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Summary

A wide range of middleware protocols have emerged over time to support enterprise
information systems built on the client-server model. Typicaly, software components are
built to support and access a particular middleware protocol. This restriction can be a major
problem for organisations that wish to deploy multiple middieware protocols and be able to
communicate across these heterogeneous protocols. The requirement for multiple middleware
protocols and their integration has stemmed from the dynamics of business and technology, as
businesses expand, merge or join in partnerships or alliances. New technology such as web
technology, enterprise computing and e-commerce contribute to generating new business
opportunities. A primary am of middleware integration is to introduce new technologies,
while protecting an enterprises’ investment in reliable, useful software components that have

been developed for particular protocols (so called legacy systems).

Seamless middleware integration requires conversion of the message format from the source
of the request to that of its target. A number of solutions have been proposed and
implemented, but they lack wide goplicability and ease of use. This thesis proposes an
improved solution based-on dynamic protocol-level systems integration using configuration,
rather than programming. This allows large complex enterprises to extend and enhance their
existing systems more easily. The magor components of this solution are a Middleware
Protocol Definition Language (MPDL) based on the Object Management Group (OMG)
Interface Definition Language (IDL) that can describe a wide range of protocols declaratively,
and a run-time environment, The Ubiquitous Broker Environment (TUBE), that takes these
protocal descriptions and performs the necessary mediation and transation. The MPDL can
describe a range of synchronous, asynchronous, object-based, and binary and text-based
protocols. Each protocol need only be described once, and the framework provides a means to

easily implement special extensions to the protocol. Further, this approach can be used as the

1



basis for devel oping new middleware protocols the protocol used internally by TUBE isitself

defined and executed using this approach.

A prototype system has been implemented and tested successfully across a wide range of

scenarios that integrate a range of current middleware technologies. The system has also been

tested in alarge Australian corporation.



1 Middleware and Middleware Inter-operability

Middleware is a software layer that supports the interaction between components in a
distributed computing environment. Middleware provides a set of services that alows client
and server programs to communicate with each other across networks and different computer
systems. Middleware provides a means of separating functionality, to alow for independent
development and deployment of software components that support presentation, business
logic, and access to services, typically database access, for a specific application.

Middleware resides between the applications and the underlying operating system and

network (asillustrated in Figure 1.1).

Figurel-1: System layer context of Middleware

Since its emergence in the 1980's, the range of middleware has continually been expanded
and improved. Major middleware types are synchronous procedural RPC (Remote Procedure
Call) oriented middleware, such as DCE-RPC [Open Group, 1997]; asynchronous MOM
(Message-Oriented-Middleware) based products, such as IBM’s MQ-Series [MQ, 2001]; and
transaction-oriented middleware including BEA’s TUXEDO [BEA, 2001] and IBM’s CICS

[CICS, 2001]. Object-based middleware has been widely used, the best known of these being



OMG’'s CORBA [OMG, 2000], Microsoft's DCOM [Microsoft, 1998] and Java/lRMI [RMI,
2003]. More recently, service-oriented architectures, such as Microsoft (.Net) and Java web
services have given rise to middleware based on XML/SOAP [ XML, 2003; SOAP, 2003].
Mobile computing environments present other challenges. Grace et. a. [2005] describe a
reflective framework for the discovery and interaction of services in these environments. The
middleware discussed in this paper focuses on the typical request-response model present in
(usually) connected systems. Wireless connectivity and mobile environments are beyond the
scope of thisthesis.

In some cases, middleware is based on open or agreed standards, such as CORBA and
XML/SOAP, while others, for example, DCOM, TUXEDO and CICS are proprietary. Often,
organisations have their own in-house systems that do the work of third-party middleware. As
aresult of independent vendor product development, systems based on one of these methods
are generaly not directly protocol-level compatible with systems based on another. It is
difficult to call aDCOM server from a CORBA client, although both systems are based on an
object model. The implementations of these object-based systems are quite different [Orfali,
Harkey and Edwards, 1996], and a CORBA client is not plug-compatible with a DCOM

server, even if both run ona Windows (Intel) platform.

The need for system integration has stemmed from the dynamics of business and technology,
as businesses expand, merge or join in partnerships or aliances. The introduction of new
technology such as web technology, enterprise computing and e-commerce contribute to
generating new business opportunities. Some organisations, particularly large diverse
organisations, will have multiple middleware products and approaches. Different parts of the
organisation may have adapted different middleware to best meet their needs in the past. In
some cases, it may be desirable to maintain the legacy system, or the costs of replacement

may be prohibitive. Companies are taking-over or merging with other companies, and small



companies increasingly have had to join globa networks to compete locally (for example,
“small companies, global networks’ [Joia, 2000]). The resulting super-organisations typically
include a mix of generally incompatible IT systems that require integration as quickly as
possible to exploit the new business structures. The problem of protocol-level systems
integration compounds if both companies use different operating system environments. The
ability to maintain existing middleware and applications will result in significant cost savings

in the context of new requirements or new application and middleware deployment.

Organisations continually update their IT infrastructure. Emerging middieware approaches,
for example, XML/SOAP Web Services promise long-term benefits to the organisation, and it

will be desirable to integrate new approaches into the existing environment.

The integration of middleware is a significant problem for these typically large organisations.
Protocol-level integration of legacy systems with other systems has been reported to be a
major challenge [van Steen, 1999 with no obvious general solutions. Low-level systems
integration is difficult, because application semantics must be addressed and low-level manual
data marshalling is often required [Emmerich, 2000; Blair, 1999; Geihs, 2001]. Vawter and
Roman [2001] support this in the domain of current web-based systems stating that, “legacy
integration is often the most challenging (if not the most challenging) task to overcome when

building aweb service”.

Current integration of middleware requires a significant amount of programming. The coding
is either, commissioned by the organisation at considerable cost, or provided off-the-shelf by
avendor, as a “middleware connector”. In both cases, the solution is one-off, and limited to a
specific middleware integration problem. This thesis describes an improved mechanism for

the integration of a wide range of middleware. The aim is to alow organisations to more



easily have a client, written for one middleware protocol (for example a CORBA client),
access a server implemented in another, such as a Web Service, a .Net [Microsoft, 2001]
client or even a legacy system service. The approach will extend the useful life of client and
server software, and enable organisations to adopt new middleware more easily, while
maintaining existing infrastructure and applications. It does this by providing a declarative
Middleware Protocol Definition Language (MPDL) that describes middleware, and arun-time
engine called The Ubiquitous Broker Environment (TUBE) that takes compiled protocol
descriptions and carries out requests across different middleware protocols. This research
project addresses two broad questions, aimed at providing the base of a general and improved

approach to middleware integration, based on describing protocols, rather than programming.

1. Isit possible to describe the characteristics of middleware protocols in a declarative
language?
2. Can an engine be implemented that can take the protocol descriptions and carry out

the run-time integration?

This research provides evidence that such a language and engine can be developed, to carry
out al maor current middleware integration. This approach will deal with new middleware,

without modification or with relatively simple modification.

The rest of the thesis is organised as follows. Chapter 2 describes the nature of middieware,
expands on the problem of middleware integration and provides an overview of other
approaches to the problem. Chapter 3 introduces the TUBE approach. Chapter 4 defines the
Middleware Protocol Definition Language (MPDL). Chapter 5 describes Message Processing
and Data Marshalling and expands on the implementation infrastructure. Chapter 6 describes

the actual implementation and its evaluation. Chapter 7 concludes the paper with a discussion



of some future research options. In addition, there a number of appendices that contain items

commonly referred to within the body of the paper.



2 Middleware Inter-operability Requirements

2.1 Middleware

The core of middleware functionality is to support the client-server computing paradigm
where applications are based on a program (a client) making a request of another program (the
server or service), and the server providing a response to that request. The client and the
server are independent and connected only through the interface of the server. The explicit
linking or binding of a particular server to a client request is usualy done at run-time and is

part of the role of the middleware.

Client server computing allows applications to be built in a number of independent layers
each with a number of different software components, possibly residing on different
platforms. This inherent flexibility has the advantage of allowing different components to be

changed without compiling unaffected components.

In client-server systems, the middleware carries out the following maor high-level tasks.

i. It must set-up the interaction and carry out required initialisation.

ii. It must manage the interaction session, including sending messages, receiving
messages, monitoring connections and handling errors and recovery. The sending and
receiving of messages requires that the messages (client requests and server responses)
are converted (marshalled and un-marshalled) to formats that can be transferred
through networks and operating systems to the targeted servers.

ili. It must terminate the interaction.



2.2 End-Point Resolution

Middleware cals can be made by a proxy or stub generally created at compile time.
Typicaly, middleware uses an IDL to facilitate run-time binding to servers. The IDL defines
the interfaces of servers and the data exchanged between the client and the server. Before this
exchange can occur, the middleware must determine the server address (that is, how to contact
the server). This is what is referred to as the end-point. The end-point is comprised of
protocol-specific information, such as the IP-address and port number of an Object Request
Broker (ORB). Each middleware type has its own scheme for determining, and, or persisting
this addressing information. This address could be, for example, the IOR (Inter-operable
Object Reference) for a CORBA server, or a queue ddinition for MQ-Series. This provides
the necessary information to send a message to, or communicate with, a defined interface
using a particular protocol. A middleware broker must store these definitions against each
interface defined for the particular middleware protocol. This facilitates the ability to change
middleware configurations on an interface basis. There is no need to perform al activity using

asingle middleware type.

It follows that if a client can access a service across different middleware, that there may be
more than one implementation of a service accessible through different middleware.
Conventional middleware will fail if it cannot complete a request, even if an alternative could
satisfy the request. The middlieware determines a single service provider and marshals the call
appropriately, and the onus is on the application developer to support any fail-over. The
middleware only understands its own message formats and addressing schemes. For example,
the default may be CORBA, and calls will target CORBA end-points (for example, an
Interoperable Object Reference); however, an available aternative may be available through

MQ-Series. Access to this service will not be attempted should the CORBA service request



fail. Thisis because the CORBA middleware is un-aware of the MQ configuration, and does
not know how to contact the end-point; in this case, an MQ-Series queue. The ability to
change the middleware dynamically offers the opportunity to access different servers to

satisfy the same request.

Middleware is based on two major models, the Remote Procedure Call (RPC) model and the

Message-Oriented Middleware (MOM) mode!.

2.3 TheRPC Modsd

The purpose of the Remote Procedure Call mode! isto abstract the server |ocation and method
of communication from the client program. The client uses a local stub module to
communicate with the server. The client is un-aware of the servers' location; it may be local
(residing on the same machine) or remote. The stub contains the mechanism required to
marshal and un-marshal parameters for requests and responses and communicate with the
server. The stub is produced by an IDL (Interface Definition Language) compiler and is
closely coupled to the RPC vendors runtime libraries. In this synchronous mode of
interaction, the client expects a response from the server in a finite amount of time. A timeout
condition will occur if the response is not returned within a specified period. The RPC model
is analogous to the line-based telephone system, in that the parties remain connected for the

duration of the exchange. The following diagram shows the basic RPC model.

10



Figure2-1: Remote Procedure Call M odéel

This more recent object-based middleware still follow this basic model. CORBA, COM and
Java RMI all use IDL compilers to generate client-side stubs and provide runtime support

libraries that perform the actual communication.

24 TheMessage-Oriented Middleware (MOM) Model

In contrast to the synchronous RPC-based model, the Message-Oriented model (generally)
does not use an IDL compiler to generate stubs. The applications make calls to specific API
modules to carry out the interaction. This involves placing messages onto queues and
monitoring queues for response messages. This model is asynchronous, which means that the
response may arrive at anytime. As with the RPC model, timeouts may be specified, although
they are usually of alonger duration. The MOM modd is analogous to the domestic postal
system, wherea letter is sent from one place to another and a response may or may not arrive.
It is the responsibility of the person that posted the letter to monitor and follow-up on any
expected response if it does not arrive. In the MOM model, this is the responsibility of the

application. An extension to the MOM model is the publish-subscribe method. This provides

11



the ability for one application (the subscriber) to register interest in (subscribe to) the services
offered by another application (the publisher). The subscriber can subscribe to events of
interest by subject. For example, an application may wish to be notified when the price of
certain stocks change; this application would subscribe to a subject like “price-movement”.
This type of interaction is used in modern EAl/workflow systems such as TIBCO
Businessworks (TIBCO 2005). The underlying protocol TIBCO Rendezvous is based on

subject-based messaging.

2.5 Message Marshallingand Un-marshalling

Middleware generally works with messages in particular formats, either text or binary based.
Text-based protocols include XML, HTTP and SOAP". Binary protocols include object-based
protocols (for example CORBA, COM and JavaRMI) and others such as DCE-RPC, which
are not object-based. There are also Message Oriented Middleware (MOM) protocols such as
MQ-Series and IMS [IMS, 2003]. Each protocol wraps or encapsulates the actual message
content in different ways. SOAP for example wraps the content in a structure called a SOAP
body, and then wraps this in another structure known as a SOAP envelope. The envelope aso
has an optional structure called a header. The message content referred to above is the

application specific body of the message as defined for the interface.

The IDL defines the format and data types of the parameters passed between clients and
servers. Middleware interoperability must be able to convert messages between different
middleware formats, or provide a method that marshals the target interface into the desired

protocol, based on the different middleware definitions.

1SOAP s actually XML carried over a (usually HTTP) network connection.
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The user’s data that is in the body of a message and forms the parameters of a call can be a
combination of native types or complex types, declared and defined for each application.
There area limited number of native (intrinsic) datatypes integer, long, short, character/byte,
double/float and the bit. All other data types are constructed from these fundamental types.
Once a mechanism for reading and writing these types is identified, structures of any
complexity can be processed. The protocol defines the rules and mechanisms for reading and
writing these basic types. These rules will then process any message over this protocol. For
example, CORBA uses an encoding known as CDR (Common Data Representation) [OMG,
2000] for reading and writing basic data types. Once we define the rules of CDR or a callable
library that implements the rules of CDR, it is possible to process CDR-based (CORBA)

request and response messages.

Broadly speaking, messages between clients and servers, irrespective of communication
mode, consist of two types of data, internal data and a payload. Internal data provides the
necessary information to find a requested service, and to send responses back to the requestor.
The payload is application-specific data needed to carry out the application functionality. The
internal (control) data can be further divided into common data, that is, data that is needed for
all middleware protocols, and protocol-specific data. The common data may contain varying
values depending on the protocol, or appear in different places within a message in different
protocols; however, they are needed for any message exchange regardless of protocol. These
variables keep track of such things (among others) as; message lengths, sequence numbers,
and whether the system is dealing with a request or a response. These variables are described
in detail in Chapter 4. In the discussion that follows, these mandatory variables are referred to
as common internal middleware variables. The protocol-specific data on the other hand, are

variables, which only have meaning for aparticular protocol. For example, a CORBA object-
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key [OMG, 2000], which identifies the object to instantiate (or invoke) on the target end of a

CORBA request.

2.6 Client-Server Interaction Modes

Middleware supports two primary modes of interaction or communication, synchronous and
asynchronous. With synchronous communication, the client program makes a request of a
server program, and then waits for a response. The client remains blocked or in a waiting
state, until it receives a response from the requested service. Examples of middieware that
support this mode of interaction are those based on Remote Procedure Calls (RPC), and
include CORBA, COM, Java-RMI, SOAP (web-services) and DCE-RPC. With asynchronous
communication, the client places a message on a message bus (or queue) of some kind and
resumes processing. The request may require a response, but the client can continue to
perform other tasks while waiting for the response. This approach is typified by Message

Oriented Middleware (MOM) protocols such as MQ-Series and IMS.

Typicaly, interaction is restricted to one mode. True interoperability among middleware
protocols will mean that calls should not only be able to be made across the same modes, but
also across middleware using different modes of interaction, in some cases modes not directly
supported by that middieware type. Consider the following example. A client only knows
how to make a strictly synchronous request on a server, S1 using some synchronous protocol.
Suppose the organisation introduces a new asynchronous middleware product and server S2,
and wishes that client to access this new server. The client is unaware that the server
implementation has been changed to use asynchronous queuing. A synchronous session needs
to be held with the client, which is awaiting a response and is thus blocked. At the same time,

a gueue on the server-side must be monitored until a response that could come at anytime
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arrives. When aresponse arrives it is sent back to the waiting client. Ideally, this should be

done without altering or compiling the client.

2.6.1 Conversational and Transactional Interaction

Within the synchronous and asynchronous interaction modes, there are two sub-types:
conversational and transactional. In conversationa mode the client and server have a
“conversation”, that is the interaction consists of multiple two-way message exchanges.
Generally, in this type of exchange the client, the server or sometimes both needsto maintain
the state of the exchange. One or both needs to know what point of the interaction they are up
to in case the exchange is unexpectedly terminated. In the transactional mode, the client and
server engage in a “transaction”, which means they perform (generally) a single exchange of
request and response. The communication is usually terminated once the client receives the

response. Thereis aso no need for either to maintain state.

Sometimes these modes are combined, for example, a conversational exchange may be
employed in the context of a single transaction. In this case, there are usualy special
messages sent to mark the beginning and end of the transaction. The conversation occurs
between these marker exchanges. This is more a function of the applicaion than the

middleware however, the middleware must be able to support al these interaction variants.

In addition, middleware may aso have some high level semantics above the standard
synchronous and asynchronous communication modes. For example, the CORBA
LOCATION-FORWARD response message (refer OMG, 2000) performs a re-direction task
telling the client to resubmit the original request to a new target end-point, and the ability to

handle these must be incorporated into any general approach to middleware interoperability.
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2.6.2 Example Client-Server Interaction

A simple math server definition shown in Figure 1 illustrates basic middleware behaviour.
The math server takes two (2) types of arguments, a char operator, from the domain <”A”,
“S*, “M”, “D”> and up to two integer operands and returns an integer result. Figure 2 and
Figure 3 below show the basic structure of a request and successful response message for an
“add” operation of the numbers “1000” and “15” on the mathServer interface. The server may
aso return an exception or error condition. This is shown in Figure 4, where the div (divide)
operation was called with “1000” and “0”. Thisis an illegal operation, and hence the server
returns an exception. The exception is defined as a structure that contains one member, a
string describing the error. It could however, be considerably more complex. The example
exception shown is protocol-neutral, that is, it does not represent any specific protocol

mapping. It is merely illustrative.

i nterface mat hServer

{

/1 request structure
struct math_req

{

char op_code;
| ong nunt;
| ong nung;

1

/1 response structure
struct math_resp

{
}s

| ong ret_num

/1 define the exception
exception nmat hExcepti on

{
}s

string error_text;

/1 methods (services, functions, operations)

void add(in nmath_req nmr, out math_resp arsp) raises (mathException);
void sub(in math _req nmr, out math _resp srsp) rai ses (nmat hException);
void mul (in math_req nmr, out math _resp nrsp) rai ses (nmat hException);
void div(in math _req nmr, out math _resp drsp) rai ses (nmathException);

Figure 2-2: mathServer IDL
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Figure 2-3: Structure of request message (highlighting payload)

Header

Payload J 1015
(math_resp structure)

Trailer

Figure 2-4: Structure of a successful response message (highlighting payload)

Header

Payload "Cannotdivide by zero"
(mathException J
structure)

Trailer

Figure 2-5: Structure of an unsuccessful response message with an exception as payload
The interface definition shows the payload for a request as a math_req structure (see Figure
2-3). The response is either a math_resp structure (see Figure 2-4) or some failure response
(see Figure 2-5). The payload for a message is both the (serialised) input and input-output
parameters to the operation, and the (serialised) response from the operation, whether
successful or not. The example ‘add’ method is defined as void (returning no value) and
therefore no return value is shown. The definition provides the information needed to marshal
these structures. It provides the native types that constitute them. What is unknown is how to
marshal them over a particular protocol. For example, integer (int) values may need
conversion to text to be sent as XML. Does the protocol require the payload wrapped in some
other structures, such as headers or trailers? Knowing the structure of the interface is not

enough to interoperate across protocols. What needs to be added to the message and what
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needs to be converted? to accommodate a particular protocol must be known as well. The
address (in protocol-specific terms) of the end-point (target) is also required. This may be a
host name and port number or a queue name, or perhaps a directory name. These items of

“protocol structure” must be addressed in any general middleware broker.

2.6.3 Approachesto Middleware Inter -oper ability.

A number of middleware approaches are described in the literature and a number have been
implemented as commercia products. A typical automated approach is that proposed by
Dashofy et a. [1999] who investigated using various off-the-shelf middleware products to
build bridges or connectors for distributed systems. They present their views from a software
architecture perspective, restricted to the C2 [Taylor et a., 1996] architectural model. They
have built software connectors that are specific to four middleware packages, Q, Polylith,
RMI, and ILU. This means that to add support for another middleware package, a new
specific connector (program) would need to be developed. Commercia tools such as those
provided by commercial Enterprise Application Integration (EAI) products are similarly
restricted. The magjority of approaches require software to be re-written to communicate with
each different middleware implementation. In contrast, this project aims for an easier and
more flexible approach in which rules and middleware characteristics are specified in a
repository, for the broker to provide the connection and transformation for different

middleware protocols, as well asfor legacy systems.

The broad classifications for different approaches to inter-operability are:
e Handcrafted solutions consist of writing ad-hoc software to implement
each interoperation requirement. Although this approach is widely applicable,
and very commonly used, it is labourintensive and requires considerable

expertise not aways available. Such approaches are also difficult to maintain

2This may be character-set conversion such as ASCII to EBCDIC and conversion of numbers to strings and so
on.
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over time. Each implementation is required to provide code that performs traversal of

complex data structures.

e Proprietary approaches (commercial EAI products) usualy result in the user
being locked-in with a proprietary solution. These approaches also require a

considerable amount of coding to implement all but the most trivial applications.

Architectural approaches provide mainly a high level modelling view of
systems, and are not of much practica benefit to the low-level systems
integrator. Certainly, they do not alow for any automated protocol-level

integration.

