
Process Capability Assessment for Univariate 

and Multivariate Non-normal Correlated 

Quality Characteristics 

 
By 

 

 
Shafiq Ahmad 

 

Master of Engineering 
Asian Institute of Technology, Bangkok, Thailand & 

Technical University Hamburg Harburg (TUHH), Germany 
 
 
 

This thesis is submitted in total fulfillment of the requirement for the 

degree of Doctor of Philosophy 

 
 
 

School of Mathematics & Geospatial Sciences 

RMIT University 

Melbourne, AUSTRALIA 

 
Thesis Supervisors: 

Dr. Malihe Abdollahian and Professor Panlop Zeephongsekul  
 

September, 2009 

 i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15614703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract 

 
In today’s competitive business and industrial environment, it is becoming 

more crucial than ever to assess precisely process losses due to non-

compliance to customer specifications. To assess these losses, industry is 

extensively using Process Capability Indices for performance evaluation of 

their processes. Determination of the performance capability of a stable 

process using the standard process capability indices such as  and  

requires that the underlying quality characteristics data follow a normal 

distribution. However it is an undisputed fact that real processes very 

often produce non-normal quality characteristics data and also these 

quality characteristics are very often correlated with each other. For such 

non-normal and correlated multivariate quality characteristics, application 

of standard capability measures using conventional methods can lead to 

erroneous results. 

pC pkC

The research undertaken in this PhD thesis presents several capability 

assessment methods to estimate more precisely and accurately process 

performances based on univariate as well as multivariate quality 

characteristics. The proposed capability assessment methods also take 

into account the correlation, variance and covariance as well as non-

normality issues of the quality characteristics data.  

It is an established fact that the fundamental objective of all capability 

measures is to help process engineers and managers decide whether to 
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accept or reject the process outcomes based on conformance to customer 

(engineering) specifications. This research has therefore focused on 

assessing the efficacy of our proposed methods using the Proportion of 

Non-Conformance (PNC) criterion, which is frequently used in practice to 

assess the utility of PCI methods. This has been further supplemented by 

using our proposed methods to estimate the capability of processes from 

the real world through application to data obtained from the 

manufacturing industry. 

A comprehensive review of the existing univariate and multivariate PCI 

estimations have been provided. We have proposed fitting Burr XII 

distributions to continuous positively skewed data. The proportion of 

nonconformance (PNC) for process measurements is then obtained by 

using Burr XII distribution, rather than through the traditional practice of 

fitting different distributions to real data. Maximum likelihood method is 

deployed to improve the accuracy of PCI based on Burr XII distribution. 

Different numerical methods such as Evolutionary and Simulated 

Annealing algorithms are deployed to estimated parameters of the fitted 

Burr XII distribution. 

We have also introduced new transformation method called Best Root 

Transformation approach to transform non-normal data to normal data 

and then apply the traditional PCI method to estimate the proportion of 

non-conforming data. Another approach which has been introduced in this 

thesis is to deploy Burr XII cumulative density function for PCI estimation 

 iii



 iv

using Cumulative Density Function (CDF) technique. The proposed 

approach is in contrast to the approach adopted in the research literature 

i.e. use of best-fitting density function from known distributions to non-

normal data for PCI estimation. The proposed CDF technique has also 

been extended to estimate process capability for bivariate non-normal 

quality characteristics data. 

A new multivariate capability index based on the Generalized Covariance 

Distance (GCD) is proposed in this research thesis. This novel approach 

reduces the dimension of multivariate data by transforming correlated 

variables into univariate ones through a metric function. This approach 

evaluates process capability for correlated non-normal multivariate quality 

characteristics. Unlike the Geometric Distance (GD) approach cited in the 

research literature, GCD approach takes into account the scaling effect of 

the variance–covariance matrix and produces a Covariance Distance (CD) 

variable that is based on the Mahanalobis distance. Another novelty 

introduced in this research is to approximate the distribution of these 

distances by a Burr XII distribution and then estimate its parameters 

using numerical search algorithm. It is demonstrates that the proportion 

of nonconformance (PNC) using proposed method is very close to the 

actual PNC value. 
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Chapter 1  

INTRODUCTION 

1.1. Introduction 

The evolution of market dynamics over the past century has virtually shifted 

the business paradigm from producer to customer. At the beginning of 19th 

century the market was known to be “producer oriented”, namely, anything 

produced in bulk could be sold. Today the customer plays a driving force in 

design, development and the quality of the product. With frequent advances 

in technology, customers need products that meet their not only challenging 

requirements but also with competitive price (Ashraf 2009). This competition 

has forced manufacturers to continuously improve their products and 

services, which can address the stringent customer expectations with 

minimal operational losses.  

Since the early eighties of the last century, process capability indices (PCIs) 

played vital role to improve the operational efficiency of manufacturing 

products and processes thus resulting in significant reduction of process 

losses that occur due to non-compliance to customer specifications. 

Although process capability indices such as and are being 

extensively applied in industry to assess process performances but there is a 

lack of understanding among quality practitioners that these capability 

measures are essentially based on statistical theory of normality. If the basic 

pC pkC
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assumptions of statistical theory are violated the capability assessments can 

mislead to wrong conclusions (Deleryd, M. 1998). 

The research undertaken in this thesis presents capability assessment 

methods to estimate more precisely and accurately process performances 

based on single as well as multiple quality characteristics. Proposed methods 

also take into account the correlation, variance and covariance as well as 

non-normality issues of the quality characteristics data. It is an established 

fact that the fundamental objective of all capability measures is to help 

process engineers and managers decide whether to accept or reject the 

process outcomes based on conformance to customer (engineering) 

specifications. This research has therefore focused on presenting the efficacy 

of our proposed methods using the Proportion of Non-Conformance (PNC) 

criterion, which is frequently used in practice to assess the utility of PCI 

methods.  

The remainder of this chapter elaborates the basics of the capability indices 

and provides literature review of this research, the main research problems 

and questions, the proposed approaches to the research problem, the major 

contributions of this research and a detailed outline of this thesis. The list of 

publications resulting from this research is given in the last section.  

1.2. Background 

Process capability analysis together with statistical process control and 

design of experiments are statistical methods that have been used for 

decades with the main purpose being to reduce the variability in industrial 

processes and products (Albing 2006). The need to understand and control 
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processes is getting more and more relevant due to the increasing 

complexity in technical systems in industry. Moreover, the use of statistical 

methods in industry is also increasing by the introduction of quality 

management concepts such as the Six Sigma programme, where statistical 

methods, including process capability indices, are important parts (Hahn et 

al. 1999). 

Process capability analysis deals with how to assess the capability of a 

manufacturing process, where information about the process is used to 

improve the capability. With process capability analysis one can determine 

how well the process will perform relative to product requirements or 

specifications. However, before assessing the capability of a process it is 

important that the process is stable and repeatable. That is, only natural 

(common) causes of variation should be present. It should be noted that a 

process capability analysis could be preformed even if the process is 

unstable. However, such an analysis will give an indication of the capability 

at that very moment only and hence the results are of limited use (Deleryd, 

M & Vännman 1999). 

To check if the process is stable, statistical process control is usually applied. 

The purpose of statistical process control is to detect and eliminate 

assignable causes of variation and control charts are usually used in order to 

determine if the process is in statistical control and reveal systematic 

patterns in process output. An introduction to statistical process control can 

be found in Montgomery (Montgomery, DC 2005b). 
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When the process is found stable, different techniques can be used within 

the concept of process capability analysis in order to analyse the capability 

(Montgomery, DC 2005b). For instance, a histogram along with sample 

statistics such as average and standard deviation gives some information 

about the process performance and the shape of the histogram gives an 

indication about the distribution of the studied quality characteristic. Another 

simple technique is to determine the shape, centre and spread of the 

distribution by using a normal probability plot.  

The above-mentioned tools give some approximated information only about 

the process capability. The most frequently used tool when performing a 

capability analysis is called process capability index. A process capability 

index is a unit-less measure that quantifies the relation between the actual 

performances of the process and its specified requirements. In general, the 

higher the value of the index, the lower the amount of products outside the 

specification limits. If the process is not producing an acceptable level of 

conforming products, improvement efforts should be initiated. These efforts 

can be based on design of experiments. By using design of experiment one 

can, for instance, identify process variables that influence the studied 

characteristic and find directions for optimizing the process outcome. An 

introduction to design of experiments can also be found in, 

e.g.(Montgomery, DC 2005a). 

Process capability indices (PCIs), as well as many other statistical methods, 

are based on fundamental assumptions. For instance, the most widely used 

process capability indices in industry today analyse the capability of a 
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process under the assumptions that the process is stable and that the 

studied quality characteristic is independent and normally distributed (Albing 

2006). To understand these conventional capability indices, consider 

 to be the actual values of a certain quality characteristic which 

correspond to n  randomly selected items from a production process and 

suppose that such  characteristic should lie between lower specification limit 

(Lsl ) and upper specification limit (Usl ) to conform to engineering 

specifications. Items which lie outside (Usl ,Lsl ) specifications will be 

considered non-conforming. The special cases where only one specification 

limit is required are obtained by letting 

n1 X,.......,X

Lsl  or Usl . 

Process capability is designed to monitor the proportion of items which are 

expected to fall outside the engineering specifications to prevent an 

excessive production of non-conforming output. This is usually done at a 

specified rating periods, using the measurements  taken 

on, say, n  produced items and assuming that  

}Y..,..........Y,Y{ n.21

 there is no measurement error, so that ,n,......,1i,XY ii   i.e. the 

measurements are taken to be the actual values, and 

 the iX  are identically distributed with, say, process mean  and 

standard deviation  .  

 

Traditional capability analysis then proceeds to evaluate capability indices 

which relate the allowable spread of the process LslUsl   to its natural 

spread, customarily taken to be 6 (Bernardo J 1996). Under these 
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assumptions the most frequently used index “ ” in industry was presented 

by (Juran 1974). 

pC

 

σ6
LslUsl

Cp


              (1.1) 

 

i.e.  is the ratio of the allowable spread to the natural spread. In 

particular, if the  is normally distributed , and the process is 

centred at nominal mean defined by 

pC

iX ),2(N 

 

2
LslUsl

m


               (1.2) 

 

i.e. m)x(E  , then a capable process, is a process for which , will 

result in , at most, 0.27 % of non-conforming items, i.e. 2700 non-

conforming items per million items produced in a production process. 

1Cp 

The traditional capability index in equation (1.1) only takes care of the 

process spread. Obviously it would be possible to have any proportions of 

items outside the specification limits by merely relocating the process mean, 

thus,  only quantifies the potential performance of the process , which will 

only be attained if the process is centred at the midpoint of the specification 

limits. If the process is not centred but skewed to upper or lower side of the 

pC
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specification limits, then the upper and lower one-sided capability indices 

can be applied. These one-sided capability indices are given in equations 

(1.3) and (1.4): 

 





3

Usl
)CUpper(C ppu         (1.3) 

 





3

Lsl
)CLower(C ppl                  (1.4) 

 

where and are the mean and standard deviation of the in-control 

process respectively.  

 

If the process in not centred at the midpoint of engineering specifications 

(Usl ,Lsl ), then the actual performance of a production process is 

traditionally measured by , off-centred process capability index (equation 

1.5).  was defined by (Kane 1986) and is the minimum value of the 

upper or lower capability indices. 

pkC

pkC







 


3
Lsl

,
3

Usl
minCpk         (1.5) 

 

which is a normalized distance between the process mean and its closest 

specification limit.  

From above discussion it is evident that the capability index measures 

the allowable range of measurements related to the actual range of 

pC
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measurements and measures the distance between the expected value 

and the closest specification limit related to half of the actual range of 

measurements. If the quality characteristic is normally distributed and the 

process is well centred, i.e. the process mean is located at the midpoint of 

the two-sided specification interval i.e. 

pkC

2/)LslUsl(m  ,  implies 

that the number of values of the studied characteristic outside the 

specification limits will be small (Pearn & Kotz 1994) and obviously non-

conformance to customer (engineering) specifications will be minimum.  In 

fact non-conformity ratio (PNC) is the main interpretation of process 

capability  index. 

1Cp 

C

pC

In this research the efficacy of the proposed methods will be presented 

using PNC criterion. Therefore it is necessary to understand the basics of 

PNC and its relationship with first. It is interesting to note that  in its 

computation has a direct link with the proportions of items falling outside 

the specifications limits (Telmoudi 2005). Consider a quality 

characteristic

pC p

X , under the normality assumption, the proportion of non-

conforming items (PNC) is expressed as: 

 

   LslX PUslXP   

 



























LslX

P
UslX




P  
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



 





 







 LslUsl
PNC 1  

du2/u
x

2

e
2

1
)x( 


 

       (1.6) 

If   is substituted by midpoint of specification spread ( ) as 

given in (1.2) i.e. then the probability of non-conformance (PNC) can be 

expressed as 

2/)LslUsl( 

)C3(2PNC p              (1.7) 

where  is the cumulative distribution function of the unit Gaussian. )x(

It is important to notice that the  index depends heavily on standard 

deviation (

pC

 ) of the in-control process.  Table 1.1 shows the probability of 

non-conformance (PNC) for some given values of  (Kotz & Johnson 

1993). It is established fact that if the   index exceeds 1.33, that means 

the items falling outside the required limits are small in numbers (63 parts 

only falls outside the specifications per million produced parts) and the 

process is deemed to be capable enough to fulfil customer requirements. 

Contrary to this, if the index is smaller than 1.33 but larger than 1, it is 

recommended to examine the process as the PNC number will rise. For 

index values less than 1, the process is considered incapable.  

pC

pC

Table 1.1 Minimum expected Proportions of Non-Conformance (PNC) items 

pC
 2.00 5/3=1.67 4/3=1.33 1.00 2/3=0.667 1/3=0.33 

PNC 0.002ppm 0.57ppm 63ppm 2700ppm 45500ppm 317300ppm 

[ppm = parts per million] 
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It is evident from above discussions that the intuitive basis of the capability 

indices and heavily depends on an implicit assumption of normality 

of the process output.  

pC pkC

1.3. Research problems 

It is an established fact that quality has always been an integral part of 

virtually all businesses and services. In today’s competitive business 

environment, quality improvement paradigm has shifted from being a 

departmental goal to being an umbrella objective for an entire organization. 

Companies which can enhance quality levels of their manufactured products 

faster by reducing non-conformities to customer specifications/ 

requirements can only lead and sustain their market position in this ever 

changing era. 

Since the advent of statistical quality control, process capability measures 

 and  has played a pivotal role for quality improvement endeavours in 

industry. However, as discussed earlier the traditional capability indices 

depend heavily on the assumption that the process under examination must 

be under control and stable and the quality characteristics of the process 

outcome must be independent and normally distributed. In the real world, 

process data do not always follow a normal distribution. Numerous 

statisticians and quality engineers have performed research on non-normal 

process capability indices; e.g. (Zimmer & Burr 1963), (Burr, IW  1967), 

(Clements 1989), (Pyzdek 1992), (Kotz & Johnson 1993), (Boyles 1994), 

pC pkC

 10



(Wright 1995), (Castagliola, P  & Castellanos 2005) (Somerville & 

Montgomery 1996), (Chou & Cheng 1997), (Kotz & Lovelace 1998), 

(Deleryd, M. 1998),(Wu, Wang & Liu 1998), (Tang & Than 1999), (Kotz & 

Johnson 2002), (Liao, Chen & Li 2002), (Liu, P & Chen 2006) but the main 

focus of their research was concentrating on processes with a single quality 

characteristic. A new “Burr XII distribution based percentile” approach to 

estimate PCI for non-normal univariate data is proposed by Liu and Chen 

(Liu, P & Chen 2006) which uses Burr XII distribution for non-normal quality 

characteristics data. It is well known that Burr XII distribution is very 

versatile to fit any real data (Burr, IW 1973). This makes it more attractive 

to extend its application to the multivariate PCI’s estimations. 

To date there are a few articles which have discussed the capability 

measures for non-normal multivariate quality characteristics. In recent 

years, a number of research papers appeared on multivariate process 

capability analysis, for example, the work by (Boyles 1994; Kotz & Johnson 

1993), (Somerville & Montgomery 1996), (Bernardo J 1996; Wang & Hubele 

1999), (Noorossana 2002),(Pal 2005), (Wang 2006), (Chen, K, Hsu & Wu 

2006), (Niaki & Abbasi 2007). However, most of the research focuses on 

multivariate normal process capability measures. In reality, very often these 

quality characteristics are non-normal and correlated. According to the 

literature (e.g. (Wang 2006)) multivariate PCIs that have been proposed by 

many researchers suffer from the following constraints and limitations: 

 Normality assumption on multivariate data is usually required. 
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 Confidence intervals of the multivariate capability indices are difficult 

to derive.  

 Higher-dimension (more than three quality variables) PCIs are not 

readily obtainable, except through projection of multivariate data into 

univariate variables such as the geometric distance approach 

proposed by Wang et al. ((Wang & Hubele 1999), (Wang & Du 

2000)). 

Due to the above limitations, it is evident that the application of 

conventional methods is somewhat limited. In order to deal with non-normal 

multivariate and correlated quality characteristics data, there is ample 

opportunity for researchers to develop more suitable PCIs that can address 

the complex situation of multivariate non-normal and correlated data. To 

investigate the possible solutions for the multivariate PCI with correlated 

non-normal quality characteristics, this research attempts to find the 

answers to the following questions: 

 What current methods for calculating the process capability are widely 

available and commonly used for non normal process data with single 

quality characteristic? The need to perform a comprehensive 

comparison with respect to their applicability to the real world 

problems is also carried for.  

 Can Burr XII distribution be utilized with real data and be able to 

provide the best estimate of non-normal process capability indices 

with univariate data? 
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 Can we extend Burr XII distribution function to more than one quality 

characteristics when the quality characteristics are dependent and 

correlated? 

 Can we use multivariate Burr model to calculate the process capability 

indices for simulated and real data?  

 Will application of Burr XII distribution provide an accurate, efficient 

and practical procedure for process capability estimation with 

multivariate quality characteristics? 

Throughout the course of this thesis, these research questions were 

addressed and investigated. The proposed approaches to deal with the 

problems that arise and the outcomes of the research are described in the 

next section. 

1.4. Proposed approaches to research problems 

As mentioned earlier, when the data is non-normal, measuring process 

capability using conventional methods can lead to erroneous conclusions. 

Different PCI methods have been proposed to deal with the non-normality 

issue. Although these methods are practiced in industry, there is insufficient 

literature to assess the accuracy of these methods under mild and severe 

departures from normality. In this thesis, we will firstly review the 

performance of the existing capability estimation methods (e.g. Clements 

percentile method, Burr based percentile method and Box Cox method) for 

non-normal univariate quality characteristics data. A simulation study using 

known non-normal distributions (e.g. Weibull, Gamma, Beta and lognormal) 

will be conducted to compare the performance of some of the commonly 
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used methods. Accuracy of the Burr based percentile method will be further 

improved using numerical search algorithms (e.g. Simulated Annealing, 

Evolutionary and Compass Direct Search algorithms). We will further explore 

new capability estimation methods such as cumulative density function and 

Best root transformation methods by fitting Burr distribution to simulated 

and real data. In the later part of this research we will extend Cumulative 

Density Function method to bivariate process capability estimation by fitting 

bivariate Burr distribution to bivariate non-normal quality characteristics 

data.  

To achieve our major objective later in this thesis, we will propose an 

approach for dealing with multiple correlated quality characteristics. In the 

proposed approach, we will first cluster correlated quality characteristics and 

then define a variable, referred to as the Covariance Distance (CD) variable 

which is the distance of individual quality characteristics from their 

respective targets scaled by their variance–covariance matrix. CD is well 

known in pattern recognition literature as the Mahanalobis distance 

(Devroye, Györfi & Lugosi 1996). The proposed approach will be similar to 

the geometric distance (GD) approach adopted by Wang (Wang 2006), but it 

differs in that the scaling factor of the variance–covariance matrix is absent 

in GD. Furthermore, unlike the approach in (Wang 2006), we will fit Burr XII 

distribution (Burr, IW 1942) to the CD data instead of fitting different 

distributions to GD data, as was done by Wang. The parameters of the fitted 

Burr XII distribution are obtained using different numerical search 

techniques. Application examples with real data from manufacturing industry 
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have been presented in this research study to show the relevance of theory 

developed to industry. 

1.5. Contributions  

The major contributions arising from this research are: 

1.5.1. Univariate process capability 

 A comprehensive review of the existing PCI estimation methods. 

 Instead of applying the traditional moment matching method cited in 

the research literature, Maximum Likelihood Estimation method has 

been deployed to improve the accuracy of PCI estimation based on 

Burr percentile method. 

 Novel numerical methods have been proposed to estimate the 

parameter’s of the fitted Burr distribution.  

 A new approach called Best Root Transformation (BRT) is proposed 

which enables to transform non-normal data to normal by searching 

for the optimal root for data transformation. 

 Another contribution to this thesis is to propose Burr cumulative 

density function for PCI estimation using Cumulative Density Function 

approach. The proposed approach is in contrast to the approach 

adopted in the research literature i.e. use of best-fitting density 

function from known distributions to non-normal data for PCI 

estimation. 
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1.5.2. Multivariate process capability 

 Cumulative Density Function method has been extended to estimate 

bivariate non-normal PCI where bivariate Burr distribution is fitted to 

bivariate non-normal quality characteristics.  

 A novel approach to estimate multivariate non-normal PCI has been 

introduced. This proposed approach called “Generalized Covariance 

Distance (GCD)” approach, evaluates process capability for correlated 

non-normal multivariate quality characteristics. Proposed approach 

has the following novel features: 

i. It is based on the idea of reducing the dimension of 

multivariate data by transforming correlated variables into 

univariate ones through a metric function.  

ii. Unlike the Geometric Distance (GD) approach cited in the 

research literature, our approach takes into account the 

scaling effect of the variance–covariance matrix and produces 

a CD variable that is based on the Mahanalobis distance.  

iii. It is demonstrated that the proposed GCD approach does not 

assume that the CD variables are mutually independent, 

which is implicitly assumed in the Geometric Distance 

approach.  

iv. In contrast to the GD approach, where different distributions 

are fitted to different GD variables, a single distribution, the 

Burr XII distribution is fitted to the CD data. Numerical search 

techniques are used to estimate the parameters of the Burr 

distribution.  
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 Application examples using real data with several non-normal quality 

characteristics from the manufacturing industry have been presented.   

1.6. Organization of the thesis 
 

The subsequent chapters have been organized as follows.  

Chapter 2 covers a literature review and basic principles of process 

capability measures for non-normal quality characteristics. Current 

approaches to estimate PCIs for univariate and multivariate non-normal 

quality characteristics are also covered in this chapter.  

Numerical techniques and procedures to estimate PCI’s developed during 

this research thesis have been presented in Chapter 3. 

In Chapter 4, a comprehensive comparison of existing PCI estimation 

methods have been discussed. This chapter also covers proposed 

Cumulative Density Function (CDF) and Best Root Transformation PCI 

estimation methods. A comparison of the results using simulated and real 

data have also been presented in this chapter 

PCI estimation using bivariate non-normal data are discussed in Chapter 5.  

The existing multivariate PCI approaches; particularly Geometric Distance 

(GD) approach and the proposed Generalized Covariance Distance approach 

are discussed in chapter 6. Several application examples based on real data 

are also included in this chapter.  

