz)
Moosavi et al. [51] 0.554 11.15
Galerkin [47] 0.543 13.796

Table 5.2: Comparison of the calculated flutter results.

Then in the second step, the Galerkin’s method is used to validate the FE model as shown in

Appendix A2.2. Table 5.3 shows also a good correlation between the two models.
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Model Flutter Speed (m/s) Flutter Frequency (rad/s)
Galerkin [47] 33.51 27.12

FE Model 34 29.361
Table 5.3: Galerkin vs. FE model comparison.

5.4.2. Materials’ Properties
To obtain the objectives of the present investigation the substrate and actuator materials are
adopted from different sources. The substrate material is decided to be regular Aluminium.
The piezoelectric actuator material is chose to be MFC™ with the assumption that its
properties do not affected by varying its skew (orientation) angle. The mechanical and

electromechanical properties are listed in Table 5.4.

MFC™ [42] Aluminium [73]
E,1(GPa) 36.5 69.0
E,,(GPa) 7.60 69.0
G1,(GPa) 14.6 27.0
Vio 0.25 0.32
d3;(m/V) 530E? /
d3,(m/V) 210E ™" /
p (kg/m?) 7552.0 2700.0
Length (m) 0.10 0.60
Width (m) 0.10 0.10
Thickness (m)  0.001 0.002

Table 5.4: Substrate and actuator materials' properties.

5.4.3. Simulation Results and Discussion

Cases I, Il & 111

The effects of the three individual actuation configurations on the beam aeroelastic behaviour
are depicted in Figure (5.4). The dotted lines represent the increase in the flutter speed due to
the (static) stiffness added to the beam by attaching the MFC actuators. As expected, the
maximum effect happens at the root of the cantilever beam and it decreases away from it.
Also, the increased profile is symmetrical around the 0° skew angle. The aim of showing the
lines of the static stiffness effect in the figure is to differentiate between the effects of the
deactivated and activated actuator on the flutter speed. The effect of the (controlled)

activation of the actuator is very clear as depicted with the solid line(s).
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Figure 5.4: The effect of actuator skew angles on the flutter speed.

The first point to notice is that the profile of the effect is asymmetrical around 0° which

highlights the importance of the MFC orientation angle. The second important observation is

the angle where the highest increase in the flutter speed occurs. As shown in the figure this

angle is 15°. This can be contributed to the resultant actuator moments applied to the system.

As seen in Figure (5.5) the maximum resultant actuator moment occurs at within the 15°- 30°

region.
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Figure 5.5: Actuator resultant moment due to activated actuator of different
orientations.

Another interesting point is the -60° orientation angle. At this angle, the flutter speed

increased opposing the decreasing trend. On the other side, the 60° orientation reduced the

flutter speed below the deactivated line. Relating this to the resultant actuator moment
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(Figure 5.5) it can be seen that the maximum negative moment occurs in between -60° and -
45°. The +45° and -45° produce the same flutter speed. By comparing the deactivated and
activated lines the flutter speed curve can be divided into four regions;

— -90° <0 < -45° flutter speed increases,

— -45° <0 <-30° flutter speed decreases,

— -30° <0 <45° flutter speed increases,

— 45°<0<90° flutter speed decreases.
Figures (5.6) and (5.7) show the plunge (flexural) and pitch damping ratios respectively.
Both behave in the same manner to that for flutter speed. However, the activation of a 60°
MFC on the first element produces the highest divergent (negative damping ratio) pitch

behaviour which led to flutter speed lower than the base line for the static stiffness.
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Figure 5.6: Plunge/Flexural damping ratio.
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Figure 5.7: Pitch damping ratio.
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Case IV

The plunge and pitch damping ratios are shown in Figures (5.8 & 5.9) respectively. The
figures show the damping ratio of each element one orientation with varying the orientation
of element two. From the figures, the damping ratio profiles can be divided into three

regions:
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-0.07

-0.09

-0.11

-0.13

-0.15

60 -45 -30 -15 0 15 30 45 60 =60
Ele.2 Orientation Angle (0°)

Figure 5.8: Plunge damping ratio; Elements 1&2 combinations.

1. Negative element two (0;) orientations; 0, < 0°; this region shows variable trends for
different element one (6,) orientations. The asymmetric behaviour of element one (0,)
orientations is clear in this region; the -15°, -30°, -45° and 60° orientations produce
unstable (negative damping ratios) behaviours while the 0°, 15°, 30°, 45° and -60°
produce stable (positive damping ratios) behaviours.

2. The second region lies between 0° < 0, < 30°; at this region all element one (0;)
orientations are bundled together and produce stable behaviours.

3. The third region is where 6, > 30°; at this region the behaviours are again divided into
two groups. The -60°, -45°, -30° and 45° orientations group have stable behaviours in

between 30° < 0, < 45° and unstable ones over 45°.

The -60°, 0°, 15° and 30° orientations of element one (0;) produce positive plunge damping

ratios (stable behaviours) all over the range of element two (8,) orientations.
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Figure 5.9: Pitch damping ratio; Elements 1&2 combinations.