Specific middleware approach where systems such as ASTER [Issarny, 1998] provide
an API that allows trandation of different protocols to CORBA (that is, ASTER relies
on a single middleware, CORBA, to provide al remote (RPC) and component

Services).

Declarative and semi-automated approaches that provide a description of a protocol
and an engine or set of procedures and data stores that can convert any protocol to any

other protocaol.

The object of this research fits into the category of declarative and semi-automated
approaches. The advantage of this type of approach is that programming is minimised and a
protocol need only be defined once. The disadvantage is that a MPDL that can handle a wide
range of protocols is necessarily complex, as will be the engine that carries out the integration

at run-time.
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Obviousdly, such approaches are of commercial value, and some of the relevant work appears
in the realm of patents, rather than in the published literature. An approach using a protocol
definition language is described in a US patent held by Holzmann [1998]. The language
described is very low-level, assembly-like language, and is not aimed to be easily understood
by awide range of developers. Both client and server nodes involved in the message exchange
must implement the protocol that defines the language. The first message in every exchangeis
the description of the protocol that the parties will use for communication. For example, if
both nodes wanted to use I1OP (Internet Inter-Orb Protocol), the initiating node would have to
send the description of 110P to the receiving node before any actual data could be exchanged.
It is not clear from the published patent document whether a protocol as complex as I1OP can
be handled by this mechanism. Further, the nodes involved in the message exchange must be
able to implement both message conversions. For example, if the initiating node is using I1OP
and the receiving node is using SOAP (HTTP), both must be able to carry out the needed

conversion.

Kuznetsov [2004] describes a method of generating message trandation at runtime. This is
achieved by creating an XSL [XSL, 2005] mapping of the source and target interfaces. This
mapping is used at message processing time to generate native object code that transforms the
message from a source interface to a target interface representation. This appears to cater
more for interface mapping rather than different middleware formats. The approach is
XML/XSLT focused. There is mention of parsers for various types of definitions (for
example, ASN.1, C++) that describe the data structures of the interface, not the characteristics

of the protocols.
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2.6.4 Criteriafor General Middleware Inter-oper ability

Although protocol trandlation is recognised as an important problem, there is no generaly
accepted single way to do this, and there is considerable scope to improve on the current
approaches. Other approaches that provide re-configurable middleware frameworks [ Coulson
et al, 2002], do not directly address protocol translation. The protocol translation is catered for
by a plug-in based architecture, implying that the framework user will need to either source
(from a third party) or program the required plug-in to perform the translation. A general
middleware broker must work with a range of existing middleware protocols, and be easily
adapted to any new middleware protocol. It should minimise programming extensions to the
middleware integration tool when adding new middleware protocols, preferably being able to
describe middleware protocols in a completely declarative manner, and in alanguage that can
be easily used by a wide range of developers. The characteristics of an improved and generic

middleware broker can be summarised in the following five maor requirements.

Requirement 1: A general middleware broker must be able to describe al middleware
protocols in an easy to use, declarative way. This requirement governs the overall design
of the MPDL that must minimise its semantics, and must make use of exiding standards
and languages. The overall am is to provide the capability to describe protocols to

application developers, and to minimise procedural programming. Specifically the broker

must:

i.  provide a framework for implementing any special semantics, such as interaction
semantics or data coding and de-coding functions,
ii.  describe amiddleware product once for integration across al protocols,

iii.  beeasily extended by programming in an understandabl e and maintainable way,
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iv.  specia protocol handling code is written once, not for every interface. This allows

optimal re-use of code and uniform treatment of all interfaces over the protocol.

Requirement 2: A general middleware broker must be able to convert data and message
formats from any middleware protocol to that of any other middleware protocol.

Specifically, the broker must:

i.  dea with different transport formats (text or binary),

ii.  deal with al native data types, complex data, and user defined data.

Requirement 3: A general middieware broker must be able to seamlessly and transparently
deliver requests in one protocol to a service in another protocol, and deliver responses
back to the requestor. This requirement lies at the core of how the functionality is

implemented. Specifically, the broker must:

i.  support different modes of interaction (Synchronous or asynchronous),
ii. access servers through different protocols, without re-compiling application
programs,
iii.  support deployment at one end only, so that a server-receiving node will receive
and respond to requedts in its own protocol, without any need to process this

request in any different way.

Requirement 4: A general middieware broker must be able to choose between multiple
options for providing a service. This requirement means that the broker must be able to
provide the ability to dynamically locate aternative end-points, so that alternative services

may be accessed, should they be available. One mechanism for supporting alternate end-
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points is protocol prioritisation. This allows the user to list protocolsin priority order. The
broker will try each listed protocol in-turn until either, the message delivery is successful,

or all protocols are exhausted. In the latter case, the client receives afailure indication.

Requirement 5: A general middleware broker must be able to effectively operate in a data
intensive, real world environment. It must be easily adaptable to that environment, and it

must perform efficiently.

TUBE aims to improve on current automated approaches, particularly those outlined by
Holzmann [1998] and Kuznetov [2004]. It will provide an MPDL that is an extension of IDL
and thus easily understood, it will be capable of describing complex protocols, such as 110P
(CORBA). The protocols and interfaces are independent of one another. That is, the interfaces
are defined in IDL and the protocols are defined in MPDL. The MPDL define all the

characteristics of the middleware, including end-points and any APIs or libraries required.

TUBE will alow nodes involved in message exchange to use whichever protocol best suits
their needs, with no requirement for either end to implement a particular protocol. For
example, if the initiating node is using 11OP and the receiving node is using SOAP (HTTP),
neither need be aware of the others protocol. The sender smply sends the message in I1OP
and the receiver will receive it in SOAP over HTTP. The broker maps the protocols at one or

both ends.

By keeping the interface definition separate from the encoding definition TUBE allows any

protocol and interface combination to be catered for. TUBE does not limit tranglation to

approaches such as XML using XSLT, as does Kuznetov [2004]. In fact, XSLT is not used at
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al, and we argue that the binary format used in TUBE repositories is better suited for

describing complex data structures.

The TUBE approach is neither interface nor protocol centric. One could simply load all
interfaces into the Module Definition Repository and have them processed by a single
protocol, or multiple protocols. Conversely, al protocols can be loaded into the Protocol
Definition Repository, and then used to process a single interface or multiple interfaces. These

combinations may be changed as required, without any coding.

Unlike some proprietary EAI products, which attempt to control workflow and broadcast
(publish) each message on a universal messaging bus, TUBE only communicates with
designated end-points. However, TUBE is capable of broadcasting or publishing to a
universal bus, if that is required. Since TUBE will provide fully synchronous or asynchronous
methods, the desired communication type may be changed at anytime without system impact.
For example, if synchronous behaviour is required from an (essentially) asynchronous
middleware platform (such as MQ-Series), TUBE will handle the synchronisation through
blocking and buffering. If it is then required to go back to purely asynchronous, the
application software does not need to change, provided that the protocol is supported for the
called interface. Thiswill allow remote modules to be devel oped independently, and for each
to use the middleware that best suits their purposes. There will be no need for independent

development groups to be familiar with each other’ s protocols.

The next chapter provides a broad overview of the approach taken in the design of TUBE.

The main components and its operation are briefly described. The following chapters define

each of the major components in more detail.
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3 A General Approach to Middleware Integration

3.1 Middleware Protocol Descriptions. The Protocol Definition Repository

A key design goa is to be able to describe any middleware protocol in an easy to use
declarative language. Modules and protocols are described in a Middleware Protocol
Definition Language (MPDL). MPDL is a declarative scripting language (based on OMG-
IDL) that enables protocol descriptions. The MPDL provides al binding information,
interfaces and protocol end-points, all the information required to marshal and un-marshal data
across different middleware protocols. The MPDL will also specify any specific programs that
need to be invoked to support protocol migration. For example, a protocol that applies
encryption and decryption to all data through specific functions would have these functions

and their application included in the protocol descriptions.

The MPDL compiler creates a Protocol Definition Repository (PDR) that describes all the
protocol specific information needed to make requests and receive responses through a
particular protocol. An interface description compiler creates a Module Definition Repository
(MDR) that defines al the module specific information, such as interfaces and data, needed to
locate and bind to a particular module. The run-time engine will access these repositories to

translate between protocols.

TUBE Protocol Definition scripts are submitted to the MPDL compiler (see Section 4.1),
which converts this into an internal format stored in a Protocol Definition Repository (see
Figure 3-1) for TUBE to process at runtime. This internal format is discussed in detail in
Chapter 5. The TUBE Interface Definition Language (IDL) compiler processes the IDL
definition of the interfaces that need to communicate and stores this information in its Module

Definition Repository (see Figure 3-2). These data in conjunction with the protocol definition
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(stored in the Protocol Definition Repository) is all that TUBE needs to convert messages

between different middleware formats.

Optional
CORBA
Protocol Control
Module (PCM)

Optional
CORBA
I nter ceptor

protocol CORBA
{
struct GIOPReq

{
GIOPId GIOPMagic

¥ ——>MPDL Compiler

Protocol
Definition
Repository

Protocol Definition Script
CORBA

Transport Interface
Module (TIM)

Figure 3-1: TUBE Protocol definition process

interface mathSer ver
struct math_req
char op_code;

int num1;

int num2;

b3

struct math_resp

{
int retnum;
I3 \

Void math_resp add(in math_reqmr, out math_resp arsp);

— |IDL Compiler

Module
Definition
Repository

MathServer
MDR entry

I nter face Definition Script

Figure 3-2: TUBE Interface definition process

3.1.1 Application Access Mechanismsto TUBE

Different applications will have varying requirements for how they will interact with TUBE.
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The options available are:

0 the XML-based AP,

o the Javaobject-based API, and

o0 Protocol Interceptors.
In all cases, the application is un-aware of the protocol used to communicate with the server.
For example, some applications may use the XML-based API. In the XML-based API, the
application submits an XML request document and receives another XML document in
response. The client only ever sees XML conforming to the module's IDL definition. In the
case of the object-based API, the client supplies native Java objects as parameters and receives
native Java objects in response. These API-based access modes are more suited to new
applications. In contrast, for existing applications where the desire is not to write any new
code or change any code, the Protocol Interceptor method is a better choice. Using this
method, the application does not change in any way. The only change needed is in the
configuration of the server address. This assumes that the server address is specified in some
type of accessible configuration. If the server address is hard-coded or coupled to the

application in some other way, then code changes cannot be avoided.

In the Protocol Interceptor mode, applications specify the service that they want by using the
API of that service. For example a CORBA client will invoke a method on an interface stub.
These calls are intercepted by TUBE, which determines a service provider and marshals the
call appropriately. As TUBE can be accessed directly through its own API, it supports the

implementation of all application software in a protocol neutral way.

3.2 Multiple End-Point Resolution
TUBE has two main mechanisms for supporting multiple end-point definitions for the same

interface. One is a protocol alias and the other is protocol prioritisation. The protocol alias
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allows the same protocol to be used for marshalling, whilst targeting different servers. For
example, amessage is sent to a CORBA server and the server does not respond. This will be
considered a failure. TUBE will now try the next protocol in the Distribution Priority Table.
The protocol is CORBA2 and it has an alias of CORBA. This means that the end-point
information is taken from the End Point Resolution Table (see below) entry for CORBAZ2,
however the marshalling rules will use CORBA definitions. This allows multiple end-points to

be configured for the one protocol and interface, thus providing a fail-over mechanism.

The other way that TUBE supports multiple end-points is by protocol prioritisation. If the
required service is not available through a preferred protocol, then TUBE tries aternative
protocols. For example, the default may be CORBA, and calls will target CORBA end-points
(for example, an I0OR); however, an aternative may be MQ-Series, which will be tried if a
CORBA service cannot be reached. (The onus will be on the systems integrator to specify

those protocols that are interchangeable for each interface).

The Distribution Priority Table stores the names of the various protocols supported for each
interface defined in the Module Definition Repository. These protocols are stored in priority
order. That is, starting by the preferred protocol, followed by each subsequent protocol. Each
entry in the Distribution Priority Table corresponds to an entry in the End-Point Resolution
Table. This table defines the communication parameters necessary to communicate with the
interface over the specified protocol. In the case of CORBA, for example, this would be the
IOR for a server that implements the desired interface. The information stored here depends
entirely on the protocol. These two tables are used in conjunction by TUBE to determine

where and how to send messages between different middleware,
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3.3 TheUBE (Ubiquitous Broker Environment) Architecture

Figure 3-3 shows the main components of TUBE. Systems that work through TUBE will use
the TUBE API, or use their own middleware API, and have these calls intercepted and
processed by TUBE. TUBE consists of four (4) main process components, in addition to its

four (4) repositories.

Modue
Definition
Repastary

Digtribution
Pricrity
Teble

(SaesPraocd
Implementation
Modules)

Figure 3-3: TUBE Component Architecture

3.3.1 Overview of TUBE Components
e The TUBE server provides the entry-points for the APIs. Both client code and TUBE

internal code communicate through the interfaces provided.

e The Message Distribution Server (MDS) associates each request for a service with a

particular protocol. The MDS requests data marshalling and un-marshalling, and
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message transmission. The Message Distribution Server is broadly responsible for:
0 determining the source protocol of the message,
o findingthe preferred target protocol in the Distribution Priority Table,
0 determiningthe target end-point from the End Point Resolution Table, and

0 passing the message between the other components.

The Dynamic Adaptive Marshaller (DAM) prepares requests for a particular protocol.
Given a request, it looksup the definition of marshalling rules for the requested
protocol, and the target interface definition in the Module Definition Repository. It
then marshals the target interface into the desired protocol, based on the definitions
from both repositories. It aso un-marshas from the source protocol into an internal
protocol-neutral format (see Section 3.4). The DAM loads pre-compiled Protocol
Implementation Modules (PIMs) that perform the actua marshalling and un
marshalling operations. The Protocol Implementation Modules contain the binary

format of the rules defined in the protocol description.

The Transport Mediation Server (TMS) is responsible for managing communications
with the target end-point for the interface. It uses the information from the End Point
Resolution Table, such as the IP-address and port number of an ORB, to determine the
destination. The TMS passes this information onto a loadable module, known as a
Transport Interface Module (TIM), which then handles the communication with the
target. A Transport Interface Module is analogous to a Protocol Implementation
Module (described above), except that the Transport Interface Module contains the
rules for communicating with the target, rather than rules for marshalling data. The
Transport Mediation Server and Transport Interface Modules are discussed in Section

5.7.
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TUBE Repositories

Module Definition Repository (MDR)

The MDR stores the meta-definition of the particular interface. This includes the
interface identifier and the data types of the parameters passed. This information is

derived from the IDL for the interface.

Distribution Priority Table (DPT).
For each interface defined in the MDR, the DPT stores a list of protocols that can be

used to communicate with thisinterface, stored in priority order.

Protocol Definition Repository (PDR).

The PDR stores the marshalling rules for each protocol. These rules are generic for
each protocol and not specific to any interface stored in the MDR. The PDR consists

of acollection of Protocol Implementation Modules.

End-Point Resolution Table (EPRT).

The EPRT stores the target communication address for each interface/protocol
combination. This address could be, for example, the IOR for a CORBA server, or a
gueue definition for MQ series. This table stores the necessary information to send a
message to, or communicate with, a defined interface using a particular protocol. The

number and types of entries depends entirely on the protocol.

3.4 TUBE Internal Data Formats

TUBE uses different data formats internally depending on the situation. In the diagrams below

the Protocol Independent Data Streams (PIDS) are the format used internally to pass data
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between the TUBE API, the server and the DAM components. This format is referred to as a
TLV (Type, Length, and Value) buffer. Each entry in the TLV buffer contains the information
required to marshal that particular type into any protocol format defined in the Protocol
Definition Repository. The Protocol Oriented Data Streams (PODS) on the other-hand consist
of data marshalled into a protocol-specific format (for example, CORBA) by DAM. These are

passed internally between DAM, the MDS, TMS and, if required middleware-specific APIs.

3.5 Communication Modes

It has aready been mentioned that TUBE provides the ability to use either or both
synchronous and asynchronous communication modes, and that the desired method can be
changed at anytime without system impact. When it is required to switch from one mode to
the other, al that is required is to change the configuration. This can be done on a per
modul€/interface basis, even while the system is running; there is no need to shutdown and re-

start the broker.

3.6 Out-bound M essage Process Flow

The following scenario depicted in Figure 3-4 describes the process-flow of an out-bound

message through TUBE:

1 The application call is passed to the TUBE API viathe TUBE server.

2. The TUBE server passes the call to the Message Distribution Server.

3. The Message Distribution Server selects a protocol to try from the Distribution
Priority Table.

4. The Message Distribution Server passes the interface/module identifier and the

preferred protocol to the Dynamic Adaptive Marshaller.

32



10.

The Dynamic Adaptive Marshdler reads the Module Definition Repository to
determine the format and arguments for the call.

The Dynamic Adaptive Marshaller uses the protocol definitions stored in the Protocol
Definition Repository to prepare the call for the particular middleware or application
service.

The Dynamic Adaptive Marshaller passes the marshalled buffer back to the Message
Distribution Server.

The Message Distribution Server passes the marshalled message to the Transport
Mediation Server and tells it which protocol to use for transmission.

The Transport Mediation Server reads the End-Point Resolution Table to determine
the host and port number required to communicate over this protocol.

The Transport Mediation Server attempts to communicate with the designated host

using the appropriate communication parameters.
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Figure 3-4: TUBE Out-bound message scenario

If communication with the preferred protocol fails, TUBE will try each subsequent protocol
(in priority order). The application will only receive notification of communication failure
once all the listed protocols have been exhausted. If communication succeeds, TUBE sends a
positive notification to the application. The way that this occurs depends on the application’s
relationship with TUBE. If the application has invoked TUBE via the API, then TUBE will
return the status directly to the application. If, on the other-hand, TUBE has intercepted an
out-bound call made by a proxy or stub, then the status will be given to that module for return

to the application.

3.7 In-bound Message Process Flow

The scenario shown in Figure 3-5 describes the process-flow of an in-bound message through

TUBE.



10.

11.

The external call isintercepted by a TUBE module.

The interceptor uses the TUBE API to pass the message to the TUBE server, which
passes the call to the Message Distribution Server.

The TUBE server passes the message to the Message Distribution Server in the
protocol that it was received.

The Message Distribution Server looks-up the Distribution Priority Table to determine
whether the message needs marshalling into another protocol. Steps 5,6,7 and 8 are
only executed if the protocol needs to be converted by the Dynamic Adaptive
Marshaller. If not then the message can be passed through to Step 9.

The Message Distribution Server passes the interface/module identifier and the
preferred protocol to the Dynamic Adaptive Marshaller.

The Dynamic Adaptive Marshaller reads the Module Definition Repository to
determine the format and arguments for the call.

The Dynamic Adaptive Marshaller uses the protocol definitions stored in the Protocol
Definition Repository to prepare the call for the particular middieware or application
service.

The Dynamic Adaptive Marshaller passes the marshalled buffer back to the Message
Distribution Server.

The Message Distribution Server passes the (possibly converted) message to the
Transport Mediation Server and tells it which protocol to use for transmission.

The Transport Mediation Server reads the End-Point Resolution Table to determine
how to contact the end-point for this protocol. In this case, it determines that the end-
point islocal.

The Transport Mediation Server then passes the message to the “Target Application”

on the local system.
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Figure 3-5: TUBE in-bound message scenario
This chapter has provided an overview of the components of TUBE to provide a context for a
more detailed discussion of the key components, the MPDL, the process of message

distribution, the marshalling of data, and communication management.
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4 Middleware Protocol Definition Language (MPDL)

The mechanism for defining protocols should be abstracted from users (programmers). A
wizard or some other abstraction can be provided as an interface. Broadly, the language will

need to provide the following properties.

1. A grammar that defines the format of the message (including headers)3.

2. A buffer format that defines the type of buffer for data transfer. For example as an un-
interpreted array of bytes, an ASCI|I string or a CDR encoded array of bytes (CORBA
11OP).

3. A transport that defines the mechanism that moves messages between source and
target end-points. These include message queues and communication sockets.

4. End-Points that define an address (in protocol -specific terms) to communicate with.
Examples are ports for socket-based communication and queue names for queue-based

(MOM) message exchange.

Candidate protocol definition languages include ASN.1 [Steedman, 1993], XML schema, an
existing language (for example, Java), a BNF style grammar, or extensions to an existing
definition language (for example, IDL). Some of these were discounted for the following
reasons:
e ASN.1 was considered to be more suitable for defining applications and protocols that
use the BER (Basic Encoding Rules), and not suitable for protocols based on other
encoding rules (for example, CDR). The MPDL must be independent of encoding

rules.

3 ASN.1 and IDL are examples of grammar definitions.
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e XML schema was seen as not flexible enough to (easily) describe some complex
protocol semantics, such as variations in process based-on a field value (see Section
4.5). The MPDL must support the declaration of specialised semantics.

e Java was seen as too broad and would require the user to basically write the entire
marshalling engine by hand. The MPDL must minimise the amount of code required
to effect trandations.

e BNF (Backus-Naur Form) was seen as too complex to be of general use. The MPDL

must have an easily understandable grammar.

The selected representation for the MPDL is modelled on an already existing definition
language, OMG IDL. Introducing a new language or syntax would (potentially) create a need
for programmers to learn the language and (may) cause resistance to use, and the approach
taken is to introduce new constructs and keywords based-on OMG IDL. This approach is
attractive because:

e most programmers have some knowledge of IDL,

e thereisareduction in the learning curve when using aknown idiom as a base, and

¢ thetimeto extend an existing syntax is less than would be required to define a

completely new one.

