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Abstract

In this thesis, the author proposes and presents a novel simulation technique for the

analysis of multilayered Flexural Plate Wave (FPW) devices based on the convergence

of the Finite Element method (FEM) with classical Surface Acoustic Wave (SAW) analy-

sis techniques and related procedures. Excellent agreement has been obtained between

the author’s approach and other more conventional modelling techniques. Utilisation

of the FEM allows the performance characteristics of a FPW structure to be critically

investigated and refined before undertaking the costly task of fabrication. Based on a

series of guidelines developed by the author, it is believed the proposed technique can

also be applied to other acoustic wave devices. The modelling process developed is

quite unique as it is independent of the problem geometry as verified by both two and

three dimensional simulations. A critical review of FEM simulation parameters is pre-

sented and their effect on the frequency domain response of a FPW transducer given.

The technique is also capable of simultaneously modelling various second-order ef-

fects, such as triple transit, diffraction and electromagnetic feedthrough, which often

requires the application of several different analysis methodologies.

To verify the results obtained by the author’s novel approach, several commonly

used numerical techniques are discussed and their limitations investigated. The au-

thor initially considers the Transmission Matrix method, where it is shown that an

inherent numerical instability prevents solution convergence when applied to large

frequency-thickness products and complex material properties which are characteristic

of liquids. In addition the Stiffness Matrix method, is investigated, which is shown to

be unconditionally stable. Based on this technique, particle displacement profiles and

mass sensitivity are presented for multilayered FPW structures and compared against

simpler single layer devices commonly quoted in literature. Significant differences are
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found in mass sensitivity between single layer and multilayered structures, which to

the best of the author’s knowledge, is the first time that such characteristics have been

discussed for FPW devices. Frequency response characteristics of a FPW device are

then explored via a spectral domain Green’s function, which serves as a further verifi-

cation technique of the author’s novel analysis procedure. Modifications to the spectral

domain Green’s function are discussed and implemented due to the change in solution

geometry from SAW to FPW structures.

Using the developed techniques, an analysis is undertaken on the applicability of

FPW devices for sensing applications in liquid media. Additions are made to both

the Stiffness Matrix method and FEM to allow these techniques to accurately incorpo-

rate the influence of a liquid layer. The FEM based approach is then applied to obtain

the frequency domain characteristics of a liquid loaded FPW structure, where promis-

ing results have been obtained. Displacement profiles are considered in liquid media,

where it is shown that a tightly coupled Scholte wave exists that is deemed respon-

sible for most reported liquid sensing results. The author concludes the theoretical

analysis with an in-depth analysis of a FPW device when applied to density, viscosity

and mass sensing applications in liquid media. It is shown that a single FPW device

is potentially capable of discriminating between density and viscosity effects, which is

typically a task that requires a complex and costly sensor array.

Finally, the author presents preliminary results pertaining to the fabrication of a

simulated FPW structure used within this thesis. A brief description of the fabrica-

tion techniques, including the design, development and characterisation of a reac-

tive d.c. sputtering system constructed by the author is given. X-ray Photoelectron

Spectroscopy (XPS) has confirmed that the deposited aluminium nitride films are sto-

ichiometric, with the orientation of the film determined by Atomic Force Microscopy

(AFM). The piezoelectric coupling coefficient d33 has been measured by a standard

AFM, with the results and a detailed explanation of the technique accepted for publi-

cation by an international journal.
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Chapter 1

Introduction

This chapter provides an introduction to the author’s novel work in modelling Flex-

ural Plate Wave structures for sensing applications. A brief overview of acoustic wave

devices is presented allowing the basic concepts to be understood, with an emphasis

placed on the application of these structures to sensing applications. Section 1.1 dis-

cusses the rationale and necessity of the author’s research program. A brief discussion

of current modelling limitations is presented, illustrating the proposed direction of the

author’s research. The objectives of the author’s PhD program are given in Section

1.2, with the key achievements discussed in Section 1.3. This chapter concludes with a

summary of thesis layout and organisation in Section 1.4.

1.1 Research Rationale

The use of acoustic wave devices for signal processing applications is a well studied

area [1, 2]. Surface Acoustic Wave (SAW) devices are routinely applied as high fre-

quency filters in wireless communication systems and more recently have been utilised

for sensing applications [3]. To qualify as a sensor, a measurable property of the device

must vary as a function of input stimulus. In terms of acoustic wave sensors, deviation

in wave velocity, and hence resonant frequency, or changes in attenuation form the

basis of most experimental measurements.

In their simplest form, an acoustic wave device can be considered to be comprised

of a structure along which a time varying mechanical wave propagates. Depending
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on the orientation, dimensions and type of materials employed, alternative acoustic

modes can be excited, each with vastly different properties and potential applications.

Furthermore, if a piezoelectric material is utilised, a layer of bound charge also travels

with the mechanical wave. Perturbation of the device boundaries, whether by elec-

trical or mechanical stimulus, causes the phase velocity, attenuation or both parame-

ters of the propagating electro-acoustic wave to be altered. Therefore, for the pur-

pose of this thesis, an acoustic wave sensor is defined as a structure along which an

electro-mechanical wave propagates whose characteristics can be altered by changes

in boundary conditions. The acoustic wave can be perturbed by changes in temper-

ature, electric field, material properties, mass, pressure, density and viscosity, just to

name a few. In some applications, the aforementioned parameters may be the quanti-

ties under scrutiny, or could potentially be undesired measurands of whose effect can

be minimised by careful simulation and material selection.

Two main configurations exist for the excitation and detection of acoustic waves

in piezoelectric media. Both techniques rely on the piezoelectric effect to convert an

applied electrical signal into a mechanical deformation and vice-versa. This particular

study focuses on the commonly used delay line technique, Figure 1.1. Here, a series of

metallic interwoven comb like structures, known as Interdigital Transducers (IDTs), are

deposited on the surface of the device with an electrode period defined by λ. The IDT

width, indicated by the term W in Figure 1.1, is termed the acoustic aperture. The IDTs

are separated by a known distance along which the electro-acoustic wave propagates,

which is typically several times the electrode period. Perturbation of the wave propa-

gation path, as previously mentioned, induces changes in the travelling acoustic wave,

which is detected at the output transducer and converted back into a usable electrical

signal. The second IDT configuration is known as a resonator structure, which relies

on the in-phase reflections of the acoustic wave. This layout is typically not applied to

sensing applications and will not be discussed here.

Flexural Plate Wave (FPW) devices meet the criteria for acoustic wave sensors,

where two distinct acoustic modes, known as Lamb waves, propagate along the struc-

ture with vastly different phase velocities and particle displacements. The existence

of two unique primary modes suggest that a FPW structure can be used to simulta-



Chapter 1. Introduction 3

Input IDT Output IDT

λ IDT Edge-To-Edge Spacing

W

Figure 1.1: Delay Line FPW Device

neously evaluate alternative properties of a given medium. This will be examined in

more detail throughout this thesis.

Although other sensing platforms exist to detect biological, chemical and physical

quantities, acoustic wave structures, and in particular FPW devices, offer distinct ad-

vantages [4]. The benefits of FPW devices over other acoustic wave structures can be

partially attributed to their physical construction. A FPW device essentially consists

of an acoustically thin membrane, which defines the active area of the device. The

thin membrane, or plate, is typically formed by bulk micromachining of a specifically

orientated silicon (Si) wafer. Silicon is a well understood, inexpensive and readily

available material that has been utilised without the Integrated Circuit industry for

many years. In addition to the underlying silicon substrate, silicon nitride (Si3N4) is

used as an etch stop and to form the underlying membrane of the device. A metallic

ground plane of either gold (Au) or aluminium (Al) is then deposited, followed by

a piezoelectric material such as zinc oxide (ZnO) or aluminium nitride (AlN) which

when used in conjunction with the final patterned IDT aluminium layer generates and

detects the propagating acoustic waves. More details on the physical layout of a FPW

device can be found in Section 2.2.1. As FPW structures are typically fabricated on sili-

con substrates, the necessary signal processing electronics can also be fabricated on the

same die. This implies that FPW devices can potentially be configured for ’lab-on-chip’

applications with a simple digital output indicating the concentration of a particular

analyte.



4 Chapter 1. Introduction

The overall thickness and composition of the membrane defines the resonant fre-

quency for the two primary modes, denoted A0 and S0 for antisymmetric and symmet-

ric displacements about the device mid-plane respectively. The primary A0 mode has

the unique characteristic of a low resonant frequency when the plate thickness is small

compared to the acoustic wavelength. As an example, it is common to fabricate devices

with an A0 mode resonant frequency less than 20MHz [5]. Conversely, the S0 mode

has a significantly higher resonant frequency, typically between 50 and 100MHz. As

the plate structure is further thinned, the phase velocity, and hence resonant frequency,

of the A0 mode further decreases. It is this phenomenon that allows FPW structures to

be applied to sensing applications in liquid media [6]. For small thickness-wavelength

ratios (h/λ << 1), the relatively low phase velocity and particle displacement profiles

allow the A0 mode to be used for liquid media sensing applications with minimal loss

due to viscous loading.

FPW structures are quite unique, as they can be applied to sensing applications in

both gas and liquid media. For gas phase sensing applications, a multilayered structure

can be employed [7], where an additional metal oxide layer is deposited on the device

surface. The introduction of a target gas causes conductivity changes in the metal ox-

ide layer, thereby perturbing the electrical boundary conditions of the acoustic wave,

which manifests as a measurable change in resonant frequency. In terms of biosensing

applications, the selectivity of a FPW device can be improved by the immobilisation

of a biorecognition element [8]. These layers are configured to detect specific biomole-

cules, thereby also decreasing the minimum detectable concentration of a given ana-

lyte. However, FPW structures are not strictly limited to sensing applications. Recently,

FPW devices have been employed as liquid delivery systems and micro actuators [9].

In terms of micromachined sensors, which is the focus of this study, FPW devices have

successfully been applied to sense pressure [10], humidity [11], protein concentration

[12], liquid density and viscosity [13]. Although the sensitivity of an FPW device can

be potentially enhanced by the addition of various layers, the structure can also be

used without. In particular, for pressure, density and viscosity sensing the additional

layer is not required.

The mass sensitivity of FPW structures comprised of a single isotropic layer, in
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both gas and liquid media, is inversely proportional to the overall thickness of the

active area of the device. Therefore, for high sensitivity, the membrane should be as

thin as possible. It is common to achieve an overall thickness of under 3µm, whilst

still maintaining a sturdy and reliable sensing platform [8]. In comparison to other

acoustic wave devices, such as the widely used Quartz Crystal Microbalance (QCM),

a FPW structure exhibits a sensitivity of up to 31 times greater, whilst operating at

approximately the same frequency [14].

Numerous simulation techniques exist for the analysis of acoustic wave structures

when configured as sensors [13, 15]. However, for all currently available methods, a

series of underlying assumptions and approximations are made that ultimately limit

the accuracy of these approaches. The most common simplifying assumption for FPW

devices relates to the materials used to realise the structure. In most published results,

particularly in the earlier stages of development, FPW devices were approximated as

an acoustically thin isotropic plate, where the influence of the supporting silicon sub-

strate was neglected. The author addresses many of these simplifications by applying

numerical techniques which consider the anisotropic nature of the individual device

layers are well as the membrane silicon support structure. In particular, significant dif-

ferences are found when considering the mass sensitivity of FPW structures when com-

paring the isotropic approximation to the results obtained by the employed anisotropic

analysis technique.

Another current deficiency with conventional modelling techniques is the inability

to simultaneously model various second order phenomena such as triple transit, dif-

fraction and electromagnetic feedthough. Whilst in some structures these effects can

be safely ignored [16], as substrate dimensions are reduced to provide cost benefits,

these effects must be included. The author intends to investigate potential methods to

incorporate the aforementioned phenomena into the simulation process developed for

FPW structures.

Of particular interest is the modelling of FPW structures using the Finite Element

Method (FEM). Although a well established technique for the analysis of mechanical

structures such as beams, trusses and bridges, the process is typically not applied to

acoustic wave devices. One common issue with this technique is the computational
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resources required to obtain an accurate solution within a relatively small timeframe.

As computers have become significantly more powerful over the last few years, the

reluctance to use the FEM for complex tasks such as acoustic wave propagation is de-

creasing [17, 18]. The second deficiency with the application of the FEM for the study of

acoustic wave devices is a set of clear and concise guidelines on how various structures

should be modelled. The author intends to address these concerns with a discussion on

the influence of FEM parameters such as simulated structure dimensions, simulation

time, timestep and node density. Furthermore, routines will be established to convert

the data obtained from the FEM simulations to commonly quoted parameters, such as

admittance and therefore insertion loss, used within the Ultrasonics community.