The thesis concludes with Chapter 7, which also includes recommendations 

for further research in this area. 
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1.7. Publications  

The publications, based on research carried out during the tenure of this 

research, are listed below: 

1.7.1. Refereed journal papers 

1. S. Ahmad, M. Abdollahian, P. Zeephongsekul “Multivariate Non-

normal Process Capability Analysis, International Journal of 

Advance Manufacturing Technology, (2009) 44:757-765.  

2. S. Ahmad, M. Abdollahian, P. Zeephongsekul, “Process Capability 

Estimation for non-normal quality characteristics using Clement, 

Burr and Box-Cox methods”, The Australian and New Zealand 

Industrial and Applied Mathematics Journal, pp. C642-C665, 2008. 

ISSN: 1446-8735.  

3. S. Ahmad, M. Abdollahian, P. Zeephongsekul, B. Abbasi, 

“Performance Analysis of Skewed Data”, Ubiquitous Computing 

and Communication Journal, UBICC Journal, Volume 3, January 

2008, pp.8-12:ISSN:1992-8424.  

4. B. Abbasi, S. Ahmad, M. Abdollahian and P. Zeephongsekul, 

Measuring Process Capability for Bivariate Non-Normal Process 

Using the Bivariate Burr Distribution, WSEAS Transaction on 

Business and Economics, Issue 5, Volume 4, 2007, ISSN: 1109-

9526. 

5. S.Z. Hosseinifard, B. Abbasi, S. Ahmad, M. Abdollahian, A 

Transformation Technique to Estimate Process Capability Index for 
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1.7.2. Refereed conference papers 

6. Ahmad S., Huda S. Bakir S., Abdollahian M., Zeephongsekul P.  

“Constraint-Based Evolutionary Learning Approach to the Process 

Performance Evaluation”, accepted for publication, 3rd 

International Conference on Informatics and Technology, Kuala 

Lumpur, Malaysia, 27th - 28th October 2009.  

7. Ahmad S., Huda S. Bakir S., Abdollahian M., Zeephongsekul P. 

“Process Performance Evaluation Using Evolutionary Algorithm, 

accepted for publication, WORLDCOMP’09 - The 2009 World 

Congress in Computer Science, Computer Engineering, and 

Applied Computing, Las Vegas,  USA,  July 3- 16 2009. 

8. Nazari, A., Ahmad, S., Abdollahian, M. and Zeephongsekul, P.  “A 

Model to Estimate Proportion of Non-conformance for Multi-

Characteristics Product” 6th International Management Conference, 

Dec 20-22, Tehran Iran, 2008, pp. 3-14.  

9. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P.  “Evaluating 

Process Capability by Fitting Burr Distribution to Multivariate Data” 

Proceedings of the 14th ISSAT International Conference on 

Reliability and Quality in Design, Seattle, Washington, USA, 2008, 

pp. 49 – 53.  

10. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P.   “Fitting Burr 

XII distribution to continuous positive data using Hybrid Search 
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11. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P.  “Process 

Capability for a Non-Normal Quality Characteristics Data”, 4th 

International Conference on Information Technology- New 

Generations (ITNG), April 2-4,  Las Vegas, Nevada, U.S.A, 2007, 

pp. 420-424.  

12. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P.   “Process 

Capability Analysis for Non-Normal Quality Characteristics Using 

Gamma Distribution”, 4th  International Conference on Information 

Technology- New Generations (ITNG), April 2-4, Las Vegas, 

Nevada, U.S.A, 2007, pp. 425- 430.  

13. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P. “Process 

Capability Analysis under a Weibull Shock Model” 13th ISSAT 

International Conference on Reliability and Quality in Design, 

August 2-4,Seattle, Washington, U.S.A, 2007, pp. 88-92.  

14. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P. “Process 

Capability Analysis for a Skewed Population Data”, The 2007 World 

Congress in Computer Science, Computer Engineering, & Applied 

Computing, June 25-28, Las Vegas, Nevada, U.S.A, 2007, pp. 327 

-  333.  

15. Ahmad, S., Abdollahian, M. and   Zeephongsekul, P.  “Non-Normal 

Process Capability Evaluation”, IKE’07- The 2007 International 
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1.8. Summary  

This chapter laid the foundations for the thesis. It introduced the research 

problem and research questions. The methodology was briefly described and 

justified, the organization of the thesis was outlined and the list of 

publications based on this research during this tenure has been provided.  

In the proceeding Chapter 2, we will discuss PCIs when the quality 

characteristics data is not normal and traditional capability indices and 

are unable to provide accurate estimates of process performances. 

pC

pkC
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Chapter 2  

PROCESS CAPABILITY FOR NON-NORMAL 

QUALITY CHARACTERISTICS 

2.1. Introduction 

Process capability indices are random variables and it is well known that 

random variables are always associated with a probability distribution. This 

distribution also provides a description of the expected value and variance of 

the index (Kotz & Lovelace 1998).Keeping in view this notion, it is important 

to understand the theory of probability and statistical methods in order to 

fully comprehend the nature and behavior of the traditional process 

capability indices presented in the research literature.  

After presenting basic theoretical background of traditional capability indices 

and in Chapter 1, this chapter will focus on those methods and 

techniques commonly used to estimate process capability when quality 

characteristics are not normal. 

pC pkC

2.2. Univariate process capability for non-normal data 

The basis of traditional capability indices and heavily depends on an 

implicit assumption that the underlying quality characteristic measurements 

pC pkC
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are independent and normally distributed. However, this basic assumption is 

not usually fulfilled in practice. Many physical processes produce non-normal 

quality characteristics data and quality practitioners need to verify the above 

basic assumptions before deploying any conventional PCI techniques to 

determine the capability of their processes.  

Kane (Kane 1986) has drawn the attention to such problems that may occur 

with non-normal data and (Gunter 1989), in Parts 2 and 3, highlighted this 

even more. To overcome these problems several approaches have been 

suggested. Here in section 2.3, we will discuss two common approaches, 

namely techniques of non-normal quantile estimation and transformations. 

Furthermore we will consider some more recent developments to handle the 

issue of non-normality by fitting known non-normal distributions to non-

normal quality characteristics data in Chapter 3. For a thorough discussion 

of different methods to handle a non-normally distributed process outcome 

see, e.g. (Kotz & Johnson 1993), (Kotz & Lovelace 1998) and (Kotz & 

Johnson 2002).  

One of the first indices for data that are non-normally distributed was 

suggested by Clements (Clements 1989). He used the technique of non-

normal quantile estimation and proposed that 6  and   in and be 

replaced with 

pC pkC

000135.099875.0 q_q

000135.0q

 and q0.5, respectively, where  for the 

specified  values, represents the quantiles for a distribution in the Pearson 

family. If the distribution of the quality characteristic is normally distributed 

then 

q



99875.0 _q  = 6 . We will discuss this method in some detail 

in section 2.3.1. (Pearn & Kotz 1994) has extended Clements’ method to 
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develop some new indices which can be deployed for non-normal PCI 

estimations.  

Another approach for dealing with non-normal data is to transform the 

original non-normal data to normal or at least close to normal (section 2.3.2 

of this thesis will provide some details of data transformation techniques). 

Gunter (Gunter 1989) suggested application of data transformation 

approach to perform calculations of capability indices when the process data 

is non-normal. Calculation of for non-normal data was also discussed in 

(Rivera, Hubele & Lawrence 1995). Furthermore, (Polansky, Chou & Mason 

1998, 1999) proposed a method for assessing the capability of a process 

using data from a truncated normal distribution, where Johnson 

transformations ((Johnson, NL. 1949)) were used to transform the non-

normal process data into normal. However, one can not be sure that the 

capability of the transformed distribution will reflect the capability of the true 

distribution in a correct way, see, e.g. (Gunter 1989). Furthermore, Kotz & 

Lovelace (Kotz & Lovelace 1998) point out that practitioner may be 

uncomfortable working with transformed data due to the difficulties in 

translating the results of calculations back to the original scale. Another 

disadvantage from a practitioner’s point of view is that transformations do 

not relate clearly enough to the original specifications according to Kotz & 

Johnson (Kotz & Johnson 2002). 

pkC

In addition to percentile and transformation approaches, some other 

methods have also been proposed in the research literature. For the case 

with skew distributions and two-sided specification limits, (Wu et al. 1999) 
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introduced a new process capability index based on a weighted variance 

method. The main idea of this method is to divide a skewed distribution into 

two normal distributions from its mean to create two new distributions which 

have the same mean but different standard deviations. Chang et al. (Chang, 

Choi & Bai 2002) proposed a different method of constructing simple process 

capability indices for skewed populations, based on a weighted standard 

deviation method. Some properties for the proposed indices are also 

investigated by Wu et al. (Wu et al. 1999) and Chang et al. (Chang, Choi & 

Bai 2002) and the estimators are compared to other methods for non-

normal data.  

Several authors have made comparative studies between different methods 

to handle non-normal process data. Heuvel & Ion (Heuvel & Ion 2003) 

compared indices for skew distributions proposed by Munchechika 

(Munchechika 1986) and Bai & Choi (Bai & Choi 1997), for a number of 

distributions corresponding to . One conclusion from their study is that 

for many practical situations the true value of lies between the values 

of the indices presented by Munchechika and Bai & Choi. Using Monte Carlo 

simulations Wu et al. (Wu & Swain 2001) compared traditional indices for 

Clements’ method, the Johnson-Kotz-Pearn method (Johnson, NL, Kotz & 

Pearn 1994) and the weighted variance method (Wu et al. 1999)for the 

Johnson family of distributions. They found that for skewed bounded cases 

none of these three methods performs well in estimating the nominal value. 

Furthermore, Clements’ method was misleading for skewed unbounded 

cases. For log-normal cases, the weighted variance method underestimates 

pkC

pkC
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the nominal values while the Johnson-Kotz-Pearn method consistently 

overestimates the nominal values. Clements’ method neither overestimates 

nor underestimates the results on a consistent basis. 

2.2.1. Process capability for one-sided specification 

limit when data is non-normal 

Process capability indices for one-sided specification limit and a non-

normally distributed characteristic have not been discussed much in the 

literature. This is not an uncommon situation in industry, however, it should 

be noted that Clements (Clements 1989) treated the indices for one-sided 

specification limits similar to , i.e. he replaced pC  with median and 

denominator by the lengths of interval between the upper and lower 0.135 

percentage points of the distribution of X  (refer to equations 1.3 and 1.4). 

Sakar et al. (Sarkar & Pal 1997) considered an extreme value distribution 

for the  case. Furthermore, Tang et al. (Tang & Than 1999) studied 

estimators of for a number of methods designed to handle non-normal 

process data, in particular when the underlying distribution are Weibull and 

Lognormal. This was done by Monte Carlo simulations. They found that 

methods involving transformations provide estimates of  that is closer to 

the nominal value compared to non-transformation methods, e.g. the 

weighted variance method discussed by Choi & Bai (Choi & Bai 1996). 

However, even though a method performs well for a particular distribution, 

that method can give erroneous results for another distribution with 

different tail behavior. In fact, the effect of the tail area can be quite 

puC
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dramatic (Vännman & Albing 2007). Ding (Ding 2004) introduced a process 

capability index based on the effective range by using the first four moments 

of non-normal process data. He also considered the situation with univariate 

positively skewed data and proposed an index for this situation. However, 

the proposed index contains no target value and furthermore, as far as we 

know, no decision procedures or tests have been presented. 

2.3. Methods to estimate process capability for non-normal 

quality characteristics data 

This section provides information about some methods commonly used in 

industry for non-normal process capability estimations. Clements percentile 

method, Box Cox power transformation method and root transformation 

method are among them. The general description of these methods and 

some historical review are presented here. 

2.3.1. Clements percentile method 

Pearson (Pearson 1895) identified four types of distributions which include a 

rich class of populations with non-normal characteristics. Clements 

(Clements 1989) proposed a method for calculating process capability 

indices and based on non-normal pearsonian distributions.  This 

method provides an easy approach to handle the issue of non-normality for 

process capability estimations and uses non-normal percentiles to modify 

the traditional capability indices.  The main advantage of this approach is 

that it requires no complicated distribution fitting and is simple to use by 

non-statisticians. Clements method is a popular method to use among 

pC pkC

 27



quality practitioners in industry today. This method used Pearson curves to 

provide more accurate estimates of percentile points X0.00135, X0.5 and X0.99865 

when the underlying process data follow non-normal distribution (Kotz & 

Lovelace 1998). The underlying concept of this method is again based on 

normal distribution. As mentioned in chapter 1, in the traditional capability 

indices, we are critically interested in three points within the process 

distribution i.e.  the upper tail, the point of central tendency and the lower 

tail. In terms of quantiles, these points for the normal distribution 

correspond, respectively,   to  

 Upper Tail =  3 , X 99865.0

 Lower tail =  3X  and 00135.0

 Mean = Central tendency= 50.0 .  X

When the data is normal, it is quite easy to estimate these three points. 

However, in case of non-normal data, it is not easy to estimate these 

quantiles when we don’t know the distribution of the underlying variable. 

More importantly, these quantiles do not necessarily corresponds 

to , , respectively. For instance, quantile  

corresponds to the mean for the normal case, but in the non-normal 

case, it corresponds to the median. 

 3  3 50.0X



Clements used the same approach to estimate non-normal quantiles and 

replaced 6  in equation (1.1) by the lengths of interval between the upper 

and lower 0.135 percentage points of the distribution of . Therefore, the 

denominator in equation (1.1) can be replaced by

X

)LU( pp  , i.e.   
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where is the upper percentile i.e. 99.865 percentile of observations and 

is the lower percentile i.e. 0.135 percentile of observations. Since the 

median “M” is the preferred central value for a skewed distribution, so 

Clements estimated and  as follows:  
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 and 





 plC,puCminCpk       (2.4) 

As mentioned earlier, Clements’ approach does not require a mathematical 

transformation of the data. It is easy for non-statisticians to understand and 

no complicated distribution fitting are required (see (Kotz & Lovelace 

1998)). However, Clements’ method requires knowledge of the skewness 

and kurtosis that are based on 3rd and 4th moments respectively, and these 

may not be reliably estimated for very small sample sizes (Liu, P & Chen 

2006). Wu et al. (Wu, Wang & Liu 1998) have conducted a research study 

indicating that the Clements method cannot accurately measure the 

capability indices, especially when the underlying data distribution is 

skewed.  

 29



 

2.3.2. Data transformation method 

Data transformation refers to the application of a known deterministic 

mathematical function to each point in a quality characteristics data i.e. 

each data point  is replaced with the transformed value , where 

the function

iX  ii XfY 

(.)f  is an appropriate mathematical function. The main objective 

of data transform technique is to transform the non-normal data to normally 

distributed data so that it can closely meet the assumptions of a statistical 

inference procedure that need to be applied to improve the interpretability 

of the quality data. 

Data transformation techniques are straightforward and easy to deploy and 

are popular among quality practitioners in industry. Johnson (Johnson, NL. 

1949) proposed a system of distributions based on the moment method to 

transform the non-normal data to normally distributed data. It is called the 

Johnson transformation system. Box and Cox (Box & Cox 1964) presented a 

useful family of power transformation.  Somerville et al. (Somerville & 

Montgomery 1996) proposed a square root transformation to transform the 

non-normal data to normal data.  In recent years Niaki et al. (Niaki & Abbasi 

2007) also presented root transformation to handle the issue of non-normal 

quality data and deployed this transformation technique to design multi 

attribute control charts. 

In this research we will use the power transformation and root 

transformation techniques to estimate non-normal PCI and we will discuss 
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these two techniques in some detail in the proceeding sections of this 

chapter.  

2.3.2.1 Box-Cox power transformation method 

Power transformation is a family of transformations that map non-normal 

quality characteristics data from one space to another using power 

functions. This is a useful data transformation technique employed to reduce 

data variation and make the data normally distributed. The Box-Cox power 

transformation is the most commonly used technique in industry. This 

technique was proposed by George E. P. Box and David R. Cox in 1964 (Box 

& Cox 1964). The Box-Cox power transformation on necessarily positive 

response variable X  is expressed by 

 

   (2.5) 


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
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 where    55   

This transformation depends upon a single parameter   that can be 

estimated by Maximum Likelihood Estimation (MLE) method (Tang, 1999 

#20).   Can be chosen from the given range and for each chosen   

evaluate: 


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The estimate of  ̂  for fixed 2  is obtained by  

n
)(s

ˆ2 
                                    (2.7) 

where  is the residual sum of square in the analysis of variance of)(S 
X . 

After calculating  for several values of  )(Lmax    within the given range one 

can plot  against . The maximum likelihood estimator of  is the 

value of  that maximizes 

)(max L



 

)(maxL  . Using the optimal value, data values for 

each individual  data are transformed to a normal variate using equation 

(2.5) (for details refer to (Box & Cox 1964)). Box-Cox transformation can be 

applied to non-zero, positively skewed data. The transformation method is 

available in most statistical software packages as a standard feature. 

Consequently, the users can deploy this technique directly and with ease to 

evaluate process capability indices for non-normal data first transforming 

these data to normal data using Box-Cox transformation.   

*


X

2.3.2.2 Root transformation method 

This is another data transformation technique to handle the issue of non-

normal data. In this section we will briefly discuss two data transformation 

techniques. The first one, called Square Root Transformation, was proposed 

by Somerville et al. (Somerville & Montgomery 1996) and the second 

approach, called Best Root Transformation, was proposed by Niaki et al. 

(Niaki & Abbasi 2007) to solve the problem of non-normality in the data. 
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Somerville and Montgomery (Somerville & Montgomery 1996) proposed the 

square root transformation. According to a detailed survey of non-normal 

distributions, they have presented in their research that some of the non-

normal distributions can be transformed to normal distribution by means of 

an appropriate transformation function; for example, a skewed distribution 

may respond well to the square root transformation. The square root of each 

data point is taken and then the transformed data is evaluated for normality 

test. If the normality test shows that the transformed data is normally 

distributed, then one can apply statistical procedures to the transformed 

data in order to obtain useful information such as capability index values. 

The advantage of this method is that it is easy to understand by non-

statisticians and simple to deploy. However, due to it being computationally 

intensive it is hard to implement this method as a standard method in 

industry. 

As we know the most serious problem with the non-normal data is its 

existing skewness. Niaki & Abbasi (Niaki & Abbasi 2007) proposed an 

approach that can transform the existing skewness of data to zero or close 

to zero to make it normal. They called it Best Root Transformation technique 

and used it to design multi attribute control charts. This approach enables 

user to transform non-normal data to normal by searching for the optimal 

root for data transformation. According to this approach, one can search for 

the best root of the non-normal data . The obtained best root of the 

non-normal data  is the root that if we raise the power of the data  to 

that root  (i.e. ), the skewness of the transformed data will become 

)( )(

()(

()

)

)r(
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zero. Bisection method is used to find the  value. This method is based 

on the fact that a function will change sign when it passes through zero. By 

evaluating the function at the middle of an interval and replacing whichever 

limit has the same sign, the bisection method can halve the size of the 

interval in each iteration and eventually find the optimal root. An application 

example using this method will be presented in Chapter 4. For more details 

refer to Niaki et al. (Niaki & Abbasi 2007). 

)(

2.4. Multivariate non-normal process capability 

It is an established fact that production processes not only produce non-

normal quality characteristics data but also there is always more than one 

quality characteristics of interest in process outcomes, and very often, these 

quality characteristics are correlated with each other. The traditional 

capability indices and consider only one quality characteristic at a 

time. However quality of many products is determined by more than one 

characteristic. Moreover, these quality characteristics that jointly determine 

the quality are often jointly inter-related (Wierda 1993). This situation 

increases the complexity of the problem of trying to produce a meaningful 

measure of capability indices for multivariate data. For example, in a 

detailed description of a connecting rod for a combustion engine (Taam, 

Subbaiah & Liddy 1993), the crank bore inner diameter, pin bore inner 

diameter, rod length, bore true location, bore-to-bore parallelism, and other 

features are specified. To represent how well this connecting rod is made, 

one may examine numerical summaries of each of these individual 

characteristics separately or consider all characteristics together to see how 

pC pkC
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they interact with each other. The latter is preferred if one treats the rod as 

one entity. In situations where the design intention of a product is 

prescribed by a number of related characteristics, the functionality of this 

product cannot be represented by individual quality characteristic 

separately. Many other such examples are scattered throughout the quality 

control literature, which points towards the need of developing accurate 

measures of process capability that can address the complex nature of 

multivariate non-normal quality characteristics data.  

Multivariate capability indices usually produce one number jointly 

representing capability for two or more quality characteristics. Generally 

multivariate process capability indices can be obtained from a number of 

different methods such as: 

 the ratio of a specification limit to process variation or modified 

process variation. 

 the probability of nonconforming products over rectangular 

tolerance zone implementing loss functions and vector 

representation. 

 theoretical proportion of non-conforming products over convex 

polygons and  

 global approach of viewing multivariate quality control.  

Taam et al. (Taam, Subbaiah & Liddy 1993) defined the first multivariate 

capability index based on the ratio of a specification limit to process 

variation or modified process variation. Chen (Chen, H 1994) also proposed 
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a method in order to estimate the multivariate  using a non-conforming 

proportion approach. Shahriari et al. (Shahriari, Hubele & Lawrence 1995) 

proposed a process capability multivariate vector in order to evaluate the 

process performance. Braun (Braun 2001) defined   and  as   

and , where both the multivariate process region and the multivariate 

tolerance region are of elliptical shape. Castagliola et al. (Castagliola, P  & 

Castellanos 2005) defined two new capability indices   and  

dedicated to two quality characteristics, based on the computation of the 

theoretical proportion of non-conforming products over convex polygons. 

Bothe (1999) proposed a method in order to compute the multivariate  

index. Wang et al. (Wang & Du 2000) proposed multivariate equivalents for 

  and  based on the PCA (Principal Component Analysis) 

decomposition. Other researchers who worked in the Multivariate PCIs are 

(Beck & Ester 1998), (Bernardo & Irony 1996), (Boyles 1994), (Davis, 

Kaminsky & Saboo 1992), (Wierda 1993), (Hellmich & Wolff 1996), (Li & Lin 

1996), (Mukherjee & Singh 1994), (Yeh & Bhattacharya 1998), (Veevers 

1998) and (Niverthi & Dey 2000). But the main limitation with the existing 

multivariate PCIs in the research literature is that they are all based on 

multivariate normal quality characteristics data. Wang and Du in 2000 

proposed the same multivariate and indices and extended their 

research work to the non-normal multivariate case. Wang (Wang & Hubele 

1999) and(Wang 2006) proposed a “Geometric Distance Variable” approach 

to reduce the dimensionality of the multivariate (normal and non-normal) 

data to univariate data and use the established univariate PCI techniques for 

pC

pC pkC pEC

pkBC

pkC

pkEC

pBC

pC pkC

pC pkC
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process performance analysis. A detailed review of their Geometric Distance 

approach along with our newly proposed Generalized Covariance Distance 

(GCD) approach (Ahmad et al. 2009) will be presented in Chapter 6  

2.5. Summary 

The main objective of this chapter is to review the basic theory of non-

normal PCIs and present a literature review of PCI estimations when the 

quality characteristics data don’t follow normal distribution. Commonly used 

techniques have been discussed. In the proceeding Chapter 3, we will 

provide details of the numerical techniques used in this research study. 