Similar to the way an Interface Description Language (IDL) defines interfaces MPDL defines
middleware protocol structure. The language defines the structure of both request and
response messages, and al the information that needs to be defined in order to exchange
messages with a server on behalf of a client. As a broker between disparate systems, TUBE
will access MPDL protocol descriptions to convert from one client protocol to another to

communicate with a server.
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The MPDL (as stated above) is modeled on OMG IDL. A rationale behind using an existing
language as a base is that most software engineers have some exposure to, or knowledge of it.
Thisis mostly the case with IDL. It defines CORBA interfaces and is the description language
for Java RMI [RMI, 2003]. OMG IDL itself is based on the original DCE RPC IDL [The
Open Group, 1997]. Microsoft also has a language based-on extension to RPC IDL called
MIDL (Microsoft Interface Definition Language). It primarily defines C++ COM interfaces
[Box, 1998]. Using an existing language as a foundation reduces the learning curve for the

users, and potentially reduces the development time for the MPDL and supporting tools.

41 MPDL keywords

Table 4-1 shows keywords and constructs’ used to support protocol descriptions. Some of the

keywords come directly from IDL.

Keyword Description
protocol Signifies the beginning of a MPDL script (protocol definition.)
request Defines the structure of arequest message.
response Defines the structure of a response message.
Yovar% Represents an internal common middleware variable. There are

several of these explained in Table 4-2 below. An exampleis
%operation%, which represents the operation or method to
invoke on an object-based interface. It may be empty; its value
depends on the protocol.

init Defines avariable of the specified type with an initial value.
Refer to the Variable-Definition Segment (page 41).

As an example, we want to define an integer variable mynum
and initialise it to the value one (1); we would write

“init int mynum =1;".

control Specifies afield in the message to use as a switch (decision
making) value. This allows usto handle different types of
payload depending on the value of thisfield. For instance, we
may receive an exception rather than the expected return value.
The CORBA example below demonstrates this usage.

buffer Signals the start of the payload (as defined in the interface)
within the message. The processing follows the Module
Definition Repository definition. The only exception to thisisif
some condition specified in a“control” clause has been met, and
this specified the execution of another Code-Block.

4 A complete formal description of MPDL syntax is given in Appendix |
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Keyword

Description

$var$

Specifies a user-defined variable. We retrieve the values for
these variables at marshal time from the End Point Resolution
Table. During un-marshalling we read them from the input
stream. In either case, the value is stored in the Variable-
Definition Segment entry. An example of a user-defined
variable isa CORBA object-key, we define it as follows:
“byteSequence $objectK ey$”. This means when we reach this
point in the message, read a byteSequence structure and assign
its value to the variable “ objectKey”.

struct

We use this to define individual parts of the message, such as
header, body or trailer. Each struct declaration causes the
generation of a CODE_BLOCK (see Section 4.3). Thisallows
different parts of the message to be handled out-of sequence.
Where it may be necessary to re-marsha only some values. This
isexplained in the CORBA example.

declare

Define marshalling rules for a particular compound (complex)
type.

bufferFormat

Defines how to encode/decode declared types encountered in
the payload (refer to Section 4.5).

endPoint

Defines the communi cations end-point in protocol -specific
terms.

external

Defines external classes that will provide marshalling functions
for this protocol and communication management functions. If
there are no external classes defined, TUBE will useits own to
carry out these operations. The specified classes must
implement specific interfaces. These classes may be used as
wrappers around vendor-specific or home-grown APIs.

sequence

This causes the generation of alooping wrapper around the
CODE_BLOCK, which marshals the defined type. Thisis
closely associated to the %count% (internal) variable, which
holds the value of the loop count. The marshaller must know
from this definition, at what point and from where in the
message, to read this value. In the case of marshalling, The
marshaller will write this value into this point in the message.
The encoding of the specified sequence then follows.

expr

Treats a string with substitutable parameters as asingle
expression (for example, the specification: “This’ +“ + That” +
“=" +“What” will produce “Thist+That =What").

bin

Treats abinary string with substitutable parameters as asingle
expression (for example, the specification: %type% + %vaueo
will produce Ox3" Fred”, assuming type contains 0x3 and value
contains “Fred”).

bodyM ember

How to process an IDL defined structure/item in the message
payload. (Seethe HTML example in Appendix C).

codec class

The classto call for reading and writing of native types.

pre class

The class to call before un-marshalling a message payload.

post_class

The class to call after marshalling a message payl oad.

pre_method

The method to invoke on the pre class.

post_ method

The method to invoke on the post_class.
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Keyword Description

read The position in the message where the pre_method should be
called.
write The position in the message where the post_method should be
called.
complexStart How to process the start of a complex (structured) item.
complexEnd How to process the end of a complex (structured) item.

sequenceStart How to process the start of a sequence.

sequenceEnd How to process the end of a sequence.

sequenceltem How to process an individual item within a sequence

Table 4-1: MPDL Keywords
The following table describes the common internal middleware variables that may appear in
an MPDL definition. The entry referred to in the text, unless otherwise noted, isarecord in

the Variable-Definition Segment (see 4.3.1.2).

Variable Description
Marshalling Un-marshalling
endian Defines the endian Value obtained Value stored for
representation of the ~ from EPRT entry. reference only.
target host.
buffer_length Specifies the overall Encoded after Read before
length of the payload. = payload. payload.
request_id Ensures processingin  Read fromentry  Stored in entry.
correct sequence. and encoded.

isResponse Determinesif thisisa Readfromentry  Stored in entry.
response message. and encoded.

operation Specifiesthemethod @ Read fromentry  Stored in entry.
to invoke. Only and encoded or
appliesto protocols obtained from an
that support methods’.  XFORM map
(see Figure 5.7).

Mar shalling Un-marshalling

expect_resp Specifiesif thisisa Read fromentry  Stored in entry.
two-way invocation.  and encoded.

num_bytes The number of bytes  Read fromentry  Stored in entry and

in the next set of and used to write  used to read next
bytes. next block of block of bytes.
bytes.
reply_status The status of the Read fromentry  Stored in entry.
communication and encoded. The
session. Only applies | valueis protocol-
to responses. specific.

5 Protocols like CORBA, COM and SOAP support method invocations.
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Variable Description
target_tlv Read/Writethevalue  Read from TLV Stored in TLV
fromaTLV entry. We entry and entry.
usethe TLV primarily = encoded.
for payload
processing.
count Internally created Written at the Read from stream
when we encounter start of aloop at expected start of
“sequence” in MPDL. | wrapper. aloop.
array_size Internally created Value obtained Value obtained
when anitemis from Module from Module
defined asan ARRAY  Definition Definition
Repository entry. | Repository entry.
sequence size  Thesize(inelements) Read fromentry  Written from entry.
of the sequenceto and encoded.
read/write

Table 4-2: Common Middlewar e internal variables

These are reserved words and are expected enclosed within '% characters (for example,
Ygount 9.

4.2 Anintroduction to MPDL

The following protocol definition shows some of the basic concepts of MPDL. The protocol
isacut-down version of the W3C’s SOAP. This protocol is called SUDS (Simplified User-
Defined SOAP). The basic structure of the protocol is as follows,

Envelope-Start
Payload
Envelope-End

The SUDS protocol uses XML encoding. We will now show how this structure is represented
in MPDL. Pleaserefer to Table 4-1 for meanings of the keywords and constructs.

/1 define the STRING constants for the envel ope
/lstart of a SUDS nessage

#defi ne ENV_START “<SUDSEnvel ope>"

/1 end of a SUDS nessage

#defi ne ENV_END “ </ SUDSEnvel ope>"

/1l define the class to use for nmarshalling
#defi ne CODEC “TUBE. DAM Mar shal | . Pl M XM_Buf f er”
definition

/'l now begin the actual protocol

prot ocol SUDS

{

ext er nal

{
codec_cl ass = CODEC,
1

/1 define structure of envel ope start
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struct SUDSEnvel opeSt art

String env = ENV_START;
1

/1 define structure of envel ope end
struct SUDSEnvel opeEnd

{
string enve = ENV_END;
1
/1 now define what a request and response | ook |ike
request

SUDSEnvel opeStart ses;

/1 This is the message payl oad (content)
buffer req;
SUDSEnvel opeEnd see;

1
response
{
SUDSEnvel opeStart ses;
/1 This is the message payl oad (content)
buffer resp;
SUDSEnvel opeEnd see;
1

Figure4-1 MPDL Example

MPDL descriptions are compiled into Code-Blocks that are processed at run-time by a virtual
machine. In TUBE, this virtual machine is referred to as the DAM (Dynamic Adaptive
Marshaller). A Code-Block is comprised of one or more State-Blocks (see Table 4-3). A
State-Block is a structure consisting of the following elements:

e Op-code

e A target variable to store the result of the operation

e One or more parameters for the operation

e Offsetsinto other data structures required by the operation

The operation referred to above is the operation indicated by the op-code. This is different

from the invocation of an operation defined for an interfacein IDL.
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The Dynamic Adaptive Marshaller interprets the op-codes and executes the given instruction.
Using a virtual machine allows the addition of functionality to the MPDL by expanding the

range of op-codes.

The op-code is a symbolic value used to determine the operation to be carried-out. For
example, the op-code READ _INT instructs the marshaller to read a signed 32-bit numeric
value from the input source. Likewise, the op-code WRITE_INT instructs the marshaller to

write asigned 32-bit value to the output target (see Appendix H for atable of all op-codes).

4.3 TheMPDL Compiler

Although MPDL is based-on IDL, MPDL scripts are not compatible with IDL and therefore
standard IDL compilers cannot process them, as they would not recognise the extensions. A
gpecial compiler processes MPDL definitions (also referred to as a script or protocol
definition). The MPDL compiler reads the protocol definition and generates (by default) two
types of output, a Protocol Implementation Module (PIM) and a Transport Interface Module
(TIM). This chapter focuses on Protocol Implementation Modules. Transport Interface
Modules are discussed in Section 5.7. Both of these modules are generated when the compiler
is first run against an MPDL file. Subsequently, the compiler will only generate the Protocol
Implementation Module unless instructed otherwise (see below). This is done to protect code
that a user may have modified in a generated module. The compiler also has the ability to
generate two additional modules, a Protocol Control Module and an interceptor. These
modules are optional and are only generated if the required option is provided on the
command-line. If no options are provided on the command-line, the compiler will only
generate a Protocol Implementation Module. The compiler’s available options are:
e -p generate a Protocol Control Module template

e -i generate a protocol interceptor module
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e -t generate a Transport Interface Module

To avoid re-generation of a module and risk losing changes, the user omits the option for the
module they wish to protect. For example to regenerate all but the Protocol Control Module,
the command-line is npdic -t —i protocol.npdl and to generate only the Protocol
Implementation Module, the user types. npdl ¢ prot ocol . npdl . The only module protected
from overwriting by default is the Transport Interface Module. The only time it will be re-

generated isif the—t optionis specified.

4.3.1 Protocol mplementation Modules (PIMS)

There are two Protocol Implementation Modules generated for each protocol definition, one
for handling requests and the other for handling responses. This ssimplifies the logic required
in both the compiler’s code generator and the runtime interpreter. The Dynamic Adaptive
Marshaller loads the appropriate Protocol Implementation Module based-on the current
message type (that is, request or response). The Protocol Implementation Module is
comprised of Code Blocks, derived from constructs within the protocol definition. For
example, for each “struct” keyword encountered in the protocol definition, the compiler
generates what we refer to as a Code-Block. As discussed, this Code-Block consists of a
series of State-Blocks, where a State-Block (Table 4-3) consists of op-codes and state
definitions, which define operations, variables (internal and user-defined) and initial values.

Each op-code and state is (generally) associated with a source or target variable.

Type Name Description

Integer op_code Specifies the action to perform.

Integer target var Target variable indicates the variable to use as
the source or target for this operation.

State param state param A state parameter entry (Table 4-4) for this op-
code.

Integer handler_offset Offset to “declared” type handler map.

Integer handler_name Offset of handler name in Constant Segment.

Table 4-3: Structure of a State-Block
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Type Name Description

Integer Type Type of thisvariable.

Integer Use Usage of thisvariable. Add or subtract from
another value or use value as-is.

Integer value offset Offset to constant value of thisvariablein
Constant Segment.

Table 4-4: State Parameter entry

The following diagram illustrates the structure of a Protocol Implementation Module.

PIM Header
Marshalling Map

Declarations

PreMarshal Map

Post-Marshal Map

Figure 4-2; Structure of a Protocol | mplementation Module

4311 ThePIM Header
The PIM header contains information and structures that assist in the loading and processing

of therest of the file. The header is comprised of the following fields.

Field Description
File-identifier Thisidentifiesthisfile asavalid Protocol

Implementation Module

Marshalling class-names The names of classes specified in an
externa clause. This can be empty.

Constant-Segment (CS) Contains all constant values.

Variable-Definition Segment (VDS) Contains information about all variables

defined in the protocol definition.

Table4-5: Structure of a PIM Header
The File-ldentifier is a hexadecima vaue that identifies this file as a valid TUBE Protocol

Implementation Module.

The Marshalling classnames array specifies the names of the class that implements the
TUBE.commsBuffer interface and any other classes specified using the “external” keyword
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(see Table 4-1). These are the classes that will be used for all reading and writing operations
whilst processing this Protocol Implementation Module. The actual disk layout of these items
is an integer specifying the length of the array. Each entry in the array begins with an integer,
which indicates the length of the name string, followed by the string. This string contains the
actual name. A length of zero for the array signifies no class-names. In this case, the Dynamic
Adaptive Marshaller will use default (internal TUBE) implementations for encoding and

decoding of native values.

4.3.1.2 Constant Segment and Variable Definition Segment

The Constant-Segment stores the type, the length of the value and the actual value of all
constant values used in the protocol definition. The MPDL compiler encodes offsets into this
segment into instructions that require access to these values. Not all instructions access the

Constant Segment. Table 4-6 shows the composition of a Constant Segment entry.

Type Name Description

Integer Type Type of constant.

Integer length Length of constant value.
Byte[] Name Name of constant.

Byte[] Vaue Constant value.

Table 4-6: Format of Constant Segment Entry

The Variable-Definition Segment (shown in Table 4-7) contains information about all the
variables defined in the protocol definition. It stores the name, data type and a flag to define
the variable as an internal or user-defined variable. If the variable has an initia vaue

specified by an “init” clause (see Table 4-1), the compiler creates a new entry for the value in

the Constant Segment.

Type Name Description

Integer Flag Flag to indicateif thisis a system or user-
defined variable.

Integer Type Type of thisvariable.

Integer name_offset Offset to name of this variable in Constant
Segment.
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Type Name Description

Integer var_id Symbolic identifier for thisvariable. Thisis—1
for a user-defined variable.

Table4-7: Format of Variable Definition Segment Entry

43.1.3 Marshalling Maps

Code-Block }7

-y

Marshalling Map ‘

A

State-Block ‘

v

Variable Definition Segment Entry ‘ ‘ Constant Segment Entry

Figure 4-3: Structure of a Marshalling Map
Marshalling maps are collections of Code-Blocks. A Pre-Marshalling map contains the
instructions to be carried-out before processing the message body (payload). The Marshalling
Map has instructions for processing the body, and finally, the Post-Marshalling map provides
the instructions to follow after the body has been marshalled. The Marshalling map, Pre-
Marshal Map and Post-Marsha Maps all have the same basic structure (illustrated in 4.2
above) and consist of a number of op-codes and other information needed to carry out the
specific task. These blocks contain al the necessary information for the execution of the
operation. The Declarations section of the file contains pointers into these maps for Code-
Blocks generated from “declare’” (see Table 4-1) statements. These blocks contain al the code

required to handle the declared type.

When the compiler encounters a simple (native) type in a struct definition, if it specifies an
initial value, the compiler generates an entry in the Constant Segment and stores an offset to
this value in a state-parameter entry (see Table 4-4). The compiler adds the entry to the Code-
Block it is currently generating. If the variable does not have an initial value, the compiler

generates a Variable Definition Segment definition as an empty slot for the value. Thisslot is
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a placeholder for the value when it isread-in. It is also the source for the value when writing.

Refer to Table 4-8 for a description of the runtime usage of this entry.

In the case of compound (declared) types, the compiler generates references to two separate
Code-Blocks, one for reading and one for writing. These Code-Blocks have a type of USER-
DEFINED and have an entry created in the Declarations section using the name of the
structure with either a“_READ” or “_WRITE” appended. This modified nameis stored in the
Constant Segment and the Constant Segment index is stored in the definition entry. The
MPDL compiler patches offsets to the actual Code-Blocks once it has completely processed
the MPDL script. The instructions to handle the declared type are generated into the
Marshalling map. The first instruction-block for handling this type contains a pointer to the
modified name in the Constant Segment. This is how the compiler finds the value to patch
into the declaration entry. Thisis also, how the Dynamic Adaptive Marshaller identifies and

loads individual Code-Blocks at runtime.

The Constant-Segment is written to disk in its entirety. It is read-only at runtime. These

values never change during the execution of the Protocol Implementation Module.

The compiler writes the Variable-Definition Segment to disk in the format shown above
(Table 4-7). This is what the Dynamic Adaptive Marshaller reads when loading the Protocol
Implementation Module. At runtime, another structure for storage of variable valuesis created
for efficiency purposes. This runtime-only structure is called the Variable Value Table. The

layout of the Variable Value Table appears below in Table 4-8.

Type Name Description

Integer flag Flag to indicate if thisis a system or user-
defined variable.

Integer type Type of thisvariable.

Integer name_offset Offset to name of this variable in Constant
Segment.
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Type Name Description

Object var_value The current value of thisvariable. This may be
initially empty until the valueisread.

Table 4-8: In-memory layout of Variable Value Table
The Variable Value Table stores the values for variables as they are read from the input
source. If this value is being marshalled, then this entry is used as the source and the current
value is written to the output target using either, user-supplied methods or internal (default)
handlers. The native type is extracted from the Object wrapper for writing and educed from
the native value into the wrapper when reading. This casting of native types to and from

objects adds some processing overhead; however al data types can be handled in the same

manner.
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OP_CODE

TARGET_VAR_OFF

READ_OCTET_ARRAY

(=)

Taget variable is at offset 2
in the Variable Definition

Partial Code (Instruction) Segment.
Block
Offset Flag Data Type Name Offset var-id
0 USER_DEF STRING 4 -1
1 SYS_DEF INTEGER -1 NUM_BYTES
(2 USER_DEF OCTET <5> -1
Va.lriable name is at o‘ffset PartialVsa;igarzleen[‘)efinition
5 in the Constant
Segment.
Offset Data Type Value Length Value
0 INTEGER 4 1
4 STRING 4 "host"
CS OCTET 9 "objectKey"
Partial Constant Segment
Offset Flag Data Type Name Offset Value
0 USER_DEF STRING 4 "localhost"
1 SYS_DEF INTEGER -1 128
gﬂZD USER_DEF OCTET <5> "$OBJECT myObject"
|

Variable value is at offset 2

in the Variable Value

Table. Same offsetas in

Variable Definition
Segment.

\"
5
S

ariable name is at offset
in the Constant
egment.

Figure 4-4: Mapping op-codetarget to variable value

Partial Variable Value
Table (runtime only)

Figure 4-4 above illustrates a read-octet operation for a target variable that has an offset of

two (2) in the Variable-Definition Segment. By following this offset, the Variable-Definition

Segment entry stores an offset of five (5) into the Constant Segment. This is where the name

of the variable “objectKey” is found. Because this is a USER-DEFINED variable (indicated

by the declaration “$objectKey$” in the MPDL script in Appendix A), initialy this value is

obtained from the End Point Resolution Table entry for this interface. This entry then remains

constant for the life of the Protocol Implementation Module, unless explicitly changed by
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invoking a set method or executing a Code-Block. When the value is read, it will be stored in
offset two (2) of the Variable Value Table. Thistableis created only at runtime to manage the
storage of actual values that are not constants. After the read, the entry at offset two (2)
contains the vaue “$OBJECT:myObject”. When this is marshalled in a request, its value

comes from this Variable Vaue Table entry.

44 TheCORBA Example

An MPDL definition of CORBA using IIOP V1.0 is shown in Appendix A. Each construct
and data member will be examined in detail showing how the PDL compiler processes them.
Symbolic names will used to represent op-code and offset values. The actual numeric values
are not relevant to our discussion, and symbolic names are easier to understand. It is aso
assumed throughout the discussion that the compiler has built a symbol table and other
internal structures during the parsing phase. The discussion will concentrate on the code
generated from these constructs, rather than their actual construction process. Most of the
examples show the instructions generated for reading. It should be noted that for each set of
read instructions generated, there is also a corresponding set of write instructions emitted.

The first entires in the file are any constant definitions. They are defined using the keyword
#define. This is the same mechanism as used in C/C++ and OMG IDL. The compiler uses a

pre-processing phase to replace any references to these definitions with their literal value.

The definitions in the example CORBA script are:
#define AOPID “d OP",
#def i ne HOST “host”, and

#defi ne PORT “port”.

The values for HOST and PORT are used later in the endpoint definition clause.
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The compiler now parses the pre-processed file and the first keyword encountered is

“protocol” followed by the value “CORBA”.

prot ocol CORBA

{

Thistells the compiler to generate the following three (3) filenames:
e CORBA_Req.PIM —defines rules for marshalling requests, and
e CORBA_Resp.PIM — defines rule for marshalling responses.

e CORBA_TIM — defines the communication parameters (explained later).

The*{* character identifiesthis as the opening of the protocol definition script.

Next, follow three “typedef” statements. These behave the same way in MPDL as in standard
IDL and programming languages such as C and C++, in that, they define an alias for the type.

For instance, the following statement

“typedef sequence<octet, 3> reserved;”

causes the compiler to create a variable named “reserved” and whenever it encounters this
variable to point to a Code-Block. The Code-Block will define op-codes for reading and

writing a sequence of three octets. The definition for GIOP_MAGIC isvery similar.
“typedef sequence<octet, 4> G OP_MAG C;”

The definition for “olist” specifies an octet sequence of unbounded length.
“typedef sequence<octet> olist;”

The important distinction to note here is that sequences of native items (such as octets)

defined with “typedef” do not have their length encoded, and neither do we expect to read the
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length during decoding. If the length is required when reading or writing, it must be defined

using a“declare’ clause (see byteSequence below) as explained next.