The FEM provides significant benefits over other analysis techniques. When cor-

rectly applied, the technique is independent of problem geometry, whereas other more

conventional methods may require complete redefinition of basis equations [19]. In

many current models of FPW structures, the device is assumed to consist solely of an

acoustically thin plate, typically less than a few tens of microns. As mentioned pre-

viously, the effect of the silicon support structure is often neglected, which can cause

inaccuracies in the frequency response characteristics. Using the FEM, a complete three

dimensional FPW device can be simulated, thereby providing a more accurate repre-

sentation of the physical device. Using the same methodology, it is also suggested that

the FEM can be applied to determine the frequency domain characteristics of liquid

loaded FPW structures. It is envisaged that liquid layers can be incorporated with the

addition of an appropriate finite element, whereas other techniques require significant

modifications to account for viscous damping [20].

The FEM is also capable of modelling the physical and electrical effects of the IDTs,

which until recently was ignored in the analysis of SAW structures [21]. This is par-

ticular important for FPW structures as the electrode thicknesses can be a significant

percentage of the overall plate thickness. This task was not undertaken by the author,

however is a topic of ongoing research. It is believed that the work conducted in this

thesis will serve as a benchmark for future development and analysis of FPW struc-

tures, as well as other acoustic wave devices, using the combination of the FEM with

author’s modified SAW analysis techniques.
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With respect to other more conventional techniques, most of the available litera-

ture focuses on the analysis of more established acoustic wave structures. SAW and

QCM devices have been available for over 50 years, and as such the device physics are

well understood, leading to well defined analysis procedures. Whilst analogies can be

drawn from the SAW case, many techniques have to be re-evaluated to determine their

applicability to FPW devices. The author also addresses these concerns, particularly

when considering the spectral domain Green’s function to evaluate the frequency do-

main characteristics of FPW structures in the gas phase. The calculated results from

these more conventional techniques will be used to verify solutions obtained from the

author’s novel analysis of FPW structures based on the FEM.

Throughout the development of this thesis, the commercially available FEM pack-

age ANSYS 8.0 was utilised. Whilst other groups have focused on writing propri-

etary FEM computation routines, the application of commercially available software

allows other researchers, without the necessary programming skills, to apply the same

techniques to other acoustic wave devices and structures. To the best of the author’s

knowledge the simulation guidelines presented are generic and thus are still suitable

for other FEM packages.

1.2 Objectives

The aim of this thesis is to provide a comprehensive theoretical analysis of Flexural

Plate Wave devices for sensing applications. Using a variety of analytical and numer-

ical techniques, the operating parameters of these structures will be investigated and

described in detail. The main objectives of the author’s research include:

• Discussion of current modelling techniques and their applicability to the analysis

of multilayered FPW structures. The limitations of current techniques will be

investigated and a thorough description of underlying assumptions given. Based

on this review, the author’s novel approach to modelling FPW structures will be

developed.

• Development of a unified approach for the simulation and evaluation of mul-

tilayered FPW structures, applied to sensing applications in both gas and liq-
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uid media, that can readily adapt to changes in geometry and device layout.

As a minimum, the simulation procedures developed must be capable of accu-

rately determining key electrical and mechanical performance parameters such

as phase velocity, electromechanical coupling, particle displacement and of prime

importance, frequency response characteristics in both gas and liquid media. To

achieve this objective, an array of both numerical and analytical techniques will

be considered and the appropriate methods employed. Preliminary investiga-

tions into modelling techniques suggest that the FEM, combined with alternative

techniques used in the analysis of other acoustic wave devices, can be applied

to this task. It is envisaged that analogies drawn from modelling techniques

applied to SAW structures can be adapted to suit FPW devices, provided that

all underlying assumptions are fully explored and the appropriate modifications

implemented. Furthermore, the results obtained from the author’s approach will

be verified against routinely applied existing techniques used within the Ultra-

sonics community.

• To comprehensively investigate the differences in mass sensitivity and particle

displacement profiles between commonly quoted single layer FPW devices and

significantly more complex multilayered structures. A study will also be under-

taken on the influence of the device layers with respect to mass sensitivity. Based

on this information, the author intends to fabricate a highly sensitive FPW struc-

ture that can be applied to sensing applications in both gas and liquid media.

• Develop an understanding of acoustic wave devices that can be potentially ap-

plied to sensing applications in liquid media. In particular, the limitations of

alternative devices will be considered and potential methods to prevent the same

issues with FPW structures will be considered.

• Evaluation of FPW device performance in liquid media. Of particular interest is

the ability of these structures to be applied to density, viscosity and mass sens-

ing tasks in liquid media. An investigation will be performed on the applicabil-

ity of the primary antisymmetric and symmetric modes for sensing applications.

Whereas the antisymmetric mode is typically applied in liquid media, the au-
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thor will investigate whether the symmetric mode can be used simultaneously to

obtain more detailed information.

• Design, development and fabrication of a functional FPW device based on the

findings of the author’s novel analysis technique. It is envisaged that this process

will serve as a further validation of the author’s findings.

1.3 Authors Achievements and Outcomes

Throughout the course of the author’s PhD program, several significant achievements

were obtained of which a majority are contained within this thesis. The most notable

aspects of the author’s research include:

• Development of a novel analysis technique for the simulation and evaluation of

multilayered FPW devices based on the convergence of the FEM with classical

analysis techniques and procedures typically applied to SAW structures. The

necessary modifications to the SAW analysis techniques have been undertaken

to suit the FPW case by critically examining the underlying principals and as-

sumptions of these methods.

• Development of a three dimensional (3D) FEM simulation for the analysis of

multilayered FPW structures. Electrostatic and dynamic transient simulations

were successfully conducted on a 3D FPW structure to obtain key electrical and

mechanical performance criteria such as electrode charge density and mechani-

cal displacement. The two simulations performed further demonstrated that the

FEM approach used by the author is capable of simultaneously evaluating var-

ious second-order effects, such as electromagnetic feedthrough and diffraction,

which typically can not be achieved using alternative numerical techniques. Fur-

thermore, the dynamic transient analysis has demonstrated that the displacement

in a multilayered FPW structure in predominantly in the longitudinal and trans-

verse directions, indicating a less computationally intensive two dimensional

FEM analysis can be applied without significantly influencing the simulation re-

sults.
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• Development of a comprehensive two dimensional (2D) FEM simulation for the

analysis of multilayered FPW structures. Various FPW devices have been sim-

ulated with and without the underlying silicon support structure, which is typ-

ically ignored with more conventional modelling techniques. It was found that

the support structure influences both the resonant frequency and insertion loss

values of the two primary acoustic modes, thereby providing a significantly more

accurate representation of physical FPW structures. Various signal processing

techniques have been applied to the FEM derived data to improve the resolution

of the frequency domain results. A clear link has been established between the

frequency domain data and the FEM simulation parameters, which allows the

desired frequency resolution to be obtained.

• To determine the theoretical frequency response of a FPW device, a two dimen-

sional dynamic transient FEM analysis was performed. A modified impulse func-

tion was applied at the input IDT and the corresponding charge density deter-

mined at the input and output transducers over the complete simulation time.

By appropriately modifying SAW analysis techniques to suit FPW structures, the

complete admittance characteristics of the device was calculated from the FEM

results. The admittance data was then converted to equivalent scattering ma-

trix parameters, widely used within the Ultrasonics community, allowing the in-

sertion loss to be evaluated. This approach improves on existing techniques by

allowing the complete frequency response spectra to be obtained concurrently

instead of applying discrete frequencies and evaluating the transducer response.

Other researchers have focused on the modal analysis of FPW structures, which

does not take the excitation source, nor the piezoelectric nature of the device into

account. The techniques demonstrated by the author fully account for the elec-

trical influence of the IDTs as well as the anisotropic and piezoelectric properties

of the individual layers. Furthermore, the author’s approach is independent of

geometry and device layout, which is typically not the case with more conven-

tional techniques.

• Based on the results obtained via the FEM simulations, the author has success-

fully determined key electrical and mechanical parameters of various FPW struc-
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tures. In particular, input capacitance, electromechanical coupling coefficient, ad-

mittance, and hence insertion loss, have all been successfully evaluated, where

excellent agreement has been obtained when compared against other more con-

ventional techniques. To verify the overall simulation method presented by the

author, a diverse range of routinely applied modelling techniques, such as the

stiffness matrix method and spectral domain Green’s function were applied to

the same theoretical FPW device. Via the stiffness matrix method, basic para-

meters such as phase velocity and electromechanical coupling were calculated,

whereas a spectral domain Green’s function was applied to verify the FEM de-

rived frequency response characteristics. A full investigation has been performed

on the impact of various simulation parameters within the FEM package and a

general set of guidelines established for the use of this technique when modelling

acoustic wave devices in both gas and liquid media.

• An detailed discussion has been given on the necessary modifications to both the

stiffness matrix method and FEM to apply both techniques to the analysis of liq-

uid loaded FPW structures. It was shown that the FEM requires the addition of a

dedicated fluid element, whereas the stiffness matrix method requires significant

modification. In particular, for the stiffness matrix method, the additional liq-

uid layer is modelled as semi-infinite, whereas for the FEM, the optimum liquid

thickness was found to be 1.5 times the IDT edge-to-edge spacing. The frequency

response of a liquid loaded FPW structure was obtained via the techniques pre-

sented by the author and the spectral domain Green’s function. It was found the

FEM based techniques provided a more correct representation of the influence

of the additional liquid layer when compared against experimental results pre-

sented in literature. The spectral domain Green’s function, in its current form,

was unable to correctly calculate the required characteristics, and in some cases,

provided insertion loss characteristics superior to that of an unloaded FPW struc-

ture.

• The author has developed a series of guidelines for the analysis of multilayered

FPW structures based on the presented FEM techniques. Although the author’s

analysis focuses directly on FPW devices, it is believed that the same technique
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could be applied to other acoustic wave structures. To the best of the author’s

knowledge, this is the first time a critical discussion has been held on the in-

fluence of FEM simulation parameters, such as node density, simulation time,

timestep and structure length for the analysis of acoustic wave devices in gas

media. A discussion has also been held on the influence of the assumed liquid

thickness and node density when modelling liquid loaded FPW structures via

the FEM.

• Density, viscosity and mass sensitivity of multilayered FPW structures in liquid

media has been discussed and compared against commonly quoted single layer

equivalents. To the best of the author’s knowledge, this is the first time that the-

oretical density, viscosity and mass sensing results have been calculated for mul-

tilayered FPW structures. Evaluation of the density-viscosity product has shown

that a single FPW structure is theoretically capable of discriminating between

these two parameters. Potential guidelines to increase the density, viscosity and

mass sensitivity, such as the substitution of the piezoelectric layer, have been in-

vestigated. For a liquid loaded FPW structure, it was found that the substitution

of the ZnO layer with a higher velocity material, such as AlN, resulted in an

increase of all three quoted sensitivities.

• A thorough review of modelling techniques for the study of acoustic wave struc-

tures has been conducted and their suitability to FPW device analysis discussed.

Of the reviewed techniques, it was found that none of the existing approaches

considered were capable of solving for key electrical and mechanical properties

simultaneously. To verify the author’s novel approach to modelling FPW devices,

three different, routinely applied, numerical techniques were implemented. The

first technique, known as the transmission matrix method, allowed the basic

properties of a FPW structures, such as phase velocity and electromechanical cou-

pling coefficient to be obtained. Although relatively simplistic to implement, the

transmission matrix method suffered from numerical instability when applied to

structures with large frequency-thickness products and lossy material parame-

ters such as those used to describe liquids. The cause of the instability was dis-

cussed and a suitable replacement technique, the stiffness matrix method, was
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considered. This technique was applied in conjunction with a spectral domain

Green’s function to determine the frequency response characteristics of a FPW

structure in the gas phase. Furthermore, these two techniques served as a bench-

mark for the author’s approach to modelling FPW devices primarily based on

the FEM. The necessary modifications to both the stiffness matrix method and

the spectral domain Green’s function to suit FPW structures were thoroughly de-

scribed and implemented.

• Particle displacement profiles for multilayered FPW structures in both gas and

liquid phases have been obtained and compared against the more commonly

quoted single layer structures. It was found that particle displacement in mul-

tilayered FPW devices could no longer be categorised as antisymmetric or sym-

metric due to the alternative materials used throughout the layered structure.