Chapter 3  

METAHEURISTIC APPROACHES AND 

DISTRIBUTION FITTING TO NON-NORMAL 

QUALITY CHARACTERISTICS DATA 

3.1.  Introduction 
 

In contrast to non-normal quantile estimation and data 

transformations discussed earlier in Chapter 2, this chapter describes 

another simple approach to solve the problem of non-normal PCI 

estimations. This approach deals with fitting known distribution to 

non-normal quality characteristics data and use proportions of non-

conformance criterion to assess process performances. The chapter 

also describes metaheuristics approaches employed to estimate the 

parameters of the fitted distribution.  

 

This thesis discusses metaheuristic approaches such as Simulated 

Annealing, Compass Direct search and their hybrids with local search 

approaches for solving the local convergence problems. Constraint-

based approaches to the population based metaheuristic 

(Evolutionary Algorithm, EA) will also be discussed. This chapter 
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provides background knowledge of these heuristics and 

metaheuristics approaches which will be used in this thesis.  

3.2. Fitting known distributions to non-normal 

quality characteristics data 

Although percentile estimation and data transformation techniques 

are commonly used to solve the non-normality problems of quality 

characteristics data, there is another simple approach to handle the 

issue of non-normal quality characteristics data. According to this 

technique, a generic known distribution (e.g. Gamma, Weibull, Beta 

and Lognormal) is fitted to the actual sample quality characteristics 

data (Somerville & Montgomery 1996). Then, process capability 

indices can be simply evaluated using the percentage falling outside 

the specification limits of the fitted distribution. Hahn & Shapiro 

(Hahn & Shapiro 1967) suggested using the calculated sample 

skewness and kurtosis and plotting them on a distribution “mapping” 

which may suggest the proper distribution to use for the fit.   

Fitting known distributions to quality characteristics data can easily 

be done by using available statistical software packages. The analyst 

can easily determine which distribution can fit best to the sample 

data. Consequently, the analyst can deploy this technique directly to 

evaluate process capability indices.  Fitting a known distribution to 
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sample data has several advantages, e.g. it is a straightforward 

approach and the analyst deal with the quality sample data directly; 

instead of making adjustments and approximations. The process 

analyst may gain insight into the underlying process when fitting 

different distributions. This insight could lead the analyst to 

implement real process improvement endeavors. The shortcoming to 

this approach is that a relatively large sample must be obtained so 

that the distribution fit could be accomplished with some degree of 

confidence (Somerville & Montgomery 1996). 

In the proceeding sections of this chapter we will discuss some 

metaheuristic numerical techniques used to fit Burr XII distribution in 

this research study. 

3.3. Parameter estimation techniques 

In dealing with the application of statistical theory to industrial 

problems, the analyst should take care with regard to sample 

selection and other experimental details and follow strict guidelines. 

Otherwise, results based on inferential techniques which include the 

method of parameter estimation can lead to erroneous estimates of 

process capability. The need for accurate parametric estimation has 

become increasingly important, as indicated by its wide application 

and theoretical literature which have appeared on this subject 
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(Gruska, Mirkhani & Lamberson 1989).There are several techniques 

used for parametric estimation which include Method of Moments and 

Maximum Likelihood Method. In the next section we will discuss 

parametric estimation methods used in this research study. 

3.3.1. Method of moments  

The method of moments equates sample moments to population 

moments. It has the advantage of simplicity; however, the 

disadvantage is that they are often not as accurate as other 

parametric estimation techniques such as Maximum Likelihood 

Method and Least Squares Method. In this research study we have 

applied this method to estimate the Burr distribution parameters (i.e. 

c and k) using Burr tables (Burr, IW 1973). An illustrative example is 

provided in chapter 4. 

3.3.2. Maximum likelihood method 

Maximum Likelihood estimation uses the mathematical expression 

known as a likelihood function of the sample data to estimate 

parameters. In more general form, we can say the likelihood of a set 

of data is the probability of obtaining that particular set of data given 

the chosen probability model. This expression contains the unknown 

parameters. Those values of the parameter that maximize the 

sample likelihood are known as the maximum likelihood estimates. 

 41



There are several advantages using this method, in particular this 

method provides a consistent approach to parameter estimation and 

can be applied widely to industrial problems such as reliability 

analysis of censored data under various censoring models.  Being an 

established procedure, several popular statistical software packages 

provide excellent algorithms for maximum likelihood estimates for 

many of the commonly used distributions. This helps to mitigate the 

computational complexity of maximum likelihood estimation, 

although it does not totally eliminate the problems of finding the 

correct solutions.  

However, the likelihood equations need to be specifically worked out 

for a given distribution and estimation problem. The mathematics is 

often non-trivial, particularly if confidence intervals for the 

parameters are desired. Except for a few cases where the maximum 

likelihood formulas are in fact simple and the numerical estimation is 

usually non-trivial, it is therefore generally best to rely on high 

quality statistical software to obtain maximum likelihood estimates. 

Fortunately, high quality maximum likelihood software is becoming 

increasingly common. Another shortcoming to this method is that it 

can be heavily biased for small samples. The optimality properties 

may not apply for small samples. Further parametric estimates 

obtained using this method can be sensitive to the choice of starting 
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values. In the proceeding section we will describe background 

information and historical review of some of the numerical (heuristic 

and metaheuristics) techniques used in this thesis for estimation of 

the parameters of the Burr distribution. 

3.4. Heuristic numerical techniques for 

parameter estimation  

Heuristic techniques help to solve many optimization problems. A 

heuristic is a rule of thumb which is used to solve a complex problem 

where no exact method is present for solving the problem. Usually a 

heuristic approach uses some knowledge about the domain of the 

problem under consideration and its structure to devise a technique 

for solving the problem. A typical heuristic is a best-first search 

which is used to search a decision tree and other tree-like data 

structure (Baum & Sell 1968). Another example of a heuristic is 

Kruskal's polynomial time algorithm for finding a minimum spanning 

tree (Pearl 1984), (Kruskal 1956). Heuristic techniques can be 

broadly classified into two main groups: constructive and 

improvement heuristics.  

Constructive heuristics find a solution from the scratch incrementally. 

Usually a constructive heuristic starts from an empty solution and 

successively augments the solution component at each step and 

finds a final solution. It relies on knowledge of the problem to allow 
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the development of the solution. Constructive heuristics are highly 

problem dependent. Therefore, it is often true that if a problem 

provides sufficient knowledge about its domain and structure then 

good constructive heuristics can be developed to solve the problem. 

Some successful constructive heuristics are the greedy heuristic and 

the nearest neighbor heuristic  (Rosenkrantz, Stearns & Lewis 1977), 

(Higgins, Kozan & Ferreira 1997). 

Improvement heuristics take a feasible initial solution as input and 

try to find a better solution by searching through the neighbors of 

the current solution. The next solution of the search step is 

computed by finding the neighbors of the current solution and 

choosing the best from these neighbors. The initial solution is 

changed over a number of iterative steps so that the solution quality 

is gradually improved. The set of all possible changes that can be 

applied to a particular solution is referred to as the neighborhood of 

the solution. These search approaches are referred to as 

neighborhood search or local search heuristic ((Rosenkrantz, Stearns 

& Lewis 1977), (Johnson, D 1990), (Michalewicz & Fogel 2000), 

(Batti & Protasi 2001)), and for a detailed discussion refer to Huda 

(Huda, S 2009) and Huda (Huda, S , Yearwood & Togneri 2009). An 

iterative improvement heuristic is more general than a constructive 

heuristic and has wider application. One of the important 

characteristics of a neighborhood search heuristic (improvement 
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heuristic) is that its deterministic selection criteria to choose the next 

solution may result locally optimized solution and not give any global 

solution. However, by applying different selection criteria (stochastic 

selection criteria (Osman & Kelley 1996)), threshold selection criteria 

(Jiang & Yang 2002)) or applying intelligent control strategy (Ganesh 

& Punniyamoorthy 2005) on the search process, neighborhood 

search may be capable of overcoming the local optimization problem. 

This latter approach of heuristics is generally called Metaheuristic. 

 

Metaheuristic approaches are techniques that can be generally 

applied to solve an optimization problem like a black-box 

optimization algorithm (Lin & Keringhan 1973). According to (Osman 

& Kelley 1996), Metaheuristic is an iterative generation process 

which guides a subordinate heuristic by combining intelligently 

different concepts for exploring and exploiting the search space. 

In many real world problems, we do not have any strong insight into 

how a problem might be solved. Sometimes we could find a 

constructive heuristic for a problem which is too complex to 

implement. In these cases, it is best to use more general heuristics 

which can be referred to as metaheuristics.  Metaheuristics are good 

candidates for solving many optimization problems. Metaheuristic 

approaches can be generally divided into two main categories: 

 Neighborhood search based approaches  
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 Population based approaches 

Neighborhood search based approaches are Simulated Annealing 

(Osman & Kelley 1996), Tabu Search (Ganesh & Punniyamoorthy 

2005), and Threshold Accepting (Jiang & Yang 2002) which are 

known as single candidate model based approach. Population based 

approaches involve Evolutionary Algorithm (EA) (Dueck & Scheuer 

1990), Ant Colony Systems (Applegate, Cook & Rohe 2003), Particle 

Swarm systems ((Stutzle 1998), (Kennedy, Eberhart & Shi 2001), 

(Liu, B et al. 2005)). 

 

3.4.1. Simulated Annealing (SA) approach 
 

Simulated Annealing (SA) (Osman & Kelley 1996) is one of the 

important naturally motivated metaheuristics that combines a 

naturally motivated acceptance criterion with the general structure of 

an improvement heuristic. SA is used on a variety of large 

optimization problems and requires little problem-specific knowledge 

other than a fitness or energy information. The basic idea of SA 

comes from the physical annealing process. In a metallurgical 

annealing process, a metal body is heated to near its melting point 

and then slowly cooled back down to room temperature. At very high 

temperatures atoms of metal obtain very high energy. If the 

temperature of metal is slowly decreased, then atoms reach an 
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absolute minimum energy. If the temperature is decreased too 

quickly the metal ends up in a poly-crystalline or amorphous state 

which is not pure crystal with a higher energy than the minimum 

energy of the metal. The behavior of the metal with temperature and 

structure of the atoms inside the metal (which is called the state of 

the metal) can be explained by statistical mechanics. 

Let the state (ss) of a metal be identified with the set of spatial 

position of the atoms. If the metal is in thermal equilibrium condition 

at temperature (T’), then the probability PrT’ (ss) that the metal is in 

a given state (ss) depends on the energy E (ss) and follows the 

Boltzmann distribution given in equation (3.1). 
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where kb is the Boltzmann constant and  is the set of all states 

of the metal. Let us consider that at time (t’) the metal is in a state 

(q’). A candidate state (r’) at time (t’+1) can be generated randomly 

and accepted with the probability (PT’) given by equation 3.2. 

)SS(
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If (PT’>1), the energy of state (r’) is strictly greater than energy of 

state (q’). It has been proved that as time (t’) increases to infinity, 

the probability that the metal is in a given state  equals 

and converges to Boltzmann distribution (Osman & Kelley 

1996). PrT’ (q’) and PrT’ (r’) can be determined using equation 3.1. 

However, it is not the case that lower temperature gives the lower 

energy state. We must adapt an annealing process where the 

temperature of the metal is raised to very high temperature at the 

beginning and then slowly decreased, spending sufficient time at 

each temperature to reach thermal equilibrium. This physical 

annealing phenomenon is used as a computational technique for 

optimization problem to avoid local optimum problem. 

S

)S(PT 

 

Before applying the metallurgical annealing techniques in an 

optimization problem we must find the analogous of the physics 

concept of annealing. Here, the energy function of metal, E (ss), 

corresponds to the objective function F(x) in an optimization 

problem. States of the metal “ss” becomes the values for parameters 

(x) of the optimization problem. We must also find a function 
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(neighborhood generation operator) to generate the neighbor/new 

solution from current solution and a cooling schedule as well.  

 

Unlike other search algorithms such as Tabu Search which may 

generate a local optimum of objective function, the chance of being 

trapped at local maximum of the objective function using SA is 

avoided by the use of a method similar to physical annealing 

technique. 

 

Like other neighborhood search, SA starts with an initial solution 

. At each search step “nn”, a new solution  is generated 

by using neighborhood generation operator from the current solution 

. SA accepts the new solution  if . 

However this deterministic method may terminate at local maximum 

of . Applying an annealing process similar to physical annealing, 

SA allows the search process to change its state to a state with lower 

objective function value so that it gets a chance to jump out of the 

local maxima and seek better maximum from that point again. Here 

the lower value of objective function is accepted with a probability 

given by equation (3.3) 

)x( nn

)x( nn

x(F

)x( 1nn

x(F)x( 1nn )x(F) nn1nn 

)
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Uphill moves in SA are always accepted. However, downhill moves 

are accepted with an acceptance probability which is function of 

temperature given by equation (3.3). The performance of the SA is 

dependent on the cooling schedule (Osman & Kelley 1996) and 

(Huda, S 2009). 

 

One of the important cooling schedules is the Lundy schedule (Liaw 

2000) which is described below:  

In Lundy schedule  (Lundy & Teng 1986),two temperature values, 

and nnT  1nnT  , which are in  and  iterations are related 

by the following formula:  

thnn th)1nn( 

 

nn

nn
1nn T1

T
T




      (3.4) 

where is defined by equation (3.5) 

fit

fi

TTi
TT



     (3.5)  

Here = total number of iteration, ti fT = the final temperature, = 

the initial temperature. 

iT

  is greater than 0. 
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SA starts with a high initial temperature iT  and any random initial 

solution ( ). A neighborhood operator is applied to the current 

solution ( ) having objective function values  to produce a 

new solution having objective function values . The 

new solution is accepted if  and becomes 

the current solution, otherwise becomes the current solution 

with a probability  from equation (3.3). If is not 

accepted, then ( ) remains as the current solution. The 

application of the neighborhood generation operator and the 

probabilistic acceptance of the newly generated solution are repeated 

either a fixed number of iterations or until a quasi-equilibrium is 

reached. The whole process is repeated each time starting from the 

current solution with a lower temperature. For any given 

temperature , a sufficient number of iterations always lead to 

equilibrium. The cooling schedule is such that at high temperature 

any change is accepted. This means the SA visits a very large 

neighborhood of current solution. At lower temperatures, transition 

to lower values of the objective function becomes less frequent and 

the solution stabilizes. The complete algorithm for SA is described in 

the Table 3.1.  

nnx
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Table 3.1: Algorithm for Simulated Annealing (SA) 
begin 

Choose an initial solution x  

Initialize temperature iTT   

1trial  

repeat 

     for do )TRIALSTOTALto1trials( 

      Generate a neighboring solution )(xVx   

       if  then )x(F)x(F 

         xx 

        ,           else if }1,0{rn 























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

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
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


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rn

Tk
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exp,1min
b

 then  

             xx  ,            else 

                Current solution x  is unchanged 

            end if 

      end for 

     )T1(/TT   

 until (termination reached) 

RETURN x  

end 
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SA is used in many optimization algorithms. The connection between 

this method and mathematical minimization was first observed by 

(Pincus 1970), but it was (Kirkpatrick, Gerlatt & Vecchi 1983) who 

proposed it as an optimization technique for combinatorial and other 

optimization problems. Ease of use and provision of good solutions to 

real-world problems makes this method one of the most powerful 

and popular meta-heuristics to solve many optimization problems 

(Niaki & Abbasi 2007). 

3.4.2. Compass Direct Search method 

Direct search methods form a class of optimization methods that 

don’t use any exact or approximate information of derivatives. The 

direct search methods were first used by Hooke and Jeeves (Hooke & 

Jeeves 1961) and in the Simplex algorithm of Nelder and Mead 

(Nelder & Mead 1965). At that time, the methods were considered 

heuristic without any mathematical convergence proof. Here we will 

consider one general frame of direct search methods called Compass 

Direct Search. Most of the direct search methods could be described 

as special cases of this method. 

For a function with two variables the method can be summarized as 

follow: Try steps to the east, West, North and South. If one of these 

trials yields a better point in the function, the improved point is 
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taken as the new iterate. If none of the trials makes any 

improvement, try again with step length which is half the original 

step. The mathematical description of this method for general n-

dimension is given below. 

Let  denotes the K  iteration, where  is the chosen initial 

value. Also let  denotes the set of  coordinate directions which 

is positive and negative unit coordinate vectors, 

n x

D

k Rx  th 0

n2

 .e,...,e,e,e,...,e,eD n21n21   

Let  denotes the step length control parameter with the starting 

value of .  

k

0

Initialization: 

Let  be given RR:f n 

Let  be the initial value. n
0 Rx 

Let be the tolerance 0tol 

Let  be the initial value of the step length. tol0 

Let D be the set of coordinate directions   

Table 3.2 describes the generic algorithm of Direct Search Method. 

ie
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Table 3.2: Direct search method algorithm 
For each iteration  ,...2,1k 

1.   If there exists  such that Ddk  )x(f)dx(f kkkk   then : 

1.1.    Set  (change the iterate) kkk1k dxx 

1.2.    Set k1k    (no change to the step length) 

2.  If )x(f)dx(f kkkk   for all Dd  , then: 

2.1. Set  (no change to the iterate) k1k xx 

2.2. Set k1k 2
1
   (half the step length) 

2.3. If tol1k    then stop. 
 
 

Whenever there is a trial point that improves the objective function, 

we conclude that iterate is successful. Regardless of the procedure 

chosen for evaluation of trial points, the value of  k  is not reduced 

unless every trial point has been evaluated and is found 

unacceptable. In this case, none of the  trial points has lead to an 

improved solution. Such iteration is called unsuccessful. 

n2

Furthermore, following each unsuccessful iteration, k  is compared 

to the preset stopping criteria tol  to test the convergence. Once the 

step length falls below  tol  , the search terminates with . The 

convergence of the compass search method has been proved for 

continuously differentiable functions. 

1k* xx 
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The method is considered as a local method and is only guaranteed 

to find a stationary point.  The direct search method is a reliable 

method to find the global optimizer of the function when the initial 

step length is chosen long enough and when it is combined with any 

heuristic global search method (Kolda, Lewis & Torczon 2003). 

3.4.3. Hybrid search approach 

One of the successful strategies in dealing with global optimization is 

to combine a local search method and global search method. With 

the global search method, we are trying to explore the whole search 

space to find a rough estimate of the global optimal point. The most 

important feature of the global search method is its ability to escape 

from local optimal points. After the Global search method finds some 

information about the global optimal point, we can use the local 

search method to locate it more precisely. 

In the hybrid method used in this thesis, we apply simulated 

annealing as a global search method. SA has proved ability to 

explore the search space and it can escape from local minima by 

means of probability of acceptance (refer to section 3.4.1 for 

details). After some information about the global optima, we use the 

Secant Method or Direct Search method to find the global point more 

precisely. 
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Table 3.3: Hybrid search method 
 
1. Use global search method from an initial value to find . In 

this thesis, we used simulated annealing method.   

kx

2.  Apply local search method from   to find a better point . 

In this paper, we used compass direct search method  

kx 1kx 

3.  If the required accuracy has not been achieved , go to the 

step 1 and start global search by setting initial value to   1kx 

 

3.4.4. Evolutionary Algorithm (EA)  
 

Stochastic global search such as Evolutionary Algorithm (EA) (Dueck 

& Scheuer 1990)are population based metaheuristics. Compared to 

neighborhood based metaheuristics, in the population based 

approach, the probability of choosing an inappropriate initial point is 

minimized due to the use of a large number of initial points of EA 

distributed over the whole search space. The search is then focused 

on promising regions of the search space by successively narrowing 

the regions until the search converges.  

 

The population based metaheuristic Evolutionary Algorithm (EA) is an 

iterative and stochastic optimization techniques inspired by the 

concepts from Darwinian evolution theory (Goldberg 1989). Several 

authors have proposed different versions of Evolutionary Algorithms 
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(EA) including theory of evolution (Darwin 1859), Evolution 

Strategies (ES) (Fogel 1994) and Evolutionary Programming (EP) 

(Hwang & He 2006). In general, an EA performs an evolutionary 

process on a population of solutions with the purpose of evolving the 

best possible approximate solution to the optimization problem. It 

operates on a given initial population of potential solutions to the 

problem and applies the principle of survival of the fittest to produce 

better and better approximations to a solution of the given problem. 

At each iteration, a pair of solutions is selected from a pool of 

solutions according to their level of fitness in the problem domain, 

which are bred together to produce a new set of solutions using the 

reproduction operators. The process of creating new solutions by 

combining the selection process of the parent pool and breeding 

processes directs the evolution of a population of solutions that are 

better suited to the problem domain. The whole process is executed 

over several iterations (generations) until a candidate solution of the 

problem with sufficient quality is found (Huda, S 2009). 

 

EA provides significant advantages over traditional optimization 

algorithms because of the simultaneous use of several search 

techniques and heuristics such as population based search, a 

continuous balance between exploitation (convergence), exploration 

(maintained diversity) and the principle of building-block in its search 
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process. Some of the important features of EA over traditional 

neighborhood based metaheuristics and global optimization 

algorithms are noted in the following: 

 Neighborhood based metaheuristics are single candidate 

model based and affected by the choice of initial point. 

However in the EA, the probability of choosing an 

inappropriate initial point is minimized due to the use of a 

large number of initial points of EA distributed over the whole 

search space. 

 Compared to other global optimization algorithms, EA does not 

require any derivative information of the objective function or 

other knowledge about the structure of the problem. 

Therefore, EA can be applied on wide varieties of optimization 

problems as a black-box optimization algorithm (Lin & 

Keringhan 1973). 

 Simultaneous use of non deterministic transition operators for 

generating new solutions and the use of several solutions in 

the population, implements a good diversification strategy in 

the search process which gives EA higher global exploration 

capability than other metaheuristic approaches. 

Structure of the EA 

Evolutionary algorithm models natural evolution processes. Thus, a 

typical EA incorporates many of the sub-process logically similar to 
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the sub-process of natural evolution including selection, evolutionary 

operations (re-combination, mutation etc.), and fitness evaluation. 

Figure 3.1 describes the structure of a simple EA and Algorithm in 

Table 3.4 shows the basics steps of an EA. 

 

Figure 3.1: Structure of Evolutionary Algorithm (EA) 
 
 
Table 3.4: Basic steps in an Evolutionary Algorithm (EA) 

 

Step-1: Create an initial Population. 

 repeat 

Step-2: Evaluate the initial population using the objective function. 

Step-3: Compute the fitness of the population. 

Step-4: Build the pool of solutions using selection operator. 

Step-5: Apply re-combination operator to create the new pool of 

solution. 
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Step-6: Apply mutation operator to the new pool of solution. 

Step-7: Apply replacement strategy to form the new population for 

next iteration (generation). 

Until (Termination criterion is reached) 

RETURN Best solution from the final population 

End 

 
 

Initial Population: Initial population of the EA comprises a number 

of solutions and specifies the starting point of the search. Initial 

population could be created using random initialization. The main 

goal of initialization process is to create a population with a good 

coverage of the search space. Any knowledge about the problem 

domain also may be used to create the initial population. 

Objective function and fitness evaluation: The objective function 

measures the performance of a solution with respect to its 

parameters and is related to problem under consideration. The value 

of the objective function for one solution is independent of the values 

of the parameters of other solution in the population. 

