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ABSTRACT 
Smart materials and structures systems are increasingly being developed to handle more 

complex problems. One of the main research schemes is the augmentation of the control 

authority of the smart actuators used in such systems. The augmentation can be obtained by 

constructing hybrid and multi- smart materials actuator systems and/or by the optimization of 

the location and orientation of those actuators.  In the first part of this study, the alteration of 

the natural frequency of composite structures using Nitinol-based Shape Memory Alloy 

(SMA) wires will be presented using the analyses of strain energy perturbations on a plate. 

These governing strain equations were solved analytically and numerically to show the effect 

of point forces acting in a distributive manner and the subsequent effect it has on the plate’s 

stiffness and hence it’s natural frequency. In the second part of the thesis, a more complex 

loading condition is considered to investigate piezoceramic actuator control authority in 

relation to wing flutter control.  

The advancement in the application of active material induced-strain actuation such as 

piezoelectric materials in suppression of structural vibrations drew wide interest in its use for 

wing flutter control. Higher flutter speed and hence wider operating envelope was achieved 

by delaying the coalescence of the eigenvalues for plunge and twist modes. . This delay is 

obtained by adding more strain energy to the system as a result of the activation of the 

piezoelectric actuators. Most of the studies done were by controlling the plunge/bending 

motion, where the piezoelectric actuators are bonded longitudinally to produce bending 

moments. In this study, the control of the pitch/twisting motion was investigated and it 

showed better control of flutter by using simultaneous multi-actuations compared to single 

piezo actuations. It was shown that within the scope of the angular orientations of the 

piezoelectric patches investigated in this study, piezoelectric patches oriented about +150 

from the beam’s longitudinal axis resulted in the most optimal piezo-configuration. This was 

corroborated by both the numerical flutter speed and actuator moment evaluations.  In 

addition, the orientation of the piezoelectric patches was shown to significantly affect the 

pitch angle of the beam relative to each other. The damping ratio was also investigated and 

this showed greater instability for piezoelectric patches oriented at negative angles, thus 

further supporting the finding of the aforementioned optimal orientation of +150.  These 

findings confirmed the dominance of the base (closest to the fixed portion of the beam) piezo 

when actuated with other piezos. 
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NOMENCLATURE 

Aij Extensional stiffnesses matrix  

Bij Bending-extensional coupling stiffnesses matrix  

Dij Bending stiffnesses   

E Modulus of elasticity. Pa 

ॱ Electric field. V/m 

EPA Effective Pitch Angle Radian 

 External force due to pitching moment. N ܽܨ
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 ௜ External force due to lift. Nܨ
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 Shear modulus of elasticity. Pa ܩ
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  Geometric bending stiffness due to piezoelectric ܪܩ

  Geometric bending-torsional stiffness due to piezoelectric ܽܩ

I0, I2 Mass moments of Inertia   

  Torsional stiffness/rigidity ܣܬ

K Kinetic energy.  

KA Plane-torsional stiffness  

KH Flexural stiffness/rigidity  

Ka Bending-torsional stiffness  

Kh Torsional-bending stiffness  

Kx , Ky , Kxy Curvatures of the plate  

L Aerodynamic lift N 

M Aerodynamic pitching moment N.m 

Maa Polar mass moment of inertia  

Mah,ha Product mass moment of inertia  

Mhh Mass/inertia Kg 

 ௫௫,௬௬ Structural moments N.mܯ

Mx Structural moment per unit length in x-direction N.m/m 

My Structural moment per unit length in y-direction  N.m/m 
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Mxy Structural twisting moment per unit length N.m/m 

N Plane force N 

Nx Force per unit length in the x-direction N/m 

Ny Force per unit length in the y-direction N/m 

Nxy Shear force per unit length N/m 

തܳ Plane stress-reduced stiffness in system/problem coordinates  

Qij Reduced stiffness coefficient  

Qx , Qy Shear forces per unit length N/m 

T In-plane loads induced due to Shape memory Alloy wires  

U Potential energy  
U∞ Free stream air velocity m/s 

V Work done by external forces  

X,Y,Z System/problem coordinate  

Y0,1,2 Chord integrals  

a Length of the composite plate m 

b Width of the composite plate. m 

d Piezoelectric strain coefficient. m/V 

e Piezoelectric stress coefficient.  

h Wing bending displacement in Z-direction  

h Ply thickness. m 

l Beam length m 

p Aerodynamic pressure  

q Induced pressure due to ply weight. Pa 

u, v, w Plate displacements in x, y, z directions m 

x,y,z Axes  

 ן Angle of attack  

 ߜ Variation operator  

߲  Partial differential operator  

  Strain ߝ

εx, εy Strains in x, y directions of the plate,  

εxy Shear strain of the plate,  

σx , σy , σz Tensile stresses,  
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σxz , σyz Transverse shear stresses,  

  Density ߩ

ρ0 Density of the composite plate  

߶,߰ Approximation functions  

ζh  Flexural/Plunge damping ratio  

ζα  Torsional/Pitch damping ratio  
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Chapter 1. INTRODUCTION 

1.1. Background 
Although the static properties such as strength and stiffness are major considerations in 

designing mechanical structures, the dynamic properties such as fatigue and resonance of the 

structure have a significant role in the design process. For example, the importance of 

considering the resonance comes from the fact that during the resonance, the amplitude of the 

vibration is magnified to levels that may lead to a catastrophic event. While the usual design 

process depends on the collected experiences and statistical data, a developing trend is to 

implement smart technologies to develop smart structures that are capable of self-monitoring, 

diagnostics and repair. 

The technology of Smart materials and Structures has given a new face of development to the 

fields of Aerospace, robotics and structural engineering due to which the demand for less 

weight stand-alone systems is growing. Smart materials [1] represent a group of functional 

materials, which can sense and respond to changes in their environment in a predefined 

manner, they also have the flexibility to go back to their initial stage once the changes in the 

environment come down. Smart Structures are structures that can sense certain stimuli and 

respond accordingly, somewhat like Humans. They can interact with external environment 

and have the ability to adapt to varying loading scenarios. Research on smart structures has 

emphasized the incorporation of various devices in a structure to provide Smart functions like 

Strain sensing (for structural vibration control and traffic monitoring), Damage sensing (for 

Structural health monitoring), Temperature sensing (for Hazard mitigation & Structural 

performance control), Structural vibration control. In the process of developing Smart 

structures materials like piezoelectrics, Shape Memory Alloys (SMAs) and Electro 

Rheological Fluids (ERFs) are used for sensing the different loading conditions and actuation 

to deliver a required force to maintain the equilibrium. 

Due to its importance and complexity, the aerospace discipline becomes one of the major 

developers and utilisers of the smart materials and structures technology. Several applications 

of smart structures were exploited such as (i) vibration and acoustic control; tail buffet 

suppression, flutter damping, engine vibration control and active acoustic control,  (ii) shape 

control; adaptive smart wing, adaptive engine inlet, adaptive Micro Air Vehicles and vortex 

wake control, (iii) multifunctional smart structures; smart skin and antenna, structure-power 
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materials and (iv) morphing aircraft structures [2]. Most of these applications are to enhance 

the aircraft performance however the most important application is the flutter damping or 

control as it may lead to a catastrophic event. Traditionally, the wing flutter problem (and 

other Aeroelasticity phenomena) was treated in design stages via altering the stiffness of the 

structures, the mass distribution and the position of the flexural axes. The process outcome is 

an operational envelop that limit the boundaries (basically the flutter critical speed) of the 

operation of the aircraft to prevent catastrophic structure failure. Then in the event of the 

flutter, it is controlled or damped using the conventional aerodynamic control surfaces 

operated by servo-hydraulic actuators. To replace these heavy equipments several smart 

actuators were investigated such as induced helicopter blade twist, active blade tip with 

bending-torsion ISA actuator, rotor blade flap actuation, bimorph servo-flap actuation, C-

block and recurved flap actuators, and piezostacks actuated servo-flaps [3]. In aeroelastic 

systems, the shape of the structure affects the aeroloading on that structure, and hence higher 

actuator forces are required to control aerostructures effectively.  

Each of smart sensor and actuator materials has its own advantages and disadvantages. For 

example, SMA generates large forces but in low frequency, while the piezoelectrics generate 

lower forces but at higher frequencies. However, by careful selection,  numerous classes of 

hybrid actuation systems can be synthesized to satisfy a broad range of performance 

requirements [4], [5], [6]. 

1.2. Objectives 
The main theme of this study is to investigate the possible methods to augment the control 

authority of smart structures and their applicability in complex structural dynamic problems 

such as flutter suppression/control of aerostructures. Two streams were examined; hybrid 

actuation system of SMA and Piezoelectric materials, and multi-actuation of an advanced 

piezoelectric material technology, namely, the Active Fibre Composite (AFC). 

The research questions are set as follows: 

• Can SMA’s adequately control structures? 

• How can SMA’s affect natural frequency? 

• Can activated SMA’s be properly modeled?  

• Can the optimized actuation of Piezoelectrics adequately control flutter? 
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Chapter 5: In this chapter the control law and the formulation of the aerodynamic forces and 

actuators matrices are presented. The computer program validation and the numerical 

simulation results and discussion are also presented in this chapter. 

Chapter 6: This chapter is dedicated to the overall conclusion and the recommendations for 

the further work. 
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Chapter 2. LITERATURE REVIEW 

2.1. The Concept of Smart Structures 
Mechanical structures have  evolved from passive load-carrying elements into interactive 

systems known as Smart Structures which can be defined as “structures possessing the 

capability to sense and actuate in a controlled manner in response to variable ambient 

stimuli” [7]. In the same manner, Rogers and Giurgiutiu [8] defined the smart structures as “ 

the integration of actuators, sensors, and controls with material or structural component”.  

These two definitions are limited to the description of the components comprise such systems 

but not their functionality. Takahashi (cited in [9]) defined the smart structures as “those 

which posses characteristics close to, and, if possible, exceeding, those found in biological 

structures”. Such characteristics include sensing, actuation, adaptability, sustainability and 

survival, selectivity, stability, self-diagnosis, self-repair, multifunctionality, reproduction, 

memory, recognition, discrimination, etc [9]. This definition describes wide range of 

functionalities that can be designed and implemented in mechanical structures by mimicking 

biological structures. However,  Rogers and Giurgiutiu [8] distinguish between the biological 

and smart structures in that the biological structures serve themselves, while the smart 

structures produce artefacts designed by human being to serve human needs. They define the 

adaptronic structures as those to “be designed for a given purpose; and, by the transduction of 

energy, must be able to modify its behaviour to create an envelope of utility.” Wadhawan [9] 

summarized the definition of the smart structures in “Smart or adaptronic structures are 

structures with an ability to respond in a pre-designed useful and efficient manner to 

changing environmental conditions, including any changes in their own conditions.” 

Although the smart structure functionalities go beyond those of the biological ones, full 

mimicking of biological systems is still far from realization. The biological/living systems 

comprise several subsystems as depicted in Figure (2.1). The sophistication (smartness) of 

these systems depends on the level of the interaction between these subsystems. These 

subsystems are the host structure (body), sensors (nerves), actuators (muscles), control centre 

(brain), and the energy source [9]. One can add that those subsystems have the capabilities to 

regenerate themselves and grow.  
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Figure 2.1: Subsystems of living/biological systems. 

Likewise, the smart structures employ distributed and on-line sensors, actuators and 

microprocessors to measure (sense) the change in the surrounding environment and take 

corrective or preventive actions.  

Each of the smart structure subsystems leads to different line of applications. For example, 

Structural Health Monitoring (SHM) which is one of the fastest emerging technologies is an 

application emphasizing on the sensors subsystem. In SMH, loading capacity of the structure 

(load carrying) is monitored and structural failure can be predicted allowing time to intervene 

and prevent catastrophic consequences. SHM technology is well implemented in Nuclear 

reactor walls and common bridges. It is also progressively used in maritime and aerospace 

fields where the polymeric composite structures, which are prone to cracking, are becoming 

dominant. Emphasizing on the muscles (actuators) leads to shape control functionalities. The 

concepts of morphing wing and airfoil with variable cambers are promising in developing 

efficient aircraft by optimizing airfoil shapes and replacing the heavy hydraulic equipments 

[10], [11, 12], [12] & [3]. Intelligent structures capable of learning from the surrounding 

environment and making decisions based on that learning are feasible by incorporating 

Artificial Intelligence techniques such as Neural Networks, Fuzzy Logics and Genetic 

Algorithms, in the control subsystem. The concept of self-healing structures, shown in Figure 

(2.2) [13], currently grasps significant attention from the scientific community. Energy 
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harvesting from vibrating structures is also an emerging technologies aiming to develop 

efficient and stand alone structural systems. 

 
Figure 2.2: Self-healing structures concept [13]. 

Smart Structures is an interdisciplinary technology which includes materials science and 

engineering, electronics and signal processing, and control. The advancements in these 

disciplines have broadened the scope of smart structures and helped in the development of 

reliable and efficient smart structure systems. With the fundamental roles of the digital and 

micro-electronics and –processors technologies in realizing of the smart structures, 

nanotechnology will get these structures into unprecedented levels. 

2.2. Smart Materials 

2.2.1. Overview 
In most of the literatures the materials used in smart structures and systems are called smart 

materials. However, this term is debatable; “Is the material smart by itself?” In engineering, 

smart systems basically turn complex and surplus information into useful outcomes. In this 

sense, Culshaw viewed that smartness requires some sort of entropy reduction [14]. First of 

all, for the entropy reduction to take place an outside energy source is required, in other 

words, “all smart system have some form of energy source associated with them” [14]. 

Another important aspect in defining the smartness is the requirement of information 

reduction, where the complex information is refined to produce useful function(s). This 

requirement is known as Information-reduction criterion [9]. These two requirements are 

clear when comparing between the simple pressure transducer and the pressure transmitter. 

The pressure transducer could not be regarded as smart because the input pressure produces a 
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voltage in one-to-one relationship. In contrast, the pressure transmitter incorporating a 

thermocouple that measures both the pressure and the temperature reduces this (surplus) 

information to a single value of temperature-corrected pressure. Here, the temperature 

fluctuation acts as a source of energy which is converted into mechanical forces and corrects 

the apparent pressure [14]. The pressure transmitter satisfies both the energy and information-

reduction requirement of the smartness. 

The materials used in smart systems come under the generic classification known as 

functional materials which are those “can perform certain functions when triggered by 

environmental stimuli or control signal” [15]. The functional materials can be categorized in 

to passive and active groups. The passive functional materials are characterized by the 

existence of anomalies in one or more of their physical properties or phase transition that can 

be used as a function. For example, the fact that the volume of the mercury changes with 

temperature is used in thermometer to measure the temperature. The active functional 

materials are characterized by their capability to convert energy from one form to another 

such as shape memory alloys, piezoelectric, magnetostrictive and electrostrictive materials 

[15]. Wadhawan [9] redefined the smart materials as “that subset of functional materials 

which satisfy Culshaw’s information-reduction criterion.”  

2.2.2. Shape Memory Materials 
Shape memory effect in alloys dates back to the 1930s, however it was the discovery of 

Nickel Titanium alloy by Buehler and Wiley from the Naval Ordinance Laboratory in 1962 

which proved that Shape Memory Alloys exhibit unique mechanical memory [16]. SMAs 

have the ability to return to their predefined shape from large strains without undergoing 

plastic deformation. This ability of recovering its shape after undergoing a shape change with 

the help of a rise in temperature is called Shape Memory Effect (SME). This shape change 

occurs due to changes in the atomic crystal structure as shown in Figure (2.3).  

The chemical composition of Ni-Ti alloys is 50%Ni / 50% Ti, with small additions of copper, 

iron, cobalt, or chromium. The crystal structure of SMAs for example Ni-Ti is cubic when the 

temperature is high, this cubic crystal structure is called austenite. When the SMA is cooled 

the material then transforms to a monoclinic lattice structure, which looks like parallelogram 

in two dimensions, and is called martensite. When the SMA, which contains many atoms, is 

cooled the rows of atoms alternatively tilt in left and right directions. This property of 

arrangement of atoms is called “twinning” as the atoms form mirror images of themselves 
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through a symmetrical plane. Any four connected atoms in the low temperature structure 

have martensite parallelogram shape. The stress required to rearrange the twinned SMA is 

relatively low. Thus, the application of sufficient stress to deform the SMA leads to the atoms 

being reoriented so that they all lie in the same direction. This property is called 

“detwinning”. If the SMA is heated the deformed martensite will revert back to austenite 

phase and the original shape of the piece will be obtained. This occurs as a result of atomic 

positions always being maintained in the austenitic phase [17].  

 
Figure 2.3 Description of Shape Memory effect [17]. 

The SMA’s have very good corrosion resistance and biocompatibility, which enable them to 

be widely used in the biomedical field. Plastic strains of 6-8 % may be completely recovered 

by heating SMA, which can also change its properties reversibly especially Young’s Modulus 

during the phase transformation.  As a result of the Ti-Ni alloys being readily fabricated into 

various forms or sizes, it is technically feasible to make them an active element in various 

composites. In particular, Ti-Ni thin films, fibres, particles and porous bulks have been 

successfully fabricated in recent years, hence these materials, either in the monolithic form or 

in combination with other materials, have exhibited some exciting application potentials in 

Micro-Electro-Mechanical systems (MEMs), medical implants, intelligent materials and 

structural systems. Shape memory alloys have proven to be successful in many commercial 

applications such as Hitachi’s Robotic Hand, radiator valves, greenhouse vents etc. In every 

application, SMA has demonstrated large force and displacement capabilities and low power 

consumption with lightweight added to the operating device [17]. 

C.A. Rogers et al. [18], [19] embedded SMA wires into composite plates and demonstrated 

the ability to alter the effective stiffness, natural frequencies and mode shapes of the plates. 

Two concepts were used; Active Strain Energy Tuning (ASET) and Active Modal 



25 
 

Modification (AMM) or Active Property Tuning (APT). Using Rayleigh-Ritz method several 

structural cases were analysed; bending deflection, buckling and acoustic transmission loss. 

In the ASET technique the SMA wires are plastically elongated and embedded in to the 

composite material at its neutral axis. By curing the composite material at high temperature 

the SMA wires are constrained from contracting to their normal length. When the fibres are 

heated, the SMA fibres try to contract to their memorized length generating a recovery force. 

The resultant force will therefore adaptively change the structural response of the plate. On 

the other hand the Active Property Tuning (APT) method avoids inducing large internal 

stresses in a SMA composite plate. This method embeds the SMA wires to the composite 

plate without plastic elongation. As the Young’s modulus of the embedded SMA fibres will 

change from 4 to 12 Mpsi during the phase transformation, the embedded SMA fibres will 

change the overall stiffness of the plate resulting in a change of structural response of the 

plate [19].  

In 1990, A Baz et al. [20] demonstrated both theoretically and experimentally, the feasibility 

of utilizing SMA in controlling the flexural vibrations of a flexible cantilever beam. Unlike 

the work done by Rogers et al, the SMA wires are placed external to the beams, in order to 

enhance the cooling and dynamic response characteristics of the SMA. 

Chaudhry et al. [21] demonstrated experimentally the ability to induce large bending 

displacements of beams using SMA wire actuators. The SMA wires are placed externally in 

two different configurations.  

Two experiments were carried out by Srinivasan [22] (cited in [16]) to explore the use of the 

SMAs in passive and active vibration control of structures. In the first experiment the 

vibration control was obtained by using SMA wire fastened to the beam in V-configuration 

and a forcing piezoelectric patch. Both actuators are located at the root of the beam. Multiple 

SMA wires were used in the second experiment to demonstrate the ability to control the beam 

in different frequencies.  

2.2.3. Piezoelectric Materials 
The piezoelectricity (piezein in Greek means press) goes back to the behaviour of the 

Tourmaline stone which if it were put into hot ash, the ash particles are attracted to one side 

and are rejected from the other side [23]. During their experiments on several crystals 

(Tourmaline, Quartz, Topaz ...etc.), Pierre and Jacques Curie in 1880 discovered the direct 
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piezoelectric effect; mechanical deformation in certain directions causes proportional 

electrical charges at opposite faces of the crystals. Later the brothers Curie, through 

experimentation, were able to confirm the converse effect (electrical charges cause 

deformation) which is deduced mathematically by Lippmann in 1881 [23], [24]. The work on 

piezoelectricity continued until the publication of ‘Lerbuch der Kristallphysik’ (1910); a 

standard reference defining the natural crystal classes associated with the piezoelectricity 

effects and the macroscopic piezoelectricity coefficients. In 1917 and during World War I, P. 

Langevin and French co-workers succeeded in developing an ultrasonic submarine detector 

(sonar) using thin quartz crystals. Intense activities in developing piezoelectric devices were 

motivated by the success of the sonar. During World War II, easily manufactured ceramic 

materials, known as ferroelectrics, exhibiting astonishing dielectric characteristics (100 times 

higher than common crystals) were discovered in isolated research groups in U.S., Japan and 

Soviet Union [24]. The barium titanate and lead zirconate titanate piezoceramic families were 

developed during this period. The commercial use of the piezoelectric materials grew 

especially in Japan where several devices employing piezoceramics had been produced such 

as signal filters used in televisions and communication equipments, audio buzzers in (smoke 

alarms). Piezoelectricity has become the heart of solid-state motion technology aiming to 

replace solenoid actuators with electrostatic actuators.  

The generation of the piezoelectric effect in certain crystals is due to the nature of their 

atomic structure where the positive and negative ions are bonded in asymmetric structure. 

This asymmetry induces an electrical dipole (Polar). For example, the α-quartz crystal 

structure shown in Figure (2.4) has a neutral electric charge.  

 
Figure 2.4: Quartz crystal structure [23]. 
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Under deformation the positive and negative ions are displaced against each other causing the 

electric polarization as in Figure (2.5) [23]. 

 
Figure 2.5: Direct piezoelectric effect of quartz cell due to applied deformation [23]. 

For the case of the piezoceramic (ferroelectric) materials, the crystal grain structure is 

symmetrical (cube texture) above a certain temperature  ஼ܶ known as Curie temperature 

whereas below this temperature the structure is distorted into tetragonal texture as in Figure 

(2.6). This distortion is known as spontaneous deformation [23].  

 
Figure 2.6: Cube and tetragonal structure of a ferroelectric crystal grain [23]. 

Taking advantage of this characteristic, the piezoceramics are produced in two stages. In the 

first stage the substrate is prepared at a temperature below ஼ܶ to create the tetragonal texture 

and hence induce the polarization in the grain. However, at this stage the substrate crystal has 

no piezoelectric characteristics due to the random distribution of the polarized grains thus 

eliminating the overall (crystal) polarization. In the second stage, sufficient electric field ॱ in 
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defined directions is applied on the substrate to align the random grains polarization into the 

direction of the electric field and hence produce a remnant polarization (piezoelectric 

behaviour) in the substrate. Figure (2.7) shows the piezoceramic crystal before and after 

polarization [23]. 

 
Figure 2.7: Piezoceramic crystal before and after polarization [23]. 

One of the advantages of the piezoceramics is that they can be prepared in different 

configurations to meet different requirements. These configurations are based on the 

polarization direction and the direction of the applied voltage/forces as in Figure (2.8). Also 

different configurations are based on the number of piezoceramic layers attached to each 

other; single layer, two layers and multi-layer (stack) motors and generators [25].  

 
Figure 2.8: Different piezo-effect configurations [25] . 
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The configuration of more interest in this study is the bimorph (bending) motor/actuator. 

When bonding a single piezoelectric patch on a beam and clamping it from one side 

(cantilever) the activation of the patch will produce a bending moment on the beam. This is 

called Monomorph action. If two patches were bonded on the opposite sides of the beam (no 

clamping) and activated with opposite voltages in such a way that one patch is expanding 

whilst the other is contracting the patches will produce a bending moment on the beam, this is 

known as Bimorph action as shown in Figure (2.9). 

 
Figure 2.9: Mono & Bi-morph actions. 

The easy and low cost manufacturing process in addition to the wide frequency coverage has 

made the piezoceramics the most popular solid-state generator (sensor; generate electric 

charge due to strain: direct piezo-effect) and motor (actuator; applying electric field to 

produce strain: converse piezo-effect). The lead zirconate titanate (PZT) is the most common 

piezoceramic and it is commercially available and is widely employed in different 

applications. Several dynamic properties and performances of structures were enhanced by 

implementing Smart Structures technology employing piezoelectric patches. Faria and 

Almeida [26] studies proposed a strategy to enhance the non-linear pre-buckling response of 

slightly crooked composite beams using PZT patches. Low-energy impacts on laminated 

shells with distributed piezoelectric actuator and sensor layers were investigated by 

Saravanos and Christoforou [27]. In their study the impact force, displacement and the sensor 

responses were predicted. They also studied the feasibility active impact control which 

looked at variation of the natural frequencies of composite laminated beams and plates using 

the stiffening effect of surface bonded PZT actuators.[28], [29]. Shape control of composite 

laminated beams using PZT patches were investigated by Sedaghati et al [30]. 
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Suppression of the structures vibrations and acoustic control are the most investigated 

applications using piezoelectric technology. Vibration and noise suppression is achieved by 

passive and active techniques. The passive technique basically convert  mechanical energy 

into electrical energy through by connecting the PZT patches with an electrical resistive-

inductive shunt circuit [31]. Suleman [32] succeeded in attenuating the noise level in the 

interior of a closed acoustic cavity using passively actuated  PZT patches. In an active 

technique the system states or the sensors output is fed to a control algorithm and driven the 

piezoceramic actuators [33]. Moon and Kim [34] presented an active/passive hybrid control 

design with piezoelectric actuators to suppress nonlinear composite panel flutter. 

The major disadvantage of using the piezoceramic actuators in structural dynamics (Smart 

Structures) is that the higher piezoelectric effect is in the (d33 / Z) direction of the polarization 

and the applied electric field however the action is required in the direction (d31 / X) of the 

hosting structure as shown in Figure (2.10). With unsuccessful efforts of improving the 

piezoceramic performance (control authority) composition wise, several novel ideas emerged. 

Raja et al [35] used multilayered (bender) piezoelectric actuators to control the flutter of 

composite plate.  

 
Figure 2.10: Monolithic PZT action directions. 

Another method of enhancing the performance of the piezoelectric actuator was achieved by 

developing the Piezoelectric Fibre Composite (PFC) where composite lamina is constructed 

using discrete piezoceramic fibres as shown in Figure (2.11) [36], [37], [38]. This method 

allowed tailoring of the piezoelectric coefficient which enhanced the performance by 

manipulating the fibre-to-matrix volume ratio and orientation of the fibres. Besides the 

anisotropic actuation of the PFC, it solved the weak attributes of the monolithic PZT such as 

low fracture strength, high stiffness and the difficulty in producing complex shapes [37]. 
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Figure 2.11: PFC structure [38]. 

However, the multi-layered and the PFC actuators are still utilizing the d31 piezoelectric 

coefficient. The exploitation of the actuation in the d33 direction emerged when a novel 

method of Active Fibre Composites (AFC) actuator was developed by MIT in the early 

1990s. The actuator employed the novel Interdigitated Electrodes (IDE) and piezoceramic 

fibres. As shown in Figure (2.12) the IDE is fabricated in a way that the electric field is in a 

parallel direction to the longitudinal direction of the piezoelectric fibres which are polarized 

in the same direction [37], [39].  

 
Figure 2.12: Active Fibre Composites (AFC) structure. 

The Macro-Fiber Composite™ (LaRC-MFC™) [40] developed by NASA Langley Research 

Centre is a similar device which retains the AFC features as well as  incorporating other new 

features. The main advantage of this actuator is the low-cost, uniform and repeatable 

fabrication processes used in making it. 

The MFC™/AFC actuators have mostly been employed in vibration and acoustic control. 

Zhang and Shen [41] developed a three dimensional analytical model of laminated plates 
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with AFC as damping layers for active control of in-plane axial and transverse vibrations. 

Azzouz et al [42] studied the effect of the actuation of MFC™ in different locations and at 

various orientations on the state modal bending and twisting amplitudes of a square and 

triangular cantilever plates. 

The Linear Theory of Piezoelectricity is the famous theory that describes the mathematical 

relationships between the different piezoelectrics’ parameters and effects. The first law of 

thermodynamics for a piezoelectric medium can be written as [43]; 

ሶܷ ൌ Ԫሶ݆݅ߪ ݆݅ ൅ ॱ݅॰ሶ ݅                                          (2.1) 

Where, 

U  is the stored energy density for the piezoelectric continuum [44] 

 ௜௝ is the stress componentsߪ

Ԫ௜௝ is the strain components 

ॱ௜ is applied electric field 

॰ is the electric displacement. 

Then the linear piezoelectric constitutive equations are derived as [43], [44]; 

௜ߪ ൌ ௜௝Ԫ௝׋ െ Ղ௞௜ॱ௞                                                        (2.2) 

॰௜ ൌ Ղ௜௝Ԫ௝ ൅ ߳௜௞ॱ௞                                               (2.3) 

ऩ ൌ  (2.4)                                                           ׋ࢊ

݀ ൌ ௦௧௥௔௜௡ ௗ௘௩௘௟௢௣௘ௗ
௔௣௣௟௜௘ௗ ௘௟௘௖௧௥௜௖ ௙௜௘௟ௗ

                                               (2.5)  

Where, 

 ௜௝ is the elastic stiffness matrix׋

߳ is the permittivity constant. 
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Ղ is the piezoelectric coupling coefficient for Stress‐Charge form, and    

d  is the piezoelectric strain coefficient for Strain‐Charge form. 

Eqn. (2.2) is used in actuator mode (Stress-Charge/Voltage form) while Eqn. (2.3) is used in 

sensor mode (Strain-Charge/Voltafe form). 

2.3. Aeroelasticity 
Aeroelasticity is a field which looks at the mutual interactions of the three force systems 

namely; inertial, elastic and aerodynamic forces as depicted in Figure (2.13) [45].  

 
Figure 2.13: Aeroelasticity and the force systems. 

Aeroelasticity results from the interaction between the airstream and the structure. By 

extracting the energy from the airstream, the structure deforms/deflects and hence the air 

pressure distribution over the structure is changed which in return produces different air-

loading and so on and if there is no equilibrium between them the system becomes instable. 

There are static and dynamic aeroelasticity instabilities. The static instability is due to the 

interaction between the aerodynamic and the elastic forces such as Structural divergence, 

Reversal of Control and Aerodynamic load distribution [46]. The dynamic instabilities are 

due to the interaction of the inertial, aerodynamic and elastic forces. Flutter, Buffeting and 

Gust response are well known dynamic aeroelasticity instabilities.  