When placed in contact with liquid, a tightly coupled surface mode was identi-

fied, termed a Scholte mode, with a phase velocity approximately equal to the

compressional velocity of the liquid. This particular mode was deemed respon-

sible for most liquid sensing results presented in literature. A simple compu-

tational technique was also presented on acoustic mode identification for higher

order modes near the cut-off region based on the calculated particle displacement

profiles.

• Development, construction and commissioning of a reactive d.c. sputtering sys-

tem for the deposition of aluminium and aluminium nitride thin films. Prelimi-

nary characterisation of the aluminium nitride films indicate a preferential c-axis

orientation, with the piezoelectric properties determined by the unique applica-

tion of an Atomic Force Microscope (AFM). A complete description of this tech-

nique has been accepted by an international journal for publication in late 2007.

In addition to the aforementioned achievements, the author has published four papers

in international conference journals, of which the results are incorporated into this

thesis. The author’s list of publications are as follows:

• G. I. Matthews, S. J. Ippolito, W. Wlodarski, and K. Kalantar-zadeh, “Electrical

parameter extraction of a Flexural Plate Wave device using the Finite Element
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Method,” Proc. IEEE Ultrason. Symp., pp. 1136–1139, 2006.

• G. I. Matthews, S. J. Ippolito, K. Kalantar-zadeh, W. Wlodarski, and A. S. Holland,

“Finite Element Modelling of Flexural Plate devices,” Conference on Optoelectronic

and Microelectronic Materials and Devices, (COMMAD), pp. 145–148, 2004.

• A. S. Holland, G. K. Reeves, G. I. Matthews, and P. W. Leech, “Finite Element

Modeling of misalignment in interconnect vias,” Conference on Optoelectronic and

Microelectronic Materials and Devices, (COMMAD), pp. 307–310, 2004.

• S. J. Ippolito, K. Kalantar-zadeh, W. Wlodarski, and G. I. Matthews, “The study of

ZnO/XY LiNbO3 layered SAW devices for sensing applications,” IEEE Sensors,

vol. 1, pp. 539–542, Oct. 2003.

• S. Sriram, M. Bhaskaran, K. T. Short, G. I. Matthews, and A. S. Holland, “Piezo-

electric response characterization using atomic force microscopy with standard

contact-mode imaging,” Micron, In Press.

The author was also fortunate enough to attend the 2006 IEEE Ultrasonics Symposium,

October 3-6, 2006, Vancouver, Canada to present his novel work on the analysis of FPW

structures.

During the period of this PhD program, the author has also actively been involved

in the development of test instruments for gas sensing. The most notable success was

the development of a non-specific vehicle cabin air quality monitor for the Australian

motor vehicle fleet [22]. The results have been presented to the Federal Department of

Health and Ageing where a legislative mandate is under consideration.

A microprocessor controlled ozone generator, capable of concentrations below 200

parts-per-billion has also been developed by the author, which has resulted in numer-

ous publications by colleagues. The automated test and measurement system com-

pliments the group’s advanced multi-channel gas calibration system to allow for the

accurate evaluation of novel acoustic wave sensor designs.
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1.4 Thesis Organisation

The objective of this thesis is to provide a conclusive and thorough evaluation of FPW

structures sensing applications in both gas and liquid media. This thesis is segregated

into six further chapters, each with a comprehensive discussion of a particular aspect

of FPW device design and simulation. The main chapters, and their contribution to the

overall evaluation of FPW device designs, are as follows:

• Chapter 2 provides a critical review of current literature relating to the use of

acoustic wave devices for sensing applications in both gas and liquid media. Four

acoustic wave devices are discussed and their applicability to sensing discussed.

A brief introduction to modelling techniques will also be given, where it will be

shown that various limitations in current methods exist, thereby warranting the

author’s novel approach to the analysis of FPW structures.

• Chapter 3 introduces the commonly used Transmission Matrix method and its

application to solving the piezoelectric wave propagation problem in multilay-

ered FPW structures. A brief introduction to the concepts of stress and strain,

piezoelectric constitutive equations and the underlying assumptions of the tech-

nique will be given. The basic operating parameters of FPW structures, such

as dispersion characteristics, electromechanical coupling coefficient and bound-

ary conditions are discussed. The inherent numerical instability of the transmis-

sion matrix method is discussed in detail, with an example given to illustrate

the inability of the technique to evaluate FPW structures with large thickness-

frequency products and complex material properties.

• Chapter 4 presents a recently developed technique known as the Stiffness Ma-

trix method as a potential replacement for the transmission matrix method to

solve the piezoelectric wave propagation problem in multilayered FPW struc-

tures. This technique is known to be unconditionally stable for large frequency-

thickness products as well as for complex material properties. Using this ap-

proach, the particle displacement profiles and mass sensitivity of multilayered

FPW devices is presented and a comparison performed with simpler, single layer,

isotropic models. The frequency domain characteristics of FPW devices, in terms
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of input and output admittance, is also presented in this chapter based on a spec-

tral domain Green’s function, which was originally developed for SAW devices.

The necessary modifications of the spectral domain Green’s function undertaken

by the author for the analysis of FPW structures is presented. Various parameters

of the spectral domain Green’s function are investigated to evaluate their respec-

tive influence on solution convergence. The analysis performed in this chap-

ter, relating to both the stiffness matrix method and the spectral domain Green’s

function will serve as a benchmark to the authors novel approach to FPW device

analysis.

• Chapter 5 introduces the author’s novel approach to the analysis of FPW struc-

tures based on the convergence of the FEM with modified SAW techniques and

related procedures. A brief introduction into the foundering principals of the

FEM will be given, illustrating the numerous benefits of utilising this technique.

A discussion will be held on the application of coupled-field analysis techniques

and the necessary parameters required to efficiently and effectively simulate a

FPW structure. A three dimensional FPW device will be investigated, where the

electrostatic charge density and displacement profiles will be studied. This simu-

lation will also assist in the development of various optimisations, thereby reduc-

ing the solution computation time. From these results, a two dimensional FPW

device simulation will be considered, with the effect of the surrounding silicon

support structure evaluated, which is typically neglected using other modelling

techniques. The frequency domain characteristics of the 2D FEM FPW structure

will be determined by considering the induced charge on the electrodes, which

will allow the admittance characteristics to be calculated. A comparison will be

performed between the results obtained by the author and another recently sug-

gested technique [21] used for the analysis of SAW structures. This chapter will

also provide, to the best of the authors knowledge, the first published detailed

discussion of the FEM simulation parameters and how these affect solution con-

vergence when applied to the analysis of FPW structures. In particular, the in-

fluence of the simulated structure length, simulation time, solution time step and

finite element node density will be discussed. Chapter 5 concludes with a com-
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parison between the novel approach developed by the author and the widely

accepted spectral domain Green’s function.

• Chapter 6 illustrates the use of FPW devices for sensing applications in liquid me-

dia. Using the modelling techniques of Chapters 4 and 5 the influence of liquid

media on the frequency domain characteristics of FPW devices is considered. It

will be shown that the author’s approach based on the FEM is more appropriate

than other conventional techniques in evaluating critical performance parame-

ters of these devices. A discussion is also held on the performance of the FEM and

the influence of several of the modelling parameters on the insertion loss charac-

teristics. From this discussion generic guidelines will be established concerning

the use of the FEM when considering liquid loaded acoustic wave structures. Al-

though a FPW device is employed within this study, the techniques developed

by the author can potentially be applied to other acoustic wave devices, thereby

illustrating the versatility and applicability of the approach. A study will also

be undertaken on the ability of a FPW device to detect changes in liquid density,

viscosity and applied mass. The author concludes the theoretical analysis of FPW

devices for sensing applications in liquid media with a brief introduction into the

physical realisation of the FPW structures discussed herein. Particular empha-

sis is placed on the development and commissioning of a d.c. sputtering system

design by the author.

• Chapter 7 concludes this thesis and presents suggestions for future work in terms

of the development of the author’s novel approach to FPW device analysis using

the FEM.
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Chapter 2

Literature Review

2.1 Introduction

This chapter provides a critical review of current literature related to sensing applica-

tions in both gas and liquid media using acoustic wave devices. The knowledge gained

from this review will form the basis for the author’s novel approach to modelling Flex-

ural Plate Wave devices for sensing applications.

Section 2.2 is devoted to the study of acoustic wave devices that can be utilised in

both gas and liquid environments. In particular, Flexural Plate Wave, Quartz Crystal

Microbalance, Shear-Horizontal Surface Acoustic and Thin Film Bulk Acoustic Wave

Resonator devices will be discussed. For each device studied, potential applications

and basic operating principals will be presented. It will be illustrated that FPW devices

are well suited to sensing applications in liquid media, where it is necessary to quantify

changes in physical properties such as applied mass, liquid density and viscosity. The

application of these structures in liquid media is also presented and where possible

the effect of the applied liquid quantified, in terms of change in resonant frequency or

attenuation. Sample values of mass sensitivity are also given to allow the reader to

appreciate the highly sensitive nature of acoustic wave devices.

Section 2.3 focuses on the myriad of techniques to model FPW structures. The

analysis is split into two sections, with the first focusing on techniques to determine

basic operating parameters, such as phase velocity and resonant frequency, primarily

determined by the physical nature of the device. The review will initially focus on sin-
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gle isotropic layer structures, which allows the basic concepts to be understood. The

more advanced Transmission Matrix method is introduced and the basic premise of

this technique presented. A brief explanation of the limitations of this approach will

be given, with a more in-depth analysis presented in Chapter 3. The more recently

developed Stiffness Matrix method will then be considered and its relationship to the

generalised spatial Green’s function highlighted.

The second group of modelling techniques briefly reviewed focus on the frequency

response of FPW devices. The simplest technique known as the Delta-Function method

will be discussed. From there, an introduction into the Coupling of Modes approach

will be given, which can be applied to resonator style FPW structures. The commonly

applied spectral domain Green’s function will also be presented, which serves as a ba-

sis for comparison to the author’s novel approach to FPW analysis. A discussion will

be undertaken on the electrostatic approximation for the analysis of interdigital trans-

ducers and the relationship between the spatial and spectral domain Green’s functions

established. Finally, the Finite Element Method, and its use for evaluation of FPW

structures will be discussed. A concise history on the technique will be given and its

applicability to various different problems discussed.

2.2 Acoustic Wave Sensors

This section discusses the use of acoustic wave devices for sensing applications. De-

pending on the particular device employed and the materials utilised, these structures

can be applied to detect a wide range of measurands such as mechanical properties

of thin films, electric fields, as well as chemical and biological quantities in both gas

and liquid media [8]. To act as sensors, the output of these structures must change

as a result of the perturbation of the propagating electro-acoustic wave. For the same

structure, the excited acoustic modes can offer different sensitivities to mass, density,

viscosity or conductivity.

Acoustic wave sensors have been developed using Rayleigh, Lamb, Love, acoustic

plate and surface transverse modes [5]. Each of these particular modes have advan-

tages, however there are limitations on the type of media that these structures can be

operated in. For example, in a liquid environment Rayleigh mode devices are typically
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not utilised as much of the acoustic energy is dissipated into the surrounding medium

due to their inherently high phase velocity and elliptical surface particle displacement.

Throughout this thesis, the use of FPW devices for sensing applications in gas and

liquid media will be discussed. It will be demonstrated that, provided certain design

criteria are met, FPW structures are particularly well suited to measuring changes in

density, viscosity and applied mass in liquid media.

The remainder of Section 2.2 considers four alternative acoustic wave devices and

their applicability to sensing applications are discussed. A brief outline of their mode

of operation is presented and where available examples of their sensitivity towards

applied mass, density or viscosity given.

2.2.1 Flexural Plate Wave Devices

The first detailed description of acoustic modes propagating in a thin isotropic plate

was given by Sir Horace Lamb in 1917 [23]. In this classic paper, Lamb investigated

the propagation of elastic vibrations in a layer bounded by two parallel infinite plates.

Since then many researchers have investigated the propagation of acoustic waves within

thin plates, particularly for non-destructive evaluation of composite materials and as

a method of detecting biological agents in liquid media. Although the acoustic modes

are typically referred to as Lamb waves, the term Flexural Plate Wave (FPW) is used to

describe the physical device due to the primary antisymmetric mode ’flexing’ surface

particle motion.