The pitch damping ratio curves of the elements one and two combinations behave in the same
manner as the plunge damping ratios with more dispersed tendencies. This demonstrates the
sensitivity of the pitch/torsional motion in comparison to the flexural one. The 45° and 60°
orientations of element one (0,) show a distinguishable trend. The 45° orientation produces
positive damping ratios all over the 0, range except for the regions of -45° < 6, <-30° and 45°
< 0, < 60°. The highest pitch damping ratio occurs at the combination of (45°, 0°). The 60°

orientation of element one (0,) is stable only over the range of -15° <8, <30°.

Case V

The plunge and pitch damping ratios due to elements two and three combinations are shown
in Figures (5.10 and 5.11) respectively. The plunge damping ratio behaviours of this case
illustrate clear and uniform clustering and asymmetry. Two groups of trend lines are formed,
the first group consists of the -60°, -15°, 0°, 15° and 30° of element two (0,) orientations. This
group has a narrow band variation (0.008 to 0.015). The other group contains the -45°, -30°,
45° and 60° has a wider band variation (-0.01 to 0.01). Both groups follow the same profile
where the damping ratios start negative at the 60° orientation of element three (83) and rise to
the maximum at 15° then drops to reach a bottom at -30° to rise back to positive values at the

-60° orientation of element three (03).
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Figure 5.10: Plunge damping ratio; Elements 2&3 combinations.

The pitch damping ratio behaviour can be divided into two regions. The first region lies
between -60° < 03 < -30°. This experiences a similar clustering as of the plunge damping ratio
behaviours. In the second region (between -30° < 63 < 60°), the pitch damping ratio
behaviours are grouped together and then re-divided into two groups at 63 > 30°. This is true
except for the 30°, 45° and 60° element two (0,) orientations where they have different and

wide variations.
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Figure 5.11: Pitch damping ratio; Elements 2&3 combinations.
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The orientation of element two (0,) of -60°, -15°, 0° and 15° produce positive pitch damping

ratios all over the range of the element three (03) orientations.
Case VI

The plunge damping ratio behaviours for the elements 1 & 3 combinations shown in Figure
(5.12) follow the behaviour of the element 1 & 2 case. This is expected since element one

appears to be the most influential location.
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Figure 5.12: Plunge damping ratio; Elements 1&3 combinations.

Most of the combinations produce stable behaviour except for the element orientation angles
of -30 and 45 . These have unstable (negative ratios) portions. However, these instabilities
are reduced in comparison with the case of elements 1 & 2. This indicates that element three
actuation has introduced a better stabilizing regime compared to that from element two. This

could be due to the gap between the two actuated elements.
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Figure 5.13: Pitch damping ratio; Elements 1&3 combinations.

The same reduction effect on the unstable portions appears in the pitch ratio behaviour.
However, the stable (positive ratio) portion of the 45 behaviour line of element one
experienced a reduction too. This indicates that element three actuation introduces a
divergent and not a stabilizing effect to the system compared to that for element two

actuations.

Overall, most of the behaviour lines of the plunge damping ratio follow the trend depicted in
Figure (5.10). This is clear in both the single actuator and double actuators configurations.
The same can be mentioned for the pitch damping ratio behaviour lines but with more

irregular behaviours especially for the case of the element 2 & 3 combinations.

Multi-actuation of piezos has a more pronounced effect on flutter speed when compared with
the individual ones. Figure (5.14) shows the gain in flutter speed due to the actuation of a
sample combination of elements one and two of (-30°,0,") when compared with the
individual actuator cases. The figure shows a similar profile with a shift of the maximum
flutter speed achieved from 15° of the individuals to 30° for the multi-actuation case.
However, the comparison between the inactivated and activated curves of the elements one
and two combination shows that the flutter speed increased only at two angles namely, 15°
and 30° while it occurs over a range of angles for individual cases (-60°, -15°, 0°, 15° and

30°).
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Figure 5.14: Flutter speed comparison between the individual and multi actuation.

To gain more insight on the effect of the actuator orientation on the pitch angle of the beam,
the span-wise Effective Pitch Angle (EPA) for each case is shown in the following figures.
Figures (5.15) to (5.18) illustrate different profiles of the span-wise EPA for cases I, II, III,
IV, V and VI respectively. For the first three cases, it is clear that the profile changes at the
element with the piezoelectric patches. However, the three have similar profiles with different
EAP variation magnitudes. Also, the positive and negative orientations are kind of
symmetrical around 0 for most of them. This symmetry becomes clear as the piezos move
away from the beam root. Another observation is that the minimum EPA is raised as the
piezos moves away from the root; there are negative EPAs in Element 1 but in Element 3, all

are positives.
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Figure 5.15: Span-wise EPA due to Ele. 1 actuation.
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Figure 5.16: Span-wise EPA due to Ele. 2 actuation.
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Figure 5.18: Span-wise EPA due to combination (-60,0,) actuation.
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Figure 5.19: Span-wise EPA due to combination (-45,0,) actuation.

Figures (5.17) and (5.18) show two combinations of (60,0, ) and (-45 ,0,) of case IV as

examples of multi-actuation cases.

A closer look at the actual piezo actuation effects is obtained by evaluating the A(EPA)
through subtracting the inactivated EAP values from the activated ones to exclude the
mechanical effects of the piezos. Figures (5.19) to (5.23) show the actual A(EPA) exerted by
activating the corresponding actuator of each case. Although the A(EPA) is small, they vary
from case to case and from one combination to another. These EAP variations highlight the

controllability of a main player in aerodynamic forces which is the Angle of Attack.
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Figure 5.20: Span-wise A(EPA) due to Ele.1 actuation.
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Figure 5.23: Span-wise A(EPA) due to combination (-60,0,) actuation.
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Figure 5.24: Span-wise A(EPA) due to combination (-45,08,) actuation.