Focusing on the flutter, it is an oscillatory motion which occurs due to the interaction of the 

two modes of wing motion, namely, bending and torsional modes. In stable conditions the 

plunge/bending and pitch/torsional motions are kept out of phase in a way that the plunge 

motion is dampened by the pitch motion as shown in Figure (2.14). As the air speed increases 

the extracted energy increases until a certain point (speed) where the plunge and pitch 
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motions become in phase and destabilize the system putting it in divergent oscillation (flutter) 

as shown in Figure (2.15). In other words, the system (lowest) eigenvalues coalesce at this 

critical speed (flutter speed) as illustrated in Figure (2.16). 

 
Figure 2.14: Stable wing motion. 

 
Figure 2.15: Unstable wing motion (flutter). 

 
Figure 2.16: Bending and torsional frequencies approaching critical (flutter) speed. 

2.3.1. Flutter Analysis 
Traditionally, the wing flutter problem (and other Aeroelasticity phenomena) is treated in 

design stages via altering the stiffness of the structures, the mass distribution and the position 

of the flexural axes. The process outcome is an operational envelop that limits the boundaries 

(basically the flutter critical speed) during operation of the aircraft to prevent catastrophic 

structural failure. So the aim of the flutter analysis is to determine this critical air speed. In 

general, scientists and design engineers studied and analysed the flutter problem as a dynamic 

problem. The point-mass model shown in Figure (2.17) consists of wing mass concentrated in 
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the centre of gravity, the flexural/bending stiffness, torsional stiffness and the control surface 

stiffness. 

 
Figure 2.17: Point-mass model used in flutter analysis. 

The governing equations of motion derived from this mode are [47]; 
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Where, 

ܷஶ is the free stream air speed. 

ܮ ൌ ݂ሺߙ, ܷஶሻ and ܯ ൌ ݂ሺߙ, ܷஶሻ are the lift and the pitching moment respectively. 

EI and GJ are the flexural and torsional rigidity respectively. 

L.E and T.E. are the leading and trailing edges respectively. 

݉ and  ܫ஑ are the mass and mass moment of inertia per unit length.  

 ఈ is the distance between the Elastic Axis (E.A.) and the Centre of Gravity (C.G.)ݔ 

ea is the location of the elastic axis from the leading edge, and 

c  is the chord.  

The lift and pitching moment are traditionally presented in different aerodynamic models 

such as steady, quasi-steady, unsteady and nonlinear models. The famous more accurate and 
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complex one is the unsteady model derived by Theodorsen [48]. The other popular model is 

the quasi-steady model. It is a simplified model and although its validity is questionable in 

the analysis of the aeroelasticity of subsonic wings [49] it can be used for low-speed 

applications [47] and for applications requiring a  simple aerodynamic model. Several works 

have used the quasi-steady aerodynamic model [50], [51]. 

The quasi-steady assumption states that [47]; 

o The aerodynamic characteristics of an airfoil whose motion consists of variable linear 

and angular motions are equal (at any time) to the characteristics of the same airfoil 

moving with constant linear and angular velocities equal to the actual instantaneous 

values. 

o The inclination of the flow-velocity vector to the profile is also taken to be constant 

and equal to the actual instantaneous inclinations. 

The quasi-steady lift and pitching moment coefficients are; 

௅ܥ ൌ ఈ݈ܥ ቂߙ ൅
ଵ
௎ಮ

ሶ݄ ൅ ଵ
௎ಮ

ቀଷ
ସ
ܿ െ ݁ܽቁߙሶ ቃ                              (2.7)  

 

And, 

ሺܥெሻ௟.௘. ൌ െ ௖గ
଼௎ಮ

ሶߙ െ ଵ
ସ
௅ܥ                                             (2.8)      

where, 

 .ఈ is the slope of the Lift coefficient vs. Angle of attack curve݈ܥ

 .ெ are the lift and pitching moment coefficients respectivelyܥ & ௅ܥ

 

2.3.2. Control of Wing Flutter 
With the increase in the operation and mission requirements of the aircraft the aeroelastic and 

vibration control (Aeroservoelasticity) technology has emerged. The flutter and vibration 

active control is conventionally obtained by using the aerodynamic control surfaces operated 

by servo-hydraulic actuators [52], [53], [54]. However, this technology suffers several 

limitations such as; (a) multiple energy conversion (mechanical, hydraulic, electrical); (b) 
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potential failure sites due to large numbers of parts; (c) high vulnerability of the hydraulic 

pipes network [3]. Another limitation is the limited actuation bandwidth of the aerodynamic 

control surfaces. For example, the rudder bandwidth of the F/A-18 aircraft is less than 20 Hz 

making it  ineffective in reducing the buffet responses at the second mode around 45 Hz (first 

torsion mode) [55], whilst the piezoelectric frequency bandwidth  ranges from under 1 Hz to 

more than 20 KHz [56]. 

In the last decade, another technique for using distributed piezoelectric patches as actuators 

for active structural dynamic has emerged. Under the Flutter Research and Experimental 

device (FRED) project at NASA Langley Research Centre (LaRC), Heeg [57] performed 

analytical and experimental investigation of flutter suppression by piezoelectric actuation. 

Two piezoelectric ceramic plates were bonded to opposing sides (poled to form a bimorph-

type actuator) and near the root of one of the plunge spring tines of the mount system to 

actuate the test article. With  a Single-Input Single-Output (SISO) gain feedback control law, 

an increase in flutter speed analytically  of 15.7% (from 560 in/sec to 648 in/sec) and 

experimentally of 20% (from 58 in/sec to 697 in/sec) was achieved [57]. A joint program 

between LaRC and Massachusetts Institute of Technology (MIT) named “The Piezoelectric 

Aeroelastic Response Tailoring Investigation (PARTI),” was the first study using relatively 

large, multi-degree-of-freedom aeroelastic testbed with cross sectional airfoil of NACA 66-

012 aimed to develop detailed analytical and experimental techniques and demonstrate the 

ability of strain actuated adaptive wings to affect aeroelastic control. Thirty six pairs of 

piezoelectric wafers were bonded on the top and the bottom surfaces of the model and poled 

to give bimorph actuation. The piezoelectric wafers were arranged into fifteen groups (Figure 

2.18) to perform several control configurations. Control law A of 6 states  LQG and SISO 

configuration actuating all fifteen groups increased the normalized flutter dynamic pressure 

(speed) by approximately 12.5%, while control law B with gain feedback and SISO 

configuration actuating groups number 3,4,6,7 & 10 increased it by 8% [58]. 
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Figure 2.18: Approximate locations of actuators and sensors on the PARTI model [58]. 

Costa et al [56] investigated the use of piezoelectric actuation technique in controlling flutter 

and gust response and buffet alleviation of different wing configurations. For a rectangular 

platform wing consisting of a NACA 0012 airfoil enveloped around a rectangular plate 

structure a 6% increase in the critical flutter speed was attained. In this configuration, twelve 

piezoelectric actuator patches were bonded to the top and bottom of the plate near the 

cantilevered end. In a swept-back aluminium plate wing, an appreciable buffeting reduction 

from 32% to 47.5% was obtained. Six piezoelectric actuators were bonded on the surfaces at 

the wing mount root and two shape control actuators near the wing tip were used to control 

the wing motion. Comparisons between the flutter control using piezoelectric actuators and 

aerodynamic control surfaces were done on two wing configurations. The 3D piezoelectric 

and aileron controlled wing has two flat aluminium sheets used as skin for the wing which are 

activated by pairs of piezoelectric actuators bonded on each sheet surfaces. Two pairs 

positioned vertically near the leading edge of the wing at the root and mid section and another 

pair bonded horizontally at the tip of the wing between the outboard most brackets. A 

maximum reduction in the wing dynamic response of 52% was obtained using the 

piezoelectric actuators, while a maximum reduction of 15% was obtained by using the aileron 

control. Also, the piezoelectric activated wing reduced the buffeting vibration amplitude by 

41%. In the last configuration of piezoelectric and flaperon controlled CFRP wing, the 

aluminium sheets were replaced by Carbon Fibre Reinforced Plates (CFRP) with the same 

actuator positioning. The vibration reduction at 30 m/s of free stream velocity was 72.7% 

using the piezoelectric control, in comparison to 16.5% using the flaperon control [56].  
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The shape, location and orientation of the piezoelectric actuators are very important in plate 

vibration control. Moon and Hwang [59] developed an optimal control strategy to suppress 

the flutter of a supersonic composite panel using piezoceramic (PZT) actuators. In their 

study, the PZT patches shape and location are determined using genetic algorithms. Bent, 

Hagood and Rodgers [36] investigated the twist actuation in isotropic substructures by 

incorporating several anisotropic plies of different piezoelectric actuators into laminated 

structures. They showed that the transversely stiff actuators, those with Interdigitated 

Electrode (AFC), have the high twist actuation capabilities with thin structures and even 

higher with thicker ones. Cesnik, Ortega-Morales and Patil [60] studied the impact of 

combined bending and twisting actuation on the aeroelastic performance of highly-flexible 

active composite wing. They concluded that tailored anisotropic strain actuation improved the 

performance (controlling aeroelastic instabilities and gust alleviation) of high aspect ratio 

wings. Azzouz et al [42] compared the actuation effect of MFC™ with PZT actuators at 

different orientations on the state modal bending and twisting amplitudes of a square and 

triangular cantilever plates. They showed that in comparison to PZT actuators, the MFC™ 

provided well actuation of bending amplitudes for a large range of orientations and extremely 

well actuation of twisting amplitudes for the full range of orientation. Sheta, Moses and 

Huttsell [55] used skewed pairs of PZT patches over the inboard and outboard surfaces of a 

full-scale F/A-18 vertical tail to alleviate its buffeting in the first bending and torsion modes. 

2.4. Control Protocols 
Several control theories and techniques have been used in the controlling task of smart 

structures. Choi, Park and Fukuda [5] investigated active vibration control of two hybrid 

smart structures with two different control schemes. One hybrid structure is featured by a 

piezoceramic (PZT) actuator and a SMA actuator where a sliding mode controller is 

employed. The other hybrid structure consists of a piezoelectric film (PF) actuator and an 

electro-rheological fluid (ERF) actuator and controlled by a Neuro-sliding mode controller 

(NSC). In their study, the goal of the NN learning process is to determine a desired controller 

rather than a desired response. Since a desired controller cannot be known in advance a real-

time learning mechanism based on the idea of sliding mode and Lyapunov stability is 

employed. Varadarajan, Chandrashekhara and Agrawal [61] designed a robust LQG/LTR-

based (Linear Quadratic Gaussian with Loop Transfer Recovery) controller for laminated 

composite beams with integrated piezoelectric sensors and actuators. The performance of the 

controller was investigated against the effect of the system parameters variation. In 
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comparison to the negative velocity (proportional) feedback controller, LQG/LTR- based 

controller proved to be more robust. Also, it was shown that its performance is better with 

multimodal vibrations. Valoor, Chandrashekhara and Agrawal [62] developed a neural 

network based hybrid control system for self-adapting vibration control of laminated plates 

with piezoelectric sensors and actuators. This control system comprised of a feed-forward 

Neural Network (NN) identifier and a dynamic diagonal recurrent NN controller. Shen and 

Homaifar [63] investigated four control methods; rate-feedback control, hybrid fuzzy-PID 

control, genetic algorithms-designed PID control, and LQG/LTR control and compared their 

performances in attenuating vibration in structures using piezoelectric actuators. In the hybrid 

fuzzy-PID controller both fuzzy logic controller and PID controller are combined together to 

adjust the PID gains online. The same for the genetic algorithms (GA) designed control 

where a chromosome comprising 15 genes represents a set of PID gains of the system. All 

four control methods proved to be reliable and efficient in suppression of the steady-state 

resonance vibrations. Saravanos and Christoforou [27] investigated the feasibility of active 

control of low-energy impacts on laminated shells of double curvature with distributed 

piezoelectric sensors and actuators. LQR (Linear Quadratic Regulator) state feedback and 

output feedback controllers were used in their investigation. Both techniques showed the 

possibility of reducing the impact force for at least medium mass impactors and for shells of 

low and intermediate curvatures. Tadi [64] studied the effectiveness of a compensator design 

for flutter suppression of panel using piezoelectric sensors and actuators. The compensator 

comprises an observer to estimate online the system state from the sensors output and using it 

in the feedback control law. The results indicated that the compensator is effective in 

suppressing the amplitude of moderate flutter oscillations. Bhoir and Singh [65] derived a 

control law based on back-stepping technique for the trajectory control of a linear 

combination of the plunge displacement and pitch angle as output variable. Also, an observer 

was designed to estimate the unavailable states using only the plunge displacement, pitch 

angle and control surface deflection measurements. Han, Tani and Qiu [66] investigated 

numerically and experimentally the active flutter suppression of a swept-back cantilever 

lifting surface using piezoelectric actuation. H2- and µ-synthesized control laws were used in 

evaluation of the flutter suppression. While both laws showed comparable performance 

around the flutter point, the µ-synthesized law has improved behaviour over a wide flow 

speed range. Reddy et al [67] designed an adaptive output feedback controller for suppressing 

aeroelastic vibration on a nonlinear wing section using leading- and trailing-edge control 
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surface actuation. With the only measurements of plunge and pitch displacements, the 

algorithm is adaptively compensating for the nonlinearity and uncertainties in all parameters 

of the model. Kim et al [68] constructed an output feedback controller to suppress nonlinear 

panel flutter. The nonlinearity of the panel motion are compensated by the use of Extended 

Kalman Filter (EKF).  

2.5. Summary 
The main historical background and the underlying theories of smart structures technologies 

and aeroelasticity are presented in this chapter. The review of the past and more recent work 

showed that most of the SMA smart structure work was based on embedding the SMA 

materials in the host structures and in addition to  that where the SMA materials are used as 

external control actuators. The first part of this work will investigate the surface mounted 

SMA materials and its effect on the mechanical behaviour of the host structure. Detailed 

mathematical modelling and experimental work of this case are presented in Chapter 3. The 

second part of this work will focus on the control of the flutter speed of aeroelastic structures 

using patches of piezoelectric materials. The previous works in this field concentrated mainly 

on the bending effect (morph and bimorph) of the activated patches. The effect of the 

torsional effect was less investigated. In the second part of this work, deeper investigation of 

the later effect will be conducted. To achieve this detailed mathematical modelling and 

control protocol are developed and presented in Chapters 4 and 5 respectively.  The 

discussion of this chapter justifies the research questions identified in Chapter 1. 
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Chapter 3. ALTERATION OF DYNAMIC PROPERTIES OF STRIP 

STRUCTURE USING SMA WIRES 

3.1. Problem Statement 
Minimal research has been performed on altering the natural frequency of composite 

structures using Shape Memory Alloys. In most of the research using SMA’s in controlling 

smart structures, the SMA’s were embedded within the structures. In this work, the alteration 

of the natural frequency of composite plates will be obtained using surface mounted Shape 

Memory Alloy wires. The SMA wires are used to change the strain energy of the composite 

plates, this is shown experimentally and the governing strain equations are solved analytically 

using Rayleigh-Ritz method. The experimental results and the numerical results are 

compared. Different configurations of SMA placement, namely, straight and zigzag, are 

studied and compared to computational and experimental findings in order to optimize the 

control strategy. 

3.2. Mathematical Model 
The aim of the mathematical model is to construct the equations of motion of the structure 

under study which relate the stresses/strains with external loadings. These equations are then 

solved to give the behaviour of the structure under certain loading conditions. To construct 

the governing equations of motion different relations are used. These relations are: 

3.2.1. Kinematic Relations 
These are geometrical relations which relate the body strains to its displacements. The 

rectangular Cartesian form of the Green-Lagrange strain tensor “E” [69]: 

௝௞ܧ ൌ
ଵ
ଶ
൬డ࣯ೕ
డ௑ೖ

൅ డ࣯ೖ
డ௑ೕ

൅ డ࣯೘
డ௑ೕ

డ࣯೘
డ௑ೖ

൰                                      (3.1) 

Where,  

          the displacement  ࣯ሺܺ, ሻݐ ൌ ,ሺܺݔ ሻݐ െ ܺ ,  

 ܺ ൌ ሺ ଵܺ, ܺଶ, ܺଷሻ is the particle position before the deformation, and  

࢞  ൌ ሺݔଵ, ,ଶݔ  . ଷሻ is the particle position after deformationݔ
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Let (x1, x2, x3) = (x, y, z), also, (࣯1, ࣯2, ࣯3) = (u, v, w), equation (3.1) can be expanded in 

explicit form as: 

࢞࢞ࡱ ൌ  
࢛ࣔ
࢞ࣔ ൅

૚ 
૛ ቈ൬

࢛ࣔ
൰࢞ࣔ

૛
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൅ ൬
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૛
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૛

൅ ൬
࢜ࣔ
൰࢟ࣔ

૛

൅ ൬
࢝ࣔ
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૛
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૛

൅ ൬
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ቁ              (3.2) 

3.2.2. Classical Laminated Plate Theory 
The formulation of the mathematical model in this work is based on the Classical Laminated 

Plate Theory (CLPT). The CLPT is an extension of the Classical Plate Theory (CPT) to 

composite laminates and basically defines the displacements of the structure. The formulation 

process requires several assumptions of which the  fundamental assumptions in the CLPT are 

that the Kirchhoff hypothesis holds [69]: 

1) Straight lines perpendicular to the midsurface (i.e., transverse normals) before 

deformation remain straight after deformation. 

2) The transverse normals do not experience elongation (i.e., they are inextensible). 

3) The transverse normals rotate such that they remain perpendicular to the midsurface 

after deformation. 

These assumptions lead to the fact that the transverse displacement is independent of the 

transverse (thickness) coordinate and the transverse normal strain and shear strains are zero; 

Ԫ௭௭ ൌ 0 ,       Ԫ௫௭ ൌ 0,      Ԫ௬௭ ൌ 0                                         (3.3) 

And the displacements (u, v, w) are; 
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,ݔሺݑ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݑ  ,ݕ ሻݐ െ ݖ
ݓ߲
ݕ߲  

,ݔሺݒ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݒ ,ݕ ሻݐ െ ݖ
ݓ߲
  ݕ߲

,ݔሺݓ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݓ ,ݕ    ሻ                                         (3.4)ݐ

For the laminated plate/structure the following assumptions/restrictions are considered: 

1) The layers are perfectly bonded together. 

2) The material of each layer is linearly elastic and has three planes of material 

symmetry (orthotropic). 

3) Each layer is of uniform thickness. 

4) The strains and displacements are small. 

5) The transverse shear stresses on the top and bottom surfaces of the laminate are zero. 

By assuming that the components of the displacement gradients are of the order Ԗ, i.e, 

డ௨
డ௫
, డ௨
డ௬
, డ௪
డ௫
, డణ
డ௬
, డ௪
డ௭
ൌ ܱ ሺ߳ሻ                                               (3.5) 

Then the terms of order Ԗ2 are negligible;   

ቀడ௨
డ௫
ቁ
ଶ
, ቀడణ
డ௫
ቁ
ଶ
, డ௨
డ௫

డ௨
డ௬
, డ௩
డ௫

డ௩
డ௬
    … . . ؆ 0                                         (3.6) 

And for moderate rotation;  
డ௪బ
డ௫

, డ௪బ
డ௬
 ؆ (10o-15o),  

Then, ቀడ௪
డ௫
ቁ
ଶ
, ቀడ௪

డ௬
ቁ
ଶ
, డ௪
డ௫

డ௪
డ௬

  are small but not negligible compared to Ԗ.  

Thus (3.2) take the form:  
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൅ ଵ

ଶ
ቀడ௪
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ଶ
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൅ డ௪
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ࢠࣔ
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૚
૛
ቀ࢛ࣔ
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൅ ࢝ࣔ
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૚
૛
ቀࣔ࢜
ࢠࣔ
൅ ࢝ࣔ

࢟ࣔ
ቁ                          (3.7) 

By applying the displacements of Eqn. (3.4) into Eqn. (3.7) the known Von Kármán strains 
are; 
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௭௭ߝ ൌ 0                                                      (3.8) 

The strains in Eqn. (3.8) comprise of the membrane strains (ࢿ଴) and the curvatures (ࢿଵ) or 

flexural/bending strains, here ߝ௫௬ is replaced by the engineering shear strains (ߛ௫௬ =2ߝ௫௬); 

ࢿ ൌ ଴ࢿ ൅  ଵ                                                     (3.9)ࢿݖ

Or, 

൝
ݔݔߝ
௬௬ߝ
௫௬ߛ

ൡ ൌ ቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൅ ݖ ቐ

௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑ                                        (3.10) 

Where, 
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                         (3.11)         

3.2.3. Lamina Constitutive Equations 
These equations relate the material reaction/deformation (strains) to applied forces (stresses) 

and are known as Hook’s Law. The generalised form of Hook’s law can be written in the 

following matrix form [69]; 
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                        (3.12) 

where C is known as the Stiffness tensor. 

For beams and plate strips cases the plane stress state is applied and (3.12) can be written as  

൝
ଵߪ
ଶߪ
଺ߪ
ൡ ൌ ൥

ܳଵଵ ܳଵଶ 0
ܳଵଶ ܳଶଶ 0
0 0 ܳ଺଺

൩ ൝
Ԫଵ
Ԫଶ
Ԫ଺
ൡ                                             (3.13) 

Where ܳ௜௝ is known as Plane stress-reduced stiffness, and given by 

ܳଵଵ ൌ
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 ,      ܳଵଶ ൌ

జభమாమ
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ாభ

                          (3.14) 

For laminated composite structure the stiffness must be transformed from the material 

coordinate system into problem/structure coordinate system as follow [69]; 

൝
௫௫ߪ
௬௬ߪ
௫௬ߪ

ൡ ൌ ቎
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ቑ                                       (3.15) 

where, 

ە
ۖۖ
۔

ۖۖ
ۓ
തܳଵଵ
തܳଵଶ
തܳଶଶ
തܳଵ଺
തܳଶ଺
തܳ଺଺ۙ

ۖۖ
ۘ

ۖۖ
ۗ

ൌ . ۺ ൞

ܳଵଵ
ܳଵଶ
ܳଶଶ
ܳ଺଺

ൢ                                                 (3.16) 

and,  
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3.2.4. Laminate Constitutive Equations 
For a laminate structure comprising “n” laminas/layers the strains are continuous through the 

thickness. But due to the change in material coefficients through the thickness (different 

lamina orientations) the stresses are varied. By lamina-wise integration of the stresses 

through the thickness the force and moment resultants are [69]; 
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Substituting Eqn’s. (3.15) and (3.10) into Eqn. (3.18); 
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And, 
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௞
௭ೖశభ

௭ೖ

௡

௞ୀଵ

ቌቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൅ ݖ ቐ

௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑቍ  ݖ݀ ݖ

ቐ
௫௫ܯ
௬௬ܯ
௫௬ܯ

ቑ ൌ ൥
ଵଵܤ ଵଶܤ ଵ଺ܤ
ଵଶܤ ଶଶܤ ଶ଺ܤ
ଵ଺ܤ ଶ଺ܤ ଺଺ܤ

൩ ቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൅ ൥

ଵଵܦ ଵଶܦ ଵ଺ܦ
ଵଶܦ ଶଶܦ ଶ଺ܦ
ଵ଺ܦ ଶ଺ܦ ଺଺ܦ

൩ ቐ
௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑ          (3.21) 

where ܣ௜௝ are called Extensional stiffnesses, ܤ௜௝ the Bending-extensional coupling stiffnesses 

and ܦ௜௝ the Bending stiffnesses and are defined in terms of the lamina stiffnesses തܳ௜௝as; 
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൫ܣ௜௝, ,௜௝ܤ ௜௝൯ܦ ൌ ׬ തܳ௜௝ሺ1, ,ݖ ݖଶሻ݀ݖ
೓
మ
ష೓
మ

ൌ ∑ ׬ തܳ௜௝௞ ሺ1,
௭ೖశభ
௭ೖ

௡
௞ୀଵ ,ݖ  (3.22)        ݖ݀ ଶሻݖ

or, 

௜௝ܣ ൌ ∑ തܳ௜௝௞௡
௞ୀଵ ሺݖ௞ାଵ െ ௜௝ܤ , ݖ݀ ௞ሻݖ ൌ

ଵ
ଶ
∑ തܳ௜௝௞ே
௄ୀଵ ሺݖ௞ାଵଶ െ  ௞ଶሻݖ

௜௝ܦ ൌ
ଵ
ଷ
∑ തܳ௜௝௞ே
௄ୀଵ ሺݖ௞ାଵଷ െ  ௞ଷሻ                                        (3.23)ݖ

And in matrix form: 

൜ሼܰሽሼܯሽൠ ൌ ൤ሾܣሿ ሾܤሿ
ሾܤሿ ሾܦሿ൨ ൜

ሼߝ଴ሽ
ሼߝଵሽ

ൠ                                          (3.24) 

3.2.5. Equations of Motion 
The Hamilton’s principle, which is a generalization of the principle of virtual displacements 

[69], is used to derive the equations of motion. The Hamilton’s principle states that [70]; “all 

of possible paths that a material particle could travel from its position at time t1 to its 

position at time t2, its actual path will be one for which the integral (I) is extremum.” 

Where,                                              ܫ ൌ ׬ ሺܭ െܹሻ݀ݐ௧మ
௧భ

                                                    (3.25) 

Here, the difference between the kinetic “K” and potential “W” energies is known as the 

Lagrangian function. The potential energy consists of internal which is the strain energy “U” 

and external which is the work due to the applied forces “V”. 

For extremum I, 

ܫߜ ൌ ׬ ሺܭߜ െ ሺܷߜ ൅ ஋ݐሻሻܸ݀ߜ
଴ ൌ 0                                               (3.26) 

or, 

׬ ሺܷߜ ൅ ܸߜ െ ஋ݐሻ݀ܭߜ
଴ ൌ 0                                           (3.27) 

The Strain energy can be written as; 

ܷ ൌ ׬ ௜௝ࣰ݀బࣰߝ ௜௝ߪ
                                                          (3.28) 

then,  
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ܷߜ ൌ ׬ ൫ߪ௫௫ߝߜ௫௫ ൅ ௬௬ߝߜ௬௬ߪ ൅ ௫௬൯బࣰߝߜ௫௬ߪ2
 (3.29)                       ݕ݀ݔ݀ݖ݀

Note that from eqn. (3.8);   ߝ௫௭ ൌ ௬௭ߝ ൌ ௭௭ߝ ൌ 0. 