Viktorov [24], in his early discussion on Rayleigh and Lamb waves, describes Lamb

waves as elastic perturbations in a solid plate for which displacements occur in both

the direction of propagation and perpendicular to the surface. He showed that in an

acoustically thin isotropic material, two primary modes propagate of which the so-

lutions can be grouped according to their antisymmetric or symmetric displacements

about the mid-plane of the structure. The primary modes, denoted A0 and S0, for an-

tisymmetric and symmetric displacements respectively, exist for any plate thickness.

When the thickness of the structure is small compared to the acoustic wavelength,

these waves can be identified by their distinct velocities. However, as the thickness of

the structure is increased, the two modes converge to the bulk, or Rayleigh, velocity of
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the substrate. The antisymmetric mode is identified in the small thickness-wavelength

region, (h/λ << 1), by its low velocity, whereas in the same region the symmetric mode

typically has a phase velocity greater than the Rayleigh velocity. It will be demon-

strated in Chapter 3 that as the thickness of the structure is further reduced, so is the

phase velocity of the antisymmetric mode.

Wenzel et al. [25] derived a simple analytical solution for the phase velocity, in m/s,

of the two primary acoustic modes propagating in an isotropic plate, given by:

vA0
p =

√
ωh

(
E
′

12ρ

) 1
4

(2.1a)

vS0
p =

√
E ′

ρ
, (2.1b)

where vA0
p and vS0

p represent the phase velocity of the antisymmetric and symmetric

modes respectively, E
′

= E/ (1− v2), E is the Young’s modulus, v is Poisson’s ratio,

ρp is the plate density and d is the plate thickness. Equation 2.1b indicates that the

phase velocity of the symmetric mode is constant, however this is not the case for the

antisymmetric mode which is highly dispersive. This theory was later extended to

include the effects of in-plane tension which is primarily a fabrication issue [14]. It

should be noted that the phase velocity of the symmetric mode can only be assumed

to be constant for small device thickness-wavelength ratios.

The relatively low phase velocity of the primary A0 mode, coupled with the surface

particle displacement profiles, makes FPW structures attractive for sensing applica-

tions in liquid media [5]. From equation 2.1a, the velocity of the A0 mode is dependent

on the structure thickness. Typical FPW liquid media sensors are fabricated with a

total thickness of less than 3µm [14], which corresponds to a A0 phase velocity of ap-

proximately 474m/s. Via Huygens’ principal [26], if the velocity of the mode is below

the compressional velocity of the surrounding liquid, energy will not radiate from the

plate into the liquid, thereby minimising attenuation. However, a frequency shift will

occur caused by the effective mass loading of the structure, therefore providing an

easily measurable method of evaluating the properties of the applied liquid.

When a FPW device is placed in contact with liquid media the propagation char-

acteristics of the primary A0 mode change significantly. A tightly coupled, non-lossy

surface wave is generated within the structure and liquid that propagates with a phase
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velocity very close to the longitudinal wave velocity within the liquid. This interface

wave, termed a Scholte mode [27], is typically responsible to many of the sensing re-

sults presented in literature. The characteristics of this mode will be discussed in Chap-

ter 6.

FPW structures are typically fabricated on a silicon substrate, thereby allowing the

signal processing electronics to be integrated on the same die. As the resonant fre-

quency of these structures is quite low, typically less than 10MHz for A0 and 100MHz

for S0, signal processing electronics are quite simple and inexpensive. Shown in Fig-

ure 2.1 is the typical construction of a FPW device [28]. In most devices, a low stress

silicon nitride (SixNy) film is deposited on one side of the Si wafer to define the active

area of the sensor. A low pressure plasma enhanced chemical vapour deposition (LP-

PECVD) technique is favoured to create a silicon rich non-stoichiometric low stress

film [8].
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Figure 2.1: Typical FPW Device Cross-Section

Via bulk micromachining techniques, a cavity is anisotropically etched in the Si sub-

strate to form the thin plate, or membrane which defines the active area of the device.

After etching, an aluminium or gold metallic layer is then deposited on the SixNy to

form a ground plane as well as to minimise the intrinsic stress when the piezoelectric

layer is deposited [29]. A piezoelectric layer, such as zinc oxide or aluminium nitride,

is then deposited to convert the applied electrical energy to a mechanical deformation

and vice-versa. In this particular implementation, a metallic layer is deposited to form

interdigital transducers which are used in conjunction with the piezoelectric layer to
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excite and detect the propagating acoustic waves. A IDT electrode period of u 100µm

is typically used, which provides a thickness-wavelength ratio of 0.03.

A wide variety of acoustic wave excitation methods exist for FPW structures. For

sensing applications, IDTs are typically used due to the ease of manufacture and low

cost. Magnetic excitation in a resonator structure has been recently investigated by

Martin [30] which simplifies the fabrication process by excluding the piezoelectric

layer. Here a meandering line transducer and a static magnetic field is used to ex-

cite and detect Lamb waves. The reduced thickness of the membrane also increases

the mass sensitivity. Other acoustic wave generation techniques include electrostatic

excitation and capacitative detection as suggested by Giesler et al. [31]. Similar to the

device described by Martin, this excitation method does not employ a piezoelectric

layer. In this approach, a glass substrate was bonded to the FPW device and an electric

field applied between the metallic layer and the glass to attract the membrane. Other

excitation methods will be discussed in Chapter 4.

Lamb waves have also been applied to the non-destructive evaluation (NDE) and

monitoring of materials for several years. Alleyne [32] has shown that both the A0 and

S0 modes can be applied to determine defects within metallic plates. Here, the sensitiv-

ity of various Lamb modes to notches of different depths and widths was investigated,

where it was found that the reflection and transmission of the modes is dependent

on the frequency-thickness product, mode type, mode order and the geometry of the

defect. It was concluded that Lamb waves can be used to find notches when the wave-

length to notch ratio is on the order of 40. As Lamb waves induce stresses throughout

the plate, this technique can be used to probe the surface for defects as well as the com-

plete thickness of the structure. For NDE tasks, a wedge bonded transducer is typically

used to excite the acoustic modes rather than IDTs as with sensing applications. Cou-

pling is achieved by either grease, or immersion in water. For non-contact evaluation,

laser excitation can be used which is beneficial for process monitoring in harsh envi-

ronments [33]. Lamb waves have also been applied to evaluate surface roughness. It

was found by Leduc et al. [34] that the phase velocity of the A0 and S0 modes is largely

unaffected by the surface condition, however the wave attenuation can significantly

vary. For small surface roughnesses, a linear dependance of attenuation was found.
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At an average surface roughness of 67µm, a 25% amplitude reduction was detected for

A0, whereas for S0 a 20% shift was observed.

Although in the context of this study, FPW devices are investigated for their abil-

ity to detect changes in density, viscosity and mass in liquid media, they have also

been successfully applied to many other applications. FPW structures were applied

as micro-actuators in liquid media by Moroney [9] where displacements of 6.5nm at

a pumping speed of 100µl/s were obtained for a FPW device operating at 4.7MHz.

The elastic properties of thin films and composite structures have also been rigorously

investigated by Nayfeh and Chimenti [35] and Moreau [36]. In work conducted by

Nayfeh et al., a fibre-reinforced graphite-epoxy composite plate was immersed in a liq-

uid to couple the acoustic energy into the structure. The reflected acoustic wave was

measured from where the dispersion characteristics of the composite structure could

be obtained.

An interesting feature of FPW devices is the symmetry of the surface particle dis-

placement profiles. For isotropic layer devices, similar acoustic energy is present at

the upper and lower surfaces, therefore either side of the structure can be applied for

sensing applications. With reference to Figure 2.1, the etched side is preferred as this

shields the sensitive IDTs from potentially corrosive environments. Also, in terms of

liquid media applications, the cavity formed during the fabrication process creates a

well for the analyte. In other acoustic wave devices, a flow cell typically must be added

to the device, thereby increasing the cost and also affecting the wave propagation due

to substrate loading.

In terms of micromachined sensors, which is the focus of this study, FPW devices

have successfully been applied to sense pressure [10], humidity [11], protein concentra-

tion [12], liquid density and viscosity [13]. The ability of a FPW structure to be adapted

to a wide variety of sensing applications makes the platform very appealing for study.

The basic layout of the structure is the same, however for each different application,

the sensitivity towards a particular measurand is typically achieved by an additionally

deposited sensitive layer. For gas-phase experiments, metal oxide sensitive layers such

as indium oxide or zinc oxide can be applied [37–39].

The mass sensitivity of a single isotropic layer FPW structure operating in the gas-
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phase, expressed in cm2/g, has been determined by Wenzel [14] and Wang [40] as:

Sf
A0m = − 1

2ρd
(2.2a)

Sf
S0m = − 1

ρd
, (2.2b)

where d represents the half thickness of the single layer FPW structure. At first glance, a

discrepancy exists in the mass sensitives between [14] and [40], which can be explained

by the variables used to describe the thickness of the single layer structure. Note that

Sf
A0m and Sf

S0m represents the mass sensitivity for the antisymmetric and symmetric

modes respectively. The negative sign indicates that with the addition of an unknown

mass the phase velocity, and hence frequency, of the acoustic modes are reduced. From

equation 2.2 it can be seen that the mass sensitivity of the structure can be increased by

reducing the thickness of the device. It will be shown through the course of this thesis

that equation 2.2 can not be applied to multilayered structures, thereby requiring the

mass sensitivity to be evaluated by numerical methods.

Experimental mass sensitives of −1014cm2/g have been reported by Wenzel et al.

[41] for a FPW structure consisting of a ZnO on Si3N4 delay line operating at 2.6MHz,

immersed in a fluid. Wenzel et al. have also conducted various experiments to de-

termine the response of FPW devices when loaded with a liquid on one side. Anti-

symmetric phase velocities of 473, 303.5 and 322m/s were obtained when the device

was exposed to air, deionised water and methanol respectively, further indicating the

versatility of FPW structures.

Ballantine et al. [42] have shown that a FPW structure is more sensitive to mass

perturbations than an SAW device operating at the same frequency. White [26] has also

shown that when an additional 10Å of material is placed upon a FPW, the fractional

frequency shift of the A0 mode is 7 times that obtained for a SAW structure with an

identical wavelength. A larger shift of 14 times was obtained for the S0 mode when

compared against the same SAW device.

In terms of biosensing applications, a sensing layer is usually spin-coated onto the

surface of the device. The additional layer, which is typically a polymer, causes atten-

uation of the acoustic modes due to viscous losses. The application of a FPW device

to detect changes in density and viscosity will be fully explored in Chapter 6, however
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this ability can be exploited to examine the binding of various biological agents to the

sensitive layer. Costello et al. [28] have shown that a FPW device can be configured

to detect bovine serum albumim (BSA) at a concentration of 3mg/ml in a phosphate

buffer. A frequency shift of 2kHz was detected for their structure, corresponding to

2.8µg/cm2 of protein being adsorbed onto the device. More recently, FPW biosensors

have been constructed by Pyun et al. [43] to detect E.coli bacteria where a lower detec-

tion limit of 6.2× 107 cells/ml was obtained.

2.2.2 Quartz Crystal Microbalance

The Quartz Crystal Microbalance, originally applied to sensing applications by Sauer-

brey in 1959 [44], is the simplest of acoustic wave devices that can be used in both gas

and liquid media. These devices typically consist of a thin circular AT-cut quartz crys-

tal with gold or platinum electrodes, Figure 2.2. For the fundamental resonance the

shear particle displacement at the device surface is at a maximum, which makes these

structures ideal for mass sensing applications. It has also been found that excitation

by surface electrodes cause only the odd harmonics to be generated [8], which do not

excite longitudinal modes. As the particle displacement is parallel to the surface, these

devices are well suited to sensing applications in liquid media, due to the acoustic

energy being theoretically confined to the device rather than being radiated into the

surrounding environment.
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Figure 2.2: Typical QCM Structure

A significant benefit of QCMs, particularly when operated in a gas phase, is the

relatively inexpensive signal processing electronics when compared to other acoustic

wave devices. QCM’s are typically configured as a feedback element in an oscillator,
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where the resonant frequency, originally derived by Sauerbrey [45], is given by:

f0 =
N

2h

√
µ

ρ
, (2.3)

where f0 is the unperturbed resonant frequency, N represents the Nth harmonic ex-

cited, h is the structure thickness, µ and ρ represent the elastic shear modulus and

density of the crystal respectively.