45 ThebufferFormat Clause

Before the “declare” clause is described, the “bufferFormat” construct and how the Dynamic
Adaptive Marshaller uses it in conjunction with the Module Definition Repository at runtime
must be explained. The “bufferFormat” definition tells the Dynamic Adaptive Marshaller
which Code-Blocks to use when marshalling the message, especiadly the payload. The
payload can be made-up of either native types or constructed complex types. The complex
types may contain native types and other complex types. The Dynamic Adaptive Marshaller
must be provided with the marshalling instructions for the following standard constructed
types:

e STRING —how to marshal a String

e BYTESEQ- marsha an arbitrary byte sequence

e ARRAY —marsha an array (fixed-size sequence) of native or complex types

e SEQUENCE — marshal avariable-length sequence of native or complex types

OBJECTDEF — marshal an object definition (opague object reference)

The Dynamic Adaptive Marshaller assumes that a message may only be comprised of a
combination of those items and native types. If these instructions are not provided in the
MPDL, there will be no handlers (Code-Blocks) generated, as there will be no “declare’
clauses to define them. In this case, the Dynamic Adaptive Marshaller will use internal
marshalling rules that may or may not be suitable for the particular protocol. For example, an
object definition is protocol specific. If no instruction is given, the Dynamic Adaptive
Marshaller will simply encode and decode an item defined (in the Module Definition

Repository as an object), as an un-interpreted array of bytes. With reference to the MPDL
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definition for an “objectDef” in the CORBA example, it can be seen that if the “declare” and
“bufferFormat” statements were omitted, the default behaviour would not be suitable’. If the
MPDL compiler encounters multiple bufferFormat statements, it throws an exception and

terminates processing.

The next keyword encountered is “declare”’. This is used for defining compound or complex
types, which may be composed of many native and or other, compound types. Following is

the definition of “byteSequence”.

decl are byt eSequence

int %umbytes% // no of bytes in olist
olist bytes;

b

Figure 4-5; Declaration of a byteSequence
This will generate op-codes that tell the Dynamic Adaptive Marshaler how to read and write
an arbitrary sequence of bytes. A reference to an interna common middleware variable
“omum byt es% (see Table 4-2) is defined. This indicates how many bytes (octets) to read or
write next. This is followed by a reference to an “olist”, and the end of the declare clause,
signified by “}; . The compiler will now create a Code-Block named “byteSequence_ READ”

with the following op-codes:

OP-Code Source/ Target variable Comment

READ _INT Read an integer from input

PUSH Put on top of value stack

POP Get value on top of value

stack

ASSIGN_TO NUM_BYTES Assign value to internal
NUM_BYTES

READ_OCTETARRAY Read NUM_BY TES octets

PUSH Put octet array on top of
value stack. Caller will POP
and retrieve value

END BLOCK End of this Code-Block

Table 4-9: op-codes generated for reading a byteSequence

® For example, strings would not be null terminated.
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From this point on wherever a reference to “byteSequence’ read appears, the compiler will
encode an instruction to load this Code-Block and execute it. Any other Code-Blocks that
refer to this Code-Block will have a flag set that specifies areference to a “USER-DEFIND”
Code-Block. The instruction (in the referring block) will also have an offset (in the Constant
Segment) to the name of this block. It must be noted that the compiler aso creates a similar

block containing write instructions.

The next declaration encountered is for an array. This entry specifies how the Dynamic
Adaptive Marshaller should handle arrays. This is very similar to the byteSequence example,
except that another specia variable “array _size” is used to keep track of the number of actual
entries. An array is a fixed-size sequence. The interpreter derives the upper-limit of the array
dimension at runtime by referencing the Module Definition Repository entry for the particular

interface being marshalled. Currently MPDL supports only single dimension arrays.

decl are array

{
int %rray_size% /1 no of items in sequence/array
olist bytes; // actual sequence of itens (can be sinple or conplex)

b

Figure 4-6: Declaration for an array
The declaration for “nString” demonstrates the use of op-codes to add and subtract constant
values to and from those currently being processed. The “+ 1” tells the compiler that there
will aways be one extra byte over the actual string length. Here the length of the string
including the null byte is read, and then one subtracted from it. This is so the null is not
consumed as part of the string. It is read separately and discarded. Conversely, when writing
the string, first, the length is increased by one (1) and written. The string itself is written,

followed by the null byte.
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declare nString

i nt %um bytes% + 1;
olist string_bytes;
init octet null_byte = 0;

b

/1 length of string_bytes (incl.
/1 the actual
/1l the term nating null

bytes of the string

Figure 4-7: Declaration of a null terminated string

The compiler generates the following Code-Block.

nul I)

OP-Code Source/ Target variable Comment
READ INT Read an integer from input
SUB Subtract a value from the We have an offset to the
offset into the Constant vaue“1” in the Constant
Segment from the value just = Segment.
read
PUSH Put on top of value stack We now havevalue- 1
USER DEFINED A declared code block
POP Get value on top of value
stack
ASSIGN NUM_BYTES Assign valueto
NUM BYTES

READ_OCTETARRAY

Read NUM BY TES octets

PUSH

Put octet array on top of
vaue stack. Caller will POP
and retrieve value.

READ_OCTET

Read null byte

END_BLOCK

End of this Code-Block

Table 4-10: Op-codesfor reading a null terminated string

The following “objectDef” declaration illustrates the usage of declared types within declared

types.

decl are obj ect Def

{
nString repo_id; /1
int profile_count; /1
int profile_id; /1
int length; /1
short versi on; /1
nString host; /1
short port; /1
byt eSequence obj ect _key; /1

repository-id of object

nunber of profiles in reference
id of profile

[ ength of follow ng stream
I1OP version for this profile
Host for this object

Port for this object

Obj ect key of target

Figure 4-8: declaration of an object reference
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The table below illustrates the resultant Code-Block.

OP-Code

Source/ Target variable

Comment

USER_DEFINED

A declared Code-Block

LOAD_BLOCK

repo_id

Load and execute the block
named “nString READ” and
place the valuein the variable
“repo_id”

READ_INT

profile_count

Read an integer and assign it
to the variable “profile count”

READ_INT

profile_id

Read an integer and assign it
to the variable “profile id”

READ_INT

Length

Read an integer and assign it
to the variable “length”

READ_SHORT

Version

Read ashort and assign it to
the variable “version”

LOAD_BLOCK

Host

Load and execute the block
named “nString READ” and
place the value in the variable
“host”

READ_SHORT

Read ashort and assign it to
the variable “port”

LOAD_BLOCK

object_key

Load and execute the block
named

“byteSequence READ” and
place the value in the variable
“object_key”

END_BLOCK

End of this Code-Block

The interpreter executes the instructions above whenever an “object” definition is encountered
in the payload and the value being marshalled is defined as an “object” type in the Module
Definition Repository. The statement “OBJECT=objectDef;” in the bufferFormat clause defines

this association. The “bufferFormat” clause is the next construct encountered by the compiler.

The compiler next sees the “control” statement. The compiler writes the op-codes generated
here (shown later) into the Pre-Marshal Map. These are loaded and executed just before
marshalling the payload. When the interpreter encounters the special offset vaue

START _PAYLOADY, it will search for a Pre-Marshal Map. If none is found, then the

Dynamic Adaptive Marshaller will traverse the payload according to the Module Definition

" This offset indicates the position within the map where the payload is expected.
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Repository definition for the interface being processed. Otherwise, if there is a map present,

the Dynamic Adaptive Marshaller invokes an interpreter module to handle the specified tests.

control

{
switch(% eply_status%
{

case O:

buf fer = body; /1 foll ow MDR

case 1:

buf fer = USER_EXCEPTI ON; /1 follow Exception in MR
case 2:

buf fer = systenExcepti on; /'l use declared structure
case 3:

buf fer = obj ect Def; /1l use declared structure

Figure 4-9: The control clause

The statement above tells the compiler to generate some branching op-codes based-on the
value of the internal variable reply_status. When the value of reply_status is read from the
input at runtime it is examined and tested for the values: zero(0), one(1), two(2) and three(3).
The value determines what action to take for encoding or decoding the payload. After
executing the appropriate action, we exit this module and return to the main interpreter code.

According to the rules specified above, the following process is executed:

e |If the valueis zero (0), false is pushed onto the stack. This indicates that the Module
Definition Repository definition will be followed for the interface and the values are

marshalled accordingly. In this case, the module returns a Boolean fal se.

e |If itisnot zero (0) atest for one (1) is performed, and if this istrue, the definition of
the exception for this operation (as defined) in the Module Definition Repository is
followed. Unlike the case for zero above where false is returned, for Module

Definition Repository-defined exceptions true is returned to indicate that it is not the
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standard payload; although, a Module Definition Repository definition is still being

followed.

e Otherwise, the value is tested for two (2), and if this is true, the name of the Code-

Block defined as “systemException READ” isloaded and returned.

e Findly, the vaue is tested for three (3). If this is true, the name of the
“objectDef READ” Code-Block is loaded and returned. If none of the defined values

exists, the Dynamic Adaptive Marshaller throws a marshalling exception. Table 4-12

shows the generated code.

OP-Code Source/ Target variable = Comment

EQ REPLY_STATUS Test if reply_status ==

JUMP LABEL_O Thetest returns true. Jump to
the given label.

EQ REPLY_STATUS Test if reply_status ==

JUMP LABEL_1 Thetest returns true. Jump to
the given label.

EQ REPLY_STATUS Test if reply_status ==

JUMP LABEL_2 Thetest returns true. Jump to
the given label.

EQ REPLY_STATUS Test if reply_status ==

JUMP LABEL_3 Thetest returns true. Jump to
the given label.

PUSH Exception All testsfailed. Push an
Exception value onto the
stack. This causes the
interpreter to throw an
exception.

JUMP LABEL 4 Jump to the last |abel.

LABEL_O

PUSH False Push afalse value onto the
stack. Thisisthe return value.
Therefore, we follow the
Module Definition
Repository.

JUMP LABEL 4 Jump to the last label.

LABEL_1 ThisisaModule Definition
Repository-defined
Exception.

PUSH True Return true
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OP-Code Source/ Target variable = Comment
LABEL 2
PUSH “systemException READ”  Push the name of the block to
decode a system exception.
JUMP LABEL 4 Jump to the last |abel.
LABEL_3
PUSH “objectDef _READ” Push the name of the block to
decode an object definition.
JUMP LABEL 4 Jump to the last label.
LABEL 4
Return value on top of stack.

Table 4-12: Op-codesfor processing " control" clause

In summary, the module that performs the “control” instructions returns one of three valuesto
the main interpreter. It returns false if the payload is marshalled by following the Module
Definition Repository representation, or it returns true if the payload is a
USER_EXCEPTION. A string value indicates that this module has pushed the name of a
USER_DEFINED Code Block (that was defined with the declare clause) onto the stack. The
main interpreter loop will load and execute this Code-Block. After marshalling the payload,

the interpreter will search for a Post-Marshal Map.

Unlike the control clause for Pre-Marshal Maps, there is no keyword to indicate the start of a
post-marshalling maoS. The compiler will aways generate code to write-out the body
(payload) length after marshalling the payload. Therefore wherever the variable
“Oobuffer_length%” is encountered this tells the compiler that this is the payload length.

Initially the length is marshalled as zero (0) and then re-written with the correct value after

marshalling the body.

/1l Response nessage
struct G OPRespMessage

G OPHdAr hdr;

int %buffer length% // the length of the follow ng buffer (body)
G OPRespBody body;
s

Figure 4-10: Response message declar ation showing buffer_length variable

% One may beintroduced if it is deemed to add flexibility to PDL.
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Statements that contain the buffer_|length variable, such as the one above, automatically cause
the compiler to create a Post-Marshalling Map. This map contains instructions to save the
current point in the buffer, calculate the new position, write the length and return to the

current position.

OP-Code Source/ Target variable  Comment
SAVE POS BUFFER_POS Save current buffer position.
SET_POS BUFFER_POS (POS=8) @ Set the buffer position to the
value of the constant at the
offset given by the parameter.
SUB A constant value of “12”  Subtract the length of the
from the buffer length. header + the length of the
Header length (8) + integer from the buffer_length
length of integer (4) = 12. togiveonly payload length.
WRITE_INT BUFFER_LENGTH Write-out the value of the
internal variable buffer length
SET_POS BUFFER_POS Set the buffer position to the
saved value.

Table 4-13: Post-M arshal Map for CORBA message
Next, the compiler encounters the “external” clause. This defines the full Java classnames
(including packages) of the classes that the interpreter is to call for marshalling native types.
Because CORBA uses CDR encoding for primitive data, the default TUBE marshaller is not
suitable. Therefore, we define a special class to handle the CDR padding of the bytes that the
Protocol Implementation Module reads or writes. This class needs to be defined only oncein
the MPDL. From then on, it will be available for marshalling any defined interface across this
protocol, or it can be reused with other protocols. For example, when the Protocol
Implementation Module contains a READ_INT op-code, the Dynamic Adaptive Marshaller
will call MY ORB.marshaller. CDRBuffer.read int() to obtain the value. Conversely, when
WRITE_INT is encountered, MY ORB.Marshaller. CDRBuffer.write_int(value) is caled to
output the value. This clause causes the compiler to populate the Marshalling class-name

member of the PIM header (see Table 4-5).
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The final construct in this example is the “endPoint” definition. It appears in MPDL as

follows:

endPoi nt : " TCP"
{

/1

/1 These are transport and protocol -specific itens

/1

string host = HOST,; /1 This is the host for the object
string port = PORT, /1 This is the port on the host

Figure 4-11: MPDL endpoint definition for CORBA
The vaue following the “:” identifies the transport for the protocol, in this case “TCP” for
[IOP. The Transport Mediation Server must find these values in the End Point Resolution
Table entry for this interface. The compiler generates code into the Transport Interface
Module for loading and using these values. As the definition for this endpoint defines the use
of TCP/IP, the Transport Interface Module will use these values to create a sockets-based
connection to the defined host on the designated port. The operation of Transport Interface

Modules is covered in more detail in the section on the Transport Mediation Server (Section

5.7).

The next section will continue with the CORBA example and show how parts of the message

may be re-marshalled.
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5 Message Processing and Data Marshalling

5.1 TheMessageDistribution Server (MDS)

The Message Distribution Server is the component in the TUBE architecture that is
responsible for managing the messaging life cycle and ensuring that clients either, receive the
response in synchronous mode or are notified of responses in the asynchronous mode. The
Message Distribution Server is the first and last module to handle a message and its
subsequent response (assuming a two-way exchange). The Message Distribution Server is
also responsible for determining the target end-point from the Distribution Priority Table and
End Point Resolution Table, and providing that information to the other modules via an API.
When clients elect to use the TUBE server directly via APIs, the TUBE server creates an
instance of the Message Distribution Server to handle the message. Similarly, when a protocol
interceptor intercepts a message, it uses an instance of the Message Distribution Server to

manage the session.

In the following discussion, the assumption is that the system is processing a synchronous

(two-way) message.

When a protocol listener intercepts a client request, the following sequence of events occurs:
e The listener creates an instance of the Message Distribution Server and passes the
message to it.
e The Message Distribution Server passes the request to the Dynamic Adaptive
Marshaller and waits for it to return a protocol-neutral representation of the request (a
TLV buffer.).
e The Message Distribution Server now looks-up the Distribution Priority Table to

ascertain the target protocol.

64



e The Message Distribution Server passes the TLV buffer back to the Dynamic
Adaptive Marshaller for marshalling into the target protocol.

o After the Dynamic Adaptive Marshaller returns the marshalled request, the Message
Distribution Server attempts to create an instance of a Protocol Control Module
(discussed below) using the Java Reflection API. Depending on the result of the
creation, the M essage Distribution Server does one of two things:

o |If the creation is successful, the original request is passed to the Protocol
Control Module for handling. The PCM is responsible for al further

processing.

o |If the creation is unsuccessful, the Message Distribution Server passes the
message to the Transport Mediation Server for transmission to the target end-

point.

e The Message Distribution Server now waits for either the Transport Mediation Server
or the Protocol Control Module to return the response.

e When the Message Distribution Server receives the response, it carries out the reverse
of the above procedure; it uses the Dynamic Adaptive Marshaller to convert the

response from the target protocol into the source protocol.

In the event that the transaction fails, the Message Distribution Server will attempt to send the

message using the next protocol from the Didribution Priority Table. If the transaction cannot

be satisfied, the Message Distribution Server returns anull value to indicate failure.

65



5.2 Protocol Control Modules (PCMs)

These modules provide higher-level protocol semantics than those required for marshalling. It
is software written by a user. As an example, consider the CORBA MPDL definition (see
Appendix A). In this script, there is a “control” clause, which is a switch statement that
controls what sort of message payload the system is dealing with. The decision as to what to
do with this payload after marshalling and return belongs to the Protocol Control Module. The
Protocol Control Module implements the same switch logic as that specified in the control
clause, with the addition of appropriate logic to handle the resultant payload. To help clarify,
the following is another example based on CORBA MPDL using a response message. The
Protocol Control Module must decide what to do with this response based on the value of the

reply statusfield of the message.

One of the values specified for reply_status in the control clauseis athree (3), which signifies
that the response payload isa CORBA object-reference (defined as objectDef in MPDL). To a
CORBA client or server the value of three (3) actually means more than the type of response
payload; it means that the response is a LOCATION-FORWARD response. This indicates
that the original request has to be re-marshalled and submitted to the object whose referenceis

contained in the response message.

An attempt to support the specification of this logic in MPDL could result in an overly
complex language; thus, these higher-level semantics are delegated to a user-supplied module.
The MPDL still provides support for the marshalling of the various payload types, without
however attempting to interpret their meaning. That is, the decison whether or not to re-
submit the request to the new object is left to the Protocol Control Module. The Dynamic
Adaptive Marshaller and TLV buffer APIs provide methods for retrieval and population of

various fields within the message by name. Therefore, the Protocol Control Module makes a

66



request to the Dynamic Adaptive Marshaller to remarshal the request using the new object-

reference received in the response.

Only one Protocol Control Module is required for a given protocol, and this can manage any
message for any defined interface handled by this protocol. Using a CORBA LOCATION-
FORWARD response message as an example, the Protocol Control Module performs the

following steps (illustrated in Figure 5-1):

1. Receivethe original request from the Message Distribution Server

2. Send the message using the Transport Mediation Server and wait for the response.

3. Make adecision of what to do based-on the reply_status in the response

4. If the Protocol Control Module decides to re-submit the request

5. Use the Dynamic Adaptive Marshaller, TLV buffer and Transport Mediation Server
APIs to set appropriate fields in the request with new values

6. Submit the new request viathe Transport Mediation Server.

7. Return the response to the Message Distribution Server. If this response is null, the
Message Distribution Server will attempt to send the message using the next protocol
listed in the Distribution Priority Table otherwise return the (non-null) response to the

cdler.
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Figure 5-1: Message processing sequence with a PCM

The following is an example of Protocol Control Module logic to handle CORBA responses.

/1 This is an internal nmethod to the PCM

/1 assume this nmodul e has received the variable instances as paraneters
/1 fromthe handl eMessage nethod that was cal |l ed by MDS

/1 _tms is an instance of the Transport Mediation Server

/1 _damis an instance of the Dynam c Adaptive Marshall er

/1 req_buff has come through fromMS and is in TLV format

/1 as TLVBuffer req_buff

private TLVBuffer nakeDecisi on(DAM dam TMS tns, TLVBuffer req_buff)
{

Integer reply status = null;

reply _status = (Integer) dam getValue(“reply_status”); // get
reply_status
/1 check reply_status val ue
if (reply_status == null)
return null; /1 let MDS handle the error condition

switch(reply_status.intValue())

case O:

/1 normal nessage response

return null; /1 return original response to MDS
case 1:

/1 user-defined EXCEPTI ON

return null; /1 return original response to MDS
case 2:

/| SYSTEM EXCEPTI ON

return null; /1 return original response to MDS
case 3:

{
/| LOCATI ON- FORWARD
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/1 get values required for creating new request
String host = _dam getVal ue(“host”);

String port = _dam getVal ue(“port”);

String repo_id = _dam getVal ue(“repo_id”");
byte[] objectKey = _dam get Val ue(“object Key”);
/1l set the new values into the request, all others are sane
req_buff.setVal ue(“object Key”, objectKey);
req_buff.setVal ue(“repold”, repo_id);

/1 set new val ues for end-point

_tms. set Val ue(“host”, host);

_tms. setVal ue(“port”, port);

/1

/1l return the new request to send
return req_buff;

}
}

} /1 end of nethod
Figure 5-2: Partial code of CORBA Protocol Control Module

The Message Distribution Server does not attempt to interpret any of the messages but

simply routes the messages to the other components.

The basic operation of the Message Distribution Server is as follows:

1. Recelve an in-coming message either from an interceptor or viathe server API.

2. Invoke the Dynamic Adaptive Marshaler to un-marsha the source message into
protocol-neutral (TLV) format.

3. Determine the target protocol and end-point from the Distribution Priority Table and
End Point Resolution Table.

4. Call the Dynamic Adaptive Marshaller to marshal from the TLV format into the target
format.

5. Invoke the Transport Mediation Server or a Protocol Control Module to perform the
actual communication and await the response.

6. Use the Dynamic adaptive Marshaller to marshal the response into the source protocol
format. The response is then returned to the interceptor, which returns the response to

theclient.