Eqn. (3.29) can be written as; 

ܷߜ ൌ ׬ ׬ ൫ߪ௫௫ߝߜ௫௫ ൅ ௬௬ߝߜ௬௬ߪ ൅ ௫௬൯ߝߜ௫௬ߪ2
೓
మ
ି೓మ

׊  (3.30)                   ݕ݀ݔ݀ݖ݀

from Eqn. (3.10); 

ܷߜ ൌ ׬ ቊ׬ ௫௫଴ߝߜ௫௫ሺߪൣ ൅ ௫௫ଵߝߜݖ ሻ ൅ ௬௬଴ߝߜ௬௬ሺߪ ൅ ௬௬ଵߝߜݖ ሻ ൅ ௫௬଴ߛߜ௫௬ሺߪ ൅ ௫௬ଵߛߜݖ ሻ൧
೓
మ
ି೓మ

׊ቋݖ݀   ݕ݀ݔ݀

(3.31) 

For one layer; n=1 Eqn’s. (3.18) and (3.20) can be written as; 

ቐ
௫ܰ௫

௬ܰ௬

௫ܰ௬

ቑ ൌ ׬ ൝
௫௫ߪ
௬௬ߪ
௫௬ߪ

ൡ
೓
మ
ି೓మ

ቐ         &        ݖ݀
௫௫ܯ
௬௬ܯ
௫௬ܯ

ቑ ൌ ׬ ൝
௫௫ߪ
௬௬ߪ
௫௬ߪ

ൡ
೓
మ
ି೓మ

 (3.32)             ݖ݀ ݖ

in Eqn. (3.31); 

ܷߜ ൌ ׬ ൣ ௫ܰ௫ߝߜ௫௫଴ ൅ ௫௫ଵߝߜ௫௫ܯ ൅ ௬ܰ௬ߝߜ௬௬଴ ൅ ௬௬ଵߝߜ௬௬ܯ ൅ ௫ܰ௬ߛߜ௫௬଴ ൅ ௫௬ଵߛߜ௫௬ܯ ሻ൧׊   ݕ݀ݔ݀

(3.33) 

The Work done by the applied forces is: 

ܸ ൌ െ׬ ,ݔሺݍ ׊ ݕ݀ݔ଴݀ݓሻݕ                                             (3.34) 

where, q(x,y) is the external force per area. Then, 

ܸߜ ൌ െ׬ ׊ ݕ݀ݔ଴݀ݓߜݍ                                               (3.35) 

Since the Kinetic energy is: 

ܭ ൌ ଵ
ଶ
݉ॽଶ                                                           (3.36) 

or,  
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ܭ ൌ ׬ ଵ
ଶ
଴ߩ ቀ

డ࣯
డ௧
ቁ
ଶ
ࣰ݀

బࣰ
                                                 (3.37) 

and from Eqn. (3.4) then, 

ܭ ൌ ׬ ଵ
ଶ
଴ߩ ൤ቀݑሶ ଴ െ ݖ డ௪ሶ బ

డ௫
ቁ
ଶ
൅ ቀݒሶ଴ െ ݖ డ௪ሶ బ

డ௬
ቁ
ଶ
൅ ሶݓ ଴ଶ൨ ࣰ݀బࣰ

                   (3.38) 

Taking “δ” therefore,  

ܭߜ ൌ ׬ ׬ ଴ߩ ቂቀݑሶ ଴ െ ݖ డ௪ሶ బ
డ௫
ቁ ቀݑߜሶ ଴ െ ݖ డఋ௪ሶ బ

డ௫
ቁ ൅ ቀݒሶ଴ െ ݖ డ௪ሶ బ

డ௬
ቁ ቀݒߜሶ଴ െ ݖ డఋ௪ሶ బ

డ௬
ቁ ൅

೓
మ
ି೓మ

׊

ሶݓ ଴ݓߜሶ ଴ቃ   ݕ݀ݔ݀ݖ݀

(3.39) 

Let,  

൝
଴ܫ
ଵܫ
ଶܫ
ൡ ൌ ׬ ൝

1
ݖ
ଶݖ
ൡ

೓
మ
ି೓మ

 (3.40)                                     ݖ଴݀ߩ

in Eqn. (3.39); 

ܭߜ ൌ ׬ ቂܫ଴ሺݑሶ ଴ݑߜሶ ଴ ൅ ሶ଴ݒߜሶ଴ݒ ൅ ሶݓ ଴ݓߜሶ ଴ሻ ൅ ଵܫ ቀെ
డఋ௪ሶ బ
డ௫

ሶݑ ଴െ
డ௪ሶ బ
డ௫

ሶݑߜ ଴ െ
డఋ௪ሶ బ
డ௬

ሶ଴ݒ െ
డ௪ሶ బ
డ௬

ሶ଴ቁݒߜ ൅׊

ଶܫ ቀ
డ௪ሶ బ
డ௫

డఋ௪ሶ బ
డ௫

൅ డ௪ሶ బ
డ௬

డఋ௪ሶ బ
డ௬

ቁቃ  (3.41)                                                           ݕ݀ݔ݀

Substituting ߜU, ߜV, and ߜK into Eqn. ሺ3.27ሻ, 

0 ൌ ׬ ቄ׬ ቂ ௫ܰ௫ߝߜ௫௫଴ ൅ ௫௫ଵߝߜ௫௫ܯ ൅ ௬ܰ௬ߝߜ௬௬଴ ൅ ௬௬ଵߝߜ௬௬ܯ ൅ ௫ܰ௬ߛߜ௫௬଴ ൅ ௫௬ଵߛߜ௫௬ܯ െ ଴ݓߜݍ െ׊
஋
଴

ሶݑ଴ሺܫ ଴ݑߜሶ ଴ ൅ ሶ଴ݒߜሶ଴ݒ ൅ ሶݓ ଴ݓߜሶ ଴ሻ ൅ ଵܫ ቀ
డఋ௪ሶ బ
డ௫

ሶݑ ଴൅
డ௪ሶ బ
డ௫

ሶݑߜ ଴ ൅
డఋ௪ሶ బ
డ௬

ሶ଴ݒ ൅
డ௪ሶ బ
డ௬

ሶ଴ቁݒߜ െ

ଶܫ ቀ
డ௪ሶ బ
డ௫

డఋ௪ሶ బ
డ௫

൅ డ௪ሶ బ
డ௬

డఋ௪ሶ బ
డ௬

ቁቃ ቅݕ݀ݔ݀  (3.42)                                                      ݐ݀

Taking “δ” of Eqn. (3.11); 

௫௫଴ߝߜ ൌ
଴ݑߜ߲
ݔ߲ ൅

଴ݓ߲
ݔ߲

଴ݓߜ߲
ݔ߲ ௫௫ଵߝߜ            , ൌ െ

߲ଶݓߜ଴
ଶݔ߲  , 

௬௬଴ߝߜ ൌ
଴ݒߜ߲
ݕ߲ ൅

଴ݓ߲
ݕ߲

଴ݓߜ߲
ݕ߲ ௬௬ଵߝ                   , ൌ െ

߲ଶݓߜ଴
ଶݕ߲  , 
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௫௬଴ߛߜ ൌ బݑߜ߲
డ௬

൅ డఋ௩బ
డ௫

൅ డఋ௪బ
డ௫

డ௪బ
డ௬

൅ డ௪బ
డ௫

డఋ௪బ
డ௬

௫௫ଵߛߜ         , ൌ െ2 డమఋ௪బ
డ௫డ௬

       (3.43) 

into Eqn. (3.42); 

0 ൌ ׬ ቄ׬ ቂ ௫ܰ௫ ቀ
డఋ௨బ
డ௫

൅ డ௪బ
డ௫

డఋ௪బ
డ௫

ቁ െ ௫௫ܯ
డమఋ௪బ
డ௫మ

൅ ௬ܰ௬ ቀ
డఋ௩బ
డ௬

൅ డ௪బ
డ௬

డఋ௪బ
డ௬

ቁ െ ௬௬ܯ
డమఋ௪బ
డ௬మ

൅׊
஋
଴

௫ܰ௬ ቀ
డఋ௨బ
డ௬

൅ డఋ௩బ
డ௫

൅ డఋ௪బ
డ௫

డఈ௪బ
డ௬

൅ డ௪బ
డ௫

డఋ௪బ
డ௬

ቁ െ ௫௬ܯ2
డమఋ௪బ
డ௫డ௬

െ ଴ݓߜݍ െ ሶݑ଴ሺܫ ଴ݑߜሶ ଴ ൅ ሶ଴ݒߜሶ଴ݒ ൅

ሶݓ ଴ݓߜሶ ଴ሻ ൅ ଵܫ ቀ
డఋ௪ሶ బ
డ௫

ሶݑ ଴൅
డ௪ሶ బ
డ௫

ሶݑߜ ଴ ൅
డఋ௪ሶ బ
డ௬

ሶ଴ݒ ൅
డ௪ሶ బ
డ௬

ሶ଴ቁݒߜ െ ଶܫ ቀ
డ௪ሶ బ
డ௫

డఋ௪ሶ బ
డ௫

൅ డ௪ሶ బ
డ௬

డఋ௪ሶ బ
డ௬

ቁቃ ቅݕ݀ݔ݀ ݐ݀                         

(3.44) 

Integrating by parts of the terms of Eqn. (3.44) to relieve the virtual displacements (ߜu, ߜv, 
and ߜwሻ of any differentiation; 

׬ ቄ׬ ቂ ௫ܰ௫,௫ݑߜ଴ െ ሺ ௫ܰ௫
డ௪బ
డ௫
ሻ,௫ ݓߜ଴ െ ଴ݓߜ ௫௫,௫௫ܯ െ ௬ܰ௬,௬ ݒߜ଴ െ ሺ ௬ܰ௬

డ௪బ
డ௬
ሻ,௬ ݓߜ଴ െ׊

்
଴

଴ݓߜ ௬௬,௬௬ܯ െ ௫ܰ௬,௬ ݑߜ଴  െ ௫ܰ௬,௫ ݒߜ଴  െ ሺ ௫ܰ௬
డ௪బ
డ௬
ሻ,௫ ݓߜ଴ െ ሺ ௫ܰ௬

డ௪బ
డ௫
ሻ,௬ ݓߜ଴ െ

଴ݓߜ ௫௬,௫௬ܯ2 െ ଴ݓߜ ݍ ൅ ሷݑ଴ሺܫ ଴ݑߜ଴ ൅ ଴ݒߜሷ଴ݒ ൅ ሷݓ ଴ݓߜ଴ሻ ൅ ଵܫ ቀ
డ௨ሷ బ
డ௫

଴െݓߜ
డ௪ሷ బ
డ௫

଴ݑߜ ൅

డఋ௩ሷబ
డ௬

଴ݓߜ െ
డ௪ሷ బ
డ௬

ሶ଴ቁݒߜ െ ଶܫ ቀ
డమ௪ሷ బ
డ௫మ

൅ డమ௪ሷ బ
డ௬మ

ቁ ଴ቃݓߜ ݕ݀ݔ݀ ൅ .ܤ .ݏᇱܥ ቅ ݐ݀ ൌ 0                           (3.45) 

Collecting the coefficients of each virtual displacement; 

଴ݑߜ ฺ ߲ ௫ܰ௫

ݔ߲ ൅
߲ ௫ܰ௬

ݕ߲ ൌ ଴ܫ
߲ଶݑ଴
ଶݐ߲ െ ଵܫ

߲ଶ

ଶݐ߲ ൬
଴ݓ߲
ݔ߲ ൰ (3.46)

଴ݒߜ ฺ ߲ ௬ܰ௬

ݕ߲ ൅
߲ ௫ܰ௬

ݔ߲ ൌ ଴ܫ
߲ଶݒ଴
ଶݐ߲ െ ଵܫ

߲ଶ

ଶݐ߲ ൬
଴ݓ߲
ݕ߲ ൰ (3.47)

଴ݓߜ ฺ ߲ଶܯ௫௫

ଶݔ߲ ൅
߲ଶܯ௫௬

ݔ߲ݕ߲ ൅
߲ଶܯ௬௬

ଶݕ߲ ൅ࣨሺݓ଴ሻ ൅ ݍ

ൌ ଴ܫ  
߲ଶݓ଴
ଶݐ߲ ൅ܫଵ

߲ଶ

ଶݐ߲ ൬
଴ݑ߲
ݔ߲ ൅

଴ݒ߲
ݕ߲ ൰

െ ଶܫ
߲ଶ

ଶݐ߲ ቆ
߲ଶݓ଴
ଶݔ߲ ൅

߲ଶݓ଴
ଶݕ߲ ቇ 

(3.48)

                                     

Where,  

ࣨሺݓ଴ሻ ൌ
߲
ݔ߲ ൬ ௫ܰ௫

଴ݓ߲
ݔ߲ ൅ ௫ܰ௬

଴ݓ߲
ݕ߲ ൰ ൅

߲
ݕ߲ ൬ ௫ܰ௬

଴ݓ߲
ݔ߲ ൅ ௬ܰ௬

଴ݓ߲
ݕ߲ ൰ 
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3.3. Analytical Solution Using Rayleigh-Ritz Method 

In most practical applications of thin plates the magnitude of the stresses acting on the 

surface parallel to the middle plane are small compared to the bending and membrane 

stresses. Since the plate is thin, this implies that the tractions on any surface parallel to the 

middle plane are small. 

A standard coordinate system as shown in Figure (3.1) is considered [17]. The displacements 

in ݔ, ,ݕ ,ݑ directions are denoted by ݖ ,ݒ  :The following assumptions are made .ݓ

1. The plate is thin, i.e., the thickness ݄ is much smaller than the other physical 
dimensions of the plate. 

2. The displacements ݑ, ,ݒ  .are small compared to the plate thickness ݓ
3. In plane strains ߝ௫,  .௫௬ are negligibleߝ  ௬ andߝ
4. In order to include in plane force effects, non linear terms in the equations of motion 

involving products of stresses and plate slopes are retained. All other nonlinear terms 
are neglected. 

5. The transverse shear stresses ߪ௫௭, ௬௭ vanish on the surfaces ൌߪ ݄ט 2ൗ  . 

 
Figure 3.1: Coordinate system of plate [17]. 

For a symmetric type lay-up of the laminate the Bij = 0 as coupling is eliminated and 

therefore, the third equation of motion can be solved separately [71].  

The third equation of motion in terms of displacements takes the following form: 

ଵଵܦ
߲ସݓ଴
ସݔ߲ ൅ 2ሺܦଵଶ ൅ ଺଺ሻܦ2

߲ସݓ଴
ଶݕଶ߲ݔ߲ ൅ ଶଶܦ

߲ସݓ଴
ସݕ߲ െ ௫ܰ

߲ଶݓ଴
ଶݔ߲ െ 2 ௫ܰ௬

߲ଶݓ଴
ݕ߲ݔ߲ െ ௬ܰ

߲ଶݓ଴
ଶݕ߲

ൌ െܫ଴
߲ଶݓ଴
ଶݐ߲ ൅ ଶܫ ቆ

߲ସݓ଴
ଶݐଶ߲ݔ߲ ൅

߲ସݓ଴
 ଶቇݐଶ߲ݕ߲

             (3.49) 
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3.3.1. Mathematical Modelling of Surface Mounted SMAs 

The solution for the equation in the case of natural vibration can be assumed as: 

,ݔ଴ሺݓ ,ݕ ሻݐ ൌ ,ݔሺݓ  (3.50)                  ݐሻ݁݅߱ݕ

 

Substituting in the governing equation (3.49) the equation takes the form: 

ଵଵܦ
߲ସݓ଴
ସݔ߲ ൅ 2ሺܦଵଶ ൅ ଺଺ሻܦ2

߲ସݓ଴
ଶݕଶ߲ݔ߲ ൅ ଶଶܦ

߲ସݓ଴
ସݕ߲ െ ௫ܰ

߲ଶݓ଴
ଶݔ߲ െ 2 ௫ܰ௬

߲ଶݓ଴
ݕ߲ݔ߲ െ ௬ܰ

߲ଶݓ଴
ଶݕ߲

െ ߱ଶ ቈܫݓ଴ െ ଶܫ ቆ
߲ଶݓ଴
ଶݔ߲ ൅

߲ଶݓ଴
ଶݕ߲ ቇ቉ ݁

ݐ߱݅ ൌ 0 

            (3.51) 

The minimum potential energy form of the above equation is expressed as [70]: 

0 ൌ න න ቊܦଵଵ
߲ଶݓ
ଶݔ߲

߲ଶݓߜ
ଶݔ߲ ൅ ଵଶܦ ቆ

߲ଶݓ
ଶݕ߲

߲ଶݓߜ
ଶݔ߲ ൅

߲ଶݓ
ଶݔ߲

߲ଶݓߜ
ଶݕ߲ ቇ ൅ ଺଺ܦ4

߲ଶݓ
ݕ߲ݔ߲

߲ଶݓߜ
ݕ߲ݔ߲

௔

଴

௕

଴

െ ௫ܰ
ݓ߲
ݔ߲

ݓߜ߲
ݔ߲ െ ௬ܰ

ݓ߲
ݕ߲

ݓߜ߲
ݕ߲ െ 2 ௫ܰ௬

ݓ߲
ݔ߲

ݓߜ߲
ݕ߲ ൅ ଶଶܦ

߲ଶݓ
ଶݕ߲

߲ଶݓߜ
ଶݕ߲

െ ߱ଶ ൤ܫݓ଴ݓߜ െ ଶܫ ൬
ݓ߲
ݔ߲

ݓߜ߲
ݔ߲ ൅

ݓ߲
ݕ߲

ݓߜ߲
ݕ߲ ൰൨ቋ  ݕ݀ݔ݀

      (3.52) 

The solution for the above differential equation is obtained by using the Rayleigh-Ritz 

method.    

For rectangular plates the Rayleigh-Ritz approximation is [70]: 

,ݔሺݓ ሻݕ ؆ ௠ܹ.௡ሺݔ, ሻݕ ൌ ∑ ∑ ௜௝ܥ ௜ܺሺݔሻ ௝ܻሺݕሻே
௝ୀଵ

ெ
௜ୀଵ               (3.53) 

Substituting in equation (3.52) the energy equation takes the form: 

ሼሾܴሿ െ ߱ଶሾܤሿሽሼܥሽ ൌ 0                 (3.54) 

Where, 

ܴ௜௝௞௟ ൌ

׬ ׬ ቄܦଵଵ
ௗమ௑೔
ௗ௫మ

ௗమ௑ೖ
ௗ௫మ ௝ܻ ௟ܻ ൅ ଵଶܦ ቀ
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(3.56) 

3.3.2. Analytical solutions of Surface Mounted SMAs 

The composite plate in the experiment is clamped at one end and free at the other three ends 

(CFFF). The SMA wires are mounted on the plate with the help of bolts of 2mm diameter. 

The approximation function for CFFF plates will be of the form [70]: 

௜ܺ ൌ ቀ௫
௔
ቁ
௜ାଵ

;  ௝ܻ ൌ ቀ௬
௕
ቁ
௝ିଵ

    (3.57) 

The values of the natural frequencies are obtained by substituting the approximation function 

into equation (3.54) and then solving it. The values of in plane forces tend to be zero until the 

SMA wires are actuated. By substituting the values of the in plane forces in the governing 

equation of motion the changed values of natural frequencies can be determined. 

Straight orientation 

Figure (3.2) represents the arrangement of the SMA wires on the composite in a straight 

orientation.  

 
Figure 3.2: SMA wires on the composite in a straight orientation [17]. 

When the SMA wires are actuated the recovery force T is generated and is represented 

by  ௫ܰ.  

 
Figure 3.3: SMA recovery forces distribution. 
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This in-plane force will be acting in the x direction only. ௬ܰ and ௫ܰ௬ tend to be zero. Figure 

(3.3) shows the T recovery forces acting at the bolt holes, and hence the values of ௫ܰ  are: 

௫ܰ ൌ

ە
ۖ
۔

ۖ
ۓ
0………… . . ሼ0 ൑ ݕ ൏ ሺܾଵ െ ሻሽݎ
െܶ…  ሼሺܾଵ െ ሻݎ ൑ ݕ ൑ ሺܾଵ ൅ ሻሽݎ
0… . . ሼሺܾଵ ൅ ሻݎ ൏ ݕ ൏ ሺܾଶ െ ሻሽݎ
െܶ… . ሼሺܾଶ െ ሻݎ ൑ ݕ ൑ ሺܾଶ ൅ ሻሽݎ
0………… . . ሼሺܾଶ ൅ ሻݎ ൏ ݕ ൑ ܾሽ

              (3.58) 

Zigzag orientation 

Figure (3.4) represents the arrangement of the SMA wires on the composite in a Zigzag 

orientation. The in plane forces acting on the composite plate are  ௫ܰ, ௬ܰ they are determined 

by resolving the SMA wire force in X, Y directions. The effect of the recovery forces is 

calculated for one element which is a control volume of each leg of the zigzag and its 

dimensions are: (b2-b1) × (a2-a1) and is generalised for the entire plate by multiplying the 

number of the Zigzag legs. The values of  ௫ܰ, ௬ܰ for boundary conditions of the plate are: 

௫ܰ ൌ ቐ
0……………… . . ሼ0 ൑ ݕ ൏ ሺܾଵ െ ሻሽݎ
െܶ cos ߠ …  ሼሺܾଵ െ ሻݎ ൑ ݕ ൑ ሺܾଵ ൅ ሻሽݎ
0……………… . . ሼሺܾଵ ൅ ሻݎ ൏ ݕ ൑ ܾሽ

  (3.59) 

௬ܰ ൌ ቐ
0……………… . . ሼ0 ൑ ݔ ൏ ሺܽଶ െ ሻሽݎ
െܶ sin ߠ …  ሼሺܽଶ െ ሻݎ ൑ ݔ ൑ ሺܽଶ ൅ ሻሽݎ
0……………… . . ሼሺܽଶ ൅ ሻݎ ൏ ݔ ൑ ܽሽ

  (3.60) 

 
Figure 3.4: Arrangement of the SMA wires on the composite in a Zigzag orientation 

[17]. 

3.3.3. Recovery force of the Shape Memory Alloy wires 
The recovery force SMA wire is determined by subjecting them to a tensile test on UNITED 

testing machine. The SMA wires are clamped as shown in Figure (3.5) and voltage is applied. 

The recovery force generated by the SMA wires is recorded using a computer. The average 
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The plate mechanical properties are shown in Table 3.1. 

 

 

The composite plates are then subjected to a white noise forcing function of 1.4 KHz with the 

help of a mechanical shaker from the bottom. The response of the composite plates, when the 

SMA wires are not actuated, is recorded by using a Polytech laser vibrometer as shown in 

Figure (3.8). The SMA wires, as said in the ASET technique, are connected to a DC supply 

source for actuation. 

 
Figure 3.8: Laser vibrometer and the mechanical shaker 

The responses of the composite plates after actuation are recorded. The peaks of the plotted 

graph are identified and recorded as natural frequencies. Figure (3.9) shows the shift of the 

natural frequencies of the plate when SMA wires are activated. The shift is expected to be 

 CFRP [72] Nitinol-SMA [73] 

 42 27-82 (N/A- Activated.) (GPa)ܧ

 / ଵଶ 0.3ߥ

Diameter (m) / 0.0001 

ρ (kg/m3) 1702 / 

Length (m) 0.185 / 

Width (m) 0.04 / 

Thickness (m) 0.0005 / 

a1 (m) 0.03 / 

a2 (m) 0.15 / 

a3 (m) 0.02 / 

b1 (m) 0.005 / 

b2 (m) 0.035 / 
Table 3.1: Composite plate and SMA wire properties [72]. 

Polytech 
Vibrometer 

Mechanical 
shaker 
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forward where here the shift was backward. This was due to the pre-strain of the plate 

induced during fabrication. 

 
Figure 3.9 : Plots of the response of the carbon fiber plate before and after actuation of 

SMA wires placed in straight orientation 

The experimental and analytical values of natural frequencies for the carbon fibre plate after 

actuation of the straight oriented SMA wires and the percentage of changes from the natural 

frequencies with and without activation are described in Table (3.2) and Table (3.3). The 

comparison between experimental and analytical values is shown in Table (3.4).  

S. No Experimental 
ω before activation ω after activation % Change 

1 398.906 398.438 -0.11732 
2 579.219 569.688 -1.64549 
3 830.938 817.469 -1.620 

Table 3.2: Experimental result of Carbon fiber composites with SMA in straight 
orientation. 

S. No Analytical 
ω before activation ω after activation % Change 

1 460.5621 419.963 - 8.8 
2 552.9948 563.438 1.8 
3 786.0057 860.662 9.49 

Table 3.3: Analytical results of Carbon fiber composites with SMA in straight 
orientation. 

S. No Experimental Analytical  
ω  ω  % difference 

1 398.438 419.963 5.40 
2 569.688 563.438 -1.09 
3 817.469 860.662 5.2 

Table 3.4: Comparison between Experimental and Analytical results of Carbon fiber 
composites where, the SMA wires in straight orientation are activated. 
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Figure (3.10) shows the shift in the natural frequencies of the plate due to the activation of the 

wire in zigzag configuration. The corresponding values for the zigzag orientation are shown 

in Tables (3.5) & (3.6) and the comparison between the experimental and analytical values 

are shown in Table (3.7). 

 
Figure 3.10: Plots of the response of the carbon fiber plate before and after actuation of 

SMA wires placed in Zigzag orientation. 
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S. No Experimental 
ω before activation ω after activation % change 

1 303.125 295.938 -2.37097 
2 412.969 406.719 -1.51343 
3 724.531 717.344 -0.99195 

Table 3.5: Experimental results of Carbon fiber composites with SMA in Zigzag 
orientation. 

S. No Analytical 
ω before activation ω after activation % change 

1 354.1872966 360.8557681 1.882753 
2 475.1917858 496.8088893 4.549132 
3 725.8666473 729.9676982 0.564987 

Table 3.6: Analytical results of Carbon fiber composites with SMA in Zigzag 
orientation. 

S. No Experimental Analytical  
ω ω % difference 

1 303.125 354.187 1.883 
2 536.406 475.192 0.252 
3 724.531 725.867 0.565 

Table 3.7: Comparison between Experimental and Analytical results of Carbon fiber 
composites where, the SMA wires in Zigzag orientation are not activated. 

In comparison to the straight SMA configuration, it was surprising that the natural frequency 

shift was not more significant for the zigzag configuration. In Tables 3.2–3.7 above, only the 

first three modes are compared because it was considered that the other modes were not 

considered significant from energy and prospective applications perspectives. A prospective 

application area is in the flutter suppression of aerodynamic structures where a shift in the 

natural frequencies might attenuate the amplitudes of vibration. Other application areas 

include active vibration of low frequency (<5 Hz) structures such as in slow turning wind 

turbine blades. However, as seen in Figures (3.9) and (3.10), the most significant shift, 

relatively, in frequencies for both the configurations in this study, occurred at the 4th mode 

and higher. 

There are a few interesting findings from the experiments. Firstly it is noted that for both the 

straight and zigzag SMA configurations, the post-activation plate natural frequencies are 

affected only a little and is reduced slightly. This might be accounted for by the fact that the 

SMA’s contract on activation and when anchored to a plate that might have a slightly 

fabrication-induced tensile strain, the effective stiffness of the plate will drop as evidenced in 

these plots. Secondly, it seemed that the straight SMA configuration induced a higher plate 

stiffness compared to that from the zigzag configuration which is almost contrary to 

expectations, at least from, strain energy considerations since the zigzag configuration has 
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more spatial coverage. Also, from Tables 3.4 & 3.7 it is clear that the analytical modelling of 

this actuation process matches the experimental findings well for both the straight and zigzag 

SMA configurations [72]. 

3.4. Summary 
The effect of various configurations of surface mounted SMA wires on a composite strip is 

presented in this chapter. Detailed mathematical modelling based on various theories and 

relations incorporating motion and strain energy of the materials were used. The effect of 

tensioning the SMA wires on the natural frequencies of the strip is obtained analytically and 

experimentally. A good match is observed between the analytical and experimental results.  

The same theories and approach will be used in mathematical modelling the beam flutter 

control using piezoelectric wafers. However, the solution will be obtained numerically by 

using the Finite Element method.  
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Chapter 4. AEROELASTIC STRUCTURES INCORPORATING 

PIEZOELECTRIC WAFERS 

4.1. Problem Statement 
The aeroelasticity of the structures, such as bridges and aircraft wings, are traditionally 

treated as dynamic problems rather than structural dynamics where the point-mass modelling 

method is used for the analysis. In this chapter, a solid mechanic based formulation of a 

bending-torsion structure problem incorporating piezoelectric patches is derived. The 

formulation enables the piezoelectric patches to be oriented (skewed) in different angles 

relative to the host structure. 

4.2. Mathematical Model 
A simple model is used in aeroelasticity problems analysis. This model is known as Typical 

Section. As in Figure 4.1, the typical section is a system of rigid, flat plate airfoil mounted on 

a torsional and flexural springs to wind tunnel walls [45].  

 
Figure 4.1: Typical section airfoil. 

This model helped in determining the basic aeroelasticity design criteria such as wing flutter 

speed, wing divergence speed, reversal of control surface and gust response. However, since 

the aeroelasticity is a function of the span-wise aeroloading and mass distribution a 3D 

model, as shown in Figure 4.2, is used to account for it. For small twist angle (1 >> ן) the 

cantilevered wing displacement “h” in the Z-axis consists of two displacements; translational 

(also known as plunge and flap) displacement “w” and torsional (also known as pitch) 

displacement “yן”. So Eqn. (3.4) can be written as: 
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,ݔሺݑ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݑ  ,ݕ ሻݐ െ ݖ డ௪
డ௬

                              (4.1a) 

,ݔሺݒ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݒ ,ݕ ሻݐ െ ݖ డ௪
డ௬
                                (4.1b) 

,ݔሺݓ ,ݕ ,ݖ ሻݐ ൌ ݄ሺݔ, ,ݕ ሻݐ ൅ ,ݔሺߙ ݕ ,ݕ  ሻ                        (4.1c)ݐ

Substituting Eqn. (4.1) into Von Kármán strains of Eqn. ሺ3.8ሻ; 

 
Figure 4.2: 3D Model of cantilevered wing. 
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(4.2) 

4.2.1. Equations of Motion 
As in chapter 3, the governing equations of motion for the flutter problem is obtained by 

applying the Hamilton’s principle as in Eqn. (3.27); 

׬ ሺܷߜ ൅ ܸߜ െ ஋ݐሻ݀ܭߜ
଴ ൌ 0                                       (4.3) 

Taking the variation “δ ” of the strains in Eqn. (4.2) and putting it in the form of Eqn. (3.9); 
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Since (ߛ௫௬ = 2ߝ௫௬), substituting Eqn’s (4.4) to (4.9) in Eqn. (3.33) the Strain Energy is: 
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൅ ଶݕ డఈ

డ௫
 డఋఈ
డ௬

൅ ଶݕ డఈ
డ௬
 డఋఈ
డ௫ ቁ െ

௫௬ܯ2 ቀ
డమఋ௛
డ௫డ௬

൅ డఋఈ
డ௫

൅ ݕ డమఋఈ
డ௫డ௬

ቁቃ  (4.10)                                                                          ݕ݀ݔ݀

Let; 

଴ܻ, ଵܻ,    ଴ܻ ൌ ׬ ሺ1, ,ݕ ௖௛௢௥ௗݕଶሻ݀ݕ                                (4.11) 

Eqn. (4.10) can be rewritten as; 

ܷߜ ൌ

׬ ቄ ௫ܰ௫ ቂ ଴ܻ ቀ
డఋ௨బ
డ௫

൅ డ௛
డ௫

డఋ௛
డ௫
ቁ ൅ ଵܻ ቀ

డఋ௛
డ௫

డఈ
డ௫
൅ డ௛

డ௫
డఋఈ
డ௫
ቁ ൅ ଶܻ

డఈ
డ௫

డఋ௫
డ௫
ቃെܯ௫௫ ቀ ଴ܻ

డమఋ௛
డ௫మ

൅௟
଴

ଵܻ
డమఋఈ
డ௫మ

ቁ െ ௬௬ܯ ቂ ଴ܻ ቀ
డమఋ௛
డ௬మ

൅ 2 డఋఈ
డ௬
ቁ ൅ ଵܻ

డమఋఈ
డ௬మ

ቃ െ ௫௬ܯ2 ቂ ଴ܻ ቀ
డమఋ௛
డ௫డ௬

൅ డఋఈ
డ௫
ቁ ൅

ଵܻ
డమఋఈ
డ௫డ௬

ቃ൅ ௬ܰ௬ ቂ ଴ܻ ቀ
డఋణబ
డ௬

൅ డ௛
డ௬

డఋ௛
డ௬

൅ డ௛
డ௬
ߙߜ ൅ ߙ డఋ௛

డ௬
൅ ቁߙߜߙ ൅ ଵܻ ቀ

డ௛
డ௬

డఋఈ
డ௬

൅

డఈ
డ௬

డఋ௛
డ௬

൅ ߙ డఋఈ
డ௬

൅ డఈ
డ௬
ቁߙߜ  ൅ ଶܻ

డఋఈ
డ௬

డఈ
డ௬ቃ൅ ௫ܰ௬ ቂ ଴ܻ ቀ

డఋ௨బ
డ௬

൅ డఋణబ
డ௫

൅ డ௛
డ௬

డఋ௛
డ௫

൅

డ௛
డ௫

డఋ௛
డ௬

൅ డ௛
డ௫
ߙߜ ൅ ߙ డఋ௛

డ௬ ቁ ൅ ଵܻ ቀ
డఈ
డ௬
 డఋ௛
డ௫

൅ డ௛
డ௫
 డఋఈ
డ௬

൅ డ௛
డ௬

డఋఈ
డ௫

൅ డఈ
డ௫
 డఋ௛
డ௬

൅ డఈ
డ௫
ߙߜ ൅

ߙ డఋఈ
డ௬ ቁ ൅ ଶܻ ቀ

డఈ
డ௫
 డఋఈ
డ௬

൅ డఈ
డ௬
 డఋఈ
డ௫
ቁቃቅ  (4.12)                                                                        ݔ݀

For the Kinetic Energy Eqn. (3.37) can be written as; 