Several examples exist in literature of the processing electronics to excite the shear

mode in QCM structures [46, 47]. In systems studied by the author, a series of inex-

pensive high-speed TTL inverters are used. The QCM resonant frequency can then

determined with a standard counter through a buffer to prevent loading of the cir-

cuit. More advanced systems used a Phase-Lock Loop (PLL) system. In liquid media,

the processing electronics, depending on the attenuation caused by viscous losses, are

substantially more complex therefore often requiring an automatic gain stage.

QCMs were originally employed as a mass sensors in vacuum and gas phase ex-

periments [48]. In a vacuum environment, QCMs are routinely applied to measure the

thickness of a thin film during the deposition process. Similar to FPW structures, the

additional mass placed on the surface causes the resonant frequency of the structure

to decrease. To determine the mass sensitivity of these structures, the Rayleigh hy-

pothesis can be applied, where it is assumed that the added mass layer does not affect

the peak kinetic and potential energies [8]. For small accumulated mass, in a gas or

vacuum environment, a linear relationship exists for the change in resonant frequency

[49]:
∆f

f0

= −∆m

m
, (2.4)

where ∆f is the change in resonant frequency, m and ∆m represents the mass per unit

area of the unloaded resonator and the additional mass respectively. Equation 2.4 has

been shown to be valid for an additional mass of 1− 2% of the original resonator mass

[49].

For a QCM operating in a gas phase, the mass sensitivity is inversely proportional

to the device thickness. Thus, analogous to a single layer FPW device, a higher mass

sensitivity can be achieved when the QCM thickness is reduced. However, as the QCM

is thinned, the device becomes quite fragile, therefore limiting the application of these
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structures. Reported mass sensitivities of −14cm2/g have been achieved for QCM

structures operating at 6MHz [14] in a gas phase.

When loaded with a liquid, the characteristics of a QCM vary significantly. The

change in resonant frequency induced by the additional liquid layer, under the no-slip

condition, has been described by Kanazawa and Gordon [50] as:

∆f = −f
3
2
0

√
ηlρl/πµρ, (2.5)

where ηl and ρl are the shear viscosity and density of the added liquid layer. Although

the resonant frequency of the QCM is varied by the addition of a liquid layer, the

mass sensitivity remains mainly unchanged if the added layer is assumed to be rigidly

coupled. Similar to FPW devices, either side of the structure can be used for liquid

media sensing applications, provided the electrodes are electrically isolated. This is

typically achieved using a flow-cell structure where the QCM is clamped in a specially

designed holder and supported by a series of gaskets [51]. Furthermore, both sides

of the structure can be simultaneously loaded with alternative liquids for differential

sensing applications.

When used as a mass sensor in a liquid environment, Tessier et al. [51] have shown

that if the quality factor and resonant frequency are measured simultaneously a dis-

crimination can be made between the viscous effects of the liquid and the additional

mass. In this configuration, a standing shear wave was also established which caused

attenuation of the resonant mode, thereby necessitating the aforementioned further

gain stage in the signal processing electronics.

Much work has taken place on enhancing the sensitivity of QCMs when used for

sensing applications in liquid media. As the devices are relatively simple to construct,

they are often preferred over other acoustic wave structures. Martin et al. [52] have

shown that the surface roughness of a QCM has an effect on the sensitivity of the struc-

ture. It was found that for surface features that are much less than the acoustic decay

length, the frequency response of the structure depends only on the density-viscosity

product. Beyond this point, the acoustic impedance of liquid load increases, caused by

the effective trapping of the liquid via surface features and the device exhibits charac-

teristics similar to a mass being deposited on the surface.

More recently, multichannel QCM structures have been developed which allows for



30 Chapter 2. Literature Review

two simultaneous measurements [53]. There are significant benefits to this approach,

including cost and size reductions, however the overall structure must be carefully

designed to minimise interference between the two devices. These types of structures

can also be used in a differential configuration to minimise environmental effects such

as temperature, humidity and other mitigating factors.

2.2.3 Surface Acoustic Wave Devices

The use of Surface Acoustic Wave devices for sensing applications is a highly studied

area. Although originally developed by White and Voltmer in 1965 [54] for signal

processing applications, since the 1970’s these structures have been widely used as

chemical sensing platforms. Depending on the device materials and layout, several

different acoustic modes can be generated. Unlike bulk mode devices, such as QCMs, a

SAW structure is capable of generating acoustic waves with displacement components

primarily in two planes. For example a Rayleigh mode, which is closely coupled to the

device surface, consists of displacement components in the propagation and surface

normal directions, making this type of device well suited to gas phase experiments.

Conversely, a Love mode device contains displacement components in the shear and

longitudinal directions, thereby making them compatible with liquid media sensing

applications.

A wide variety of substrates exist for SAW device fabrication, with recent sensors

fabricated in quartz, lithium niobate (LiNbO3), lithium tantalate (LiTaO3) and langa-

site (La3Ga5SiO14) piezoelectric substrates. Due to the anisotropic nature of these sub-

strates, different orientations provide the designer with the ability to tailor the device

for a given wave type. Due its well understood properties, silicon was initially used as

a substrate material for SAW structures with a further piezoelectric layer deposited to

excite the acoustic wave. However, devices fabricated in silicon are prone to electro-

magnetic feedthrough [55], which is a capacitive coupling between input and output

transducers that can significantly mask the device response. The use of the aforemen-

tioned non-conductive substrates minimise the effect of electromagnetic feedthrough,

thereby simplifying the device layout. The other benefit of these substrates is their high

electromechanical coupling coefficients, which allow a SAW structure to be fabricated
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without the need for further piezoelectric layers. In filter applications, this is typically

the case, whereas in acoustic wave sensors a further layer is deposited to increase the

sensitivity of the structure. Figure 2.3 depicts a typical layered delay line SAW device

configured for sensing applications. Depending on the application, the IDTs can ei-

ther be placed on the upper exposed surface or between the sensitive layer and the

piezoelectric substrate.
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Figure 2.3: Typical Layered SAW Device Cross-Section

As was mentioned in Chapter 1, two surface metallisation configurations exist to

excite and detect acoustic waves for SAW structures. For oscillator applications a res-

onator structure is typically used, which relies on in-phase reflections of the acoustic

wave caused by metallic gratings deposited on the device surface. Similar to QCMs,

these types of structures exhibit a high quality factor which improves the signal to

noise ratio. The second type of surface metallisation is known as a delay line structure,

which is typically used in filter and sensing applications. Modification of the delay

path manifests as a change in phase velocity and hence resonant frequency.

The resonant, or synchronous, frequency of a SAW device is given by:

f0 =
vp

λ
(2.6)

Unlike FPW devices, for a bare substrate, the phase velocity of a SAW device is

independent of the thickness of the substrate. For modelling these devices, as will

be discussed in Section 2.3, the substrate is assumed to be semi-infinite due to the

limited interaction of the propagating wave with the lower surface. For sensing appli-

cations, devices have been fabricated with electrode periods in the order of 24µm on
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LiNbO3, corresponding to free surface frequency and phase velocities of 145.13MHz

and 3483.2m/s respectively [7]. SAW filters for wireless applications are routinely fab-

ricated with centre frequencies of up to 2.5GHz [1].

A SAW device can potentially be more sensitive than its QCM counterpart to per-

turbation in boundary conditions due to the confinement of acoustic energy at the

device surface, coupled with the increase in resonant frequency. In gas phase sensing,

which is typically based on Rayleigh mode structures, a majority of the wave energy is

within one to two wavelengths of the device surface. This implies that the propagat-

ing electro-acoustic wave will be affected by changes in both electrical and mechanical

boundary conditions. Based on this principal, SAW structures have been successfully

employed to measure temperature, force, displacement, flow [42], pressure [29], elec-

tric field [56], humidity [57], gas concentrations [7] and biological quantities [58].

In terms of electrical measurements, SAW devices can be configured to evaluate

conductivity changes of an additional sensitive layer. As the SAW propagates along

the piezoelectric structure, a layer of bound charge accompanies the mechanical wave.

When the device is exposed to particular gases the electrical characteristics of the ad-

ditional layer are modified, thereby causing a measurable change in the acoustic wave

phase velocity via the acousto-electric effect [2]. Using a perturbation theory approach,

where the thickness and electrical properties of the sensitive layer were ignored, Ricco

and Martin [59] have shown the fractional shift in phase velocity and normalised at-

tenuation due to changes in surface conductivity is given by:

∆v

vp

= −K2

2

σ2
sh

σ2
sh + v2

pε
2
p

(2.7a)

α

kx

=
K2

2

vpεpσsh

σ2
sh + v2

pε
2
p

, (2.7b)

where K2 is the electromechanical coupling coefficient of the SAW mode at the device

surface, σsh is the sheet conductivity of the layer, εp represents the permittivity of the

structure and α is the imaginary component of the propagating mode wavenumber

kx. As mentioned in [21], care must be taken when evaluating K2 for determining the

properties of the SAW structure. For modelling purposes, K2 is typically calculated at

the IDT location, whereas for calculation of the conductometric sensitivity, it should be

evaluate at the surface exposed to the gas species.
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Recent work by Ippolito [7] has shown that conductometric sensitivity of a SAW

device can be improved by the addition of an intermediate zinc oxide and indium ox-

ide sensitive layers. By examining equation 2.7, it can be seen that the conductometric

sensitivity is a function of the sheet resistance and is a maximum when σsh = vpεp.

Therefore, by modifying the velocity-permittivity product of the intermediate layers,

the sensitivity of the structure can be improved. One technique is to modify the thick-

ness of the piezoelectric ZnO layer. In [7] it was found that for a LiNbO3 structure, an

optimum ZnO thickness of 1.2µm results in a shift of 514.7kHz at a centre frequency of

165.3MHz when exposed to 1% hydrogen in synthetic air. It was also shown that us-

ing a similar structure, with the addition of a further sensitive layer, frequency shifts as

large as 750kHz, corresponding to a fractional frequency shift of 0.45%, can be obtained

towards the same gas species [60].

The mass response of a SAW device is highly dependent on the substrate orienta-

tion and the acoustic mode utilised. Similar to FPW structures, the mass sensitivity

for SAW devices can be determined by perturbation theory [61], which assumes that

the deposited mass is rigidly coupled, can be approximated as isotropic and is of in-

finitesimal thickness. The added mass on the surface causes the mechanical wave to

be perturbed, thus providing a measurable shift in both phase velocity and attenu-

ation. Depending on the mass to be measured, and the method of delivery, several

different acoustic modes can be used. In liquid media, a shear mode is typically used

due to the high attenuation of the Rayleigh mode caused by viscous losses [62]. For

the Rayleigh mode, the transverse and longitudinal displacements are within the same

order of magnitude and hence the transverse component is highly damped in the pres-

ence of the liquid. In the gas phase, where a Rayleigh mode is typically employed, a

chemically active sensitive film is coated onto the device to adsorb specific molecules

[5] thereby increasing the effective mass on the device surface. The addition of the

sensitive layer also presents an interesting problem in terms of mathematical models

as this causes a further loss mechanism. Via perturbation theory, for a simple SAW

structure, the mass sensitivity is given by [40]:

Sv
m =

−VR

4|P |
(
|vx|2 +

(
1− E

′
3/ρ

′

V 2
R

)
|vz|2

)

z=0

, (2.8)

where VR is the Rayleigh wave velocity, vx, and vz represent the surface particle veloc-
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ities of the longitudinal and transverse components of the unperturbed device and |P |
represents the power flow per unit width. The subscripted terms, E

′
3 and ρ

′ are the

additional sensitive layers’ Young’s modulus and density respectively.

With the addition of sensitive layers, shear modes may exist and hence for mul-

tilayered structures equation 2.8 must be modified. Due to further assumptions in

construction equation 2.8, discrepancies can exist between theoretical and measured

values. For an ST-cut SAW delay line structure operating in the gas phase at 112MHz,

theoretical sensitivities of−151cm2/g were calculated, whereas experimental values of

−91cm2/g were obtained [14].

Another widely studied area is the use of SAW Love modes for sensing applica-

tions in liquid media. This particular acoustic mode has primary displacement com-

ponents in the shear direction, thereby limiting energy loss into the surrounding liquid

medium. Unlike Rayleigh modes specific conditions, mainly pertaining to the veloci-

ties of additional guiding layers, are necessary to excite, and contain, Love waves. To

realise a Love mode device, a SAW structure is initially fabricated on a piezoelectric

substrate such as 90◦ rotated ST-cut Quartz which supports a shear-horizontal acoustic

wave. If an additional layer is deposited on the surface, such as silicon dioxide (SiO2)

or zinc oxide [58] which has a lower shear velocity than that of the substrate, then a

highly trapped Love mode is generated within the upper layer. Mass sensitivities of

380cm2/g have been achieved for these structures operating at 110MHz in water [63].