69



A magjor design goal of the Message Distribution Server, and for that matter all of TUBE, isto
be protocol-neutral. The only parts that are (intentionally) protocol-specific are the Protocol
Implementation Modules generated from the MPDL scripts. The Message Distribution Server
uses the Protocol Control Module to make higher-level decisions about message processing.
The Message Distribution Server passes the full request to the Protocol Control Module and
delegates all further processing to it. The Message Distribution Server waits for the Protocol
Control Module to return either, a response for the client or null. The following illustration

(Figure 5-3) shows a runtime view of message processing using Protocol Control Modules.

Source
I nter ceptor
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Format
/W;\
Dynamic
Adaptive
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Figure 5-3: TUBE run-time processing showing PCM
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5.2.1 Exampleof a Protocol Control Module and Multiple I nterfaces

The following example shows how TUBE uses a Protocol Control Module to handle a
situation that is more complex than the standard LOCATION-FORWARD response described

above. The client and server are both CORBA-based.

Firstly, there are two interfaces involved. One is referred to as the agent and the other as the
worker. The CORBA client performs the following sequence of calls, which are intercepted

by the broker:

1. Create an instance of the agent interface.

2. Cal amethod on the agent to retrieve areference to aworker.

3. Cdl methods on the worker to perform the actual application logic.
4. Cal amethod on the agent to release the worker reference.

5. Cal aclose method to release the agent

During the call in step 2, the agent returns a LOCATION-FORWARD response, which
cannot be returned to the client. If TUBE returned this response, then the client would have
direct contact with the agent and thus by-pass the broker for any further processing.
Therefore, this response must be handled in a special manner. The Protocol Control Module
provides the logic to re-marshal the response and submit it to the new object identified in the

response.

The broker however, must still keep areference to the original object so the client can call the

close (step 5) method. When the worker interface is eventually returned, the broker must also

store this reference. However, before the response is returned the broker must change the

71



object reference host and port properties to point to the TUBE CORBA interceptor. The

references are cached using the combination of interface name and object key as the identifier.

The client now calls methods on the worker interface to retrieve customer and product data
and perform any other necessary processing. After sometime, the client cals the worker

release method on the agent, followed by a close on the agent itself.

The requirement to store multiple object references during the same session leads to some
complex logic, which isisolated in the Protocol Control Module. However, this logic is now
available to any interface that uses CORBA as the target protocol. This logic can handle an
arbitrary number of interfaces and multiple LOCATION-FORWARD responses during a

single session.

An issue that was confronted during this experiment was the passing of object references
between differing protocols. For example, when a SOAP client performs the same sequence
of calls as above it receives an opaque object reference in step 2. However, the reference has
no meaning to the SOAP client, and it would not know how to handle the reference.
Furthermore how does the SOAP client provide this reference back to the broker to ensure
the correct object is invoked for subsequent calls? This is very important if the message
exchange is conversational in nature, that is, if it consists of a series of two-way requests and
responses. Section 5.2 discusses this situation where both client and server use CORBA and
how the CORBA Protocol Control Module stores this reference for the client. SOAP
however, has no concept of an object as such [Vinoski, 2003]. All items transferred over
SOAP are encoded into XML, therefore any object sent via SOAP must be serialised into
XML. The SOAP specification Section 5 Encoding specifies rules for the serialisation of an

object into XML. This is not an issue if dealing with a pre-defined object, for example a
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Customer record. The structure of the Customer is defined in IDL therefore encoding into
XML is straightforward. However, when a method is defined as returning an object, the
situation is more complex. For example, what format to follow to encode the XML? Thereis
no IDL that defines an object. What is an object? In OMG IDL, the keyword object is used to
denote an opaque reference either, returned by or submitted to an ORB. The CORBA
specification defines what an object reference consists of and therefore how to encode one.

SOAP on the other hand has no such definition.

The mechanism used by TUBE to overcome this problem isto provide the SOAP client with a
session token in the optiona response header using the tag-name “objectRef”. This session
token is a base64-encoded representation of the object key. The SOAP specification states,
“the recommended representation of an opague array of bytes is the 'base64' encoding defined
in XML Schemas” [ XSL, 2005 section 5.2.3]. The client provides thistoken in all subsequent
requests in the optiona SOAP header using the tag-name “objectRef”. The broker
infrastructure understands this token to represent an object reference. When the request is un-
marshalled, the value is placed into a specia sot of the protocol-neutral buffer. The contents
are stored in a location named “objectRef”. When executing a source Protocol
Implementation Module, the Dynamic Adaptive Marshaller looks for this value and if found
sets the appropriate value in the target Protocol Implementation Module's variable value

segment.

5.3 Modesof Interaction

In a synchronous mode operation, the client is in a blocked state while waiting for areply. In
the asynchronous mode, the client is also waiting, but can continue to perform other tasks
whilst waiting. It is necessary to be able to handle both modes independently of one ancother,

and be able to combine them. As an example, a client may make a synchronous request on a
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server using the same protocol as always; the client is unaware that the server implementation
has been changed to use asynchronous queuing. It is necessary to hold the synchronous
session with the client, which is awaiting a response, and is thus blocked. At the same time, a
gueue on the server-side is monitored while waiting for a response that could come at
anytime. When the response arrives, it is sent back to the waiting client. This entire process
involves more than sending and receiving of the request and response; the system must

marshal the data to and from the source and target protocols.

During the marshalling process, the message data need to be buffered and copied from the
source to the target. If brokering a synchronous request over an asynchronous invocation to
the server, this keeps the client blocked until the system has completely marshalled and sent

the request message. The client continues to remain blocked until the response is returned.

54 TheDynamic Adaptive Marshaller

The Dynamic Adaptive Marshaler (DAM) is the name of the Virtual Machine (VM), or
interpreter that executes the Protocol Implementation Modules discussed in the previous
section. As the name suggests, this component must dynamically adapt to the protocol that it

needs to marshal.

Once the Message Distribution Server invokes the Dynamic Adaptive Marshaller, the
marshaller must dynamically adapt to the source protocol of the in-bound message, and to the
target protocol of the out-bound message. The Message Distribution Server tells the Dynamic
Adaptive Marshaler in which protocol the in-coming message is encoded. The Dynamic

Adaptive Marshaller then searches the Protocol Definition Repository (PDR) for a request
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Protocol Implementation Module that implements the un-marshalling rules for the particular
protocol. If it does not find the required Protocol Implementation Module, the Dynamic
Adaptive Marshaller returns an error. In this case, the Message Distribution Server will
attempt to process the message using the next protocol listed in the Distribution Priority
Table. This process continues until either, the Dynamic Adaptive Marshaller successfully
loads a Protocol Implementation Module or all protocols have been attempted and failed. In

thiscase, anull isvalueisreturned indicating an error condition.

Once the source Protocol Implementation Module is located, it is loaded and the Dynamic
Adaptive Marshaller checks the header for external class declarations. If it finds any, the
Dynamic Adaptive Marshaller creates an instance of the classes using the Java Reflection
API. Recall from the discussion in Section 4.3.1.1, that these classes must implement pre-
defined interfaces; specifically the TUBE.commsBuffer interface. This allows the Dynamic
Adaptive Marshaller to handle different buffer types and encoding schemes uniformly. Users
are free to wrap or implement any underlying methods or formats that they choose within

these classes

The Dynamic Adaptive Marshaller calls pre-defined method signatures to read and write the
different native data types. Therefore, if a user requires compression or encryption and does
not want to reveal the algorithm in the MPDL definition, they can implement the algorithm in
their external class. In this way, the details remain hidden, whilst still taking advantage of the
Dynamic Adaptive Marshaller and a Protocol Implementation Module to perform the actual
traversal of the interface and its data structures. This applies to any interface, regardless of its

complexity.
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Provided the interface is defined in the Module Definition Repository, the Dynamic Adaptive
Marshaller and the Protocol Implementation Module ensure encoding of the message as per
the rules specified in the MPDL definition for the protocol. The fact that values are encrypted

with a proprietary agorithm does not interfere with the encoding and de-coding process.

Thisisavery powerful feature of the TUBE approach to message processing; special protocol
handling code only needs to be written once, not for every interface. This allows optimal re-

use of code and uniform treatment of all interfaces over the protocol.

The Dynamic Adaptive Marshaller uses the source Protocol Implementation Module to un-
marshal the in-bound message into the internal protocol-neutral format. The next step in the
process is to determine the target protocol. TUBE achieves this by using Message Distribution
Server APIs to look-up the Distribution Priority Table (DPT) to determine which protocol has
the highest priority. The Dynamic Adaptive Marshaller creates a request marshalling Protocol
Implementation Module for the target protocol. The Dynamic Adaptive Marshaller then uses
values from the TLV buffer to populate values within the target Protocol Implementation

Module.

55 An Exampleof Middleware I nteraction
TUBE's mgor objective to provide brokerage between different types of middleware is
implemented by the following key mechanism:
e Storing interaction rules in Protocol Implementation Modules and Transport Interface

Modules.

The magor categories of information required by TUBE to mediate between disparate

middleware are;
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e Onthe-wire protocol and payload format The Protocol Implementation Module

encapsulates this information.

e Communication sessions. The Transport Interface Module contains all the communication
logic for a particular protocol. The Transport Mediation Server section below discusses

Transport Interface Modules.

These communication sessions may be further decomposed into a number of operations.

These are:
0 Session establishment (hand-shaking)
0 Session management
0 Session termination

Each in turn may require further de-composition, depending on the middleware in question. For
example, session-management may involve simply sending data, or sending data and waiting for
aresponse. The exact nature of the interaction depends on several factors: the target middleware,

the session type (one-way or two-way) and the invoking application (interface) requirements.

The following example uses the mathServer interface to demonstrate a middleware interaction
between a CORBA-based client and an MOM-based server. The discussion covers the

mapping of object-based requests to non-object (procedural) requests.

As discussed earlier, the Module Definition Repository holds the definition of the interface.
This is necessary because there is likely to be an impedance mismatch between the two
middleware interfaces, such as for example, with CORBA, which is object-based, as opposed
to MOM, which is message-based. The interface definition may need to be altered to reflect

this. If mathServer is MOM-based, whereas its clients are CORBA-based, method calls in
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CORBA must be properly mapped to MOM messages to ensure that the correct operation is

performed by the receiving end.

The following (partial) definition is the origina mathServer interface as used by CORBA
clients and servers. As CORBA is based on objects and the object has methods associated to

it, the client calls the specific operation directly on the object (for example, obj . add( 10,

9)).
i nterface mat hServer

/1 request structure
struct math_req

{
long numt;

long nung;
s

/1 remainder omtted
void add(in math_req nmr, out math_resp arsp) rai ses (nmathException);
/!l remainder omtted

b Figure 5-4: Partial CORBA definition of mathServer interface

The mathServer IDL defines four methods: add, sub, mul and div. To specify the operation to
the MOM, the marshaler encodes the parameters using information from the Module
Definition Repository. If the system sent the information as is (that is, with only math _req
encoded), the MOM server would not know which operation to perform. Therefore, the IDL

needs to be modified to reflect what MOM requires as established by the MOM server team.

For example, let us assume that the MOM team established the following COBOL definition

for the mathServer.
01 MATH_REQ
03 OP_CODE Pl C X VALUE SPACES.
88 ADD_OP VALUE * A .
88 SUB_OP VALUE ‘S .
88 MUL_OP VALUE ‘M .
88 DIV_OP VALUE ‘D .
03 NUML Pl C 9(4) VALUE 0.
03 NUMR Pl C 9(4) VALUE 0.

01 MATH_RESP.
03 RESP_.NUM  PIC 9(4) VALUE 0.

Figure5-5: COBOL definition of mathServer
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For the remainder of the discussion assume that the server has been changed from CORBA to

MOM-based and that the clients remain CORBA-based. The data structures math_req and

math_resp are amost the same, except for the op_code in the request structure. The client

development team creates the IDL shown in Figure 5-6.

i nterface mat hServer

{

/1 request structure
struct math_req

{
char op_code; // **** This is the only change
long nuni;
long nung;

1

/1 response structure
struct math_resp

{
s

long ret_num

/1 define the exception
exception mat hExcepti on

{
}s

/1 methods (services, functions, operations)

void add(in math _req mr, out math_resp arsp) rai ses (mathException);
void sub(in math req nmr, out math _resp srsp) rai ses (nmat hException);
void mul (in math_req nmr, out math_resp nrsp) rai ses (nmathException);
void div(in math_req nmr, out math_resp drsp) rai ses (nmathException);

string error_text;

Figure 5-6: The M odified 1DL

It is worth noting that:

The interface remains largely un-altered.
The request and response parameters have not changed.
None of the object-oriented properties of the client interface has been violated.

Simply the op_code member has been added to the request structure.

The CORBA stubs need to be re-generated and compiled otherwise a runtime error will occur

because the interna structure of a parameter has changed. This is necessary regardiess of

whether TUBE is used to broker messages or not. The only way to use MOM and avoid the
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interface change is to allocate separate queues for each operation. In this case the MOM-based
server would require logic to process requests in a different manner depending upon which
gueue they arrive on. Introducing the op-code simplifies this logic to a ssmple switch

statement and does not create a dependency on queue names.

Clients may now use this interface with object-based and non-object based systems. If the
IDL wereleft initsorigina state, the CORBA call obj.add(10, 9) would be encoded by TUBE

into the MOM message as method-name serialised-parameters, for example:

add 10 9// spaces between values are for readability only
This is the default behaviour based on the IDL definition. The onus is on the systems
integrator (the client development team in this case) to ensure that the definitions match.
Conversaly, if the call was being marshalled from a MOM message to a CORBA call and the
IDL were in its origina state, TUBE would not be able to determine which method to call.
This is because TUBE only receives a sequence of bytes representing the math_req structure,
and therefore it is not possible to determine the operation from the origind math_req
structure, since the necessary information is not there. Using the new IDL, a mapping is
defined that instructs TUBE to use the op_code member of the request structure to determine
the method to call on the CORBA object. Thereis still, however, amissing alink between the
op_code value and the actua method-name. The following mapping definition provides this

link.

<Fi el dMap acti on="operation">
<Field nanme="mat h_req. op_code" offset="0" type="byte" len="1">
<XForm Map="A, add M mul D,div S, sub" />
</ Fi el d>
</ Fi el dMap>
Figure 5-7: Example transfor mation (XFORM) map
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The XML (fragment above in Figure 5-7) shows a method-name, is derived by either:

e Reading a byte from offset zero (0) in the in-bound buffer, and then mapping it
according to the rules defined by the XML tag XForm. This is used when only a

buffer of bytesis available, such asin an MQ or IMS BytesM essage.

e Theop_code member of the math_req structure. Thisis used where the structure of the
buffer (a SOAP or CORBA message for example) is known. The value is then derived
according to the rules defined by the XML tag XForm. This shows, for example, that

an‘A’ ismapped to “add”.

If the Dynamic Adaptive Marshaller cannot determine the operation from the protocol
definition because the protocol has no mechanism for specifying methods, it will look for an
XML document named interface.txf (eg. mathServer.txf). This document follows the format
shown in Figure 5-7. If thisfile is not found, the Dynamic Adaptive Marshaller returns null to
the Message Distribution Server, as it cannot determine the operation. The operation name is
necessary as this is used to look-up the Module Definition Repository for the structure and

order of parameters and return values.

5.6 From MOM to CORBA

The following example shows a compl ete translation from an inrbound MOM client request
to a CORBA -based object request to illustrate the mapping process. The example shows the

add operation with the decimal numbers 1000 and 15 respectively.

MOM Message Buffer (Hexadecimal, little-endian) as extracted by IMS PIM

00000 -- 41 ------------- ASClI | character ‘A
00001 -- e8 03 00 00 ---- Deciml number 1000
00005 -- Of 00 00 00 ---- Deciml number 15

Figure 5-8: MOM -based message buffer
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Using the rules defined in the XML shown above the method nameadd is derived from the

byte at offset zero in this buffer. This byte hasthe value*A’. Thisidentifies the operation to

look-up in the Module Definition Repository so that the parameter list may be retrieved. The

following diagram illustrates how the source Protocol Implementation Module builds the

intermediate TLV buffer.

MDR Record

Name: math_req

Type: complex

Name: op_code

Type: char/octet

Name: numl

Type: int

Name: num2

Type: int

Figure5-9: How the sour ce Protocol I mplementation Module buildsthe TLV buffer

Reads

I mplementation

Pr otocol

TLVBuffer

v

Name: math_req

Module Builds Type: complex
Value: TLVENHy
Invoke
A 4

Name: op_code
Type: char/octet

-=>read_octetf): +- - ‘A’ > Length: 1
Value ‘A’
Name: numl

. »read_int(y - =|- - »{ 303000 » Typeint
Length: 4
Value: e803000d
Name: num2
Type: int

-=>read_int(3 - =|- = » 0f000000 »>
Length: 4

. commsBufo Sour ce Value: 0f000000

implementation data buffet

class
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The TLV buffer constructed in Figure 5-9 is passed to the target Protocol Implementation
Module. The following sample shows how the CORBA Protocol Implementation Module

marshals these values from the TLV buffer into the CORBA GIOP request buffer.

G OP Header
00000 -- 47 49 4f 50 — A OP
00004 -- 01 00 -------- I10OP version = 1.0
00006 -- 00 ----------- Byte Order = Big-Endian
00007 -- 00 ----------- Message Type = Request
00008 — 3C 00 00 00 --- Message Length = 60 bytes (octets)

Request Header
00012 -- 00 00 00 00 -- NULL (zero-length) Service Context List
00016 -- 01 00 00 00 -- Request-id =1

00020 -- 01 ----------- Response Expected = true // two-way cal
00021 -- 00 00 OO0 ----- 3 Reserved octets

bj ect Key
00024 -- 13 00 00 00 -- Length of (nject Key (octet sequence) = 19
octets

00028 -- 2f 31 35 3332 2f 31 30 34 35 32 37 31 32 38 39 2f 5f 30
00 /1532/1045271289/ 0.
Operation and paraneters
00048 -- 04 00 00 00 -- Length of Method Nane = 4
00052 -- 61 64 64 00 -- NULL term nated string = “add”
00056 -- 00 00 00 00 -- NULL (zero-length) Requesting Principa
/1 fromthis point the data cones fromthe TLV buffer

00060 -- 41 ----------- op_code = ‘A

00061 -- 00 00 00 ----- 3 bytes of CDR padding for alignnment of 4 byte
boundary for C/ C++ |long (Java | nteger).

00064 — e8 03 00 00 --- Decimal nunmber 1000

00068 -- Of 00 00 00 --- Decimal nunber 15

Figure 5-10: GIOP buffer marshalled by CORBA PIM

The following excerpt from the End Point Resolution Table for the MathServer interface

shows the specification for the remote object key at offset 28 in the example above.

<Interface Name="mat hServer" Mde="synch" >
<CORBA bj ect Key="/1532/ 1045271289/ _0" Host="192.168.1.3" Port="1978"
endi an="0"/ >
</Interface>
Figure 5-11: Portion of End-Point Resolution Table
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The CORBA Transport Interface Module uses the Host and Port values to establish
communication with the remote ORB, and the CORBA Protocol Implementation Module uses
the ObjectK ey value to ensure that the correct object isinvoked at the end-point. Thisvalueis

encoded into the request as shown above.

Once the IDL definition is complete, the IDL is submitted to the TUBE IDL compiler, which
populates the Module Definition Repository with the interface information. This information
is protocol-independent. That is, the same Module Definition Repository definition is used to
marsha CORBA, MQ, JMS or any other supported middieware protocol. The protocol
marshalling rules are already contained in the relevant Protocol Implementation Modules and

thetransport (communication-level) interactions are defined in Transport Interface Modules.

5.7 TheTransport Mediation Server (TMYS)

The Transport Mediation Server is very similar in operation to the Dynamic Adaptive
Marshaller (DAM) in that it uses loadable modules to perform its functions. These loadable
modules are known as Transport Interface Modules (TIMs). The Transport Interface Module

carries-out the communications with target end-points.

The characteristics of a Transport Interface Module are specified in the end-point definition of
the MPDL description of a protocol. The Transport Interface Modules consist of Java code
generated by the MPDL compiler. These modules implement a pre-defined interface and the

compiler generates conformant basic skeleton code, which can be modified by the user.

The type of code generated depends on the transport specified in the end-point clause of the
protocol definition. If the transport is MOM-based, such as IMS, the compiler generates a

generic module that may be used with any JIM S implementation. The user is free to implement
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any higher-level message management semantics. By default the generated code provides the

ability to match requests and responses using the correlation-id (see JIM S, 2003).

The other generic model is for a sockets-based transport based on TCP/IP for protocols such
as HTTP or CORBA. If the specified transport is not one of the pre-defined types, the
compiler generates a basic skeleton only. This skeleton consists of empty method bodies and
the user must fill in the actual implementation. This is useful in the case where for example,
the user had an existing SNA [SNA, 2005] gateway. The user would fill-in the skeleton

methods with the calls to the relevant SNA APIs.

This only need be written once and is then available for any interface to be exchanged over
SNA. For example, assume the user wishes to retain their existing CORBA clients and have
them communicate with an SNA server. This would now be possible because the user has a
Transport Interface Module that interfaces to SNA. All the complexity of converting CORBA
messages to SNA is provided by the protocol-mapping rules defined in the Protocol
Implementation Modules. The user would of course, need to create an MPDL definition of

SNA.

The Java dasses implement the following pre-defined interface so that the Transport
Mediation Server can use the same invocation mechanism without the need for dynamic

method discovery. The following code-fragment shows the interface defined in Java.

interface TMSTi m

{
public void setup(EPRTProcessor arg);
public bool ean send(byte nmessage[]);
public byte[] receive(byte nessage[]);
public void close();

Figure 5-12: Transport Interface Module interface definition
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The methods are:
e setup() —thismethod is used for initialisation. The arg parameter is an instance
of an EPRT entry. This contains name/value pairs read from the End Point
Resolution Table for this protocol and interface combination. The EPRTProcessor

provides APIs for reading these values.

e send() —thismethod is called to send a message. It returns a Boolean value of
true if the send is successful or false otherwise. The Transport Mediation Server
uses this value to decide if the receive method should be called. If the result is
false, the Transport Mediation Server returns a failure indication to the Message
Distribution Server. If the result is true and the message exchange is two-way (that
is, aresponse is expected) the receive method is called. If the message is one-way
and the result is successful, the Transport Mediation Server returns the result

immediately.

e receive() — this method is caled by TMS when waiting for a response.