ܭ ൌ ׬ ଵ
ଶ௩బ
ሶݑ଴൫ߩ ଶ ൅ ሶଶߴ ൅ ሶݓ ଶ൯݀(4.13)                            ݕ݀ݔ݀ݖ 

Taking the variation of Eqn. (4.13); 
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ܭߜ ൌ ׬ ଵ
ଶ௩బ
ሶݑߜ଴൫ߩ ଶ ൅ ߜ ሶଶߴ ൅ ሶݓߜ ଶ൯݀(4.14)                              ݕ݀ݔ݀ݖ 

By substituting Eqn. (4.1c) in Eqns. (4.1a & 4.1b); 

ݑ ൌ ଴ݑ െ ݖ ൬
߲݄
ݔ߲ ൅ ݕ

ߙ߲
 ൰ݔ߲

ߴ ൌ ଴ߴ െ ݖ ൬
߲݄
ݕ߲ ൅ ߙ ൅ ݕ

ߙ߲
 ൰ݕ߲

ݓ ൌ ݄ ൅  (4.15)                                           ߙݕ

By differentiating Eqn. (4.15) the displacement velocities are; 

ሶݑ ൌ ሶݑ ଴ െ ݖ ቆ
߲ ሶ݄
ݔ߲ ൅ ݕ

ሶߙ߲
 ቇݔ߲

ሶߴ ൌ ሶ଴ߴ െ ݖ ቆ
߲ ሶ݄
ݔ߲ ൅ ሶߙ ൅ ݕ

ሶߙ߲
 ቇݕ߲

ሶݓ ൌ ሶ݄ ൅ ሶߙݕ                                       (4.16) 

Taking the variation “ߜ “ of the square velocities in Eqn. (4.16); 

ሶݑߜ ଶ ൌ ߜ ቈݑሶ ଴ െ ݖ ቆ
߲ ሶ݄
ݔ߲ ൅ ݕ

ሶߙ߲
ቇ቉ݔ߲

ଶ

 

ሶݑߜ ଶ ൌ 2 ቀݑሶ ଴ െ ݖ డ௛
ሶ

డ௫
െ ݕݖ డఈሶ

డ௫
ቁ ቀݑߜሶ ଴ െ ݖ డఋ௛

ሶ

డ௫
െ ݕݖ డఋఈሶ

డ௫
ቁ           (4.17a) 

ߜ ሶଶߴ ൌ ߜ ቈ ሶ଴ߴ െ ܼ ቆ
߲ ሶ݄
ݔ߲ ൅ ሶߙ ൅ ݕ

ሶߙ߲
ቇ቉ݕ߲

ଶ

 

ߜ ሶଶߴ ൌ 2 ቀ ሶ଴ߴ െ ݖ డ௛
ሶ

డ௬
െ ሶߙݖ െ ݕݖ డఈሶ

డ௬
ቁ ቀߜ ሶ଴ߴ െ ݖ డ௛

ሶ

డ௬
െ ሶߙݖ െ ݕݖ డఈሶ

డ௬
ቁ  (4.17b) 

ሶݓߜ ଶ ൌ ൫ߜ  ሶ݄ ൅ ሶߙݕ ൯
ଶ
 

ሶݓߜ ଶ ൌ 2൫ ሶ݄ ൅ ሶߙݕ ൯൫ߜ ሶ݄ ൅ ሶߙߜݕ ൯                       (4.17c) 
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Substituting Eqn. (4.17 in Eqn. (4.14); 

ܭߜ ൌ ׬ ଵ
ଶ௩బ
଴ߩ ቂ2 ቀݑሶ ଴ െ ݖ డ௛

ሶ

డ௫
െ ݕݖ డఈሶ

డ௫
ቁ ቀݑߜሶ ଴ െ ݖ డఋ௛

ሶ

డ௫
െ ݕݖ డఋఈሶ

డ௫
ቁ ൅ 2 ቀ ሶ଴ߴ െ ݖ డ௛

ሶ

డ௬
െ

ሶߙݖ െ ݕݖ డఈሶ
డ௬
ቁ ቀߜ ሶ଴ߴ െ ݖ డఋ௛

ሶ

డ௬
െ ݕݖ డఋఈሶ

డ௬
ቁ ൅ 2 ൫ ሶ݄ ൅ ሶߙݕ ൯൫ߜ ሶ݄ ൅ ሶߙߜݕ ൯ቃ ݖ݀ݕ݀ݔ݀                        

(4.18) 

 

ܭߜ ൌ ׬ ଴ߩ ቂݑሶ ଴ݑߜሶ ଴ െ ሶݑ ଴ܼ
డఋ௛ሶ

డ௫
െ ଴ሶݑ ݕݖ

డఋఈሶ
డ௫

െ ݖ డ௛
ሶ

డ௫
ሶݑߜ ଴ ൅ ଶݖ డ௛

ሶ

డ௫
డఋ௛ሶ

డ௫
൅׊

ݕଶݖ డ௛ሶ

డ௫
డఋఈሶ
డ௫

െ ݕݖ డఈሶ
డ௫
ሶݑߜ ଴ ൅ ݕଶݖ డఈሶ

డ௫
డఋ௛ሶ

డ௫
൅ ଶݕଶݖ డఈሶ

డ௫
డఋఈሶ
డ௫

െ ߜ ሶߴ ሶ଴ߴ െ ݖሶ଴ߴ
డఋ௛ሶ

డ௬
െ

ሶߙߜݖሶ଴ߴ െ ݕݖሶ଴ߴ
డఋఈሶ
డ௬

െ ݖ డ௛
ሶ

డ௫
ߜ ሶ଴ߴ ൅ ଶݖ డ௛

ሶ

డ௬
డఋ௛ሶ

డ௬
൅ ݖଶ డ௛

ሶ

డ௬
ሶߙߜ ൅ ݕଶݖ డ௛ሶ

డ௬
డఋఈሶ
డ௬

െ ߜሶߙݖ ሶ଴ߴ ൅

ሶߙଶݖ డఋ௛
ሶ

డ௬
൅ ሶߙߜሶߙଶݖ ൅ ሶߙݕଶݖ డఋఈሶ

డ௬
െ ݕݖ డఈሶ

డ௬
ߜ ሶ଴ߴ ൅ ݕଶݖ డఈሶ

డ௬
డఋ௛ሶ

డ௬
൅ ݕଶݖ డఈሶ

డ௬
ሶߙߜ ൅

ଶݕଶݖ డఈሶ
డ௬

డఋఈሶ
డ௬

൅ ሶ݄ ߜ  ሶ݄ ൅ ݕ ሶ݄ ሶߙߜ ൅ ߜሶߙݕ ሶ݄ ൅ ሶߙߜሶߙଶݕ ቃ     ݖ݀ݕ݀ݔ݀

(4.19)                        

Let; 

,଴଴ܫ ,଴ଵܫ ଴ଶܫ ൌ න ,଴ሺ1ߩ ,ݕ ݖ݀ݕଶሻ݀ݕ
׊

 

,ଵ଴ܫ ,ଵଵܫ ଵଶܫ ൌ න ,଴ሺ1ߩ ,ݕ  ݖ݀ݕ݀ݖଶሻݕ
׊

 

,ଶ଴ܫ ,ଶଵܫ  ଶଶܫ ൌ න ,଴ሺ1ߩ ,ݕ  ݖ݀ݕଶ݀ݖଶሻݕ
׊

 

 (4.20) 

Using Eqn. (4.20) in Eqn. (4.19); 

ܭߜ ൌ

׬ ቂܫ଴଴൫ݑሶ ଴ݑߜሶ ଴ ൅ ߜሶߴ ሶ଴ߴ ൅ ሶ݄ ߜ ሶ݄ ൯൅ܫ଴ଵ൫ ሶ݄ ሶߙߜ ൅ ߜሶߙ ሶ݄ ൯൅ܫ଴ଶߙሶߙߜ ሶ െܫଵ଴ ቀݑሶ ଴
డఋ௛ሶ

డ௫
൅ℓ

଴
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డ௛ሶ

డ௫
ሶݑߜ ଴ ൅ ሶ଴ߴ

డఋ௛ሶ

డ௬
൅ ሶߙߜሶ଴ߴ ൅

డ௛ሶ

డ௬
ߜ ሶߴ ൅ ߜሶߙ ሶቁߴ െܫଵଵ ቀݑሶ ଴

డఋఈሶ
డ௫

൅ డఈሶ
డ௫
ሶݑߜ ଴ ൅ ሶ଴ߴ

డఋఈሶ
డ௬

൅

డఈሶ
డ௬
ߜ ሶቁߴ ൅ܫଶ଴ ቀ

డ௛ሶ

డ௫
డఋ௛ሶ

డ௫
൅ డ௛ሶ

డ௬
డఋ௛ሶ

డ௬
൅ డ௛ሶ

డ௬
ሶߙߜ ൅ ሶߙ డఋ௛

ሶ

డ௬
൅ ሶߙߜሶߙ ቁ൅ܫଶଵ ቀ

డ௛ሶ

డ௫
డఋఈሶ
డ௫

൅ డఈሶ
డ௫

డఋ௛ሶ

డ௫
൅

డ௛ሶ

డ௬
డఋఈሶ
డ௬

൅ ሶߙ డఋఈሶ
డ௬

൅ డఈ
డ௬

డఋ௛ሶ

డ௬
൅ డఈሶ

డ௬
ሶߙߜ ቁ൅ܫଶଶ ቀ

డఈሶ
డ௫

డఋఈሶ
డ௫

൅ డఈሶ
డ௬

డఋఈሶ
డ௬
ቁቃ ݔ݀                                                            

(4.21) 

For the work done by external applied forces and moments (lift and pitching moment) as 

shown in Figure (4.3) can be written as; 

 
Figure 4.3: External applied (Lift) forces. 

ܸ ൌ െ׬ ׊  ݓ ݕ݀ݔ݀  ݌                                       (4.22) 

ܸ ൌ െන  න݌  ሺ݄ ൅ ݔ݀ݕሻ݀ߙݕ
௖

଴

ℓ

଴

 

ܸ ൌ െන  නሺ݄݌ ൅ ݕ݌
௖

଴

ℓ

଴

 ݔ݀ݕሻ݀ߙ

ܸ ൌ െන  ቌනݕ݀ ݄ ݌ ൅ නߙ ݕ݀ ݕ ݌ 
௖

଴

௖

଴

ቍ
ℓ

଴

 ݔ݀

 

ܸ ൌ െ׬  ሺ ݄ܮ ൅ℓ
଴  (4.23)                               ݔ݀ ሻߙ௬ܯ

Taking the variation; 

ܸߜ ൌ െ׬  ሺ ݄ߜܮ ൅ℓ
଴  (4.24)                       ݔ݀ ሻߙߜ௬ܯ



69 
 

Substituting Eqns. (4.12), (4.21) & (4.24) in Eqn. (4.3), integrating by parts and setting the 

coefficients of ݑߜ଴, ,଴ߴߜ -separately to zero, the Equations of Motion (Euler  ߙߜ & ݄ߜ

Lagrange) are: 

଴ݑߜ   ฺ    െ  ଴ܻ ቀ
డேೣೣ
డ௫

൅ డேೣ೤
డ௬

ቁ ൅ ܫ଴଴ ݑሷ ଴ െ ଵ଴ܫ   
డ௛ሷ

డ௫
െ ଵଵܫ  

డఈሷ
డ௫
 ൌ 0                     

   (4.25) 

଴ߴߜ ฺ    െ ܻ0 ቀ
ݕݕ߲ܰ
ݕ߲

൅
ݕݔ߲ܰ
ݔ߲
ቁ ൅    00ܫ ሷߴ 0 െ    10ሺܫ

߲ ሷ݄
ݕ߲
൅ ሷߙ ሻ െ 11ܫ  

ሷߙ߲
ݔ߲
  ൌ 0              

(4.26) 

 

݄ߜ ฺ      െ  ଴ܻ ቀ
డమெೣೣ
డ௫మ

൅ డమெ೤೤

డ௬మ
൅ 2 డమெೣ೤

డ௫డ௬
ቁ െ  డ

డ௫
ቂ ଴ܻ ቀ ௫ܰ௫

డ௛
డ௫
൅ ௫ܰ௬

డ௛
డ௬
൅

௫ܰ௬ߙቁ ൅ ଵܻ ቀ ௫ܰ௫
డఈ
డ௫
൅ ௫ܰ௬

డఈ
డ௬
ቁቃ െ  డడ௬ ቂ ଴ܻ ቀ ௬ܰ௬

డ௛
డ௬
൅ ߙ ௬ܰ௬ ൅ ௫ܰ௬

డ௛
డ௫
ቁ ൅

ଵܻ ቀ ௬ܰ௬
డఈ
డ௬
൅ ௫ܰ௬

డఈ
డ௫
ቁቃ൅ܫ଴଴  ሷ݄ െ   ሷߙ଴ଵܫ ൅  ଵ଴ሺܫ

డ௨ሷ బ
డ௫

൅ డణሷ బ
డ௬
ሻെܫଶ଴ ቀ

డమ௛ሷ

డ௫మ
൅ డమ௛ሷ

డ௬మ
൅

డఈሷ
డ௬
ቁ െܫଶଵ ቀ

డమఈሷ
డ௫మ

൅ డమఈሷ
డ௬మ

ቁ – ܮ ൌ 0                  

(4.27) 

 

ߙߜ ฺ      ଴ܻ ቀ2
ெ೤೤

డ௬
൅ ௬ܰ௬

డ௛
డ௬
൅ ௬ܰ௬ߙ ൅ ௫ܰ௬

డ௛
డ௫
 ൅ 2 డெೣ೤

డ௫
ቁ൅ ଵܻ ቀ ௬ܰ௬

డఈ
డ௬
െ

డమெೣೣ
డ௫మ

െ డమெ೤೤

డ௬మ
൅ ௫ܰ௬  

డఈ
డ௫
െ 2 డమெೣ೤

డ௫డ௬
ቁ െ  డ

డ௫
ቂ ଵܻ ቀ ௫ܰ௫

డ௛
డ௫
൅ ௫ܰ௬

డ௛
డ௬
൅

ߙ ௫ܰ௬ቁ ൅ ଶܻ ቀ ௫ܰ௫
డఈ
డ௫
൅ ௫ܰ௬

డఈ
డ௬
ቁቃ െ  డడ௬ ቂ ଵܻ ቀ ௬ܰ௬

డ௛
డ௬
൅ ߙ ௬ܰ௬ ൅ ௫ܰ௬

డ௛
డ௫
ቁ ൅

ଶܻ ቀ ݕݕܰ
డఈ
డ௬
൅ ௫ܰ௬

డఈ
డ௫
ቁቃ൅ܫ଴ଵ  ሷ݄ െ   ሷߙ଴ଶܫ ൅ ଵ଴ܫ ቂ

డ௨ሷ బ
డ௫

െ ሷ଴ቃߴ ൅

ଵଵܫ
డణሷ బ
డ௬

 ൅ܫଶ଴ ቀߙሷ ൅
డ௛ሷ

డ௬
ቁ െܫଶଵ ቀ

డమ௛ሷ

డ௫మ
൅ డమ௛ሷ

డ௬మ
ቁ െܫଶଶ

డమఈሷ
డ௫మ

ܯ–  ൌ 0     (4.28) 

 

 

4.3. Uniform Beam Wing Model 
To model the bending-torsion motion of a uniform cantilever beam wing the following 

assumptions are considered: 
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• Bending and twisting displacements are only functions of span-wise distance and 

time; ݄ሺݔ, ,ݔሺߙ &ሻݐ  ,ሻ, thereforeݐ

߲݄
ݕ߲ ൌ

߲ଶ݄
ଶݕ߲ ൌ

ߙ߲
ݕ߲ ൌ

߲ଶߙ
ଶݕ߲ ൌ 0 

• To account for the actions of the piezoelectric actuators in both X and Y directions the 

following forces and moments (as shown in Figure 4.4) are considered: 

௫ܰ௫, ௬ܰ௬, ௫ܰ௬,ܯ௫௫,ܯ௬௬ & ܯ௫௬ 

• The in-plan displacements are neglected; ݑ଴ ൌ ଴ߴ ؆ 0, therefore, only Eqns. (4.27) 

and (4.28) are used. 

• For linear analysis Eqns. (4.27) and (4.28) are solved separately. 

 
Figure 4.4: Forces and Moments on a beam element. 

Using these assumptions, Eqns. (4.27) and (4.28) can be reduced to: 

െ  ଴ܻ ቀ
డమெೣೣ
డ௫మ

൅ డమெ೤೤

డ௬మ
൅ 2 డమெೣ೤

డ௫డ௬
ቁ െ  ௫ܰ௫ ቀ ଴ܻ

డమ௛
డ௫మ

൅ ଵܻ
డమఈ
డ௫మ

ቁ െ ଴ܻ ௫ܰ௬
డఈ
డ௫
൅ܫ଴଴  ሷ݄ െ

ଶ଴ܫሷെߙ଴ଵܫ 
డమ௛ሷ

డ௫మ
 െܫଶଵ

డమఈሷ
డ௫మ

 – ܮ ൌ 0                                   

(4.29) 

2 ଴ܻ ቀ
డெ೤೤

డ௬
൅ డெೣ೤

డ௫
ቁെ ଵܻ ቀ

డమெೣೣ
డ௫మ

൅ డమெ೤೤

డ௬మ
൅ 2 డమெೣ೤

డ௫డ௬
ቁ െ  ௫ܰ௫ ቀ ଵܻ

డమ௛
డ௫మ

൅ ଶܻ
డమఈ
డ௫మ

ቁ ൅

  ଴ܻߙ ௬ܰ௬ െ ଴ܻ ௫ܰ௬
డ௛
డ௫
൅ܫ଴ଵ  ሷ݄ ൅ ሺ ܫ଴ଶ൅ܫଶ଴ሻߙሷ  െܫଶଵ

డమ௛ሷ

డ௫మ
 െܫଶଶ

డమఈሷ
డ௫మ

ܯ–  ൌ 0                                           
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(4.30) 

For piezoelectric layers, as in Eqn. (2.2), the piezoelectric effects are added to Eqns. (3.19) 

and (3.21) [69];  

ቐ
௫ܰ௫

௬ܰ௬

௫ܰ௬

ቑ ൌ ൥
ଵଵܣ ଵଶܣ ଵ଺ܣ
ଵଶܣ ଶଶܣ ଶ଺ܣ
ଵ଺ܣ ଶ଺ܣ ଺଺ܣ

൩ ቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൅ ൥

ଵଵܤ ଵଶܤ ଵ଺ܤ
ଵଶܤ ଶଶܤ ଶ଺ܤ
ଵ଺ܤ ଶ଺ܤ ଺଺ܤ

൩ ቐ
௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑ െ ሼܰ௉ሽ    (4.31) 

ቐ
௫௫ܯ
௬௬ܯ
௫௬ܯ

ቑ ൌ ൥
ଵଵܤ ଵଶܤ ଵ଺ܤ
ଵଶܤ ଶଶܤ ଶ଺ܤ
ଵ଺ܤ ଶ଺ܤ ଺଺ܤ

൩ ቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൅ ൥

ଵଵܦ ଵଶܦ ଵ଺ܦ
ଵଶܦ ଶଶܦ ଶ଺ܦ
ଵ଺ܦ ଶ଺ܦ ଺଺ܦ

൩ ቐ
௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑ െ ሼܯ௉ሽ    (4.32) 

And in a combined matrix form: 

൜ሼܰሽሼܯሽൠ ൌ ൤ሾܣሿ ሾܤሿ
ሾܤሿ ሾܦሿ൨ ൜

ሼߝ଴ሽ
ሼߝଵሽ

ൠ െ ൜ሼܰ
௉ሽ

ሼܯ௉ሽൠ                               (4.33) 

Where, 

ሼܰ௉ሽ ൌ ቎
௫ܰ
௉

௬ܰ
௉

௫ܰ௬
௉
቏ ൌ ∑ ׬ ൥

Ղതଷଵ
Ղതଷଶ
Ղതଷ଺

൩
௞

ॱଷ݀ݖ
௭ೖశభ
௭ೖ

௡
௞ୀଵ                    (4.34) 

ሼܯ௉ሽ ൌ ቎
௫ܯ
௉

௬ܯ
௉

௫௬ܯ
௉
቏ ൌ ∑ ׬ ൥

Ղതଷଵ
Ղതଷଶ
Ղതଷ଺

൩
௞

ॱଷ ݖ݀ ݖ
௭ೖశభ
௭ೖ

௡
௞ୀଵ                  (4.35) 

Here the piezoelectric stress coefficient Ղ is related to the strain coefficient ݀ as follows [74], 

[75]; 

൥
Ղതଷଵ
Ղതଷଶ
Ղതଷ଺

൩
௞

ൌ ቎
തܳଵଵ തܳଵଶ തܳଵ଺
തܳଵଶ തܳଶଶ തܳଶ଺
തܳଵ଺ തܳଶ଺ തܳ଺଺

቏

௞

቎
ҧ݀ଷଵ
ҧ݀ଷଶ
ҧ݀ଷ଺
቏

௞

                        (4.36) 

and,  
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቎
ҧ݀ଷଵ
ҧ݀ଷଶ
ҧ݀ଷ଺
቏

௞

ൌ ቎
݀ଷଵܿݏ݋ଶߠ ൅ ݀ଷଶ݊݅ݏଶߠ
݀ଷଵ݊݅ݏଶߠ ൅ ݀ଷଶܿݏ݋ଶߠ
ሺ݀ଷଵ െ ݀ଷଶሻܿߠ݊݅ݏߠݏ݋

቏                         (4.37) 

And writing the membrane strains (ࢿ଴) and the curvatures flexural/bending strains (ࢿଵ) in 

Eqn. (4.2) in matrix form as in Eqn. (3.11); 

ቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൌ

ە
ۖ
۔

ۖ
ۓ

1

2
ቀ߲݄
ݔ߲
൅ ݕ

ߙ߲

ݔ߲
ቁ
2

1

2
ቀ߲݄
ݕ߲
൅ ߙ ൅ ݕ

ߙ߲

ݕ߲
ቁ
2

ቀడ௛
డ௫
൅ ݕ డఈ

డ௬
ቁ ቀడ௛

డ௬
൅ ߙ ൅ ݕ డఈ

డ௬
ቁۙ
ۖ
ۘ

ۖ
ۗ

                (4.38a) 

   ቐ
௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑ ൌ

ە
ۖ
۔

ۖ
ۓ െቀ߲

2݄

2ݔ߲
൅ ݕ

ߙ2߲

2ݔ߲
ቁ

െ ቀ߲
2݄

2ݕ߲
൅ 2

ߙ߲

ݕ߲
൅ ݕ

ߙ2߲

2ݕ߲
ቁ

െ2 ቀ డమ௛
డ௫డ௬

൅ డఈ
డ௫
൅ ݕ డమఈ

డ௫డ௬
ቁۙ
ۖ
ۘ

ۖ
ۗ

ൌ 

ە
۔

ۓ െቀ߲
2݄

2ݔ߲
൅ ݕ

ߙ2߲

2ݔ߲
ቁ

0
െ2 ቀ డమ௛

డ௫డ௬
൅ డఈ

డ௫
൅ ݕ డమఈ

డ௫డ௬
ቁۙ
ۘ

ۗ
 (4.38b) 

With the assumption of     
డ௛
డ௫
, డఈ
డ௫
ൌ ܱ ሺ߳ሻ, this means that the terms of order Ԗ2 are 

negligible;   

ቀడ௛
డ௫
ቁ
ଶ
, ቀడఈ
డ௫
ቁ
ଶ
, డ௛
డ௫

డఈ
డ௫
    … . . ؆ 0                                 (4.39) 

Therefore, Eqns. (4.38) can be rewritten as; 

ቐ
௫௫଴ߝ

௬௬଴ߝ

௫௬଴ߛ
ቑ ൌ ൞

0
1

2
2ߙ

െ2 డఈ
డ௫

ൢ , and      ቐ
௫௫ଵߝ

௬௬ଵߝ

௫௬ଵߛ
ቑ ൌ ൞

െቀ߲
2݄

2ݔ߲
൅ ݕ

ߙ2߲

2ݔ߲
ቁ

0
െ2 డఈ

డ௫

ൢ               (4.40) 

The ሼܰሽ and ሼܯሽ for symmetrical laminated ሺܤ௜௝ ൌ 0ሻ cantilever beam wing are: 

௫ܰ௫ ൌ ଵଶܣ ቀ
ଵ
ଶ
ଶቁߙ ൅ ଵ଺ܣ ቀߙ

డ௛
డ௫
൅ ݕߙ డఈ

డ௫
ቁ െ ௫ܰ

௉                (4.41a) 

௬ܰ௬ ൌ ଶଶܣ ቀ
ଵ
ଶ
ଶቁߙ ൅ ଶ଺ܣ ቀߙ

డ௛
డ௫
൅ ݕߙ డఈ

డ௫
ቁ െ ௬ܰ

௉                (4.41a) 
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௫ܰ௬ ൌ ଶ଺ܣ ቀ
ଵ
ଶ
ଶቁߙ ൅ ଺଺ܣ ቀߙ

డ௛
డ௫
൅ ݕߙ డఈ

డ௫
ቁ െ ௫ܰ௬

௉                 (4.41a) 

And,  

௫௫ܯ ൌ െܦଵଵ ቀ
డమ௛
డ௫మ

൅ ݕ డమఈ
డ௫మ

ቁ െ ଵ଺ܦ2
డఈ
డ௫
െ ௫ܯ

௉                    (4.42a) 

௬௬ܯ ൌ െܦଵଶ ቀ
డమ௛
డ௫మ

൅ ݕ డమఈ
డ௫మ

ቁ െ ଶ଺ܦ2
డఈ
డ௫
െ ௬ܯ

௉                    (4.42a) 

௫௬ܯ ൌ െܦଵ଺ ቀ
డమ௛
డ௫మ

൅ ݕ డమఈ
డ௫మ

ቁ െ ଺଺ܦ2
డఈ
డ௫
െ ௫௬ܯ

௉                    (4.42a) 

 

For ሺߙ ا 1ሻ;  

,ଶߙ ߙ డఈ
డ௫
  , ߙ డ௛

డ௫
   … . . ؆ 0                                     (4.43) 

Eqns. (4.41) are reduced to: 

቎
௫ܰ௫

௬ܰ௬

௫ܰ௬

቏ ൌ

ۏ
ێ
ێ
ۍ െܰݔ

ܲ

െܰݕ
ܲ

െܰݕݔ
ܲ
ے
ۑ
ۑ
ې
                                              (4.44) 

Substituting Eqns. (4.42) and (4.44) in Eqn. (4.29); 

െ  ଴ܻ ቂ
డమ

డ௫మ
ቀെܦଵଵ

డమ௛
డ௫మ

െܦଵଵݕ
డమఈ
డ௫మ

െ ଵ଺ܦ2
డఈ
డ௫
െ ௫ܯ

௉ቁ ൅ డమ

డ௬మ
ቀെܦଵଶ

డమ௛
డ௫మ

െܦଵଶݕ
డమఈ
డ௫మ

െ

ଶ଺ܦ2
డఈ
డ௫
െ ௬ܯ

௉ቁ ൅ 2 డమ

డ௫డ௬
ቀെܦଵ଺

డమ௛
డ௫మ

െܦଵ଺ݕ
డమఈ
డ௫మ

െ ଺଺ܦ2
డఈ
డ௫
െ ௫௬ܯ

௉ ቁቃ ൅

  ௫ܰ
௉ሺ ଴ܻ

డమ௛
డ௫మ

൅ ଵܻ
డమఈ
డ௫మ

ሻ ൅ ଴ܻ ௫ܰ௬
௉ డఈ

డ௫
൅ܫ଴଴  ሷ݄ ൅   ଶ଴ܫሷെߙ଴ଵܫ

డమ௛ሷ

డ௫మ
  – ܮ ൌ 0  

(4.45) 

Differentiating and letting [ డ
డ௬
ሺܰ,ܯሻ ൌ 0], the equation of the bending motion “h” is: 
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଴ܻܦଵଵ
߲ସ݄
ସݔ߲

൅ ଵܻܦଵଵ
߲ସߙ
ସݔ߲

൅ 4 ଴ܻܦଵ଺
߲ଷߙ
ଷݔ߲

൅ ଴ܻ
߲ଶܯ௫

௉

ଶݔ߲
൅  ௫ܰ

௉ ቆ ଴ܻ
߲ଶ݄
ଶݔ߲

൅ ଵܻ
߲ଶߙ
ଶݔ߲

ቇ

൅ ଴ܻ ௫ܰ௬
௉ ߙ߲
ݔ߲

൅ܫ଴଴  ሷ݄ ൅   ଶ଴ܫሷെߙ଴ଵܫ
߲ଶ ሷ݄
ଶݔ߲

 െܫଶଵ
߲ଶߙሷ
ଶݔ߲

 – ܮ ൌ 0 

(4.46) 

The same procedure for Eqn. (4.30); 

െ ଵܻ ቂ
డమ

డ௫మ
ቀെܦଵଵ

డమ௛
డ௫మ

െܦଵଵݕ
డమఈ
డ௫మ

െ ଵ଺ܦ2
డఈ
డ௫
െ ௫ܯ

௉ቁ െ డమ

డ௬మ
ቀെܦଵଶ

డమ௛
డ௫మ

െ ݕଵଶܦ
డమఈ
డ௫మ

െ

ଶ଺ܦ2
డఈ
డ௫
െ ௬ܯ

௉ቁ ൅ 2 డమ

డ௫డ௬
ቀെܦଵ଺

డమ௛
డ௫మ

െ ݕଵ଺ܦ
డమఈ
డ௫మ

െ ଺଺ܦ2
డఈ
డ௫
െ ௫௬ܯ

௉ ቁቃ ൅

2 ଴ܻ ቂ
డ
డ௬
ቀെܦଵଶ

డమ௛
డ௫మ

െ ݕଵଶܦ
డమఈ
డ௫మ

െ ଶ଺ܦ2
డఈ
డ௫
െ ௬ܯ

௉ቁ ൅ డ
డ௫
ቀെܦଵ଺

డమ௛
డ௫మ

െ ݕଵ଺ܦ
డమఈ
డ௫మ

െ

଺଺ܦ2
డఈ
డ௫
െ ௫௬ܯ

௉ ቁቃ ൅ ௫ܰ
௉ ቀ ଵܻ

డమ௛
డ௫మ

൅ ଶܻ
డమఈ
డ௫మ

ቁ െ ଴ܻߙ ௬ܰ
௉ ൅ ଴ܻ ௫ܰ௬

௉ డ௛
డ௫
൅ܫ଴ଵ  ሷ݄ ൅

 ሺܫ଴ଶ ൅ܫଶ଴ሻߙሷ  െܫଶଵ
డమ௛ሷ

డ௫మ
 െܫଶଶ

డమఈሷ
డ௫మ

ܯ–  ൌ 0  

(4.47) 

And therefore, the equation of the torsional motion “α” is: 

ଵܻܦଵଵ
߲ସ݄
ସݔ߲

൅ ଶܻܦଵଵ
߲ସߙ
ସݔ߲

൅ ଵܻ
߲ଶܯ௫

௉

ଶݔ߲
െ 2 ଴ܻܦଵଶ

߲ଶߙ
ଶݔ߲

െ2 ଴ܻܦଵ଺
߲ଷ݄
ଷݔ߲

൅ 2 ଵܻܦଵ଺
߲ଷߙ
ଷݔ߲

െ4 ଴ܻܦ଺଺
߲ଶߙ
ଶݔ߲

െ2 ଴ܻ
௫௬ܯ߲

௉

ݔ߲
൅ ௫ܰ

௉ ቆ ଵܻ
߲ଶ݄
ଶݔ߲

൅ ଶܻ
߲ଶߙ
ଶݔ߲

ቇ

െ ଴ܻ ௬ܰ
௉ߙ൅ ଴ܻ ௫ܰ௬

௉ ߲݄
ݔ߲

൅ܫ଴ଵ  ሷ݄

൅   ሺܫ଴ଶ ൅ܫଶ଴ሻߙሷ  െܫଶଵ
߲ଶ ሷ݄
ଶݔ߲

 െܫଶଶ
߲ଶߙሷ
ଶݔ߲

ܯ–  ൌ 0 

(4.48) 
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4.4. Finite Element Model 
The derivation of finite element equations of a differential equation f (x, t) is done in three 

steps [76]; 

1. Development of the weighted-residual or weak form of the differential equation; 

which involves: 

a.  Constructing the Weighted-integral statement by multiplying the entire 

differential equation by weighted function v(x) and integrate it over the 

element length; ׬ ݂ሺݔ, .ሻݐ ௟ݔሻ݀ݔሺݒ
଴ ൌ 0, 

b. Shifting half of the derivatives from f  to v by integrating by parts,  

c. Imposing the problem actual boundary conditions. 