5.5.Summary
The control law and model of flutter control case of a cantilever beam using piezoelectric
patches are presented in this chapter. A six-element beam model is developed to permit
various configurations of the piezo-patch location along the beam. A multi-control capability
is also incorporated in the model. This model is based on the Finite Element model developed
in Chapter 4 which incorporates the capability of aligning the piezoelectric patches in
different orientations. This gave more flexibility in investigating a wide range of orientations
and location configurations. The obtained results of such configurations provided more
insight on the behaviour of the flutter onset and its control. The results also show that there is

a room for more investigation especially on the control law.
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Chapter 6. CONCLUSION AND RECOMMENDATIONS

The conclusions from this work are clearly made on the basis of the work done on Shape
Memory Alloys (SMAs) on the modelling of the Aeroelastic characteristics of a beam with

embedded piezoelectric patches.

6.1.Control of Structures using SMAs

The use of SMA wires to alter the natural frequencies of composite plates has been
investigated. Two configurations of surface mounted (fastened) SMA wires are
mathematically modelled using Rayleigh-Ritz method and the evaluated results are compared
with the experimentally obtained results. The comparison showed a good match between the
two results. On the other hand, a mismatch between the percentage changes is observed. It is
assumed that the composite plates made for the experiments had undergone some tensile pre-
straining during the fabrication which caused the mismatch. Even with this tensile pre-
straining, some shift in the natural frequencies was observed especially for modes 4 and
higher. The effective change of natural frequencies by using only two SMAs or a single SMA
wire may help in developing the configuration of the actuators to receive the optimum
response. This phenomenon minimises the number of SMA wires used and the energy spent
for actuation can be reduced. This study demonstrates that the alteration of dynamic structural
properties using SMAs is possible, even though the changes observed in this study are rather
small. This strategy for control can be analytically modelled as shown by the reasonable
match between the analytical and experimental results. This is a good portent for prospective
mathematical modelling of the optimisation of control features of SMAs with regards to its

configuration and location on the structure.

This study shows for low frequency cases, the use of SMA’s in or on polymeric composite
structures might be effective in inducing a momentary shift in natural frequencies when a
reduction in the amplitude of vibration is required. The SMA configuration studies here also
showed that simple linear spatial arrangement on or in a structure can be adequate in inducing

a dynamic structural change.

Modeling of the SMA actuation was established but thermal effects might need further
attention. Also, the handling of the SMA wires requires adequate instrumentation to obtain

reliable results.
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6.2.Control of Aeroelastic Flutter
In the second part, the utilization of the piezoelectric patches in controlling structural flutter
has been demonstrated. A finite element model for bending-torsion case is developed with the
capability of multi-element actuation with the concurrent ability to vary the orientation (skew
angle) of the AFC patches. This study has demonstrated some level of confidence in the
formulative analytical equations derived for a beam structure subjected to harmonic loading
conditions for the determination of the critical flutter speed. The effect of the piezoelectric
actuation on flutter has been demonstrated through two control strategies; open loop in-plane
forces control and closed loop moments control. In the open loop in-plane forces control, the
0 degree piezoelectric orientation proved to be the most effective in shifting the flutter speed.
In the other hand, the 45 degree piezoelectric orientation appeared to have the most effect on

the amplitude on the twist angle.

The closed loop control is obtained using the LQR technique. The flutter speed and the
damping are seen to be maximized at actuator orientation of 15 degrees. Multi-element Piezo
actuation is also trending in the same direction as the single element actuation. Some piezo
orientations have been shown to be totally unsuitable for multi-mode control such as 60
degrees for the 2nd element actuation. Overall, the wide range of pitch angles has been
obtained from the variation of the orientation and combination of the actuators. Twist
(torsional movement) angle appears to be promising as an effective flutter control parameter.
Multi-element actuation will need optimization for situation-specific control — based on

geometric and loading complexities.
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6.3.Recommendations for Future work

Based on the work undertaken in this research, it might be worth conceiving a real
hybrid control system consisting of both SMAs and piezoelectric sensors and
actuators. The control methodology could consist of passive one involving
temperature movements for the control of the SMAs such as in jet engine exhaust
flows and an algorithmic one involving the piezoelectric actuators and sensors. This
might introduce the concept of effective control based on the transduction process (of

the sensor) and the frequency range of the anticipated application.

Experimental validation of the developed analytical models of the control of
Aeroelastic flutter. This will be further validate the numerical simulations shown in
this study, especially for the optimal placement of the piezoelectric patches and the

corresponding optimal orientation.

Increase the complexity (and hence realism) of the model by introducing added
geometric complexity, such as an aerofoil configuration. This will augment the
models in this study where loading complexities were introduced. This will also

increase the dimensional complexity from the 1-D problem to a 2-and 3-D problem.
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APPENDICES

Al. Nodal Forces due to Linear Varying Loading (For Chapter 4)

el
L
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Figure A1.00.1: Nodal forces due to linear varying loading
By letting;
L, is the force acting at the element start (node 1) and,
L, is the force acting at the end of the element (node 2).