Whether the wait is synchronous or asynchronous depends on the implementation

of the method.

e cl ose() —thismethod is called to terminate a session. It may be used to clean-

up and perform any necessary shut-down operations.

The following code illustrates a usage scenario of the set up method using IMS (MOM) as

the transport.
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public void setup(EPRTProcessor eprt)
{ /1 systemwites to this
String sendQueue = eprt.get El enent Val ue("JMS", "Qutput");
/1l systemreads fromthis
String recvQueue = eprt.getEl enent Val ue("JIMS", "lnput");
/1 Tinmeout interval, how long to wait for a response
String tout = eprt.getEl enentVal ue("JMS", "Tinmeout");

if (tout == null)
{
m_Ti meout = 60000;
}
el se

m Ti meout = Long. parseLong(tout) * 1000;

/1 set-up the queueus
set SendQueueNane( sendQueue) ;
set RecvQueueNane(r ecvQueue) ;

Figure 5-13: JMS TIM code fragment showing setup method

The code above firstly obtains the names of the queues and the timeout periods as specified in
the End-Point Resolution Table, and then calls internal methods to interact with the IMS API.

The entire IMS Transport Interface Module appearsin Appendix F.

87



6 Evaluation of TUBE

In this chapter, the focus is on demonstrating to what extent TUBE meets the requirements
outlined in Chapter 2. In the development of what is essentialy an engineering artefact, there
isadifficulty in proving or demonstrating that the design can be applied in all circumstances.

In the case of TUBE, this would mean showing that:

i.  dl protocols could be described in the MPDL,
ii. that a run-time TUBE was able to correctly interpret these and allow seamless
interoperation across protocols, and

iii.  TUBE can beimplemented in arange of real-world operating environments.

Sinceit is not practical to do thisfor all middieware protocols currently existing and future, in
al their possible implementation environments the approach taken here is to select a
representative set of current middleware protocols, and assess the applicability and
performance of TUBE for these. The evaluation of TUBE will be based on a number of
scenarios that assess its ability to meet the design criteria outlined in Chapter 2. These
requirements are re-stated below. The assessment of a tool like TUBE needs to go beyond
testing in “toy” environments, to potential rea world applications. To this end, the
applicability of TUBE to a redlistic corporate operating environment is assessed using a case

study from alive implementation in alarge information-based Australian corporation.

Requirement 1: The MPDL must be able to describe all middieware protocols in an easy to
use, declarative way. This requirement governs the overall design of the MPDL that must

minimise its semantics, and must make use of existing standards and languages. The overall
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am is to provide the capability to describe protocols to application developers, and to

minimise procedura programming. Specifically the broker must:

i. provide a framework for implementing any special semantics, such as interaction
semantics or data coding and de-coding functions,
ii.  describe amiddleware product once for integration across all protocols,
iii.  beeasly extended by programming in an understandabl e and maintainable way, and
iv.  specia protocol handling code is written once, not for every interface. This allows

optimal re-use of code and uniform trestment of all interfaces over the protocol.

Requirement 2. TUBE must be able to convert data and message formats from any
middleware protocol to that of any other middleware protocol. Specifically, the broker must:
i.  deal with different transport formats (text or binary),

ii.  deal with al native data types, complex data, and user defined data.

Requirement 3: TUBE must be able to seamlessly and transparently deliver requests in one
protocol to a service in another protocol, and deliver responses back to the requestor. This
requirement lies at the core of how the functionality is implemented. Specifically, the broker

must:

i.  support different modes of interaction (Synchronous or asynchronous),
ii.  accessservers through different protocols, without re-compiling application programs,
and
iii.  support deployment at one end only, so that a server-receiving node will receive and
respond to requests in its own protocol, without any need to process this request in any

different way.
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Requirement 4: TUBE must be able to choose between multiple options for providing a
service. This requirement means that the broker mus be able to provide the ability to
dynamically locate aternative end-points, so that alternative services may be accessed, should
they be available. One mechanism for supporting aternate end-points is protocol
prioritisation. This allows the user to list protocols in priority order. The broker will try each
listed protocol inturn until either, the message delivery is successful, or al protocols are

exhausted. In the latter case, the client receives afailure indication.

Requirement 5: TUBE must be able to effectively operate in a data intensive, real world

environment. It must be easily adaptable to that environment, and it must perform efficiently.

6.1 Sdected Middleware Protocols

Table 6-1 shows the middleware protocols used in this evauation. The MPDL descriptions

appear in Appendices A through E.

Protocol | Primary Object | Mode Special Comments
Data Based Supported Extensions
Type
CORBA Binary Y Synch Yes A widely used binary, object-based, primarily synchronous
protocol. Includes special semantics.
SOAP Text Y Synch Contemporary, text based protocol.
HTML Text N Synch Another example of atext-based Internet protocol
(encoding).
MS Binary N Asynch A contemporary asynchronous protocol.
Encrypted Text N Synch An example of special encoding/de-coding applied to extend
XML a standard protocol format.
TUBE ALL Both Both An example of the ease of use of TUBE's APIs.
XML API
TUBE Java ALL Both Both Another example of the ease of use of TUBE's APIs.
API

Table 6-1: Evaluation Protocol characteristics

Each of these has been selected for the following reasons.

i. CORBA isawidely used and historically significant middleware protocol. It was the
first important object-based protocol. CORBA is a complex protocol that includes

extensions and special semantics. While it isno longer a major middleware protocol in
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Vi.

new applications, it is an important protocol from the perspective of integration in

legacy systems.

SOAP is the delivery vehicle for the latest SOA (Service-Oriented Architecture)
systems. As the core protocol underlying the Web-Services that interact with these

systems, SOAP is an important contemporary middleware protocol.

JMS isthe MOM (Message-Oriented Middleware) of choice amongst the J2EE (Java
2 Enterprise Edition) development and user communities. It is an asynchronous
protocol by definition, in that a subscriber or listener registers interest in a queue, and

aproducer or publisher places messages onto that queue.

HTML is another text-based Internet protocol. This was selected to test the ability of

MPDL to represent individual itemsin a specified manner (refer to Appendix C).

Encrypted XML shows how a standard encoding (XML) may be extended with very
little effort to produce a new protocol (encoding). One of the criticisms of XML isthe
large payload size. The W3C currently has a working group looking at the efficient
exchange of XML [EXI, 2005]. Therefore, rather than encryption, other extensions,

such as compression for payload reduction could be implemented.

The TUBE XML-based API demonstrates the ability of an application to interact with
TUBE using XML documents. This allows the application to reach servers using a
variety of protocols that the application does not need to understand. It only needs to

supply and receive IDL conformant XML.
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vii.  The TUBE Java-based API provides the same capabilities as the XML API, except
that applications deal with pre-existing Java objects. This means the only coding
change is to send and receive the objects via the TUBE API. Otherwise, the client
developer must marshal and un-marshal those objects in code to and from whatever

protocol the server is using.

6.2 Evaluation Operating Environments

TUBE can be implemented independently of operating environments, and a number of
different operating environments were used in the experiments. The test configurations were
asfollows:
Servers:

e HP-UX CORBA server

e Windows XP-based server (Pentium M notebook)

0 Servershosted

= CORBA
= JMS
= SOAP

e Linux-based server (Pentium PC)
0 Servershosted
= CORBA
= JMS

= SOAP
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Clients:

e Windows XP-based client (Pentium M notebook)

o Clientsimplemented

CORBA

SOAP

JMS

XML API

Java APl

e Linux-based client (Pentium PC)

o Clientsimplemented

CORBA

SOAP

JMS

XML API

Java APl

e Object Request Brokers (ORBS)

0 MICO C++-based open-source ORB [MICO, 2000]

0 JacORB Java-based open-source ORB [JacORB, 2004]

0 Sun J2SE internal ORB (part of Java 2 runtime system)

0 Proprietary S‘d-party ORB (used in corporate case study Sec 6.3.9)

e Message queues

0 Sun J2EE message queue (part of J2EE server runtime)

0 ActiveMQ Javabased open-source IM S implementation [ActiveM Q, 2005]
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Each of the protocols has been implemented as an MPDL. Each of these need only be

implemented once, and then can be used as either source or target protocols. An overview of

the testing scenarios appears in Table 6-2.

The interfaces tested in these scenarios were the simple mathServer and more complex

variations of the mathServer; the most complex variant appearsin Appendix G.

Scenario

Source
Protocol

Target
Protocol

Source
Data
Type

Target
Data
Type

Source
Object Object
Oriented Oriented

Target

Client
Mode

Server
Mode

Comments

CORBA

SOAP

Binary

Text

Y Y

Synch

Synch

Demonstrates
mapping of binary
and text data

SOAP

CORBA

Text

Binary

Synch

Synch

Demonstrates
handling of special
semantics,
specifically CORBA
LOCATION_FWD
response.

MS

CORBA

Binary

Binary

Asynch

Synch

Demonstrates ability
to handle both
synchronous and
asynchronous
interactions

CORBA

JMS

Binary

Binary

Synch

Asynch

Demonstrate sending
from synchronous to
asynchronous

MS

SOAP

Binary

Text

Asynch

Synch

Demonstrates ability
to handle both
synchronous and
asynchronous
interactions using
another synchronous
server.

SOAP

JMS

Text

Binary

Synch

Asynch

Demonstrate sending
from synchronous to
asynchronous using
another synchronous
client

CORBA

Encrypted
XML

Binary

Text

Synch

Synch

Demonstrates ability
to encrypt entire
payload after
marshalling.

Encrypted
XML

CORBA

Text

Binary

Synch

Synch

Demonstrates ability
to decrypt entire
payload before
marshalling.

TUBE
XML API

ALL

ALL

ALL

Both Both

Both

Both

Demonstrates
TUBE's XML-based
API

10

TUBE
Java API

ALL

ALL

ALL

Both Both

Both

Both

Demonstrates
TUBE's ability to
interact with native
Java objects.

11

CORBA

HTML

Binary

Text

Synch

Synch

Further demonstrates
converting from an
object-based binary
protocol to text.

Table6-2

: Scenario Matrix
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The protocols in the table above were all tested as source and target protocols to and from
each other. The standard source protocols to same target protocol scenarios were aso tested
(for example, CORBA to CORBA). These are not included in the table for brevity.

In al the scenarios tested, the same engine (the Dynamic Adaptive Marshaller) processed al
the interfaces over al the protocols. The protocol structure and marshalling rules reside in the

specific Protocol Implementation Module.

All the scenarios address requirement 1, in that al the protocols employed are defined in
MPDL (1i,ii) and existing clients and servers required no changes. Use of clients based-on the
TUBE APIs demonstrates easy extensibility (1iii). Other requirements shared by all scenarios
are: the ability to deal with varying data types (2ii), the ability to access servers using
different protocols without change to applications (3ii), and ability to choose between
multiple service providers (4). Requirement 4 is demonstrated in al scenarios by modifying
the End-Point Resolution Table entries for the tested interfaces and removing specific
protocols. For example, the Distribution Priority Table entry specified CORBA followed by
SOAP. By removing the CORBA entry, the system automatically used SOAP. Replacing the

CORBA entry caused the system torevert to CORBA.

6.3 Evaluation Scenarios

6.3.1 Scenariol.

CORBA? clients to SOAP servers specifically address requirement 2, showing the handling
and transformation of binary data to text and vice versa (2i). This also demonstrates how
quickly a new protocol may be added to an existing environment. Aside from the optional

coding of a SOAP server, the definition and support for SOAP was achieved within a day

9The CORBA client calls were tested with both C++-based and Java-based CORBA clients. This was to test language independence of the
brokering process.
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rather than days or weeks. This demonstrates the power of the MPDL and Protocol

Implementation Modules.

6.3.2 Scenario 2.

SOAP clients to CORBA servers address the handling of protocol-specific semantics.
Specifically, the CORBA LOCATION-FORWARD response message demonstrates the
usage of Protocol Control Modules to handle special interaction semantics (1i,iv). This
complexity was introduced and covered in detail in the previous chapter. Extensive
performance analysis is beyond the scope of this thesis; however, some timings were captured
during this test. The results show that using TUBE to broker the communication and perform
the marshalling adds only a small overhead of approximately 0.4 — 0.6 seconds. The test
consisted of the following operations:

0 establish connection to agent

o handle re-direction (connect to object)

0 send login request

0 receivelogin response

0 send get customer details request

0 Qet customer details (20k payload)

0 release object

0 release agent
The test was carried-out ten (10) times using a CORBA client calling directly to the ORB, and
then another ten (10) times using a SOAP client calling the ORB via TUBE. The following
table shows the results of each test. The Timings were displayed by the client at the end of

each invocation. These tests were carried out on a Pentium M Notebook.
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Direct Calls (seconds) SOAP inter cepted (seconds)
2.463 2.963
2.593 2.800
2.353 2.853
2413 2.915
2.393 2.893
2.423 2.553
2.453 2.993
2.563 2.863
2.463 2.743
2.473 2.865

Table 6-2 Test result timings

6.3.3 Scenarios 3 and 4.

JMS clients to CORBA servers address the requirement of supporting different interaction
modes (3i). Specificaly, it demonstrates an asynchronous client interacting with a
synchronous server. Scenario 4 demonstrates a synchronous client interacting with an

asynchronous Server.

6.3.4 Scenarios5 and 6.

These scenarios address the same issues as scenarios 3 and 4 using a different synchronous
protocol, in this case SOAP. This scenario was designed to test whether SOAP

communicating with an asynchronous protocol would behave any differently.
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6.3.5 Scenarios7 and 8.

These scenarios demonstrate the ability of TUBE to mediate between standard protocols (for
example, CORBA) and home-grown (for example, encrypted XML) protocols. This further
demonstrates the compliance with requirements 1(iii, easy extensibility), 2 (conversion of data

and message formats) and 3(iii, support deployment at one end only).

6.3.6 Scenarios 9 and 10.

These demonstrate requirements 1(iii, easy extensibility) and 3(iii, support deployment at one
end only) by proving the ease of using the TUBE API. The same API-based clients were used
for al interfaces across al protocols. Command-line parameters specified which interfaces
and services to invoke. Each interface’ s End-Point Resolution and Distribution Priority Table
entries were modified to ensure that different servers could be invoked if the preferred one

was not available (4).

6.3.7 Scenario 11.

This scenario further demonstrates TUBE’ s ability to convert from binary to text by defining

an MPDL description of HTML (2).

6.3.8 Using TUBE'sAPIs

The scenarios discussed were also tested using TUBE's interna APIs as the originating
clients. Firstly, a simple Java client was written. This client reads XML documents from disk
and submits them to servers using TUBE's XML-based API. The requests are sent to different
servers over various protocols. The client receives an XML document in response. The other

TUBE API mechanism tested is the Java-based API. With this API, clients populate and
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submit areal Java object with their request and they receive a real Java object in response. If
there are no Java objects that implement the interface defined in the IDL, the TUBE IDL
compiler has the ability to generate stub classes. These classes consist of getter and setter
methods only. A class is generated for each high-level structure (struct) definition in the IDL.

The following code fragments illustrate the usage of both API variants.

I/ read XML file

String payl oad = get XM_Payl oad(fil enane);

Jclient jc = new JCient(interfacenanme, nethodnane, payl oad);
/1 send request and wait for response

String sr = jc.processMessageVait();

/1l print results

Systemout. println("Server Response for :” + nethodnane);
System out. println(sr);

Figure 6-1: TUBE XML -based APl example

/1l create a client-side instance of a TUBEOhj ect
/1 parameters to constructor: interfacenane, objectnane, operation
/1l e.g. “nmyinterface”, “nyreq”, “mynethod”
TUBEOhj ect o = new TUBEhj ect (args[ 0], args[1], args[2]);
/**
* An invoke that takes "real™ java objects as paraneters
*/
math _req req = new math_req();
req. set numi(1000);
req. set nunm2(15);
req.setop_code(‘A);
/1 invoke using our request object
/1 The call to getReturnCbject (below) actually causes the invoke to occur
/1 The invokeByObj ect method sinply sets-up the request parameters
TUBEObj ect ret = o.invokeByCObject(req);
/'l supply an instance of the top-level object to be popul ated
math_resp nr = new mat h_resp();
nt = (math_resp) ret.get ReturnCbject(nr);
if (nr !'=null)
{
Systemout.println("Class is: " + nr.getdass().toString());
nr.print();

Figure 6-2: TUBE Java object-based API example
The protocol that TUBE uses internally to implement its object-based API isitself processed
like any other protocol. That is, defined in MPDL and the generated Protocol Implementation

Module executed (interpreted) by the Dynamic Adaptive Marshaller. Thisinternal protocol is

BinTLV (an abbreviation of Binary TLV). When a client creates an instance of TUBEODbject
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(see Figure 6-2) it actually creates a proxy object that uses BinTLV to communicate with the
TUBE server. The client interacts with native Java objects and is un-aware whether the server
islocal or remote. This can easily be extended to support other object-based protocols such as

Microsoft .Net.

6.3.9 The Corporate Case Study

The company involved in the case study is a large Australian corporation with an annual
turnover of more than $1 Billion and approximately 130 fulltime employees in their
Information Technology department. They have a variety of hardware platforms, including
Sun and HP running UNIX, and Intel servers running Microsoft Windows. The desktops run

Microsoft Windows.

For approximately six years, the company have attempted to achieve real-time integration
between their front-end CRM system and their legacy core system. They have attempted to
use MOM-based integration, which was partially successful and works with about three
simple transactions. However, modifying customer details and placing an order in the CRM
system, and then having those details reflected in the back-end and the order recorded has
eluded them. One of the main reasons they have not been able to integrate has been that the

MOM -based approach provides no business context, and therefore the data update cannot be

applied accurately.

A small prototype was developed that uses CORBA as the integration protocol at the server
end. The client uses SOAP. The company had no support for SOAP-based clients. Therefore,
a core component of TUBE was introduced into the environment. This component renders
CORBA requests from XML/SOAP and generates XML/SOAP response documents from

CORBA objects. The TUBE IDL compiler is used to generate XSD [XSD, 2005] schemas
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used for XML vaidation by the workflow engine at runtime. The prototype tested the

following process:

e A web-based client sends the customer and order details using SOAP.

e The SOAP server uses the TUBE component to populate a CORBA request object
from the XML.

e The SOAP handler sends the request to the server and waits for a response.

e The SOAP handler passes the response object to the TUBE component.

e The TUBE component returns a fully populated XML document (based-on the
contents of the object) to the handler.

e The handler then returns this response to the client.

e Theclient validates the response against the generated schemas (XSDs)

This process alows integration between the core customer management system and the
company’s front-end CRM system via a workflow bus. This extension of the prototype is

implemented in their production environment.

The following experiment tests TUBE's ability to intercept and re-direct messages from

existing clients to new servers using differing protocols and implementation languages.

The back-end application has an existing C++-based GUI client. The client is re-directed to a
TUBE interceptor, which marshals the requests into SOAP and sends them to another TUBE
node that converts them back to CORBA, and then submits the request to the remote HP-UX
server (see Figure 6-3 below). This test demonstrates that the CORBA client could be re-
directed to a SOAP server with a simple configuration change, in a real application in a

production environment. It also demonstrated that introducing the TUBE SOAP node allowed
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SOAP clients to access the core legacy system. The SOAP support was achieved by creating
and compiling an MPDL definition of SOAP (see Appendix B), and then adding SOAP to the
Distribution Priority and End Point Resolution tables. The clients did not require any
modification or re-deployment. The changes were confined to client configuration files. In the
case of the C++ client this meant a change to the Windows registry and in the case of the
SOAP client, the specification of a new URL. The C++-based client was swapped back to
CORBA and then diverted to JMS without the user noticing any disruption or changes in
application behaviour. The integration was completely invisible. These tests were aso

carried-out using a Java-based client.

TUBE converts the
CORBA to SOAP or goes
directly to the CORBA
server. (This is
configurable).

TUBE converts the SOAP to
CORBA. This Allows

new Web-based clients to
access existing back-ends.

New Web-based clients
can still access legacy
servers viathe SOAP
server.

New Web-based clients are not inhibited
from accessing the SOAP server directly.

Figure 6-3: The CORBA re-routed to SOAP scenario
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6.4 Summary

Overal, the scenarios demonstrated that TUBE meets its stated design objectives. It alows
new protocols to be added to IT environments in a fraction of the time that existing methods
do. SOAP was defined and available for integration within a day. Likewise, with all the other
MPDL defined protocols. The ability of the MPDL compiler to generate Transport Interface
Module templates and the loadable Protocol Implementation Modules significantly reduces
the amount of coding and configuration required to introduce new protocols. TUBE proves
that it is possible to introduce new protocols through configuration. This alows preservation
of existing IT systems. As new protocols and access mechanisms become popular, (for
example, SOA and web-services) the protocols that they employ (such as SOAP) may be
added quite quickly with minimal intrusion. This allows the existing legacy back-end servers
to remain un-atered. Clients using the new access protocols may be deployed without
concern for the access protocol of the server. This results in reduced costs and extended

longevity (future-proofing) of existing assets.
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7 Conclusion

This research has developed an architecture, a mechanism and a tool -set that makes systems
integration between disparate types of middieware much easier to implement. It allows an
organisation to introduce new middleware while preserving existing investment in
middleware and systems developed for them, avoiding re-development of these existing

systems.

This research has looked at a number of aspects of middleware integration: the nature of the
language to describe middleware protocols, the architecture and nature of the run-time system
needed to process requests using the protocol description, and the appropriateness and

effectiveness of the proposed solution.

