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Abstract

Identifying finger and wrist flexion based actions using single chan-

nel surface electromyogram have a number of rehabilitation, defence

and human computer interface applications. These applications are

currently infeasible because of unreliability in classification of sEMG

when the level of muscle contraction is low and when there are multi-

ple active muscles. The presence of noise and cross-talk from closely

located and simultaneously active muscles is exaggerated when mus-

cles are weakly active such as during maintained wrist and finger

flexion. It has been established in literature that surface electromyo-

gram (sEMG) and other such biosignals are fractal signals. Some

researchers have determined that fractal dimension (FD) is related to

strength of muscle contraction. On careful analysis of fractal proper-

ties of sEMG, this research work has established that FD is related

to the muscle size and complexity and not to the strength of muscle

contraction.

The work has also identified a novel feature, maximum fractal length

(MFL) of the signal, as a good measure of strength of contraction of

the muscle. From the analysis, it is observed that while at high level

of contraction, root mean square (RMS) is an indicator of strength of

contraction of the muscle, this relationship is not very strong when the



muscle contraction is less than 50% maximum voluntary contraction.

This work has established that MFL is a more reliable measure of

strength of contraction compared to RMS, especially at low levels of

contraction.

This research work reports the use of fractal properties of sEMG to

identify the small changes in strength of muscle contraction and the

location of the active muscles. It is observed that fractal dimension

(FD) of the signal is related with the properties of the muscle while

maximum fractal length (MFL) is related to the strength of contrac-

tion of the associated muscle. The results show that classifying MFL

and FD of a single channel sEMG from the forearm it is possible to

accurately identify a set of finger and wrist flexion based actions even

when the muscle activity is very weak. It is proposed that such a sys-

tem could be used to control a prosthetic hand or for human computer

interface.
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Chapter 1

Introduction

1.1 Introduction

Prosthetic control and a number of other rehabilitation and defence applica-

tions require automated identification of hand movement and gesture. A simple

representation of robotic hand movement is shown in Fig.1.1. One method to

determine the movement and posture is by estimating the strength of contraction

of associated muscles based on the electrical activity of the muscles. Surface elec-

tromyography (sEMG) (Basmajian and De Luca, 1985) is a non-invasive, easy to

record electrical activity of skeletal muscle recorded from the skin surface. sEMG

has several advantages compared with the invasive electromyography recording.

SEMG is recorded using surface electrodes that are placed on the surface of the

skin and is the result of large number of muscle activities contaminated by noises

and artefacts. It is a complex signal and lacks muscle selectivity.

Classification of sEMG with movement and gesture is a desired option (En-

glehart and Hudgins, 2003; Momen et al., 2007) but is not simple when there are
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1.1 Introduction

Figure 1.1: Representation of a robotic hand control [Source: Shadow Robot
Company Ltd.(ShadowRobot, 2008)]

number of simultaneously active muscles and when the muscle activity is weak

such as during finger and wrist flexion and extension. While there are reported

works (Crawford et al., 2005; Nagata et al., 2005) where multiple channels of

sEMG have been used for identifying actions such as finger and wrist flexion and

extension, these require precise location of the electrodes and the system needs

to be calibrated for each experiment.

Recent work (Momen et al., 2007) has reported on the use of two channel

sEMG to identify the user defined actions but conducting similar experiments

indicates that such a technique is unsuitable for predefined hand gestures and

requires the system to be trained for each session. There is a need for a simple

and reliable system that

• does not require large number of electrodes,

2
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1.1 Introduction

• is easy to use, and

• does not require to be trained for each session.

A strong relationship exists between the magnitude and spectral features of

sEMG with the force of muscle contraction (Basmajian and De Luca, 1985; Cram

et al., 1998). Various analogous measures such as root mean square (RMS),

integral of the signal, auto-regression, and wavelet coefficients have been used to

classify the signal against the desired movement and/or posture (Christodoulou

and Pattichis, 1999; Coatrieux et al., 1983; Englehart and Hudgins, 2003; Kumar

and Pah, 2000; Ren et al., 2006). The classification of these features has been

achieved using a range of parametric and non-parametric techniques, ranging

from Bayesian statistical classifiers; neural networks (Kumar et al., 2001; Ren

et al., 2006) and a predictive approach (Coatrieux et al., 1983). The issues for

classifying sEMG to identify actions are:

• reliability,

• reduction in the number of electrodes or channels, insensitivity to placement

of electrodes for recording, and

• identification of complex actions such as finger and wrist flexions.

The fundamental principle of motor unit action potential (MUAP) density

based techniques reported in literature (Kleine et al., 2007; Sandbrink and Cul-

cea, 2002; Zhou et al., 2001) is that these are based on shape matching and are

suitable for identifying MUAP of a predefined shape. Strategies used include

template matching (Katsis et al., 2007; Zhou and Rymer, 2007), use of neu-

ral networks (Christodoulou and Pattichis, 1999; Coatrieux et al., 1983; Kumar
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1.2 Problem statement

et al., 2001) and wavelets decomposition (Ren et al., 2006). Such systems are

sensitive to shape of the MUAP. The variation of the shape of MUAP originating

from different muscles due to difference in the conduction pathways makes these

techniques unsuitable when there are multiple active muscles. Another proposed

measure of strength of muscle activity from sEMG is fractal dimension (FD)

(Anmuth et al., 1994; Gitter and Czerniecki, 1995; Gupta et al., 1997; Hu et al.,

2005). While researchers have attempted to study the relationship between FD

and muscle activity, this relationship does not appear to be well understood.

1.2 Problem statement

One general limitation of the techniques mentioned in the previous section is that

these techniques are unreliable at low levels of contraction. This is because the

relationship between sEMG and the force of contraction is not linear at low levels

of sEMG (Basmajian and De Luca, 1985; Kleine et al., 2007) and at a low level

of contraction, the signal to noise ratio for sEMG is very poor. Due to this,

it is difficult to automatically segment the signal activity from the background

activity (Gazzoni et al., 2004). While statistical techniques are suitable where

muscle activity is large, manual intervention is required when muscle activity is

small.

The other difficulty when using sEMG to identify complex actions such as

wrist and finger flexion is the necessity to map sEMG signals corresponding to

the relative contraction of different muscles (Duchêne and Goubel, 1993; Gazzoni

et al., 2004). With RMS or other magnitude based features, this either requires

an array of electrodes (Crawford et al., 2005; Nagata et al., 2005) or the system
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needs to be trained for individual experiments (Cram et al., 1998; Gazzoni et al.,

2004), making it unsuitable for lay users and for people with amputations.

In particular, isometric steady-state contraction of an individual muscle is

proportional to the force produced by the muscle. However, this relationship

changes significantly with change in the shape of the muscle, fatigue in a muscle,

noise etc. It is also very difficult to isolate activity from a single muscle using

noninvasive surface measurements. Decoding the wrist or finger flexion using

sEMG signals is a challenging task.

With the need for identifying complex and subtle actions and gestures, non-

linear methods are emerging to characterize sEMG. The nonlinear properties may

be estimated by calculating nonlinear measures such as entropies, correlation and

fractal dimensions, and self-correlation (Nussbaum, 2006). This thesis reports re-

search where fractal properties of sEMG have been analysed to determine features

that can be used to identify different actions.

1.3 Research Aim and Objectives

The main aim of this research is to investigate fractal based features for identi-

fication of subtle (wrist and finger) movements or gestures using single channel

recording of sEMG. The objectives of this research work are to:

• analyse the efficacy of Fractal dimension (FD) of sEMG, as a measure of

the property (complexity) of the muscles.

• compute and analyse the new fractal feature, Maximum Fractal Length

(MFL) of sEMG, as a measure of low-level muscle activity at different force
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levels of muscle activation.

• examine the applications of these fractal feature set (FD, MFL) in wrist &

finger movement identification using single channel sEMG.

• test the efficacy of these features for the application to Electroencephalog-

raphy (EEG).

This thesis reports the use of fractals to measure the properties of the sEMG

signal. This research investigates the evaluation of the relationship between levels

of muscle contraction, size of muscles and depth of the active muscle on the fractal

properties (Fractal dimension) of sEMG. This research has also identified a new

fractal feature, Maximum fractal length (MFL), as a measure of low-level muscle

activity. The MFL is the fractal logarithmic length of sEMG at the lowest scale

and relates to the small changes in the subtle muscle activity.

The main advantages of using these fractal features of sEMG in identification

of the subtle movements are:

(i) retrieve information pertaining to the physiological properties of muscle, at

different force levels of muscle contraction,

(ii) able to identify the small changes in the low-level muscle activation and

(iii) less sensitive to background noise and thus inter-experimental variation.

1.4 Outline of the thesis

The thesis on this research study is organized into eight chapters. The first

chapter presents an introduction to the research work.
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Chapter 2 provides an overview of the related work and literature studies on

the sEMG based feature extraction and classification methods for identification

of human movements.

Chapter 3 explains the generation of sEMG, factors that influence the sEMG

and its applications in various fields.

Chapter 4 covers the fundamental concepts of fractals and its properties. This

chapter explains the concept of self-similarity and fractal dimension, as an index

of self-similar property. Also, it presents the algorithm for computation of fractal

dimension.

Chapter 5 describes the fractal analysis of sEMG for feature extraction. This

chapter presents a method for computation of fractal features and their relation

to the properties and activation of muscle.

Chapter 6 reports on the results from the experimental analysis in evaluating

the performance of fractal features (FD, MFL). The comparative analysis of MFL

with RMS in identification of muscle activation at different force levels (20%, 50%,

and 80%) is presented in this chapter.

Chapter 7 reports on the application of fractal features (FD, MFL) in identi-

fication of finger & wrist actions using sEMG and measurement of the alertness

level using Electroencephalogram (EEG).

Chapter 8 presents the conclusion of this work and discusses the main contri-

butions of this research work.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides an overall review of the various researches that have been

conducted in the analysis of sEMG for measurement and properties of human

muscle movements. The review in this section covers two major research areas:

• Use of sEMG signals in identification of subtle human movement, and

• Fractal theory based measurement analysis of sEMG

2.2 Review - Use of sEMG signals in identifica-

tion of human movement

Surface Electromyogram (sEMG) is a myoelectric signal recorded from the surface

of skeletal muscles and it indicates the functional state of muscle fibres (Duchêne

and Goubel, 1993; Karlsson et al., 2000). It is a complex and non-stationary

8



2.2 Review - Use of sEMG signals in identification of human
movement

signal with low signal to noise ratio (SNR). While the underlying mechanism of

sEMG is complex with number of differing factors, it has been used in applications

ranging from rehabilitation to sports medicine. Some of the applications include:

• Rehabilitation - Example: Assist system for the disabled (Nagata et al.,

2005; Nagata and Magatani, 2004)

• Human computer control - Example: Control of pointing devices (Tsuji and

Kaneko, 2000)

• Robotic and Prosthetic hand (Momen et al., 2007; Osamu Fukuda, 2004)

• Clinical applications - Example: assessment of muscle fatigue (Merletti

et al., 2005) and low back pain (Rainoldi et al., 2005).

The ability to accurately interpret sEMG signals would enable and control the

neuroelectrical interfaced systems. The design of these systems require the fol-

lowing two important factors to be considered as proposed by (Englehart and

Hudgins, 2003):

1. Features of sEMG that can be related to different muscles and muscle ac-

tivity, and

2. Classification paradigm of these features to identify these actions.

Numbers of researchers have identified a strong relationship between magni-

tude and spectral features of sEMG with the force of muscle contraction (Duchêne

and Goubel, 1993). Various analogous measures such as

• root mean square (RMS) (Basmajian and De Luca, 1985),
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movement

• windowed integration and zero-crossing count (Basmajian and De Luca,

1985; Devaney, 1995),

• auto-regression (Barisi, 2007; Knox and Brooks, 1994), and

• wavelet coefficients (Kumar and Pah, 2000; Ren et al., 2006)

have been used to classify the signal against the desired movement and/or posture.

These features are easy to implement and are a good measure of the strength

of muscle activity when there is a single active muscle that has high level of muscle

activity. However these measures are not reliable when the muscle activity is very

small and when there are multiple muscles that are simultaneously active. Alter-

nate to the use of global parameters such as RMS, is to decompose sEMG and

identify the action potentials (Karlsson et al., 2000; Kleine et al., 2007; Stashuk,

2001). The shortcomings in such techniques are that these require high level

of manual supervision and are highly sensitive to the location of the electrodes.

There are number of possible rehabilitation and defence applications of sEMG

that are currently infeasible because there are no reliable features of sEMG that

can be related to low-level of muscle contraction, without manual supervision.

The classification of these features has been achieved using a range of paramet-

ric and non-parametric techniques, ranging from Bayesian statistical classifiers,

neural networks (Christodoulou and Pattichis, 1999; Kumar et al., 2001) and a

predictive approach (Coatrieux et al., 1983). Some of the recent research work

on classification of hand movements has been presented as follows:

• Nagata et al. presented a classification method of hand movements using 96

channels matrix-type (16x6) of multi-channel surface EMG (Nagata et al.,

2005).

10



2.2 Review - Use of sEMG signals in identification of human
movement

• Crawford et al. proposed the classification of electromyographic signals

for robotic control using amplitude of five channels EMG as features and

support vector machines as classifiers (Crawford et al., 2005).

• Englehert et al. used pattern recognition to process four channels of myo-

electric signal (MES), with the task of discriminating multiple classes of

limb movement (Englehart and Hudgins, 2003).

• Momen et al. used RMS of two channels EMG as features and segmented

using fuzzy C-means clustering (Momen et al., 2007).

An example of the hand movement classification using surface electromyography

is shown in Fig.2.1. The features used in these techniques are a good indicator of

high level muscle activation. However at low- level of muscle contraction, these

measures are not reliable in identifying the muscle activation from the background

activity and requires a better classifier for separation of classes of movements. In

order to determine the reliable measure of low-level muscle activity, there is need

to extract a feature set from sEMG, that interprets the complex property of the

muscle during subtle activity.

Most methods used to model and analyse sEMG are linear. However more

complex activity such as sEMG recordings during small and complex maintained

hand actions cannot be modelled by such linear techniques. With the need

for identifying complex and subtle actions and gestures, nonlinear methods are

emerging to characterize sEMG. The following three new approaches have been

proposed in (Nussbaum, 2006) for characterisation of sEMG:

1. Methods that characterise the sEMG spectral distribution i.e., Logarithmic

representation of sEMG spectrum

11



2.2 Review - Use of sEMG signals in identification of human
movement

Figure 2.1: An example of hand movement analysis using multi-channel surface
Electromyography [Source:(Nagata et al., 2005)]

2. Poisson representation of sEMG spectrum, and

3. Method that examines the ‘complexity’ of raw sEMG i.e., Fractal dimension

of sEMG

Out of these approaches Fractal dimension (FD) of sEMG has been found

sensitive to magnitude and change of force, because sEMG is self - similar over

a range of scales (explained in Chapter 4 ) and the statistical properties of a

part (structure of motor unit) are proportional to those of the whole (Gitter and

Czerniecki, 1995; Gupta et al., 1997). These lieratures reviews lead to the study

of fractal theory and use of fractal analysis of sEMG to determine the complex

property of the muscle during subtle actvity.

12
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2.3 Review - Fractal theory based analysis of sEMG

2.3 Review - Fractal theory based analysis of

sEMG

Fractals refer to objects or signal patterns that have fractional dimension. These

objects exhibit self-similarity. This defines that the objects or patterns on any

level of magnification will yield a structure that resembles the larger structure in

complexity (Mandelbrot, 1977). The measured property of the fractal process is

scale dependant and has self-similar variations in different time scales. Fractal

dimension of a process measures its complexity, spatial extent or its space filling

capacity and is related to shape and dimensionality of the process (Gitter and

Czerniecki, 1995). The concept of fractal can be applied to physiological process

that are self-similar over multiple scales in time and have broad band frequency

spectrum. Fractals manifest a high degree of visual complexity (Gupta et al.,

1997).