However, the fitness of a solution measures its reproductive ability 

and ability to survive. Unlike the objective function, the fitness of a 

solution is always defined with respect to other solutions of the 

 61



population being assessed. The fitness function transforms the value 

of objective function into a measure of reproductive ability. 

Selection operator and pool of solutions: Selection operator is 

used to build a pool of solutions for reproduction of new solutions for 

next iteration from the current population. According to the Schema 

theorem (Holland 1975), a reproductive opportunity is allocated to 

each solution in the current population in proportion to their relative 

fitness. Therefore, solution with higher fitness gets higher probability 

of being selected for reproduction. Thus, the selection operator is 

implementing a survival-of-the-fittest strategy to build the pool of 

solutions. Many selection mechanisms have been proposed including 

Stochastic Universal Sampling, Roulette Wheel selection (Rechenberg 

1978) and Tournament Selection (Baker 1987). 

Re-combination operator and new solutions: The re-

combination operator produces new solutions by exchanging some 

corresponding attribute value between the two solutions. Many re-

combination operators have been proposed including one-point re-

combination, two-point re-combination (Goldberg & Deb 1991), 

discrete re-combination and intermediate re-combination (Jong 

1975). The simplest re-combination is the one-point re-combination 

where a position along the two solutions is randomly chosen.  Then 

the one-point re-combination exchanges the sub-sequences before 
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and after that position between two solutions to create two new 

solutions. 

Mutation Operator: After re-combination, the new solutions are 

passed through mutation. Mutation operators are stochastic operator 

which provides small amount of randomness to the variable of the 

new solutions and maintains a sufficient level of variety in the 

domain value. This in turn, re-introduces necessary solution features 

into populations that have been unintentionally lost after several 

iterations have passed. 

Mutation prevents premature convergence: 

At the beginning, the values of the new solutions in the population 

are randomly distributed providing a wide spread of individual 

fitness. As the iteration progresses, it is possible that selection 

operator will drive most of the solutions in the population to share 

the same value for some variables. Then the range of fitness level of 

the population reduces. As a result, EA looses the ability to continue 

to search for better solutions. If this happens without the EA 

converging to a satisfactory solution, then the search process has 

prematurely converged. This may particularly happen if the 

population size is small. In this situation, re-combination operator 

alone cannot prevent the premature convergence. By providing a 

small amount of randomness to the new solutions in the vicinity of 

the population, mutation operator maintains sufficient level of 
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diversity in the domain value and prevents any possible premature 

convergence of the search process. 

Replacement Scheme for new iteration: Once the solutions are 

produced by evolutionary operators, then the current population is 

replaced with the new solutions. Different replacement strategy can 

be applied. An elitist replacement strategy replaces the worst 

solutions so that the significant features of the best solutions from 

the previous population can be transformed into next iteration. A 

non- elitist strategy replaces all solutions from the current 

population. 

 

The fundamental steps of an EA have been mentioned here. 

Although, for many years, EA has been applied in many applications 

including optimization, design and creative systems (Dueck & 

Scheuer 1990), (Muhlenbein 1993), (Chambers 2001), it faces 

difficulties to find a high quality solution. Like premature 

convergence, another major problem of EA is the slow convergence. 

After many generations, the average values of the fitness of the 

solutions will be high and the range of fitness of the population 

becomes small which indicates a small gradient in the fitness 

function. Therefore, the selective pressure is also reduced.  Due to 

this, population slowly advances towards a global maximum. The 

problem can partially be avoided by using a fitness scaling (Bentley & 
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Corne 2002), (Dueck & Scheuer 1990). Since EA explore the large 

solution space, to obtain high quality solution we also have to 

employ good evolutionary operators and tune the parameters as 

well. 

 

3.5. Summary 

This chapter discusses techniques of fitting known distribution to 

non-normal quality characteristics data and parameter estimation 

techniques of fitted distributions. In the later part of this chapter 

important metaheuristic approaches (including Simulated Annealing, 

Compass Direct Search and Evolutionary Algorithm) have been 

described with their basic structure. One important hybrid approach 

using single candidate model metaheuristic with local search has also 

been presented.  

The proceeding chapters are our main contribution to this research 

study and application of methods and procedures described in 

Chapter 3 will be discussed in the subsequent chapters. 



Chapter 4  

UNIVARIATE PROCESS CAPABILITY 

ANALYSIS 

4.1. Introduction 

This chapter describes the estimation of process capability indices  

and  for non-normal single quality characteristics data using 

methods and procedures presented in previous chapters. A newly 

proposed PCI estimation method (Liu, P & Chen 2006) bases on Burr 

XII distribution percentiles is discussed first in this chapter.  

Subsequently, a comprehensive review of the existing non-normal 

univariate PCI estimation methods using simulation study as well as 

real data examples has been presented. Maximum Likelihood Method 

is proposed to improve the accuracy of PCI estimation based on Burr 

percentile method and a metaheuristic technique (Simulated 

Annealing) has been deployed to estimate the parameter’s of the 

fitted Burr distribution.  

pC

pkC

Later in the chapter, a new root transformation technique called Best 

Root Transformation (BRT) to estimate PCI for non-normal quality 

characteristics data is proposed. Lastly, Burr cumulative density 
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function for PCI estimation using Cumulative Density Function 

method has also been presented which is in contrast to the approach 

adopted in the research literature i.e. use of best-fitting density 

function from known distributions to non-normal data for PCI 

estimation. 

4.2. Process capability estimation using Burr 

XII distribution  

Although Clements method presented in section 2.3 is popular 

among quality practitioners, however, research studies (Wu, Wang & 

Liu 1998), (Ahmad, Abdollahian & Zeephongsekul 2007a) indicated 

that Clements method can not accurately measure the capability 

indices when the underlying data distribution is non-normal.  Liu et 

al. (Liu, P & Chen 2006) and Ahmad et al. (Ahmad, Abdollahian & 

Zeephongsekul 2008) has conducted a detailed analysis of Clements 

method and introduced a new approach based on Burr distribution 

percentiles for evaluation of capability measures for non-normal 

quality characteristics data. In the proceeding section we will first 

present a shorter review of Burr XII distribution followed by a 

comprehensive review of Burr based method vs. existing 

conventional non-normal PCI estimation methods. 
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4.2.1. Review of Burr XII distribution 

Burr (Burr, IW 1942) developed a number of useful cumulative 

frequency functions which can describe various non-normal 

distributions. One of them is the Burr XII distribution. This is widely 

used in reliability and quality literature. The probability density 

function of the Burr XII distribution is defined as follows: 
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Note that  and  represent the skewness and kurtosis coefficients 

of the Burr XII distribution respectively. Therefore, the cumulative 

distribution function of the Burr XII distribution is derived as: 

c k
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Burr (Burr, IW 1973) presented a wide range of skewness and 

kurtosis coefficients of various probability distributions that can be 
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approximated using different values of Burr distribution parameters  

 and k . For example, the normal density function can be estimated 

by a Burr distribution with  =4.85437 and k  =6.22665 and a 

Gamma distribution with shape parameter 16 can be approximated 

by a Burr XII distribution with c  = 3 and k  = 6, and log-logistic 

distribution is also a special case of Burr XII distribution.  Rodriguez 

(Rodriguez 1977) demonstrated that the Weibull distribution is a 

limiting distribution of the Burr XII distribution. In practice, it has 

been observed that majority of the quality characteristics follow 

Weibull distribution. Hence, the two-parameter Burr XII distribution 

can be used to describe the data in the real world.  

c

c

Burr (Burr, IW 1973) has tabulated the means and standard 

deviations as well as skewness and kurtosis coefficients for the 

family of Burr distribution. These tables enable users to make a 

standardized transformation between a Burr variate (say Q) and 

another random variate (say X). The expression of the 

transformation is defined by 

σ

μ -Q

s

x-X
    (4.3) 

where x  and  are the values of sample mean and standard 

deviation for the original sample data.  

s

μ  and σ  are the mean and 
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standard deviation respectively, for the family of Burr distribution 

relative to the original sample data. 

The Burr XII distribution has been applied in areas of quality control, 

reliability analysis, and failure time modeling. Zimmer and Burr 

(Zimmer & Burr 1963) developed a method for sampling variables 

from non-normal populations using the Burr XII distribution. Burr 

(Burr, IW  1967) used his distribution to investigate the effect of 

non-normality on the limits of X  and R control chart. Castagliola 

(Castagliola, P 1996) used Burr’s approach to compute the 

proportion of nonconforming items. 

4.2.2. Use of Burr distribution for non-normal 

PCI estimation 

 
When the quality characteristics data is non-normally distributed, 

Burr XII distribution can be applied to estimate capability indices. It 

can provide better estimate of the process capability than the 

commonly used Clements’s method. Liu and Chen (Liu, P & Chen 

2006) (Ahmad, Abdollahian & Zeephongsekul 2007b) introduced a 

modification based on the Clements method, whereby instead of 

using Pearson curve percentiles, they replaced them with percentiles 

from an appropriate Burr distribution. Their proposed modified 

method involves the following steps: 
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 Estimate the sample mean, sample standard deviation, 

skewness and kurtosis of the original sample data. 

 Calculate standardized moments of skewness ( 3 )and kurtosis 

( 4 ) for the given sample size n as follows: 
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where x  is mean of the observations and s is the standard 

deviation. 
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Kurtosis used in the above equation is excess kurtosis; i.e.  

when calculating kurtosis, a result of +3.00 indicates the 

absence of kurtosis (distribution is mesokurtic). For simplicity 

in its interpretation, some statisticians adjust this result to 

zero (i.e. kurtosis minus 3 equals zero), and then any reading 

other than zero is referred to as excess kurtosis. Negative 

numbers indicate a platykurtic distribution; positive numbers 

indicate a leptokurtic distribution.  

 Use the values of 3  and 4  to select the appropriate Burr 

parameters c  and k  (Burr, 1942). Then use the standardized 
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 /)Q(s/)xX(Z , where X is the random variate of the 

original data, Q is the selected Burr variate, μ  and σ  its 

corresponding mean and standard deviation respectively. The 

mean and standard deviations, as well as skewness and 

kurtosis coefficients, for a large collection of Burr distributions 

are found in the tables of Burr (Burr, IW 1973) and Liu and 

Chen (Liu, P & Chen 2006). From these tables, the 

standardized lower, median and upper percentiles are 

obtained. These tables enable users to make a standardized 

transformation between a Burr variate and another random 

variate using equation (4.3).  

 Calculate estimated percentiles using Burr table for lower, 

median, and upper percentiles as follows:    

 

00135.0p ZsxL     (4.6) 

50.0
ZsxM       (4.7) 

99865.0
ZsxUp       (4.8) 

 

 Calculate process capability indices using equations 2.1-2.4 

presented in the previous chapter under section 2.3, i.e.  
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A practical example following the above steps is presented in the 

following Table 4.1. 

Table 4.1: Process capability calculation procedure using the Burr 
percentile method 

Step Procedure  Calculations 

1 

Enter specifications 

Upper tolerance limit 

Lower tolerance limit 

 

Usl  

Lsl  

 

32 

4 

2 

Estimate sample statistics 

Sample size 

Mean 

Standard deviation 

Skewness 

Kurtosis 

 

n 

X  

s 

Sk 

Ku 

 

100 

10.5 

3.142 

1.14 

2.58 

3 

Estimate standardized moments 

of skewness ( ) and kurtosis 

( ) using Sk and Ku values from 

step 2. 

3

4

3  

 

4  

1.12 

 

4.97 

4 

Based on and from step 3, 

select the parameters and  

values using the Burr XII 

distribution table Burr (Burr, IW 

1973), Liu and Chen (Liu, P & 

3 4

c k c  

 

k  

2.347 

 

4.429 
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Chen 2006) 

5 

With reference to parameters 

and obtained in step 4, use 

the table of standardized tails of 

the Burr XII distribution to 

determine standardized lower, 

median and upper percentiles Liu 

and Chen (2006). 

c k

where = standardized Burr 

variate at percentile p. 

pZ

 

00135.0
Z

 

 

5.0
Z  

 

99865.0
Z

 

-1.808 

 

-0.140 

 

4.528 

6 
Calculate estimated 0.135 

percentile using equation (4.6) 
pL  

=10.5+(-1.808 x 

3.142) =4.819 

7 

Calculate estimated 99.865 

percentile using equation (4.8) 

 

pU  
=10.5+ (4.528 x 

3.142) =24.727 

8 
Calculate estimated median using 

equation (4.7) 
M 

=10.5+(-0.140 x 

3.142) = 10.06 

9 

Calculate non-normal process 

capability indices ( , , , 

) using equations 2.1-2.4.  

pC puC plC

pkC

 

pC  

puC  

plC  

 

pkC  

=(32-4)/(24.727-

4.819) =1.40 

 

=(32-10.06)/(24.727-

10.06) 

= 1.49 

= (10.06-4)/(10.06-

4.819)= 1.15 

=1.15 
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Instead of using moments of skewness and kurtosis to estimate 

parameters of a Burr distribution as presented here, other methods 

such as Maximum Likelihood, Method of Probability-Weighted 

Moments and Methods of L-Moments (O’Connell & Shao 2004) can 

also be used. However, the choice is determined by the fact that 

quality control practitioners with little background in theoretical 

statistics will find the estimation procedure adopted here, which is 

simply a moment matching process, much easier to comprehend and 

apply. 

4.3.   A simulation study 

4.3.1. Comparison criteria 

Different comparison yardsticks can lead to different conclusions. It 

is imperative to adopt such a criterion common among researchers 

and easy to understand and apply by industry professionals. In 

practice, capability indices are commonly used for tracking process 

performances and comparison between different processes. But such 

uses without examining the underlying distribution can lead to 

erroneous outcomes. A good surrogate capability index for non-

normal data should be compatible with the process capability 

computed under normality when the corresponding fractions non-

conforming are about the same. This approach has been adopted in 
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literature. Most of the researchers, for example, English et 

al.(English & Taylor 1993) used fixed value of capability indices  

and =1.0 for all their simulation runs in investigating the 

robustness of these capability indices to non-normality. The basis for 

their comparison was the proportion of estimated  and  from 

simulation data greater than 1.0 for the normal distribution case. 

This leads to a similar approach to Rivera et al. (Rivera, Hubele & 

Lawrence 1995). This approach is widely recognized yardstick for 

tackling the non-normality problem for process capability estimation. 

Rivera et al. (Rivera, Hubele & Lawrence 1995) used upper tolerance 

limits of the underlying distributions to calculate the actual number 

of non-conformance items and equivalent  values. Estimated  

values calculated from the transformed data are then compared with 

the target  values.  Deleryd (Deleryd, M  1996) also used 

proportion of no-conforming items to derive the corresponding value 

of capability index. Then bias and dispersion of the estimated 

capability index have been compared with the target  values. A 

similar motivated scheme has been used as a comparison yardstick 

for one-sided  by Tang et al. (Tang & Than 1999) and Liu and 

Chen (Liu, P & Chen 2006), (Albing 2006) and (Ahmad, Abdollahian 

& Zeephongsekul 2008) in their non-normal PCIs studies. For a 

pC

pkC

pkC

pC pkC

pkC

pkC

C

pC

pu
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target value, the fraction of non-confirming units for a normal 

distribution can be determined using  

puC

)C3(itemsgminconfornonof pu          (4.9) Fraction

 

where refers to the cumulative distribution function of the 

standard normal random variable (Kotz & Lovelace 1998).  

)x(

In this thesis, the criterion for comparing all methods is to determine 

the precision and accuracy of their estimated process capability 

indices.  A most suitable method will have the mean of the estimated 

values closest to the target value i.e. greater accuracy and will 

have the smallest variability, measured by standard deviation of the 

estimated values i.e. greater precision (Tang & Than 1999). 

puC

puC

4.3.2. Underlying distributions 

Weibull, Gamma and Lognormal distributions are used to investigate 

the effect of non-normal data on the process capability index. These 

distributions are known to have the parameter values that can 

represent mild to severe departures from normality. These 

parameters are selected so that we can compare our simulation 

results with existing results using the same parameters in the 

literature Tang et al. (Tang & Than 1999), Liu & Chen (Liu, P & Chen 

2006).  
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The probability density functions of Weibull, Gamma and Lognormal 

distributions are given respectively by  

Weibull (  , ):    

              0x,0,0,/xe1x,xf 



             (4.10) 

Gamma (  , ): 

              0x,0,0,/xe1x
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1
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Lognormal ( ): 2,
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     (4.12) 

Figures 4.1, 4.2 and 4.3 below show respectively the density 

functions of the Weibull, Gamma and Lognormal distributions used in 

our simulation study.  
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Figure 4.1: pdf of Weibull distribution with parameters ( = 1.2, = 
1.0) 
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Figure 4.2: pdf of Gamma distribution with parameters (shape= 1.0, 
scale= 1.0) 

 

Note that Gamma (1, 1) is in fact the Exponential distribution with 

mean 1. 
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Figure 4.3:pdf of Lognormal distribution with parameters (= 0, = 
1.0) 

2

 

4.3.3. Simulation methodology 

In the simulation studies, targeted values of = 0.5, 1.0, 1.5 and 

2.0 have been used. The corresponding value of upper specification 

limit (Usl) for each distribution is obtained with same fraction of non-

conforming items as follows: 

puC

5.05.099865.0pu X)XX(CUsl          (4.13) 

where and are the designated percentiles of the 

corresponding distribution. For example, if   is equal to 1.5, and 

we use say Weibull with parameter values 1.2 and 1, then using any 

statistical package one can obtain  and  for this 

99865.0X
5.0

X

puC

99865.0X 5.0X
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distribution which are 4.8236 and 0.7368 respectively. Then we use 

equation (4.13) to find the corresponding Usl which is 6.867.  

Table 4.2: Simulation methodology 
Step 1 Choose a distribution with known parameters, e.g. 

Weibull  =1.2 and   =1.0 

Step 2 Find  and  for this distribution using any 

statistical package. 

99865.0X 5.0X

Step 3 Choose a target  value, say  = 1.5 puC puC

Step 4 Use equation (4.13) to calculate Usl value, which 

equals Usl=6.867 for this example. 

Step 5 Next we compare 3 methods, Clements (C), Box-Cox 

(B-C) and Burr (Bu) using following steps. 

Step 5-1 Simulate values from underlying distribution 

Step 5-2 Use each method to estimate and  99865.0X 5.0X

Step 5-3 For fixed  value, say 1.5 and corresponding 

value, say 6.867, calculate the   values using all 

three methods (similar to Table 4.1) 

puC

Usl puC

Step 5-4 Compare these calculated  values using standard 

statistical measures and graphs to decide which 

method leads to the most accurate estimate of target 

 value. 

puC

puC
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We simulate 30 samples of size 100 from each distribution and follow 

the steps outlined in Table 4.2 to calculate the corresponding   for 

each sample. Usl value obtained using equation (4.14) and is used to 

estimate the  index pertaining to the different methods from the 

simulated data. These estimated are then compared with the 

targeted  values. A superior method is one with its sample mean 

of the estimated  having the smallest deviation from the target 

value  (accuracy) and with the smallest variability, measured by 

the spread or standard deviation of the estimated  values 

(precision). A graphical representation that conveniently depicts 

these two characteristics is the simple Box-and Whisker plot.  

puC

puC

)s(Cpu

puC

)s(Cpu

puC

)s(Cpu

4.3.4. Simulation runs 

For our simulation study, we have generated 30 samples of size 100 

from Weibull, Gamma and Lognormal distributions. After each 

simulation run, the necessary statistics, such as mean, standard 

deviation, median, skewness, kurtosis, upper and lower 0.135 

percentiles were obtained. In this chapter,  a process capability 

index with unilateral tolerance limit is used as comparison criterion. 

This representative capability index for the non-normal data should 

be compatible with that computed under normality assumption, 

given the same fraction of non-confirming parts (Tang & Than 1999). 

puC
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The estimates for pu  were determined using Burr, Clements and 

Box Cox methods following steps outlined in Table 4.2. The average 

value of all 30 estimated puC  values and their standard deviations 

were calculated and presented in Tables 4.3-4.5 bel

 

ow.  