The project has developed a language that can specify a range of middleware types. The
language describes most of the characteristics of protocols including end-points, in a
declarative form. The project has also examined the trade-off between the effort in
representing features declaratively and procedurally, and some features have been
implemented as programmed procedures; for example, the usage of Protocol Control Modules
to handle protocol-specific semantics. Most protocols and most features have been able to be
implemented declaratively in a Middleware Protocol Definition Language (MPDL) that is
interpreted at runtime. A middleware protocol need only be described fully in the MPDL and
any user-defined procedures once, and it can be re-used for every interface processed over

that protocol, as arequest or a response.

The research has also specified and implemented a runtime system that interprets the

middleware protocols and delivers protocol specific requests to the required service. This part

104



of the project addressed the architecture of a generic middleware broker, the nature of
components, repositories, Application Programming Interfaces (API) and their behaviour,
including the ability to dynamically access multiple middleware protocols transparent to the

requestor.

Finally, this research looked at the effectiveness of the approach from the perspective of
reducing the amount of programming needed to integrate protocols, and the limitations of this

approach.

The research shows that it is possible to develop an extensible language that describes al
types of middleware. A single interpreter component, the Dynamic Adaptive Marshaller is
capable of processing al the middleware definitions, using loadable protocol-specific
Protocol Implementation Modules that are generated from the formal protocol descriptions.
There is no special application processing required to convert binary protocols into text and
vice versa. At run-time, the relevant Protocol Implementation Modules are loaded and

executed to translate between different representations.

TUBE provides in-built handlers for CDR, XML, ASCII text and raw binary data with user-
defined extensible marshalling classes catering for specia encoding. The user-defined classes
may be called either, before, during or after payload processing. Therefore, TUBE can be
used to traverse all the complex structures defined in an interface, and then call the special

class to, for example, compress or encrypt the payload before transmission.

The TUBE approach makes it possible to encapsulate all the communications logic and
configuration into a single component, the Transport Mediation Server. This also uses

loadable modules called Transport Interface Modules. These modules are generated from the
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protocol definition. Protocol-specific control code is isolated into a single Protocol Control
Module. This code is written only once and is then available for use by any interface

processed over this protocol.

The thesis has demonstrated that TUBE works for a number of the most important protocols.
These protocols have demonstrated a range of characteristics and challenges for inter-
operation, including the ability to move between synchronous and asynchronous protocols,
between text and binary-based protocols and object and non-object-based protocols. The
approach has also demonstrated its applicability in areal-world production environment.

This research has extended the non-programming approaches to middleware integration,
provided a language for describing al middleware protocols, and provided a runtime system
capable of processing the protocol descriptions. This is potentially an important contribution
as it means that a significant amount of coding and work involved in integraing existing
systems can be avoided. Organisations will be able to add new middleware while maintaining
their existing software. In some cases, they may be able to maintain existing technologies, and
easily rollback to that technology, should there be prablems with the new technology. Further,
organisations can keep vauable legacy systems and integrate them into new applications

using contemporary middleware.

7.1 FutureWork

This project has also identified potential future work. It would be desirable to extend the
language so that more complex interaction rules can be described. For example, the logic
contained in Protocol Control Modules may be able to be provided in the definition and then
generated into the module. The user would not need to write code, but simply specify the
rules for the logic. This has the potential to reduce the amount of code required to handle

specia protocol semantics.
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The ability to specify the communication interactions and have them converted into op-codes
the way that Protocol Implementation Modules are is another possible extension to the
MPDL. This would further reduce the amount of code the user has to deal with. One possible
method is to have the instructions represented as pseudo-code in the MPDL. The invocation
of external APIs then occurs by op-codes. Experiments are necessary to determine if it is

possible to specify such interaction rules without overly complicating the language.

Another improvement is the extension of the MPDL to cater for definition of more recent and
complex versions of CORBA and 110P, such as the version of [1OP used in Java RMI. These
later versions have extra features such as message fragmentation. TUBE currently has no
support for this. The current implementation also assumes that security credentials and
transaction contexts are handled at the application layer and that TUBE is simply a conduit

between the two communicating systems; providing protocol mapping.

The recent advent of SOA (Service Oriented Architecture) has inspired the idea of extending
TUBE to provide a SOA enabling framework. A service repository stores a high-level view of
the available services and links them back to the IDL defined interfaces in the Module
Definition Repository. The user searches the repository for a service, say get-customer-
details; thisis linked back to the Customer interface. The system presents the user with a view
of al the methods available within this service. The user can then select the methods they
wish to invoke and see what the parameters are. The user then configures a client to access the
methods. TUBE can generate the client skeleton and wrapper classes, and then the user fillsin
their application logic. In addition, of interest is investigating other integration mechanisms,
such as Generative Communications [Hesselbring, 1998] and continuous media interaction

[Fitzpatrick et. al, 1998].
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The Middleware Protocol Definition Language and the supporting runtime environment
(TUBE) described in this paper provide a powerful and easier approach to the integration of
heterogeneous middleware systems. Organisations that adapt TUBE will be greatly reducing
the risk associated with changing technology, being able to incrementaly introduce new
middleware protocols, and maintain existing applications. This preserves their existing IT

investments and helps to insulate them from the impacts of technology changes.
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Appendix A

MPDL CORBA Example

Following is the MPDL script, which defines the items discussed in Section 4.4. Please refer
to that section for an explanation of the definitions and keywords.

//***************************************************************************

// OMG CORBA (1IOP) Version 1.0

1

/I Items surrounded in % symbols are

1 internal TUBE variables (eg. buffer length - %buffer_length%)

/l 1tems surrounded in $ symbols are:

/1 user-defined variables (eg. ObjectK ey --> $ObjectK ey$)

1

I The user-defined variables are expected to be found in either;

I - The End Point Resolution Table (EPRT)

/1 - The XFORM map for protocol mapping rules (different to
I marshalling rules)

1
/I The generated PIM will look in both of these repositories and generate a
I/l runtime error if the nameis not found.

//***************************************************************************

#define GIOPID "GIOP" /I first four bytes of CORBA message
#define HOST “host” /I constant for host
#define PORT “port” /I constant for port

protocol CORBA

{
typedef sequence<octet, 3> reserved;
typedef sequence<octet> olist;
typedef sequence<octet, 4> GIOP_MAGIC;
1
/I Thisisan arbitrary sequence of bytes
/I Thisisreferenced in the bufferFormat
/I statement below.
1l
declare byteSequence
{

int %onum_bytes%; /I no of bytesin olist
olist bytes;

1

1

/I Anidl sequence<..., size>

/I Thisis abounded (fixed-size) sequence

/I The only difference between an array and a sequence
/l isthat arrays don't have alength encoded because

/ their sizeisfixed!

/I Thisisreferenced in the bufferFormat

/I statement below.

I

declare array

{

int Yarray_size%; /I no of itemsin sequence, arrays don't have this encoded
/I although, we can calculate it at runtime

olist bytes; /I actual sequence of items (can be simple or complex)

|3
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i

/I Anidl sequence<...>

/I Thisis an un-bounded sequence (see array above for a bounded sequence)
/I Thisisreferenced in the bufferFormat

/I statement below.

1

declare sequence

int %sequence_size%; // no of itemsto read/write
olist bytes; /l theitems as defined in IDL
h

i

/I CORBA uses a hybrid (between C & Pascal) String structure

/I The length precedes the bytes (asin Pascal) and the String is zero (null) terminated (asin C)
/I Therefore the number of bytesto write and read is aways one more than the actual string

/' length.

1

/I define an nString —a null terminated string

1

declare nString

int %num_bytes% + 1; /l'length of string_bytes (incl. null)

olist string_bytes; /I the actual bytes of the string

init octet null_byte=0; /I the terminating null

|3

1

/I declare a CORBA Object Reference

1

declare objectDef

{
nString repo_id; /I repository-id of object
int profile_count; /I number of profilesin reference
int profile_id; /I id of profile
int length; /l'length of following stream
short version; /I 110OP version for this profile
nString host; /I Host for this object
short  port; /I Port for this object
byteSequence object_key; /I Object key —includes length and byte][]

b

1

/I define how to handle a (CORBA) System Exception (ref. CORBA spec.)
1

declare systemException

{

nString exc_repoid; /I repository-id of Exception
int minor_code; /I minor-code

int completion_status; /I completion-status

|3
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I

/I Thisis how to treat a buffer - payload

/I Thisitemisreferenced using the keyword "buffer"
/I 'in any subsequent declarations below

/I This declaration statement can only appear once!!!!
1

bufferFormat

{

STRING = nString; /I marshal astring

BYTESEQ = byteSequence; /I marshal abuffer of bytes

ARRAY = array; /I marshall a sequence<..., size>

OBJECT =objectDef; /I an Object definition
/[ al other items are assumed to be native or constructed
/l from those above

SEQUENCE=sequence; /I marshal an un-bounded sequence (sequence<...>)

b

i

/I The following control clause usesthe reply_status member of the request body
/I to perform some decision-making. The payload in the response message may be
/I either of four (4) different types depending on the value of reply_status.

1l 0 - normal payload as per MDR definition of operation

1l 1 - aUSER defined EXCEPTION as defined in the MDR entry
I 2 -aSYSTEM EXCEPTION of afixed format

I 3 -an OBJECT_REFERENCE as encoded for a

I LOCATION_FORWARD response (see CORBA spec.)

i

control

switch(%reply_status¥o)

{
case O:
buffer = body; [/l follow MDR
case 1
buffer = USER_EXCEPTION,; /I follow ExceptioninMDR
case 2:
buffer = systemException; /I use declared structure
case 3:
buffer = objectDef; /I use declared structure
}

b

1

/I The “external” clause defines our own CDR marshalling class.

/I This class implements interface TUBE.commsBuffer and supplies methods to marshal
/I native data types using CDR encoding (refer to CORBA spec).

/I When we have to marshal an int. The DAM will call read_int or write_int on this

/I class

1

external
codec _class=“MY ORB.marshaller. CDRBuffer”; /Il the full classname
b
/I Define a Request
Request

GIOPRegM essage message;
b
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/I Request message
struct GIOPRegqM essage

{
GIOPHdr hdr;

int %buffer_length%; /I the length of the following buffer (body)
GIOPRegBody body;

/I Common GIOP header
struct GIOPHdr

{

init GIOP_MAGIC GIOPId =GIOPID; /I'G"I"O"P' - first 4 bytes

init octet majver = 1; /I magjor version, default 1

init octet minver = 0; /I minor version, default O

init octet flags = %endian%; /I the endian-ness of the host

init octet msg_type = %isResponse%s; /I built-in flag determines message type
b

1

/I Thisis how a service context is encoded
1

declare ServiceContext

{

int context_id;
byteSequence contextData;

H

/l Thisisalist (sequence) of service contexts— will generate aloop wrapper
// around the declared code-block

typedef sequence<ServiceContext> contextList;

/I Request body

struct GIOPRegBody

contextList clist; /I sequence of ServiceContexts

int Y%request_id%; /I request-id

octet  %expect_resp%; /I do we expect aresponse

reserved res,; /I 3 reserved bytes

byteSequence $obj ectK ey$; /I another byte sequence

nString %operation%; /Il declared type (NULL terminated string)
byteSequence req_principal; /I another byte sequence

buffer params; /I abuffer, which can contain various

/I parameters (native/constructed) follows MDR format
/I uses bufferFormat clause above

1

/I Define a Response
Response

{
GlOPRespM essage response;
|3

/I Response message
struct GIOPRespM essage

{

GIOPHdr hdr;

int %buffer_length%; /I the length of the following buffer (body)
GIOPRespBody body;

|3
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/I Response body
struct GIOPRespBaody

{
contextList clist; /I a byte sequence of the form <length><bytes....> int
%request_id%; /I request-id
int %reply_status%o; /I areply code, identifies the response format
buffer response; /I abuffer, which can contain various
/I parameters (native/constructed) follows MDR format
/I uses bufferFormat clause above
|3

1
/I These are values that are encoded into the EPRT

/I The generated TIM will look for these itemsin the EPRT entry
1

endPoint : "TCP" /I The transport (eg. TCP, HTTP, IMS etc)

{

1

/I These are transport and protocol-specific items

1

string host = HOST; /I Thisisthe host for the object
string port = PORT; /I Thisisthe port on the host

3
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Appendix B

MPDL SOAP example

/ EEE RS RS E SRR TR S LS LS TSRS EE LSS SRR EEEEEEE SRS SRS EEEEEEEEEEEEEEEEEE S

/I W3C SOAP (Simple Object Access Protocol) defined in TUBE MPDL

//***************************************************************************

#define XML_SIG "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
#define ENV_STR "<SOAP-ENV :Envel ope xmins. SOAP-
ENV=\"http://schemas.xml soap.org/soap/envel ope/\" >"

#define BODY _STR "<SOAP-ENV:Body SOAP-

ENV :encodingStyle=\"http://schemas.xml soap.org/soap/encoding/\" >"
#define ENDBODY "</SOAP-ENV:Body>"

#define ENDENV "</SOAP-ENV:Envelope>"

/' URL isdefined in EPRT entry

#define NS "<" + %operation% + " xmins=\"" + $URL$ + "\"" +">"
#define RQHEAD "<" + %o0peration% + "Request>"

#define RSPHEAD "<" + %operation% + "Response>"

#define RQEND "</" + %o0peration% + "Request>"

#define RSPEND "</" + %operation% + "Response>"

#define NSEND "</" + %operation% + ">"
/I This protocol "SOAP" isencoded by abuilt-in TUBE marshalling classfor "XML"

#define CODEC "TUBE.DAM.Marshall.PIM.XMLBuffer"
#define HOST “host” /I constant for host
#define PORT “port” /I constant for port

protocol SOAP
{

externa

{
codec_class= CODEC;
b

/I request specific header

struct SOAPReqHeader

{
string sig expr(XML_SIG);
string env expr(ENV_STR);
string bdy expr(BODY_STR);
string ns expr(NS);
string rgh expr(RQHEAD));

h

/I common trailer
struct SOAPTrailer

{
string xx expr(NSEND));
string yy expr(ENDBODY);
string zz expr(ENDENYV);
3
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/I response specific header
struct SOAPRespHeader

{
string sig expr(XML_SIG);
string env expr(ENV_STR);
string bdy expr(BODY _STR);
string ns expr(NS);
string rsph expr(RSPHEAD);
|3

struct SOAPReguestM essage

{
SOAPReqgHeader rhdr;

buffer req;
string rge expr(RQEND));
SOAPTrailer rtail;

b

struct SOAPResponseM essage

{
SOAPRespHeader hdr;

buffer resp;
string rse expr(RSPEND));
SOAPTrailer tail;

h

/I Define a Request
request
{

1

/I Define a Response
response

{
1

i
endPoint : "HTTP" /I The transport (eg. TCP, HTTP, IMS etc)

{

I

/I These are transport and protocol-specific items

i

string host = HOST; /I Thisisthe host for the object
string port = PORT; /I Thisisthe port on the host

SOAPRequestM essage regm;

SOAPResponseM essage respm;
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Appendix C

MPDL HTML example.

/*
/I Theinternal TUBE STRBuffer class implements the commsBuffer interface
/I and handles the reading and writing of the payload. TUBE handles

/I al the complex data structure traversals.

i

/I The user doesn't need to write ANY code!

I

I o

/I header

#define HDR "<HEAD>"

#define ENDHDR "</HEAD>"

#define BODY START "<BODY BGCOLOR=\"LIGHTBLUE\">"

#define BODY END "</BODY >"

#define REQTITLE "<H1><FONT COLOR=\"DARKGREEN\">" + %interface% + " : " + %operation% + "
Request </[FONT></H1>"

#define RESPTITLE "<H1><FONT COLOR=\"DARKGREEN\">" + %interface% + " : " + %operation% + "
Response </FONT></H1>"

/[ an individual item within a complex item or stand-alone

#define BODY LINE "<TR><TD><H2><FONT COLOR=\"DARKBLUE\">" + %name% + " : " +
"</FONT><FONT COLOR=\"RED\">" + %value% + "</FONT></H2></TR></TD>"

#define START "<HTML>"

#defineEND "</HTML>"

/I start of acomplex item

/[#define CSTART "<TABLE BORDER=\"10\" BGCOLOR=\"LIGHTBLUE\' CELLPADDING=\"4\"
<TH><H3><FONT=\"DARKBLUE\">" + %name% + "</H3></TH></FONT>"

#define CSTART "<TABLE BORDER=\"10\" BGCOLOR=\"LIGHTBLUE\" CELLPADDING=\"4\"
<TH><H3><FONT=\"DARKBLUE\">" + %nhame% + "</H3></TH></FONT>"

/l end of acomplex item

#define CEND "</TABLE><TABLE>"

/I start of a sequence

#define SEQSTART "<TABLE BORDER=\"10\" BGCOLOR=\"GREEN\' CELLPADDING=\"4\"
<TH><H2>" +"Tablesize: " + %sequence_size% + "</H2></TH>"

/I end of a sequence

#define SEQEND "<FONT BGCOLOR=\"LIGHTBLUE\'></FONT></TABLE>"

/I an individual item within a sequence

#define SEQITEM "<TR><TD BGCOLOR=\"PURPLE\"><H3>" + %name% + "</TD> <TD
BGCOLOR=\"GREEN\">" + %value% + "</TD></TR></H3>"

1

/I usesinternal STRBuffer class for reading/writing

1

#define CODEC "TUBE.DAM.Marshall.PIM.STRBuffer"

protocol HTML
{

externa

{
codec_class= CODEC;
|3
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/I Thisis how to process a member of the payload

bodyMember
{
string detail expr(BODY LINE);
|3
/l How to handle the start of a complex item
complexStart
{
string cs expr(CSTART);
3
/I How to handle the end of a complex item
complexEnd
{
string ce expr(CEND));
|3
/I What to do at the start of a sequence/ array
sequenceStart
{
string ss expr(SEQSTART);
3
/I What to do at the end of a sequence/array
sequenceEnd
{
string se expr(SEQEND);
|3
/I How to handle each item within a sequence
sequenceltem
{
string s expr(SEQITEM);
3
/I Define a Request
request
{
string rghs expr(START);
string rghe expr(HDR);
string tt expr(REQTITLE);
string eh expr(ENDHDR);
string rgh expr(BODY START);
buffer req;
string rbe expr(BODY END);
string rge expr(END);
3
/I Define a Response
response
{
string rsphs expr(START);
string rsphe expr(HDR);
string tte expr(RESPTITLE);
string ehe expr(ENDHDRY);
string rspb expr(BODY START);
buffer resp;
string rspbe expr(BODY END);
string rspe expr(END);
|3
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Appendix D

MPDL definition for encrypted XML protocol.

1
/] Test creating a <type="int"> style protocol

1

/I Theinternal TUBE STRBuffer class implements the commsBuffer interface
/I 'and handles the reading and writing of the payload. TUBE handles

/I al the complex data structure traversals.

1

/I The user doesn't need to write ANY code!

1

/I Thisfile utilises the "external” feature to invoke:

/1 - encryption post-MDR traversal

/1 - decryption pre-MDR traversal

1

/I The encryption and decryption methods are supplied in user-defined classes.
1
1

/I request header

#define RQHDR "<" + %operation% + "Request>"

/I response header

#define RSPHDR "<" + %o0peration% + "Response>"

// body (payload) members

#define LINE "<" + %name% + " typeR\"" + %type% + "\">" + %valuedo + "</" + Y%namedo + ">"
/I start of acomplex item

#define CSTART "<" + %name% + ">"

/I end of acomplex item

#define CEND "</" + %name% + ">"

/ request trailer

#define TAIL "</" + %operation% + "Request>"

/I respose trailer

#define TAIL2 "</" + %operation% + "Response>"

/I start of a sequence

#define SEQSTART "<" + %name% + ".size>" + %sequence_size% + "</" + %name% + ".size>"

/I cryptography class definitions

#define CRYPTO_IN "TUBE.DAM.Marshall.testCodec"
#define CRYPTO_OUT "TUBE.DAM.Marshall .testCodec" /I same class
#define DECRY PT "read"

#define ENCRY PT "write"

/I this classimplements TUBE.DAM.Marshall.commsBuffer
#define CODEC "TUBE.DAM.Marshall.PIM.STRBuffer"

i

/I usesinternal STRBuffer class for reading/writing

i

protocol TestNew

{

/I here are the definitions for the classes that will be invoked

external

{
pre_class= CRYPTO_IN; /l'load before un-marshalling
post_class= CRYPTO_OUT; /l'load after marshalling
pre_method = DECRY PT; /I cal before un-marshalling
post_method = ENCRY PT; /I cal before un-marshalling
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codec_class = CODEC; /I call during marshaling/un-marshalling

3
/I Thisis how to process a member of the payload
bodyMember
{
string detail expr(LINE); /[ variable line definition
3
// How to handle the start of a complex item
complexStart
{
string cs expr(CSTART);
3
// How to handle the end of a complex item
complexEnd
{
string ce expr(CEND);
3
/I What to do at the start of a sequence/ array
sequenceStart
{
string ss expr(SEQSTART);
3
/I Define a Request
request
{
read: CRYPTO_IN; /I call when un-marshalling
string rgh expr(RQHDR);
buffer req;
string rgt expr(TAIL);
write CRYPTO_OUT; /I call when marshalling
3
/I Define a Response
response
{
read:CRYPTO_IN; /I call when un-marshalling
string rsph expr(RSPHDR);
buffer resp;
string rst expr(TAIL2);
write CRYPTO_OUT; /I call when marshalling
b
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Appendix E

MPDL definition for IMS.

//***************************************************************************

/I IMS - based message handler

//***************************************************************************

#define CLASSZ "TUBE.DAM.DAMBuffer"

#define INQ "Input”
#define OUTQ "Output"
#define TOUT "Timeout"

protocol IMS

{

1

/I The “external” clause defines our own binary marshalling class.