Before the wave guiding layer was deposited, a sensitivity of 14cm2/g was obtained.

Similar to the conductometric case, the sensitivity of a Love mode device is tailored

by the thickness of the additional guiding layer. For the aforementioned device, an

optimum SiO2 thickness of 5.5µm was experimentally determined [58]. Wang et al.

[40] have shown that the maximum mass sensitivity for a Love wave device is achieved

when the optimal thickness of the guiding later is proportional to the ratio of the shear

velocities and densities of the materials via:

Sf
m =

−4vs1

vs2ρ2λ1

, (2.9)

where vs1 and vs2 represent the shear velocity in the substrate and guiding layer re-

spectively, λ1 is the acoustic wavelength and ρ2 is the density of the guiding layer.

From equation 2.9, it can be seen that maximum mass sensitivity is achieved when
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the shear velocity and density of the guiding layer is low. As the thickness of the

waveguiding layer is increased beyond the optimal thickness, the sensitivity decreases

rapidly. The sensitivity of a Love mode device can be further increased by depositing

a chemically sensitive viscoelastic layer on top of, or instead of, the solid SiO2 or ZnO

layers. These layers naturally damp the acoustic mode due to viscous losses, however

allow the structure to be theoretically sensitive to a particular biological agent [64–66].

One difficulty of using Love mode devices for liquid media sensing applications is

the dielectric influence of the target liquid. Du et al. [63] have shown that attenuation

in a Love mode device is a function of both viscous losses and dielectric coupling. For

a device operating in air, the insertion loss was experimentally determined to be 13dB,

whereas the addition of deionised water increased the insertion loss to approximately

39dB. As has been discussed, due to the IDTs being on the opposite side of the FPW

structure, as well as the metallic ground plane, these devices should not be greatly

affected by the dielectric properties of the liquid.

2.2.4 Thin Film Bulk Acoustic Wave Resonators

More recently, Thin Film Bulk Acoustic Wave Resonator (TFBAR) structures have gained

popularity for sensing applications. These devices share design principals from both

FPW and QCM structures. A typical TFBAR device consists of a thin piezoelectric

layer, typically less than a few micrometres thick with electrodes deposited either side

of the film [67]. The layer can either be supported by the substrate, or suspended iden-

tical to that of a FPW device. Depending on the mode utilised, the surface particle

motion of a TFBAR device can be either in shear or longitudinal direction. For a de-

vice presented by Wingqvist et al. [68], consisting of a 2µm AlN piezoelectric thin film,

the shear mode is generated at 1.25GHz, whereas the longitudinal mode is substan-

tially higher at 2.15GHz. As has been previously discussed, for sensing applications in

liquid media, shear surface particle motion is preferred to minimise losses caused by

damping of the acoustic mode.

Initially TFBARs were applied to signal processing applications. By using a thin

film, rather than a bulk quartz crystal, resonant frequencies can be obtained beyond

1GHz for film thicknesses ranging from 1.2µm to 5µm. For economic reasons, it is
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impractical to physically machine quartz plates to these dimensions, let alone the re-

duction in electromechanical coupling coefficient as the thickness of the substrate is

reduced. Note that the calculation of K2 is different to that for delay line structures

as it depends on the series and parallel resonant frequencies. The suggested definition

of effective electromechanical coupling can be found in [67]. Similar to most acoustic

wave devices, ZnO or AlN is employed as the piezoelectric layer in TFBAR structures.

Several different approaches can be used to fabricate a TFBAR device, each with

varying levels of difficulty. The most common approach is very similar to the fabri-

cation of FPW structures [69]. A Si membrane is formed using the same fabrication

processes as for FPW structures. Whereas in a FPW, IDTs are fabricated on the piezo-

electric surface, two unpatterned metallic electrodes are deposited on opposite sides

of the membrane, Figure 2.4. A second style of structure, known as a solidly mounted

resonator, shares design principals from SAW resonator structures. Here, a series of

acoustic reflectors, each a quarter wavelength thick can be sequentially deposited on

a solid substrate. The number of layers depends on the reflection coefficient required.

The structure should also be fabricated with alternating mechanical impedances to

minimise residual stress. An example given in [67] shows that alternating layers of

SiO2 and AlN with the electrodes and subsequent piezoelectric layers can be used to

realise this style of device. The third most common approach is the use of a sacrificial

layer on a Si substrate [67]. A thin layer of SiO2 is deposited on select areas of a Si

substrate with the resonator structure formed on the top. The last step in the process

is the etching of the sacrificial layer to form a suspended composite piezoelectric and

metal resonator. This is typically the most difficult type of structure to fabricate as the

SiO2 layer must be carefully etched to fully release the device.

For signal processing applications, the longitudinal mode of a TFBAR is typically

used, which becomes highly damped when placed in contact with liquid media. To re-

solve this issue the deposited ZnO or AlN piezoelectric layer must be c-axis orientated

to generate a shear mode identical to that of a QCM. Care must also be taken to match

the temperature coefficients of frequency between the different materials used to form

the resonator. In comparison to quartz, thin film ZnO and AlN have a rather high

negative dependence on temperature, which can be minimised by the deposition of
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Figure 2.4: Typical TFBAR Cross-Section

other materials, such a SiO2, with a positive temperature dependence [70]. However,

the addition of other materials will increase the device thickness, therefore reducing

the resonant frequency and hence the sensitivity of the structure. A recent discussion

by Bjurström et al. [70] has shown that the second harmonic shear mode is better

suited than the fundamental to liquid media sensing applications due to its higher

quality factor and higher frequency thereby providing better resolution. It has also

been found that temperature compensation for the second shear mode can be more

readily achieved, with variances of ±2ppm/◦C obtained over a range of 25 to 95◦C in

air.

The resonant frequency of a TFBAR is calculated in an identical manner to the

QCM, equation 2.3, with the mass sensitivity given by equation 2.4 for small changes

in applied mass. Although based on the same principals as QCM structures, due to

the thin nature of the platform, the device is highly sensitive to mass changes. Benetti

et al. [71] have shown that the theoretical mass sensitivity of a TFBAR device con-

structed with a 1µm c-axis AlN membrane is approximately 34.8kHZcm2/ng, whereas

for QCMs, the sensitivity is several orders of magnitude lower. The high sensitivity

is attributed to the shear velocity of the AlN film, whereas an equivalent thickness

device constructed with c-axis ZnO yields a theoretical sensitivity of 11.2kHZcm2/ng.

Although these device exhibit a higher mass sensitivity than their QCM counterparts,

attenuation increases with the square of frequency and hence a tradeoff exists between

device instability and resolution [68].

TFBAR structures have successfully been applied to biosensing applications by We-

ber et al. [72], where it was found that the minimum detectable limit of 2.3ng/cm2 was
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obtained towards bovine serum albumin (BSA). The particular structure was based

on the solidly mounted resonator design, where alternating layers of zinc oxide and

platinum were used to form an acoustic Bragg mirror, providing a centre frequency of

790MHz. TFBAR devices have also been applied to viscosity sensing applications by

Wingqvist et al. [68]. Here different concentrations of glycerol were added to water

and the effect on the resonant frequency determined. For a viscosity-density product

of 23.04kgPam−3s−1 a frequency shift of 6, 000ppm was observed, corresponding to

an actual deviation of 7.5MHz. Although seemingly a relatively large shift, the long

term stability of the oscillator must be considered. By applying the IEEE procedure

for measuring noise in oscillators [73], Wingqvist et al. determined the mass sensitiv-

ity of their particular TFBAR structure was approximately 7.5cm2/ng. Campanella et

al. [49] have also demonstrated an AlN composite device operating at 2GHz where a

minimum detectable mass of 0.158ng/cm2 was found.

2.3 Modelling Techniques

Over the years, a wide array of techniques have been applied to solve the piezoelectric

wave propagation problem in acoustic wave devices. Many of these techniques and

related procedures have directly focused on SAW technology, as this group of devices

are commonly used for signal processing applications. With some modification, these

techniques can be adapted for finite thickness FPW structures. This section provides

a brief introduction to a select group of modelling techniques and highlights many of

the assumptions made during their development.

Current acoustic wave device modelling techniques can be divided into two distinct

groups. The first series of techniques focuses on the solution to the wave propagation

problem. Using these methods, parameters such as phase velocity, electromechanical

coupling coefficient, attenuation and power flow angle of various acoustic modes can

be obtained. The second group evaluates the influence of the excitation source, which

for this study is a series of interwoven electrodes, or IDTs. From these techniques,

the frequency response characteristics of an acoustic wave device can be obtained via

admittance parameters.
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2.3.1 Potential Method Analysis

An excellent discussion of Lamb wave propagation in single isotropic layer structures

appears in Viktorov [24], however the essential details are repeated here to demon-

strate the applicability of this technique to the analysis of FPW structures.

Potential Method Analysis, or Potential Theory, is a commonly used technique to

describe wave propagation in isotropic media in terms of a scalar and vector poten-

tial. The derivation of the potential method can be found in [61], which is based on

the Christoffel equation. Potential method analysis is well suited to NDE applications,

where single layer structures, such as steel or aluminium plates, are analysed. Due to

the complex nature of multilayered structures, an analytical solution is often difficult

to obtain, making the technique difficult to apply to acoustic wave sensors. The propa-

gation of an acoustic wave along a single isotropic layer device can be written in terms

of a scalar potential, φ, and a vector, ψ of the displacements, which are related to the

particle displacement, u, by [74]:

u = ∇φ + ∇×ψ (2.10a)

ux =
∂φ

∂x
+

∂ψ

∂z
(2.10b)

uz =
∂φ

∂z
− ∂ψ

∂x
(2.10c)

Under stress free boundary conditions at the upper and lower surfaces, omitting the

factor ej(ω−kxx), trial solutions for the scalar potential and displacements are written in

terms of simple trigonometric functions:

φ = B cos (ktlz + α) (2.11a)

ψ = A sin (ktsz + α) , (2.11b)

where α can take on successive values of 0 or π/2, corresponding to symmetric or

antisymmetric solutions respectively, A and B are constants and ktl and kts are the

wave vectors in the transverse and shear direction defined by:

k2
tl =

(
ω

VL

)2

− k2
x (2.12a)

k2
ts =

(
ω

VS

)2

− k2
x, (2.12b)
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where VL and VS are the material longitudinal and shear velocities and ω is the an-

gular frequency. Substituting equations 2.11 and 2.12 into equation 2.10 results in the

isotropic Rayleigh-Lamb characteristic equation, which describes acoustic wave prop-

agation in a single layer isotropic plate structure of thickness h:

ω4

V 4
S

− 4k2
xk

2
tlk

2
ts

(
1− ktl

kts

tan (ktlh/2 + α)

tan (ktsh/2 + α)

)
= 0 (2.13)

The solution to equation 2.13 can be obtained by a simple numerical search routine.

To evaluate the propagating wavenumber the frequency, device thickness, longitudi-

nal and shear velocities are held constant whilst the value of kx is scanned. Some

very important concepts can be obtained by considering equation 2.13. Although only

strictly valid for isotropic materials, the behaviour of the propagating modes is simi-

lar in the low frequency-thickness range for multilayered configurations. In the limit

as h → 0, the primary antisymmetric and symmetric mode velocities tends to a finite

value, given by:

VA0 =
VS0kxh

2
√

3
(2.14a)

VS0 = 2VS

(
1− V 2

S

V 2
L

)
(2.14b)

Limits are also placed on the velocity of the symmetric mode, given by VS

√
2 < VS0 <

VL, which in turn also restricts A0. However as kx → 0 for the A0 mode, the velocity

also tends towards zero. In the high frequency regime, as will be discussed more in

detail in Chapter 4, the primary modes tend towards the Rayleigh mode velocity of

the structure.

The behaviour of other Lamb modes can also be directly determined from the char-

acteristic equation. Higher-order modes exhibit a cutoff frequency, which implies that

they can only be excited above a certain frequency-thickness product. Below the cutoff

frequency, these modes have an imaginary wavenumber kx, however above this fre-

quency, the wavenumber becomes complex and hence a propagating mode is created.

This is typically plotted on a three dimensional figure as in [61].