C

Table 4.3: The mean and standard deviation of 30 values with 

n=100 (Weibull) 
puC

 Burr Clements Box Cox 

Cpu Usl mean Std mean Std mean Std 

0.5 2.780 0.596 0.090 0.590 0.099 0.621 0.100 

1.0 4.824 1.152 0.159 1.159 0.175 0.956 0.194 

1.5 6.867 1.708 0.228 1.727 0.252 1.204 0.283 

2.0 8.910 2.264 0.297 2.296 0.328 1.407 0.367 

 

Table 4.4 :The mean and standard deviation of 30 values with 

n=100 (Gamma) 
puC

  Burr Clements Box Cox 

Cpu Usl mean Std mean Std mean Std 

0.5 3.650 0.578 0.091 0.593 0.105 0.611 0.075 

1.0 6.608 1.117 0.166 1.159 0.188 0.897 0.132 

1.5 9.565 1.655 0.241 1.725 0.271 1.099 0.185 

2.0 12.522 2.194 0.316 2.290 0.354 1.262 0.233 
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Table 4.5: The mean and standard deviation of 30  values with 

n=100 (Lognormal) 
puC

 Burr Clements Box Cox 

Cpu Usl mean Std mean Std mean Std 

0.5 4.482 0.499 0.084 0.496 0.097 0.503 0.048 

1.0 8.339 1.024 0.166 1.031 0.183 0.710 0.061 

1.5 12.009 1.523 0.243 1.541 0.265 0.832 0.070 

2.0 15.679 2.022 0.320 2.050 0.348 0.921 0.076 

 

To investigate the most suitable method for dealing with non-

normality presented by Weibull, Gamma, and Lognormal 

distributions, we present box plots of estimated  values using all 

three methods. The box plots are presented for different targeted 

 values.  Box plots (Figures 4.4-4.6) are able to graphically 

display important features of the simulated  values, such as the 

median, variability and outlier. Figures 4.4-4.6 using Weibull, 

Gamma and Lognormal data indicate that the mean  for Burr 

method is the closest to the targeted  values and the spread of 

the  values using the Burr method is smaller than that of 

Clements method, therefore, indicating a better approximation. Box 

Cox method indicates comparable results for smaller target  

values.  

puC

puC

puC

puC

puC

puC

puC
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Figure 4.4: Box plot of estimated values with target =0.5, 1.0, 

1.5, and 2.0 for Weibull 
puC puC
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Figure 4.5: Box plot of estimated values with target =0.5, 1.0, 

1.5, and 2.0 for Gamma 
puC puC
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Figure 4.6: Box plot of estimated  with target =0.5, 1.0, 1.5, 

and 2.0 for Lognormal 
puC puC

 
 

4.4. Discussion of results  
 

Both Clements and Burr’s methods included in this simulation study 

yield estimates which are close to the target  values. However, 

Box Cox method performs well for smaller targeted  values but 

underestimates for higher targeted  values. As mentioned above, 

the performance yardstick is to determine the accuracy and precision 

with the given sample size. To determine accuracy, we have looked 

at the mean of the estimated  values using all three methods. For 

precision, we have focused on the standard deviation of the 

estimated  values for all three methods.  

puC

puC

puC

puC

puC
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Looking at the results depicted in Tables 4.3 – 4.5, we conclude that 

the Burr method is the one for which the mean of the estimated  

value deviates least from the target  value. Also for a given 

sample size, standard deviation of estimated  values using the 

Burr method is smaller than Clements method. However, Box Cox 

method does not yield results close to any targeted  values 

except for small targeted  values. 

puC

puC

puC

puC

puC

During simulation investigation, we also observed that a larger 

sample size yields better estimates for all methods. Therefore sample 

size does have impact on process capability estimates.  It was also 

observed that a larger target value of  leads to slightly worse 

estimates using all methods.  

puC

4.5. Case studies  

4.5.1. Real example 1 

The data set used in this case study is obtained from a 

semiconductor manufacturing industry. The data are the 

measurements of bonding area between two surfaces with upper 

specification = 24.13. Usl RX  Chart was used to check whether the 

process is stable or not before analyzing experimental data. Figure 

4.7 shows histogram of the data. The histogram indicates that the 
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underlying distribution is not normal and has a long right tail. Using 

a Goodness of Fit Test, the data is best fitted by a Gamma 

distribution with  = 2543.8, 

= 0.00921. 
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Figure 4.7: Histogram of measurement data from an attach assembly 
process 

 

We have used all three methods to estimate  values for 30 

samples of size 50 from this process. The mean and standard 

deviation of the estimated  values using each method is 

presented in Table 4.6. 

puC

puC

Table 4.6: Result of the real example by using 30 Samples of size 
n=50. 
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method 
upper 

tolerance 
(Usl) 

puC  

mean 

puC  

standard 
deviation 

Clements 24.13 0.4368 0.0934 

Burr 24.13 0.4207 0.0768 
Box Cox 24.13 0.4999 0.0608 

 
 
 
 
 
 
 
 

The actual  value of this process (using equation (4.10)) based on 

1500 data is 0.3775. This value is obtained by using  and 

 of the actual data. The results in Table 4.6 show that  mean  

value obtained using the Burr is closest to the actual  value.  

puC

puC 99865.0X

5.0X puC

puC

4.5.2. Real example 2 

In this case study, we present the capability analysis of a real set of 

data called connector obtained from computer manufacturing 

industry in Taiwan (Wang 2006).  The data set has one sided 

specification limit i.e.  Usl= 0.2 mm. Figure 4.8 shows histogram of 

the data. The histogram indicates that the underlying distribution is 

not normal and has a long right tail. Using a Goodness of Fit Test has 

shown that data is not best fitted to any known distribution. 
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Figure 4.8: Histogram of measurement data from connector 
assembly process 

 

All three methods have been applied to estimate process capability of 

this right skewed data.  The estimated  results are presented in 

Table 4.7. 

puC

Table 4.7: Process capability estimation results using n=100. 

method 
upper 

tolerance  
(Usl) 

puC  

mean 

puC  

standard 
deviation 

 

Clements 0.2mm 2.0432 0.4354 
Burr 0.2mm 1.9251 0.3490 

Box Cox 0.2mm 1.2431 0.2266 
 
 

The actual  value of this process (using equation (4.10)) is 

1.8954. This  value is obtained by using  and of the 

actual data. The results in Table 4.7 show that mean  value 

puC

puC 99865.0X 5.0X

puC
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obtained using the Burr and Clements are closer to the actual  

value.  

puC

4.6. Further application of Burr distribution to 

estimate process capability indices  

This section is devoted to new research to investigate Burr 

distribution and its application to assess process capability for non-

normal data. In the previous section, Burr distribution has been 

introduced in the percentile method where as the following section 

deals with its application using two new methods (Ahmad et al. 

2008) and (Hosseinifard et al. 2009).   

4.6.1. Cumulative Density Function method using 

Burr distribution  

In this section, we compare and contrast the Cumulative Distribution 

Function (CDF) method using Burr XII distribution. The results are 

then compared with the latest proposed process capability evaluation 

methods such as Burr percentile method and commonly used 

Clements percentile method when the underlying distribution is non-

normal. Wierda (Wierda 1993) introduced a new approach to 

evaluate process capability for a non-normal data using Cumulative 

Distribution Function (CDF). Castagliola (Castagliola, P 1996) used 
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CDF approach to compute proportion of non-conforming items and 

then estimate the capability index using this proportion. Castagliola 

showed the relationship between process capability and proportion of 

non-conforming items and used CDF function to evaluate PCI for non 

normal data by fitting a Burr distribution to the process data. He 

used a polynomial approximation to replace empirical function in the 

Burr distribution, and then applied the equation given in (4.14).  

Using CDF method,  and  are defined by pC pkC

3

))(5.05.0(1 


usl
lsl dxxf

p
C

                   (4.14) 

where  

3

5.0( 
 lsl f

pl
C

))(1 T dxx

                  (4.15) 

 

3

5.0( 
 T

pu
C

))(1 usl dxxf

         (4.16) 

 

where  represents the normal probability density function of the 

process and T represents the process mean for normal data and 

process median for non-normal data.  

)x(f

 92



Here is a short proof of the above mentioned capability index equation 

(4.14). 

Conventionally, if the process X is normally distributed with mean µ 

and standard deviation σ, i.e. X~N ( ), then capability index is as 

defined as 

2,

 


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  which is equivalent to   










   UslB

z 22

11
                 (4.18) 

As the pdf of Z is symmetric about the origin, 
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By equating (5.9), finally,  
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where we have used (4.19) and (4.20), which concludes the proof. 

In this method in Equation (4.15) is replaced by Burr density 

function (refer to chapter 3). We first fit Burr distribution function 

 to process data and then evaluate the PCI using CDF method.  

)x(f
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To fit the data distribution with Bur distribution, we need to estimate 

 and  parameters. The likelihood function of univariate Burr is:  c k
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
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nn

n1
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)x(kc
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
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       (4.21) 

 

In univariate Burr distribution there are two parameters and k ; and 

to estimate these parameters the maximum likelihood function with 

sample size n is: 

c
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Differentiating with respect to parameters and give: c k
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Unknown Burr parameters  and k  have been determined by 

maximizing equation (4.22) using a systematic random search 

algorithm called Simulated Annealing (refer to chapter 3 for details). 

The steps for SA method to obtain Burr parameters and are 

describes in Table 4.8. 

c

c k

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4.8: Simulated Annealing algorithm 
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1.   Obtain a covariance distance variable data. 

2.   Decide control parameters of SA, i.e.  I,C,T,T fo

3.   Generate random values  kc,

4.   Compute the likelihood function, , at this randomly generated 

values. 

L

5.   If  
oTT 

 Then CTT   

6.   For I = 1 to I 

        6. 1. Generate neighboring values, say , for  11 ,kc kc,

               6. 2. Compute the likelihood function ( ) at the new oL  

solution obtained in step 6.1.  

       6. 3. Evaluate parameters 

               6. 3. 1.  if  then LLo  11, kkcc  , and oLL   

               6. 3. 2. else    

 generate a random value, , from uniform 

distribution  

u

)1,0(Uni

               6. 3. 2. 1. if T
)FF( o

eu



  then 11 kk,cc   

 7.   Print  and  k,c L

           **   are the estimates of Burr distribution ( ) 

parameters.  

kc , kc ,

4.6.1.1 Simulation study 

Three non-normal distributions; Gamma, Weibull and Beta have been 

used to generate random data in this simulation. These distributions 

are used to investigate the effects of non-normal data on the process 

capability index. Same parameters for these distributions have been 

selected as given in research literature (Liu, P & Chen 2006), (Tang 
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& Than 1999). We then compare our simulation results with existing 

results using the same parameters in the literature.  

The probability density functions of Weibull as well as for Gamma 

distributions have been given in equation (4.11) and equation (4.12) 

respectively. The probability distribution function of Beta distribution 

with shape 1 ( ) and shape 2 (  ) is given by  

1x0,)x1(x
)()(
)(

)x(f 11 










 
    (4.21) 

 

The parameters used in this simulation are:  = 4.4 and  = 13.3  
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Figure 4.9: pdf of Beta distribution with parameters ( = 4.4,  = 
13.3) 
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Table 4.9: Comparison results 

Distribution Usl puC * 
puC  

Clements 

puC  

Burr 

puC  

CDF 

Gamma(4,0.5) 6.3405 1.000 0.8698 0.9069 1.0000 

Weibull(1,1.2) 5.0 1.043 0.9694 0.9738 1.0292 

Beta(4.4,13.3) 0.5954 1.002 0.7434 0.7965 1.0028 

 

4.6.1.2 Simulation results 

The  values in Table 4.9 are computed using equation (4.16) 

where  is replaced by the corresponding distributions (i.e. 

Gamma, Weibull and Beta). The  values in Table 4.9 are used to 

access the efficacy of the three methods in estimating process 

capability index for non-normal data. The simulations results show 

that  values obtained using Clements method are not closer than 

those obtained using Burr and CDF methods. The  values 

obtained using the CDF method are the closet to those  values 

obtained using direct distribution percentiles in the conventional 

approach; thus, leading to better estimates of the PCIs compare with 

the Burr method. 

puC

f

puC

)x(

*
puC

puC

puC
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Table 4.10 presents the probability of non-conformance using 

different methods. Probability of Non-Conforming (PNC) items is 

calculated using equation (4.22) as suggested by Castagliola 

(Castagliola, P 1996) for all three methods e.g. for Gamma 

distribution with  value 0.8698, corresponding PNC value using 

equation (4.22) will be 0.0045351. The exact PNC value (p) in Table 

4.10 is obtained using following equation. 

puC


usl

0

dx)x(f1PNC    (4.22) 

where represents the corresponding distribution function of 

Gamma, Weibull and Beta distributions. Comparison criteria is that 

the method which yields expected proportion of non-nonconformities 

closest to that obtained using exact distribution would be the most 

superior method.  

)x(f

 
Table 4.10: Comparison of expected proportion of non-conformaning 
items with exact PNC 

 
Clements 

 p3 
Burr 
 p2 

CDF 
  p1 

Exact 
 p 

Gamma 0.00454 0.00326 0.00135 0.0013 
Weibull 0.00182 0.00170 0.00101 0.0010 
Beta 0.01287 0.00844 0.00131 0.0013 

 
 

Results in Table 4.10 show that PNC values obtained using Clements 

method are worse than the other two methods. In this table PNC 
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values using CDF method are close to the PNC values obtained using 

exact distribution (equation (4.22)). Thus the later method is giving 

better estimates of proportions of non-conformances as compared to 

the commonly used Clements and Burr methods (for details refer 

(Ahmad, Abdollahian & Zeephongsekul 2008)). 

4.6.2. Root Transformation Technique 

As mentioned in chapter 2, the most serious issue with non-normal 

data is its existing skewness. Niaki et al. (Niaki & Abbasi 2007) used 

root transformation technique to design multi attribute control 

charts. In the proposed root transformation technique, we extend 

this technique to search the best root (r) of the non-normal data in 

such a way that if we raise the data to power r (i.e. ), then the 

transformed data will have zero skewness. We use the bisection 

method to find the r value. The bisection method is based on the fact 

that a function will change sign when it passes through zero. By 

evaluating the function at the middle of an interval and replacing 

whichever limit has the same sign, the bisection method can halve 

the size of the interval in each iteration and eventually find the root. 

Best root transformation search algorithm is given in Table 4.11 and 

an application example of this method using real data is presented in 

section 4.8. 

rX
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Table 4.11: Best root transformation search algorithm 
    Let  

                    0k 

    while   

1( )kf x  
 

     
1 2

k k
k

a b
x 




 

    if  

 1( ) ( ) 0k kf x f a 
  

   then  

          1 1 and k k k ka a b x  1   
   else 

         1 1 and k k kb b a x  k   
   end If 

    1k k 

   end  

   while  kx*x   

After finding the best root value, we calculate new specification limit 

by using , and then estimate mean and standard deviation 

of the transformed data to use classical method to estimate PCI. We 

stop the iteration in the bisection procedure when skewness is less 

than 0.05 or after 200 replications. 

r)Usl(Usl 

4.6.2.1 Simulation study  

In the simulation study we use three non-normal distributions: 

Gamma, Weibull and Beta. We need some target values for PCI to 
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compare the estimated PCIs of different methods. Hence to provide 

target values for PCI in each distribution we obtain appropriate upper 

specification limits. We use four target  values of   0.5, 1, 1.5 and 

2 for this simulation study.   

puC

English & Taylor (English & Taylor 1993) used fixed values of  and 

(equal to 1.0) for all their simulation runs in investigating the 

robustness of PCIs to non-normality. The basis for their comparison 

was the proportion of  and  (estimated from simulation) 

greater than 1.0 for the normal distribution case (Tang & Than 

1999)).  

pC

pkC

pC pkC

In this thesis a procedure similar to that of Rivera et al. (Rivera, 

Hubele & Lawrence 1995) and Tang et al. (Tang & Than 1999) 

mentioned earlier in this chapter is used to calculate the upper 

specification limit corresponding to the target PCI. If we have the pdf 

of the data then the exact can be obtain from equation (4.23) 

(see Castagliola (Castagliola, P 1996)). Therefore corresponding Usl 

for each target should be true in equation (4.23). Equation (4.24) 

is used to obtain the upper specification limit for the given target 

.  

puC

puC

puC
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)C3((Fusl pu
1     (4.24) 

where  and are probability density function and cumulative 

density function of x respectively. 

)x(f )x(F

In our simulation study, target values of Cpu = 0.5,1, 1.5 and 2 are 

used, the corresponding Usl values for Gamma, Beta and Weibull 

distributions are obtained from equation (4.23). These values are 

then used to estimate the  using root transformation, Box-Cox 

and percentiles methods. These estimated  values are then 

compared with the targeted values.  Again, a superior method is 

the one with sample mean of the estimated C  closest to the target 

value (accuracy) and with the smallest variability, measured by 

the spread or standard deviation of the estimated  values 

(precision). Table 4.12 and Table 4.13 show the results of simulation 

study. 

Usl

C

puC

puC

puC

pu

puC

pu
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Table 4.12: Simulation study results (sample size n= 100)  

 
 
 
 
Table 4.13 : Simulation study results (sample size n= 1000) 
 

 

 

The results presented in Table 4.12 and Table 4.13 of this simulation 

study are based on samples of size n=100 and n=1000. The results 

indicate that root transformation method provides more accurate 

results compare with the percentiles method even when the exact 

distribution percentiles for PCI calculations are used. The results also 
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indicate that in most cases root transformation method performs 

better than Box-Cox method.  

4.6.2.2 Case Study 

A case study is presented using real world data from a 

semiconductor manufacturing industry. Percentiles, Box-Cox and root 

transformation methods have been used to estimate PCI for the 

experimental data. The data are the measurements of the contact 

area between two surfaces with Usl= 24.  Thirty samples of size 50 

are selected from these data. The summary statistics for 1500 data 

are Mean = 23.4809, standard deviation = 0.5650, median = 

23.3963, skewness = 1.1098 and kurtosis= 4.9740. For each 

sample;   value is computed using Clements, Burr, Box-Cox and 

root transformation methods. 

puC

The results presented in Tables 4.14 indicate that root 

transformation method provides a better estimation of PCI compared 

to the other three PCI methods. The proportion of nonconforming 

(PNC) of the process data is 0.168 (that is 16.8% of data are above 

= 24) which is very close to the expected proportion of non-

conforming based on the proposed root transformation method. 

Usl
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Table 4.14: Result of the real example based on 30 samples of size 
n=50  

 puC    
           methods 

Mean Standard  
Corresponding 

PNC   
BRT 0.328 0.1097 0.1626 Transformation 

methods Box-Cox  0.358 0.0794 0.1416 
Burr  0.348 0.066 0.1483 Percentile 

methods Clements 0.361 0.081 0.1396 

 

The desired performance of root transformation method is depicted 

in Table 4.14. Both simulation and case study using experimental 

data from a semiconductor industry have indicated that root 

transformation technique provides better estimate of the process 

capability for non-normal processes compared with Box-Cox and 

percentiles methods; however Box-Cox method has smaller standard 

deviation.  

4.7. Summary 

The main purpose of this chapter is to compare and contrast among 

different methods of obtaining process capability indices and 

determine which method is more capable in achieving higher 

accuracy in estimating these indices for non-normal quality 

characteristics data. Simulation study as well as experimental data 

indicates that among percentile methods Burr percentile method 
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generally provides better estimate of the process capability for non-

normal data. CDF and Root transformation methods have also 

indicated a potential to accurately estimate proportion of non-

conforming products as well as process capability index, when 

underlying data is non-normal when compared to the percentile 

methods.  

In the following chapter, application of Burr distribution for a bi-

variate non-normal data will be discussed. 



Chapter 5  

BIVARIATE PROCESS CAPABILITY 

ANALYSIS 

 

5.1. Introduction 

It is well known that process capability analysis for more than one 

quality variables is a complicated and sometimes contentious area 

with several quality measures vying for recognition. When these 

variables exhibit non-normal characteristics, the situation becomes 

even more complex. The aim of this chapter is to estimate Process 

Capability Indices (PCIs) for bivariate non-normal process using the 

bivariate Burr distribution. In the previous chapter, we have seen 

that by using Burr XII distribution, the accuracy of estimates of 

process capability for univariate non-normal distributions (see for 

example, (Castagliola et al. (Castagliola, P  & Castellanos 2005)and 

Liu & Chen (Liu, P & Chen 2006), Ahmad et al. (Ahmad, Abdollahian 

& Zeephongsekul 2008)) is much improved. In this chapter, we will 

extend application of bivariate Burr distribution to estimate process 

capability for bivariate non-normal data. Cumulative Density 

Function (CDF) method will be deployed for non-normal bivariate 

data in contrast to its (CDF) method original application to bivariate 
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normal data (Castagliola et al. (Castagliola, P  & Castellanos 2005)). 

The process of obtaining these PCIs will be accomplished in a series 

of steps involving estimating the unknown parameters of Burr 

distribution using maximum likelihood estimation coupled with 

simulated annealing. Finally, the Proportion of Non-Conformance 

(PNC) obtained using this method will be compared with those 

obtained from variables distributed under the bivariate Beta, Weibull, 

Gamma and Weibull-Gamma distributions. 

5.2. Non-normal process capability for more 

than one quality characteristics  

In the field of statistical quality control, it is generally assumed that 

the distributions of quality characteristics are normal. But, in most 

practical cases this assumption is not valid and the distribution of the 

quality characteristics may follow non-normal distributions such as 

Gamma, Beta, and Weibull distributions. In the past decade, several 

modifications of classical process capability indices have been 

proposed to resolve the issue of non-normality for quality 

characteristics data.  

Although many researchers have proposed several methods to 

handle the issue of non-normality for univariate quality 

characteristics data, however, it is often observed that quality of a 

product does not depend only on a single quality characteristic. Thus 
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process capability estimation for more than one quality characteristic 

is vital.  In the research literature few efforts have been presented 

for construction of bivariate as well as multivariate PCIs.  

PCIs for more than one quality characteristics, in general, can be 

obtained from (a) the ratio of a specification region to a process 

region or modified process variation region, (b) the probability of 

nonconforming items over rectangular tolerance zone, and (c) 

implementing loss functions and vector representation, (d) 

theoretical proportion of non-conforming items over convex 

polygons, (e) global approach viewing multivariate quality control 

(Zahid & Sultana 2008). Taam et al. (Taam, Subbaiah & Liddy 1993) 

developed the first multivariate process capability index based on 

ratio of tolerance region to a process region approach. Chen (Chen, 

H 1994) also proposed a method for multivariate PCI using a non-

conforming proportion approach. Shahriari et al. (Shahriari, Hubele & 

Lawrence 1995) proposed a process capability multivariate vector in 

order to evaluate process performance. Castagliola et al. 

(Castagliola, P  & Castellanos 2005) proposed a new capability index 

dedicated to two quality characteristics. This approach is based on 

the computation of the theoretical proportion of non-conforming 

items (PNC). This approach has some interest for researchers as it is 

straightforward, logical and easy to deploy by non-statisticians 

(engineers and front line quality practitioners), for normal as well as 
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for non-normal data. Castagliola et al. (Castagliola, P  & Castellanos 

2005) have also extended univariate method as presented in 

Castagliola (Castagliola, P 1996) to bivariate distribution but again 

limited its application to bivariate normal data, and compared the 

results against existing methods for multivariate normal processes. 

In this research work, Cumulative Density Function (CDF) approach 

has been extended to estimate bivariate non-normal PCI where 

bivariate Burr distribution is fitted to bivariate non-normal quality 

characteristics. Preliminary to this, we also use the bivariate Burr 

distribution with three parameters (Durling 1975) to fit bivariate 

non-normal data. Another contribution of this thesis is to estimate 

parameters of fitted Burr distribution to the bivariate non-normal 

data using heuristics technique called Simulated Annealing (SA), 

(refer to chapter 3 for details). 

5.2.1. Cumulative Density Function (CDF) 

approach for bivariate data 

Castagliola (Castagliola, P 1996) defined a relationship between 

process capability and proportion of non-conforming items and 

presented a new approach to evaluate process capability index for 

non-normal data. This approach is based on the generalized Burr 

distribution to assess the capability of the process data. Through the 

sample empirical distribution function, he used a polynomial function 
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to approximate a Burr distribution and from this obtained the Process 

Capability Indices. 

As mentioned in Chapter 4, using Cumulative Density Function (CDF) 

method for the normal quality characteristics data,  and  are 

defined by 

pC pkC

3

usl
lsl )dx)x(f5.05.0(1

pC


  (5.1) 

 

 

)Cpl,Cmin(C pupk     (5.2) 

 

where 

 

3

T
lsl )dx)x(f5.0(1

plC


   (5.3) 

and 

 

3

))(5.0(1 


usl
T dxxf

pC
             (5.4) 

where )x(f represents the probability density function of the process 

and T represents process target.  For non-normal distribution, the 

above equations can still be used to obtain process capability; but T 

would represent the median instead of mean of the process data. 
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Castagliola et al. (Castagliola, P  & Castellanos 2005) extended 

above mentioned univariate CDF method to multivariate normal 

distribution; by replacing the univariate probability density function 

 in equation (5.1) with the multivariate normal probability 

density function    with a multivariate normal pdf.  

)(xf

),...,,( 21 pxxxf
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         (5.6) 

 

Keeping in view the above literature survey, there is an opportunity 

for researchers to explore a suitable capability evaluation method 

that can address the complex situation of multivariate non-normal 

data.  In this research study, we replace probability density function 

 in equation (5.6) with the bivariate Burr distribution. The 

efficacy of the proposed method will be assessed by using the 

Proportion of Non-Conformance (PNC) criterion. In the proceeding 

section, a review of bivariate Burr distribution is presented first. 

)x,x(f 21

5.3. Bivariate Burr distribution 

Burr (Burr, IW 1942) developed a number of useful cumulative 

frequency functions which can describe various non-normal 

distributions. One of them is the Burr XII distribution. This distribution 

has been reviewed thoroughly in chapter 4. In this section we will 
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review bivariate Burr distribution. Durling (Durling 1975) introduced 

the bivariate Burr distribution as follows: 
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The cumulative distribution function has the form: 

 

,p)2b
2x1b

1x1(p)2b
2x1(p)1b

1x1(1)2x,1x(F    

        (5.8) 

In the bivariate Burr distribution there are three parameters,  

and  to be estimated. These parameters can be estimated by 

maximizing the log-likelihood function based on a sample of size n 

given by L: 

  21 b,b

 

 (5.9) 
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n,........2,1j),x,x( j2j1   is an observed bivariate sample. The first order 

condition for maximizing L with respect to  and p  lead to the 

following equations:  

  21 b,b
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Since the process of obtaining the solutions to (5.10) – (5.12) is 

numerically challenging, in this chapter we will use a systematic 

random search algorithm called “Simulated Annealing” (refer to 

Chapter 3 for details) to obtain the estimated parameters directly from 

equation (5.9). 
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5.4. Fitting bivariate Burr distribution to 

bivariate non-normal data 

As mentioned earlier, the Cumulative Density Function (CDF) method 

will be used to evaluate process capability for non-normal bivariate 

characteristics. To use equation (5.6), one needs to calculate the 

probability of quality characteristics falling between specification 

limits. In order to calculate this probability we first need to know the 

distribution of the data.  