2. Assumption of the approximate solution, using the separation of variables technique, 

the differential equation is approximately equal to the summation of the multiplication 

of time dependent function f(t) by shape function v(x); 

݂ሺݔ, ሻݐ ൌ ∑ ௝݂
௘ሺݐሻ. ሻ௡ݔ௝௘ሺݒ

௝ୀଵ                                    (4.49) 

3. Substitution of the approximate solution to derive the finite element equations. 

Applying the previous steps on Eqn. (4.46); 

න ൭ܻ011ܦ
߲4݄
4ݔ߲ ݒ  ൅ 11ܦ1ܻ

ߙ4߲
4ݔ߲

ݒ  ൅ ܻ0
ݔܯ2߲

ܲ

2ݔ߲ ݒ  ൅ ݔ0ܻܰ
ܲ ߲

2݄
2ݔ߲ ݒ  ൅൅ܻ1ܰݔ

ܲ ߲
ߙ2
2ݔ߲ ݒ

௟

଴

൅ 16ܦ4ܻ0
ߙ3߲
3ݔ߲ ݒ  ൅ ݕݔ0ܻܰ

ܲ ߙ߲
ݔ߲ ൅ݒ ሷݒ ݄ 00ܫ

൅ ߙ01ܫሷ ݒ  െ 20ܫ
߲2 ሷ݄

2ݔ߲ ݒ   െ 21ܫ
ሷߙ2߲
2ݔ߲ ݒ ܮ–ݒ  

ቇ݀ݔ ൌ 0 

 (4.50) 

Integrating by parts; 
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න ൭ܻ011ܦ
߲2݄
2ݔ߲  

ݒ2߲
2ݔ߲ ൅ 11ܦ1ܻ

ߙ2߲
2ݔ߲

 ߲
ݒ2
2ݔ߲

൅ ܻ0
ݒ2߲
2ݔ߲ ݔܯ 

ܲ െ 2 ܻ0
ݒ߲
ݔ߲
߲݄
ݔܰ ݔ߲

ܲ
௟

଴

൅ 16ܦ4ܻ0
ݒ2߲
2ݔ߲

ߙ߲
ݔ߲  െ ߙ0ܻ

ݒ߲
ݕݔܰ ݔ߲

ܲ  ൅ݒ ݄ 00ܫሷ

൅ ߙ01ܫሷ ݒ  ൅ 20ܫ
߲ ሷ݄

  ݔ߲
ݒ߲
ݔ߲ ൅ ܫ

21

ሷߙ߲
  ݔ߲

ݒ߲
ݒ ܮ–ݔ߲

ቇ݀ݔ ൌ 0 

(4.51) 

The same for Eqn. (4.48); 

׬ ൬  ଵܻܦଵଵ
డర௛
డ௫ర

ݒ  ൅ ଶܻܦଵଵ
డరఈ
డ௫ర

ݒ  ൅ ଵܻ
డమெೣ

ು

డ௫మ
ݒ  െ 2 ଴ܻܦଵଶ

డమఈ
డ௫మ

ݒ  െ 2 ଴ܻܦଵ଺
డయ௛
డ௫య

ݒ  െ௟
଴

2 ଵܻܦଵ଺
డయఈ
డ௫య

ݒ  െ 4 ଴ܻܦ଺଺
డమఈ
డ௫మ

ݒ  െ 2 ଴ܻ
డெೣ೤

ು

డ௫
ݒ ൅ ଵܻ ௫ܰ

௉ డమ௛
డ௫మ

ݒ  ൅ ଶܻ ௫ܰ
௉ డమఈ
డ௫మ

ݒ െ

଴ܻ ௬ܰ
௉ݒ ߙ ൅ ଴ܻ ௫ܰ௬

௉ డ௛
డ௫
൅ ଴ଵܫ ሷ݄ ݒ  ൅

 ሺܫ଴ଶ ൅ܫଶ଴ሻߙሷ ݒ   െ ଶଵܫ
డమ௛ሷ

డ௫మ
ଶଶܫെݒ  

డమఈሷ
డ௫మ

ቁݒ ܯ–ݒ   ݔ݀ ൌ 0                                       (4.52) 

Integrating by parts; 

׬ ቀ ଵܻܦଵଵ
డమ௛
డ௫మ

డమ௩
డ௫మ

 ൅ ଶܻܦଵଵ
డమఈ
డ௫మ

డమ௩
డ௫మ

൅ ଵܻ
డమ௩
డ௫మ

௫ܯ 
௉ ൅ 2 ଴ܻܦଵଶ

డఈ
డ௫
 డ௩
డ௫
 ݄ ൅௟

଴

2 ଴ܻܦଵ଺
డమ௛
డ௫మ

 డ௩
డ௫
൅ 2 ଵܻܦଵ଺

డమఈ
డ௫మ

 డ௩
డ௫
൅ 4 ଴ܻܦ଺଺

డఈ
డ௫
 డ௩
డ௫
൅ 2 ଴ܻ

డ௩
డ௫
௫௬ܯ
௉ െ  ଵܻ

డ௩
డ௫

డ௛
డ௫
  ௫ܰ

௉ െ

ଶܻ ௫ܰ
௉ డఈ
డ௫

డ௩
డ௫
െ ଴ܻ  ௬ܰ

௉ݒ ߙ െ ଴ܻ݄ ௫ܰ௬
௉ డ௩

డ௫
൅ ଴ଵܫ ሷ݄  ݒ  ൅ ሺܫ଴ଶ ൅ܫଶ଴ሻߙሷ ݒ   ൅

ଶଵܫ
డ௛ሷ

డ௫
  డ௩
డ௫
൅ܫଶଶ

డఈሷ
డ௫
  డ௩
డ௫
ቁݒ ܯ– ݔ݀ ൌ 0                                                                        (4.53) 

Assume the approximate solutions as: 

݄ሺݔ, ሻݐ ؆ ∑ ௝݄
௘ሺݐሻ߰௝௘ሺݔሻ௡

௝ୀଵ                            (4.54) 

,ݔሺߙ ሻݐ ؆ ∑ ሻ௠ݔሻ߶௞௘ሺݐ௞௘ሺߙ
௞ୀଵ                           (4.55) 

And,                                               ݒሺݔሻ ൌ ߰௜௘ሺݔሻ,߶݈
݁ሺݔሻ                                      (4.56) 

Substituting (4.54), (4.55) and (4.56) in Eqn. (4.51); 
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׬ ൬∑ ଴ܻܦଵଵ
ௗమట೔

೐

ௗ௫మ
 
ௗమటೕ

೐

ௗ௫మ
௡
௝ୀଵ ௝݄

௘ሺݐሻ ൅ ∑ ଵܻܦଵଵ
ௗమథೖ

೐

ௗ௫మ
 ௗ

మట೔
೐

ௗ௫మ
௠
௞ୀଵ ሻݐ௞௘ሺߙ ൅

௟
଴

∑ 4 ଴ܻ16ܦ
ௗమట೔

೐

ௗ௫మ
ௗథೖ

೐

ௗ௫
ሻ௠ݐ௞௘ሺߙ 

௞ୀଵ ൅ ଴ܻ
ௗమట೔

೐

ௗ௫మ
௫ܯ 

௉ െ ∑ 2  ଴ܻ
ௗట೔

೐

ௗ௫

ௗటೕ
೐

ௗ௫
  ௝݄
௘ሺݐሻ ௫ܰ

௉௡
௝ୀଵ െ

∑ 2 ଴ܻ ௫ܰ௬
௉ ௗట೔

೐

ௗ௫
߶௞௘ߙ௞௘ሺݐሻ௠

௞ୀଵ  – ∑ 2 ଵܻ ௫ܰ
௉ ௗట೔

೐

ௗ௫
ௗథೖ

೐

ௗ௫
ሻ ௠ݐ௞௘ሺߙ

௞ୀଵ ൅

∑ ଴଴ ߰௜௘߰௝௘ܫ  ሷ݄௝௘ሺݐሻ௡
௝ୀଵ ൅ ∑ ଴ଵ߰௜௘߶௞௘௠ܫ

௞ୀଵ ሻݐሷ௞௘ሺߙ ൅ ∑ ଶ଴ܫ  
ௗట೔

೐

ௗ௫
 
ௗటೕ

೐

ௗ௫
ሷ݄௝௘ሺݐሻ௡

௝ୀଵ ൅

∑ ଶଵܫ
ௗట೔

೐

ௗ௫
ௗథೖ

೐

ௗ௫
ሻ௠ݐሷ௞௘ሺߙ

௞ୀଵ – ௜௘ቁ߰ ܮ ݔ݀ ൌ 0                                                                    (4.57) 

Rewrite Eqn. (4.57); 

0 ൌ

∑ ൫ܪܭ௜௝ െ ௜௝൯௡ܪܩ
௝ୀଵ ௝݄

௘ሺݐሻ ൅ ∑ ሺܽܭ௜௞ ൅ ௜௞ሻ௠ܽܩ
௞ୀଵ ሻݐ௞௘ሺߙ ൅ ∑ ௜௝௡݄݄ܯ

௝ୀଵ ሷ݄௝௘ሺݐሻ ൅

∑ ௜௞௠݄ܽܯ
௞ୀଵ ሻݐሷ௞௘ሺߙ ൅ ௜௘ܨ ൅ ௜௘݌݄ܨ                              

(4.58) 

Where, 

௜௝ܪܭ ൌ ׬ ଴ܻܦଵଵ
ௗమట೔

೐

ௗ௫మ
 
ௗమటೕ

೐

ௗ௫మ
௟ݔ݀ 

଴   

௜௝ܪܩ ൌ ׬ ଴ܻ ௫ܰ
௉ ௗట೔

೐

ௗ௫

ௗటೕ
೐

ௗ௫
௟ݔ݀ 

଴   

௜௞ܽܭ ൌ ׬ ቀ ଵܻܦଵଵ
ௗమథೖ

೐

ௗ௫మ
 ௗ

మట೔
೐

ௗ௫మ
൅ 4 ଴ܻܦଵ଺

ௗమట೔
೐

ௗ௫మ
ௗథೖ

೐

ௗ௫
ቁ ௟ݔ݀ 

଴   

௜௞ܽܩ ൌ ׬ ቀ ଴ܻ ௫ܰ௬
௉ ௗట೔

೐

ௗ௫
߶௞௘ ൅ ଵܻ ௫ܰ

௉ ௗట೔
೐

ௗ௫
ௗథೖ

೐

ௗ௫
ቁ ௟ݔ݀ 

଴   

௜௝݄݄ܯ ൌ ׬ ൬ ܫ଴଴ ߰௜௘߰௝௘ ൅ ଶ଴ܫ  
ௗట೔

೐

ௗ௫
 
ௗటೕ

೐

ௗ௫
൰ ௟ݔ݀ 

଴   

௜௞݄ܽܯ ൌ ׬ ቀܫ଴ଵ߰௜௘߶௞௘ ൅ ଶଵܫ
ௗట೔

೐

ௗ௫
ௗథೖ

೐

ௗ௫
ቁ ௟ݔ݀ 

଴   

௜௘ܨ ൌ ׬ – ݔ݀ ௜௘߰ ܮ
௟
଴       and,         ݌݄ܨ௜௘ ൌ ׬ ଴ܻ

ௗమట೔
೐

ௗ௫మ
௫ܯ 

௉ ݀ݔ௟
଴                     (4.59) 
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Substituting (4.54), (4.55) and (4.56) in Eqn. (4.53); 

׬ ൬∑ ଵܻܦଵଵ
ௗమటೕ

೐

ௗ௫మ
 ௗ

మథ೗
೐

ௗ௫మ ௝݄
௘ሺݐሻ ൅௡

௝ୀଵ ∑ ଶܻܦଵଵ
ௗమథೖ

೐

ௗ௫మ
 ௗ
మథ೗

೐

ௗ௫మ
ሻݐ௞௘ሺߙ ൅ ଵܻ

௠
௞ୀଵ

ௗమథ೗
೐

ௗ௫మ
௫ܯ 

௉ ൅௟
଴

∑ 2 ଴ܻܦଵଶ
ௗథ೗

೐

ௗ௫
ௗథೖ

೐

ௗ௫
௠
௞ୀଵ ሻݐ௞௘ሺߙ ൅ ∑ 2 ଴ܻܦଵ଺

ௗమటೕ
೐

ௗ௫మ
 ௗథೖ

೐

ௗ௫ ௝݄
௘ሺݐሻ௡

௝ୀଵ ൅

∑ 2 ଵܻܦଵ଺
ௗమథೖ

೐

ௗ௫మ
௠
௞ୀଵ

ௗథ೗
೐

ௗ௫
ሻݐ௞௘ሺߙ ൅ ∑ 4 ଴ܻܦ଺଺

ௗథೖ
೐

ௗ௫
௠
௞ୀଵ

ௗథ೗
೐

ௗ௫
ሻݐ௞௘ሺߙ ൅ 2 ଴ܻܯ௫௬

௉ ௗథ೗
೐

ௗ௫
െ

∑ ଵܻ ௫ܰ
௉ ௗథ೗

೐

ௗ௫

ௗటೕ
೐

ௗ௫
 ௡

௝ୀଵ ௝݄
௘ሺݐሻ െ ∑ ଶܻ ௫ܰ

௉ ௗథೖ
೐

ௗ௫
 ௗథ೗

೐

ௗ௫
ሻ௠ݐ௞௘ሺߙ

௞ୀଵ െ

∑ ଴ܻ ௬ܰ
௉߶௟௘߶௞௘ߙ௞௘ሺݐሻ௠

௞ୀଵ െ ∑ ଴ܻ ௫ܰ௬
௉ ௗథ೗

೐

ௗ௫
߰௜௘ ௝݄

௘ሺݐሻ௡
௝ୀଵ ൅ ∑ ଴ଵ ߶௟௘߰௝௘௡ܫ

௝ୀଵ ሷ݄௝௘ሺݐሻ ൅

 ∑ ሺܫ଴ଶ ൅ܫଶ଴ሻ௠
௞ୀଵ ߶௟௘߶௞௘ߙሷ௞௘ሺݐሻ ൅ ∑ ଶଵܫ

ௗథ೗
೐

ௗ௫
  
ௗటೕ

೐

ௗ௫
௡
௝ୀଵ ሷ݄௝௘ሺݐሻ ൅

∑ ଶଶܫ
ௗథ೗

೐

ௗ௫
  ௗథೖ

೐

ௗ௫
௠
௞ୀଵ ௟௘ቁ߶ ܯ–ሻݐሷ௞௘ሺߙ ݔ݀ ൌ 0                                                                    

(4.60) 

Rewrite Eqn. (4.60); 

0 ൌ ∑ ሺܣܬ௟௞ ൅ ௟௞ܣܭ െ ௟௞ሻ௠ܣܩ
௞ୀଵ ሻݐ௞௘ሺߙ ൅ ∑ ൫݄ܭ௟௝ െ ௟௝൯௡݄ܩ

௝ୀଵ ௝݄
௘ሺݐሻ ൅

∑ ௟௝௡݄ܽܯ
௝ୀଵ ሷ݄௝௘ሺݐሻ ൅ ∑ ௟௞௠ܽܽܯ

௞ୀଵ ሻݐሷ௞௘ሺߙ ൅ ௞௘ܽܨ ൅ ௞௘݌ܽܨ                                      (4.61) 

Where, 

௟௞ܣܬ ൌ ׬ 4 ଴ܻܦ଺଺
ௗథೖ

೐

ௗ௫
௟
଴

ௗథ೗
೐

ௗ௫
  ݔ݀

௟௞ܣܭ ൌ ׬ ቀ2 ଴ܻܦଵଶ
ௗథ೗

೐

ௗ௫
ௗథೖ

೐

ௗ௫
൅ 2 ଵܻܦଵ଺

ௗమథೖ
೐

ௗ௫మ
ௗథ೗

೐

ௗ௫
൅ ଶܻܦଵଵ

ௗమథೖ
೐

ௗ௫మ
 ௗ
మథ೗

೐

ௗ௫మ ଵ
ቁ௟

଴   ݔ݀

௟௞ܣܩ ൌ ׬ ቀ ଶܻ ௫ܰ
௉ ௗథೖ

೐

ௗ௫
 ௗథ೗

೐

ௗ௫
൅ ଴ܻ ௬ܰ

௉߶௜௘߶௞௘ቁ
௟
଴   ݔ݀

௟௝݄ܭ ൌ ׬ ൬2 ଴ܻܦଵ଺
ௗమటೕ

೐

ௗ௫మ
 ௗథ೗

೐

ௗ௫
൅ ଵܻܦଵଵ

ௗమటೕ
೐

ௗ௫మ
 ௗ

మథ೗
೐

ௗ௫మ
൰௟

଴   ݔ݀

௟௝݄ܩ ൌ ׬ ൬ ଴ܻ ௫ܰ௬
௉ ௗథ೗

೐

ௗ௫
߰௜௘ ൅ ଵܻ ௫ܰ

௉ ௗథ೗
೐

ௗ௫

ௗటೕ
೐

ௗ௫
൰௟

଴   ݔ݀
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௟௝݄ܽܯ ൌ ׬ ൬ܫ଴ଵ ߶௟௘߰௝௘ ൅ ଶଵܫ
ௗథ೗

೐

ௗ௫
  
ௗటೕ

೐

ௗ௫
൰௟

଴   ݔ݀

௟௞ܽܽܯ ൌ ׬ ቆሺܫ଴ଶ ൅ܫଶ଴ሻ߶௟௘߶௞௘ ൅ ଶଶܫ
ௗథ೗

೐

ௗ௫
  ௗథೖ

೐

ௗ௫
ቇ௟

଴   ݔ݀

௞௘ܽܨ ൌ ׬ ௜௘߶ ܯ–
௟
଴   ݔ݀

௞௘݌ܽܨ ൌ ׬ ቀ2 ଴ܻܯ௫௬
௉ ௗథ೗

೐

ௗ௫
൅ ଵܻ

ௗమథ೗
೐

ௗ௫మ
௫ܯ 

௉ቁ௟
଴  (4.62)                                                ݔ݀

4.4.1. Beam Element Characteristic Matrices and Vectors 
The wing element is shown in Figure 4.5. The element has two nodes and six degrees of 

freedom (three per node). The three nodal degrees of freedom are; translational (x1, x4), 

rotational/angular (x2, x5) and torsional (x3, x6) displacements. 

 
Figure 4.5: Nodal degrees of freedom. 

The characteristic matrices and vectors listed in Eqn’s (4.59 & 4.62) are evaluated by 
considering the Hermite Interpolation Functions [77, 78] as the shape functions of the 
translational and angular displacements; 

߰௜௘ሺݔሻ ൌ ݅ܪ
݁ሺݔሻ ൌ

ە
ۖۖ

۔

ۖۖ

1ۓ െ 3 ݔ
2

݈2
൅ 2 ݔ

3

݈3

ݔ െ 2 2ݔ

݈ ൅
3ݔ

݈2

3 ݔ
2

݈2
െ 2 ݔ

3

݈3

െ 2ݔ

݈ ൅
3ݔ

݈2 ۙ
ۖۖ

ۘ

ۖۖ

ۗ

                               (4.63) 

 and the interpolation function for the torsional displacement is given by [78]; 

 ߶݈
݁ሺݔሻ ൌ ൝

1 െ ݔ
݈

ݔ
݈

ൡ                                                 (4.64) 

 

Where, i, j = 1, 2, 4 & 5, and k, l = 3 & 6.  
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Applying Eqn’s (4.63 & 4.64) into Eqn’s (4.59 & 4.62) the characteristic matrices and 
vectors are; 

௜௝ܪܭ ൌ
௒బ஽భభ
௟య

቎
12 6݈
6݈ 4݈ଶ

െ12 6݈
െ6݈ 2݈ଶ

െ12 െ6݈
6݈ 2݈ଶ

12 െ6݈
െ6݈ 4݈ଶ

቏   

௜௝ܪܩ ൌ
௒బேೣ

೛

ଷ଴௟
቎
36 3݈
3݈ 4݈ଶ

െ36 3݈
െ3݈ െ݈ଶ

െ36 െ3݈
3݈ െ݈ଶ

36 െ3݈
െ3݈ 4݈ଶ

቏  

௜௞ܽܭ ൌ
16ܦ4ܻ0

݈
቎
0
1
0
െ1

0
െ1
0
1

቏   

௜௞ܽܩ ൌ
௒భேೣ

೛

௟
቎
1
0
െ1
0

െ1
0
1
0

቏ ൅
௒బேೣ೤

೛

ଵଶ
቎
െ6
݈
6
െ݈

െ6
െ݈
6
݈

቏   

௜௝݄݄ܯ ൌ
ூబబ௟
ସଶ଴

቎
156 22݈
22݈ 4݈ଶ

54 െ13݈
13݈ െ3݈ଶ

54 13݈
െ13݈ െ3݈ଶ

156 െ22݈
െ22݈ 4݈ଶ

቏ ൅ ூమబ
ଷ଴௟

቎
36 3݈
3݈ 4݈ଶ

െ36 3݈
െ3݈ െ݈ଶ

െ36 െ3݈
3݈ െ݈ଶ

36 െ3݈
െ3݈ 4݈ଶ

቏   

௜௞݄ܽܯ ൌ
ூబభ௟
଺଴
቎
21
3݈
9
െ2݈

9
2݈
21
െ3݈

቏ ൅ ூమభ
௟
቎
1
0
െ1
0

െ1
0
1
0

቏  

௜௘ܨ ൌ
ି௅௟
ଵଶ
቎
6
݈
6
െ݈

቏         , for uniform lift distribution over the element. And,        

௜௘݌݄ܨ ൌ ଴ܻܯ௫
௣ ቎

0
െ1
0
1

቏                                                                                                                 (4.65) 

And, 

௟௞ܣܬ ൌ 4 ଴ܻܦ଺଺ ቂ
1 െ1
െ1 1 ቃ  

௟௞ܣܭ ൌ
ଶ௒బ஽భమ

௟
ቂ 1 െ1
െ1 1 ቃ  
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௟௞ܣܩ ൌ
௒మேೣು

௟
ቂ 1 െ1
െ1 1 ቃ ൅

௒బ௟ே೤ು

଺
ቂ2 1
1 2ቃ   

௟௝݄ܭ ൌ
ଶ௒బ஽భల

௟
ቂ0 1
0 െ1

0 െ1
0 1 ቃ   

௟௝݄ܩ ൌ
ܲݔ1ܻܰ

݈
ቂ 1 0
െ1 0

െ1 0
1 0

ቃ ൅ ܲݕݔ0ܻܰ

12
ቂെ6 െ݈
6 ݈

െ6 ݈
6 െ݈

ቃ  

௟௝݄ܽܯ ൌ
01݈ܫ

60
ቂ21 3݈
9 2݈

9 െ2݈
21 െ3݈

ቃ ൅ 21ܫ

݈
ቂ 1 0
െ1 0

െ1 0
1 0

ቃ  

௟௞ܽܽܯ ൌ
ሺ02ܫ൅20ܫሻ݈

6
ቂ2 1
1 2

ቃ ൅ 22ܫ
݈
ቂ 1 െ1
െ1 1

ቃ  

௞௘ܽܨ ൌ
ିெ௟
ଶ
ቂ11ቃ , for pitching moment due to uniform lift distribution over the element.  

௞௘݌ܽܨ ൌ 2 ଴ܻܯ௫௬
௉ ቂെ1

1
ቃ                                                                                        (4.66) 

Letting; 

௜௝ܪܪܭ ൌ ௜௝ܪܭ െ   ௜௝ܪܩ

ܪܭ ௝ܽ௞ ൌ ܭ ௝ܽ௞ ൅ ܩ ௝ܽ௞  

௟௞ܣܣܭ ൌ ௟௞ܣܬ ൅ ௟௞ܣܭ െ   ௟௞ܣܩ

௞௝݄ܣܭ ൌ ݆݄݇ܭ െ  (4.67)                                                                                               ݆݄݇ܩ

The global stiffness matrix (for m, n = 1, 2 ...6) can be written as; 

௠௡ܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵܪܪܭ
ଶଵܪܪܭ
31݄ܣܭ
ସଵܪܪܭ
ହଵܪܪܭ
61݄ܣܭ

ଵଶܪܪܭ
ଶଶܪܪܭ
32݄ܣܭ
ସଶܪܪܭ
ହଶܪܪܭ
62݄ܣܭ

ଵଷܽܪܭ
ଶଷܽܪܭ
ଷଷܣܣܭ
ସଷܽܪܭ
ହଷܽܪܭ
଺ଷܣܣܭ

ଵସܪܪܭ
ଶସܪܪܭ
34݄ܣܭ
ସସܪܪܭ
ହସܪܪܭ
64݄ܣܭ

ଵହܪܪܭ
ଶହܪܪܭ
35݄ܣܭ
ସହܪܪܭ
ହହܪܪܭ
65݄ܣܭ

ଵ଺ܽܪܭ
ଶ଺ܽܪܭ
ଷ଺ܣܣܭ
ସ଺ܽܪܭ
ହ଺ܽܪܭ
ے଺଺ܣܣܭ

ۑ
ۑ
ۑ
ۑ
ې

                      (4.68) 

In the same manner, the global mass matrix can be written as; 

௠௡ܯ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵ݄݄ܯ
ଶଵ݄݄ܯ
31݄ܽܯ
ସଵ݄݄ܯ
ହଵ݄݄ܯ
61݄ܽܯ

ଵଶ݄݄ܯ
ଶଶ݄݄ܯ
32݄ܽܯ
ସଶ݄݄ܯ
ହଶ݄݄ܯ
62݄ܽܯ

ଵଷ݄ܽܯ
ଶଷ݄ܽܯ
ଷଷܽܽܯ
ସଷ݄ܽܯ
ହଷ݄ܽܯ
଺ଷܽܽܯ

ଵସ݄݄ܯ
ଶସ݄݄ܯ
34݄ܽܯ
ସସ݄݄ܯ
ହସ݄݄ܯ
64݄ܽܯ

ଵହ݄݄ܯ
ଶହ݄݄ܯ
35݄ܽܯ
ସହ݄݄ܯ
ହହ݄݄ܯ
65݄ܽܯ

ଵ଺݄ܽܯ
ଶ଺݄ܽܯ
ଷ଺ܽܽܯ
ସ଺݄ܽܯ
ହ଺݄ܽܯ
ے଺଺ܽܽܯ

ۑ
ۑ
ۑ
ۑ
ې

                      (4.69) 
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The global external (Aerodynamic) forces (ܨܣ௠௘) and the piezoelectric control forces (ܲܨ௠௘) 
vectors are; 

௠௘ܨܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ௘ܨ
ଶ௘ܨ
ଷ௘ܽܨ
ସ௘ܨ
ହ௘ܨ
ے଺௘ܽܨ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 , and    ܲܨ௠௘ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ௘݌݄ܨ
ଶ௘݌݄ܨ
ଷ௘݌ܽܨ
ସ௘݌݄ܨ
ହ௘݌݄ܨ
ے଺௘݌ܽܨ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                              (4.70) 

Therefore, Eqns. (4.58 & 4.61) can be written in global form as; 

ሾܭ௠௡ሿሾݔሿ ൅ ሾܯ௠௡ሿሾݔሷ ሿ െ ሾܨܣ௠௘ሿ െ ሾܲܨ௠௘ሿ ൌ 0                              (4.71) 

4.4.2. Aerodynamic Forces Model 
The lift forces (ܨ௜௘) in Eqn. (4.65) and the corresponding pitching moments (ܽܨ௞௘) in Eqn. 

(4.66) which construct the elemental aerodynamic forces (ܨܣ௠௘) are evaluated based on a 

uniform aerodynamic distribution over the element as shown in Figure (4.6) [79].  

 
Figure 4.6: Nodal forces due to uniform aerodynamic loading. 

However, since the element is under twisting motion (in addition to the bending motion) this 

means that each node has a different twist angle (Angle of Attack). Therefore, the 

aerodynamic loading with linear varying distribution can be considered as shown in Figure 

(4.7).  
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Figure 4.7: Nodal forces due to linear varying aerodynamic loading. 