2.3.2 Transmission Matrix Method

An alternative, and widely used, approach to solve the piezoelectric wave propagation

problem in multilayered structures is known as the Transmission Matrix method, de-
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veloped by Fahmy and Adler [75] in 1972. In this method, the piezoelectric wave prop-

agation problem is solved by relating essential field variables at the upper and lower

surfaces of a FPW structure via a transmission matrix. The essential field variables for

piezoelectric media consist of normal stress, mechanical and dielectric displacements

as well as scalar potential, from which all other components can be calculated. The

technique has been successfully applied to bulk and Rayleigh [20, 76, 77] mode de-

vices and to a lesser extent FPW structures [78]. One benefit of this approach is that it

is based on the individual layer properties, including thickness, rather than the overall

device geometry.

Similar to the potential method described previously, the transmission matrix method

assumes that the wave propagation problem can be described in terms of longitudinal

and transverse components. The effect of the shear components can be included, how-

ever for FPW and Rayleigh mode SAW structures, its influence has been found to be

negligible in the context of this study. Throughout the development of the transmission

matrix method, several improvements have been made. In the first paper published

on the topic [75], unpublished work by Tonning and Ingebrigsten [79] was formalised

into what is now commonly referred to as the transmission matrix method. The con-

struction of the transmission matrix method is similar to that used for the analysis of

tectonic plates within the Earth’s crust [80]. Several analogies were drawn between the

composition of the Earth’s crust and the construction of acoustic wave devices. Similar

to the layout of the Earth’s crust, an acoustic wave device consists of multiple layers,

each typically with unique material properties. In earthquake analysis, the acoustic

wavelength may be on the order of several kilometres, whereas in the case of FPW

structures, the wavelength is typically less than 100µm.

In the original paper by Fahmy et al. [75], the technique is extended to support

piezoelectric media, however in this formulation, the state vector τ , which consists

of the essential field variables, contained ten components rather than the more re-

cently presented version which consists of eight [76]. In structures comprised of purely

isotropic materials this can be further reduced to six. The piezoelectric wave propa-

gation problem, which describes the z-dependence of the eight partial modes, is ex-
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pressed in terms of a first-order matrix differential equation, given by:

dτ

dz
= jωAτ (2.15)

The solution to equation 2.15 is the well known matrix exponential [81]:

τ (z + h) = ejωAhτ (z) = φ(h, ω, vp)τ (z), (2.16)

where h represents the thickness of the layer under consideration, A is a 8 × 8 matrix

that consists of material properties, angular frequency and phase velocity. The term φ

is called the global transmission matrix.

In multilayered structures, the transmission matrices of the individual layers are

calculated and then cascaded to form a global transmission matrix, which automat-

ically satisfies all interfacial boundary conditions. The solution to the transmission

matrix is then obtained by considering the upper and lower surface boundary condi-

tions. For a FPW structure, with two free surfaces, the normal component of stress

is zero. The electrical boundary conditions depend on the assumed surface metallisa-

tion. If a metalised surface is assumed, the tangential electric field is zero, whilst the

surface charge remains unknown. Conversely, for a non-metalised surface, the tan-

gential electric field is unknown, whilst the surface charge is zero. This results in the

requirement that the determinant of a section of the transmission matrix is zero, which

is well suited to a numerical search procedure. In solving equation 2.16, either the an-

gular frequency, or the via the phase velocity term, the wavelength can be fixed, whilst

the other parameter scanned to find all local minima. Assuming that both terminal

surfaces are open-circuit, a propagating mode is determined by the condition:

det |φur| = 0, (2.17)

where φur represents the upper right 4× 4 block of the global transmission matrix φ.

Although mathematically powerful, the technique becomes unstable for large frequency-

thickness products as well as when working with lossy materials. The instability is

evidenced for structures consisting of both anisotropic and isotropic materials. The

cause of the numerical instability will be fully investigated in Section 3.4.1 and po-

tential methods to alleviate this problem will be discussed. The instability induced at

large frequency-thickness products is caused by the decoupling of the components that
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relate the upper and lower surface of the structure, thereby causing the transmission

matrix to become ill-conditioned. Many researchers have considered methods to rec-

tify the instability [82, 83], of which the Stiffness Matrix method, discussed in Section

2.3.3, appears to be the most popular.

2.3.3 Stiffness Matrix Method

Although an elegant solution to the wave propagation problem for multilayered piezo-

electric media, the transmission matrix method becomes ill-conditioned when work-

ing with large frequency-thickness products as well as complex material parameters.

Much work has been undertaken in an attempt to reformulate the transmission ma-

trix method to improve its stability. One of the more recent attempts developed by

Wang and Rokhlin [84] is known as the Stiffness Matrix method. Whereas the trans-

mission matrix method describes the relationship between the essential field variables

at the upper and lower surfaces, the stiffness matrix method relates the displacement

on both sides of a layer to the normal stress. The stiffness matrix method is known to

be unconditionally stable for large frequency-thickness products, where the solution

converges to the Rayleigh case, as well as for lossy materials.

Similar to the transmission matrix, the stiffness matrix method utilises a recursive

algorithm that can be used to construct a global matrix to evaluate multilayered struc-

tures. Although slightly more complicated to implement, this operation retains the

same computational efficiency as the transmission matrix chain multiplication [85].

The improved stability of the method is partial attributed to a modification of the co-

ordinate system when considering the propagating modes. In this method, modes

are split into either ’upwards’ or ’downwards’ modes based on the direction of power

flow. Whereas the transmission matrix method is based on a first-order linear differ-

ential equation, the stiffness matrix method satisfies a nonlinear Riccati equation [85]

which is known to be well suited to problems with unevenly growing terms [86].

The stiffness matrix for multilayered media is given by:

 T (z + h)

T (z)


 = K


 U (z + h)

U (z)


 , (2.18)

where T is the normal components of stress, U is the generalised displacement vector
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and K is the stiffness matrix for the given structure. Many of the numerical procedures

used to evaluate the determinant of the transmission matrix can be applied to deter-

mine the solution to the wave propagation problem via the stiffness matrix method. If

similar stress free boundary conditions are used, then the solution depends on evalu-

ating the determinant of the stiffness matrix, K, equation 2.18, at a given frequency or

wavelength.

However, the benefit of the stiffness matrix method comes from its relationship

to the generalised Green’s function [87]. The spatial Green’s function is a well docu-

mented solution technique used for the analysis of various branches of physical sci-

ence, including electromagnetism, thermodynamics and acoustics. The spatial Green’s

function fully describes the electro-acoustic problem in terms of the mechanical dis-

placement, normal stress, voltage and charge. Using this approach the electromechan-

ical coupling coefficient, mass sensitivity and effective permittivity can be obtained at

any position within the multilayered structure. This allows for the analysis of buried

electrodes within the FPW device, which has been recently been discussed by Powell

[21] for SAW resonator structures. The effective permittivity function is especially use-

ful as it contains the complete information about all piezoelectrically coupled modes of

the structure, whereas in some cases if the determinant of the stiffness matrix is taken,

pure mechanical modes can be identified which are not of interest for this study.

2.3.4 Delta-Function Model

The Delta-Function model, introduced by Tancrell and Holland [88], is the simplest

method of evaluating the frequency domain characteristics of acoustic wave devices.

Although relatively straightforward to implement, it provides relative insertion loss

values, which can only be used as a reference during the design phase [1]. The model is

unable to provide details about IDT admittance, circuit loading, bulk wave interference

and diffraction. Electrode influences, such as mass loading and perturbation of the

acoustic wave as it travels under a metalised region are also ignored. Even though an

IDT is a bidirectional device, only the acoustic wave propagating towards the receiving

electrodes is considered, thereby neglecting triple-transit effects.

The technique is typically used to determine approximate frequency domain char-
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acteristics of Rayleigh mode devices where the input and output IDTs are identical. In

the initial discussions by Tancrell et al. [88], it has been shown that if an alternative

form of the electrode weighting factor is used, which relates to the overlap of the fin-

ger pairs, then apodised IDTs can be analysed. Campbell [1] provides a explanation of

the technique using uniform IDTs and makes further simplifying assumptions which

again reduces the complexity of the problem.

In this technique, the electric field distribution is approximated as a series of delta

functions at the electrode edges. The electric field is assumed to be uniform across

the entire electrode. For the transmitting IDT, it is assumed that at any point in time

neighbouring electrodes have equal, but opposite voltages. The summation of the delta

functions corresponding to the applied voltage can be used to determine the frequency

response of the structure. In a two transducer device, the transfer function is given by:

|H (f) | = |HT (f) | · |HR (f) |, (2.19)

where |HT (f) | and |HR (f) | represent the individual transfer functions of transmitter

and receiver IDTs respectively.

To calculate the individual transfer functions, the contribution by each electrode

must be considered. Typically, the centre of an IDT is used as a reference plane, which

further simplifies the problem. Using this system, the IDT transfer function can be

described in terms of the spatial coordinates of the electrode fingers as [1]:

HT (f) =

(N−1)/2∑

n=−(N−1)/2

(−1)n Ane
−jkxxn , (2.20)

where N is the electrode number, xn is the electrode location and An is a factor that

relates to the overlap of the IDT fingers. For uniform IDTs, An is equal to 1.

When a large number of electrode exist, equation 2.19 can be further simplified.

Close to the centre frequency of the device, the transfer function can be approximated

as a sinc function by:

|H (f) | ∝
∣∣∣∣
sin [Npπ (f − f0) /fo]

Npπ (f − f0) /f0

∣∣∣∣ , (2.21)

where Np is the number of electrode pairs, f0 and f represent the centre frequency and

analysis frequency for the structure. The centre frequency is obtained by assuming

that the electrodes are λ/4 wide and evenly spaced. The analysis for the receiver is
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the same as the transmitter with the exception of a phase shift caused by the centre to

centre spacing of the two structures.

The delta-function model is suited to acoustic wave devices where only one main

mode is of interest. In a FPW structure, as has already been discussed, an infinite num-

ber of modes can exist, thereby making this approach invalid. Using this technique the

contributions due to the individual acoustic modes can not be appropriately weighted,

thus the calculated frequency response would be incorrect. Furthermore, this tech-

nique does not take into account the dispersive nature of plate modes, which makes it

unsuitable for the analysis of FPW structures.

2.3.5 Coupling of Modes

The Coupling of Modes (COM) approach was developed by Pierce in 1954. In his

original paper [89], the technique was applied to evaluation of coupling between two

lossless modes of propagation in a linear system. It was extended by Suzuki [90] and

Haus [91] to describe wave propagation in periodic SAW structures in 1976. For the

Rayleigh mode of operation, analogies can be taken from the case of laser wave propa-

gation in optics. Recently, the COM model has been further developed to include shear

horizontal and leaky surface acoustic waves on commonly used LiTaO3 and LiNbO3

substrates [92].

The COM approach is designed to be used in systems were reflections are domi-

nant, therefore the approach is well suited to the analysis of acoustic wave resonators.

Unlike the delta-function model, the COM technique considers wave propagation in

both directions from an IDT. As the model is based on periodic structures, electrode

end effects are ignored which can degrade the results for devices with a small num-

ber of electrodes and delay line structures. In the formulation of the COM model, the

propagating eigenmodes are described as an infinite number of Floquet harmonics.

As it is not possible to solve the wave propagation problem by considering an infinite

number of solutions, either the weakly interacting higher order harmonics are ignored,

or a differential approach can be used with a truncated set of equations [92]. Using the
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differential approach, the COM equations can be represented by a 3× 3 matrix as [1]:

d

dx




R

S

I


 =




−jδ jk12 jζ

−jk∗12 jδ −jζ∗

−j2ζ∗ j2ζ jωCs







R

S

V


 , (2.22)

where R and S are slowly varying acoustic wave amplitudes, I and V represent the

electrode current and voltage respectively, k12 is a reflectivity coupling factor, which

close to the centre frequency can be assumed to be constant, Cs is the capacitance per

unit length, ζ is the transduction coefficient and δ represents a detuning factor which

accounts for changes in parameters off the centre frequency. Note that all fields in

equation 2.22 are normalised to the total power flow of the structure.

From equation 2.22 it can be seen that the COM approach models the acoustic wave

device as two acoustic ports and one electrical port. For a uniform IDT, the COM para-

meters, which relate to the substrate type, orientation, metallisation ratio and period,

remain constant. Once the COM parameters have been extracted from the model, they

are converted to a P-matrix description [21]. This allows different sections, such as

reflectors and IDTs, to be cascaded to calculate the complete frequency response.