Biosignals such as sEMG are a result of the summation of identical motor units

that travel through tissues and undergo spectral and magnitude compression.

Burst within burst behaviour of sEMG in time has the property that patterns

observed at one sampling rate are statistically similar to patterns observed at

lower sampling rates. These nested patterns suggest that sEMG has self-similarity

(Anmuth et al., 1994).

Researchers have studied fractal of sEMG to characterize normal and patho-

logical signals (Acharya et al., 2005). To better represent the properties of sEMG

signal, fractal dimension (FD) of sEMG has been proposed (Anmuth et al., 1994;

Hu et al., 2005; Xu and Xiao, 1997). Recent studies of fractal analysis of sEMG

is summarised as follows:
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• Anmuth et al. determined that there is a change in fractal dimension of

the surface EMG signal and is linearly related to the activation of the

muscle measured as a fraction of maximum voluntary contraction. They

also observed a linear relationship between the fractal dimension and the

flexion-extension speeds and load (Anmuth et al., 1994).

• Gitter et al. determined that fractal dimension can be used to quantify the

complexity of motor unit recruitment patterns. They also demonstrated

that the fractal dimension of EMG signal is correlated with muscle force

(Gitter and Czerniecki, 1995).

• Hu et al. distinguished two different patterns of FD of sEMG signals (Hu

et al., 2005).

• Gupta et al. reported that the FD could be used to characterize the sEMG

signal (Gupta et al., 1997).

FD represents the scale invariant, non-linear property of the source of the

signal and is an index for describing the irregularity of a time series. FD is the

property of the system or source of the signal (Mandelbrot, 1977) and in the case

of sEMG, it is the property of the muscle. It should be a measure of the muscle

complexity and not a measure of the level of muscle activity.

Research studies by (Gupta et al., 1997; Hu et al., 2005) have attributed the

change in FD to the change in level of muscle contraction during high level muscle

activity. Studies by (Basmajian and De Luca, 1985) have indicated that for low

level of isometric muscle contraction, there is no change in the size of the muscle

while there is measurable change in the muscle dimension during higher levels of

muscle contraction and during non-isometric contraction.
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Based on the above, this research work proposes to explain the small changes

in the FD to the changes in muscle properties such as size and length due to the

contraction and not to the changes in muscle force. Based on the above, this

thesis proposes that for low-level of muscle contraction, FD would not change

with change in the level of muscle contraction and that FD would be a measure

of the size and complexity of the muscles.

2.4 Summary

This chapter has presented and described an overview of the recent work and

the background on the use of sEMG in identification of human movement and

the feature extraction methods for recognizing low-level muscle activation. This

chapter has also presented recent studies on the use of fractal theory for analysis

of sEMG. This literature review has discussed the strengths and limitations of

the features used for identification of subtle muscle movements.

Based on the preliminary studies, this research proposes the following:

• Fractal dimension (FD) would not change with change in the level of muscle

contraction and that FD would be a measure of the size and complexity of

the muscles at low-level or subtle movements.

• Identification of new fractal measure of low-level muscle activity.

• Fractal features of sEMG for identifcation for complex and subtle gestures

or movements using single channel sEMG.

This thesis identifies the fractal features of sEMG (Chapter 5 ), the perfor-

mance analysis of these features and their comparison with RMS (Chapter 6 ),
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and their applications (Chapter 7 ) based on the detailed study of sEMG and

fractal theory (Chapter 3 & Chapter 4 ).
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Chapter 3

Surface Electromyogram (sEMG)

3.1 Introduction

Surface electromyography (sEMG) is the recording of the muscle’s electrical ac-

tivity from the surface of the skin. In clinical application, sEMG is used for the

diagnosis of neuro-muscular disorder and for rehabilitation. It is also used for

device control applications where the signal is used for controlling devices such

as prosthetic devices, robots, and human-machine interface.

The advantage of sEMG is due to its non-invasive recording technique and it

provides a safe and easy recording method. The underlying mechanism of sEMG

is very complex(Graupe and Cline, 1975) because there are number of factors

such as neuron discharge rates, motor unit recruitment and the anatomy of the

muscles and surrounding tissues that contribute to the recording. In this chapter

basic concepts of generation of sEMG signals and its application will be described.
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3.2 Generation of sEMG

SEMG signal is generated by the electrical activity of the muscle fibers active

during a contraction. The signal sources located at the depolarized zones of the

muscle fibers are separated from the recording electrodes by biological tissues,

which act as spatial low-pass filters on the (spatial) potential distribution (Bas-

majian and De Luca, 1985). It is closely related to the muscle activity, muscle

size and a measure of the functional state of muscle fibres (Huang and Chen,

1999). This section presents a brief explanation about the anatomy, physiology

and the electrical properties of the muscle and the composition of sEMG.

3.2.1 Physiology of human muscular system

The physiology of the human muscular system has been explained as follows:

• Structure of the muscle

A muscle consists of a large number of muscle fibers that are grouped into several

motor units. A motor unit is the basic level of the neuro motor system of the

muscle. A motor unit (MU) consists of an α- motoneuron in the spinal cord and

the muscle fibers it innervates. All the muscle fibers in a motor unit are controlled

by a single motor neuron. The number of MUs per muscle in humans may range

from about 100 for a small hand muscle to 1000 or more for large limb muscles

(Moritani et al., 2005).

The number of muscle fiber per motor unit in a muscle is called the innervation

ratio. The muscles of the face that execute a precise movement have the highest

level of innervation ratio (3 muscle fibers per motor unit). The muscles that
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produce a large amount of force have lower innervation ratio. Each muscle fiber

in a motor unit is connected to each axon branch of the associated motor neuron

at a point called neuromuscular junction (NMJ). The neuromuscular junction

is located in a region in the middle of the muscle length called the innervation

region. This is shown in Fig.3.1

Figure 3.1: Muscle Structure and representation of Motor Unit [Source: DE-
MUSE (Merletti, 2008)].

• Muscle Contraction

Muscle contraction is a result of the stimulations from motor neurons. Voluntary

muscle contraction is used to move the body and can be finely controlled, such

as movements of the finger or gross movements that of the biceps and triceps.

There are three types of muscle contractions (Basmajian and De Luca, 1985):

1. Isometric Contraction

In isometric contraction, the muscle is contracted while the length of the

muscle is unchanged. These contractions are used in the postural control.

19
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2. Concentric contraction

Concentric contraction occurs when the length of the muscle shorten during

the contraction. The amount of the available muscular energy in concentric

contraction is less than the isometric contraction due to the energy loss

related to the shortening of the muscle.

3. Eccentric Contraction

Eccentric contraction occurs when the length of the muscle increases during

the contraction. The concentric and eccentric contraction are also known

as un-isometric contraction.

• Recruitment Pattern

The process of selecting which motor units to be involved in a muscle contraction

is called the recruitment process. The current understanding of the motor unit

recruitment pattern in a muscle is based on the size principle. This size principle

was proposed by Henneman et al. (Henneman et al., 1965), who demonstrated

that motor units are always recruited in order of increasing size of the α- mo-

toneuron. For a small level of contraction, the motor units with small number of

muscle fibers are recruited. As the contraction level increases, the larger motor

units are involved in the contraction (Basmajian and De Luca, 1985; Cram et al.,

1998). In an isotonic contraction which produces a constant force, the activation

pattern switches from one motor unit to the other to avoid the fatigueness of a

motor unit.
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3.2.2 Motor Unit Action Potential (MUAP)

A motor neuron activates its motor unit by stimulating the motor unit’s muscle

fibers with the nerve action potential (AP) that travels along the axon towards

the muscle fibers. The electric impulse that is propagated along the motoneuron

arrives at its terminal and causes the emission of acetylcholine (ACh- a chemical

substance) in the gap between the nerve terminal and the muscle fiber membrane,

which excites the fiber membrane at this neuromuscular junction. In this case

a potential gradient in a part of the fiber is generated (Farina et al., 2005). It

creates the depolarisation zones on the muscle fibers that propagate away from

the NMJ point in both directions towards the tendon (end point) of the muscle

fiber.

The depolarisation occurs due to the sudden increase of the membrane per-

meability to sodium (Na+) (Cram et al., 1998) which results in a sudden influx

of sodium into the muscle fiber. The process changes the resting potential of

the fiber’s cell to a level of electrical potential called action potential(AP). In

general, the action potential can be characterized by a depolarization phase, a

repolarization phase, and a hyperpolarizing long after potential.

The AP shape may change due to the conditions of the muscle and few stages

of AP alteration can be distinguished during fatigue. In the beginning of fa-

tigue, the AP spike width in space increases mainly because of the slowing of

the repolarization phase. In this phase the rate of increase of the AP remains

practically unchanged while the amplitude decreases slightly. The representation

of the action potentials generated by the motor unit’s fibers is shown in Fig.3.2.

The generation of the action potential creates an electric field in the suround-
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3.2 Generation of sEMG

Figure 3.2: Representation of Single fiber action potentials (APs) [Source: DE-
MUSE (Merletti, 2008)].

ing space. Hence, the potential generated by motor unit can also be detected in

locations relatively far from the source. The biological tissues separating sources

and the detecting electrodes are referred to as volume conductor and their charac-

teristics strongly affect the detected signal (Farina et al., 2005). The shape of the

MUAP is affected by the geometrical arrangement of the muscle fibers, the elec-

trode proximity and the properties of the body tissues between the muscle fibers

and the recording site. MUAPs recorded with indwelling electrodes may have am-

plitude in the millivolt (mV) range, while the magnitude of the action potentials

recorded with surface electrodes is of the order of microvolts (µV ) (Basmajian

and De Luca, 1985; Cram et al., 1998). Fig. 3.3 illustrates the superimposition

of the MUAPs that results in the generation of sEMG.

Motor units must be activated repeatedly to sustain the force created by a

muscle during a contraction. The frequency of the stimulation of a motor unit is

called the firing rate of the motor unit. The firing rate determines the level of

contraction and the type of muscle fibers. At the start of a contraction, a motor
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3.3 Recording and detection of sEMG

Figure 3.3: SEMG - the superimposition of all MUAPs generated in the surface
of the skin [Source: DEMUSE (Merletti, 2008)].

unit is fired irregularly at a rate of about 5-7 Hz. As the level of contraction

increases, the motor neuron increases the firing rate to higher frequency. As the

firing rate reaches 10 Hz, the second motor unit is recruited into the contraction

(Sandbrink and Culcea, 2002) while the firing rate of the first motor unit increases

to a certain level according to the type of muscle fiber in the motor unit. In

general, there are two categories of muscle fibers based on the speed of the firing

rate. A slow twitch muscle fiber has a firing rate of about 10 to 20 Hz, while a

fast twitch muscle fiber has 30 to 50 Hz firing rate.

3.3 Recording and detection of sEMG

SEMG is the recording of electrical potentials that appear on the surface of the

skin due to the MUAP generated in the muscle fiber. Because of the size of

recording electrodes, sEMG contains the summation of electrical activities from

all of the active motor units in the location near the electrodes. The shape and
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3.3 Recording and detection of sEMG

the amplitude of the surface action potential are also affected by the properties of

the body tissue between the muscle fibers and the recording electrodes. The body

tissue behaves as an imperfect insulator with low pass filter characteristic that

tends to attenuate the higher frequency components of the signal. The recording

Figure 3.4: Block diagram of a basic sEMG recording system

system of sEMG consists of three basic block sets with electrodes, amplifier and

filter as shown in the Fig.3.4. The surface electrodes are transducers that sense the

current on the skin through its skin-electrode interface (Basmajian and De Luca,

1985). In order to record sEMG, the better understanding and design of the

surface electrodes has to be studied. The advent of new processing techniques

for extracting quantitative information from sEMG signal requires greater focus

on the configuration of the electrode. The major points to consider are:

1. the signal to noise ratio of the detected signal,

2. the bandwidth of the signal,

3. the muscle sample size, and

4. the susceptibility to crosstalk.

• Electrode configuration
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3.3 Recording and detection of sEMG

The electrodes can be configured either as a monopolar or as bipolar elec-

trodes. SEMG recorded with a monopolar electrode contains the potentials

that are recorded by the electrode with reference to the ground electrode.

Bipolar electrodes record the potential difference between the two elec-

trodes. The bipolar recording is a more suitable method due to its high

noise reduction capabilities.

• Location and orientation of the electrode

The electrode should be placed between a motor point and the tendon

insertion or between two motor points, and along the longitudinal midline

of the muscle. The longitudinal axis of the electrode (which passes through

both detection surfaces) should be aligned parallel to the length of the

muscle fibers.

The electrodes (Fig.3.5) used in this study are designed by DELSYS inc. This

electrode configuration has some practical advantages:

1. It can be constructed so that it is sufficiently small and lightweight as to

not be obtrusive to the subject.

2. The spacing of 1 cm between the detection surfaces is sufficiently large so as

not to provide a prohibitive electrical shorting path when the skin sweats.

The magnitude of the recorded potentials is very small and have to be ampli-

fied with an amplifier that has high input impedance. An instrumentation ampli-

fier with high input impedance and high common-mode rejection ratio (CMRR)

is commonly used as the first stage in the recording instrumentation of sEMG.

The instrumentation amplifier amplifies the differential signal while attenuating
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3.3 Recording and detection of sEMG

the signal components that are common to both electrodes. This reduces external

noise that is common to both electrodes, such as power line interference.

After the amplification, the signal is then filtered for the removal of unwanted

frequency components of the signal. A band-pass filter at frequency of 20 to

500 Hz is commonly used in the sEMG recording instrument since most of the

energy of sEMG signals reside in this frequency range (Cram et al., 1998). Beside

the band-pass filter, a notch filter at 50 Hz is commonly applied to remove the

power line interference at that frequency. In some cases, more filters are needed

to eliminate other artefact such as movement artefact and ECG signal.

Figure 3.5: Surface Electrode from DELSYS inc. used for recording sEMG
[Source: DELSYS (De Luca, 2006)]

For digital recording, the signal is sampled and coded with an analogue to

digital converter (A/D) into streams of digital data. The sampling rate must be

at least two times the highest frequency that appears in the signal to avoid the

occurrence of aliasing. Anti-aliasing filter is also used to remove all frequency

components above the half of sampling rate.

The advent of modern microelectronics has made possible the construction of

amplifiers housed in integrated circuitry which have the required input impedance
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3.3 Recording and detection of sEMG

and associated necessary characteristics. An example of such an electrode is pre-

sented in Fig.3.5. They each have two detection surfaces and associated electronic

circuitry within their housing (De Luca, 2006).

3.3.1 Factors that influence sEMG

SEMG signal contains information related to muscle contraction and condition.

Therefore, it is useful to analyse the signal to reveal the information without

the need to intervene the muscle. The information immersed in sEMG signal is

related to the following factors that influence the signal.

1. Level of Contraction

The level of contraction affects the magnitude of the recorded sEMG (Cram

et al., 1998). The magnitude of sEMG increases as the level of contraction

increases as there is an increase in the number of motor units involved in

the contraction.

2. Localised Muscle Fatigue

Localised muscle fatigue can be observed from the shift of the median fre-

quency of the signal towards the lower frequency and the increase in the

signal’s magnitude (Basmajian and De Luca, 1985; Cram et al., 1998; Ku-

mar and Pah, 2000). This is due to the synchronisation of the stimulation

of different motor units and the variation in the electrical properties of the

muscle fibers.

3. The Thickness of Body Tissue
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3.3 Recording and detection of sEMG

The body tissue tends to attenuate the high frequency component of the

signal. The thicker the body tissue, the lower the frequency and ampli-

tude of the signal are. SEMG signals recorded from facial muscle have a

frequency of up to 500 Hz, while sEMG recorded from deep muscles have

lower frequency range.

4. The Inter-electrode Distance

The size and inter-electrode distance (IED) also have a known effect to the

signal. If the distance between electrodes increases, the recording covers a

wider area. As a result, the recorded signal consists of a larger number of

action potentials, which lowers the frequency and increases the amplitude

of the signal.