As shown in the earlier chapter Burr distribution can easily be fitted 

to any real data, in this chapter we use bivariate Burr distribution to 

calculate the probability of non-conforming products in a bivariate 

non-normal process. Maximum likelihood estimation (MLE) method is 

used to estimate its unknown parameters   and p . Since the 

maximum likelihood function (MLF) of bivariate Burr is complex and 

may have some local optima, and numerical methods used to solve 

equations may also give local optima, we will maximize likelihood 

function by using Simulated Annealing algorithm (SA). Abbasi et al. 

(Abbasi et al. 2006) used simulated annealing to estimate three 

parameters of Weibull distribution through MLE method and they 

observed that it was fast and the results were very accurate.  

 21 b,b
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5.4.1. Process capability evaluation using bivariate 

Burr distribution  

After obtaining bivariate Burr distribution and fitting to bivariate non-

normal data, we will then use equation (5.6), replacing 

  in the numerator with the bivariate Burr distribution 

(equation (5.12)) to compute process capability. Table 5.1 outlines 

the procedure of the proposed procedure. 

)x,.....x,x(f p21

Table 5.1:  computation procedure pC

Step 1 Select a sample from the process. 

Step 2 Write down the maximum likelihood function 

(MLF) for sample based on bivariate Burr 

distribution. 

Step 3 Maximize MLF by using Simulated Annealing and 

estimate    and .  21 b,b p

Step 4 From Eq (5.6) compute the difference between 

cumulative densities function at the upper 

specification limits (  and the lower 

specification limits( , i.e.  

)Usl,Usl( 21

)Lsl,Lsl 21

)Lsl,Lsl(F)Usl,Usl(FB 2121  . 

Step 5 

3
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Step 6 Compute the corresponding )C3(PNC p  and 

compare it with the PNC obtained from the exact 

distribution for example Gamma. 

 

5.5. Simulation studies 

The purpose of this section is to show the ability of the proposed 

method for estimating the  value of non normal bivariate 

processes. Simulation studies have been conducted for bivariate non-

normal processes.  As discussed in the previous chapter different 

comparison yardsticks can lead to different conclusions. It is 

imperative to adopt such a criterion common among researchers and 

easy to understand and applicable by industry professionals. In this 

simulation study we will use the same comparison criterion as 

mentioned under Section 4.3, i.e. we use upper tolerance limits of 

the underlying distributions to calculate the actual number of non-

conformance items and their corresponding  values. Estimated  

values calculated from the fitted burr distribution are then compared 

with the target  values.   

pC

pC pC

pC

 

For this simulation study, underlying bivariate non normal 

distributions such as Gamma, Beta and Weibull and Weibull- Gamma 
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are used. Table 5.2 depicts the simulation methodology for this 

research study. NORmal-To-Anything (NORTA) method is used to 

generate simulation bivariate data. Refer to Cario & Nelson (Cairo & 

Nelson 1997) and Niaki et al. (Niaki & Abbasi 2007) for discussion of 

the procedures used to generate this simulation data. Table 5.2 

illustrates the simulation methodology procedure for this research 

study.  

Table 5.2: The flowchart for simulation methodology 
Step 1 Generate 100 vectors from bivariate non-normal using one 

of above distributions. Compute expected proportion of non- 

conformance (p*) by using 1,000,000 data from the 

corresponding distribution e.g., Gamma and calculate the 

proportion of data falling outside the given USL. 

Step 2-1 Fit Maximum likelihood function of Bivariate Burr distribution 

to data. 

Step 2-2 Estimate parameters of the fitted bivariate Burr distribution 

using SA. 

Step 3 Use Castagliola method to compute  for Bivariate Burr 

distribution Eq (5.6) 

pC

Step 4 Compute proportion of non-conforming for Cpu 

 say p** )C3(PNC p

Step 5 Compare p* and p** to evaluate the accuracy of the 

proposed method 
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Table 5.3 presents the parameters of the bivariate non-normal 

distributions in the simulation study. The  value computed using 

the exact bivariate distributions, for   example Gamma, is presented 

under exact distribution, then we have generated m=30 samples of 

size n=100 and fitted a bivariate Burr distribution to each sample. 

The parameters    and  for the fitted Burr distribution are 

estimated using simulated annealing (SA) algorithm. 

pC

 21 b,b p

 
Table 5.3: Simulation methodology for bivariate non-normal 
distribution 

 

 

The  of these 30 samples are calculated using equation (5.6). 

The mean and standard deviation for 30 computed   are 

presented in the last column of Table 5.3.  The results in Table 5.3 

)s(Cp

)s(Cp
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show that the mean  for different bivariate non-normal 

distributions are very close to the exact  value calculated using 

exact distribution (for example  value for using exact Beta 

distribution data in Table 5.3 is 0.8645 vs. fitted Burr distribution to 

the same data which   value of 0.8100). From the results in the 

last column of Table 5.3 one can imply that the proposed CDF 

method enables user to estimate  value reasonably accurate by 

fitting bivariate non-normal data with the bivariate Burr distribution.  

pC

pC

pC

pC

pC

 
Table 5.4: Proportion of non-conformance 

Distribution Burr PNC (p**) Expected PNC  (p*) 

Gamma 0.033 0.020 

Gamma 0.002 0.002 

Beta 0.015 0.010 

Weibull 0.006 0.007 

Gamma, Weibull 0.013 0.010 

 

To further assess the efficacy of the proposed method, we have also 

calculated the Proportion of Non-Conformance (PNC) data using 

. Table 5.4 shows that the proportions of non-

conforming items using proposed method is close to the expected 

proportion of non-conforming items obtained using the true 

underlying distributions. 

)C3(PNC p
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5.6. Conclusion  

In this chapter, Cumulative Density Function approach for bivariate 

data has been discussed and applied to estimate the process 

capability index for bivariate non-normal quality characteristic data. 

We used the bivariate Burr distribution to fit the probability density 

function to the bivariate non-normal data. We have used simulated 

annealing algorithm which will maximize the log likelihood function 

based on Burr distribution. We have presented the results using 

simulated data from non-normal bivariate distribution such as 

Gamma, Beta and Weibull. The results revealed that the proposed 

method provides close estimates of process capability when 

compared with the values of process capability obtained using exact 

distribution. Using the expected non-conformance proportion 

criterion, the results indicate that proportions of non-conformance 

obtained using the proposed method is close to those obtained under 

the exact distributions.   

In the following chapter, application of Burr distribution to estimate 

process capability for a multivariate non-normal correlated quality 

characteristics data will be discussed. 



Chapter 6  

MULTIVARIATE PROCESS CAPABILITY 

ANALYSIS 

6.1. Introduction 

This chapter describes process capability measures for multiple 

quality characteristics.  Unfortunately, multivariate capability 

measures that are currently employed, except for a handful of cases, 

depend intrinsically on the underlying multivariate data being 

normally distributed. In reality, the quality characteristics data is not 

only multivariate but also non-normal and most often quality 

characteristics are interrelated with each other. This non-normality 

and correlated characteristics of multivariate data poses a challenge 

to researchers to investigate accurate and effective process 

performance yardstick in the area of quality control. 

In this chapter, we will present different methods to investigate a 

suitable multivariate performance measure. In the first section we 

will deploy geometric distance introduced by Wang (Wang 2006) to 

reduce the dimensionality of the correlated non-normal multivariate 

data and then fit Burr distribution to the geometric distance variable. 

The optimal parameters of the fitted Burr distribution will be 
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estimated using different numerical techniques. The proportion of 

non-conformance (PNC) will be used as a criterion for process 

performance measurements.  

In the later part of this chapter we will introduce an innovative 

approach for a multivariate capability index based on the Generalized 

Covariance Distance (GCD). This proposed approach (Ahmad et al. 

2009) is easy to use by frontline managers and quality practitioners. 

Another novelty introduced in this methodology is to approximate 

the distribution of these distances by a Burr XII distribution and then 

estimate its parameters using different numerical techniques. 

Examples based on real manufacturing process data are also 

presented which demonstrate that the proportion of nonconformance 

using proposed GCD method is very close to the actual proportion of 

nonconformance value. 

6.2. Background of multivariate PCIs 

It is an established fact that production processes very often produce 

non-normal data, and there is always more than one quality 

characteristics of interest in process outcomes and very often these 

characteristics are correlated with each other. For example in Taam 

et al. (Taam, Subbaiah & Liddy 1993), an engineering drawing of a 

connecting rod for a combustion engine specifies the dimensions of 
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crank bore inner diameter, pin bore inner diameter, rod length, bore 

true location, bore to bore parallelism and other features. To 

represent how well this connecting rod is made, one may examine 

numerical summaries of individual characteristics or a comprehensive 

summary for all characteristics. If one treats the rod as one entity, 

the latter is preferred. In situations where the design intent of a 

product is prescribed by a number of related characteristics, the 

functionality of this product cannot be represented by individual 

characteristics separately. Many other such examples are scattered 

in quality control literature. This poses the need of multivariate 

process capability analysis.  

As mentioned in Chapter 5, in general, multivariate capability indices 

can be obtained from (a) the ratio of a specification region to a 

process region or modified process variation region, (b) the 

probability of nonconforming items over rectangular tolerance zone, 

and (c) implementing loss functions and vector representation, (d) 

theoretical proportion of non-conforming items over convex 

polygons, (e) global approach viewing multivariate quality control 

(Zahid & Sultana 2008). Taam et al. (Taam, Subbaiah & Liddy 1993) 

defined the first multivariate process capability index based on ration 

of volume of the modified tolerance region (R1) to the volume of 

99.73% process region (R2) approach.  
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2RofVolume
1RofVolume

pmMC                          6.1 

If the process data are multivariate normal, the R2 is an elliptical 

region. The modified tolerance region is the largest ellipsoid 

completely within the engineering tolerance region and centered at 

the target. 

Chen (Chen, H 1994) also proposed a method for multivariate PCI 

using a non-conforming proportion approach over a rectangular 

tolerance zone. In this method a general tolerance zone is defied by 
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where  is a specific positive function with the same scale as x , 

 is a target value and 
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T vRT   is a constant vector and  is a 

positive number. Then a rectangular solid tolerance zone is defined 

by 
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The process is capable if  1)Vx(P . 
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Let   1)c)Tx(h(P:cminr

)Tx(h 

. If the cumulative distribution 

function of  is increasing in a neighborhood of r , then r  is 

simply the unique root of equation  1)c)Tx(h(P . The 

process is deemed capable if 0rr  . Here.  is the half-width of the 

tolerance interval centered at the target value 

0r

0  and r  is the half 

width of an interval centered on the target value such that the 

probability of a process realization falling within this interval is 

.  1

Shahriari et al. (Shahriari, Hubele & Lawrence 1995) proposed a 

process capability multivariate vector in order to evaluate process 

performance. Hubele et al. (Hubele, Shahriari & Cheng 1991), using 

multivariate normal distribution, defined PCI as the ratio of the 

rectangular tolerance region to modified process region which is the 

smallest rectangle around the ellipse with type I error . 

The number of quality characteristics in the process is taken into 

account by taking the  root of the ratio where 

0027.0

th   represents the 

number of quality characteristics.  This leads to the following index: 








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Here the modified tolerance region is the largest ellipsoid centered at 

the target which falls completely within the original tolerance region.  

 

Wang (Wang et al. 2000) compared the above two multivariate 

process capability indices and presented some graphical examples to 

illustrate them. Chen et al. (Chen, K, Hsu & Wu 2006) extend Boyles’ 

work (Boyles 1994) for multivariate normal distribution. They have 

also extended Huang et al.’s (Huang, Chen & Hung 2002) work for 

multivariate data but they have not considered the correlation 

between the variables. They computed process capability for 

multivariate data (without correlation) and for each individual 

variable.                                  

Further from literature review, Kotz and Johnson reviewed the 

multivariate process capability indices thoroughly for assessing 

multivariate processes (Kotz & Johnson 1993), (Kotz & Johnson 

2002)). According to (Wang 2006), multivariate capability indices 

proposed by many researchers in recent years suffer from the 

following restrictions: 

 Normality assumption on multivariate data is usually required.  

 Confidence intervals of the multivariate capability indices are 

difficult to derive.  
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 Higher dimension (more than three quality variables) 

capability indices are not readily obtainable except by the 

geometric distance approach and the principal component 

analysis method proposed by Wang et al (Wang & Hubele 

1999)and Wang and Du (Wang & Du 2000).  

Due to the above restrictions, it is evident that application of the 

conventional methods is limited. In order to deal with non-normal 

multivariate and correlated quality characteristics data, there is an 

opportunity for researchers to develop a more suitable PCI that can 

address the complex situation of multivariate non-normal and 

correlated data.  

Geometric distance approach is used to reduce higher dimensionality 

of multivariate data in the first part of this chapter. Here we propose 

to fit just one distribution Burr XII distribution to the geometric 

distance variable instead of the traditional practice adopted and cited 

in statistical literature, i.e. fitting different distributions to the 

geometric data (Wang et al. (Wang & NF 1999), Wang (Wang 

2006)). Furthermore, different numerical techniques such as 

Simulated Annealing, Compass direct search and Evolutionary 

Algorithm will be deployed to estimate parameters of the fitted Burr 

distribution. Also a comprehensive analysis based on conformance or 

nonconformance to customer specifications will be conducted. The 
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efficacy of the proposed methods will be assessed by using the 

proportion of nonconformance (PNC) criterion. The performance of 

geometric distance variables using Best-fit method and Burr fit 

methods is presented in the first part of this chapter. 

6.3. Analysis methodology 
  

Although several methods have been proposed to deal with non-

normal univariate quality characteristics data, there has not been 

much research work devoted to process capability studies for 

multivariate non-normal quality characteristics. This field is still wide 

open for researchers. In the proceeding section; we will briefly 

review research methodology in regards to the subject mater and 

discuss fitting Burr distribution to geometric distance data.  

6.3.1. Geometric distance approach 
 

Geometric Distance (GD) approach was proposed by Wang and 

Hubele (Wang & Hubele 1999). It reduces the dimension of the 

multivariate process data and renders them more tractable for 

statistical analysis. The GD approach utilizes the Euclidean distance 

(or L2 norm) which is defined as follows:  
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Let represent a point from a sample 

space and let be the corresponding target 

value. Then the Geometric Distance (GD) variable is defined by 
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A comprehensive study of the distribution of GD when the underlying 

variables have a multivariate normal distribution was undertaken in 

Wang et al. (Wang & Hubele 1999). When the underlying distribution 

is non-normal, Wang (Wang 2006) combined correlated quality 

characteristics to form GD and determined the distribution that best 

fits GD by using Best-Fit statistical software.  In this chapter, instead 

of using different distribution as practiced in the Best-fit approach 

(Wang 2006), we will fit just one distribution, the Burr XII 

distribution to the geometric distance data. Burr XII distribution has 

been applied extensively in the area of quality control, reliability 

analysis, and failure time modeling ((Ahmad, Abdollahian & 

Zeephongsekul 2007b), (Liu, P & Chen 2006), (Castagliola, P 1996)) 

and also cited in the research literature for its versatility to fit any 
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real data. Another hurdle to measure multivariate process 

performance is that every critical characteristic has its own 

specification limit. In the next section we will discuss how these 

multiple specification limits can be converted to single specification 

limit. 

6.3.1.1 Conversion of multiple specification limits to 

single specification limit using maximum radial distance 

approach 

The Maximum Radial Distance (MRD) {Wang, 1999 #18} is used as 

the upper specification of the geometric distance variable. MRD is the 

distance between the target and the perimeter of the tolerance 

region. One sided specification as proposed by many researchers 

((Ahmad et al. 2008), (Liu, P & Chen 2006), (Tang & Than 1999), 

(Singpurwalla 1998)) is used here as a performance yardstick when 

the quality characteristics data do not follow normal distribution. In 

this case median = 0 and the upper specification limit (Usl ) is 

defined by MRD:   

2
x

2
X

2
X

2
X )Tol,.....()Tol()Tol()Tol(MRD

k321
          (6.6) 

 

where TolXi = Tolerance perimeter (s) of the quality characteristic Xi 

 ,  .k,......,2,1i
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6.3.1.2 Estimation of the proportion of 

nonconforming products (PNC) 

The criterion which is used to assess the efficacy of the proposed 

method is to determine the proportion of non-conformance as 

proposed by many researchers in the quality literature ((Ahmad, 

Abdollahian & Zeephongsekul 2008; Liu, P & Chen 2006; 

Singpurwalla 1998; Tang & Than 1999). Hence, using MRD as upper 

bound (Wang 2006) the estimated proportion of non-conformance 

for each geometric distance variable is given by:  


MRD

0

dx)x(f1)MRD(F1PNC     (6.7) 

and 

Probability of the product conforming for a single variable 

        (6.8) 
MRD

0

dx)x(f

where is the density function of the Burr XII distribution. )x(f

It is straightforward to generalize this to higher dimension; the 

estimated proportion of nonconforming for a manufactured product 

with multiple quality characteristics is given by (Wang 2006) 
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and 

Probability of the product conforming for multiple variables   

             (6.10)  
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where  is the density function of the ith GD variable, 
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Table 6.1: A flowchart of the proposed methodology using Geometric 

Distance Approach 

1. Identify the desired multiple quality characteristics along with 

their respective engineering specifications. 

2. Collect measurements of these quality characteristics data from 

a manufacturing process. 

3.  Determine the correlated and uncorrelated quality 

characteristics using statistical software 

4. Compute geometric distance variable (GD) for correlated and 

uncorrelated quality characteristics using equation (6.5). 

5. Compute maximum radial distances (MRD(s)) from the target 
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6. Determine geometric distance variables that do not have any 

significant correlation with each other using statistical software.  

7. Use random search method to estimate the parameters of the 

fitted univariate Burr distribution to each geometric distance 

variable. 

8. Compute the proportion of conforming items for each geometric 

distance variable (using equation (6.8)). 

9. Compute the proportion of nonconformance (PNC) for each 

geometric distance variable using equation (6.7). 

10.Compute total proportion of nonconformance (PNC) value using 

equation (6.9). 

 

6.3.1.3 Distribution Fitting to Geometric Data and 

Parameter Estimation 

The parameters of the fitted Burr distribution to Geometric data are 

estimated using different numerical techniques (refer Chapter 3 and 

4 for details). Our approach contrasts with that adopted by Wang 

(Wang 2006), where different distributions are fitted to different sets 

of geometric distance data using best-fit technique.  
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6.4.  Comparisons with results using Geometric 

Distance (GD) approach 

In order to demonstrate the application of the proposed 

methodology, a real data set is used from Wang’ paper (Wang 

2006). Wang discussed a manufacturing product (called connector) 

from a computer industry having multivariate (seven) quality 

characteristics. These seven characteristics are X1 (contact gap X), 

X2 (contact loop Tp), X3 (LLCR), X4 (contact x Tp), X5(contact loop 

diameter), X6 (LTGAPY) and X7 (RTGAPY), respectively. The 

specification limits for these characteristics can be two-sided or one-

sided, and they are 0.10 ± 0.04 mm, 0 + 0.50 mm, 11 ±5 m ,0 + 

0.2 mm, 0.55 ± 0.06 mm, 0.07 ± 0.05 mm and 0.07 ± 0.05 mm, 

respectively. The full data is given in Appendix A1. 

6.4.1. Example 1 
 

For the first example, we selected a sample of 100 parts with three 

quality characteristics. The specification limits for these three quality 

characteristics are 0.10 ± 0.04 mm, 0 + 0.50 mm, 11 ±5 m  

respectively. Histogram of selected three quality characteristics is 

given in Figure 5.1.  


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Figure 6.1: Histogram of X1, X2, X3 characteristics. 

 

Using a statistical package we found that variables  are 

correlated. Correlation and Covariance matrix are given in Table 6.2 

below:  

},,{ 321 XXX

Table 6.2: Correlation and Covariance Matrix 
 

Correlations:X1, X2, X3   Covariances:X1, X2, X3 
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  X1 X2     X1 X2 

X2 0.168     X1 0.0000879   

  0.095     X2 0.0000526 0.0011161 

X3 -0.044 -0.017   X3 -0.0005381 -0.0007216 

  0.66 0.869         

 

Using the geometric distance approach (Wang 2006), new univariate 

variable (GD) is given by 

2
3

2
2

2
1 )11X()0X()1.0X( GD  

 

The numerical results of the geometric variable are given in Table 

6.3. The data is reduced from multivariate dimension to univariate 

dimension. 

Table 6.3: Geometric distance variable data for X1, X2 and X3 

 
GD GD GD GD 

0.22670 3.74730 1.28260 0.93040 
0.16490 0.44080 1.44450 1.06170 
0.09300 4.48960 1.63410 1.01460 
0.42890 4.11990 0.48420 1.37030 
0.29490 0.22090 0.91660 1.21480 
0.29310 0.57590 1.41780 1.24580 
0.51990 0.34790 0.83700 0.33240 
0.22270 0.43450 0.81690 0.67060 
0.16070 0.22740 1.02110 0.35920 
0.23290 0.62170 0.65070 0.75850 
0.34510 0.96020 0.89690 1.00190 
0.40060 1.27150 0.78950 0.22600 
0.12760 1.38680 1.70420 0.71950 
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0.27120 1.36900 1.53540 0.73560 
0.39440 1.45620 0.88310 0.83630 
0.37460 1.28410 1.18320 1.66870 
0.33520 0.84090 0.91810 1.25220 
0.33730 1.22940 1.35020 1.15580 
0.10550 1.51320 1.12100 1.68570 
0.75520 1.08030 0.55750 0.71970 
0.22610 1.02610 1.03290 0.82650 
0.09850 0.82730 1.19960 0.78920 
0.19680 1.38710 1.02670 1.63370 
3.60420 1.34210 0.94180 1.61810 
4.21820 1.25510 0.96150 1.55800 

 
 

 

 

The maximum radial distance (MRDs) using equation (6.6) is 

  

2
X

2
X

2
X )Tol()Tol()Tol(MRD
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Burr XII distribution is fitted to the geometric distance variable (GD) 

using Secant and Compass numerical search algorithms. The 

estimated parameters of fitted Burr distribution to GD data are 

displayed in Table 6.4. In addition, the probability of the product 

nonconforming for GD variable is calculated using equation (6.7) and 

also summarized in Table 6.5 

Table 6.4: Burr distribution parameter (c, k) estimation 
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Parameter Search 
Algorithm 

Burr distribution 
parameter “c” 

Burr distribution 
parameter “k” 

Simulated Annealing 1.887 1.487 

Compass  Direct 1.95934 1.47977 

 

Table 6.5: PNC for Geometric Distance Data 
Parameter 

Search 
Method 

 

MRD 
using 

Eq.(6.6) 

Probability of 
the product 
conforming 

using Eq.(6.8) 

Probability of 
the product 

nonconforming 
using Eq.(6.7) 

Actual 
Proportion of 

nonconforming 
 

SA 5.0251 0.999 0.001 

Compass 5.0251 0.991 0.009 

        0.01 

 

Using the PNC criterion, Table 6.5 shows that the probability of the 

product nonconforming obtained by using both search methods 

(Compass and Simulated Annealing search methods) is close to the 

actual proportion of nonconforming. The actual PNC in Table 6.5 

represents the actual proportion of data that fall outside their 

respective specification limits given by the computer manufacturer. 