Therefore,
L(x) =1L, +§(L2 — L)
For
l
0
Using Eqn. (4.63) fori=1,2,4 & 5;
x3

Integration evaluation gives;

Ff = == (7Ly +3L;) . F§ = == (3L, + 2L3)

Ff = ——(3Ly +7L;) , F§ = —~(2L; + 3L3)

(AL.1)

(A1.2)
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For the pitching moments;
M, is the moment acting at the element start (node 1) and,
M, is the moment acting at the end of the element (node 2).

Therefore,
M(x) =M, +§(M2 — M) (A1.3)

For

l
Fa; = f M ¢,dx
0

Using Eqn. (4.64) fori =3 & 6;

Fag = fl[M1+§(M2—M1)] [1—§]dx

Fag = [ M+ 300 -] [F] aa

Integration evaluation gives;

e
Fas

l
_E(ZMl + MZ) 9

Fag = —é(M1 +2M,) (A1.4)

And hence, the global actuator matrix is;

[ FE " 3(7Ly + 3Ly)

F¢ L(3Ly + 2L,)

Fa§| 1 |102M, + My)

EE |~ 60| 3L, + 7Ly) (AL3)
| Fa] [10(M; + 2M,)]
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A2. Aeroelastic Model Computer Code Validation Using Galerkin’s

Method (For Chapter 5)

A2.1 Goland’s Wing Flutter Speed
Goland’s Wing Properties

1:=2C c:=6 yecg :=.1
m:=.74¢ p :=.0765 la:=1.94:

E=236100  GI:=23910°

1 3
a.=—-p-C -—
2 P 8
ea :=.32 eal :=ea — .2°¢ ea2 :=.75—ea
Sa:=mycg-c Sa = 0.448
2
AR = @ AR = 6.667
2l-¢
ARR := AR ARR =0.769
AR + 2
Cla:=2-m-ARR Cla=4.833
1
q:z;p-oCle q=1.109

Shape Functions

45971
1

k:

H(x) :=.73-[ cosh (k-x) — cos(k-x) — 0.734(sinh(k-x) — sin(k-x)) ]

A(X) = .ISSin(mij
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Figure 0: Shape functions presentation along the half-span.

M,y 1

2
all:=EL | d—zH(x) dx a22:=GJ d—A(x) dx
J dx dx
0 0

1 1
b12 = J —q-H(9-A(x) d> b22 = J —c-q-eal-(A(¥)” ds

0 0

1 1
cll:= J' rn-(H(X))2 dx cl2:= —J Sa-H(x)- A(x) dx

0 0

1
2l:=cl; 22 = J Ta-(A(%)” d»
0

1 1
dil:= J q-(H(X))2 dx dl12:= J —q-c-ea2-H(x)- A(X) dx

0 0

1 1

(o Jacoy’

d21:=| q-c-eal-H(X)-A(x) dx d22:=| -\q:c -eal-ea2 —a)-(A(x)" d»

0 0

3 3

all =8.869% 10 a22=3.317x 10
b12 =-1.087 b22 =-0.12
dll =5.228 dl12=-2.74 d21 =0.522 d22 =0.428
cll =3.516 cl2=-0.439 c21 =-0.439 c22=0.437
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Al :=—c21-c12 + c11-¢c22

Bl1:=d11-¢22 + ¢11-d22 — ¢12-d21 — ¢21-d12

Cl:=all-c22 + a22-cll

C2:=c11-b22 + d11-d22 — c21-b12 — d12-d21

D1:=all-d22 + d11-a22

D2:=d11-b22 — d21-b12

El:=all-a22

E2:=all-b22

S:=D2(B1-C2 - A1-D2)

R :=BI1-CI-D2 + BI-C2-D1 - 2-A1-D1-D2 - BlZ-EZ

V:=B1.C1-D1 - B12-E1 - Al-Dl2

(—R + \l R2 - 4~S~V)
U2:=

Al =1.344

B1=2.818

Cl=1.554x 104

C2=2.771

D1 =2.114x 104

D2 =-0.059
7
E1=2.942x 10

E2=-1.063x 103

S =-0.463

R = 1.742x 10°

V=9.118x 107

e

Ul =

2.8 2.8
Ul = -522.628 U2=3.767x 10°
Ull={Ul U222:=4U2
Ul11=22.861i U2 — 61372
_ U2 .
1130
D1+ D2.Ul D1+ D2.U2
wle 22220 wn e (D1 D212
Bl Bl
wl = 86.682 w2 = 18.707i
! _
1 Hz = 13.796
2.1
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A2.2 Uniform Beam Aeroelastic Model Flutter Speed

Beam Properties

l:=.¢ c:=.1 t:=.00:
pmat :=270( Ia :=8.64
E:= 69~109 G:= 27'109
ea:=4
t3 t3
[:=¢c-— Ji=c—
12 3
m:= pmat-c-t m=0.54 p =1z
El:=E1 ElI=4.6
1 -4
Iy := ;-pmat-(l —3-ea + 3-ea2)~c3-t Iy =5.04x 10
Gl=GI Gl]=72
1 _
Iz::—~pma‘[~c-t3 [z=1.8x 10 7
12
ycg :=.5—ea
—4
la:=(Iy + I Ja=5.042x 10
eal :=ea — .2 ea2:=.75—ea
—3
Sa:=mycg-c Sa=54x 10
1 3®
a:=—-p:C -—
2 P 8
2
AR := 2y AR =12
2l-c
AR
ARR := ARR =0.8
AR + 3.
Cla:=2-1-ARR Cla=5.027
1
q:= E~p-c~Cle q = 0.302
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Shape Functions

_ 977
1

k:

H(x) :=[ cosh (k-x) — cos(k-x) — 0.734(sinh(k-x) — sin(k-x)) ]

) X
A(x) = s1n(n~ 21)

0
0 0.06 012 0.18 0.24 0.3 036 042 048 0.54

X

0.6

Figure 0.2: Shape functions for beam model.