5. The Artefacts and Noises

The properties of some of the noises and artefacts are predictable. The

power-line interference appears sharply at 50 Hz, while the ECG artefacts

appears at frequency up to 60 Hz (Cram et al., 1998). Although the fre-

quency component of power-line and ECG components are well predicted,

they are not easily removed due to the frequency overlapping between the

artefacts and the sEMG spectrum.

6. Crosstalk muscle signals

Crosstalk is the signal detected over a muscle but generated by another

muscle close to the first one. The phenomenon is present exclusively in sur-

face recordings, when the distance of the detection points from the sources

may be relevant and similar for the different sources (Farina et al., 2005).
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3.3 Recording and detection of sEMG

3.3.2 SEMG signal analysis techniques

SEMG signal is a time and force (and possibly other parameters) dependent

signal whose amplitude varies in a random nature above and below the zero

value. Thus, simple computation of average of the signal will not provide any

useful information. Some of the measures of sEMG are explained below (De Luca,

2006):

• Rectification

A simple method that is commonly used to overcome the above restriction

is to rectify the signal before performing mode pertinent analysis.

• Averages or Means of Rectified Signals

The equivalent operation to smoothing in a digital sense is averaging. By

taking the average of randomly varying values of a signal, the larger fluctua-

tions are removed, thus achieving the same results as the analog smoothing

operation.

• Integration

The most commonly used and abused data reduction procedure in elec-

tromyography is integration. It applies to a calculation that obtains the

area under a signal or a curve. The units of this parameter are volt seconds

(Vs). It is apparent that an observed sEMG signal with an average value

of zero will also have a total area (integrated value) of zero. Therefore, the

concept of integration may be applied only to the rectified value of sEMG

signal.

• Root-Mean-Square (RMS) Value
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3.3 Recording and detection of sEMG

Mathematical derivations of the time and force dependent parameters in-

dicate that the RMS value provides a more rigorous measure of the infor-

mation content of the signal because it measures the energy of the signal.

• Zero Crossings and Turns Counting

This method consists of counting the number of times per unit time that

the amplitude of the signal contains either a peak or crosses a zero value of

the signal.

• Frequency Domain Analysis

Analysis of sEMG signal in the frequency domain involves measurements

and parameters that describe specific aspects of the frequency spectrum of

the signal. Fast Fourier transform techniques are commonly available and

are convenient for obtaining the power density spectrum of the signal.

These various measures are used to extract some meaningful information from

sEMG for various applications. Currently, there are three common applications

of sEMG (De Luca, 2006). They are:

• To determine the activation timing of the muscle; that is, when the excita-

tion to the muscle begins and ends

• To estimate the force produced by the muscle.

• To obtain an index of the rate at which a muscle fatigues through the

analysis of the frequency spectrum of the signal.

These information from sEMG are being used as a control input to activate

or control various devices. This research study aims at using the informations of
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3.4 Anatomy and Physiology of forearm muscles

sEMG from forearm to identify subtle finger and wrist movements, applications

in human computer control and rehabilitation engineering. To determine these

informations of sEMG from forearm, there is a need to study the anatomical

and physiological properties of the forearm muscular system as described in the

following section.

3.4 Anatomy and Physiology of forearm mus-

cles

The forearm muscles are functionally divided into approximately equal groups:

those causing wrist movements and those moving the fingers and thumb. In most

cases, their fleshy portions contribute to the roundness of the proximal forearm

and then they taper to long insertion tendons. Their insertions are securely an-

chored by strong ligaments called flexor and extensor retinacula (retainers). Al-

though many of the forearm muscles actually rise from the humerus (the humerus

is a long bone in the arm or forelimb that runs from the shoulder to the elbow),

their actions on the elbow are slight. Flexion and extension are the movements

typically affected at both the wrist and finger joints. The anatomy of the forearm

muscles explained here are referred from (Marieb, 1997).

The forearm muscles are subdivided into two main compartments:

• the anterior flexors and

• the posterior extensors

Each compartment has superficial and deep muscle layers. Eventhough the

hand performs many different movements, it contains relatively few of the muscles
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3.4 Anatomy and Physiology of forearm muscles

that control those movements. Most muscles that move the hand are located in

the forearm and operate the fingers via their long tendons, like operating puppet

by strings. This design makes the hand less bulky and enables to perform finer

movements. The hand movements promoted by the forearm muscles are assisted

and made more precise by small intrinsic muscles of hand. The physiological

representation of the forearm muscles are presented in Fig.3.6 The locations and

actions of the forearm muscles, which are responsible for wrist and finger flexions,

are explained below (Marieb, 1997; Palastanga et al., 2006).

3.4.1 Brachioradialis

Brachioradialis is a muscle of the forearm that acts to flex the forearm at the

elbow. It is also capable of both pronation and supination, depending on the

position of the forearm. The brachioradialis is a stronger elbow flexor when the

radioulnar joint (forearm) is in a mid position between supination and pronation.

When the forearm is pronated, the brachioradialis is more active during elbow

flexion. It is a synergist in forearm flexion and it acts to best advantage when the

forearm is partially flexed and semi pronated. During rapid flexion and extension,

it acts to prevent joint separation.

3.4.2 Flexor Carpi Radialis (FCR)

Flexor Carpi Radialis are a pair of muscles located in each of the lower-arms

of the human body. In anatomy, flexor carpi radialis is a muscle of the human

forearm that acts to flex and abduct the hand. It is a powerful flexor of wrist

and synergist in elbow flexion.
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3.4 Anatomy and Physiology of forearm muscles

Figure 3.6: Physiological representation of the forearm muscles used in this re-
search study. a. Brachioradialis b. Flexor Carpi Radialis c. Flexor Carpi Ulnaris
d. Flexor Digitorum Superficialis [Source: (Palastanga et al., 2006)]

3.4.3 Flexor Carpi Ulnaris (FCU)

Flexor carpi ulnaris muscle (FCU) is a muscle of the human forearm that acts

to flex and adduct the hand. It has its origins on the medial epicondyle of the

humerus and the olecranon process of the ulna. It is a powerful wrist flexor and

hand abductor working in concert with the extensor carpi ulnaris. It stabilizes

the wrist during finger extension.
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3.5 Low-level muscle activation and sEMG

3.4.4 Flexor Digitorium Superficilialis (FDS)

Flexor digitorum superficialis (flexor digitorum sublimis) is an extrinsic flexor

muscle of the fingers at the proximal interphalangeal joints. It is in the anterior

compartment of the forearm. It is sometimes considered to be the deepest part

of the superficial layer of this compartment and sometimes considered to be a

distinct, intermediate layer of this compartment.

The primary function of FDS is flexion of the middle phalanges of the fingers

at the proximal interphalangeal joints, however under continued action it also

flexes the metacarpophalangeal joints and wrist joint. It flexes wrist and fingers

2-5 and it is an important finger flexor when speed and flexion against resistance

are required.

3.5 Low-level muscle activation and sEMG

The muscle activation is at low-level when there is little movement in the corre-

sponding muscle group. When the strength of muscle contraction is small, there

is small overlap of the MUAP, for example, in simple wrist and finger flexion

movements. This in result shows small changes in recorded sEMG, which in turn

requires different measures in identifying these small changes.

The main criterion that influences these small changes in sEMG is the crosstalk

between muscles. This is due to the volume conduction properties in combination

with the source properties, and it is one of the most important source of error in

interpreting sEMG signals. The problem is particularly relevant in cases where

the timing of activation of different muscles is important, such as in movement

analysis (Farina et al., 2005). The aim is to interpret these small changes in sEMG

34



3.6 Summary

during finger and wrist movements which has many applications in prosthesis and

human computer interfaces.

3.6 Summary

In summary, this chapter provided an introduction to surface Electromyogram,

its generation and detection. SEMG based interfaces generally involve signal

acquisition from a number of differential electrodes, signal processing (feature

extraction) and real-time pattern classification. Main studies in the domain of

bioengineering have concentrated on the use of sEMG signals for control of pros-

thesis, rehabilitation and computer interfaces for users with motor disabilities.

Surface EMG is also used as a diagnostics tool for identifying neuromuscular

diseases, assessing low back pain, kinesiology and disorders of motor control.

Beyond medical applications, sEMG has been proposed for control of computer

interfaces. It can also be used to sense isometric muscular activity where no

movement is produced. This enables definition of a class of subtle motionless

gestures to control interfaces without being noticed and without disrupting the

surrounding environment (Costanza et al., 2005).
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Chapter 4

Introduction to Fractal Theory

4.1 Introduction

In this chapter, an introduction to fractal theory and the recent progress in ap-

plying fractal analysis to human physiology is presented. Fractal geometry and

chaos theory provide a new perspective to view the physiological signals in cur-

rent scenario. Fractal geometry is a new language used to describe, model and

analyze complex forms found in nature. Benoit Mandelbrot was largely responsi-

ble in defining fractals and he showed fractals can occur in many different places

in both Mathematics and Science (Mandelbrot, 1977).

4.2 Definition of fractal

A fractal is a pattern that repeats itself on an increasingly smaller scale. Alter-

natively, it can be said that a fractal is a set of self-similar patterns. The word

fractal was coined by Benoit Mandelbrot in the early 1970’s. It was derived from
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4.2 Definition of fractal

the Latin word fractus which aptly means broken, i.e., fragmented or irregular.

Mandelbrot (Mandelbrot, 1977) observed that certain natural geometries, e.g.,

coastlines, terrain and clouds, exhibited a simplifying invariance under scale, i.e.

their geometries possessed similarities that were invariant to changes in magni-

fication or resolution. He discovered that this invariance to scale existed in a

large variety of artificial and natural phenomena. This invariance to scale, i.e.

self-similarity, is central to Fractal Geometry. A wide class of natural geometries

appears to possess this underlying fractal character within a range of scale.

Fractals model complex physical processes and dynamical systems. The un-

derlying principle of fractals is that a simple process that goes through infinitely

many iterations becomes a very complex process. Fractals attempt to model the

complex process by searching for the simple process underneath (Green, 1998).

Fractal dimensions are used to measure the complexity of these objects. The

important and famous two examples are Sierpinski triangle and the Koch curve,

which are shown in Fig. 4.1 and Fig. 4.2 respectively (Mandelbrot, 1977).

4.2.1 Basic properties of fractal

Let ‘F’ represent a Fractal. The basic properties of ‘F’ are (Akujuobi and

Baraniecki, 1992; Falconer, 1990):

(i) F has a fine structure i.e. detail on arbitrarily small scales.

(ii) F is too irregular to be described in traditional geometrical language, both

locally and globally.

(iii) F has some self similarity, perhaps approximate or statistical.
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4.2 Definition of fractal

Figure 4.1: Sierpinski triangle [Source: (Green, 1998)]

Figure 4.2: Koch curve [Source: (Green, 1998)]
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4.3 Self-similarity

(iv) Usually Fractal dimension of F is greater than its topological dimension.

The concept of a fractal is most often associated with geometrical objects

satisfying the two important properties:

• self-similarity

• fractional dimensions

Mathematically, this property should hold on all scales but in the real world,

there are necessarily lower and upper bounds over which such self-similar prop-

erty applies. The second criterion for a fractal object is that it has a fractional

dimension. This requirement distinguishes fractals from Euclidean objects, which

have integer dimensions. As a simple example, a solid cube is self-similar since

it can be divided into sub-units of 8 smaller solid cubes that resemble the large

cube, and so on. However, the cube, despite its self-similarity, is not a fractal

because it has a dimension = 3. (Bourke, 2007; Feder, 1988).

The concept of a fractal structure, which lacks a characteristic length scale,

can be extended to the analysis of complex temporal processes. Although time

series are usually plotted on a 2-dimensional surface, it actually involves two dif-

ferent physical variables. The important challenge is in detecting and quantifying

self-similar scaling in complex time series (Bourke, 2007; Goldberger et al., 2000).

4.3 Self-similarity

An important defining property of a fractal is self-similarity, which refers to an

infinite nesting of structure on all scales. In this section, the properties and

definition of self-similarity are explained.
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4.3 Self-similarity

4.3.1 Definition and Properties

Self-similarity is a distinctive feature of most fractals. Self-similar processes are

the ones in which a small portion of the process resembles a larger section when

suitably magnified indicating scale invariance of the process. Self-similarity, in a

strict sense, means that the statistical properties of a stochastic process do not

change for all aggregation levels of the stochastic process. The stochastic process

looks the same irrespective of any magnification of the process. The following

will illustrate various types of self similarity as well as present some real world

examples (Bassingthwaighte et al., 1994; Bourke, 2007; Feder, 1988; Iannaconne

and Khokha, 1996).

• Exact self similarity

Exactly self-similar fractal objects are identical regardless of the scale or magnifi-

cation at which they are viewed. Strict self-similarity refers to a characteristic of a

form exhibited when a substructure resembles a superstructure in the same form.

The well known Koch snowflake curve, a good example for this kind, has been

created by starting with a single line segment and replacing each line segment by

four other shapes on each iteration as shown in Fig. 4.3.

• Approximate self similarity

The more common type of self similarity is the approximate self-similarity. Ap-

proximate self-similar objects has recognisably similar object at different scales

but are not exactly the same.

• Statistical self similarity
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Figure 4.3: Example of exactly self-similar object [Source: (Bourke, 2007)]

The self-similar units of a time series signal sometimes cannot be visually ob-

servable but there may be numerical or statistical measures that are preserved

across scales to determine the self-similar units. This is termed as statistically

self-similar. Most physiological signals fall into the category of having statis-

tically self-similar property. An example of statistical self-similar object is 1/f

noise (Fig.4.4), where the units are statistically resemble across multiple zooming

levels.

The self-similarity of a time series related process can be verified using the

procedure (Kalden and Ibrahim, 2004) as follows:

• If y(k) be a time series representing the process, then y(m)(k) is the aggre-

gated process with non-overlapping blocks of size m such that:

y(m)(k) = 1
m

∑m−1
l=0 y(km − l)
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4.3 Self-similarity

Figure 4.4: Example of statistical self-similar object [Source: (Bourke, 2007)]

• For the signal or process, y(k) to be self-similar, the variance of the aggre-

gated process decays slowly with m and this self-similarity is measurable

by H , that is,

V ar(y(m)) ≈ m−β

with 0 < β < 1 and

H = 1 − β/2

where H expresses the degree of self similarity; large values indicate stronger

self-similarity.

• If Hǫ(0.5, 1) then the time aggregated series is long-range dependant (LRD).
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4.4 Fractal dimension (FD)

It explains that the repeated occurrence of a particular pattern or a set of

particular patterns creates a part and the whole time series. Fractal dimension

can be applied to determine this statistical self- similarity i.e., the similarity

between a part and the whole time series (Anmuth et al., 1994; Sarkar and Leong,

2003).

4.4 Fractal dimension (FD)

Fractal dimension of a process measures its complexity, spatial extent or its space

filling capacity and is related to shape and dimensionality of the process. The

concept of fractal can be applied to physiological processes that have self similar

fluctuations over a multiple scale of time and have broad band frequency spectrum

(Gupta et al., 1997).

4.4.1 Definition and Properties

There are many fractal dimensions reported in literature (Falconer, 1990; Feder,

1988; Lévy-Véhel and Lutton, 2006) including morphological (self-similarity, Haus-

dorff, mass), and entropy (gyration dimension, information, correlation, vari-

ance). The dimension is simply the exponent of the number of self-similar pieces

with magnification factor N into which the figure may be broken.

Given a self-similar set S, the fractal dimension D of this set S defined as

ln(k)/ln(M) where k is the number of disjoint regions that the set can be di-

vided into, and M is the magnification factor of the self-similarity transformation

(Bassingthwaighte et al., 1994; Goldberger et al., 2000; Mandelbrot, 1977). This

definition of the fractal dimension of a self-similar object is expressed as
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Fractal dimension =
log(number of self-similar pieces)

log(magnification factor)
(4.1)

A simple example of computation of fractal dimension of the Sierpinski tri-

angle is illustrated below. Consider the Sierpinski triangle shown in the Fig. 4.1

consisting of 3 self-similar pieces, each with magnification factor 2. So the fractal

dimension of this triangle as per the above expression (Eqn. 4.1) is

Fractal dimension =
log 3
log 2

= 1.58

Hence the dimension of Sierpinski triangle is between 1 and 2. Fractal dimen-

sion is a measure of complexity of a self-similar structure and it measures how

many points lie in a given set. A plane is larger than a line, while the dimension

of Sierpinski triangle lies in between these two sets (Devaney, 1995).