Results in Table 6.5 indicate that estimation of fitted Burr distribution 

parameters using both search methods yield comparable results.  

This approach contrasts with that adopted by Wang (Wang 2006), 

where different distributions are fitted to different sets of geometric 

distance variables. It is shown that Burr distribution parameter’s 

estimation using search methods have leaded to PNC value that 

closer to the exact value. We therefore recommend that the Burr 
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distribution be fitted to other non-normal multivariate data to 

analyze their performance.  

6.4.2.   Example 2: Using five quality characteristics 

and different numerical method to estimate Burr 

parameters 

In the second example we have selected five (5) multivariate quality 

characteristics (X1, X2, X3, X6, X7) [refer to Appendix A1 for complete 

data set] and used different numerical (simulated annealing and 

hybrid search) algorithms to estimate parameters of Burr 

distribution. The specification limits for these quality characteristics 

are 0.10 ± 0.04 mm, 0 + 0.50 mm, 11 ±5 m , 0.07 ± 0.05 mm 

and 0.07 ± 0.05 mm, respectively. Using a statistical package we 

found that first three variables (X1, X2, X3) are correlated and the 

other two (X6, X7) are correlated. Based on their correlation, we 

reduce multivariate data from five quality characteristics to two 

variables called geometric variables (GD1 and GD2). Table 6.6 and 

Table 6.7 shows correlation and covariance matrix respectively.  

Table 6.6: Correlation matrix 
 

Correlation  X1 X2 X3 X6 
X2 0.168       

p-value  0.095       
X3 -0.044 -0.017     

 p-value  0.66 0.869     
X6 0.024 -0.046 0.184   
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p-value   0.81 0.65 0.067   
X7 0.089 -0.047 0.002 0.613 

 p-value  0.378 0.639 0.985 0 
 

 

Table 6.7: Covariance matrix 
 

  X1 X2 X3 X6 X7 
X1 8.79E-05         
X2 5.26E-05 0.001116       
X3 -0.00054 -0.00072 1.665644     
X6 3.4E-06 -2.3E-05 0.003567 0.0002265   
X7 1.45E-05 -2.8E-05 4.24E-05 0.0001604 0.0003025 
            

 

The numerical results of the geometric variables GD1, GD2 are given 

in the Table 6.8 

Table 6.8:  Geometric distance variable data  
GD1 GD2 GD1 GD2 GD1 GD2 GD1 GD2 GD1 GD2 

0.22670 0.01290 0.22610 0.00840 1.28410 0.04130 0.89690 0.00910 1.24580 0.00920 

0.16490 0.03500 0.09850 0.03380 0.84090 0.05080 0.78950 0.02950 0.33240 0.02760 

0.09300 0.03920 0.19680 0.04490 1.22940 0.04110 1.70420 0.05190 0.67060 0.03020 

0.42890 0.02080 3.60420 0.02710 1.51320 0.05340 1.53540 0.02220 0.35920 0.02730 

0.29490 0.01990 4.21820 0.00860 1.08030 0.02460 0.88310 0.04620 0.75850 0.02280 

0.29310 0.01130 3.74730 0.03960 1.02610 0.02110 1.18320 0.04920 1.00190 0.01910 

0.51990 0.01860 0.44080 0.03370 0.82730 0.03940 0.91810 0.02020 0.22600 0.05260 

0.22270 0.01500 4.48960 0.05070 1.38710 0.04660 1.35020 0.03430 0.71950 0.01600 

0.16070 0.01840 4.11990 0.02260 1.34210 0.03090 1.12100 0.03880 0.73560 0.03130 

0.23290 0.03100 0.22090 0.01810 1.25510 0.02830 0.55750 0.04880 0.83630 0.05040 

0.34510 0.01370 0.57590 0.02700 1.28260 0.03460 1.03290 0.02550 1.66870 0.01280 

0.40060 0.04010 0.34790 0.05050 1.44450 0.03120 1.19960 0.02300 1.25220 0.05760 

0.12760 0.03130 0.43450 0.00530 1.63410 0.02500 1.02670 0.01820 1.15580 0.02430 

0.27120 0.03120 0.22740 0.02340 0.48420 0.00460 0.94180 0.02230 1.68570 0.04190 

0.39440 0.01200 0.62170 0.01220 0.91660 0.00260 0.96150 0.02950 0.71970 0.01710 

0.37460 0.02550 0.96020 0.04770 1.41780 0.00470 0.93040 0.03490 0.82650 0.05420 

0.33520 0.00780 1.27150 0.01500 0.83700 0.03250 1.06170 0.00960 0.78920 0.03710 

0.33730 0.01650 1.38680 0.01400 0.81690 0.03220 1.01460 0.03770 1.63370 0.04080 
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0.10550 0.01180 1.36900 0.02170 1.02110 0.03130 1.37030 0.00500 1.61810 0.03040 

0.75520 0.01960 1.45620 0.03940 0.65070 0.03070 1.21480 0.02310 1.55800 0.00540 
 

 

The maximum radial distance (MRD) using equation (6.5) is given by 

025.5MRD1  , . 0707.0MRD2 

The estimated parameters of the fitted Burr distributions are 

obtained using simulated annealing and hybrid (simulated annealing 

and direct search) methods and are displayed in Table 6.9.  

 
 
 
 
Table 6.9:  Burr distribution parameter (c, k) estimation 
 

GD 
Parameter 

estimation using 
Hybrid  

Parameter 
estimation using 

SA 
 c k c k 

GD1 1.9593 1.47978 1.7794 46.9234 
GD2 2.1155 1530.476 1.5819 236.5164 

 

The comparison of the PNC values obtained using numerical method 

vs. exact PNC value presented in Table 6.10. 

 
Table 6.10:  PNC for Geometric Distance Data 
 

GD  

Prob. of the 
product 

conforming 
using Eq.(6.8)  

Total Prob. of 
the product 
conforming 

using Eq.(6.10)  

Total PNC using 
Eq.(6.9)  

Actual 
PNC 

Value 

 Hybrid SA Hybrid SA Hybrid SA 0.010 

 144



GD1 0.9913 0.9999 
GD2 0.9964 0.9714 

0.9877 0.9713 0.0123 0.0287 

 

 

Using the PNC criterion, results in Table 6.10 shows that the PNC 

obtained by using hybrid search approach (which is the combination 

of Simulated Annealing and Compass Direct Search) is relatively 

closer to the actual PNC in comparison with PNC obtained using the 

simulated annealing approach. This is again a proof that using a 

numerical search algorithm and fitting Burr distribution to geometric 

variables we can achieve comparable results instead of a traditional 

approach i.e. fitting different distributions to different sets of 

geometric distance variables (Wang 2006).  

6.4.3.   Example 3: Using seven quality characteristics  

Here we consider seven (7) quality characteristics  

from the same multivariate connector data (Wang 2006) and use 

numerical search (Simulated Annealing (SA) and Evolutionary 

Algorithms (EA)) methods to estimate fitted Burr distribution 

parameters to all geometric variables instead of fitting different 

distributions to different geometric variables as proposed by Wang 

(Wang 2006). The full data is given in Appendix A1.  

}X.....,,X,X{ 721
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The specification limits for all seven quality characteristics are as 

0.10 ± 0.04 mm, 0 + 0.50 mm, 11 ±5 m , 0 + 0.2 mm, 0.55 ± 

0.06 mm, 0.07 ± 0.05 mm and 0.07 ± 0.05 mm, respectively. Using 

a statistical package we found that variables  are 

correlated; variables  and  are uncorrelated with other 

variables, and variables are correlated.  

},,{ 321 XXX
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Using the geometric distance approach equation (6.4), four new 

univariate variables are given in Table 6.11 below: 

 

 

 

Table 6.11:  Geometric distance variable data 
GD1 GD2 GD3 GD4 GD1 GD2 GD3 GD4 

0.226700 0.009000 0.003600 0.012900 1.282600 0.007700 0.029200 0.034600 
0.164900 0.009100 0.021000 0.035000 1.444500 0.009300 0.009800 0.031200 
0.093000 0.015300 0.005600 0.039200 1.634100 0.021900 0.022900 0.025000 
0.428900 0.021600 0.024700 0.020800 0.484200 0.008100 0.032200 0.004600 
0.294900 0.008800 0.012100 0.019900 0.916600 0.005600 0.032700 0.002600 
0.293100 0.022600 0.030400 0.011300 1.417800 0.035100 0.002700 0.004700 
0.519900 0.010400 0.032500 0.018600 0.837000 0.055300 0.022200 0.032500 
0.222700 0.006400 0.015300 0.015000 0.816900 0.004800 0.029600 0.032200 
0.160700 0.078200 0.025500 0.018400 1.021100 0.028700 0.013900 0.031300 
0.232900 0.031000 0.025800 0.031000 0.650700 0.002400 0.013900 0.030700 
0.345100 0.026500 0.017900 0.013700 0.896900 0.062200 0.006500 0.009100 
0.400600 0.056400 0.028600 0.040100 0.789500 0.049500 0.000100 0.029500 
0.127600 0.006900 0.004900 0.031300 1.704200 0.021700 0.025300 0.051900 
0.271200 0.116200 0.019800 0.031200 1.535400 0.032100 0.021900 0.022200 
0.394400 0.034100 0.017400 0.012000 0.883100 0.026800 0.033400 0.046200 
0.374600 0.067100 0.019000 0.025500 1.183200 0.016000 0.008300 0.049200 
0.335200 0.020800 0.012200 0.007800 0.918100 0.025900 0.030800 0.020200 
0.337300 0.001900 0.036900 0.016500 1.350200 0.028100 0.006700 0.034300 
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0.105500 0.034300 0.021900 0.011800 1.121000 0.055100 0.001400 0.038800 
0.755200 0.063100 0.003200 0.019600 0.557500 0.017300 0.005900 0.048800 
0.226100 0.075000 0.004000 0.008400 1.032900 0.005500 0.031100 0.025500 
0.098500 0.013800 0.027500 0.033800 1.199600 0.009700 0.010500 0.023000 
0.196800 0.002100 0.002800 0.044900 1.026700 0.037200 0.003100 0.018200 
3.604200 0.040600 0.028800 0.027100 0.941800 0.020500 0.006200 0.022300 
4.218200 0.011100 0.017800 0.008600 0.961500 0.025800 0.032300 0.029500 
3.747300 0.018000 0.016700 0.039600 0.930400 0.038300 0.011600 0.034900 
0.440800 0.019500 0.023200 0.033700 1.061700 0.017200 0.009000 0.009600 
4.489600 0.007300 0.054700 0.050700 1.014600 0.011700 0.013600 0.037700 
4.119900 0.029300 0.019900 0.022600 1.370300 0.002100 0.001700 0.005000 
0.220900 0.003400 0.023100 0.018100 1.214800 0.005500 0.000700 0.023100 
0.575900 0.040800 0.030200 0.027000 1.245800 0.072800 0.008100 0.009200 
0.347900 0.021100 0.039300 0.050500 0.332400 0.014900 0.008300 0.027600 
0.434500 0.045100 0.024000 0.005300 0.670600 0.000300 0.015300 0.030200 
0.227400 0.003200 0.014700 0.023400 0.359200 0.011600 0.016400 0.027300 
0.621700 0.013700 0.016900 0.012200 0.758500 0.010200 0.008100 0.022800 
0.960200 0.074500 0.010700 0.047700 1.001900 0.059200 0.001400 0.019100 
1.271500 0.025300 0.020600 0.015000 0.226000 0.005600 0.015900 0.052600 
1.386800 0.067400 0.024700 0.014000 0.719500 0.022800 0.009900 0.016000 
1.369000 0.010400 0.025500 0.021700 0.735600 0.011000 0.020000 0.031300 
1.456200 0.002400 0.028800 0.039400 0.836300 0.040300 0.026100 0.050400 
1.284100 0.000300 0.019500 0.041300 1.668700 0.044400 0.009300 0.012800 
0.840900 0.047600 0.016600 0.050800 1.252200 0.042900 0.002700 0.057600 
1.229400 0.021500 0.029700 0.041100 1.155800 0.077800 0.021900 0.024300 
1.513200 0.030900 0.027600 0.053400 1.685700 0.006900 0.013200 0.041900 
1.080300 0.088300 0.019600 0.024600 0.719700 0.024700 0.015400 0.017100 
1.026100 0.012900 0.023800 0.021100 0.826500 0.043100 0.004500 0.054200 
0.827300 0.038200 0.014800 0.039400 0.789200 0.057400 0.010600 0.037100 
1.387100 0.034900 0.041100 0.046600 1.633700 0.051600 0.013400 0.040800 
1.342100 0.016600 0.006100 0.030900 1.618100 0.025500 0.005400 0.030400 
1.255100 0.030000 0.037000 0.028300 1.558000 0.084500 0.010200 0.005400 

 

The maximum radial distances (MRDs) using equation (6.6) are 

, , 025.51MRD  2.0MRD  06.0MRD2 3  , 0707.04MRD  . Also, from 

the correlation matrix of these four geometric distance variables, we 

found that these variables do not have any significant correlation 

with each other. Burr distribution is fitted to the geometric data with 

the estimated parameters displayed in Table 6.12. The comparison of 
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the PNC values obtained using numerical method vs. exact PNC value 

presented in Table 6.13. 

Table 6.12: Burr distribution parameter (c, k) estimation 
 

Burr XII distribution parameter estimation  
GD 

Variables Simulated 
Annealing (SA) 

Evolutionary Algorithm 
(EA) 

  c k c k 

GD1 1.8869 1.4868 1.0003492 121.34626 

GD2 1.203 67.5758 1.007604 127.91319 

GD3 1.2009 122.114 1.0023824 80.130296 
GD4 1.5819 236.5164 1.0001383 106.44024 

 

Table 6.13: PNC for geometric distance data 

GD 
Variables 

Prob. of the product 
conforming using  
Equation (6.7) 

Total Prob. of the product 
conforming using  
Equation (6.10) 

Total Prob. of the product non-
conforming (PNC) using  

Equation (6.9) 

  Best-fit SA EA Best-fit SA EA Best-fit SA EA 

GD1 1.0000 0.9999 1.0000 

GD2 0.6123 0.9999 1.0000 

GD3 0.9999 0.9833 0.9903 

GD4 0.5932 0.9714 0.9993 

0.3628 0.9454 0.9896 0.6372 0.0546 0.0104 

 

Results in Table 6.13 shows that the PNC value obtained using the 

proposed Burr-fit using SA & EA method is relatively closer to the 

actual PNC (i.e. 0.01). As we know, here the actual PNC presents the 

actual proportion of nonconforming data that fall outside their 

respective specifications. Results further show that GD3 (representing 

X5) and GD4 (representing X6 & X7) have significantly larger PNC 
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value, and thus indicating that quality characteristics X5, X6 and X7 

are candidates for improvement first rather than other 2 quality 

characteristics.  

All three examples mentioned in this section clearly indicate that 

instead of fitting different distributions to geometric variable data (a 

conventional approach cited in the research literature), it is sufficient 

to deploy only one distribution, the Burr distribution. The results also 

indicate that one can increase the accuracy of determining the 

probability of non-conforming items by using different numerical 

techniques to estimate the fitted Burr distribution parameters. 

In the proceeding section, we propose a multivariate capability index 

based on the Generalized Covariance Distance (GCD) which is easy 

to use. Another novelty introduced in this section is to approximate 

the distribution of these distances by Burr distribution (as mentioned 

in section 6.4) where its parameters are estimated using a Simulated 

Annealing (SA) and Evolutionary Algorithms. An example, based on 

real manufacturing process data, is also given which demonstrates 

that the proportion of nonconformance (PNC) using proposed method 

is very close to the actual PNC value.    

 149



6.5. A new proposed methodology to evaluate 

multivariate process capability 

A novel approach called “generalized covariance distance (GCD)” is 

presented in this section  (Ahmad et al. 2009). According to this 

approach we first cluster correlated quality characteristics. Then we 

define a new variable referred to as the “covariance distance (CD)” 

variable that takes into account the distance of individual quality 

characteristics from their respective specifications scaled by their 

variance covariance matrix. The proposed approach is similar to the 

geometric distance approach adopted by Wang (Wang 2006) but 

differs insofar as there, the scaling effect of the variance–covariance 

matrix is absent. Furthermore, unlike the approach adopted in (Wang 

2006), we fit Burr distribution using simulated annealing algorithm to 

the covariance distance data instead of fitting different distributions 

to the geometric data. 

Another novelty to our proposed method is that it is not restricted to 

normal multivariate data as is commonly assumed by many 

traditional multivariate PCI methods. The proposed method 

resembles the linear discriminant classification approach, commonly 

adopted in multivariate analysis, which group correlated or 

uncorrelated quality characteristics into homogeneous subgroups 

based on a linear discriminant function. In practice, the fundamental 
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objective of process capability analysis is to help engineers and 

managers decide whether to accept or reject the process outcomes 

based on conformance to engineering specifications ((Bernardo & 

Irony 1996), (Singpurwalla 1992)) Keeping in mind this objective, 

the efficacy of the proposed method is assessed by using the 

proportion of nonconformance (PNC) criterion to evaluate the 

performance of each covariance distance variable using the proposed 

methodology.  

6.5.1. Generalized Covariance Distance (GCD) 

Approach 

Although several methods have been proposed to handle the issues 

of non-normality for univariate quality characteristic data in PCI 

studies, there has not been much research on this aspect devoted to 

multivariate non-normal data. In this section, we will discuss our 

proposed methodology based on generalized covariance distance 

(GCD) variable.  

Our approach is closely related to the Geometric Distance (GD) 

approach (refer to section 6.3) proposed by Wang and Hubele (Wang 

& Hubele 1999), which reduces the dimension of the multivariate 

process data and render them more tractable for a statistical 

 151



analysis. The GD approach utilizes the Euclidean distance (or L2 

norm) which is defined as follows:  

let represents a point from a sample space 

and let  be the corresponding target value. Then 

the Geometric Distance (GD) variable Equation (6.5) is defined by  

)x,......,x,x(X n21

)t,......,t,t(T n21

)()( ' TXTXGD   

22
11

2
11 )(....)()( nn txtxtx   

A comprehensive study of the distribution of GD when the underlying 

variables have a multivariate normal distribution was undertaken in 

(Wang & Hubele 1999). When the underlying distribution is non-

normal, Wang (Wang 2006) combined correlated quality 

characteristics to form GD and determined the distribution that best 

fit GD by using Best-Fit statistical software. 

Instead of GD, we propose using the Generalized Covariance 

Distance (GCD) defined by 

)()( ' TXTXCD   1      (6.11) 

 

where  refers to the variance-covariance matrix of X. The choice of 

CD is motivated by the following result whose proof easily follows 

from the Maximization Lemma (Johnson, R & Wichern 2007). 


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where the maximum is achieved when for any  

Therefore, provides the maximum of the ratio of the squared 

weighted distance between the point X and its target T and its 

variance. The Geometric Distance corresponds to the case when 

the identity matrix.  
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2CD
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We present the Maximization Lemma (c.f. p.80 of Johnson and 

Wichern, 2007) and its proof below: 

Let  be positive definite matrix of order and  be a given 

vector of dimension p  . Then, for an arbitrary nonzero vector , 

B )pxp( d

X

dd
xx
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With the maximum attained when  for any constant . dCBX 1 0c 

 
By the extended Cauchy=Schwarz inequality,  

Because 

).d'd)(x'x()d'x( 12 

0x   and    is positive definite, 0)x'x (  . Dividing both 

sides of the inequality by the positive scalar )x'x(  yields the upper 

bound    dd '
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Taking the maximum over x gives equation (6.11) because the 

bound is attained for  dcx 1

To illustrate the calculation of Generalized Covariance Distance 

variable “CD”, consider the values of X1, X2 and X3 to be 0.1165, 

0.0614 and 10.7824 respectively. Assume that the specification 

limits for these quality characteristics are 

and ...,.. mmmm 5000040100  mm511   respectively. Here 

0.04, 0.5 and 5 are referred to as tolerances of X1, X2 and X3 

respectively.   

 

Therefore 
 

).,.,..( 1178241000614010011650 TX  
 
and  
 
 


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

















006.0002.0036.0
002.0314.9565.5
036.0565.5502.118

1  

resulting in CD = 0.2368. 

The maximum radial distance (MRD) (refer equation (6.6)) used as 

upper specification of the generalized covariance distance variables is 

the distance from the target to a perimeter of the tolerance region. 
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Using MRD as upper bound, the estimated proportion of non-

conformance for each CD variable is estimated using equation (6.7)  

The flowchart of the proposed methodology is presented in Table 

6.14. 

 
Table 6.14: A flowchart of the proposed methodology 
1.  Identify the desired quality characteristics (multiple) along with 

their respective engineering specifications. 

2.  Collect measurements of these quality characteristics data from a 

manufacturing process.  

3.  Determine the correlated and uncorrelated quality characteristics 

using statistical software. 

4. Compute generalized covariance distance variables CD’s for 

correlated and uncorrelated quality characteristics using equation 

(6.11). 

5. Compute maximum radial distances (MRD(s)) from the target 

value   using equation (6.6). 

6.  Determine covariance distance variables that do not have any 

significant correlation with each other (using any statistical 

software).        

7.  Use SA and EA search algorithms to find out parameters of the 

fitted univariate Burr distribution to each covariance distance 

variable (refer to section 3 of this Chapter). 
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8.  Compute the proportion of conforming items for each covariance 

distance variable (using equation (6.8)). 

9. Compute the proportion of nonconformance (PNC) for each 

covariance distance variable (using equation (6.7)). 

10. Compute total proportion of nonconformance (PNC) value using 

equation (6.9). 

 

As mentioned earlier in this section that we fit Burr distribution 

function  to CD variables. To fit the appropriate Burr distribution, 

we need to estimate the parameters  and .  We will use the 

method of Maximum Likelihood Estimation (MLE) to estimate these 

parameters. Simulated Annealing and Evolutionary Algorithms are 

used to estimate Burr distribution parameters (refer to Chapter 3 for 

details).  

)x(f

c k

6.6. A manufacturing example  

In this section, we demonstrate the proposed methodology using real 

data from Wang (Wang 2006). The data set is from a manufacturing 

process with multivariate quality characteristics. It contains a sample 

of 100 parts that were tested on seven quality characteristics 

}.....,,,{ 721 XXX of interest to the manufacturer. The full data set is 

given in Appendix A1. The specification limits for these seven quality 

characteristics can be two-sided or one-sided, and they are 0.10 ± 
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0.04 mm, 0 + 0.50 mm, 11 ±5 mm, 0 + 0.2 mm, 0.55 ± 0.06 mm, 

0.07 ± 0.05 mm and 0.07 ± 0.05 mm, for X 1  to X7 respectively. 