1
1
( d2 2 ( d 2
all:=EI | | S=H(x | d a22:=GJ} | | LA | &
2 J dx

dx
0 0
el 1
bl12:=| —q-H(x-A(x) d» b22 = J —c~q~ea1-(A(x))2 dx
Y0 0
r'l l
cll:= | m(H)  ds c12 = —J Sa-H(x)-A(x) d>
Y0 0
1
c2l:=cl2 c22:= J Ia-(A(x))2 dx
0
r'l l
dil:= q~(H(x))2 dx dl12:= J —q-c-ea2-H(x)-A(x) d»
Y0 0
1l 1
d21:=| q-c-eal-H(%)-A(x) dx d22:= J —(q-cz-ea1~ea2 - a)~(A(x))2 d>
“0 0
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all =1.543x 103
bl12 = -0.247
dl1=0.716

-3
d21 =3.702x 10
cll=1.282

3

21 =-4.419x 10

Al :=—c21-c12 + c11-¢c22

Bl:=dl1.¢22 + c11-d22 — c12-d21 — c21.d12 Bl=1.162x 10

Cl:=all-c22 + a22-cl1

C2:=c11:b22 + d11-d22 — c21-b12 — d12-d21 C2=-2.782x 10

D1:=all-d22 + d11-a22

D2:=d11-b22 — d21-b12

a22 = 14.804

b22 = —1.357% 10 °

d12 = -8.639x 10 °
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c12=—4419% 10 °

22 =1513x 10

Al = 1.743x 10

4
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3
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R :=BI1-Cl-D2 + BI-C2:D1 - 2-A1-D1-D2 - Blz-EZ R =-3.323x 10 6
2 2 —3
V:=B1.C1-DI - B1-El1 - A1-DlI V=3.709% 10
2 2
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wl=27.12

wl
Hz.=—

27
Hz=4.316

w2 =301.615

2
Hz2:= e

21

Hz2 = 48.004
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A3. MATLAB Program Flowchart and Listing (For Chapter 5)

A3.1 Program Flowchart

Input Data
Materials' properties
Laminate structure
Actuation
configuration

- Plane-reduced stiffness
matrix calculation,

- Lamina to laminate
coordinates transformation

4

Element-

Time loop
(integration)

k

wise boop

Layer-wise loop
{Integration)

Mechanical and Piezoelectric
properties calculation per
lamina

|
Mechanical and Fiezoelectric
matrices calculation per
element

Aerodynamic matrices
calculation per element

Matrices assembly

Contral gains calculations

Matrices reduction based an
boundary conditions

System matrices in state-space
and time integration

Output matrices

Gaph display and terminalicD
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A3.2 Program Listing

The Main Program

% Time responce of damped Fluttering Wing.
% ### Incorporates LQR full state feedback controller
% ### Variables renamed for final version:

% #HiH Qs ==> ELs : External Load -s: system matrix, before
% #HH applying boundary conditions.

% #HH Qa ==> ElLa : External Load -a: actual; after applying
% #HHH boundary conditions.

% #HiH# Also Q ==> EL, Qm ==> ELm

% #HtH

% ### _8: THE CONTROL IS VARIABLE FOR EACH ACTUATOR (MULTI-CONTROL
% #HHH INPUTS)
%

clc
clear all
global ks m ¢ Mxps bc mxSMD mxM vectQ Mxpa ELs ELa AFs AFa

% ==== Enter the system parameters ====

nel = 6; % Number of elements.

nnel = 2; % Number of nodes per element.

ndof = 3; % Number of degree of freedom at each node.
tnnod = (nnel-1)*nel+1; % Total number of nodes.

sdof = ndof*tnnod; % System degree of freedom

edof = nnel*ndof;

%
% Beam Properties

width = _1;%1.8288;%.0254;

% Eb = 144.8*10M12;

Ebl= 69*10M9;%144_.8*10"9;

Eb2= 69*10M9;%144 _.8*10"9;%9.65*10"9;
Gbl2= 27*1079;%7.1*1079;

Nubl12= 0.32;

MPb=[Ebl Eb2 Gbl1l2 Nubl2]";

blength = .6;%0.254;

th = 0.002;%.007233;%0.00127;

rhob = 2700;

Vb=0;

%

% Piezo"s Properties

% rhopti = 7600 % Subscript "pt" : Top Piezo,

% Epti = 63*10M9; % Subscript "pb"™ : Bottom Piezo.