The fractal properties of a time series signal can also be characterised by

computation of fractal dimension. As explained in Section 4.1, the irregularity

seen on different scales of time series is not visually distinguishable, an observation

that can be confirmed by statistical analysis (Kobayashi and Musha, 1982; Peng

et al., 1999). The roughness of the time series signals like biosignals, possesses

a self-similar or scale-invariant property and their complexity can be analysed

using fractal dimension.
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4.5 Summary

4.5 Summary

The fractal theory was studied for its use in the analysis of physiological time

series for its complexity. The nonlinearity of physiological systems may have rel-

evance for modelling complicated surface electromyogram (sEMG), for example,

low-level movements in which interactions and cross-talk occur over a wide range

of temporal and spatial scales. A fundamental methodologic principle underlying

these interpretations is important for analyzing continuously sampled variations

in physiological output, such as muscle activity. Dynamical analysis demonstrates

that there is often hidden information in physiological time series and that certain

fluctuations previously considered noise actually represent important information

(Goldberger et al., 2000; Ivanov et al., 1998; Peng et al., 1999). This research

proposes the use of fractal theory in sEMG for identification of low-level muscle

contraction as explained in the next chapter.
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Chapter 5

Fractal anlaysis of sEMG

5.1 Introduction

Rehabilitation process, clinical diagnosis and basic investigations are critically

dependent on the ability to record and analyze physiological signals like ECG,

EEG and EMG. However, the traditional analyses of these signals have not kept

pace with major advances in technology that allow for recording and storage

of massive datasets of continuously fluctuating signals. Although these typi-

cally complex signals have recently been shown to represent processes that are

non-linear, non-stationary, and non-equilibrium in nature, the methods used to

analyze these data are often assume linearity, stationarity, and equilibrium-like

conditions. Such conventional techniques include analysis of means, standard de-

viations and other features of histograms, along with classical power spectrum

analysis (Goldberger et al., 2000).

Recent findings (Chen and Wang, 2000; Kleine et al., 2007; Lowery and

O’Malley, 2003) show that sEMG signals may contain hidden information that
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is not extractable with conventional methods of analysis. Such hidden informa-

tion promises to be of clinical value as well as to relate to basic mechanisms of

muscle property and activity function. Fractal theory based analysis is one of

the most promising new approaches for extracting such hidden information from

physiological time series signal like sEMG, which can provide information re-

garding the characteristic temporal scales and the adaptability of muscle activity

response (Bassingthwaighte et al., 1994; Bourke, 2007; Feder, 1988; Goldberger

et al., 2000).

This chapter presents a novel method on extracting information from sEMG

using fractal based analysis. The framework of this method is to determine

the fractal features of sEMG and their relation to the low level muscle activity

pattern. Identification of subtle movements requires more information, related to

subtle changes in the muscle activation from sEMG signal. It is very difficult for

the traditional methods to extract information from the small changes in sEMG.

As these sudden transients of sEMG is due to the properties of muscle and its

activity pattern, the features relating to these properties has to be identified.

This study identifies the two important features including a new fractal fea-

ture, based on the important properties of muscle activity pattern:

• Fractal dimension (FD) - a measure of complexity of different muscles

• Maximum Fractal Length (MFL) - a measure of muscle activation

Section 5.2 presents a preliminary analysis on self-similarity property of sEMG,

a basis of fractal analysis. Section 5.3 describes the Fractal dimension of sEMG

as a measure and its relation to the complexity of muscle. Maximum Fractal

Length, a novel feature as a measure of low-level muscle activation, is discussed
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in Section 5.4. Finally, Section 5.5 summarizes the properties of proposed fractal

features of sEMG that is used for recognition of low-level muscle activity pattern.

5.2 Self-similarity of sEMG

In complex bio signals like sEMG, there exists self similarity phenomenon, in

which there is a small structure (motor unit) that statistically resembles the larger

structure. The source of sEMG is a set of similar action potentials originating

from different locations in the muscles. Because of the selfsimilarity of the action

potentials that are the source of the sEMG recordings over a range of scales,

sEMG has fractals properties.

Preliminary analysis was performed to establish the suitability of the use of

fractal analysis of sEMG recordings. The recording of sEMG while performing

simple contraction was conducted to test the presence of self-similarity. To de-

termine the self-similarity in the recorded muscle activity (sEMG), the procedure

explained in Section 4.2 was followed :

• A new time series y(m)(k) of the aggregated sEMG signal over m was gen-

erated from the recorded sEMG signal.

y(m)(k) = 1
m

∑m−1
l=0 y(km − l)

• The natural log of variance between the original and the aggregated series

was plotted against the natural log of m. This is shown in the Fig.5.1.

• From the Fig.5.1, it is observed that the variance decays slowly with m with

β = 0.9573 < 1 .
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Figure 5.1: Logarithmic plot of the variance and the scale m for a sample sEMG
recording to determine the self-similarity property

• From this β value and the plot in Fig.5.1, the self-similarity index of recorded

sEMG signal was computed with

H= 0.5213

Based on the value of β being less than 1, it is confirmed that the signal has

self-similarity and is long-range dependant (LRD). This confirms the use of fractal

dimension to determine this self-similar property of sEMG, while determining the

muscle properties and muscle activation.

5.3 Method to determine Fractal dimension

Fractal dimension (FD) analysis is frequently used in physiological signal pro-

cessing like sEMG, EEG, ECG (Durgam et al., 1997; Gupta et al., 1997; Peng
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et al., 1999). Applications of FD in these physiological signals include two types

of approaches (Esteller et al., 2001):

• Signals in the time domain

The former approaches estimate the FD directly in the time domain or orig-

inal waveform domain, where the waveform or original signal is considered

a geometric figure and,

• Signals in the phase space domain

Phase space approaches estimate the FD of an attractor in statespace do-

main.

Calculating the FD of waveforms is useful for transient detection, with the ad-

ditional advantage of fast computation. It consists of estimating the dimension of

a time-varying signal directly in the time domain, which allows significant reduc-

tion in program run-time (Esteller et al., 2001). The FD of sEMG is calculated

to determine the transients in sEMG, that is related to the overall complexity

of the muscle properties. Three of the most following prominent methods for

computing the FD of a waveform (Higuchi, 1988; Katz, 1988; Petrosian, 1995)

have been applied to the analysis of signals, and a variety of engineering systems.

• Higuchi’s Algorithm

• Katz’s Algorithm

• Petrosian’s Algorithm

Study by (Esteller et al., 2001) have shown that Higuchi’s algorithm provides

the most accurate estimates of the FD. Katz’s method was found to be less linear
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and its calculated FDs were exponentially related to the known FDs, whereas

Petrosian’s algorithm was found to be relatively linear and demonstrated the

least dynamic range for the estimated FD. Based on this, Higuchi’s algorithm

was considered for the computation of FD of sEMG in this study.

5.3.1 Algorithm

Fractal dimension was calculated using the procedure reported by Higuchi (Higuchi,

1988) for non-periodic and irregular time series. This procedure yields a more

accurate estimation of fractal dimension (Esteller et al., 2001). This reported

technique can give stable indices and time scale, corresponding to the character-

istic frequency even for a small number of data.

Procedure:

• Consider a finite set of time series observations taken at a regular interval:

X(1), X(2), X(3), ...., X(N)

• From the given time series, construct a new time series, Xm
k , defined as

follows:

X(m), X(m + k), X(m + 2k), ...X(m +
[

N−m
k

]

.k) & (m = 1, 2, ..., k)

Where [ ] denotes the Gauss’ notation and both k and m are integers. m

= initial time; k = interval time

• Defining the length of the curve, Xm
k , as follows:
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Lm(k) =

(

∑[N−m

k
]

i=1 |X(m + ik) − X(m + (i − 1).k)|

)

N−1

[N−m

k
].k

k
(5.1)

The term, N −1/[(N −m)/k].k, represents the normalization factor for the

curve length of subset time series.

• The length of the curve for the time interval 〈k, (L(k))〉, is defined as the

average value over k sets of Lm(k). If 〈L(k)〉 α kD, then the curve is fractal

with the dimension D for a statistically self-similar curve.

The straight line is fitted to the points by the least-square method to determine

the slope. This slope represents the fractal dimension.

5.3.2 Relation of FD to sEMG

Fractal dimension of sEMG has been found sensitive to magnitude and rate of

muscle force generated. Fractal dimension is introduced as the index for describ-

ing the irregularity of a time series in place of the power law index. Gitter et

al. (Gitter and Czerniecki, 1995) demonstrated that the fractal characteristics of

EMG signal with a dimension is highly correlated with muscle force. Gupta et

al. (Gupta et al., 1997) reported that the fractal dimension can be used to char-

acterize the sEMG signal. Hu et al. (Hu et al., 2005) distinguished two different

patterns of fractal dimensions of sEMG signals. These studies demonstrated that

fractal information of sEMG is useful for characterizing the signal and identifying

properties of the signal.
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Figure 5.2: Logarithmic plot of the curve length 〈L(k)〉 and scale k for the four
channel recorded sEMG signal during two different simple flexions (a) Wrist flex-
ion and (b) all fingers flexion
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5.3 Method to determine Fractal dimension

Researchers have studied fractal dimension to characterize normal and patho-

logical signals (Acharya et al., 2005). Anmuth et al.(Anmuth et al., 1994) deter-

mined that there was a small change of the fractal dimension of the sEMG signal

and this was linearly related to the activation of the muscle measured as a frac-

tion of maximum voluntary contraction. They also observed a linear relationship

between the fractal dimension and the flexion - extension speeds and load. FD

of a process measures its complexity, spatial extent or its space filling capacity

and is related to shape and dimensionality of the process (Gitter and Czerniecki,

1995; Mandelbrot, 1977).

The most important inherent properties of muscle include muscle dimensions

and complexity. These properties may change with the change in shape and

contraction of the muscle and presence of other simultaneously active muscles.

While high level of contraction or muscle stretch would also have an impact

on FD (Gupta et al., 1997), there would not be significant variations of FD

with small changes of muscle contraction. Studies by Basmajian and De Luca

(Basmajian and De Luca, 1985), have indicated that for low level of isometric

muscle contraction, there is no change in the size of the muscle.

During low level contraction the underlying self-similar process (muscle) re-

mains unchanged, but there is a small change in the density of MUAP. It is

expected that the FD will remain unchanged even though the force of muscle

contraction would change. FD will be indicative of the process that in this case

is the muscle itself. These facts lead to the hypothesis that: More complex the

muscle structure, higher would be the magnitude of FD. The rate of increase in

the average length of signal, calculated using the algorithm, with decreasing scale

will be greater for more complex and bigger muscles which would have a larger
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number of active motor units. This is due to the fact that MUAP originating

from superficial muscles have higher frequency and magnitude compared to the

MUAP originating from deeper muscles (Holobar and Zazula, 2003; Huiskamp

et al., 1995; Kleine et al., 2007).

In order to determine the significance of FD and its relation to sEMG, prelim-

inary analysis was conducted by using recorded sEMG while performing low-level

wrist and fingers flexion. This analysis show that FD of sEMG resulting from

deeper muscles is significantly less than from superficial muscles and signal from

very distant muscles do not have fractal properties. Fig.5.2 shows the compu-

tation of FD of sEMG recorded from each forearm muscle. From this plot, it

is observed that the FD i.e., slope of the line, for different channels does not

vary much. The reason for this no observable changes in FD, is attributable to

the same length and complexity of the forearm muscles, at low-level contraction.

While high level of contraction or muscle stretch would also have an impact on

FD (Gupta et al., 1997), there would not be significant variations of FD with

small changes of muscle contraction.

Based on the above facts, it is proposed that for low-level of muscle contrac-

tion, FD would not change for small changes in muscle contraction and that FD

would be a measure of the size and complexity of the muscles. Hence FD is a

very useful feature of sEMG to measure the overall fractal property of the signal.

However, the functionality of muscle contraction is dependent on the strength of

contraction as well as the complexity of the different muscles. There is a need

for identifying another feature of fractals that would provide more information of

sEMG for determining the resultant function being performed.
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5.4 Determining a novel feature - Maximum frac-

tal length

To identify small actions, it is important to be able to determine the subtle

changes in the sEMG. While FD is a measure of complexity of the muscle, the

average length of the signal at corresponding scales from the fractal dimension

algorithm is a measure of the small changes in the muscle activation.

When the strength of the muscle contraction is very small, there is small or no

overlap of the MUAP. Each MUAP contributes to a singularity in the recording

and in turn the length of the signal. The addition of singularity will lead to the

small change in the length of the signal. This small change can be identified

from the fractal length at lower scales, where the length is maximal for each

contraction. Hence it is proposed that the average fractal length 〈L(k)〉 of the

signal (over unit time) measured at the smallest scale from the fractal dimension

algorithm to be used as a measure for low level muscle contraction. This has been

identified as a novel feature and referred to as Maximum Fractal Length (MFL).

The changes in low-level muscle contraction leads to the change in length of

the signal at smallest scale measured from the log-log plot. From Fig.5.5 and

Fig.5.6, it is observed that the lengths at higher scales were similar for different

channels for the same flexion. Based on this, higher scales were not considered

for this study.

The Maximum Fractal length is determined from the fractal dimension algo-

rithm explained in Section 5.3 and it is defined as

MFL = 〈L(k)〉at smallest scale

56



5.4 Determining a novel feature - Maximum fractal length

where 〈L(k)〉 is determined from Eqn.5.1.

The computation of MFL of sEMG is shown in the Fig.5.3. The use of MFL

as a measure of changes in sEMG during low-level contraction and its reliability

over the background noise, has been explained in the next section.
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Figure 5.3: Computation of MFL from the fractal dimension algorithm

5.4.1 Relation of MFL to sEMG

A preliminary analysis was peformed to determine the relation of MFL to the

properties of sEMG. For this analysis, sEMG from four channels (sensors placed

on surface of different muscles) in forearm while performing subtle finger and wrist

flexions were considered. MFL was computed using the procedure explained in

Section 5.4 and as shown in the Fig.5.4.

This MFL represents the level of muscle activity for the particular gestures.

The logarithmic plot of the modified sEMG signal for each of the four channels
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Figure 5.4: MFL of four channel sEMG data computed from the fractal dimension
algorithm

for all forearm subtle gestures were plotted. Each individual plot contains the

curve for four channels for the each of the hand gesture. This is shown in Fig.5.5

and Fig.5.6. This gives different pattern of the four channels for the different

gestures.

From the analysis and the plot, there are some common observations:

• For wrist flexion gesture, Channel 2 has higher MFL i.e., level of muscle

activity (refer Fig.5.5)

• For wrist flexion gesture towards little finger in horizontal plane, Channel

3 has higher MFL which relates to the muscle anatomy (Palastanga et al.,

2006)

• While for fingers flexion gestures, Channel 4 has higher MFL at lower scales

and as the line decays it overlaps with Channel 2 and Channel 1 at higher
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Figure 5.5: Example of Logarithmic plot of the curve length 〈L(k)〉 and scale k
for the four channel recorded sEMG signal during two different Wrist flexions

scales (refer Fig.5.6). This may be due to the overlap of recruitment of

motor units for this particular gestures.

The results show that MFL value changes with respect to the small changes

in the muscle actvity eventhough the slopes of the channels corresponding to FD

remains unchanged. This suggest that MFL is a measure of muscle actvity even

when the level of muscle activity is very low and it varies with respect to the

changes in the sEMG.

5.5 Summary

Fractal analysis of sEMG has been presented in this chapter to identify and re-

late to the properties of sEMG during sustained low-level muscle contraction.