And hence, the elemental aerodynamic forces (ܨܣ௠௘) can be rewritten as a function of 
,ଵܮ  ;ଶ (see A.1)ܯ ݀݊ܽ ଵܯ,ଶܮ

௠௘ܨܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ௘ܨ
ଶ௘ܨ
ଷ௘ܽܨ
ସ௘ܨ
ହ௘ܨ
ے଺௘ܽܨ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ  െ ௟
଺଴

ۏ
ێ
ێ
ێ
ێ
ۍ
3ሺ7ܮଵ ൅ ଶሻܮ3
݈ሺ3ܮଵ ൅ ଶሻܮ2
10ሺ2ܯଵ ൅ܯଶሻ
3ሺ3ܮଵ ൅ ଶሻܮ7
െ݈ሺ2ܮଵ ൅ ଶሻܮ3
10ሺܯଵ ൅ ےଶሻܯ2

ۑ
ۑ
ۑ
ۑ
ې

                                    (4.72) 

Using the quasi-steady aerodynamic model in Eqns. (2.7 & 2.8) the aerodynamic forces and 
moments are calculated as; 

ଵܮ ൌ ଵߙఈሺ݈ܥܿݍ ൅
௛ሶ భ

௎ಮ
൅ ௖ ௘௔మఈሶ భ

௎ಮ
ሻ                            (4.73)  

ଶܮ ൌ ଶߙఈሺ݈ܥܿݍ ൅
௛ሶ మ

௎ಮ
൅ ௖ ௘௔మఈሶ మ

௎ಮ
ሻ                            (4.74) 

And, 

ଵܯ ൌ ଶሾି௔ఈሶܿݍ
భ

௎ಮ
൅ ݁ܽଵ݈ܥఈሺߙଵ ൅

௛ሶ భ

௎ಮ
൅ ௖ ௘௔మఈሶ భ

௎ಮ
ሻ ሿ               (4.75) 

ଶܯ ൌ ଶሾି௔ఈሶܿݍ
మ

௎ಮ
൅ ݁ܽଵ݈ܥఈሺߙଶ ൅

௛ሶ మ

௎ಮ
൅ ௖ ௘௔మఈሶ మ

௎ಮ
ሻሿ               (4.76) 

where,  

݁ܽଵ ൌ ݁ܽ െ 0.25  and   ݁ܽଶ ൌ 0.75 െ ݁ܽ                          (4.77) 

݄ଵ, ݄ଶ ܽ݊݀ ߙଵ,  ଶ are the flexural (plunge) and torsional (pitch) displacements at elementߙ

nodes 1 and 2 respectively. 
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4.5. Summary 
Detailed mathematical model of the bending-torsion behaviour of the cantilever beam (wing) 

incorporating piezoelectric patches with varying orientations. The model was then derived in 

a Finite Element form to find the effect of the activation of the piezoelectric patches on the 

onset of the flutter and the corresponding critical speeds. The model incorporates the 

aerodynamic loading - based on the quasi-steady theory and control forces. The control law 

modelling will be presented in the following chapter as well as the numerical results and 

discussion.  
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Chapter 5. CONTROL OF BEAM FLUTTER 
This chapter is about the investigation of the controllability range of the beam using the 

attached piezoelectric patches. 

The well known Multi-Input Multi-Output (MIMO) Full State Feedback control law in 

particular, the Linear Quadratic Regulator (LQR) theory has been employed to realize the 

objective of flutter suppression of an Aeroelastic beam.  

5.1. LQR Control Law 
The LQR method is basically finding the optimal state feedback control gain matrix G which 

minimizes a performance function J of the problem [80]. The process of finding G can be 

summarized as following [79]; 

For a dynamic system represented in a state-space form; 

ሼঘሶ ሽ ൌ ሾܣሿሼঘሽ ൅ ሾܤሿሼࣝሽ                                              (5.1) 

Where,  

ሼঘ, ঘ ሶ ሽ: are the state variables, and ሼঘሽ ൌ ቂ
௜ݔ
 ,ሶ௜ቃݔ

ሼঘሶ ሽ ൌ ൤ݔሶ௜ݔሷ௜
൨ 

ሾܣሿ : is the system matrix generated from the stiffness and mass matricesሾܭሿ & ሾܯሿ, 

ሾܤሿ : is the control/actuator matrix generated from control forces matrixሾܨሿ, and 

 ሼࣝሽ : is the control input calculated by LQR method. 

The control input is resulted from multiplying the gain matrix by the state vector; 

ሼࣝሽ ൌ െሾܩሿሼঘሽ                                                      (5.2) 

For the performance function of; 

ܬ ൌ ଵ
ଶ ׬ ሺሼঘሽ்ሾܳሿሼݔሽ ൅ ሼࣝሽ்ሾܴሿሼࣝሽሻ݀ݐஶ

଴                                  (5.3) 

The Hamiltonian of the system is; 

ܪ ൌ ଵ
ଶ
ሺሼঘሽ்ሾܳሿሼঘሽ ൅ ሼࣝሽ்ሾܴሿሼࣝሽሻ ൅ ሼߣሽ்ሺሾܣሿሼঘሽ ൅ ሾܤሿሼࣝሽሻ        (5.4) 
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Applying the optimality conditions of; 

൛ߣሶൟ ൌ െ డு
డሼঘሽ

ൌ െሾܳሿሼঘሽ െ ሾܣሿ்ሼߣሽ,          ሼߣሺ∞ሻሽ ൌ 0                     (5.5) 

డு
డሼࣝሽ

ൌ െሾܴሿሼࣝሽ ൅ ሾܤሿ்ሼߣሽ                                       (5.6) 

Thus, the optimal control input is; 

ሼࣝሽ ൌ െሾܴሿିଵሾܤሿ்ሼߣሽ                                     (5.7) 

Using the Riccati matrix ࡿ, the Lagrange multiplier ࣅ can be written as; 

ሼߣሽ ൌ ሾܵሿሼঘሽ                                            (5.8) 

Substituting Eqn. (5.8) into Eqn. (5.5) and for the steady state of the system where the Riccati 

matrix satisfiesൣ ሶܵ൧ ൌ 0, the so-called Algebraic Ricatti Equation (ARE) is obtained; 

ሾ0ሿ ൌ ሾܵሿሾܣሿ ൅ ሾܣሿܶሾܵሿ െ ሾܵሿሾܤሿሾܴሿെ1ሾܤሿܶሾܵሿ ൅ ሾܳሿ               (5.9) 

Solving Eqn. (5.6) to find the Riccati matrix ࡿ, then the control input ऍ in Eqn. (5.7) is 

written as; 

ሼࣝሽ ൌ െሾܴሿିଵሾܤሿ்ሾܵሿሼঘሽ                                    (5.10) 

Therefore, the gain matrix is; 

ሾܩሿ ൌ െሾܴሿିଵሾܤሿ்ሾܵሿ                                 (5.11) 

5.2. Aerodynamic Forces in State-Space Form 
Revisiting the quasi-steady aerodynamic forces in Eqns. (4.73 – 4.76) it can be seen that these 

forces are function in the system states, namely, ሶ݄ , ሶߙ & ߙ . In other words, the aerodynamic 

forces have components that depend on the system state velocities which are considered as 

aerodynamic damping components. Therefore, it is obvious to rewrite these forces in state-

space form to be added to its mechanical counterparts in the system Equations of Motion 

(Eqn. 4.71)  [81, 82]. 

The state-space form of the element states of Figure (4.5) is; 
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ሼঘሽ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵݔ
ଶݔ
ଷݔ
ସݔ
ହݔ
଺ݔ
ሶଵݔ
ሶଶݔ
ሶଷݔ
ሶସݔ
ሶହݔ
ےሶ଺ݔ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 or in physical variables; ሼঘሽ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
݄ۍ

ଵ

ଵݎ
ଵߙ
݄ଶ
ଶݎ
ଶߙ
ሶ݄ ଵ
ሶଵݎ
ሶߙ ଵ
ሶ݄ ଶ
ሶݎ ଶ
ሶߙ ଶے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                       (5.12) 

Where,  

r: is the rotational (bending) displacement of the element nodes. 

For numerical simulation purposes, initial condition of lift coefficient (݈ܥ଴) is added to the 

aerodynamic forces equations (4.73 – 4.76); 

ଵܮ ൌ ఈ݈ܥܿݍ ቀߙଵ ൅
௛ሶ భ

௎ಮ
൅ ௖ ௘௔మఈሶ భ

௎ಮ
ቁ ൅   ଴                            (5.13)݈ܥܿݍ

ଶܮ ൌ ఈ݈ܥܿݍ ቀߙଶ ൅
௛ሶ మ

௎ಮ
൅ ௖ ௘௔మఈሶ మ

௎ಮ
ቁ ൅  ଴                            (5.14)݈ܥܿݍ

And, 

ଵܯ ൌ ଶሾି௔ఈሶܿݍ
భ

௎ಮ
൅ ݁ܽଵ݈ܥఈሺߙଵ ൅

௛ሶ భ

௎ಮ
൅ ௖ ௘௔మఈሶ భ

௎ಮ
ሻ ሿ ൅  ଴       (5.15)݈ܥଵܿଶܽ݁ݍ

ଶܯ ൌ ଶሾି௔ఈሶܿݍ
మ

௎ಮ
൅ ݁ܽଵ݈ܥఈሺߙଶ ൅

௛ሶ మ

௎ಮ
൅ ௖ ௘௔మఈሶ మ

௎ಮ
ሻሿ ൅  ଴        (5.16)݈ܥଵܿଶܽ݁ݍ

Applying Eqns. (5.13 – 5.16) into Eqn. (4.72) the aerodynamic forces in can be written as; 

௠௘ܨܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ௘ܨ
ଶ௘ܨ
ଷ௘ܽܨ
ସ௘ܨ
ହ௘ܨ
ے଺௘ܽܨ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሾܭ௔ሿሼݔ௜ሽ ൅ ሾܥ௔ሿሼݔሶ௜ሽ ൅ ൛݈ܥ଴௜ൟ                          (5.17) 

Where, 
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ሾܭ௔ሿ ൌ െ ௟ߙ݈ܥܿݍ
଺଴

ۏ
ێ
ێ
ێ
ێ
00ۍ
0
0
0
0

0
0
0
0
0
0

21
3݈

20ܿ݁ܽ1
9
െ2݈

10ܿ݁ܽ1

0
0
0
0
0
0

0
0
0
0
0
0

9
2݈

10ܿ݁ܽ1
21
െ3݈

ے20ܿ݁ܽ1
ۑ
ۑ
ۑ
ۑ
ې

                     (5.18) 

ሾܥ௔ሿ ൌ െ ௟ߙ݈ܥܿݍ
଺଴ܷ∞

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
21 0 21ܿ݁ܽ2
3݈ 0 3݈ܿ݁ܽ2

20ܿ݁ܽ1 0 20ܿሺܿ݁ܽ2݁ܽ1 െ
ܽ
ߙ݈ܥ
ሻ

9 0 9ܿ݁ܽ2
2݈ 0 2݈ܿ݁ܽ2

10ܿ݁ܽ1 0 10ܿሺܿ݁ܽ2݁ܽ1 െ
ܽ
ߙ݈ܥ
ሻ

9 0 9ܿ݁ܽ2
െ21 0 െ2݈ܿ݁ܽ2
10ܿ݁ܽ1 0 10ܿሺܿ݁ܽ2݁ܽ1 െ

ܽ
ߙ݈ܥ
ሻ

21 0 21ܿ݁ܽ2
െ3݈ 0 െ3݈ܿ݁ܽ2

20ܿ݁ܽ1 0 20ܿሺܿ݁ܽ2݁ܽ1 െ
ܽ
ߙ݈ܥ
ሻے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (5.19) 

൛݈ܥ଴௜ൟ ൌ െ ௟ߙ݈ܥܿݍ
଺଴

ۏ
ێ
ێ
ێ
ێ
ۍ

଴ߙ30
଴ߙ5݈

30ܿ݁ܽଵߙ଴
଴ߙ30
െ5݈ߙ଴

30ܿ݁ܽଵߙ଴ے
ۑ
ۑ
ۑ
ۑ
ې

                                    (5.20) 

ሼݔ௜ሽ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
݄ۍ
1

1ݎ
1ߙ
݄2
2ݎ
ے2ߙ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 , and  ሼݔሶ௜ሽ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ሶ݄
1

ሶݎ 1
ሶߙ 1
ሶ݄ 2

ሶݎ 2
ሶߙ ے2
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                   (5.21) 

Eqn. (4.71) can then be written as; 

ሾܭ௠ െ ሿݔ௔ሿሾܭ ൅ ሾܥ௠ െ ሶݔ௔ሿሾܥ ሿ ൅ ሾܯ௠ሿሾݔሷ ሿ െ ଴௜൧݈ܥൣ െ ሾܲܨ௠௘ሿ ൌ 0    (5.22) 

Where the mechanical proportional damping component is [83, 84], [84];  

ሾܥ௠ሿ ൌ ௠ሿܭሾߞ ൅  ௠ሿ                                     (5.23)ܯሾߚ

Where,  

, ߞ  .are the frictional and the structural damping constants respectively :ߚ ݀݊ܽ

5.3. Piezoelectric Actuator/Control Matrix 
 Considering the mechanical and aerodynamic damping and initial lift condition components 

in Eqn. (5.22), Eqn. (5.1) can be rewritten as; 
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ሾঘሶ ሿ ൌ ሾܣሿሾঘሿ ൅ 0݅൧݈ܥൣ ൅ ሾܯ௠ሿିଵሾܲܨ௠௘ሿ                               (5.24) 

By comparing Eqn. (5.24) with Eqn. (5.1); 

ሾܤሿሼࣝሽ ൌ ൅ሾܯ௠ሿିଵሾܲܨ௠௘ሿ                                              (5.24) 

Or from Eqn. (5.2),  

    െሾܤሿሾܩሿሼঘሽ ൌ ሾ݉ܯሿെ1ൣܲ݁݉ܨ ൧                                              (5.26) 

From Eqns. (4.65, 4.66 & 4.70) the actuator force matrix in element domain is; 

௠௘ܨܲ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵ௘݌݄ܨ
ଶ௘݌݄ܨ
ଷ௘݌ܽܨ
ସ௘݌݄ܨ
ହ௘݌݄ܨ
ے଺௘݌ܽܨ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ଴ܻ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

0
െݔܯ

݌

െ2ݕݔܯ
݌

0
ݔܯ
݌

ݕݔܯ2
݌

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                            (5.27) 

Since the actuator forces are a function of the applied electric field ॱଷ (ॱଵ in Micro Fibre 

Composite MFC actuator case) Eqn. (5.27) can be rewritten as; 

௠௘ܨܲ ൌ ଴ܻ ׬

ۏ
ێ
ێ
ێ
ێ
ۍ

0
െՂത31
െ2Ղത36
0
Ղത31
2Ղത36 ے

ۑ
ۑ
ۑ
ۑ
ې

. ݖ݀ ݖ ॱ3݌ݐ                                    (5.28) 

Substitute Eqn. (5.28) into Eqn. (5.26); 

ሾܤሿ ൌ െܻ0ሾܯ௠ሿିଵ ׬

ۏ
ێ
ێ
ێ
ێ
ۍ

0
െՂതଷଵ
െ2Ղതଷ଺

0
Ղതଷଵ
2Ղതଷ଺ ے

ۑ
ۑ
ۑ
ۑ
ې

௧೛ ݖ݀ ݖ
                          (5.29) 

And the input control (electric field) is, 

ॱଷ ൌ ሾܩሿሼঘሽ                                       (5.30) 
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For the purpose of multi-control of each elemental actuator, the global control matrix ܲܨ is 

modified by assembling each element control matrix ܲ݁ܨ;  

 
Figure 5.1: Basic control effects due to MFC actuation. 

Figure (5.1) shows the general notation of the control forces and moments generated from the 

actuation of the MFC layers. Similar to Eqn. (4.70) element control matrix ܲ݁ܨ can be 

written in the form of; 

 

௘ܨܲ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵܥܲ
ଶܥܲ
ଷܥܲ
ସܥܲ
ହܥܲ
ے଺ܥܲ

ۑ
ۑ
ۑ
ۑ
ې
௘

                                               (5.31) 

For example, the global control matrix of the multi-control input of two MFC-elements as in 

Figure (5.2) is; 

 
Figure 5.2: Multi-control inputs. 
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ܨܲ ൌ  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ଵܥܲۍ

ଵ

ଶଵܥܲ

ଷଵܥܲ

0
0
0

ସଵܥܲ

ହଵܥܲ

଺ଵܥܲ

ଵଶܥܲ

ଶଶܥܲ

ଷଶܥܲ

0
0
0

ସଶܥܲ

ହଶܥܲ

ے଺ଶܥܲ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                                                   (5.32) 

And consequently, the control matrix ܤ will be; 
 

ሾܤሿ ൌ ሾܯ௠ሿିଵሾܲܨሿ                                     (5.33) 
 
This leads to a modified control input vector; 
 

ሼࣝሽ ൌ ൤ࣝଵࣝଶ
൨ ൌ ቈॱଷ

ଵ

ॱଷଶ
቉ ൌ ሾܩሿ௝ൈଶሼঘሽଵൈ௝                        (5.34) 

5.4. Numerical Simulation 
A six-element beam is used to simulate the flutter case and its control. The control effect is 

generated from a pair of piezoelectric MFC wafers bonded on top and bottom surfaces of the 

beam which are polarized in the same manner to produce a bi-morphing action at each 

element under actuation. The flutter control was investigated in six MFC placements 

configurations. In each configuration the orientation (skew) angle of the MFC was varied. 

Table 5.1 shows the free six-elements beam, the MFC skew angle variation and the six 

actuation configurations. 

The simulation configurations are; 

a. Three configurations; each is for individual actuation of elements 1, 2 and 3 with 

MFC skew angle variation ranges from -90º to 90º, 

b. Three configurations; each is a combination of two actuated elements (1+2, 1+3 and 

2+3) with MFC skew angle variation ranges from -60º to 60º. 
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Free beam MFC skew angle variation

 
Case I: Element 1 Actuation Case IV: Elements 1 & 2 Actuation 

 
Case II: Element 2 Actuation Case V: Elements 2 & 3 Actuation 

 
Case III: Element 3 Actuation Case VI: Elements 1 & 3 Actuation 

Table 5.1: Simulation configurations and MFC skew angle variation. 

A MATLAB program was constructed to conduct these simulations. The flow chart and the 

listing of the simulation program are shown in appendix A.3. 

5.4.1. Program Validation 
The MATLAB© program constructed in this study was validated based on previous 

numerical work. The program algorithm must obtain the effect of the piezoelectric actuators 

on a bending-torsion (aeroelastic) beam model. Most of the work done in the control of smart 

structures using piezoelectric actuators was conducted on bending beam models and on the 

other hand, most of the aeroelastic problems incorporating piezoelectric actuators were 

numerical and/or experimental customized treatments. Because of these reasons, the 

validation process was conducted in two parts; validation of the piezoelectric effect and 

validation of the bending-torsion beam model. 

Piezoelectric Effect Validation 

The validation of the program code for the piezoelectric effect is conducted on a 

[0˚/90˚/90˚/0˚] cross-ply symmetric laminated (AS/3501) beam with one layer of 
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piezoceramic material (G-1195) bonded  on the top and the bottom of the beam. The tip 

deflections of the beam due to applied voltages are shown in Figure (5.3). It shows good 

agreement between the current model and the work done by Donthireddy and 

Chandrashekhara [85]. 

 
Figure 5.3: Effect of actuator on tip deflection. 

Aeroelastic Model Validation 

The majority of the work conducted in wing flutter control is validated and compared with 

the well-known work (Goland’s wing) by Martin Goland [86]. The exact Goland’s solution 

for flutter speed of a uniform cantilever wing employs the aerodynamic forces derived by 

Theodorsen [48]. This is not the case for the present work where the aerodynamic forces are 

based on the quasi-steady aerodynamic theory. Moosavi et al. [51] developed a procedure to 

predict  the flutter speed and frequency based on Galerkin’s method and quasi-steady 

aerodynamic theory and used Goland’s wing to validate the proposed model.  

The validation of the present aeroelastic FE model is done in two steps. In the first step the 

Galerkin’s method presented in Fung [47] is constructed using Mathcad© software (see 

Appendix A2.1) to solve the Goland’s wing and then it is compared the work by Moosavi et 

al. [51] . Table 5.2 shows good correlation between the two models. 

Model Flutter Speed (Mach#) Flutter Frequency (Hz) 

Moosavi et al. [51] 0.554 11.15 

Galerkin [47] 0.543 13.796 
Table 5.2: Comparison of the calculated flutter results. 

Then in the second step, the Galerkin’s method is used to validate the FE model as shown in 

Appendix A2.2.  Table 5.3 shows also a good correlation between the two models. 
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Model Flutter Speed (m/s) Flutter Frequency (rad/s) 

Galerkin [47] 33.51 27.12 

FE Model 34 29.361 
Table 5.3: Galerkin vs. FE model comparison. 

5.4.2. Materials’ Properties 
To obtain the objectives of the present investigation the substrate and actuator materials are 

adopted from different sources. The substrate material is decided to be regular Aluminium. 

The piezoelectric actuator material is chose to be MFC™ with the assumption that its 

properties do not affected by varying its skew (orientation) angle. The mechanical and 

electromechanical properties are listed in Table 5.4. 

 MFC™ [42] Aluminium [73] 

 ଵଵ(GPa) 36.5 69.0ܧ

 ଶଶ(GPa) 7.60 69.0ܧ

 ଵଶ(GPa) 14.6 27.0ܩ

 ଵଶ 0.25 0.32ߥ

݀ଷଵ(m/V) 530E-12 / 

݀ଷଶ(m/V) -210E-12 / 

ρ (kg/m3) 7552.0 2700.0 

Length (m) 0.10 0.60 

Width (m) 0.10 0.10 

Thickness (m) 0.001 0.002 
Table 5.4: Substrate and actuator materials' properties. 

5.4.3. Simulation Results and Discussion 
Cases I, II & III  

The effects of the three individual actuation configurations on the beam aeroelastic behaviour 

are depicted in Figure (5.4). The dotted lines represent the increase in the flutter speed due to 

the (static) stiffness added to the beam by attaching the MFC actuators. As expected, the 

maximum effect happens at the root of the cantilever beam and it decreases away from it. 

Also, the increased profile is symmetrical around the 0˚ skew angle. The aim of showing the 

lines of the static stiffness effect in the figure is to differentiate between the effects of the 

deactivated and activated actuator on the flutter speed. The effect of the (controlled) 

activation of the actuator is very clear as depicted with the solid line(s). 
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Figure 5.4: The effect of actuator skew angles on the flutter speed. 

The first point to notice is that the profile of the effect is asymmetrical around 0˚ which 

highlights the importance of the MFC orientation angle. The second important observation is 

the angle where the highest increase in the flutter speed occurs. As shown in the figure this 

angle is 15˚. This can be contributed to the resultant actuator moments applied to the system. 

As seen in Figure (5.5) the maximum resultant actuator moment occurs at within the 15˚- 30˚ 

region. 

 

 
Figure 5.5: Actuator resultant moment due to activated actuator of different 

orientations. 

Another interesting point is the -60˚ orientation angle. At this angle, the flutter speed 

increased opposing the decreasing trend. On the other side, the 60˚ orientation reduced the 

flutter speed below the deactivated line. Relating this to the resultant actuator moment 
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(Figure 5.5) it can be seen that the maximum negative moment occurs in between -60˚ and -

45˚. The +45˚ and -45˚ produce the same flutter speed. By comparing the deactivated and 

activated lines the flutter speed curve can be divided into four regions; 

− -90˚ < θ < -45˚ flutter speed increases, 

− -45˚ < θ < -30˚ flutter speed decreases, 

− -30˚ < θ < 45˚  flutter speed increases, 

−  45˚ < θ < 90˚   flutter speed decreases. 

Figures (5.6) and (5.7) show the plunge (flexural) and pitch damping ratios respectively.  

Both behave in the same manner to that for flutter speed. However, the activation of a 60˚ 

MFC on the first element produces the highest divergent (negative damping ratio) pitch 

behaviour which led to flutter speed lower than the base line for  the static stiffness. 

 

 
Figure 5.6: Plunge/Flexural damping ratio. 

 

 
Figure 5.7: Pitch damping ratio. 
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Case IV  

The plunge and pitch damping ratios are shown in Figures (5.8 & 5.9) respectively. The 

figures show the damping ratio of each element one orientation with varying the orientation 

of element two. From the figures, the damping ratio profiles can be divided into three 

regions: 

 
Figure 5.8: Plunge damping ratio; Elements 1&2 combinations. 

1. Negative element two (θ2) orientations; θ2 < 0˚; this region shows variable trends for 

different element one (θ1) orientations. The asymmetric behaviour of element one (θ1) 

orientations is clear in this region; the -15˚, -30˚, -45˚ and 60˚ orientations produce 

unstable (negative damping ratios) behaviours while the 0˚, 15˚, 30˚, 45˚ and -60˚ 

produce stable (positive damping ratios) behaviours.  

2. The second region lies between 0˚ < θ2 < 30˚; at this region all element one (θ1) 

orientations are bundled together and produce stable behaviours. 

3. The third region is where θ2 > 30˚; at this region the behaviours are again divided into 

two groups. The -60˚, -45˚, -30˚ and 45˚ orientations group have stable behaviours in 

between 30˚ < θ2 < 45˚ and unstable ones over 45˚. 

The -60˚, 0˚, 15˚ and 30˚ orientations of element one (θ1) produce positive plunge damping 

ratios (stable behaviours) all over the range of element two (θ2) orientations. 
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Figure 5.9: Pitch damping ratio; Elements 1&2 combinations. 

The pitch damping ratio curves of the elements one and two combinations behave in the same 

manner as the plunge damping ratios with more dispersed tendencies. This demonstrates the 

sensitivity of the pitch/torsional motion in comparison to the flexural one. The 45˚ and 60˚ 

orientations of element one (θ1) show a distinguishable trend. The 45˚ orientation produces 

positive damping ratios all over the θ2 range except for the regions of -45˚ < θ2 < -30˚ and 45˚ 

< θ2 < 60˚. The highest pitch damping ratio occurs at the combination of (45˚, 0˚). The 60˚ 

orientation of element one (θ1) is stable only over the range of -15˚ < θ2 < 30˚. 

Case V 

The plunge and pitch damping ratios due to elements two and three combinations are shown 

in Figures (5.10 and 5.11) respectively. The plunge damping ratio behaviours of this case 

illustrate clear and uniform clustering and asymmetry. Two groups of trend lines are formed; 

the first group consists of the -60˚, -15˚, 0˚, 15˚ and 30˚ of element two (θ2) orientations. This 

group has a narrow band variation (0.008 to 0.015). The other group contains the -45˚, -30˚, 

45˚ and 60˚ has a wider band variation (-0.01 to 0.01). Both groups follow the same profile 

where the damping ratios start negative at the 60˚ orientation of element three (θ3) and rise to 

the maximum at 15˚ then drops to reach a bottom at -30˚ to rise back to positive values at the 

-60˚ orientation of element three (θ3). 
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Figure 5.10: Plunge damping ratio; Elements 2&3 combinations. 

The pitch damping ratio behaviour can be divided into two regions. The first region lies 

between -60˚ < θ3 < -30˚. This experiences a similar clustering as of the plunge damping ratio 

behaviours. In the second region (between -30˚ < θ3 < 60˚), the pitch damping ratio 

behaviours are grouped together and then re-divided into two groups at θ3 > 30˚.  This is true 

except for the 30˚, 45˚ and 60˚ element two (θ2) orientations where they have different and 

wide variations.  

 
Figure 5.11: Pitch damping ratio; Elements 2&3 combinations. 
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The orientation of element two (θ2) of -60˚, -15˚, 0˚ and 15˚ produce positive pitch damping 

ratios all over the range of the element three (θ3) orientations. 

Case VI 

The plunge damping ratio behaviours for the elements 1 & 3 combinations shown in Figure 

(5.12) follow the behaviour of the element 1 & 2 case. This is expected since element one 

appears to be the most influential location. 

 
Figure 5.12: Plunge damping ratio; Elements 1&3 combinations. 

Most of the combinations produce stable behaviour except for the element orientation angles 

of -30˚ and 45˚. These have unstable (negative ratios) portions. However, these instabilities 

are reduced in comparison with the case of elements 1 & 2. This indicates that element three 

actuation has introduced a better stabilizing regime compared to that from element two. This 

could be due to the gap between the two actuated elements. 
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Figure 5.13: Pitch damping ratio; Elements 1&3 combinations. 

The same reduction effect on the unstable portions appears in the pitch ratio behaviour. 

However, the stable (positive ratio) portion of the 45˚ behaviour line of element one 

experienced a reduction too. This indicates that element three actuation introduces a 

divergent  and not a stabilizing effect to the system compared to that for element two 

actuations. 

Overall, most of the behaviour lines of the plunge damping ratio follow the trend depicted in 

Figure (5.10). This is clear in both the single actuator and double actuators configurations. 

The same can be mentioned for the pitch damping ratio behaviour lines but with more 

irregular behaviours especially for the case of the element 2 & 3 combinations. 

Multi-actuation of piezos has a more pronounced effect on flutter speed when compared with 

the individual ones. Figure (5.14) shows the gain in flutter speed due to the actuation of a 

sample combination of elements one and two of (-30˚,θ2˚) when compared with the 

individual actuator cases. The figure shows a similar profile with a shift of the maximum 

flutter speed achieved from 15˚ of the individuals to 30˚ for the multi-actuation case. 

However, the comparison between the inactivated and activated curves of the elements one 

and two combination shows that the flutter speed increased only at two angles namely, 15˚ 

and 30˚ while it occurs over a range of angles for individual cases (-60˚, -15˚, 0˚, 15˚ and 

30˚). 
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Figure 5.14: Flutter speed comparison between the individual and multi actuation. 

To gain more insight on the effect of the actuator orientation on the pitch angle of the beam, 

the span-wise Effective Pitch Angle (EPA) for each case is shown in the following figures. 

Figures (5.15) to (5.18) illustrate different profiles of the span-wise EPA for cases I, II, III, 

IV, V and VI respectively. For the first three cases, it is clear that the profile changes at the 

element with the piezoelectric patches. However, the three have similar profiles with different 

EAP variation magnitudes. Also, the positive and negative orientations are kind of 

symmetrical around 0˚ for most of them. This symmetry becomes clear as the piezos move 

away from the beam root. Another observation is that the minimum EPA is raised as the 

piezos moves away from the root; there are negative EPAs in Element 1 but in Element 3, all 

are positives. 