% tpt = 0.0002;

rhop = 7552;%7600;

%Ep = 63*1079;

Epl= 36.5*10M"9;%63*10"9;
Ep2= 7.6*10M9;%63*10M9;
Gpl2=14.6*1079;%24 .8*10"9;
Nup12=0.25;%0.28;

MPp= [Epl Ep2 Gpl2 Nupl2]-;
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tp = 0.001;%0.0002;
pzndx=zeros(nel,2);

Vp=0;

Vpmax=0; %1074 ;

d31= 530*10"™-12; %-166*10M-12;
d32= -210*10M-12;%-166*10"-12;
dp = [d31 d32 0]";

%
% Node data

1= blength/nel;

%l = width*tb"3/12;
%
% Laminate Data

% nk=3; % Number of the laminate layers.
LOs= [-60 O -60 O O O;
00O0O0O0 O0;
-60 0 -60 O O 0];%[0 O 90 90 O 0O]": % Structure laminate

orientation
Lorb = [0 1 O0];%[0 1 11 1 0]"; % Beam laminating order
Lorp = [1 O 1];%[1 0 0 O O 1]°"; % PZT laminating order
nla=length(Lorb); % Number of the laminate
layers.
Vorps=[1 1 1 0 O 1;...

O 0 0 0 0O O;-.-.

-1 -1 -1 0 O -1]:;%[1 0 0 0 O -1]°"; % Voltage polarity
order for PZT wafers
pzndx= [1 1 0 0 0 0;...

11000 0];
%
% Proportional Damping coefficients
a= 0.02137; % 2 elem ==> .02171, 4 ele ==> .02143, 6 ele ==>
.02137
b= 0.02137;

%
% Boundary Conditions
bc=ones(sdof,1); %[0 0 1 1 1 1];
bc(1)=0;

bc(2)=0;

bc(3)=0;

bc;

%

% ==== Initialization

ks = zeros(sdof,sdof); %
stiffness matrix

m = zeros(sdof,sdof); % initialization of system mass
matrix

c = zeros(sdof,sdof); % initialization of system mass
matrix

E = zeros(nla,0);

nitialization of system

invm=zeros(sdof,sdof);

kinvm=zeros(sdof,sdof);

cinvm=zeros(sdof,sdof);

ndx=zeros(nnel*ndof,1); % initialization of index vector
% nsndx=zeros(sdof,1l);

Mxps=zeros(sdof,1);

ELs=zeros(sdof,1);

AFe=zeros(sdof,1);
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AFs=zeros(sdof,1);
F=zeros(2*tnnod,1);
%x0=[0;0;0;0;0;0;0;0];
EL=0;

Q1=0;

Q2=0;

Q3=0;

Q4=0;

Q5=0;

Q6=0;

tTt=0; % Total laminate thickness
LS=zeros(nla,l); % Layer thickness structure/order
h=0; % Structure/Laminate thickness

zk=zeros(nla+1,1);
D11=0;

Fxp = O;

Mxp=0;

Vpb=0;

Vpt=0;

Vb=0;

Vair=0;

10=0;

hdot=0;
alfadot=0;

EFt=zeros(nel,1);

%

% ---- Matrices Indexing based on BC"s ----

[nsndx,sndof]= bcndx(sdof,bc);
sdof;
sndof;

Xx0=zeros(2*sndof,1);
xs=zeros(2*sdof,1);
xe=zeros(edof,1);
a0=zeros(2*sndof,1);

% _______________________________
% Temporary

LOs= [-30 60 O O O O;
000O0OO;

-30 60 0 0 O 0];%[0 O 90 90 0 0O]"; % Structure laminate orientation

tmax= 1;
tstep = .001;

Vair=66.28;

Vpmax=10"4;
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% Vpmax=0;

zk;

all_x=[x0]; all_t=[0]; all_Q5=[0]; all_Q2=[0];
t105=0.1; t2Q5=0.11; t10Q2=0.2; t202=0.4; t30Q2=0.6;
all_vpt=[0];all_Vpb=[0];all_F=[F];all_Vp=[0];all_u=[0];
CTRL=zeros(nel,1);

all_LO=[O0];all_L1=[0];all_L2=[0];all_L3=[0];all_L4=[0];all _L5=[0];all_L6=[O

all_TO=[0]:all_T1=[0]:all_T2=[0]:all_T3=[0]:all_T4=[0]:all_T5=[0]:all_T6=[0

1:
all_BO=[0];all_B1=[0];all_B2=[0];all_B3=[0];all_B4=[0];all_B5=[0];all_B6=[0

aiI_H0=[0];aII_H1=[0];aII_H2=[0];aII_H3=[0];aII_H4=[O];aII_H5=[O];aII_H6=[O

all_RO=[0];all_R1=[0]:all_R2=[0];all_R3=[0];all_R4=[0];all_R5=[0];all_R6=[0

aiI_AO:[O];aII_Alz[O];aII_A2:[0];alI_A3:[0];aII_A4:[0];aII_A5:[0];aII_A6:[O

1;
all _Vval=[0];all_Va2=[0];all _Va3=[0];all _Va4=[0];all _Va5=[0];all Va6=[0];

]1

% oo
% ==== Solving by time integration

for cur_time=0:tstep:tmax-tstep

disp(sprintf("Time = %6.3F [s]", cur_time))
disp(sprintf("Air Velocity = %6.3F [m/s]", Vair))