Number of researchers have studied fractal properties of sEMG, but the earlier
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Figure 5.6: Example of Logarithmic plot of the curve length, 〈L(k)〉 and scale k
for the four channel recorded sEMG signal during two different fingers flexion

studies have linked the fractal dimension (FD) to the strength of muscle con-

traction (Gitter and Czerniecki, 1995; Gupta et al., 1997; Hu et al., 2005). This

preliminary study reports that FD does not vary for small changes in isometric

muscle contraction. A new fractal based features of sEMG has been identified

which is closely related to the strength of the muscle activation even when the

strength of muscle contraction is very small. It is based on the fractal length of

the signal at the lowest scale and is termed as Maximum Fractal Length (MFL).

It is observed that there is a close relationship between the muscle activity and

MFL - MFL increases with increase in the muscle activity. The results demon-

strate that MFL is suitable for measuring force of muscle contraction while at

low levels of muscle contraction.

For small variations in muscle contraction, there is only very small change

in the value of FD while there is a significant change in MFL. The preliminary
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5.5 Summary

experiments indicate the use of FD and MFL for complex action recognition,

especially when the level of contraction is small, such as during sustained isometric

forearm contraction. The performance evaluation of these fractal features, FD

and MFL of sEMG are described in the next chapter.
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Chapter 6

Analysis of fractal features - FD

and MFL - of sEMG

6.1 Introduction

This chapter reports on the experimental analysis of fractal features of sEMG.

This analysis was performed to determine

• FD - as a measure of muscle property, and

• MFL - as a measure of muscle activation

The experiments were conducted to evaluate the performance of FD & MFL

as a measure of muscle properties and low-level muscle activity. The perfor-

mance of FD and MFL were examined using two different experimental analysis

as explained in below sections:

• Section 6.2 reports on the first part of the experiments that investigated

the relationship between FD and the muscle properties. The statistical
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analysis was done to evaluate the performance of FD with the contraction

of different size and length of muscles at different levels of force (20%, 50%

and 80%).

• Section 6.3 presents the second part of the experiments that evaluated the

performance of MFL as a new measure of low-level muscle activity. The

statistical comparison between the MFL and RMS was done to evaluate the

performance of these measures for identifying muscle activity at different

levels of force (20%, 50% and 80%).

6.2 Experimental Analysis of performance of FD

as a measure of muscle properties

The first part of the experiment was conducted to validate the hypothesis that FD

is a measure of muscle property and is not a measure of muscle activation when

there is low-level muscle actvity. The experimental analysis was also performed to

identify the relationship between FD and the muscle properties and the following

were observed:

• larger the muscle higher the fractal dimension(FD)

• very small and insignificant variation in FD when there is low-level muscle

activation for the same length of muscle.

The experimental setup and protocol is explained in the following section.
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6.2.1 Experimental setup

6.2.1.1 Subjects

Seven healthy subjects (Six male and one female) volunteered to participate in

this study. Mean age was 26.6 ± 2.05 years with mean weight = 70.6 ± 6.56

kg and mean height = 170.6 ± 7.42 cm. The participants exclusion criterion

was; (i) no history of myo or neuro-pathology, and (ii) no evident of abnormal

motion restriction. Experiments were conducted after receiving approval from

RMIT University Ethics Committee for Human Experiments. Each participant

was given an oral and written summary of the experimental protocol and the

purpose of the study and was asked to sign a consent form prior to participation.

6.2.1.2 Muscles Studied

To determine the relationship between the FD and the muscle properties, different

muscle groups with varied complexity was studied anatomically. For this study,

four set of muscles were examined (Table 6.1) (Chang et al., 1999; Marieb, 1997;

Palastanga et al., 2006). Quadriceps, Biceps and Flexor Digitorium Superficialis

(FDS) muscles maintained isometric contraction against a fixed surface while

Zygomaticus muscle maintained visually isometric contraction. The description

of these muscle groups are as follows:

• Zygomaticus Muscle(Facial)

– Muscle pair extending diagonally from corner of mouth to cheekbone

– Raises lateral corners of mouth upward (smiling muscle)

• Biceps brachi
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– Two-headed fusiform muscle; tendon of long head helps stabilize shoul-

der joint

– Flexes elbow joint and supinates forearm

• Quadriceps Rectus femoris

– Superficial muscle of anterior thigh; runs straight down thigh; longest

head and only muscle of group to cross hip joint

– Extends knee and flexes thigh at hip

• Forearm Muscles - FDS

– The flexor/pronator group and extensor/supinator group occupies the

anterior and the posterior compartment of the forearm respectively

– These muscles are responsible for movement of the forearm, wrist, and

digits

Table 6.1: Different types of muscle and their size and complexity used in this
study

Name of muscle Size and complexity
Quadriceps femoris Largest in length and

most powerful muscle in the body
Biceps brachii Medium in length and elbow flexor

Flexor digitorium superficialis Smaller than Biceps brachii and more complex
with more closely located muscles

Zygomaticus Small and complex muscle
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6.2.1.3 SEMG recording and processing

Surface Electromyographic (sEMG) recordings were obtained using a proprietary

surface EMG acquisition system by DELSYS (Boston, MA, USA)[Fig.6.1]. The

parallel-bar EMG sensor (refer Fig.6.1) was used for sEMG recording. Each

channel is a pair of differential electrodes with a fixed inter-electrode distance of

10mm and a gain of 1000. sEMG signal was bandpass filtered with cut-off fre-

quency between 20-450Hz. Prior to placing the electrodes, skin of the participant

was prepared by shaving (if required) and exfoliation to remove dead skin. Skin

was cleaned with 70% v/v alcohol swab to remove any oil or dust from the skin

surface. The skin impedance between the two electrodes was measured and in

all cases was less than 60 KΩ. Standard isometric manual muscle testing was

performed to verify electrode placement (Basmajian and De Luca, 1985; Fridlund

and Cacioppo, 1986; Hermens et al., 2000).

Figure 6.1: DELSYS surface EMG acquisition system and the parallel-bar EMG
sensor

Along with sEMG recording, the force of each muscle contraction was mea-

sured using FlexiForce sensor in order to measure and maintain the different
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Maximum voluntary contractions (MVC). FlexiForce A201 (Tekscan, Boston,

MA, USA)(refer Fig. 6.2) force sensor is an ultra-thin, flexible force sensor that

can be fixed to measure the force of contraction. The force sensors are constructed

of two layers of substrate (polyester/polyimide) film. On each layer, a conductive

material (silver) is applied, followed by a layer of pressure-sensitive ink. Adhe-

sive is then used to laminate the two layers of substrate together to form the

force sensor. The active sensing area is defined by the silver circle on top of the

pressure-sensitive ink. Silver extends from the sensing area to the connectors

at the other end of the sensor, forming the conductive leads. A201 sensors are

terminated with male square pins, allowing them to be easily incorporated into

a circuit. The two outer pins of the connector are active and the center pin is

inactive.

FlexiForce single element force sensor acts as a force sensing resistor in an

electrical circuit. When the force sensor is unloaded, its resistance is very high.

When a force is applied to the sensor, this resistance decreases. The resistance

can be read by connecting a multimeter to the outer two pins, then applying a

force to the sensing area.

One way to integrate the FlexiForce A201 force sensor into an application

is to incorporate it into a force-to-voltage circuit. A means of calibration must

then be established to convert the output into the appropriate engineering units.

The design of the circuit is shown in the Fig. 6.2. Depending on the setup, an

adjustment could then be done to increase or decrease the sensitivity of the force

sensor.

67



6.2 Experimental Analysis of performance of FD as a measure of
muscle properties

Figure 6.2: Force-to-Voltage circuit for measuring force using FlexiForce A201
sensor. Rf = 20kΩ [Source: Tekscan, Inc. (TekscanInc, 2007)

6.2.1.4 Experimental protocol

The aim of this experiment was to determine the performance of FD as measure

of muscle properties. This experiment was performed to observe

• the change in FD when there is only small increase (≈ 25% MVC) in muscle

contraction

• the change in FD for different muscle groups with different complexities i.e.,

change in size and level of contraction.

At the start of the experiment, each participant was made to generate maxi-

mum voluntary contraction (MVC) for 10 seconds and this was repeated 5 times

for each muscle. Based on the study (Basmajian and De Luca, 1985), the average

of these five recordings was considered to be the MVC. MVCs were measured us-

ing the force sensor while maintaining the contraction and were calculated from

the measured force prior to the recording of sEMG, when the participant were
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asked to perform the high level contraction of the flexions. The average measured

force in terms of voltage for different finger flexions have been tabulated in Table

6.2.

Table 6.2: Average Measured force in terms of volts for different finger flexions

Contraction Average Measured Force (volts)
Quadriceps femoris 128.4mV

Biceps brachii 491mV
Flexor digitorium superficialis 783.2mV

Experiments were conducted where sEMG was recorded when participants

were asked to maintain flexion from different muscles (Table 6.1) for 7-8 secs for

three different levels of forces i.e., 20%, 50% and 80% of MVC. Each contraction

was performed and repeated for the time period of 90 seconds. This protocol was

repeated for two different sessions to obtain varied set of data for further analysis.

Table 6.3: Different level of contractions and its corresponding type number for
the purpose of analysis.

Type No. Name of the muscle and type of contraction
1 Quadriceps femoris - at 20% MVC
2 Quadriceps femoris - at 50% MVC
3 Quadriceps femoris - at 80% MVC
4 Biceps brachii - at 20% MVC
5 Biceps brachii - at 50% MVC
6 Biceps brachii - at 80% MVC
7 Flexor digitorum superficialis - at 20% MVC
8 Flexor digitorum superficialis - at 50% MVC
9 Flexor digitorum superficialis - at 80% MVC
10 Zygomaticus muscle- mild contraction
11 Zygomaticus muscle- medium contraction
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6.2.2 Data Analysis

The first step of the data analysis required the computation of FD and MFL

for recorded sEMG signal during each activation. A moving window with size

of 1024 samples or one second was used to determine FD. FD was determined

as mentioned in Section 5.3 for each moving window size to obtain the optimum

data. The method to compute FD using moving window is shown in the Fig. 6.3.
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Figure 6.3: Computation of FD of sEMG using moving window size of 1024
samples

6.2.2.1 Statistical analysis of data

Analysis of variance (ANOVA) was conducted to determine the p-value to deter-

mine the significance in the relationship between

1. force of contraction and FD, and
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2. FD and size of the muscle.

Fifty examples of each contraction were analysed (N = 50) from each par-

ticipant. The statistical significance of the data was computed using ANOVA

between the force of contraction and the value of FD. The results were then plot-

ted on a box plot to determine the significance of the data. The boxplot is a quick

graphic for examining one or more sets of data. Box plots (Chambers et al., 1983)

are an excellent tool for conveying location and variation information in data sets,

particularly for detecting and illustrating location and variation changes between

different groups of data.

6.2.3 Observations - Performance of FD

The mean values and standard deviations (for 50 flexions) of RMS, MFL and FD

of sEMG for all the experiments have been tabulated in Table 6.4. These results

have also been displayed as a box plot in Fig.6.4.

Table 6.4: Average values (and standard deviation) of FD for the four muscles
when undertaking 20%, 50% and 80% maximum voluntary isometric contraction.

Name of muscle FD (mean ± SD)
20% MVC 50% MVC 80% MVC

Quadriceps 1.9947 ± 0.0004 1.9959 ± 0.0002 1.9966 ± 0.0001
Biceps 1.9609 ± 0.0002 1.9642 ± 0.0011 1.9749 ± 0.0012
FDS 1.9876 ± 0.0036 1.9889 ± 0.0056 1.9902 ± 0.0052

Zygomaticus muscle Type No.10 Type No.11
(Facial) 1.7660+0.001 1.7671+0.002

It is observed from Table 6.4 that the value of FD is greater for larger and

more complex muscles compared to smaller muscles. The mean FD for smaller
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size muscle (facial) is less (FD = 1.7660) when compared with mean FD for larger

size muscle (Quadriceps: FD = 1.9966). The results also indicate that there is a

very small increase (≈ 1%) in FD with increase in muscle activity for any given

muscle. These results indicate that FD is a property of the muscle and not related

to the muscle activity.
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1.975
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1.995
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FD

Biceps, Quadriceps, Forearm muscles at 20%, 50%, 80%MVC

Figure 6.4: Boxplot for FD of sEMG for the muscle groups of different properties
at various levels of force of contraction (20%, 50% and 80% MVC)

In order to validate these results, visualisation of ANOVA analysis of data was

performed using the boxplot as shown in Fig.6.4. From the plot, it is observed

that the fractal dimension varies with different muscle sizes and FD remains

same even when there is small level of increase in muscle contraction for the same

muscle. The boxplot clearly shows that same muscle group during different force

levels of contraction lie in the same quartile range (QR), whereas the range differs

with different muscle groups. This indicates the FD is a measure of overall muscle
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property and can be used as an indicator of different sizes of muscle.

The results of this analysis demonstrate that

• larger and complex muscles have higher FD

• there is a very small (≈ 1%) increase in FD with increase in muscle activity

for a given muscle.

This experimental analysis validates that FD is measure of muscle property

and not a measure of muscle activity when there is low-level muscle actvation. In

order to determine the small changes in the muscle activity during low-level mus-

cle activation, a new feature of Fractal analysis, Maximum fractal length(MFL),

as explained in Section 5.4 has been identified. The performance analysis of MFL

as a measure of low-level muscle activation has been explained in the following

section.

6.3 Experimental Analysis of performance of MFL

as a measure of low level muscle activation

This section reports the performance analysis of MFL as a measure of the muscle

activation. This experimental analysis was conducted to identify the relationship

between MFL and the muscle activation. The aim of this analysis is to determine

that MFL is a measure of low-level muscle activation and the performance of

MFL was compared with that of RMS, which is a common measure of muscle

activation.
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6.3.1 Experimental Setup

The experimental setup was designed to record sEMG while performing subtle

finger movements under various force levels of activation. This experimental

model was used to analyse the performance of MFL as a measure of low-level

muscle activation and was compared with RMS, which is a common mesaure of

muscle activation. The number of participants and sEMG recording procedures

for this experiment has been explained in Section 6.2.

6.3.1.1 Muscles Studied

In this experimental study, to determine the relationship between MFL and the

muscle activation, low-level subtle movements were chosen. The finger flexions

with the different force levels of subtle movements were considered for this study.

In order to record sEMG performing these flexions, Flexor digitorum superficialis

(FDS) muscle group in forearm was chosen due to its complexity and its function,

based on the anatomical study. The function of FDS muscle is explained below

(Marieb, 1997; Palastanga et al., 2006):

• Flexor digitorum superficialis (FDS)

– Two-headed muscle; more deeply placed; overlain by muscles above

but visible at distal end of forearm

– Flexes wrist and middle phalanges of fingers 2-5; the important finger

flexor when speed and flexion against resistance are required

74



6.3 Experimental Analysis of performance of MFL as a measure of
low level muscle activation

6.3.1.2 Experimental protocol

This section discusses about the experimental protocol to determine the perfor-

mance of MFL as measure of low-level muscle activity. The experimental protocol

was designed to consider the different MVC for subtle movements. MVCs were

measured as explained in Section 6.2.1.3. The different muscle groups of fore-

arm were studied and Flexor digitorum superficialis (FDS) was found to be the

appropriate muscle for subtle finger movements. FDS lies in the anterior com-

partment of the forearm, which has a primary function of flexing the digits in

finger movements (Marieb, 1997; Palastanga et al., 2006).

Figure 6.5: Placement of electrodes on surface of the forearm muscle

Experiments were conducted where sEMG from the Flexor digitorum superfi-

cialis (FDS) muscle was recorded when the participant maintained specific finger

flexion. The two electrode channels were placed in the surface on FDS muscle.

The electrodes placement on the forearm of the participant is shown in Fig. 6.5.

The force of contraction was measured using FlexForce sensor. Three different

finger flexions as shown in Fig.6.6 were used as protocol to record sEMG from
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the participant:

• Middle finger flexion,

• Ring finger flexion and

• Little finger flexion

Figure 6.6: Three different finger flexions: Little, Ring, Middle, as performed by
participants.