Based on quality characteristics and the manufacturing processes, it 

was found that the variables  are correlated; variables 

 and  are uncorrelated with other variables, and variables 

},,{ 321 XXX

4X

{

5X

}, 76 XX are correlated. 

Using the GCD approach, the following four new univariate variables 

are defined by 

'1 1(X

(

TCD1

1CD

)() TX  , where T is the target distance and   is 

inverse of variance-covariance matrix and for 
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

.06   XX respectively. TX

The values of the covariance variables CD1, CD2, CD3 and CD4 are 

tabulated in Table 6.15.  

 
Table 6.15 :  Covariance distance variable data 
CD1 CD2 CD3 CD4 CD1 CD2 CD3 CD4 

0.476130 0.378290 0.329800 0.113580 1.132520 0.323650 2.675030 0.186010
0.406080 0.382500 1.923830 0.187080 1.201870 0.390900 0.897790 0.176640
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0.304960 0.643100 0.513020 0.197990 1.278320 0.920510 2.097890 0.158110
0.654900 0.907900 2.262790 0.144220 0.695840 0.340460 2.949870 0.067820
0.543050 0.369890 1.108490 0.141070 0.957390 0.235380 2.995670 0.050990
0.541390 0.949940 2.784970 0.106300 1.190710 1.475350 0.247350 0.068560
0.721040 0.437140 2.977350 0.136380 0.914880 2.324400 2.033760 0.180280
0.471910 0.269010 1.401640 0.122470 0.903830 0.201760 2.711680 0.179440
0.400870 3.286950 2.336070 0.135650 1.010490 1.206340 1.273390 0.176920
0.482600 1.303010 2.363560 0.176070 0.806660 0.100880 1.273390 0.175210
0.587450 1.113860 1.639830 0.117050 0.947050 2.614430 0.595470 0.095390
0.632930 2.370640 2.620070 0.200250 0.888540 2.080620 0.009160 0.171760
0.357210 0.290030 0.448890 0.176920 1.305450 0.912110 2.317750 0.227820
0.520770 4.884190 1.813890 0.176640 1.239110 1.349250 2.006280 0.149000
0.628010 1.433310 1.594030 0.109540 0.939730 1.126470 3.059800 0.214940
0.612050 2.820390 1.740600 0.159690 1.087750 0.672520 0.760370 0.221810
0.578960 0.874280 1.117650 0.088320 0.958180 1.088650 2.821610 0.142130
0.580780 0.079860 3.380440 0.128450 1.161980 1.181120 0.613790 0.185200
0.324810 1.441720 2.006280 0.108630 1.058770 2.316000 0.128260 0.196980
0.869020 2.652260 0.293150 0.140000 0.746660 0.727160 0.540500 0.220910
0.475500 3.152450 0.366440 0.091650 1.016320 0.231180 2.849090 0.159690
0.313850 0.580050 2.519300 0.183850 1.095260 0.407720 0.961910 0.151660
0.443620 0.088270 0.256510 0.211900 1.013260 1.563610 0.283990 0.134910
1.898470 1.706520 2.638390 0.164620 0.970460 0.861670 0.567990 0.149330
2.053830 0.466560 1.630670 0.092740 0.980560 1.084440 2.959030 0.171760
1.935790 0.756590 1.529900 0.199000 0.964570 1.609850 1.062680 0.186820
0.663930 0.819640 2.125370 0.183580 1.030390 0.722960 0.824500 0.097980
2.118870 0.306840 5.011110 0.225170 1.007270 0.491780 1.245910 0.194160
2.029750 1.231560 1.823050 0.150330 1.170600 0.088270 0.155740 0.070710
0.470000 0.142910 2.116210 0.134540 1.102180 0.231180 0.064130 0.151990
0.758880 1.714930 2.766650 0.164320 1.116150 3.059980 0.742050 0.095920
0.589830 0.886890 3.600300 0.224720 0.576540 0.626290 0.760370 0.166130
0.659170 1.895670 2.198660 0.072800 0.818900 0.012610 1.401640 0.173780
0.476860 0.134500 1.346680 0.152970 0.599330 0.487580 1.502420 0.165230
0.788480 0.575850 1.548220 0.110450 0.870920 0.428730 0.742050 0.151000
0.979900 3.131430 0.980240 0.218400 1.000950 2.488330 0.128260 0.138200
1.127610 1.063430 1.887180 0.122470 0.475390 0.235380 1.456610 0.229350
1.177620 2.833000 2.262790 0.118320 0.848230 0.958340 0.906950 0.126490
1.170040 0.437140 2.336070 0.147310 0.857670 0.462360 1.832220 0.176920
1.206730 0.100880 2.638390 0.198490 0.914490 1.693910 2.391040 0.224500
1.133180 0.012610 1.786410 0.203220 1.291780 1.866250 0.851980 0.113140
0.917010 2.000750 1.520740 0.225390 1.119020 1.803200 0.247350 0.240000
1.108780 0.903700 2.720840 0.202730 1.075080 3.270140 2.006280 0.155880
1.230120 1.298810 2.528460 0.231080 1.298350 0.290030 1.209260 0.204690
1.039370 3.711480 1.795570 0.156840 0.848350 1.038210 1.410810 0.130770
1.012970 0.542220 2.180340 0.145260 0.909120 1.811610 0.412250 0.232810
0.909560 1.605650 1.355840 0.198490 0.888370 2.412670 0.971070 0.192610
1.177750 1.466940 3.765200 0.215870 1.278160 2.168880 1.227580 0.201990
1.158490 0.697740 0.558830 0.175780 1.272050 1.071830 0.494700 0.174360
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1.120310 1.260980 3.389600 0.168230 1.248200 3.551760 0.934430 0.073480
 

The maximum radial distances are 025.5MRD1  , , 

, and 

2.0MRD2 

06.0MRD3  0707.0MRD4   respectively. Also, from the 

correlation matrix of these four covariance distance variables, we 

found that these variables do not have any significant correlation 

with each other. Burr distribution is fitted to the covariance distance 

data and the probability of the product nonconforming items for each 

CD variable is calculated using equation (6.7). The estimated 

parameters of the fitted Burr distribution are displayed in Table 6.16.  

 
 
 
 
Table 6.16 : Burr distribution parameter (c, k) estimation 
 

Burr XII distribution parameter 
estimation  

CD 
Variables Simulated 

Annealing (SA) 
Evolutionary 

Algorithm (EA) 

  c k c k 

CD1 3.4041 41.1290 1.0027 317.6904 

CD2 1.2030 67.5758 1.0032 371.5740 

CD3 1.2009 122.1140 1.6162 398.4719 

CD4 1.1003 202.8647 1.0074 307.9073 
 
 
 
Table 6.17: PNC for covariance distance data 
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CD 
Variables 

Prob. of the product 
conforming using  
Equation (6.8)  

Total Prob. of the product 
conforming using  
Equation (6.10)  

Total Prob. of the product 
non-conforming (PNC) 
using Equation (6.9)  

  
GD  

(Best-fit) 
GCD 
(SA) 

GCD 
(EA) 

GD 
(Best-fit) 

GCD 
(SA) 

GCD 
(EA) 

GD 
(Best-fit) 

GCD 
(SA) 

GCD 
(EA) 

CD1 1.0000 1.0000 1.0000 

CD2 0.6123 0.9999 1.0000 

CD3 0.9999 0.9833 0.9850 

CD4 0.5932 1.0000 1.0000 

0.3628 0.9830 0.9850 0.6372 0.0170 0.0150 

 

The results in Table 6.17 shows that the proposed GCD method 

yields a much more accurate probability of the product non-

conforming (PNC) (compared with the true proportion of 

nonconforming items falling outside their respective specifications in 

the real data i.e. 0.01 than the GD method (0.68%, 0.50% and 

62.72% relative percentage difference respectively) which points to 

the superiority of the GCD method over the more conventional GD 

approach. Results further show that CD3 has significantly larger PNC 

value (i.e. 1-0.9850=0.015); consequently quality characteristics X5, 

is the first candidate for improvement in comparison with the other 

four quality characteristics. 

6.7. Conclusion 
 

This chapter discusses evaluation of process capability for correlated 

multivariate non-normal quality characteristics using Geometric 

Distance (GD) and proposed Generalized Covariance Distance (GCD) 
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approaches. A detailed discussion with real data examples has been 

devoted to fitting Burr distribution to GD and GCD data. Different 

numerical techniques have been deployed to estimate fitted Burr 

distribution parameters. Fitting Burr distribution to GD and GCD data 

has yielded comparable probability of the product non-conforming 

(PNC) results as compared to those achieved using Best-fit method 

cited in the research literature (Wang 2006).  

Unlike the Geometric Distance (GD) approach, our proposed GCD 

approach takes into account the scaling effect of variance-covariance 

matrix while reducing the dimension of multivariate data, which then 

enables univariate statistical analysis to be performed on the 

generalized covariance distance variables. It is also demonstrated 

that the proposed GCD approach does not assume that the CD 

variables are mutually independent, which is implicitly assumed in 

the Geometric Distance approach. The parameters of the fitted Burr 

distribution are estimated using different numerical techniques. This 

approach contrasts with that adopted in Wang (Wang 2006), where 

different distributions are fitted to different sets of geometric 

distance data. It also resulted in PNC values which are much closer 

to the exact values. 
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Chapter 7  

CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

This thesis has investigated several aspects of process capability 

indices and when the underlying distribution of quality 

characteristics is non-normal. Initially, we reviewed the performance 

of the existing capability estimation methods (e.g. Clements 

percentile method, Burr based percentile method and Box Cox 

method) for non-normal univariate quality characteristics data. A 

simulation study using known non-normal distributions along with 

experimental data were then conducted to compare and contrast the 

performance of some of the commonly used methods. Burr percentile 

method yielded better results when compared to other methods (e.g.  

Clements and Box-Cox methods). Accuracy of the Burr based 

percentile method was further improved using several state of the 

art numerical techniques. A detailed discussion of these numerical 

techniques has been presented in Chapter 3. 

pC pkC

Application of Burr distribution was then further explored to estimate 

PCI(s) of non-normal univariate quality characteristic data. New 

capability estimation methods, such as Cumulative Density Function 
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(CDF) and Best Root Transformation (BRT) methods, were evaluated 

by fitting Burr distribution to simulated and experimental data in 

Chapter 4. In Chapter 5, we’ve further extended Cumulative Density 

Function method to bivariate process capability estimation by fitting 

bivariate Burr distribution to bivariate non-normal quality 

characteristics data.  

One of the major objectives of research in this thesis is presented in 

Chapter 6.  Here, a novel approach to estimate multivariate non-

normal PCI was introduced and implemented. This approach, called 

“Generalized Covariance Distance (GCD)” approach, evaluates 

process capability for correlated non-normal multivariate quality 

characteristics data. GCD approach has several novel features such 

as: 1) It is based on the idea of reducing the dimension of 

multivariate data by transforming correlated variables into univariate 

ones through a metric function). Unlike the Geometric Distance (GD) 

approach cited in the research literature, our proposed approach 

takes into account the scaling effect of the variance–covariance 

matrix and produces a CD variable that is based on the Mahanalobis 

distance. 3) It is demonstrated that the proposed GCD approach 

does not assume that the CD variables are mutually independent, 

which is implicitly assumed in the Geometric Distance approach. 4) 

In contrast to the GD approach, where different distributions are 

fitted to different GD variables, a single distribution, the Burr XII 
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distribution is fitted to the CD data.  Several numerical search 

techniques are then applied to estimate the parameters of the Burr 

distribution. Finally, several application examples using real data 

with several non-normal quality characteristics from the 

manufacturing industry are presented in Chapter 6 which serve to 

illustrate the theory presented.   

7.2.  Recommendations and future work 

Quantitative measure of process performance for multivariate quality 

characteristics is of great interest to quality control practitioners and 

has a huge potential of expanding its application to other 

multivariate industrial quality research areas. Hence, there is much 

scope in extending the present work. For example, instead of using 

univariate Burr, a multivariate Burr distribution (Takahasi 1965) 

could be directly employed to fit multivariate CD data. However, it is 

anticipated that the numerical work involved in estimating the 

parameters of the distribution could prove to be extremely laborious. 

This leads to the consideration of other search metaheuristics 

algorithms for their potential in estimating parameters of 

multivariate distributions involving the Maximum Likelihood 

Estimation ( MLE) procedure.  

Metaheuristics Algorithms (e.g. Simulated Annealing, Evolutionary 

Algorithm) have been successfully applied in this research and also 
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to many other optimization problems. However combination of these 

two or more metaheuristics can be made that may be better suited 

for estimating the parameters of the multivariate distributions. 

Usually, using combination of metaheuristics, component of one 

metaheuristic is added to another metaheuristic to enhance the 

performance. This type of combination strategies may compensate 

the disadvantages of each other. 

Another possible improvement can be made using hybrid of 

Evolutionary Algorithm (EA) and MLE process (local search). 

Standard EA can find globally competitive solutions, but the EA often 

suffers from lack of accuracy and faces slow convergence. The 

complementary properties of EA and local search / deterministic 

search may give several advantages over either of the methods 

when applied alone such as improvement of the performance of the 

EA regarding convergence speed as well as improvement of the 

quality of the solutions obtained due to the incorporation of domain-

specific knowledge from local search. 

Even though in this thesis, we have discussed some of the 

distributional properties of correlated non-normal multivariate quality 

characteristics, however there are still essential difficulties in trying 

to assess the value of multivariate systems in terms of a single 

index. Clearly, further investigations are needed bearing in mind that 
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any new technique should be mapped to information that are useful 

to the frontline quality practitioners and engineers who are directly 

involves in assessing process performance. 

Finally, since the approaches we have introduced in this thesis have 

led to significant improvement over existing methods, we 

recommend that the proposed methods be applied to other non-

normal multivariate PCI studies for further comparisons. 



Appendix A1 

A real data set used in this research study (Chapter 6) is taken from Wang’ 

paper (Wang 2006). Wang discussed a manufacturing product (called 

connector) from a computer industry having multivariate (seven) quality 

characteristics. These seven characteristics are X1 (contact gap X), X2 

(contact loop Tp), X3 (LLCR), X4 (contact x Tp), X5(contact loop diameter), 

X6 (LTGAPY) and X7 (RTGAPY), respectively. The specification limits for 

these characteristics can be two-sided or one-sided, and they are 0.10 ± 

0.04 mm, 0 + 0.50 mm, 11 ±5 m ,0 + 0.2 mm, 0.55 ± 0.06 mm, 0.07 ± 

0.05 mm and 0.07 ± 0.05 mm, respectively. The full data is given below: 

 
X1 X2 X3 X4 X5 X6 X7 

0.116500 0.061400 10.782400 0.009000 0.553600 0.064200 0.058500 

0.125900 0.027700 10.839500 0.009100 0.529000 0.099400 0.088900 

0.126500 0.076200 10.953800 0.015300 0.544400 0.098000 0.097400 

0.118500 0.095700 10.582400 0.021600 0.574700 0.085600 0.083700 

0.141400 0.131900 10.739500 0.008800 0.562100 0.080300 0.087000 

0.092000 0.047600 10.710900 0.022600 0.519600 0.080400 0.074300 

0.080400 0.044000 10.482400 0.010400 0.517500 0.061600 0.053400 

0.110300 0.090100 10.796600 0.006400 0.565300 0.057300 0.062000 

0.102200 0.091800 10.868100 0.078200 0.524500 0.065000 0.052300 

0.110300 0.082300 10.782400 0.031000 0.524200 0.099200 0.080400 

0.106900 0.094300 10.668100 0.026500 0.532100 0.056400 0.071800 

0.107500 0.095000 10.610900 0.056400 0.521400 0.103500 0.092000 

0.117000 0.117700 10.953800 0.006900 0.545100 0.096500 0.086700 

0.127600 0.137800 10.768100 0.116200 0.530200 0.099700 0.079700 

0.103900 0.064500 10.610900 0.034100 0.532600 0.078500 0.078500 

0.125100 0.098800 10.639500 0.067100 0.531000 0.094500 0.077000 

0.115300 0.155300 11.296600 0.020800 0.562200 0.072400 0.062600 

0.096100 0.014200 10.965700 0.001900 0.513100 0.081000 0.057700 

0.117000 0.080800 11.065700 0.034300 0.528100 0.078200 0.078500 
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0.115800 0.078000 10.249000 0.063100 0.553200 0.085400 0.082100 

0.113400 0.151100 10.832400 0.075000 0.546000 0.067200 0.062100 

0.135600 0.040700 11.082400 0.013800 0.522500 0.037700 0.060100 

0.122200 0.065400 10.815700 0.002100 0.547200 0.109100 0.092100 

0.112400 0.151600 7.399000 0.040600 0.578800 0.047300 0.055200 

0.115500 0.069500 6.782400 0.011100 0.532200 0.076000 0.063900 

0.122300 0.085300 7.253800 0.018000 0.533300 0.096700 0.099200 

0.113000 0.086900 10.568100 0.019500 0.526800 0.094500 0.093200 

0.113700 0.065200 6.510900 0.007300 0.495300 0.046300 0.114800 

0.111200 0.135700 6.882400 0.029300 0.530100 0.075700 0.091900 

0.111400 0.090900 10.799000 0.003400 0.526900 0.087900 0.072700 

0.097800 0.097000 10.432400 0.040800 0.519800 0.093500 0.083200 

0.120900 0.093900 10.665700 0.021100 0.510700 0.097100 0.112600 

0.109200 0.041900 11.432400 0.045100 0.526000 0.067900 0.065100 

0.116100 0.108800 11.199000 0.003200 0.535300 0.085600 0.087400 

0.113100 0.069800 10.382400 0.013700 0.533100 0.074800 0.081200 

0.119300 0.144500 11.949000 0.074500 0.539300 0.106400 0.100800 

0.123300 0.090000 12.268100 0.025300 0.529400 0.068800 0.085000 

0.089000 0.110200 12.382400 0.067400 0.525300 0.076300 0.082500 

0.107400 0.050700 12.368100 0.010400 0.524500 0.087900 0.082200 

0.094700 0.084500 12.453800 0.002400 0.521200 0.073300 0.030700 

0.104800 0.066100 12.282400 0.000300 0.530500 0.100400 0.098000 

0.119200 0.044800 11.839500 0.047600 0.533400 0.106600 0.105300 

0.114300 0.100900 12.225200 0.021500 0.520300 0.096800 0.101200 

0.110200 0.081500 12.510900 0.030900 0.522400 0.103800 0.111300 

0.108400 0.161700 12.068100 0.088300 0.530400 0.085500 0.089100 

0.107100 0.042300 12.025200 0.012900 0.526200 0.086100 0.083700 

0.110600 0.058500 11.825200 0.038200 0.535200 0.086000 0.106000 

0.105100 0.115100 12.382400 0.034900 0.508900 0.096300 0.108500 

0.116700 0.082700 12.339500 0.016600 0.543900 0.093800 0.089700 

0.106200 0.056600 12.253800 0.030000 0.513000 0.087500 0.092300 

0.109100 0.022100 12.282400 0.007700 0.520800 0.092300 0.096500 

0.113800 0.119000 12.439500 0.009300 0.540200 0.090000 0.093900 
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0.130900 0.069900 12.632400 0.021900 0.527100 0.083900 0.090800 

0.107500 0.041700 11.482400 0.008100 0.517800 0.068300 0.074300 

0.115700 0.037700 11.915700 0.005600 0.517300 0.071800 0.068100 

0.119300 0.075200 12.415700 0.035100 0.552700 0.071400 0.065500 

0.123900 0.084900 11.832400 0.055300 0.527800 0.055300 0.041000 

0.113300 0.041800 11.815700 0.004800 0.520400 0.085800 0.098100 

0.120600 0.081800 9.982400 0.028700 0.536100 0.086800 0.096400 

0.122000 0.073300 10.353800 0.002400 0.536100 0.094700 0.088200 

0.116100 0.117000 10.110900 0.062200 0.556500 0.066300 0.061700 

0.118600 0.104400 11.782400 0.049500 0.549900 0.095600 0.084600 

0.102000 0.052900 9.296600 0.021700 0.524700 0.094800 0.115600 

0.111600 0.056300 9.465700 0.032100 0.528100 0.085000 0.086300 

0.111100 0.035200 11.882400 0.026800 0.516600 0.104000 0.101300 

0.098600 0.043700 12.182400 0.016000 0.541700 0.092600 0.113700 

0.116600 0.065100 11.915700 0.025900 0.519200 0.076700 0.089100 

0.118700 0.053500 12.349000 0.028100 0.543300 0.089000 0.098500 

0.120600 0.107300 12.115700 0.055100 0.551400 0.092500 0.101600 

0.113900 0.095600 11.549000 0.017300 0.544100 0.102700 0.106200 

0.110300 0.033200 12.032400 0.005500 0.518900 0.068700 0.044500 

0.108900 0.084300 12.196600 0.009700 0.539500 0.092500 0.075000 

0.104300 0.055800 12.025200 0.037200 0.546900 0.071100 0.088200 

0.105600 0.065100 11.939500 0.020500 0.543800 0.087300 0.084000 

0.114500 0.121000 11.953800 0.025800 0.582300 0.091000 0.090700 

0.127700 0.094500 11.925200 0.038300 0.538400 0.094900 0.094400 

0.112000 0.128500 12.053800 0.017200 0.541000 0.072100 0.079400 

0.113400 0.085400 12.010900 0.011700 0.563600 0.100100 0.092700 

0.123700 0.075200 12.368100 0.002100 0.548300 0.066100 0.066900 

0.127000 0.093300 12.210900 0.005500 0.549300 0.078000 0.091700 

0.115400 0.124700 12.239500 0.072800 0.558100 0.073300 0.078600 

0.096700 0.068500 11.325200 0.014900 0.541700 0.089100 0.089900 

0.105600 0.057500 11.668100 0.000300 0.565300 0.096100 0.085200 

0.111600 0.116800 11.339500 0.011600 0.566400 0.090000 0.088600 

0.111300 0.083900 11.753800 0.010200 0.558100 0.082400 0.089100 
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0.114900 0.101900 11.996600 0.059200 0.548600 0.080300 0.086100 

0.109100 0.017000 11.225200 0.005600 0.534100 0.104500 0.109700 

0.112000 0.073400 11.715700 0.022800 0.540100 0.082600 0.079900 

0.107400 0.068500 11.732400 0.011000 0.530000 0.078100 0.100200 

0.111200 0.080700 11.832400 0.040300 0.523900 0.098200 0.111800 

0.109700 0.099300 12.665700 0.044400 0.540700 0.078200 0.079800 

0.108500 0.088200 12.249000 0.042900 0.547300 0.117200 0.103100 

0.100900 0.125200 12.149000 0.077800 0.528100 0.072100 0.094200 

0.107100 0.068600 9.315700 0.006900 0.563200 0.103000 0.095800 

0.115700 0.051800 10.282400 0.024700 0.534600 0.086500 0.074600 

0.112700 0.120300 10.182400 0.043100 0.554500 0.101600 0.114000 

0.112400 0.102900 11.782400 0.057400 0.539400 0.067100 0.107000 

0.101700 0.075300 9.368100 0.051600 0.563400 0.087300 0.106900 

0.121000 0.029900 9.382400 0.025500 0.555400 0.064700 0.099900 

0.110700 0.167100 12.549000 0.084500 0.539800 0.065600 0.066900 
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