% if cur_time > t20Q5
% %Vpt= 1*cos(10*pi*cur_time);
% Vpt=-0.05*x0(sndof-1);
% Vpb=0.05*x0(sndof-1);
% else
% Vpt=0;
% Vpb=0;
% end
% Vpt = 50;
% Vpb = -50;
x0;
% for iel=1l:nel
% nel ;
% iel;
% a0(iel*3)=2*pi/180;
%
% %x0(iel*3)=x0(iel*3)+2*pi/180
% end
% X0 = x0 + a0;
ks = zeros(sdof,sdof);
KCs = zeros(sdof,sdof);
m = zeros(sdof,sdof);
MCs = zeros(sdof,sdof);
c = zeros(sdof,sdof);
CCs = zeros(sdof,sdof);

mxps=zeros(sdof,1);
Mxps=zeros(sdof,1);
AFs= zeros(sdof,1);
Fas= zeros(sdof,1);
Bs = zeros(sdof,nel); % PZT control matrix

% =
% ==== Calculate the matrices in the state-space equation ====

all_MO=[0];all_M1=[0];all_M2=[0];all_M3=[0];all_M4=[0];all_M5=[0];all_M6=[0
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%
% pzndx(1,1)=0;

% pzndx(1,2)=0;
% pzndx(2,1)=0;
% pzndx(2,2)=0;
% for iel = 1:2
% for iiel =1:nel
% pzndx(iiel,iel)=0;
% end
% end
% pzndx= [1 0 0 0 O O;...
% 10000 0]:;
Condx=pzndx;
%
% ==== Calculations of the laminated structure in element level
Y
% ---- Calculating the laminated structure properties
% [QS,epS]=WF_LamStr(MPb,MPp,LO,Lorb,Lorp,dp); % Calculating
Q11,012,022 ... in structure coordinate system

for i1el=1:nel

LO = LOs(:,iel);

iel;

[QS,epS]=WF_LamStr(MPb,MPp,LO,Lorb,Lorp,dp);
Q11,012,022 ... in structure coordinate system

X

6 Calculating

Vorp = Vorps(:,iel);
iel;
Lt=zeros(nla,l);
h=0;
rho=zeros(nla,l);
EF=zeros(nla,1);

% ---- Piezoelectric Indexing ----

Lorpndx=Lorp;
Lorpndx(1)=pzndx(1,iel);
Lorpndx(nla)=pzndx(2,iel);
Lorpndx=Lorpndx + Lorb;

Vorpndx = Vorp;

Vorpndx(1)= Vorp(1)*Condx(1,iel);
Vorpndx (nla)= Vorp(nla)*Condx(2,iel);
Vorpndx;

EFp=Vpmax/tp; % PZT Electric
Field

QSx=QS;
% QSx(1)=pzndx(1,iel);
% QSx(nla)=pzndx(2,iel);
% QSx

for ila = 1:nla
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Lt(

ila)=tb*Lorb(ila)+tp*Lorp(ila)*Lorpndx(ila);

Lamina/layer thickness
h=h+Lt(ila);
Laminate thickness

rho

(ila)=rhob*Lorb(ila)+rhop*Lorp(ila)*Lorpndx(ila);

Lamina/layer density

%EF

(ila)=EFp*Vorpndx(ila);

Lamina/layer Electric Field

%
%
%
%
%

%

end

rho;

EF*tp;

Lt;

h;

zk(1)=-

for ila

zk(

end

zk;
rhopt
rhopb

Ept=E
Epb=E

ea = 0.

for k=1
T
zk(
zk(
zk(
zk(
k;
EF*
epsS
wid

D11
D12
D22
D16
D26
D66

npx
npy
npx

mpx

h/72;
= 2:nla+l
ila)=zk(ila-1)+Lt(ila-1);

=rhop*pzndx(1,iel);
=rhop*pzndx(2,iel);

p*pzndx(1,iel);
p*pzndx(2,iel);

Calculate laminated element properties ----

; D12=0; D22=0; D16=0; D26=0; D66=0;
; npy=0; npxy=0;
; Npy=0; Npxy=0;

101=0; 102=0; 120=0; 121=0; 122=0;

; mpy=0; mpxy=0;
; Mpy=0; Mpxy=0;

4;

:nla

t= tt+t(k);

K);

k+1);

K)"3;

k+1)"3;

tp;

(k,1);

th;

= D11 + QS(k,1)/3*(zk(k+1)"3-zk(k)"3);%*Lorpndx(k)
= D12 + QS(k,2)/3*(zk(k+1)"3-zk(k)"3);%*Lorpndx(k);
= D22 + QS(k,3)/3*(zk(k+1)"3-zk(k)"3) ;%*Lorpndx(k);
= D16 + QS(k,4)/3*(zk(k+1)"3-zk(k)"3);%*Lorpndx(k);
= D26 + QS(k,5)/3*(zk(k+1)"3-zk(k)"3);%*Lorpndx (k) ;
= D66 + QS(k,6)/3*(zk(k+1)"3-zk(kK)"3);%*Lorpndx(k);

npx + width*epS(k,1)*(zk(k+1)-zk(k))*Vorp(k);

npy + width*epS(k,2)*(zk(k+1)-zk(k))*Vorp(k);
npxy + width*epS(k,3)*(zk(k+1)-zk(k))*Vorp(k);

Yy

= mpx + width/2*epS(k,1)*(zk(k+1)"2-zk(k)"2)*Vorp(k);

mpy = mpy + width/2*epS(k,2)*(zk(k+1)"2-zk(k)"2)*Vorp(k);

mpx

y = mpxy + width/2*epS(k,3)*(zk(k+1)"2-zk(k)"2)*Vorp(k);
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100
101
102
120
121
122

zk(k)"3);