 
Figure 5.15: Span-wise EPA due to Ele. 1 actuation. 
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Figure 5.16: Span-wise EPA due to Ele. 2 actuation. 

 
Figure 5.17: Span-wise EPA due to Ele. 3 actuation. 

 
Figure 5.18: Span-wise EPA due to combination (-60,θ2) actuation. 
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Figure 5.19: Span-wise EPA due to combination (-45,θ2) actuation. 

Figures (5.17) and (5.18) show two combinations of (-60˚,θ2
˚) and (-45˚,θ2

˚) of case IV as 

examples of  multi-actuation cases.  

A closer look at the actual piezo actuation effects is obtained by evaluating the Δ(EPA) 

through subtracting the inactivated EAP values from the activated ones to exclude the 

mechanical effects of the piezos. Figures (5.19) to (5.23) show the actual Δ(EPA) exerted by 

activating the corresponding actuator of each case. Although the Δ(EPA) is small, they vary 

from case to case and from one combination to another. These EAP variations highlight the 

controllability of a main player in aerodynamic forces which is the Angle of Attack.  

 
Figure 5.20: Span-wise Δ(EPA) due to Ele.1 actuation. 
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Figure 5.21: Span-wise Δ(EPA) due to Ele.2 actuation. 

 
Figure 5.22: Span-wise Δ(EPA) due to Ele.3 actuation. 

 
Figure 5.23: Span-wise Δ(EPA) due to combination (-60,θ2) actuation. 
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Figure 5.24: Span-wise Δ(EPA) due to combination (-45,θ2) actuation. 

5.5. Summary 
The control law and model of flutter control case of a cantilever beam using piezoelectric 

patches are presented in this chapter. A six-element beam model is developed to permit 

various configurations of the piezo-patch location along the beam. A multi-control capability 

is also incorporated in the model. This model is based on the Finite Element model developed 

in Chapter 4 which incorporates the capability of aligning the piezoelectric patches in 

different orientations. This gave more flexibility in investigating  a wide range of orientations 

and location configurations. The obtained results of such configurations provided more 

insight on the behaviour of the flutter onset and its control. The results also show that there is 

a room for more investigation especially on the control law. 
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Chapter 6. CONCLUSION AND RECOMMENDATIONS 
The conclusions from this work are clearly made on the basis of the work done on Shape 

Memory Alloys (SMAs) on the modelling of the Aeroelastic characteristics of a beam with 

embedded piezoelectric patches. 

6.1. Control of Structures using SMAs 
  The use of SMA wires to alter the natural frequencies of composite plates has been 

investigated. Two configurations of surface mounted (fastened) SMA wires are 

mathematically modelled using Rayleigh-Ritz method and the evaluated results are compared 

with the experimentally obtained results. The comparison showed a good match between the 

two results. On the other hand, a mismatch between the percentage changes is observed. It is 

assumed that the composite plates made for the experiments had undergone some tensile pre-

straining during the fabrication which caused the mismatch. Even with this tensile pre-

straining, some shift in the natural frequencies was observed especially for modes 4 and 

higher. The effective change of natural frequencies by using only two SMAs or a single SMA 

wire may help in developing the configuration of the actuators to receive the optimum 

response. This phenomenon minimises the number of SMA wires used and the energy spent 

for actuation can be reduced. This study demonstrates that the alteration of dynamic structural 

properties using SMAs is possible, even though the changes observed in this study are rather 

small. This strategy for control can be analytically modelled as shown by the reasonable 

match between the analytical and experimental results. This is a good portent for prospective 

mathematical modelling of the optimisation of control features of SMAs with regards to its 

configuration and location on the structure. 

 

This study shows for low frequency cases, the use of SMA’s in or on polymeric composite 

structures might be effective in inducing a momentary shift in natural frequencies when a 

reduction in the amplitude of vibration is required. The SMA configuration studies here also 

showed that simple linear spatial arrangement on or in a structure can be adequate in inducing 

a dynamic structural change.  

 

Modeling of the SMA actuation was established but thermal effects might need further 

attention. Also, the handling of the SMA wires requires adequate instrumentation to obtain 

reliable results. 
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6.2. Control of Aeroelastic Flutter 
In the second part, the utilization of the piezoelectric patches in controlling structural flutter 

has been demonstrated. A finite element model for bending-torsion case is developed with the 

capability of multi-element actuation with the concurrent ability to vary the orientation (skew 

angle) of the AFC patches. This study has demonstrated some level of confidence in the 

formulative analytical equations derived for a beam structure subjected to harmonic loading 

conditions for the determination of the critical flutter speed. The effect of the piezoelectric 

actuation on flutter has been demonstrated through two control strategies; open loop in-plane 

forces control and closed loop moments control. In the open loop in-plane forces control, the 

0 degree piezoelectric orientation proved to be the most effective in shifting the flutter speed. 

In the other hand, the 45 degree piezoelectric orientation appeared to have the most effect on 

the amplitude on the twist angle. 

 

The closed loop control is obtained using the LQR technique. The flutter speed and the 

damping are seen to be maximized at actuator orientation of 15 degrees. Multi-element Piezo 

actuation is also trending in the same direction as the single element actuation. Some piezo 

orientations have been shown to be totally unsuitable for multi-mode control such as 60 

degrees for the 2nd element actuation. Overall, the wide range of pitch angles has been 

obtained from the variation of the orientation and combination of the actuators. Twist 

(torsional movement) angle appears to be promising as an effective flutter control parameter. 

Multi-element actuation will need optimization for situation-specific control – based on 

geometric and loading complexities. 
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6.3. Recommendations for Future work 
1. Based on the work undertaken in this research, it might be worth conceiving a real 

hybrid control system consisting of both SMAs and piezoelectric sensors and 

actuators.  The control methodology could consist of passive one involving 

temperature movements for the control of the SMAs such as in jet engine exhaust 

flows and an algorithmic one involving the piezoelectric actuators and sensors. This 

might introduce the concept of effective control based on the transduction process (of 

the sensor) and the frequency range of the anticipated application. 

2. Experimental validation of the developed analytical models of the control of 

Aeroelastic flutter.  This will be further validate the numerical simulations shown in 

this study, especially for the optimal placement of the piezoelectric patches and the 

corresponding optimal orientation. 

3. Increase the complexity (and hence realism) of the model by introducing added 

geometric complexity, such as an aerofoil configuration.  This will augment the 

models in this study where loading complexities were introduced.  This will also 

increase the dimensional complexity from the 1-D problem to a 2-and 3-D problem. 
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APPENDICES 

A1.  Nodal Forces due to Linear Varying Loading (For Chapter 4) 
 

 
Figure A1.00.1: Nodal forces due to linear varying loading 

By letting; 

 ,ଵ is the force acting at the element start (node 1) andܮ

 .ଶ is the force acting at the end of the element (node 2)ܮ

Therefore, 
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Using Eqn. (4.63) for i = 1, 2, 4 & 5; 
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Integration evaluation gives; 
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For the pitching moments; 

 ,ଵ is the moment acting at the element start (node 1) andܯ

 .ଶ is the moment acting at the end of the element (node 2)ܯ

Therefore, 
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Using Eqn. (4.64) for i = 3 & 6; 
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Integration evaluation gives; 

ଷ௘ܽܨ ൌ െ ௟
଺
ሺ2ܯଵ ൅ܯଶሻ ,  

ଷ௘ܽܨ ൌ െ ௟
଺
ሺܯଵ ൅  ଶሻ                                   (A1.4)ܯ2

And hence, the global actuator matrix is; 
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A2.  Aeroelastic Model Computer Code Validation Using Galerkin’s 

Method (For Chapter 5) 

 

  A2.1  Goland’s Wing Flutter Speed 
Goland’s Wing Properties   
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Figure 0: Shape functions presentation along the half-span. 
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A2.2  Uniform Beam Aeroelastic Model Flutter Speed  
Beam Properties 
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Shape Functions 

  

 

 

 

Figure 0.2: Shape functions for beam model. 
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C2 c11 b22⋅ d11 d22⋅+ c21 b12⋅− d12 d21⋅−:= C2 2.782− 10 3−
×=

D1 a11 d22⋅ d11 a22⋅+:= D1 10.634=

D2 d11 b22⋅ d21 b12⋅−:= D2 5.77− 10 5−
×=

E1 a11 a22⋅:= E1 2.284 104
×=

E2 a11 b22⋅:= E2 2.094−=

S D2 B1 C2⋅ A1 D2⋅−( )⋅:= S 1.807 10 11−
×=

R B1 C1⋅ D2⋅ B1 C2⋅ D1⋅+ 2 A1⋅ D1⋅ D2⋅− B12 E2⋅−:= R 3.323− 10 6−
×=

V B1 C1⋅ D1⋅ B12 E1⋅− A1 D12
⋅−:= V 3.709 10 3−

×=

U1
R− R2 4 S⋅ V⋅−+( )

2 S⋅
:= U2

R− R2 4 S⋅ V⋅−−( )
2 S⋅

:=

U1 1.828 105
×= U2 1.123 103

×=

U11 U1:= U222 U2:=

U11 427.569= U222 33.51=

M
U222
343

:= M 0.098=

w1
D1 D2 U1⋅+

B1
:= w2

D1 D2 U2⋅+

B1
:=
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w1 27.12= w2 301.615=

Hz
w1
2 π⋅

:= Hz2
w2
2 π⋅

:=

Hz 4.316= Hz2 48.004=
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A3.  MATLAB Program Flowchart and Listing (For Chapter 5) 

A3.1  Program Flowchart 
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A3.2 Program Listing 

 

The Main Program 

 
========================================================================= 
% Time responce of damped Fluttering Wing. 
% ### Incorporates LQR full state feedback controller 
% ### Variables renamed for final version: 
% ###               Qs ==> ELs : External Load -s: system matrix, before 
% ###                            applying boundary conditions. 
% ###               Qa ==> ELa : External Load -a: actual; after applying 
% ###                            boundary conditions. 
% ###          Also Q  ==> EL, Qm ==> ELm  
% ### 
% ###   _8: THE CONTROL IS VARIABLE FOR EACH ACTUATOR (MULTI-CONTROL 
% ###       INPUTS) 
% ========================================================================= 
  
  
clc 
clear all 
global ks m c Mxps bc mxSMD mxM vectQ Mxpa ELs ELa AFs AFa 
  
% ==== Enter the system parameters ==== 
nel = 6;                        % Number of elements. 
nnel = 2;                       % Number of nodes per element. 
ndof = 3;                       % Number of degree of freedom at each node. 
tnnod = (nnel-1)*nel+1;         % Total number of nodes. 
sdof = ndof*tnnod;              % System degree of freedom 
edof = nnel*ndof; 
% ============== 
% Beam Properties 
width = .1;%1.8288;%.0254; 
% Eb = 144.8*10^12; 
Eb1= 69*10^9;%144.8*10^9; 
Eb2= 69*10^9;%144.8*10^9;%9.65*10^9; 
Gb12= 27*10^9;%7.1*10^9; 
Nub12= 0.32; 
MPb=[Eb1 Eb2 Gb12 Nub12]'; 
blength = .6;%0.254; 
tb = 0.002;%.007233;%0.00127; 
rhob = 2700; 
Vb=0; 
% ================== 
% Piezo's Properties 
% rhopti = 7600          % Subscript "pt" : Top Piezo, 
% Epti = 63*10^9;            % Subscript "pb" : Bottom Piezo.  
% tpt = 0.0002; 
rhop = 7552;%7600;           
%Ep = 63*10^9; 
Ep1= 36.5*10^9;%63*10^9; 
Ep2= 7.6*10^9;%63*10^9; 
Gp12=14.6*10^9;%24.8*10^9; 
Nup12=0.25;%0.28; 
MPp= [Ep1 Ep2 Gp12 Nup12]'; 
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tp = 0.001;%0.0002; 
pzndx=zeros(nel,2); 
Vp=0; 
Vpmax=0;%10^4; 
d31= 530*10^-12; %-166*10^-12; 
d32= -210*10^-12;%-166*10^-12; 
dp = [d31 d32 0]'; 
% ================ 
% Node data 
l= blength/nel; 
%I = width*tb^3/12; 
% ===================== 
% Laminate Data 
% nk=3;                             % Number of the laminate layers. 
LOs= [-60 0 -60 0 0 0; 
      0 0 0 0 0 0; 
      -60 0 -60 0 0 0];%[0 0 90 90 0 0]';         % Structure laminate 
orientation 
Lorb = [0 1 0];%[0 1 1 1 1 0]';               % Beam laminating order 
Lorp = [1 0 1];%[1 0 0 0 0 1]';               % PZT laminating order 
nla=length(Lorb);                             % Number of the laminate 
layers. 
Vorps= [1  1  1  0  0  1;...  
        0  0  0  0  0  0;... 
        -1  -1  -1  0  0  -1];%[1 0 0 0 0 -1]';       % Voltage polarity 
order for PZT wafers 
pzndx= [1 1 0 0 0 0;... 
        1 1 0 0 0 0]; 
% ================================= 
% Proportional Damping coefficients 
a= 0.02137;            % 2 elem ==> .02171, 4 ele ==> .02143, 6 ele ==> 
.02137 
b= 0.02137; 
% ======================== 
% Boundary Conditions 
bc=ones(sdof,1); %[0 0 1 1 1 1]; 
bc(1)=0; 
bc(2)=0; 
bc(3)=0; 
bc; 
% =============================================== 
  
%-------------------------------------------------------------------------- 
% ==== Initialization 
%--------------- 
ks = zeros(sdof,sdof);                    % initialization of system 
stiffness matrix 
m = zeros(sdof,sdof);                    % initialization of system mass 
matrix 
c = zeros(sdof,sdof);                    % initialization of system mass 
matrix 
E = zeros(nla,0); 
  
invm=zeros(sdof,sdof); 
kinvm=zeros(sdof,sdof); 
cinvm=zeros(sdof,sdof); 
ndx=zeros(nnel*ndof,1);                  % initialization of index vector 
% nsndx=zeros(sdof,1); 
Mxps=zeros(sdof,1); 
ELs=zeros(sdof,1); 
AFe=zeros(sdof,1); 
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AFs=zeros(sdof,1); 
F=zeros(2*tnnod,1); 
%x0=[0;0;0;0;0;0;0;0]; 
EL=0; 
Q1=0; 
Q2=0; 
Q3=0; 
Q4=0; 
Q5=0; 
Q6=0; 
tt=0;                     % Total laminate thickness 
LS=zeros(nla,1);          % Layer thickness structure/order 
h=0;                      % Structure/Laminate thickness 
zk=zeros(nla+1,1); 
D11=0; 
Fxp = 0; 
Mxp=0; 
Vpb=0; 
Vpt=0; 
Vb=0; 
Vair=0; 
Io=0; 
I2=0; 
L=0; 
M=0; 
alfae=0; 
alfat=0; 
hdot=0; 
alfadot=0; 
  
EFt=zeros(nel,1); 
  
% ============================================================ 
% ---- Matrices Indexing based on BC's ---- 
  
[nsndx,sndof]= bcndx(sdof,bc); 
sdof; 
sndof; 
  
x0=zeros(2*sndof,1); 
xs=zeros(2*sdof,1); 
xe=zeros(edof,1); 
a0=zeros(2*sndof,1); 
  
% ------------------------------- 
%  Temporary 
  
LOs= [-30 60 0 0 0 0; 
      0 0 0 0 0 0; 
      -30 60 0 0 0 0];%[0 0 90 90 0 0]';  % Structure laminate orientation 
% -------------------------------- 
  
tmax= 1; 
tstep = .001; 
  
Vair=66.28; 
  
Vpmax=10^4;  
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% Vpmax=0;  
  
zk; 
all_x=[x0]; all_t=[0]; all_Q5=[0]; all_Q2=[0]; 
t1Q5=0.1; t2Q5=0.11; t1Q2=0.2; t2Q2=0.4; t3Q2=0.6; 
all_Vpt=[0];all_Vpb=[0];all_F=[F];all_Vp=[0];all_u=[0]; 
CTRL=zeros(nel,1); 
all_L0=[0];all_L1=[0];all_L2=[0];all_L3=[0];all_L4=[0];all_L5=[0];all_L6=[0
]; 
all_T0=[0];all_T1=[0];all_T2=[0];all_T3=[0];all_T4=[0];all_T5=[0];all_T6=[0
]; 
all_B0=[0];all_B1=[0];all_B2=[0];all_B3=[0];all_B4=[0];all_B5=[0];all_B6=[0
]; 
all_H0=[0];all_H1=[0];all_H2=[0];all_H3=[0];all_H4=[0];all_H5=[0];all_H6=[0
]; 
all_R0=[0];all_R1=[0];all_R2=[0];all_R3=[0];all_R4=[0];all_R5=[0];all_R6=[0
]; 
all_A0=[0];all_A1=[0];all_A2=[0];all_A3=[0];all_A4=[0];all_A5=[0];all_A6=[0
]; 
all_Va1=[0];all_Va2=[0];all_Va3=[0];all_Va4=[0];all_Va5=[0];all_Va6=[0]; 
all_M0=[0];all_M1=[0];all_M2=[0];all_M3=[0];all_M4=[0];all_M5=[0];all_M6=[0
]; 
% ==================================================================== 
% ==== Solving by time integration 
for cur_time=0:tstep:tmax-tstep 
  
    disp(sprintf('Time = %6.3f [s]', cur_time)) 
    disp(sprintf('Air Velocity = %6.3f [m/s]', Vair)) 
%     if cur_time > t2Q5  
%        %Vpt= 1*cos(10*pi*cur_time);  
%        Vpt=-0.05*x0(sndof-1); 
%        Vpb=0.05*x0(sndof-1); 
%     else 
%         Vpt=0; 
%         Vpb=0; 
%     end     
%     Vpt = 50; 
%     Vpb = -50; 
    x0; 
%     for iel=1:nel 
%         nel; 
%         iel; 
%         a0(iel*3)=2*pi/180; 
%          
%         %x0(iel*3)=x0(iel*3)+2*pi/180 
%     end 
%    x0 = x0 + a0; 
    ks  = zeros(sdof,sdof);                     
    KCs = zeros(sdof,sdof); 
    m   = zeros(sdof,sdof);                    
    MCs = zeros(sdof,sdof); 
    c   = zeros(sdof,sdof); 
    CCs = zeros(sdof,sdof); 
    mxps=zeros(sdof,1); 
    Mxps=zeros(sdof,1); 
    AFs= zeros(sdof,1); 
    Fas= zeros(sdof,1); 
    Bs = zeros(sdof,nel);        % PZT control matrix 
     
% ============================================================ 
% ==== Calculate the matrices in the state-space equation ==== 
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% ============================================================ 
%     pzndx(1,1)=0; 
%     pzndx(1,2)=0; 
%     pzndx(2,1)=0; 
%     pzndx(2,2)=0; 
%     for iel = 1:2 
%         for iiel =1:nel 
%             pzndx(iiel,iel)=0; 
%         end 
%     end     
%     pzndx= [1 0 0 0 0 0;... 
%             1 0 0 0 0 0]; 
   Condx=pzndx; 
% ======================================================================== 
% ==== Calculations of the laminated structure in element level 
  
     
% ---------------------------------------------------------- 
% ---- Calculating the laminated structure properties 
  
%    [QS,epS]=WF_LamStr(MPb,MPp,LO,Lorb,Lorp,dp);      % Calculating 
Q11,Q12,Q22 ... in structure coordinate system 
     
    for iel=1:nel   
  
        LO = LOs(:,iel); 
        iel; 
        [QS,epS]=WF_LamStr(MPb,MPp,LO,Lorb,Lorp,dp);      % Calculating 
Q11,Q12,Q22 ... in structure coordinate system 
         
         
        Vorp = Vorps(:,iel); 
        iel; 
        Lt=zeros(nla,1); 
        h=0; 
        rho=zeros(nla,1); 
        EF=zeros(nla,1); 
        % -------------------------------- 
        % ---- Piezoelectric Indexing ---- 
         
        Lorpndx=Lorp; 
        Lorpndx(1)=pzndx(1,iel); 
        Lorpndx(nla)=pzndx(2,iel); 
        Lorpndx=Lorpndx + Lorb; 
         
        Vorpndx = Vorp; 
        Vorpndx(1)= Vorp(1)*Condx(1,iel); 
        Vorpndx (nla)= Vorp(nla)*Condx(2,iel); 
        Vorpndx; 
         
        EFp=Vpmax/tp;                                       % PZT Electric 
Field 
         
        QSx=QS; 
%         QSx(1)=pzndx(1,iel); 
%         QSx(nla)=pzndx(2,iel); 
%         QSx 
        for ila = 1:nla 
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            Lt(ila)=tb*Lorb(ila)+tp*Lorp(ila)*Lorpndx(ila);         % 
Lamina/layer thickness 
            h=h+Lt(ila);                                            % 
Laminate thickness 
            rho(ila)=rhob*Lorb(ila)+rhop*Lorp(ila)*Lorpndx(ila);    % 
Lamina/layer density 
            %EF(ila)=EFp*Vorpndx(ila);                               % 
Lamina/layer Electric Field 
        end 
        rho; 
        EF*tp; 
        Lt;         
        h; 
        zk(1)=-h/2; 
        for ila = 2:nla+1 
            zk(ila)=zk(ila-1)+Lt(ila-1); 
        end 
        zk; 
%         rhopt=rhop*pzndx(1,iel); 
%         rhopb=rhop*pzndx(2,iel); 
%      
%         Ept=Ep*pzndx(1,iel); 
%         Epb=Ep*pzndx(2,iel); 
         
        % ------------------------------------------------ 
        % ---- Calculate laminated element properties ---- 
        D11=0; D12=0; D22=0; D16=0; D26=0; D66=0; 
        npx=0; npy=0; npxy=0; 
        Npx=0; Npy=0; Npxy=0; 
        I00=0; I01=0; I02=0; I20=0; I21=0; I22=0;  
        mpx=0; mpy=0; mpxy=0; 
        Mpx=0; Mpy=0; Mpxy=0; 
        
        ea = 0.4; 
                        
        for k=1:nla 
%             tt= tt+t(k); 
            zk(k); 
            zk(k+1); 
            zk(k)^3; 
            zk(k+1)^3; 
            k; 
            EF*tp; 
            epS(k,1); 
            width; 
             
            D11 = D11 + QS(k,1)/3*(zk(k+1)^3-zk(k)^3);%*Lorpndx(k) 
            D12 = D12 + QS(k,2)/3*(zk(k+1)^3-zk(k)^3);%*Lorpndx(k); 
            D22 = D22 + QS(k,3)/3*(zk(k+1)^3-zk(k)^3);%*Lorpndx(k); 
            D16 = D16 + QS(k,4)/3*(zk(k+1)^3-zk(k)^3);%*Lorpndx(k); 
            D26 = D26 + QS(k,5)/3*(zk(k+1)^3-zk(k)^3);%*Lorpndx(k); 
            D66 = D66 + QS(k,6)/3*(zk(k+1)^3-zk(k)^3);%*Lorpndx(k); 
             
            npx = npx + width*epS(k,1)*(zk(k+1)-zk(k))*Vorp(k); 
            npy = npy + width*epS(k,2)*(zk(k+1)-zk(k))*Vorp(k); 
            npxy = npxy + width*epS(k,3)*(zk(k+1)-zk(k))*Vorp(k); 
             
            mpx = mpx + width/2*epS(k,1)*(zk(k+1)^2-zk(k)^2)*Vorp(k); 
            mpy = mpy + width/2*epS(k,2)*(zk(k+1)^2-zk(k)^2)*Vorp(k); 
            mpxy = mpxy + width/2*epS(k,3)*(zk(k+1)^2-zk(k)^2)*Vorp(k); 
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            I00 = I00 + width*rho(k)*(zk(k+1)-zk(k)); 
            I01 = I01 + width^2*rho(k)*(0.5-ea)*(zk(k+1)-zk(k)); 
            I02 = I02 + rho(k)*width^3/3*(1-3*ea+3*ea^2)*(zk(k+1)-zk(k)); 
            I20 = I20 + width*rho(k)/3*(zk(k+1)^3-zk(k)^3); 
            I21 = I21 + rho(k)*(0.5-ea)*width^2/3*(zk(k+1)^3-zk(k)^3); 
            I22 = I22 + rho(k)*(1-3*ea+3*ea^2)*width^3/9*(zk(k+1)^3-
zk(k)^3); 
             
        end 
  
        DD=[D11 D12 D22 D16 D26 D66]; 
%         EFf = EFt(iel) 
%         Npx = EFf*npx; 
%         Npy = EFf*npy; 
%         Npxy = EFf*npxy; 
%         Np=[Npx Npy Npxy] 
         
        mp=[mpx mpy mpxy]; 
         
        Y0=width; 
        Y1 = width^2*(0.5-ea); 
        Y2 = width^3*(1-3*ea+3*ea^2)/3; 
         
%         
[Km,Gm,Mm,mxpm,ELe]=WF_7_eleSMD(DD,Np,mp,I00,I01,I02,I20,I21,I22,EL,l,Y0,Y1
,Y2); 
        
[Km,G1,G2,G3,Mm,mxpm,ELe]=WF_8_eleSMD(DD,mp,I00,I01,I02,I20,I21,I22,EL,l,Y0
,Y1,Y2); 
         
%         Ge = G1*Npx+G2*Npxy+G3*Npy 
        ge = G1*npx+G2*npxy+G3*npy; 
        Ge = EFt(iel)*ge; 
        iel; 
        EFt; 
% --------------------------------------- 
        % ---- Calculating Aerodynamic Forces ---- 
        Mac = 0; 
  
        rhoair =1.2; 
%         Vair = 56;%52.84;%34 
        q = 0.5 * rhoair * Vair^2; 
        Cla = 0.8*2*pi; 
        alpha0=2*pi/180;        
        ea1 = ea-0.25; 
        ea2 = 0.75-ea; 
        xs; 
% ---- Create ELEMENT stiffness, mass & damping matrices  ---- 
         
        
[Kae,Cae,Fa0,Mae]=WF_6_eleAero_a(l,alpha0,rhoair,Cla,width,Vair,ea1,ea2); 
         
        for ij=1:edof 
            xe(ij)=xs(iel*3-3+ij); 
        end     
        xe; 
        AFe = Fa0; 
        ll=[1 1 1 1 1 1]'; 
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        Fae=(Kae+Cae)*xe+Fa0; 
        %AL = Kae* 
% ----------------------------------------------------------- 
% ---- System stiffness, mass, damping in element level 
         
        ke=Km-Ge+Kae; 
        me=Mm+Mae; 
         
% Proportional Damping  
        [Cm]=a*Km+b*Mm; 
        Cm; 
        Cae; 
        ce = Cm+Cae; 
% ---------------------------------------------------- 
% ---- Calculate Control System Matrices 
  
        KCe = Km;%ke; 
        MCe = Mm;%me; 
        CCe = Cm;%ce; 
        Be  = mxpm'+ge*xe; 
        
% ------------------------------------------------------------ 
% ---- Assemblying stiffness, mass and damping matrices ---- 
         
        ndx = fedofndx(iel,nnel,ndof); 
        ks  = SB_mxasmbl(ks,ke,ndx); 
        KCs = SB_mxasmbl(KCs,KCe,ndx); 
        m   = SB_mxasmbl(m,me,ndx); 
        MCs = SB_mxasmbl(MCs,MCe,ndx); 
        c   = SB_mxasmbl(c,ce,ndx); 
        CCs = SB_mxasmbl(CCs,CCe,ndx); 
%         Gs  = SB_mxasmbl(Gs,Ge,ndx); 
        Bs= B_Ctrlmxasmbl(Bs,Be,ndx,iel); 
         
        
[mxps,ELs,AFs,Fas]=WF_7_mxasmbl1D(mxps,ELs,AFs,Fas,mxpm,ELe,AFe,Fae,ndx); 
        c; 
        mxps; 
    end 
     
% ------------------------------------------------------------ 
% ---- Reduce control matrices based on boundary conditions 
  
    [KCa,CCa,MCa,mxpa,Faa,Ba] = 
WF_8_mxred(KCs,CCs,MCs,mxps,Fas,Bs,nsndx,sndof,nel); 
    mxpa; 
    Ba; 
% -------------------------------------- 
% ---- Calculate Control gain using LQR 
  
    invMC=inv(MCa); 
     
    A    = [zeros(sndof,sndof), eye(sndof,sndof);-invMC*KCa -invMC*CCa]; 
    mxMC = [zeros(sndof,sndof);invMC]; 
    B    = 5000*mxMC*Ba;%mxpa; 
    Q    = eye(2*sndof,2*sndof); 
    R    = eye(1,1); 
    [G,S]=felqr(A,B,Q,R); 
    G; 
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    u   = G*x0; 
    EE=Vpmax/tp; 
    EFt = EE*u; 
% ------------------------------------------------------------ 
      mxps; 
%     Mxpe = EFt*mxpm; 
    Mpx = EFt*mpx; 
    Mpy = EFt*mpy; 
    Mpxy = EFt*mpxy; 
      Mxps = Bs*EFt; 
%         Np=[Npx Npy Npxy]; 
%         Mp=[Mpx Mpy Mpxy]; 
% ============================================================ 
% ====     Applying boundary conditions ==== 
% ============================================================ 
% = To reduce the matrices dimensions based on boundary  
% = conditions. 
% ============================================================ 
  
% ---- Matrices Indexing based on BC's ---- 
  
%[nsndx,sndof]= bcndx(sdof,bc); 
% ------------------------------------------------------------ 
  
% ---- Matrices reduction ---- 
ka=zeros(sndof,sndof); 
ca=zeros(sndof,sndof); 
ma=zeros(sndof,sndof); 
Mxpa=zeros(sndof,1); 
sndof; 
ELa=zeros(sndof,1); 
[ka,ca,ma,Mxpa,ELa,AFa] = WF_mxred(ks,c,m,Mxps,ELs,AFs,nsndx,sndof); 
ka; 
ca; 
ma; 
ELa; 
AFa; 
%[V,D]=eig(ka,ma); 
invm=inv(ma); 
ka; 
invm*ka; 
[s] = sprintf('%6.4f' , ka); 
mxSMD = [zeros(sndof,sndof), eye(sndof,sndof);-invm*ka -invm*ca]; 
mxM = [zeros(sndof,sndof);invm]; 
Mxpa; 
AFa; 
sndof; 
%mxSMD = [zeros(sdof,sdof), eye(sdof,sdof);-invm*k -invm*c]; 
%mxM = [zeros(sdof,sdof);invm]; 
  