/I This class implements interface TUBE.commsBuffer and supplies methods to marshall
/I native data types using binary encoding

/I When we have to marshall an int. The DAM will call read_int or write_int on this

/I class

1l

externa

{
1

/I Define a Request
request
{

1

/I Define a Response
response

{
1

/I use generic MOM Transport Interface Module
endPoint:"MOM"
{

codec class= CLASSZ,; /I the full classname

buffer req;

buffer resp;

string Input = INQ;
string Output = OUTQ;
string Timeout = TOUT;

123



Appendix F

Transport Implementation Modulefor JIMS.

/1

/1 TUBE- Auto generated transport handler for: Test fromfile: JMS. npdl
/'l Generated by TUBE MPDLConpiler V 1.2 --- Mn Jan 19 16:19: 58 EST 2004
/1

[l ***** Npdified to insert comrents ******

/1

package TUBE. TMS. TI M

i mport TUBE. EPRTPr ocessor;
i mport TUBE. TMS. connecti on;

import javax.jns.*;
i mport javax.nam ng. *;

public class JM5_TIMinplenents TMSTIi m

{

private Context j ndi Context = null;

private QueueConnectionFactory queueConnectionFactory = null;

private Queue sendQueue = null;

private QueueConnection sendConnection = nul |;

private QueueSession sendSession = nul | ;

private QueueSender queueSender = nul | ;

private Queue recvQueue = null;
private QueueConnection recvConnection = null;

private QueueSession recvSession = null;
private QueueReceiver queueRecei ver = null;
private BytesMessage message = null;

private bool ean m DebugOn = fal se;

private String mcorrel I D = null; /1 for sequencing nmessages
private |ong m Ti neout ; /1 tinout period for responses
private bool ean mWiiting = fal se; /1 not waiting for response
/**

*

* @aram ar gs the queue to use

*/
public JMS_TI M)

Systemout.println("Creating JM5. TIM..... ")
}
/*
* Recei ve nessages
*/
public byte[] receiveMessage()
{
if (queueReceiver == null)
return null;

byte retbuff[] = null;

long now = SystemcurrentTimeMI1is();

if (mTimeout == 0)
m_Ti meout = 60000;

long then = now + m Ti meout;

try

{ . . .
Systemout.println("JM5_TIMrecei veMessage() - waiting on " +

recvQueue. get QueueNane());

while (true)

Message m = queueRecei ver.recei ve(1000);
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if (m!=null)

if (minstanceof BytesMessage)

{
Byt esMessage bm = (BytesMessage) m
Systemout. println("JMS_TI M recei veMessage() - Readi ng byte nessage:
");
retbuff = new byte[ 100];
I/l is it ours?
if (mcorrellD. equal s(bm getJMsCorrelationlD()))
{
Systemout.println("JMS_TIMrecei veMessage(): CorrelationlD =" +
mcorrel | D);
bm readByt es(ret buff);
mWiiting = fal se;
br eak;
}
}
el se
{
Systemout. println("JMS_TI M recei veMessage(): not a BytesMessage");
br eak;
}
}
11
/1 Waiting for a response, check if timed-out
/1
if (mWiting)
{
/1 if (m!=null)
/1 Systemout. println("JVM5_TIMrecei veMessage(): found CorrelationlD = " +
m get JIMSCorrel ationl X)) ;
/1 Systemout. println("JMS_TI M recei veMessage(): now=" + now + ", then=" + then
+ ", timeout=" + mTinmeout);

now = SystemcurrentTimeMI1is();
if (now > then)

Systemout.println("Tineout in JVM5_TIMrecei veMessage():" + (m.Tineout /
1000) + " secs. elapsed - Aborting.");

return null;
}
}
}
catch (Exception e)
System out. println("Exception occurred in JM5 Tl Mrecei veMessage(): " +

e.toString());
e.printStackTrace();
return null;
}

return retbuff;

}
/**
* term nate the connection
*/

public void close()

i f (sendConnection != null)

{
try

sendConnecti on. cl ose();
if (recvConnection != null)
recvConnection. cl ose();

}
catch (JMSException e)

Systemout. println("Exception occurred in close(): " + e.toString());
}
}
}
/**
* print a nmessage in debug node
*/
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private void | ogMessage(String nmsg)

i
}

/**

*
@
*/
publ i
{

r

}

f (m_DebugOn)
System out. println(mnmsg);

eturn the byte array received
c byte[] receive()

eturn recei veMessage();

[** @aram buff the message

*/
publ i
{

try

{

cat

{

/1 r

c bool ean send(byte[] buff)

if (sendSession == null)
return fal se;

message = sendSessi on. creat eByt esMessage() ;

mcorrelID="ID" + SystemcurrentTineMI1is();

Systemout. println("JMS_TIMsend() - creating CorrelationlD: " + mcorrellD);
nmessage. set JMsCorrel ati onl D(m correl | D);

message. wri t eByt es(buff);

Systemout.println("JIJVM5_TIMsend()");

gueueSender . send( nessage) ;

/1 need to test if one-way invocation

// don't set if it is

mWiiting = true; // we are waiting for a response
return true;

ch (Exception e)
Systemout. println("Exception occurred in send(): " + e.toString());

e.printStackTrace();
return fal se;

eturn fal se;

private void set RecvQueueNane(Stri ng gnane)

{

Systemout. println("Queue nane is " + gnane);

t

c

{

}
/

t
{

c

{

c

ry

j ndi Context = new Initial Context();

at ch (Nam ngException e)
Systemout.printin("Could not create JNDI APl " + "context: " + e.toString());
//Systemexit(1);

*

* Look up connection factory and queue. |f either does

* not exist, exit.
*/
ry
/'l pick-up our requests from here
recvQueue = (Queue) jndi Context.|ookup(qgnane);
recvConnection = queueConnecti onFactory. creat eQueueConnecti on();
recvSessi on = recvConnecti on. creat eQueueSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ;

gqueueRecei ver = recvSession. creat eRecei ver (recvQueue);
recvConnection.start();

atch (Nam ngException e)

Systemout.printlin("JND APl |ookup failed: " + e.toString());
//Systemexit(1);

atch (JMSException je)
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{

System out. println("Exception in set RecvQueueNane(String queue_nane)" +
je.toString());
}

}

private void set SendQueueNane(String gnane)

{ System out. println("Queue nane is " + gnane);
try
{

j ndi Context = new Initial Context();

}
catch (Nani ngException e)

{
Systemout.println("Could not create JNDI APl " + "context: " + e.toString());
//Systemexit(1);
}
/*
* Look up connection factory and queue. |f either does

* not exist, exit.
*/
try
{
/1 put responses here
queueConnectionFactory = (QueueConnecti onFactory)
j ndi Cont ext . | ookup(" QueueConnecti onFactory");
sendQueue = (Queue) jndi Context.|ookup(gnane);
sendConnecti on = queueConnecti onFactory. cr eat eQueueConnecti on();
sendSessi on = sendConnecti on. cr eat eQueueSessi on(f al se, Sessi on. AUTO ACKNOW.EDGE) ;
queueSender = sendSessi on. cr eat eSender (sendQueue) ;
sendConnection.start();

}

catch (Nam ngException e)

{
Systemout.println("JND APl |ookup failed: " + e.toString());
//Systemexit(1);

}
catch (JMSException je)
{
System out. println("Exception in PAQueueRecei ver (String queue_nane)" +
je.toString());
}

}
public void set Up( EPRTProcessor eprt)
{
/1 These val ues come fromthe EPRT
String sendQueue = eprt.getEl enent Val ue("JM5", "Qutput"); /Il we wite to this
String recvQueue = eprt.getEl enentVal ue("JMS", "lnput"); /1 we read fromthis
String tout = eprt.getEl ementVal ue("JMS", "Tinmeout");
if (tout == null)
{
m Ti meout = 60000;
}
el se
m Ti neout = Long. par seLong(tout) * 1000;
set SendQueueNane(recvQueue) ;
set RecvQueueNane( sendQueue) ;
}
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Appendix G

Complex mathServer interfaceIDL.

/****************************************/

/* Test conplex typedefs in TUBE idl */

/****************************************/

i nterface mat hServer 8

{
typedef octet ny_byte;

typedef string my_string;

t ypedef sequence<ny_string> fred;

t ypedef sequence<ny_byte, 30> ral ph

t ypedef sequence<ny_string, 10> george;
typedef |ong ny_index;

struct math_req
{
char op_code;
ny_i ndex nunt;
| ong nun®;
fred f;
ral ph r;
1

typedef math_req nmy_Mat hReq;
t ypedef sequence<nmath_req> junk;

struct math_resp

{

| ong resp_num

my_index add(in math_req nr);

I ong sub(in math req nr);

long nul (in math req nr);

long div(in math_req nr);

long test1(in math_req nr, in fred f);

long test2(in math_req nr, inout ralph r);

void test3(in math_req nr, inout math_resp r, inout george Q);
long test4(in junk jj);
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Appendix H

MPDL Op-Codesfor Protocol | mplementation Modules

OP-Code Description Numeric Value
Native Type Handling
Instructions
READ_OCTET Read a single octet (byte) from a 1000
source.
WRITE_OCTET Write asingle octet (byte) to a 1001
target
READ_OCTET_ARRAY  Read an array of octets (bytes) 1002
from a source.
WRITE_OCTET_ARRAY Write an array of octets (bytes) to 1003
atarget.
READ SHORT Read a short (2 byte) value. 2000
WRITE_SHORT Write a short (2 byte) value. 2001
READ_INT Read a Javaint (C++ long). 3000
WRITE_INT Write aJavaint (C++ long). 3001
READ LONG Read a Javalong (C++ long-long). 4000
WRITE_LONG Read a Javalong (C++ long-long). 4001
READ _DOUBLE Read adouble value. 5000
WRITE_DOUBLE Write adouble value. 5001
READ FLOAT Read afloating-point value. 6000
WRITE _FLOAT Write afloating-point value. 6001
String Handling
Instructions
READ_STRING Read a string value (used mainly 7000
for XML).
READ_CSTRING Read a CORBA string value (int, 7001
string, null).
READ_JSTRING Read a Java string value (short, 7002
string).
READ_PSTRING Read a Pascal string value (int, 7003
string).
READ_NSTRING Read anull terminated string 7004
value (for example, C/C++ string,
null).
WRITE_STRING Write a string value (used mainly 8000
for XML).
WRITE_CSTRING Write a CORBA string value (int, 8001
string, null).
WRITE_JSTRING Write a Java string value (short, 8002
string).
WRITE_PSTRING Write a Pascal string vaue (int, 8003

string).
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OP-Code Description Numeric Value
WRITE_NSTRING Write anull terminated string 8004
value (for example, C/C++ string,
null).
Sequence Handling
Instructions
READ_ARRAY Read afixed-length sequence of 10000
items.
WRITE_ARRAY Write afixed-length sequence of 10001
items.
READ_SEQUENCE Read a variable-length sequence 11000
of items.
WRITE_SEQUENCE Write avariable-length sequence 11001
of items.
LOOP The start of alooping sequence. 14000
LOOP_END The end of alooping sequence. 14001
Miscellaneous
Instructions
SAVE POS Save current buffer position. 100
SET_POS Set buffer position. 101
SET VAR Set the value of an item. 102
ADD Add two values. 103
SUB Subtract one value from another. 104
SAVE LEN Save the length of the buffer. 105
WRITE _LEN Write the length of the buffer. 106
EQ Test for equality. 200
NEQ Test for in-equality. 201
GT Testif a>b. 202
LT Testif a<h. 203
LTE Testif a<=b. 204
GTE Testif a>=h. 205
OR Test for aOR b. 206
AND Test for aAND b. 207
JUMP Jump to the given LABEL 208
LABEL Thetarget of a JUMP instruction. 209
EXPR Evaluate a string expression and 220
perform substitutions.
BINEXPR Evauate a binary expression and 221
perform substitutions.
INVOKE Invoke an external class. 300
PUSH Push a value onto the top of the 800
stack.
POP Pop avalue off the top of the 801
stack.
LOAD_BLOCK Load a named Code-Block. 999
END_BLOCK Signal the end of a block. -1
USER_DEFINED Start of a user-defined (declared) 13000
block.
ASSIGN Assign the value to current item. 15000

TableH.0-1: MPDL Op-codesfor Protocol | mplementation Modules
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Appendix |

MPDL grammar

<specification>::= <protocol _spec> <seni col on>

<protocol _spec>::= “protocol” <identifier> “{" <definitions> “}"

<definitions> + <definition> <end_point_opt> ;
<definition> 1= <typedef>
| <decl are_cl ause>
| <external clause>
| <buffer format cl ause>
| <conplex_start_cl ause>
| <conpl ex_end_cl ause>
| <sequence_start_cl ause>
| <sequence_item cl ause>
| <sequence_end_cl ause>
| <body_nenber_cl ause>
| <control clause>
| <struct type>
| <request decl >
| <response_decl >

<t ypedef > i1 = “typedef” <type_decl arator>

<t ype_decl ar at or > .. = <sinpl e_decl arat or >
| <sequence_type>

<sequence_type> ::= <sequencel> | <sequence2>

<sequencel> “sequence” “<" <sinple_type_ spec>

| “,” <nuneric_constant> “>"

<sequence2> “sequence” “<" <sinple_type spec> “>"

<buffer_format_clause> “bufferFormat” “{“ <menber_decls> “}*

<nenber decl s> ::= + <nenber _decl > “=" <identifier> <seni col on>

<nenber _decl > = <string_buff_decl >
| <object_buff_decl >
| <array_buff decl >
| <seq_buff decl>

|

<byte seq_buff_decl >

<string_buff_decl> ::= “STRING ;
<obj ect _buff_decl > ::= “OBJECT" ;
<array_buff_decl > ::= “ARRAY" ;

<seq_buff_decl > = “SEQUENCE" ;
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<byte_seq_buff_decl > ::= “BYTESEQ ;

<decl are_cl ause> ::= “declare” <identifier> <decl_nenber _|ist> <sem col on>
<decl nmenber |ist>::= *<decl are_nenber> ;
<decl are_nenber> ::= <declarator> <identifier> <senicol on>

<decl ar at or s> * <decl ar at or >

<decl ar at or > = <si npl e_decl ar at or >
| <conpl ex_decl ar at or >

<si npl e_decl ar at or > <native_decl arat or>

<nati ve_decl ar at or > <fl oating_pt_type>
<i nt eger _type>
<char _type>

<bool ean_t ype>

<octet _type>

<conpl ex_decl ar at or > = <identifier>

<fl oati ng_pt _type> <float> | <doubl e>

<fl oat > = “float” ;
<doubl e> = “doubl e”
<i nteger_type> ::| <int>
| <l ong>
| <short >
<i nt> = “int”
<l ong> = “long” ;
<short> D= “short” ;
<char _type> = <char> ;
<char > = “char”
<bool ean_type> :: = “bool ean”
<octet type> ::= Toctet” ;
<struct_type> ::= “struct” <identifier > <struct_body>
<struct _body> ::= *“{" <nmenbers> “}” <sem col on>
<menber s> = *<menber> ;
<menber > HNES <native_nenber> “;”

| <tube_nenber>
| <user_nmenber>
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<nati ve_nenber >
<t ube_rnenber >
<user _menber >

<init_menber >
<assign_var>

<assi gn_var>

<var _decl >

<t ube_var _decl >
<user _var _decl >

<t ube_var >

<request _i d>
<expect _resp>
<buffer_| engt h>
<endi an>

<i s_response>
<num byt es>
<reply_status>
<sequence_si ze>
<array_size>
<count _kw>
<target tlv>

<string_expr>

<constant _expr_list> ::=

| <init_menber>

::= <sinple_declarator> <identifier>

.= <sinple_declarator> <tube var_decl >

<si npl e_decl ar at or > <user _var _decl >

“init” <sinple_declarataor> <identifier> “="

<const _decl >
<var _decl >

<tube_var _decl >
<user _var _decl >

“96 <tube var> “%

“$" <identifier> “$”
<request id>
<expect _resp>
<buf f er _| engt h>
<endi an>

<i s_response>
<num byt es>
<reply_status>
<sequence_si ze>
<array_size>
<count _kw>
<target_tlv>
“request _id”
“expect _resp” ;
“buffer_l ength”
“endi an” ;

“i sResponse”
“num bytes” ;
“reply_status” ;
“sequence_si ze”
“array_size”
“count” ;
“target tlv”

“expr” “(“

<const ant _expr >

| <constant_expr> “+" <constant_expr_list>
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<const ant _expr > = <nuneri c_const ant >
| <string_constant>

<var _decl >

<external _clause> ::= “external” <external body> ;

<ext er nal _body> “{* <external nenbers> “}” <sem col on>

<ext ernal menbers> ::= *<external nenber>

<ext er nal _nmenber > = <codec_cl ause>
| <pre_clause>

| <post_cl ause>

| <pre_meth_cl ause>

| <post_neth_cl ause>

<codec_cl ause> ::= “codec_class” <literal assignhment>

<pre_clause> ::= “pre_class” <literal assignnment> ;

<post _clause> ::= “post_class” <literal assignnent> ;

<pre_met h_clause> ::= “pre_method” <literal _assignment>

<post _meth_cl ause> ::= “post_nethod” <literal _assignment>

<literal _assignment> ::= “=" <string_literal> <sem col on>

<conpl ex_start_clause> ::= “conplexStart” <clause_body>

<cl ause_body> ::= “{" <cl ause_nenbers> “}” <sem col on>

<cl ause_menbers> ::= *<cl ause_nenber> ;

<cl ause_menber> ::= <sinple_declarator> <identifier> <clause_expr>

<seni col on>;

<cl ause_expr> <string_expr>

<bi nary_expr>

<conpl ex_end_cl ause> ::= “conpl exEnd” <cl ause_body> ;
<sequence_start_cl ause> ::= “sequenceStart” <clause_body>
<sequence_end_cl ause> ::= “sequenceEnd” <cl ause_body>
<sequence_item cl ause> ::= “sequenceltent <clause_body> ;
<body_rmenber _cl ause> ::= “bodyMenber” <cl ause_body> ;
<control __clause> ::= “control” <control _body> ;

<control body> ::= “{" <switch_stnt> “}” <sem col on>

<swi tch_stnt> “switch” “(“ <var_decl> “)” <swi tch_body>

<swi tch_body> ::= “{“ <switch_cases> “}" ;
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<swi tch_cases> ::= *<switch_case>

<swi tch_case> ::= “case” <nuneric_constant> <col on> <switch_act> ;
<switch_act> ::= “buffer” “=" <buffer_opt> <sem col on>
<buffer_opt> ::= <body_opt>

| <user_exc_opt >
| <identifier>

<body_opt> ::= “body” ;

<user _exc_opt> ::= “USER_EXCEPTI ON' ;

<request _decl> ::= “request” <req_resp_body> ;
<response_decl > ::= “response” <reg_resp_body> ;
<req_resp_body> ::= “{" <req_resp_nenbers> “}” <seni col on>;

<reqg_resp_nenbers> ::= *<req_resp_nenber>

| <buffer_itene

<buffer item>r ::= “buffer” <identifier>

<reqg_resp_nenber> ::= <identifier> <identifier> <seni col on>
| <read_cl ause> <sem col on>
| <write_clause> <sem col on>

<read_cl ause>

“read” <col on> <string_constant>
<write _clause> ::= “wite” <colon> <string_constsnt>
<bi nary_expr> ;o= "“bin” “(" <constant_expr_list> “)" <semn col on>

2
| <end_point_decl >

<end_poi nt _opt > :

<end_pont _decl > :

<end_poi nt _hdr> <end_poi nt _body> <seni col on>

<end_poi nt _hdr> ::= "endpoint” <col on> <string_constant>
<end_poi nt _body> ::= “{“ <end_poi nt_nenbers> “}" ;
<end_poi nt _nmenbers> ::= *<end_poi nt_nenber> ;

<end_poi nt _menber> ::= <sinple_declarator> <identifier> <sem col on>

<seni col on> o=

<col on> N

<numeri c_const ant > *<nunber > ;

<string_constant > <dquot e> <any> <dquot e>

<nunber> ::= *[0-9]
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<dquote> ;:= *“

<any> ::= *[any character] ;
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List of Acronyms and Terms

API Application Programming | nterface
ASN.1 Abstract Syntax Notation One
BNF Backus-Naur Form
CDR Common Data Repr esentation
COM Common Object Model
CORBA Common Object Request Broker Architecture
CS Constant Segment
DAM Dynamic Adaptive M arshaller
DCE Distributed Computing Environment
DCOM Distributed Common Object M odel
DPT Distribution Priority Table
EAI Enterprise Application I ntegration
EPRT End-Point Resolution Table
HTTP Hyper-Text Transfer Protocol
IDL I nterface Definition Language
[1OP Internet Inter-ORB Protocol
IOR I nteroperable Object Reference
J2EE Java 2 Enterprise Edition
J2SE Java 2 Standard Edition
Java-RMI Java Remote M ethod I nvocation
JMS Java M essage Service
MDR M odule Definition Repository
MDS M essage Distribution Server
MOM M essage-Oriented Middleware
M PDL Middlewar e Protocol Definition language
OMG Object Management Group
ORB Object Request Broker
OSF Open Softwar e Foundation
PCM Protocol Control M odule
PDR Protocol Definition Repository
PIM Protocol | mplementation M odule
RPC Remote Procedure Call
SNA System Network Architecture
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
TIM Transport Interface M odule
TLV Type Length and Value
TMS Transport Mediation Server
TUBE The Ubiquitous Broker Environment
VDS Variable Definition Segment
VVT Variable Value Table
W3C World Wide Web Consortium
XML Extensible M ark-up L anguage
XSD XML Schema Definition
XSL Extensible Style-Sheet L anguage
XSLT Extensible Style-Sheet Language Transfor mations
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