%
%
%
%
%

%

end

DD=[D11
EFF
NpXx
Npy

100
101
102
120
121

width*rho(k)*(zk(k+1)-zk(k));
width*"2*rho(k)*(0.5-ea)*(zk(k+1)-zk(k));
rho(k)*width”"3/3*(1-3*ea+3*ea™2)*(zk(k+1)-zk(k));
width*rho(k)/3*(zk(k+1)"3-zk(k)"3);
rho(k)*(0.5-ea)*width"2/3*(zk(k+1)"3-zk(k)"3) ;

122 + rho(k)*(1-3*ea+3*ea™2)*width"3/9* (zk(k+1)"3-

+ 4+ + + +

D12 D22 D16 D26 D66];
EFt(iel)

EFF*npx;

EFf*npy;

Npxy = EFf*npxy;

Np=[Npx Npy Npxy]

mp=[mpx mpy mpxy];

YO=width;

Y1l
Y2

width”2*(0.5-ea);
width”"3*(1-3*ea+3*ea™2)/3;

[Km,Gm,Mm,mxpm,ELe]=WF_7 eleSMD(DD,Np,mp,100,101,102,120,121,122,EL,1,Y0,Y1

.Y2);
[Km,G1,G2,G3,Mm,mxpm,ELe]=WF_8 elesMD(DD,mp,100,101,102,120,121,122,EL,1,Y0
,Y1,Y2);
% Ge = G1*Npx+G2*Npxy+G3*Npy
ge = G1*npx+G2*npxy+G3*npy;
Ge = EFt(iel)*ge;
iel;
EFt;
) ——
% ---- Calculating Aerodynamic Forces ----
Mac = O;

%

rhoair =1.2;
Vair = 56;%52.84 ;%34

q = 0.5 * rhoair * Vair"2;

Cla = 0.8*2*pi;

alpha0=2*pi/180;

eal = ea-0.25;
ea2 = 0.75-ea;

XS,

% ---- Create ELEMENT stiffness, mass & damping matrices ----

[Kae,Cae,Fa0,Mae]=WF_6 eleAero_a(l,alphal,rhoair,Cla,width,Vair,eal,ea2);

for ij=1:edof

xe(ij)=xs(iel*3-3+ij);

end
Xe;

AFe = FaO;

I=[111111]";
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%

%

%
%

%
%

%

Fae=(Kae+Cae)*xe+Fa0;
%AL = Kae*

-—--- System stiffness, mass, damping in element level

ke=Km-Ge+Kae;
me=Mm+Mae;

Proportional Damping
[Cm]=a*Km+b*Mm;
Cm;
Cae;
ce = Cm+Cae;

-—-- Calculate Control System Matrices

KCe = Km;%ke;
MCe = Mm;%me;
CCe = Cm;%ce;
Be = mxpm"+ge*xe;

-—-- Assemblying stiffness, mass and damping matrices ----

ndx = fedofndx(iel,nnel,ndof);
ks = SB_mxasmbl(ks,ke,ndx);
KCs = SB_mxasmbl(KCs,KCe,ndx);
m = SB_mxasmbl (m,me,ndx);
MCs = SB_mxasmbl (MCs,MCe,ndx);
c = SB mxasmbl(c,ce,ndx);
CCs = SB_mxasmbl (CCs,CCe,ndx);

Gs = SB mxasmbl(Gs,Ge,ndx);
Bs= B_CtriImxasmbl(Bs,Be,ndx,iel);

[mxps,ELs,AFs,Fas]=WF_7_mxasmbl1D(mxps,ELs,AFs,Fas,mxpm,ELe,AFe,Fae,ndx);

%
%

C;
mxps;
end

-—-- Reduce control matrices based on boundary conditions

[KCa,CCa,MCa,mxpa,Faa,Ba] =

WF_8 mxred(KCs,CCs,MCs,mxps,Fas,Bs,nsndx,sndof,nel);

%
%

mxpa;
Ba;

-—--— Calculate Control gain using LQR

invMC=inv(MCa);

A = [zeros(sndof,sndof), eye(sndof,sndof);-invMC*KCa -invMC*CCa];
mxMC = [zeros(sndof,sndof);invMC];

B = 5000*mxMC*Ba ;%mxpa;

Q = eye(2*sndof,2*sndof);

R = eye(1,1);

[G,S]=felqr(A,B,Q,R);

G;
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u = G*x0;
EE=Vpmax/tp;

EFt = EE*u;
O ——
mxps;
% Mxpe = EFt*mxpm;

Mpx = EFt*mpx;

Mpy = EFt*mpy;

Mpxy = EFt*mpxy;
Mxps = BsS*EFt;

% Np=[Npx Npy Npxy];

% Mp=[Mpx Mpy Mpxy];

%

% ==== Applying boundary conditions ====

%

% = To reduce the matrices dimensions based on boundary
% = conditions.

%

% --—-- Matrices Indexing based on BC"s —--—--

%[nsndx,sndof]= bcndx(sdof,bc);

% ---- Matrices reduction ----

ka=zeros(sndof,sndof);

ca=zeros(sndof,sndof);

ma=zeros