The participant was asked to maintain each flexion for 7-8 secs for three

different levels of forces i.e., 20%, 50% and 80% of MVC. MVCs were calculated

from the measured force prior to the recording of sEMG, when the participant

were asked to perform the high level contraction of the flexions. The average

measured force in terms of voltage for different finger flexions have been tabulated

in Table 6.5.

The duration of each run of the flexion was 120 secs. Each flexion was repeated

several times within the duration of 120 secs. The sampling rate for recording
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Table 6.5: Average Measured force in terms of voltage for different finger flexions

Flexions Average Measured force (in terms of voltage)
Little finger 95 mV
Middle finger 128.4 mV
Ring finger 194.2 mV

sEMG was 1024 samples/sec. To record the force exerted on the sensor, voltage

across a fixed resistance in series with FlexiForce force sensor was recorded at 1024

samples/sec along with sEMG signal. The change in resistance of the FlexiForce

is the measure of force of the sensor. Visual feedback of the force sensor output

was given to the user to maintain steady muscle contraction.

6.3.2 Data Analysis

The analysis of the recorded of sEMG was performed to determine the suitability

of using MFL as a measure of low-level muscle activity. The two steps were

followed in the analysis of data:

• Computation of MFL and RMS for each flexion at different force levels.

• Statistical analysis to determine the relationship between force of contrac-

tion (% of maximum voluntary contraction) with MFL and with RMS to

determine the signficance of these relationships.

The analysis of data in this research study were performed using MATLAB soft-

ware.
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6.3.2.1 Determining MFL and RMS of sEMG

The first step of this analysis is the computation of MFL value for each flexion

using window size of 1024 samples or one second. MFL was computed as men-

tioned in Section 5.4 for each moving window size to obtain the optimum data.

Similarily, RMS for each flexion was calculated for the same window size using

Eqn 6.1.

Xrms =

√

√

√

√

1

n

n
∑

i=1

x2
i (6.1)

6.3.2.2 Statistical analysis of data

The results of the experiments were analyzed statistically to determine the signif-

icance of the data using student’s t-test (95% confidence interval). Fifty samples

(N = 50) of MFL of finger flexion for each finger were analysed for each partici-

pant. The statistical significance of the data was computed using sample t-tests

between the force of contraction and the value of MFL. This was repeated for

RMS of sEMG and force of contraction. The statistical analysis of the data from

this experiment was conducted by computing the mean and standard deviation of

MFL for the finger flexions during different levels of MVC. The p- value was com-

puted to determine the significance of MFL of flexions with different maximum

voluntary contractions (MVCs).

Student’s t-Test is one of the most commonly used techniques for testing

a hypothesis on the basis of a difference between sample means. Explained in

layman’s terms, the t-test determines a probability that two populations are the

same with respect to the variable tested. If the calculated p-value is below the
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threshold chosen for statistical significance (usually the 0.05 level), then the null

hypothesis which usually states that the two groups do not differ is rejected in

favour of an alternative hypothesis, which typically states that the groups do

differ. The results were then plotted on a box plot to visualise the significance of

the data. The boxplot provides an excellent visual summary of many important

aspects of a distribution. They are particularly useful for comparing distributions

between several groups or sets of data.

6.3.3 Observations - Performance of MFL and RMS

The performance of MFL as a measure of low-level muscle activation and its

comparison with RMS were observed using the following summarised Tables:

• The mean values (for 50 samples) of RMS and MFL of sEMG for the three

different finger flexions at the three different levels of strength of contraction

for each participant have been tabulated in Table 6.6.

• The p values of the two sample t-tests as a measure of the significance of the

relationship of MFL and RMS of sEMG with strength of muscle contraction

for the different participants have been tabulated in Table 6.7.

The values of MFL were compared with the RMS for different flexions at

different MVCs, to determine the measure of low-level muscle activation.

6.3.3.1 Comparative results using Statistical analysis

MFL (the fractal feature) and RMS were compared for their performance by de-

termining the significance of separation of each flexions corresponding to different

force levels of contraction. The results were summarised in Table 6.6 and Table
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6.7. From Table 6.6, it is observed that there is large increase in mean MFL

values for different finger flexion as the force of contraction increases from 20%

MVC to 80% MVC(≈ 125%) for all subjects. But the mean values of RMS have

a marginal increase or no increase as the force of contraction increases from 20%

MVC to 50% MVC. From Table 6.6 and Table 6.7, it is observed that MFL is a

Table 6.6: Mean values of MFL and RMS values for different flexions (L - Little
finger; R - Ringer finger; M - Middle finger) under different force (%MVCs)

20% MVC 50% MVC 80% MVC
Flexions MFL RMS MFL RMS MFL RMS

L 5.12 0.033 6.72 0.031 7.44 0.042
Subject 1 R 31.60 0.088 33.46 0.082 62.36 0.084

M 43.20 0.085 52.44 0.074 75.73 0.100
L 4.90 0.047 5.27 0.021 8.12 0.055

Subject 2 R 25.27 0.063 26.46 0.081 43.36 0.096
M 35.31 0.069 42.44 0.092 55.56 0.150
L 6.84 0.032 7.62 0.032 7.71 0.039

Subject 3 R 30.76 0.058 36.08 0.056 68.91 0.088
M 42.15 0.065 52.88 0.069 89.35 0.114
L 5.76 0.052 6.70 0.048 10.74 0.051

Subject 4 R 21.16 0.062 28.45 0.065 58.57 0.094
M 36.58 0.072 41.44 0.084 70.75 0.141
L 8.11 0.047 7.72 0.046 15.44 0.066

Subject 5 R 29.41 0.068 40.41 0.052 73.35 0.101
M 50.31 0.076 58.47 0.074 105.71 0.180

good indicator of strength of muscle contraction. The results show that values of

MFL are a good indicator of the force of contraction of the muscles for all levels

of muscle contraction.

RMS of sEMG is an indicator of the force of contraction only when the level

of contraction is high (80% MVC) but a poor indicator of the force of contraction
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Table 6.7: p values from t-test for five subjects. The pairs of samples are: L-
R:Little and Ring finger flexion, R-M:Ring and Middle finger flexion, and L-
M:Little and Middle finger flexion

20% MVC 50% MVC 80% MVC
Flexions MFL RMS MFL RMS MFL RMS

L-R 0.0001 0.001 0.0001 0.0001 0.0001 0.0001
Subject 1 R-M 0.001 0.914 0.0001 0.195 0.0001 0.011

L-M 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
L-R 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Subject 2 R-M 0.001 0.294 0.001 0.104 0.0001 0.001
L-M 0.0001 0.001 0.0001 0.0001 0.0001 0.0001
L-R 0.0001 0.001 0.0001 0.0001 0.0001 0.0001

Subject 3 R-M 0.001 0.404 0.001 0.21 0.0001 0.01
L-M 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
L-R 0.0001 0.001 0.0001 0.0001 0.0001 0.0001

Subject 4 R-M 0.001 0.510 0.001 0.011 0.0001 0.01
L-M 0.0001 0.001 0.0001 0.0001 0.0001 0.0001
L-R 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Subject 5 R-M 0.001 0.32 0.001 0.136 0.0001 0.0001
L-M 0.0001 0.001 0.0001 0.0001 0.0001 0.0001

when the level of contraction is low (20%). This may be attributable to the effect

of the background actvity during low-level muscle activity. The increase in the

value of MFL of sEMG corresponding to 30% increase in MVC was of the order of

200% while there was no significant increase in the value of RMS and in number

of cases RMS value decreased with increase in the strength of muscle contraction.

In order to validate and visualise the data, the values were plotted using

boxplot to determine the difference in MFL for flexions during different levels of

contraction. Boxplots can be useful to display differences between populations

without making any assumptions of the underlying statistical distribution. The
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Figure 6.7: Boxplot for RMS of sEMG for the Little finger flexion at 3 different
levels of force of contraction

space between the different parts of the box help indicate the degree of dispersion

(spread) and skewness in the data, and identify outliers.

The boxplots for RMS and MFL of sEMG for the flexion of the little finger at

the three different levels of force of contraction for Subject 1 are shown in Fig.6.7

and Fig.6.8 respectively. From these plots, it is observed that MFL is reliably

able to differentiate between force of finger flexion - 20%, 50% and 80% MVC

while this is not possible using RMS of sEMG.

Similarly, the plots for the Ring and Middle fingers flexion shown in Fig.6.9,

Fig.6.10, Fig.6.11 and Fig.6.12, indicate that MFL has more signifcant change

than RMS, during low-level flexions with respect to the force levels of contraction.
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Figure 6.8: Boxplot for MFL of sEMG for the Little finger flexion at 3 different
levels of force of contraction

6.4 Discussion - performance of FD and MFL

The physiological relationship between FD and MFL with sEMG, as explained

in Section 5.3 and Section 5.4 respectively has been observed and evaluated in

this performance analysis. It is observed from the results that FD is a measure

of muscle property and not a measure of low-level muscle activation. The mean

value of FD varied increasingly for different properties of muscles and remained

same even for low-level increase in muscle activation (refer Table 6.4). This

performance study has concluded that FD is not dependent on the strength of

muscle contraction but on the muscle properties such as size and complexity. For

small variations in muscle contraction, there is very small change in the value

of FD (≈ 1%) while there is a significant change in MFL (≈ 200%). The study

has also demonstrated that FD is dependent on the size and complexity of the

active muscles, with the value of FD being higher for larger muscles, or when
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Figure 6.9: Boxplot for MFL of sEMG for the Ring finger flexion at 3 different
levels of force of contraction

there are multiple simultaneously active muscles. Based on this experimental

study, the results suggest that the observed change in FD with strength of muscle

contraction is a result of changes in muscle properties due to high levels of muscle

contraction and associated movement or change in length.

The performance of the new feature of fractal, MFL as a measure of low-level

muscle activation was evaluated and compared with RMS, a common feature for

the measure of sEMG. Statistical comparison of the relationship of MFL and

RMS with strength of contraction indicates that MFL is a significantly better

measure of muscle activity than RMS for all levels of muscle contraction. When

the level of contraction is less than 50%, RMS does not appear to be a good

measure of contraction (p < 0.05) while MFL is a good measure even when the

strength of contraction is only 20% MVC (p < 0.001).

MFL is a measure of wavelength from the fractal plot and due to the logarith-
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Figure 6.10: Boxplot for RMS of sEMG for the Ring finger flexion at 3 different
levels of force of contraction

mic nature, only the singularities have a significant impact on this value while the

background activity is ignored and is less sensitive to noise. MFL is thus related

to the density of singularities in the signal and in the case of sEMG, it is related

to the density of MUAPs.

It is observed that there is a close relationship between the muscle activity and

MFL - MFL increases with increase in the muscle activity. The results demon-

strate that MFL is suitable for measuring force of muscle contraction while at

low levels of muscle contraction RMS is not suitable. At low levels of contraction

RMS of sEMG of the relaxed muscle and contracting muscle is comparable. This

performance evaluation study determined the strengths of fractal features (MFL,

FD). This suggests that these features can be used in the identification of small

changes and properties in biosignals.
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Figure 6.11: Boxplot for MFL of sEMG for the Middle finger flexion at 3 different
levels of force of contraction

Figure 6.12: Boxplot for RMS of sEMG for the Middle finger flexion at 3 different
levels of force of contraction
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Chapter 7

Application - Performance

analysis of Fractal features

(MFL,FD) of sEMG and EEG

7.1 Introduction

This chapter proposes and experimentally verifies the efficacy of MFL and FD of

biosignals for real-time applications. In this study, the following two applications

are examined:

• Identification of wrist and finger flexions using single channel sEMG and

• Identification of changes in EEG recording in response to alertness levels

The outcome of the experiments were statistically analysed to determine the

reliability of separation. The data was also classified using an artificial neural

network based (ANN) classifier. Each of these are described in the following
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sections.

7.2 Identification of Subtle finger and wrist move-

ments using FD & MFL of single channel

sEMG

In this section, the performance of fractal features in identifying low-level or subtle

movements has been analysed. To verify this experimentally, wrist and finger

flexions were considered that has a wide applications in prosthetic control and a

number of other rehabilitation applications. Most sEMG based control systems

that are currently available, extract control information from sEMG signal based

on an estimate of the amplitude (Lowery and O’Malley, 2003) or the rate of change

(Falla et al., 2007) of the muscle activity. Even though these systems have been

successful, general limitation of these techniques is that these are unsuitable at

low levels of contraction. There is a need of reliable control for multiple functions

(or device) or for subtle functions (Costanza et al., 2005).

Experiments were conducted where sEMG was recorded during predefined

actions. The fractal features, FD & MFL of single channel recording were com-

pared with RMS of multiple channels. The experimental verification of using the

feature set of FD and MFL for identifying small finger and wrist flexion has been

reported in this section. The data were classified to determine the ability of using

a combination of FD and MFL from only one channel to recognize the finger and

wrist flexion actions.
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7.2.1 Experimental setup

The experimental setup design included the selection of wrist and finger flexions

based on the anatomical study of muscle groups which relate to different forearm

flexions.

7.2.1.1 Muscle studied

Four muscle groups in forearm were chosen for this study: Brachioradialis, Flexor

Carpi Radialis (FCR), Flexor Carpi Ulnaris (FCU), Flexor digitorum superfi-

cialis (FDS). These muscles play an important role in wrist and finger flexion

movements (Marieb, 1997; Palastanga et al., 2006). A brief description and ac-

tion of each muscle is explained below:

• Brachioradialis

– Superficial muscle of lateral forearm; extends from distal humerus to

distal forearm

– Synergist in forearm flexion; acts to best advantage when forearm is

partially flexed and semi-pronated

• Flexor Carpi Radialis (FCR)

– Runs diagonally across forearm; midway, its fleshy belly is replaced by

a flat tendon that becomes cordlike at wrist

– Powerful flexor of wrist; abducts hand; synergist of elbow flexion

• Flexor Carpi Ulnaris (FCU)
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– Most medial muscle of this group; two headed; ulnar nerve lies lateral

to its tendon

– Powerful flexor of wrist; stabilizes wrist during finger flexion.

• Flexor digitorum superficialis (FDS)

– Two-headed muscle; more deeply placed; overlain by muscles above

but visible at distal end of forearm

– Flexes wrist and middle phalanges of fingers 2-5; the important finger

flexor when speed and flexion against resistance are required

7.2.1.2 Experimental protocol

The experimental protocol was designed to determine the performance of FD &

MFL as a feature set for identification of subtle wrist and finger actions. SEMG

recording and processing were followed as explained in Section 6.2.

Figure 7.1: Placement of electrodes and description of channels

Four pairs of electrodes were placed on the forearm muscles on four muscle

groups as shown in Fig.7.1. Table 7.1 shows the channel number and its associ-

90

exp.eps


7.2 Identification of Subtle finger and wrist movements using FD &
MFL of single channel sEMG

ated muscle used for this experimental recording. Experiments were conducted

where sEMG from the four electrode pairs were recorded when the participant

maintained specific wrist and finger flexion (Table 7.2).

Table 7.1: Channel Number and its associated muscle

Channel Number Associated muscle
1 Brachioradialis
2 Flexor Carpi Radialis (FCR)
3 Flexor Carpi Ulnaris (FCU)
4 Flexor digitorum superficialis (FDS)

The data analysis was performed considering all channel recordings and com-

pared with the performance of fractal feature of sEMG from only Channel 2.

This channel was chosen because it is closest to the elbow and most suitable for

helping people with hand amputation.

Figure 7.2: Four different wrist and finger flexions used in this experimental
protocol (Table 7.2)

The four different wrist and finger flexions used in this experimental protocol
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were numbered as shown in Table 7.2. The participants were asked to maintain

each flexion (as shown in Fig. 7.2) for 7-8 secs for three different levels of forces.

Each flexion was repeated several times within the total duration of 120 secs.