% ==== Describe the excitation forces ==== 
   % disp(sprintf('Time = %6.6f [s]', cur_time)) 
 ELa ; 
 Mxpa; 
    if cur_time > t1Q5 & cur_time <= t2Q5 
        ELa(sndof-2)=0*sin(pi*(cur_time-t1Q5)/(t2Q5-t1Q5))^2; % change to 
La(sndof-2) 
    else 
        ELa(sndof-2)=0; 
    end;   
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    ELa(sndof-2); 
     
    %if cur_time <= t1Q2 
     %   Q2 = 0; 
     %elseif cur_time > t1Q2 & cur_time < t2Q2 
     %   Q2 = -50000*(cur_time-t1Q2); 
     %elseif cur_time > t2Q2 & cur_time < t3Q2 
     %   Q2 = -50000*(t2Q2-t1Q2)+50000*(cur_time-t2Q2); 
     %elseif cur_time > t3Q2 
     %   Q2 = 0;     
     %end   
    %vectQ=[Q3;Q4;Q5;Q6]; 
   
    cur_time; 
    %ELa' 
    tstep; 
   x0; 
    % ==== Integrate equations of motion in the loop ==== 
   [t,x] = ode23(@WF_7_stsp_xdot,[cur_time cur_time+tstep],x0); 
   [ii,jj]=size(x); 
   x0=x(ii,:)'; 
   %x0(sndof)*180/pi; 
  
   for iel=1:nel 
        nel; 
        iel; 
        a0(iel*3)=0*pi/180; 
         
        %x0(iel*3)=x0(iel*3)+2*pi/180 
    end 
   x0 = x0 + a0; 
    
   %    xe(3)=0; 
   for jj = 4:sdof 
       jj; 
       xs(jj) = x0(jj-3); 
   end 
   for jj = sdof+4:2*sdof 
       jj; 
       xs(jj) = x0(jj-6); 
   end 
   x0; 
   xe; 
  
% 
===========================================================================
=============== 
  
   all_x=[all_x,x0]; 
   all_t=[all_t,cur_time+tstep]; 
   all_Q5=[all_Q5,ELa(sndof-2)]; 
   all_Vpt=[all_Vpt,EF(1)*tp]; 
   all_Vpb=[all_Vpb,Mxpa(2)]; 
%    all_Vp=[all_Vp,EFt*tp]; 
   all_F=[all_F,F]; 
%    all_u=[all_u,u]; 
   %all_Q2=[all_Q2,Q2]; 
% ------------------------------------------------------------------------- 
   all_H0=[all_H0,xs(1)];  all_H1=[all_H1,xs(4)];     % Vertical 
Displacement 
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   all_H2=[all_H2,xs(7)];  all_H3=[all_H3,xs(10)]; 
   all_H4=[all_H4,xs(13)];  
   all_H5=[all_H5,xs(16)]; all_H6=[all_H6,xs(19)]; 
  
   all_R0=[all_R0,xs(2)];  all_R1=[all_R1,xs(5)];     % Rotational 
Displacement 
   all_R2=[all_R2,xs(8)];  all_R3=[all_R3,xs(11)]; 
   all_R4=[all_R4,xs(14)];  
   all_R5=[all_R5,xs(17)]; all_R6=[all_R6,xs(20)]; 
  
   all_A0=[all_A0,xs(3)];  all_A1=[all_A1,xs(6)];     % Torsional 
Dispalcement 
   all_A2=[all_A2,xs(9)];  all_A3=[all_A3,xs(12)]; 
   all_A4=[all_A4,xs(15)];  
   all_A5=[all_A5,xs(18)]; all_A6=[all_A6,xs(21)]; 
  
% ------------------------------------------------------------------------- 
  
   all_L0=[all_L0,Fas(1)];  all_L1=[all_L1,Fas(4)];     % Aerodynamic 
vertical forces (Lift) 
   all_L2=[all_L2,Fas(7)];  all_L3=[all_L3,Fas(10)]; 
   all_L4=[all_L4,Fas(13)];  
   all_L5=[all_L5,Fas(16)]; all_L6=[all_L6,Fas(19)]; 
    
   all_B0=[all_B0,Fas(2)];  all_B1=[all_B1,Fas(5)];     % Aerodynamic 
bending forces 
   all_B2=[all_B2,Fas(8)];  all_B3=[all_B3,Fas(11)]; 
   all_B4=[all_B4,Fas(14)];  
   all_B5=[all_B5,Fas(17)]; all_B6=[all_B6,Fas(20)]; 
    
   all_T0=[all_T0,Fas(3)];  all_T1=[all_T1,Fas(6)];     % Aerodynamic 
torsional forces (Pitch) 
   all_T2=[all_T2,Fas(9)];  all_T3=[all_T3,Fas(12)]; 
   all_T4=[all_T4,Fas(15)];  
   all_T5=[all_T5,Fas(18)]; all_T6=[all_T6,Fas(21)]; 
    
% ------------------------------------------------------------------------- 
  
      
% ------------------------------------------------------------------------- 
  
   all_Va1=[all_Va1,EFt(1)*tp];  all_Va2=[all_Va2,EFt(2)*tp];     % 
Actuator Voltage. 
   all_Va3=[all_Va3,EFt(3)*tp];  all_Va4=[all_Va4,EFt(4)*tp]; 
   all_Va5=[all_Va5,EFt(5)*tp];  all_Va6=[all_Va6,EFt(6)*tp];  
    
end 
  
All_H=[all_H0; all_H1; all_H2; all_H3; all_H4; all_H5; all_H6]; 
All_R=[all_R0; all_R1; all_R2; all_R3; all_R4; all_R5; all_R6]; 
All_A=[all_A0; all_A1; all_A2; all_A3; all_A4; all_A5; all_A6]; 
  
All_L=-[all_L0; all_L1; all_L2; all_L3; all_L4; all_L5; all_L6]; 
All_T= [all_T0; all_T1; all_T2; all_T3; all_T4; all_T5; all_T6]; 
All_B= [all_B0; all_B1; all_B2; all_B3; all_B4; all_B5; all_B6]; 
  
All_Va= [all_Va1; all_Va2; all_Va3; all_Va4; all_Va5; all_Va6]; 
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% ==== Plot the system excitation force Q5 ==== 
% figure 
% %subplot(211) 
% contour(all_F) 
% %plot(all_t,all_F(tnnod,:),'r-') 
% grid on 
% ylabel('L, [N]') 
% title('Lift Forces') 
  
% ==== Plot the system excitation force Q2 ==== 
%subplot(212) 
%plot(all_t,all_Q2,'r--') 
%grid on 
%ylabel('Q2, [N]') 
%xlabel('Time, [s]') 
sndof-1; 
% ==== Plot beam tip translation displacement ==== 
sndof-2; 
figure 
subplot (211) 
% plot(all_t,all_x(1,:),'b-'); 
plot(all_t,all_x(sndof-2,:),'b-') 
%hold on 
%plot(all_t,all_x(7,:),'r--') 
grid on 
xlabel('Time, [s]') 
ylabel('h[m]') 
title('Tip Traslation Displacement') 
%legend('q4: Displacemnt'); 
2*sndof-1; 
% ==== Plot beam tip velocity ==== 
2*sndof-2; 
%figure 
% subplot(222) 
% plot(all_t,all_x(2*sndof-2,:),'r-') 
% %hold on 
% %plot(all_t,all_x(4,:),'r--') 
% %grid on 
% xlabel('Time, [s]') 
% ylabel('Vtip [m/s]') 
% title('Tip Velocity') 
% %legend('q5dot','q2dot'); 
% ==== Plot beam tip Twist angle ==== 
sndof; 
%figure 
subplot(212) 
plot(all_t,all_x(sndof,:),'b-') 
%hold on 
%plot(all_t,all_x(7,:),'r--') 
grid on 
xlabel('Time, [s]') 
ylabel('Alfa [Rad]') 
title('Tip Twist Angle') 
%legend('q4: Displacemnt'); 
% ================================= 
% figure 
% subplot(211) 
% plot(all_t,all_Vp,'r-') 
% %hold on 
% %plot(all_t,all_x(4,:),'r--') 
% grid on 
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% xlabel('Time, [s]') 
% ylabel('Vpt[Volts]') 
% title('Voltage') 
% %legend('q5dot','q2dot'); 
% subplot(212) 
% plot(all_t,all_u,'r--') 
% %hold on 
% %plot(all_t,all_x(4,:),'r--') 
% grid on 
% xlabel('Time, [s]') 
% ylabel('Vpb [Volts]') 
% title('Voltage') 
% %legend('q5dot','q2dot'); 
% ============================================== 
% ==== FFT 
%figure 
Ztip=all_x(sndof-2,:); 
Ttip=all_x(sndof,:); 
Dtip=Ztip+Ttip; 
% Y = fft(Ztip,512); 
% Pyy = Y.* conj(Y) / 512; 
% H = fft(Ttip,512); 
% hyy = H.*conj(H)/512; 
% % ==== Graph the first 257 points (the other 255 points are redundant) on 
a meaningful frequency axis:  
% f = 1000*(0:256)/512; 
% subplot(222) 
% plot(f,Pyy(1:257)) 
% title('Frequency content of y') 
% xlabel('frequency (Hz)') 
% % ============= 
% f = 1000*(0:256)/512; 
% subplot(224) 
% plot(f,hyy(1:257)) 
% title('Frequency content of y') 
% xlabel('frequency (Hz)') 
  
L=length(Ztip); 
Fs=1/tstep; 
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 
Y = fft(Ztip,NFFT)/L; 
f = Fs/2*linspace(0,1,NFFT/2); 
  
% Plot single-sided amplitude spectrum. 
% subplot(222) 
% plot(f,2*abs(Y(1:NFFT/2)))  
% title('Single-Sided Amplitude Spectrum of y(t)') 
% xlabel('Frequency (Hz)') 
% ylabel('|Y(f)|') 
  
L=length(Ttip); 
Fs=1/tstep; 
NFFT = 2^nextpow2(L); % Next power of 2 from length of y 
Y = fft(Ttip,NFFT)/L; 
f = Fs/2*linspace(0,1,NFFT/2); 
  
% Plot single-sided amplitude spectrum. 
% subplot(224) 
% plot(f,2*abs(Y(1:NFFT/2)))  
% title('Single-Sided Amplitude Spectrum of y(t)') 
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% xlabel('Frequency (Hz)') 
% ylabel('|Y(f)|') 

 
Boundary Conditions Indexing 

function [nsndx,sndof]= bcndx(sdof,bc) 
sdof=sdof; 
sndof=0; 
  
% -------------------------------------------------------------- 
% ---- Matrices indexing based on BC's ---- 
%  Purpose: 
%     To Calculate the new system degree of freedom baced on  
%     the boundary conditions. 
% 
%  Variable Description: 
%     bc(i) - Boundary conditions matrix (1=free, 0=fixed)     
%     sdof  - System degree of freedom 
%     sndof - System new degree of freedom after applying B.C's. 
%     nsndx - New system index 
%      
%--------------------------------------------------------------- 
for i=1:sdof  
    sndof=sndof+bc(i); 
end     
  
ii=1; 
for j= 1:sdof 
   
    if bc(j)==1  
        nsndx(ii)=j; 
        ii=ii+1; 
    end 
end 
 

Plane Stress-reduced Stiffness 

 
function [QS,epS]=LamStr(MPb,MPp,LO,Lorb,Lorp,dp) 
  
%-------------------------------------------------------------- 
%  Purpose: 
%     To Calculate the Plane stress-reduced stiffness (Q11,Q12,Q22 & Q66) 
%     from the material properties. 
%     And to transform the lamina properties into structure properties (ES) 
%  Variable Description: 
%     ES    - Array of the laminated structure     
%     MPb   - Material properties for the beam 
%     MPp   - Material properties for the PZT  
%     Lorb  - Beam laminating order 
%     Lorp  - PZT laminating order 
%     LPb   - Plane stress-reduced stiffness of the beam  
%             [Q11 Q12 Q22 Q66]'b 
%     LPp   - Plane stress-reduced stiffness of the PZT 
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%             [Q11 Q12 Q22 Q66]'p 
%     SPb   - Beam stiffness in laminated coordinates 
%             [Q11S Q12S Q22S Q66S] 
%     SPp   - PZT stiffness in laminated coordinates 
%      
%--------------------------------------------------------------- 
kk= length(LO); 
dp; 
% ==== Calculating the Plane stress-reduced stiffness 
% 
% ----- Laminated beam 
MPb; 
Nu12= MPb(4); 
Nu21 = Nu12*MPb(2)/MPb(1); 
Nub= 1/(1-Nu12*Nu21); 
  
Tranb= [ Nub     0     0  0;... 
          0  Nu12*Nub  0  0;... 
          0     Nub    0  0;... 
          0      0     1  0]; 
LPb = Tranb*MPb; 
  
% ----- Laminated PZT 
MPb; 
Nu12= MPp(4); 
Nu21 = Nu12*MPp(2)/MPp(1); 
Nup= 1/(1-Nu12*Nu21); 
  
Tranp= [ Nup     0     0  0;... 
          0  Nu12*Nup  0  0;... 
          0     Nup    0  0;... 
          0      0     1  0]; 
LPp = Tranp*MPp; 
  
% ====================================================== 
% ==== Transforming stiffnesses from laminate coordinate system into 
%      structure coordinate system 
LO; 
kk=length(LO); 
theta= LO*pi/180; 
  
    for ii=1:kk 
        ta=theta(ii); 
        Tran= [      (cos(ta))^4              2*(sin(ta))^2*(cos(ta))^2            
(sin(ta))^4                  4*(sin(ta))^2*(cos(ta))^2;... 
               (sin(ta))^2*(cos(ta))^2        (sin(ta))^4+(cos(ta))^4            
(sin(ta))^2*(cos(ta))^2            -4*(sin(ta))^2*(cos(ta))^2;... 
                     (sin(ta))^4              2*(sin(ta))^2*(cos(ta))^2            
(cos(ta))^4                  4*(sin(ta))^2*(cos(ta))^2;... 
                 sin(ta)*(cos(ta))^3   -
sin(ta)*(cos(ta))^3+(sin(ta))^3*cos(ta)     -(sin(ta))^3*cos(ta)     -
2*sin(ta)*(cos(ta))^3+2*(sin(ta))^3*cos(ta);... 
                 (sin(ta))^3*cos(ta)   -
(sin(ta))^3*cos(ta)+sin(ta)*(cos(ta))^3     -sin(ta)*(cos(ta))^3      -
2*(sin(ta))^3*cos(ta)+2*sin(ta)*(cos(ta))^3;... 
               (sin(ta))^2*(cos(ta))^2        -2*(sin(ta))^2*(cos(ta))^2           
(sin(ta))^2*(cos(ta))^2 (sin(ta))^4+(cos(ta))^4-2*(sin(ta))^2*(cos(ta))^2]; 
        ii; 
        Tran; 
        SPb= Tran*LPb; 
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        SPp= Tran*LPp; 
                
        for jj=1:6 
            QS(ii,jj)=SPb(jj)*Lorb(ii)+SPp(jj)*Lorp(ii); 
        end; 
QS; 
% ------------------------------------------------------------ 
% ---- The Stiffness Matrix in Structure/laminate coordinates 
  
        QQ(1,1)=SPb(1)*Lorb(ii)+SPp(1)*Lorp(ii); 
        QQ(1,2)=SPb(2)*Lorb(ii)+SPp(2)*Lorp(ii); 
        QQ(1,3)=SPb(4)*Lorb(ii)+SPp(4)*Lorp(ii); 
        QQ(2,1)=QQ(1,2); 
        QQ(2,2)=SPb(3)*Lorb(ii)+SPp(3)*Lorp(ii); 
        QQ(2,3)=SPb(5)*Lorb(ii)+SPp(5)*Lorp(ii); 
        QQ(3,1)=QQ(1,3); 
        QQ(3,2)=QQ(2,3); 
        QQ(3,3)=SPb(6)*Lorb(ii)+SPp(6)*Lorp(ii); 
  
        QQ; 
  
% ---------------------------------------------------------------------- 
% ---- Transforming PZT strain coefficient d (m/volt) from laminate  
% ---- coordinate system into structure coordinate system 
  
        Trand = [  (cos(ta))^2       (sin(ta))^2     0;... 
                   (sin(ta))^2       (cos(ta))^2     0;... 
                  cos(ta)*sin(ta)  -cos(ta)*sin(ta)  0]; 
     
        dpS= Trand*dp; 
         
% ------------------------ 
% ---- PZT e=Q*d 
  
       eS = QQ*dpS; 
     
  
        for jj=1:3 
            epS(ii,jj)=eS(jj)*Lorp(ii);    % matrix of "e" for all layers 
        end     
    end 
    epS; 
 

Elemental stiffness and Mass Matrices 

 
function 
[Km,G1,G2,G3,Mm,mxpm,ELe]=eleSMD(DD,mp,I00,I01,I02,I20,I21,I22,EL,l,Y0,Y1,Y
2) 
  
%-------------------------------------------------------------- 
%  Purpose: 
%     To Calculate the stiffness and mass matrices for beam element with 
displacement 
%     degrees of freedom only 
% 
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%  Variable Description: 
%     ke    - element stiffness matrix     
%     me    - element mass matrix 
%     E     - elastic modulus  
%     sh    - shear modulus 
%     l     - element length 
%     thick - element thickness 
%     width - width of the beam element  
%     rho   - mass density of the beam element (mass per unit volume) 
%             lumped mass matrix only 
%--------------------------------------------------------------- 
% ==== Element Stiffness Matrix 
D11=DD(1); 
D12=DD(2); 
D22=DD(3); 
D16=DD(4); 
D26=DD(5); 
D66=DD(6); 
  
mpx=mp(1); 
mpy=mp(2); 
mpxy=mp(3); 
  
 Khh=(D11*Y0)/l^3; 
 JA=(4*Y0*D66)/l; 
 KA=(2*Y0*D12)/l; 
 Kaa=JA+KA; 
 kha=(4*Y0*D16)/l; 
 kah=(2*Y0*D16)/l; 
    Kmt= [ 12*Khh   6*l*Khh   0*kha    -12*Khh    6*l*Khh    0*kha;... 
          6*l*Khh  4*l^2*Khh   kha   -6*l*Khh   2*l^2*Khh     -kha;... 
           0*kah     kah       Kaa      0*kah     -kah        -Kaa;... 
          -12*Khh  -6*l*Khh   0*kha     12*Khh    -6*l*Khh   0*kha;... 
          6*l*Khh  2*l^2*Khh   -kha   -6*l*Khh   4*l^2*Khh     kha;... 
           0*kah     -kah      -Kaa     0*kah      kah         Kaa]; 
    
  
 % ---------------------------------------- 
 % ==== Geometric Stiffness Matrix 
 % Fxp = width * Fp , where Fp is Piezoelectric plane forse 
 g1 = 1/(30*l); 
 g2 = Y0/12; 
 g3 = Y0*l/6; 
   
 G1= g1*[ 36*Y0     3*l*Y0      30*Y1      -36*Y0      3*l*Y0    -30*Y1;... 
         3*l*Y0   4*l^2*Y0       0        -3*l*Y0    -l^2*Y0         0;... 
         30*Y1       0         30*Y2      -30*Y1        0       -30*Y2;... 
         -36*Y0    -3*l*Y0    -30*Y1       36*Y0     -3*l*Y0     30*Y1;... 
         3*l*Y0    -l^2*Y0       0        -3*l*Y0    4*l^2*Y0        0;... 
         -30*Y1      0        -30*Y2       30*Y1        0        30*Y2]; 
  
 G2= g2*[  0     0    -6     0    0    -6;... 
          0     0     l     0    0    -l;... 
         -6    -l     0    -6    l     0;... 
          0     0     6     0    0     6;... 
          0     0    -l     0    0     l;... 
          6     l     0     6   -l     0]; 
       
 G3= g3*[  0     0     0     0    0     0;... 
          0     0     0     0    0     0;... 
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          0     0     2     0    0     1;... 
          0     0     0     0    0     0;... 
          0     0     0     0    0     0;... 
          0     0     1     0    0     2];      
    
% --------------------------------------------- 
% ==== Total Stiffness Matrix ===== 
  Km=Kmt;%-Gm; 
  
% ============================================= 
% ==== Mass Matrix 
  
    mIo=zeros(6,6); 
    mI2=zeros(6,6); 
    AM = I00*l/420; 
    BM = I20/(30*l); 
    IA = (I02+I20)*l/6; 
    Mah = I01*l/60; 
    Mha = Mah; 
    CM = I21/l; 
    DM = I22/l; 
    mIo = [156*AM    22*l*AM    21*Mha    54*AM    -13*l*AM    9*Mha;... 
           22*l*AM   4*l^2*AM   3*l*Mha   13*l*AM  -3*l^2*AM   2*l*Mha;... 
           21*Mah    3*l*Mah    2*IA      9*Mah    -2*l*Mah    IA;... 
           54*AM     13*l*AM    9*Mha     156*AM   -22*l*AM    21*Mha;... 
          -13*l*AM  -3*l^2*AM  -2*l*Mha  -22*l*AM   4*l^2*AM   -3*l*Mha;... 
           9*Mah     2*l*Mah    IA        21*Mah   -3*l*Mah    2*IA]; 
  
    mI2= [36*BM    3*l*BM     CM   -36*BM    3*l*BM   -CM;... 
          3*l*BM   4*l^2*BM   0   -3*l*BM  -l^2*BM      0;... 
            CM        0       DM     -CM       0      -DM;... 
          -36*BM   -3*l*BM   -CM    36*BM   -3*l*BM    CM;... 
          3*l*BM   -l^2*BM    0   -3*l*BM  4*l^2*BM     0;... 
            -CM       0      -DM     CM         0      DM]; 
  
      Mm=mIo+mI2; 
  
% =========================================== 
% ==== Piezoelectric Force Matrix 
  
 mxpm = [0  -mpx  -2*mpxy  0  mpx  2*mpxy]; 
 %Mxpe=Mxpetemp*Mxp; 
  
 % ========================================== 
 % ==== Element Nodal Forces 
  
 ELetemp=[1 1 1 1 1 1];  % Check this with the  
 ELe=ELetemp*EL; 
 

The Aerodynamic Stiffness and Mass Matrices 

function [Kae,Cae,Fa0,Mae]=eleAero(l,alpha0,rhoair,Cla,width,Vair,ea1,ea2) 
  
%-------------------------------------------------------------- 
%  Purpose: 
%     To Calculate the Aerodynamic stiffness and mass matrices for beam  
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%     element with displacement degrees of freedom only 
% 
%  Variable Description: 
%     Kae    - element Aerodynamic stiffness matrix    
%     Cae    - element Aerodynamic damping matrix    
%     Mae    - element Aerodynamic mass matrix 
%      l     - element length 
%     thick  - element thickness 
%      
%--------------------------------------------------------------- 
% ==== Element Aerodynamic Stiffness Matrix 
q = 0.5 * rhoair * Vair^2; 
  
Ae = -q*width*Cla*l/60; 
  
    Kae= Ae*[ 0   0        21       0    0               9;... 
              0   0       3*l       0    0             2*l;... 
              0   0   20*width*ea1  0    0    10*width*ea1;... 
              0   0        9        0    0              21;... 
              0   0      -2*l       0    0            -3*l;... 
              0   0   10*width*ea1  0    0    20*width*ea1]; 
    
 Kae; 
  
 % ---------------------------------------- 
 % ==== Element Aerodynamic Damping Matrix 
  
  a = width*pi/8; 
  CA = -l*q*width*Cla/(60*Vair); 
  aa = (width*ea1*ea2-a/Cla); 
  
     Cae= CA*[    21        0     21*width*ea2         9        0       
9*width*ea2;... 
                  3*l       0    3*l*width*ea2        2*l       0     
2*l*width*ea2;... 
              20*width*ea1  0     20*width*aa     10*width*ea1  0       
10*width*aa;... 
                   9        0     9*width*ea2          21       0      
21*width*ea2;... 
                 -2*l       0   -2*l*width*ea2       -3*l       0    -
3*l*width*ea2;... 
              10*width*ea1  0     10*width*aa     20*width*ea1  0       
20*width*aa]; 
    
% ==== CL0 component ================== 
  
  FA= -l/60*q*width*Cla; 
  
  Fa0= FA*alpha0*[ 30;... 
                   5*l;... 
                   30*width*ea1;... 
                   30;... 
                   -5*l;... 
                   30*width*ea1]; 
% ---------------------------------------  
 Mae=0; 
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Indexing  

function [index]=fedofndx(iel,nnel,ndof) 
  
edof = nnel*ndof; 
start = (iel-1)*(nnel-1)*ndof; 
% 
for i = 1:edof 
    index(i) = start+i; 
end     
 

Matrix Assembly 

 
function [k]=mxasmbl(k,ke,ndx) 
%---------------------------------------------------------- 
%  Purpose: 
%     Assembly of element matrices into the system matrix 
% 
%  Synopsis: 
%     [k]=mxasmbl1(k,ke,ndx) 
% 
%  Variable Description: 
%     k   - system matrix 
%     ke  - element matri 
%     ndx - d.o.f. vector associated with an element 
%----------------------------------------------------------- 
  
  
 edof = length(ndx); 
 for i=1:edof; 
   ii=ndx(i); 
   for j=1:edof 
      jj=ndx(j); 
      k(ii,jj)=k(ii,jj)+ke(i,j); 
   end 
 end    
  
  
 
Vector Assembly 

function 
[mxps,ELs,AFs,Fas]=mxasmbl1D(mxps,ELs,AFs,Fas,mxpm,ELe,AFe,Fae,ndx) 
%---------------------------------------------------------- 
%  Purpose: 
%     Assembly of element matrices into the system matrix 
% 
%  Synopsis: 
%     [k]=mxasmbl1(k,ke,ndx) 
% 
%  Variable Description: 
%     k   - system matrix 
%     ke  - element matri 
%     ndx - d.o.f. vector associated with an element 
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%----------------------------------------------------------- 
  
  
 edof = length(ndx); 
 for i=1:edof; 
     ii=ndx(i); 
%    Mxps(ii); 
   %for j=1:edof 
    %  jj=ndx(j); 
     mxps(ii)=mxps(ii)+mxpm(i); 
     ELs(ii) =ELs(ii)+ELe(i); 
     AFs(ii) =AFs(ii)+AFe(i); 
     Fas(ii) =Fas(ii)+Fae(i); 
   %end 
end    
  
Control Matrix Reduction 

 
function [KCa,CCa,MCa,mxpa,Faa,Ba]= 
mxred(KCs,CCs,MCs,mxps,Fas,Bs,nsndx,sndof,nel) 
  
  
sndof; 
nsndx; 
for i=1:sndof 
    for j=1:sndof 
        KCa(i,j)=KCs(nsndx(i),nsndx(j)); 
        CCa(i,j)=CCs(nsndx(i),nsndx(j)); 
        MCa(i,j)=MCs(nsndx(i),nsndx(j)); 
    end 
    mxpa(i,1)=mxps(nsndx(i),1); 
    Faa(i,1) =Fas(nsndx(i),1); 
     
    for jj =1:nel 
        Ba(i,jj)=Bs(nsndx(i),jj); 
    end     
end 
 
 
  
LQR Control (Matlab™ Library) 

function [G,S]=felqr(A,B,Q,R); 
%--------------------------------------------------------------------------
---------------- 
%  Purpose: 
%     The function subroutine felqr.m calculates the feedback gain matrix 
by 
%     Linear Quadratic Regulator(LQR) technique. The given system is 
%   
%                         xdot = Ax + Bu,     u = -Gx 
% 
%     and the cost function to be minimized is defined as 
% 
%                    J=(1/2)integral(x^TQx+u^TRu)dt 
%  Synopsis: 
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%     [G,S]=flqr(A,B,Q,R) 
% 
%  Variable Description: 
%     Input arguments   - A, B, Q, R 
%     Output parameters - G = R^G^TS : feedback gain matrix 
%                        S : Solution of the Algebraic Ricatti Equation 
(ARE) 
%                                       AS+A^TS-SBR^S+Q=0 
%  Notes: 
%     i) (A,B) should be controllable. 
%     ii) Q is at least positive semi-definite. 
%         R is at least positive definite. 
%--------------------------------------------------------------------------
---------------- 
  
  
H=[A -B*inv(R)*B';                               %  Build the Hamiltonian 
matrix 
  -Q        -A']; 
  
[V,D]=eig(H);                                %  Solve eigenvalue problem 
  
n=size(A); twon=max(size(H)); 
  
  
% Normalized each eigenvector to unity magnitude 
  
av=abs(V); 
magav=av'*av; 
  
dmagav=diag(magav); 
  
V=V*sqrt(inv(diag(dmagav)));                    %  Normalize the 
eigenvector 
%--------------------------------------------------------------------------
----------------- 
%  Sort the eigenvalues with stable real parts 
%--------------------------------------------------------------------------
----------------- 
  
rel=real(diag(D)); 
  
nindex=[];pindex=[]; 
  
for i=1:twon 
  
if(rel(i)<=0) 
nindex=[nindex i]; 
else 
pindex=[pindex i]; 
end 
  
end 
  
V=V(:, [pindex,nindex]);                    % Rearrange the eigenvector 
order 
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%--------------------------------------------------------------------------
---------------- 
%    Compute the feedback gain matrix and Riccati Matrix 
%--------------------------------------------------------------------------
---------------- 
  
S=real(V(n+1:twon,n+1:twon)*inv(V(1:n,n+1:twon))); 
  
G=real(inv(R)*B'*S); 
%--------------------------------------------------------------------------
----------------  
 
 
Matrix Reduction 

 
function [KCa,CCa,MCa,mxpa,Faa]= mxred(KCs,CCs,MCs,mxps,Fas,nsndx,sndof) 
  
  
sndof; 
nsndx; 
for i=1:sndof 
    for j=1:sndof 
        KCa(i,j)=KCs(nsndx(i),nsndx(j)); 
        CCa(i,j)=CCs(nsndx(i),nsndx(j)); 
        MCa(i,j)=MCs(nsndx(i),nsndx(j)); 
    end 
    mxpa(i,1)=mxps(nsndx(i),1); 
    Faa(i,1) =Fas(nsndx(i),1); 
     
end 
 
 
 
State Space EoM’s 

 
% ==== Integration ==== 
function xdot=stsp_xdot(cur_time,x) 
global mxSMD mxM vectQ Mxpa Qa AFa 
 
xdot = mxSMD*x+mxM*Qa-mxM*Mxpa-mxM*AFa; 
  
 
 

 