Table 7.2: Flexion and its corresponding flexion number

Flexion Number Flexion
G1 Wrist flexion (Basal)
G2 Index and Middle finger flexion
G3 Wrist flexion (Lateral)
G4 Little and ring finger flexion

7.2.2 Data Analysis

As the first step of the analysis, the fractal features, FD and MFL, of the recorded

sEMG were determined from the procedure explained in Chapter 4. The calcu-

lated fractal features were analysed to demonstrate the ability of this feature

set to identify the different actions using sEMG and compared with RMS based

techniques reported in literature (Costanza et al., 2005; Momen et al., 2007).

The analysis of data for its reliability and significance in separation was di-

vided into following three parts:

• Scatter plot analysis of data

• Statistical significance analysis using MANOVA

• Classification of data using Artificial Neutral Network (ANN) classifier
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7.2.2.1 Visualisation using Scatter plot

A scatter plot, also called a scatter diagram or a scattergram, is a basic graphic

tool that illustrates the relationship between two variables. The dots on the

scatter plot represent data points. Scatter plots are used with variable data to

study possible relationships between two different variables. In this data analysis,

as a first step, the fractal features of single channel were visualised to determine

the separation of classes related to the different subtle movements. The scatter

plot MFL and FD for the data from the Channel 2 is shown in Fig.7.3.
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Figure 7.3: Scatter plot of FD and MFL of single channel (Channel 2) for different
subtle movements

From the plot (Fig.7.3), it is visualised that the different clusters of data points

are related to different classes. Even though a scatter plot depicts a relationship

between variables, it does not indicate a cause and effect of the relationship.

Statistical analysis was performed to examine the significance of this relationship.

93

scatterMFLFDCh2.eps


7.2 Identification of Subtle finger and wrist movements using FD &
MFL of single channel sEMG

7.2.2.2 Statistical analysis using MANOVA

Multi-variate analysis of variance (MANOVA) was conducted to determine the

significance of the data separation. MANOVA is an extension of One-Way Analy-

sis of Variance (ANOVA). It analyzes the means of multiple variables to determine

whether the mean of these variables differ significantly between classes. It mea-

sures the differences for two or more metric dependent variables based on a set of

categorical variables acting as independent variables (Hair et al., 2006). To cal-

culate the significance of the relatioships, the F value from the MANOVA table

was used.

• A Brief about F-test

An F-test is a statistical test in which the test statistic has an F-distribution if

the null hypothesis is true. Sir Ronald A. Fisher initially developed the statistic

as the variance ratio in the 1920s (Fisher, 1922). Consider the two different

models (simpler and complicated) for analysis in F-test. If the simpler model is

correct, the relative increase in the sum of squares (going from more complicated

to simpler model) is expected to equal the relative increase in degrees of freedom

(GraphPad, 2007; Lomax, 2001). If the simpler model is correct it is expected

that:

(SS1 − SS2)/SS2 ≈ (DF1 − DF2)/DF2 (7.1)

where SS1 is the sum-of-squares for the simpler model (which will be higher)

and SS2 is the sum-of-squares of the more complicated model. If the more com-

plicated model is correct, then it is expected that the relative increase in sum-of-
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squares (going from complicated to simple model) to be greater than the relative

increase in degrees of freedom:

(SS1 − SS2)/SS2 > (DF1 − DF2)/DF2 (7.2)

The F ratio quantifies the relationship between the relative increase in sum-

of-squares and the relative increase in degrees of freedom.

F =
(SS1 − SS2)/SS2

(DF1 − DF2)/DF2
(7.3)

That equation is more commonly shown in an equivalent form:

F =
(SS1 − SS2)/(DF1 − DF2)

SS2/DF2
(7.4)

F ratios are always associated with a certain number of degrees of freedom for

the numerator and a certain number of degrees of freedom for the denominator.

This F ratio has DF1-DF2 degrees of freedom for the numerator, and DF2 degrees

of freedom for the denominator. The p-value, which is derived from the cdf of

F, determines the significance of the separation and as F increases, the p-value

decreases.

Canonical analysis was performed on MANOVA to identify the variables that

provide the most significant separation between groups (Hair et al., 2006). Canon-

ical variables are linear combinations of the mean-centered original variables.

Twenty-five examples of wrist and finger flexion for each movement were ana-

lyzed (N = 25) for each participant. The significance of the data was computed

for the feature set combining FD and MFL and was repeated for RMS values for
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comparison.

7.2.2.3 Classification Using ANN

The aim of the classification was to determine the ability of the system to identify

the different actions using sEMG. Neural network is a general purpose non-linear

classifier that can be iteratively trained using examples. This was used for the

purpose of classification to compare the proposed technique with the other tech-

niques reported in literature that are based on RMS of sEMG. For the sake of

comparison, RMS of the same recordings were also classified using a similar neural

network. A simple multilayer perceptron (MLP) artificial neural network (ANN)

was used for the classification of the features (Freeman and Skapura, 1991).

Supervised artificial neural network (ANN) approach lends itself for identi-

fying the separability of data even when the statistical properties and the types

of separability (linear or nonlinear) are not known. A feed forward MLP ANN

classifier with back propagation (BP) learning algorithm is used in this approach.

The ANN architecture used for this analysis consisted of two hidden layers

with a total of 20 nodes in both the layers with sigmoid function as the threshold

decision. The training and testing was done using this designed ANN architecture

with back propagation algorithm using a momentum with a learning rate of 0.05

to reduce the likelihood of local minima. The training and testing data were

orthogonal sets and membership was randomly allocated from the experimental

data. To compare the proposed technique with other techniques (Momen et al.,

2007), RMS of all the four channels and for two channels were also analysed using

a similar approach as above.
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7.2.3 Observations - Performance of Fractal features (MFL

and FD)

The results from the data analysis were observed and reported in this section

to validate the performance of the fractal features. The scatter plot in Fig.7.3

visualises the separation of different classes pretaining to subtle movements using

MFL and FD. This confirms the formation of the fractal features into clusters

corresponding to the different gestures. The significance of this separation were

observed from the results of statistical MANOVA analysis.

From the grouped scatter plot (shown in Fig.7.4) for first two canonical vari-

ables from MANOVA analysis of 4 channel RMS values, it is observed that there

appear to be clusters but there is substantial amount of noise. This confirms

RMS is not reliable in identification of movements when the muscle activity is

very subtle and when there are multiple active muscles for a particular activity.

From Fig.7.5, it is observed that there are cluster formations of single channel

sEMG using FD & MFL as features and for the four different finger & wrist

flexions. This is confirmed from the statistic F value (Table 7.3).

The results of MANOVA on the fractal features produce the estimated dimen-

sion (d) of the class means of 3 for this fractal features. This indicates that the

class means fall in a 3-dimensional space, which is the largest possible dimension

for four classes. This demonstrates that the 4 class means are different. If the

means of the classes are all the same, the dimension, d, would be 0, indicating

that the means are at the same point. The p-value to test if the dimension is less

than 3 (d < 3) is very small, p < 0.0001. This is confirmed from the MANOVA

F-test table (Table 7.3) and shows that there is significant separation for the four
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sEMG channels (Participant 1)

−6 −4 −2 0 2 4
−15

−10

−5

0

5

10

Canonical variable − c2

C
an

on
ic

al
 v

ar
ia

bl
e 

−
 c

1

G1
G2
G3
G4
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actions where

• p = 0.0001 when using FD and MFL of single channel sEMG,

• p = 0.054 when using RMS of four channels sEMG and

• p = 0.17 when using RMS of two channels sEMG.

Table 7.3: F statistic value from MANOVA table for a) single channel MFL &
FD b) RMS - 4 channels c) RMS - 2 Channels for four different wrist and finger
flexions

F
Subjects FD and MFL RMS 4 channels RMS 2 channels
Subject 1 144.133 20.915 16.213
Subject 2 156.346 23.336 22.436
Subject 3 240.467 22.126 18.342
Subject 4 324.326 21.985 19.564
Subject 5 189.434 22.568 23.233
Average p 0.0001 0.054 0.1676

From these results, it is obvious that using FD and MFL features of only one

channel of sEMG, it is possible to identify each of the four different finger and

wrist flexion actions, even when the level of activity is very low. The reliability

of separation of the classes was first confirmed based on MANOVA and the data

were then classified using the designed ANN architecture.

The recognition accuracy was calculated using the number of correctly classi-

fied fractal feature set from the test feature set values for the corresponding subtle

actions. This analysis was repeated using the RMS feature from four channels

and two channels sEMG.

The recognition accuracy for MFL and FD of single channel as feature set

and for 4 channels and 2 channels of RMS are tabulated in Table 7.4, Table 7.5

99



7.2 Identification of Subtle finger and wrist movements using FD &
MFL of single channel sEMG

Table 7.4: Recognition accuracy (FD and MFL) for different gestures (single
Channel data) using ANN classifier

Recognition accuracy
Subjects G1 G2 G3 G4
Subject 1 95.83 95.83 100 100
Subject 2 95.83 100 95.83 91.67
Subject 3 95.83 95.83 100 100
Subject 4 91.67 95.83 100 95.83
Subject 5 91.67 95.83 100 95.83

and Table 7.6 respectively. These tables indicate that the technique using fractal

features identifies different finger and wrist movements with higher accuracy than

using four channels and two channels RMS as features.

Table 7.5: Recognition accuracy (RMS) for different gestures (4 Channel data)
using ANN classifier

Recognition accuracy
Subjects G1 G2 G3 G4
Subject 1 86.67 86.67 86.67 86.67
Subject 2 86.67 86.67 80 80
Subject 3 80 86.67 66.67 66.67
Subject 4 86.67 80 86.67 66.67
Subject 5 86.67 80 80 80

The average accuracy of identification of the actions using neural network

approach based on three different inputs is shown in Table 7.9. These results also

reconfirm the above observation that MFL and FD of single channel is able to

accurately identify the actions with 96.67% accuracy, while RMS of four channels

gives an accuracy of 81.33% and RMS of two channels only 75%.

These results indicate that a combination of FD and MFL of only one channel
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Table 7.6: Recognition accuracy (RMS) for different gestures (2 Channel data)
using ANN classifier

Recognition accuracy
Subjects G1 G2 G3 G4
Subject 1 86.67 86.67 66.67 66.67
Subject 2 86.67 86.67 66.667 66.67
Subject 3 86.67 80 60 66.67
Subject 4 80 86.67 66.67 60
Subject 5 86.67 80 66.67 66.67

sEMG can be used to identify each of the four different finger and wrist flexion

actions. The classification accuracy using single channel MFL and FD were com-

pared with the RMS of four channels or two channels sEMG and it shows that

RMS is not reliable in identifying the different actions.

Table 7.7: A comparison between the % accuracy of identifying the correct action
based on sEMG using the three techniques; (i) FD and MFL of single channel
sEMG, (ii) RMS of 4 channel sEMG, and (iii) RMS of 2 channel sEMG. ANN
was used for classification in each case.

FD and MFL RMS RMS
one channel 4 channels 2 channels

Average 96.67% 81.33% 75%
Standard deviation 2.04 4.21 11.17

7.3 Alertness level measurement using MFL &

FD of EEG

Alertness deficit is a major problem where the operator is monitoring powered

equipment or is responsible for control of complex situations. It can lead to
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catastrophic consequences for people driving a car, monitoring power plant, and

for air traffic controllers. Number of studies in past have shown that retaining

a constant level of alertness is difficult or impossible for operators of motorized

systems. Research studies (Bullock et al., 1995; Chapotot et al., 1998; Grigg-

Damberger et al., 2007; Makeig and Inlow, 1993; Silber et al., 2007; Tassi et al.,

2006) have shown the relationship of Electroencephalogram (EEG) with changes

in alertness, arousal, sleep and cognition .

Electroencephalogram (EEG) is the recording of the electrical activity in the

brain. Study by Jung et al. (Jung et al., 1997) has estimated alertness of people

using power spectrum of EEG. One shortcoming with biosignals such as EEG is

the very low signal to noise ratio. The typical signal strength of EEG signal is of

the order of 1 micro-volt, and often the strength of artefacts and noise may be

much greater than this. Artefacts such as electro-ocular gram (EOG) can often

be an order of magnitude greater, making the use of EEG for automated analysis

difficult and unreliable.

Researchers have reported that EEG waveforms corresponding to different

physio pathological conditions can be characterized by their complexity (Accardo

et al., 1997; Beckers et al., 2006; Durgam et al., 1997). One measure of complexity

of a signal is the fractal dimension (FD), which is a global property of the signal.

Recent studies by researchers (Accardo et al., 1997; Beckers et al., 2006; Durgam

et al., 1997; Paramanathan and Uthayakumar, 2008; Zhonggang and Hong, 2006)

have demonstrated the fractal nature of EEG. These studies have determined

changes in FD with various levels of handgrip force. Studies reported in previous

chapters has determined the fractal properties of sEMG. This section reports

the performance of these fractal features (MFL & FD) of EEG in alertness level
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measurement.

7.3.1 Experimental setup

The EEG experiment was conducted at Swartz centre and have been reported in

publications (Jung et al., 1997; Makeig et al., 1996). These experimental data

were obtained from Swartz Center for Computational Neuroscience, Institute for

Neural Computation, University of California, San Diego and has been acknowl-

edged. The experimental setup explained in this section has been obtained with

permission from their publications (Jung et al., 1997; Makeig et al., 1996).

7.3.1.1 Subjects

Three healthy subjects (aged from 18 to 34) participated in a dual-task simulation

of auditory sonar target detection. All had passed the standard Navy hearing tests

or reported having normal hearing. Each subject participated in three or more

simulated work sessions that lasted 28 minutes. Each participant was given an

oral and written summary of the experimental protocol.

7.3.1.2 Stimuli

Auditory signals, including background noise, tone pips, and noise burst targets,

were synthesized using a Concurrent work station which was also used to record

the EEG. In a continuous 63 db white noise background, task-irrevalant auditory

tones at two frequencies (568Hz and 1098 Hz) were presented in random order

at 72dB (normal hearing level) with stimulus onset asynchronies between 2-4s.

These signals were introduced to assess the information available in event-related

potentials (Venturini et al., 1992), and are not reported in this study. In half
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of the inter-tone intervals, target noise bursts were presented at 6dB above their

detection threshold and the mean target rate was thus 10 per minute.

7.3.1.3 EEG recording and processing

EEG data were recorded at a sampling rate of 312.5 Hz from two midlines sites,

one central (Cz) and other midway between parietal and occipital sites (Pz/Oz),

using 10 mm gold-plated electrodes located at sites of the Inernation 10-20 sys-

tem, referenced to the right mastoid. EEG data were first preprocessed using a

simple out-of-bounds test (with a ±50µV threshold) to reject epochs that were

grossly contaminated by muscle and /or eye-movement artifacts. Moving aver-

aged spectral anlysis of the EEG data was then accomplished using a 256-point

Hanning-window with 50% overlap. Windowed 256-point epochs were extended

to 512 points by zero-padding. Median filtering using a moving 5s window was

used to further minimize the presence of artifacts in the EEG records. Two ses-

sions from each from the three of the participants were chosen for analysis on the

basis of their including more than 50 detection lapses.

7.3.1.4 Experimental procedure

Experimental procedure was designed in order to determine the level of alert-

ness from EEG recordings. Each subject participated in three or more 28-min

experimental sessions on separate days. During the experiment, the participants

mimicked audio sonar target detection. The participants were asked to respond

to given auditory commands. The subjects pushed one button whenever they

detected an above-threshold auditory target stimulus (a brief increase in the level

of the continously-present background noise). To maximise the chance of observ-
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ing alertness decrements, sessions wer conducted in a small, warm and dimly-lit

experimental chamber, and subjects were instructed to keep their eyes closed.

7.3.1.5 Alertness Measure

Auditory targets were classified as Hits or Lapses depending on whether or not

the subject pressed the auditory response button within 100 ms to 3000 ms of

target onset. To quantify the level of alertness, auditory responses were converted

into local error rate, defined as fraction of targets not detected by the subject (i.e.,

lapses) within a moving time window. A continuous measure, local error rate,

was computed by convolving an irregurlarly spaced performance index (hit = 0/

lapse = 1) with a 95 s smoothing window advanced through the performance

data in 1.64s steps. Each error rate time series consisted of 1024 points at 1.64

s intervals. Error rate and EEG data from the first 95 s of each run were not

used in the analysis. For each window position, the sum of window values at

moments of presentation of undeteced (lapse) targets was divided by the sum

of window values at moments of presentation of all targets. The window was

moved through the session in 1.64s steps, converting the irregularly-sampled,

discontinuous performance record into a regularly-sampled, continuous error rate

measure within the range [0,1].

7.3.2 Data Analysis

MFL and FD were computed from the EEG data using a stepping window of

1.64 s and were analysed to determine the correlation with the local error rate.

The results of the experiments were analyzed to determine the alertness levels in

relation to the small changes in EEG using the correlation analysis.
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7.3.2.1 Correlation Analysis

Correlation analysis often measured as a correlation coefficient, it indicates the

strength and direction of a linear relationship between two random variables. In

general statistical usage, correlation or co-relation refers to the departure of two

variables from independence. In this broad sense there are several coefficients,

measuring the degree of correlation, adapted to the nature of data. A number of

different coefficients are used for different situations (Bland, 2000; Sheskin, 2003).

The best known is the Pearson product-moment correlation coefficient, which is

obtained by dividing the covariance of the two variables by the product of their

standard deviations using the Eqn 7.5.

R(i, j) =
C(i, j)

√

C(i, i)C(j, j)
(7.5)

In this context, the null hypothesis asserts that the two variables are not cor-

related, and the alternative hypothesis asserts that the attributes are correlated.

• Correlation coefficient

The correlation coefficient r is a measure of the linear relationship between

two attributes or columns of data. The value of r can range from -1 to

+1 and is independent of the units of measurement. A value of r near 0

indicates little correlation between attributes; a value near +1 or -1 indicates

a high level of correlation.

When two attributes have a positive correlation coefficient, an increase in

the value of one attribute indicates a likely increase in the value of the

second attribute. A correlation coefficient of less than 0 indicates a negative
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correlation. That is, when one attribute shows an increase in value, the

other attribute tends to show a decrease.

Consider two variables x and y:

– If r = 1, then x and y are perfectly positively correlated. The possible

values of x and y all lie on a straight line with a positive slope in the

(x,y) plane.

– If r = 0, then x and y are not correlated. They do not have an apparent

linear relationship. However, this does not mean that x and y are

statistically independent.

– If r = -1, then x and y are perfectly negatively correlated. The possible

values of x and y all lie on a straight line with a negative slope in the

(x,y) plane.

In this EEG analysis, MFL and FD data points were determined using step

window of 1.6 s, and were fitted using polynomial fit for each session. The error

rate corresponding to each session was fitted using same polynomial function.

To determine the relation between the changes in MFL with error function, the

correlation coefficients were calculated. The correlation coefficients as a measure

show the performance of MFL & FD of EEG in relation with the level of alertness.

7.3.3 Observations - Performance of Fractal features (MFL

and FD) to measure alertness level

Fig.7.6 and Fig.7.7 show the polynomial fit plot of MFL, FD and error rate

function of two channels (Channel 1 and Channel 3) for experimental session
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no.3654. It is observed from the plot that, as error rate increases the MFL

decreases, which relates to the indication of the alertness level. The correlation

between MFL and error rate was measured using the correlation coefficients.

The correlation coefficients for different subjects and for different sessions were

tabulated in Table 7.8.
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Figure 7.6: Plot of FD and MFL (Channel 1 during session no. 3654) inversely
correlated with the local error rate using polynomial fit

7.3.3.1 Correlation coefficients of MFL with Error rate

The correlation coefficients determines how well the MFL of EEG is correlated

with the error rate. The correlation coefficients were calculated using correlation

analysis. The negative correlation coefficients between the MFL and FD with

local error rate function is shown in Table 7.8 and Table 7.9 respectively.

The negative correlation coefficients indicate that MFL is linearly and in-

versely correlated with the corresponding error rate. From the Table 7.8, it is
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Figure 7.7: Plot of FD and MFL (Channel 3 during session no. 3654) inversely
correlated with the local error rate using polynomial fit

Table 7.8: Negative correlation coefficients for MFL and local error rate

Experiment Nos Negative Correlation coefficient
Channel 1 Channel 3

Subject A - No.3648 0.8183 0.834
- No.3674 0.821 0.8023

Subject B - No.3654 0.857 0.8251
- No.3656 0.8442 0.8129

Subject C - No.3665 0.7934 0.8014
- No.3673 0.7842 0.7925

observed that MFL of EEG was negatively correlated (Mean = 0.8196 and SD =

0.02810) with corresponding local error rate to determine the alertness levels and

shows that MFL of EEG reliably identified the small changes related with the

fluctuations of the subject’s task performance and putative alertness level. The

results indicate that with only two EEG channels, the MFL of EEG changes with
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the changes in alertness level of the subjects with the mean correlation coefficent

of 0.82.

Table 7.9: Negative correlation coefficients for FD and local error rate

Experiment Nos Negative Correlation coefficient
Channel 1 Channel 3

Subject A - No.3648 0.7031 0.724
- No.3674 0.691 0.713

Subject B - No.3654 0.656 0.622
- No.3656 0.664 0.6792

Subject C - No.3665 0.6414 0.6258
- No.3673 0.6325 0.6436

It has been demonstrated by (Jung et al., 1997; Makeig et al., 1996) that

there is a change in the strength of EEG with change in alertness. This study has

identified MFL as a feature that correlates with the strength of the EEG signal.

The changes in the level of the alertness can vary the level of the brain activity

and in turn the length of the EEG signal. In this study, the results demonstrate

that MFL of EEG decreased as the subject’s alertness level is changed. The level

of alertness has been recorded in this experiment as the local error rate.

This research study has identified changes in the fractal properties of EEG

recordings in response to the changes in alertness of the subject. The performance

analysis demonstrates that it is feasible to use fractal features of only two channels

of EEG to track an operator’s global level of alertness in a sustained-attention

task.
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7.4 Summary

This chapter has reported on the performance analysis of fractal features of biosig-

nals like sEMG, EEG in identification of small changes in activity. This analysis

results has demonstrated that the combined use of FD and MFL for a single

channel sEMG in identifying finger and wrist flexion actions where the level of

contractions is small and when multiple muscles are simultaneously active. The

results of this analysis show that in comparison, RMS of the signal is unable to

reliably identify the actions, even if more number of channels (2 and 4) were to

be used. There was no observable impact of inter-experimental variations on the

efficacy of the use of FD and MFL of single channel sEMG to identify the different

finger and wrist flexions. Small variations that may have been in the location of

electrodes between the placements of electrodes do not appear to have an impact

on the ability of the system to accurately identify the different actions.

Based on the experimental outcomes of this study, it is concluded that a

combined use of FD and MFL of single channel sEMG is suitable for reliably

identifying various finger and wrist flexion actions. The outcomes of this analysis

also indicate that the system is not sensitive to inter-experimental variations and

does not require strict electrode location selection. This study has also reported

the performance analysis of fractal features of EEG to determine or measure the

small changes in brain related alertness activities. It is observed that there is a

close relationship between the brain activity and the fractal features using only

single channel EEG.
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Chapter 8

Conclusions

This research work has examined the fractal features of biosignals, mainly sEMG

to identify small changes in these kind of signals. This work has demonstrated

that using currently available techniques, this can be unreliable due to the pres-

ence of other similar signals and noise. Based on the analysis of the fractal

properties of the signals, this thesis has developed a new biosignal classification

paradigm which is based on the fractal features. This paradigm has been applied

successfully to identify subtle finger and wrist movements using sEMG recorded

from the forearm. This tecnique has also been successfully applied on electroen-

cephalogram(EEG) signals to measure alertness levels.

The self-similar property of sEMG was analysed in this study and in turn has

confirmed the fractal nature of sEMG when the muscles are weakly active. A

new fractal based feature - Maximum Fractal length (MFL) of sEMG has been

identified which is closely related to the strength of the muscle activation even

when the strength of muscle contraction is very small. The experimental results

demonstrate that MFL is a much better measure of strength of muscle contrac-

tion compared with root mean square (RMS), a common feature in measuring

strength of muscle contraction. The performance of MFL was demonstrated for
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its abilitiy to identify small changes in muscle activity. Statistical comparison

of the relationship of MFL and RMS with strength of contraction indicates that

MFL is a significantly better measure of muscle activity than RMS for all levels

of muscle contraction. When the level of contraction is less than or equal to

50%, RMS does not appear to be a good measure of contraction (p < 0.05) while

MFL is a good measure even when the strength of contraction is only 20% MVC

(p < 0.001).

This work has concluded that Fractal dimension (FD) is dependent on the

muscle properties- with larger and more complex muscles having a higher FD. It

has also been observed that FD is higher when there are multiple active muscles.

Based on the experimental results and theoretical reasoning, this research has

concluded that the observed change in FD with change in strength of muscle

contraction is a result of changes in muscle properties due to high levels of muscle

contraction and associated movement or change in length.

This study has also concluded that FD is not dependent on the strength of

muscle contraction but on the muscle properties such as size. For small varia-

tions in muscle contraction, there is very small change in the value of FD (≈ 1%)

while there is a significant change in MFL (≈ 200%). The study has also demon-

strated that FD is dependent on the size and complexity of the active muscles,

with the value of FD being higher for larger muscles, or when there are multiple

simultaneously active muscles.

The summarised results of using fractal features - MFL and FD of sEMG :

• MFL is suitable for determining small changes in low level muscle activity.

A comparison with RMS of the same data suggests that MFL is a far better

measure of strength of muscle contraction than RMS, especially at the lower
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levels of contraction.

• FD is based on the complexity of muscle and not on changes in muscle

activity.

• The results indicate that using single channel sEMG of forearm, a combina-

tion of MFL and FD are suitable for accurately identifying actions resulting

from small and complex muscle activity such as wrist and finger flexion.

There are number of applications of being able to identify small changes in

muscle activity and to identify the location of the active muscle. Such a sys-

tem can be used for controlling prosthetic hand for people who may have had

their forearm amputated. The lack of sensitivity of the system to the electrode

positioning also indicates that this could be used by a lay user, and may also

find other applications such as human computer interface for the elderly and for

people in special circumstances such as Defence.

This thesis has also reported the results using fractal features on the phys-

iological signals like EEG to determine small changes in brain activity related

alertness activities. It is observed that there is a close relationship between the

the person’s alertness and the fractal features. The results indicate that MFL is

negatively correlated with the fluctuations of the subject’s task performance and

putative alertness level with mean correlation coefficient of 0.82. This research

demonstrates that it is feasible to use fractal features of only one channel of EEG

to track an operator’s global level of alertness during sustained-attention task.

This measurement of changes in EEG during other cognitive tasks leads to its

applications in bio-medical and brain & cognitive dynamics.
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8.1 Main Contributions of this thesis

8.1 Main Contributions of this thesis

The following presents the main contributions of this thesis:

• This thesis has established that changes in FD of sEMG are attributable to

the size and complexity of the muscle and not to the muscle activation.

• It has been demonstrated that there is a strong relationship between the

MFL and low level muscle activity. This has been experimentally verified.

Statistical analysis has shown that the class separation was much better

when MFL was used than RMS. This was validated using the recorded

finger flexions with various measured force.

• It has been demonstrated that FD and MFL of single channel sEMG can

be classified to accurately identify the associated finger and wrist flexion. It

has also been shown that other features such as RMS of even four channels

of sEMG is unable to accurately identify the associated finger and wrist

flexions.

• Performance analyses of MFL and FD for EEG were done to measure the

level of alertness of the individual while performing sustained attention

tasks. The results demonstrated that these features were more accurate

than other methods.

8.2 Future studies

While this study has conducted conclusive studies related to fractal analysis of

sEMG, there is scope for improved understanding of multifractal analysis when
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8.2 Future studies

there are signals of different properties.

There is the need for increased number of subjects and to conduct experiments

over a longer period of time to determine the impact of inter-experimental vari-

ations. There is the need for conducting flexion and extension while this study

has only studied the flexion. It is envisaged that this would require two sets of

electrodes.

This technique could also find applications in other fields such as related to

audio. One future direction could be to test the efficacy of this technique for audio

related applications to identify the background and the foreground activity. This

technique could be combined with blind source separation to have better outcomes

when there are multiple active sources, which can be an another option for future

studies.
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Duchêne, J. and Goubel, F. (1993), ‘Surface electromyogram during voluntary

contraction: processing tools and relation to physiological events’, Crit Rev

Biomed Eng 21(4), 313–397. 4, 8, 9

Durgam, V., Fernandes, G., Preiszl, H., Lutzenberger, W., Pulvermuller, F. and

Birbaumer, N. (1997), ‘Fractal dimensions of short eeg time series in humans’,

Neuroscience Letters 225(2), 77–80. 49, 102

Englehart, K. and Hudgins, B. (2003), ‘A robust, real-time control scheme for

multifunction myoelectric control’, IEEE Transactions on Biomedical Engi-

neering 50(7), 848–854. 1, 3, 9, 11

Esteller, R., Vachtsevanos, G., Echauz, J. and Litt, B. (2001), ‘A comparison of

waveform fractal dimension algorithms’, Circuits and Systems I: Fundamental

Theory and Applications, IEEE Transactions on [see also Circuits and Systems

I: Regular Papers, IEEE Transactions on] 48(2), 177–183. 50, 51

Falconer, K. (1990), Fractal Geometry - Mathematical Foundations and Applica-

tions, John Wiley and Sons, New York. 37, 43

Falla, D., Farina, D. and Graven-Nielsen, T. (2007), ‘Spatial dependency of

120



REFERENCES

trapezius muscle activity during repetitive shoulder flexion’, Journal of elec-

tromyography and kinesiology 17(3), 299–306. 88

Farina, D., Merletti, R. and Stegeman, D. F. (2005), Biophysics of the Generation

of EMG Signals, Electromyography, Wiley-IEEE Press, pp. 81–105. 21, 22,

28, 34

Feder, J. (1988), Fractals, New York: Plenum Press. 39, 40, 43, 47

Fisher, R. A. (1922), ‘On the interpretation of χ2 from contingency tables, and

the calculation of p’, Journal of the Royal Statistical Society 85(1), 87–94. 94

Freeman, A. and Skapura, M. (1991), Neural Networks : Algorithms, Applications

and Programming Techniques, Addison-Wesley. 96

Fridlund, A. J. and Cacioppo, J. T. (1986), ‘Guidelines for human electromyo-

graphic research’, Psychophysiology 23(5), 567–589. 66

Gazzoni, M., Farina, D. and Merletti, R. (2004), ‘A new method for the extrac-

tion and classification of single motor unit action potentials from surface emg

signals’, Journal of Neuroscience Methods 136, 165–177. 4, 5

Gitter, J. A. and Czerniecki, M. J. (1995), ‘Fractal analysis of the electromyo-

graphic interference pattern’, Journal of Neuroscience Methods pp. 103–108. 4,

12, 13, 14, 52, 54, 60

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M.,

Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-

K. and Stanley, H. E. (2000), ‘PhysioBank, PhysioToolkit, and Phys-

ioNet: Components of a new research resource for complex physiologic

121



REFERENCES

signals’, Circulation 101(23), e215–e220. Circulation Electronic Pages:

http://circ.ahajournals.org/cgi/content/full/101/23/e215. 39, 43, 45, 46, 47

GraphPad (2007), ‘How the f test works to compare models’, GraphPad Prism

5.0 Software: Learning module . 94

Graupe, D. and Cline, W. K. (1975), ‘Functional separation of SEMG signals via

arma identification methods for prosthesis control purposes’, IEEE Transaction

on Systems, Man, and Cybernetics 5(2), 252–259. 17

Green, E. R. (1998), ‘Understanding fractals and fractal dimensions’, Senior

Honor Thesis - University of Wisconsin, Madison, WI .
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