Although well suited to applications where a fast, efficient calculation is required,

the COM model is limited in several areas. Primarily the accuracy of the COM model

depends on the material properties. Determination of many COM parameters depends

on experimental analysis, which by its own nature, incorporates uncertainty, thereby

a design can not be optimised until some form of experimental data is collated. Other

parameters can be obtained from alternative numerical techniques such as Boundary

Element and Finite Element Methods, which also make numerous assumptions about

the solution to the wave propagation problem.

As previously mentioned, the COM model assumes that IDTs are infinitely peri-

odic. Physical IDTs are of finite length and due to manufacturing defects may not be

periodic in some regions, thereby causing potential errors in the subsequent analy-

sis. The spectral domain Green’s function applied by the author in Section 4.4.1 can

account for these effects and is thus preferred for the analysis of FPW structures. Fur-

thermore, as the COM approach is only valid over a narrow frequency range, the tech-

nique is potentially unsuitable for sensing applications, where changes in frequency
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response can occur at some distance from the primary modes.

2.3.6 Spectral Domain Green’s Function

Whilst it has been illustrated that the stiffness matrix method can be related to a gen-

eralised Green’s function to evaluate the phase velocity of multilayered piezoelectric

structures, a second Green’s function can be applied to determine the spectral char-

acteristics. The spectral domain Green’s function considers the response spectra due

excitation by a series of IDTs. Unlike the COM approach, this technique can be applied

to both periodic and aperiodic structures [92] and fully includes electrode end-effects.

The spectral domain Green’s function is used to convert the system differential equa-

tions into more manageable coupled integral equations which are typically easier to

solve [16].

The spectral domain Green’s function analysis is a Boundary Element method (BEM)

as it only considers the variables on the external interfaces of the structure [19]. Similar

to the Finite Element method (FEM) to be discussed shortly, the problem is discretised

into smaller, more manageable sections. For the analysis of IDTs, each finger is split

into a series of strips, allowing the applied voltage to be approximated as a Dirac, or

point source, and its influence on the remaining fingers calculated. In calculating the

spectral response of a FPW device, two different Green’s functions must be consid-

ered. The first relates to the electrostatic charge, which is a first-order approximation

of the piezoelectric case [2]. In this approximation, it is assumed that the structure

is non-piezoelectric and the electrical and magnetic fields do not interact [93]. For

piezoelectric structures bounded by a metallic plane, Baghai-Wadji [19] et al. derived

a closed-form formulae for the electrostatic component of the spectral domain Green’s

function. This means that the often difficult task of integrating singularities is avoided.

For simplicity, it is also assumed that all field variables, including charge, are constant

in the y-direction. It will be shown in Chapter 5, that this is not precisely the case,

however this approximation is suitable for this analysis.

The second component of the spectral domain Green’s function considers the effect

of the propagating surface wave. Unlike the SAW case, the frequency response of a

FPW device must consider the influence of both the A0 and S0 modes. The problem
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can be further extended to encompass higher order modes, however for sensing ap-

plications this is typically unnecessary. Milsom et al. [94] illustrate that the spectral

domain Green’s function is related to the effective permittivity, which is then used to

determine the charge on the electrodes for a given applied voltage via the application

of:

Φ (x) =

∫ +∞

−∞
G

(
x− x

′
)

σ
(
x
′
)

dx
′
, (2.23)

where G is a spectral domain Green’s function which depends on the specific problem

geometry, x is the spatial location of the electrode strip under consideration, σ is the

charge per unit length and Φ is the applied voltage. Equation 2.23 can be identified

as a convolution integral, and as such a simple Fourier transform can be applied to

simplify the calculation process as:

Φ (x) =
1

2π

∫ +∞

−∞
G (kx) ρ (kx) dkx, (2.24)

where the bar represents the Fourier transform of a particular term. For kx → 0, the

integral in equation 2.24 is regular therefore the issue of combining a numerical in-

tegration with analytical solutions is avoided. If appropriate weighting functions are

selected, the integral in equation 2.23 can be rewritten as a sum, thereby simplifying

the calculation process:

ϕk =
N∑

l=1

qlAkl k = 1, 2, ..N, (2.25)

where the term Akl contains both electrostatic and surface wave coefficients, N is the

number of individual electrode strips, ql represents the charge per unit area and ϕk is

the applied strip voltage. The same approach can be used to determine the influence

of guard and floating electrodes.

Whilst many analogies can be drawn from the analysis of SAW devices as done

by Milson et al. [94], there are some significant differences which must be taken into

account when considering FPW structures. In particular, the definition of the piezo-

electric coupling factor for SAW structures can not be applied to FPW structures. The

influence of these parameters, and the authors approach to this issue will be discussed

in Section 4.4.

Via the spectral Green’s function, the transducer capacitance and admittance can be

calculated. This data is then converted to the more commonly used scattering matrix
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parameters, where absolute insertion loss parameters can be obtained.

2.3.7 Finite Element Method

Historically, the FEM was used for the mechanical analysis of structures such as beams,

trusses and frames. In the early stages of development, the FEM, or its early inception,

was used throughout the aerospace industry. It was not until 1960, four years after the

first credited paper [95] was published that the term ’finite element’ was used.

Finite Element modelling became significantly more popular with the advent of

fast computers. Since its development in 1956, the speed and storage capabilities of

computers has increased significantly which has lead to the use of the FEM in a wide

variety of industries ranging from Process Control to Medical Instrumentation [96].

Although initially designed for structural analysis, the FEM has lent itself to many dif-

ferent fields such as electromagnetism, fluidics and thermodynamics. Many analogies

can be drawn between different scientific fields such as heat transfer, one dimensional

fluid flow and axial loading. The general applicability of the FEM makes it a valuable

tool in many different facets of science.

Whilst the FEM has been applied to determine the surface displacements of FPW

structures when operating as micropumps, to the best of the author’s knowledge, it

has not been applied to evaluate the frequency domain characteristics of these devices

when excited via planar IDTs. Recent work by Ippolito [17] used the power spec-

tral density function to evaluate the frequency response of SAW devices, where good

agreement was obtained. The implementation of this approach is discussed in Chap-

ter 5, however it has been found that this technique does not provide accurate results

for FPW structures. It is believed that the technique suggested by Ippolito should be

modified to consider the electrode charge density rather than the open-circuit output

voltage as is done with other accepted techniques.

In early FEM models of FPW structures reported by Friedrich et al. [97], simula-

tions were conducted to determine the eigenfrequencies of a single layer piezoelectric

plate. Once the eigenfrequencies of the structure were determined, they were applied

in a continuous manner to determine the mechanical displacement. The transducers

were modelled as individual input and output gates across the thickness of the plate.
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Acoustic absorbers were also incorporated into this model, which minimised standing

waves generated by the acoustic wave being reflected at the model boundaries. Al-

though a viable method of investigating the mechanical behaviour of FPW structures,

this technique provides an ideal representation of the frequency spectra, rather than

the approximated impulse response applied by the author.

The FEM has also been employed in conjunction with analytical techniques to de-

scribe the scattering behaviour of the primary symmetric Lamb mode around a wedge

shaped crack for NDE applications [98]. The same technique can be applied for Rayleigh

mode scattering by increasing the thickness of the plate structure. A combined FEM /

BEM approach was also used by Finger et al. [99] to determine the frequency response

of SAW filters. The FEM was used to model the electrode interactions and the BEM,

which comprised of a generalised Green’s function, was used to describe the substrate.

The benefit of this approach was that a small number of finite elements were used, as

the bulk of the structure was described the BEM, which by nature only requires the

external surface to be considered.

The FEM presents many advantages over the previously discussed techniques within

this chapter. Whereas other methods can be segregated into two categories that focus

on either determining the basic properties of an acoustic wave structure, such as phase

velocity, or frequency characteristics, the FEM based technique demonstrated by the

author solves both problems simultaneously. Moreover, the FEM can operate with

both two and three-dimensional models, which incorporate many second order effects

[100], such as diffraction, electrode reflections and triple-transit, which can not be si-

multaneously solved with any of the aforementioned techniques. The FEM is indepen-

dent of geometry and as will be shown in Chapter 6, can even be applied to calculate

the frequency characteristics of FPW structures when subjected to liquid media.

2.3.8 Summary of Modelling Techniques

From the presented discussion of commonly employed modelling techniques applied

to acoustic wave devices, it is obvious that a unified approach does not exist to evaluate

both the basic properties, such as phase velocity, and the more advanced frequency

domain characteristics of multilayered FPW structures. Throughout the course of this



52 Chapter 2. Literature Review

thesis, the author aims to rectify this shortfall by combining the FEM with techniques

and related procedures routinely applied to SAW structures to obtain key electrical

and mechanical properties of FPW devices. To the best of the author’s knowledge,

this approach has not yet been reported in the literature. The underlying principals

and assumptions used to determine properties of SAW devices will be examined in

detail and modified to suit FPW structures. To aid in the development of a unified

approach to the analysis of FPW structures, Table 2.1 lists the information that can

be obtained from each of the previously discussed techniques. A ’Y’ indicates that

the listed property can be obtained directly from the applied method, whereas a ’N’

indicates that the item is not supported. Furthermore, a ’-’ indicates that the technique

is not applicable to obtain a particular property and an ’I’ indicates that the term can

be calculated indirectly via the results obtained from the technique.

Table 2.1: Summary of Modelling Techniques

Modelling Technique

Property Potential Transmission Stiffness Delta COM Spectral FEM

Method Matrix Matrix Function Green’s

Anisotropic Layers N Y Y N N Y Y

Multilayered Structures N Y Y N N Y Y

Finite Thickness Y Y Y Y Y Y Y

Infinite Substrate Y Y Y Y Y Y Y

Geometry Independent N N N N N N Y

Buried IDTs - - - N N Y Y

Viscous Liquid - N Y N Y N Y

Phase Velocity Y Y Y - - - I

Electromechanical Coupling - Y Y - - - I

Delay Line Structures - - - Y N Y Y

Charge Density - - - N Y Y Y

Second-Order Effects - - - N N Y Y

From Table 2.1 it can be seen that the FEM provides the most comprehensive infor-

mation pertaining to wave propagation in piezoelectric multilayered media. Although

the FEM was primarily designed for the analysis of mechanical structures, it is evident
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that it can be applied to FPW structures. In areas where the FEM can not directly calcu-

late the required properties, the author intends to further post-process the mechanical

and basic electrical data drawing analogies from other techniques.

To further verify the results of the FEM, the author intends to use a combination

of the spectral domain Green’s function and the stiffness matrix methods. Although

not directly used to verify the FEM results, the transmission matrix method discussed

in the next chapter will serve as a simple method to describe the basic properties of a

FPW structure.

2.4 Conclusion

This chapter has provided a critical review of current literature in the field of acoustic

wave devices for sensing applications. A brief introduction into the operation of four

commonly used acoustic wave devices has been given, and where possible, mass sen-

sitivities quoted. It is quite apparent from this analysis that FPW structures offer the

unique ability to be used in both gas and liquid media, whilst maintaining high mass

sensitivity and relatively low operating frequencies, thereby reducing the need for ex-

pensive and elaborate signal processing electronics.

A discussion has also been given on conventional modelling techniques for the

analysis of acoustic wave structures. From this review, it has been shown that each

modelling technique has its own unique abilities, whilst also highlighting potential ar-

eas that need to be refined to create a more complete understanding of acoustic wave

propagation in multilayered piezoelectric media. It is also clearly evident from this

review that there exists a need for a unified approach to modelling acoustic wave de-

vices that can be applied to both two and three dimensional models with relatively

little difference in implementation.

The author’s novel approach to this problem with be discussed in Chapter 5, util-

ising the FEM. The basic operating parameters of a FPW structure is given in Chapter

3 based on the transmission matrix method. The inherent instability in this method

will be examined, thus further illustrating the benefit of utilising the author’s novel

approach. A reformulation of the transmission matrix method, known as the stiffness

matrix method is given in Chapter 4 which forms the basis to verify the results ob-
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tained from the author’s approach based on the FEM. Device characteristics, such as

particle displacement profiles and mass sensitivity are obtained via the stiffness ma-

trix method. A discussion will also be held on the frequency domain characteristics

of FPW structures, where it is shown that in a gas phase a spectral domain Green’s

function can be applied.

The application of FPW devices in liquid media is presented in Chapter 6, where

it will be shown that the author’s novel approach is more correct than other accepted

techniques in determining the frequency domain characteristics of liquid loaded struc-

tures when compared to experimental results presented in literature.
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Chapter 3

Transmission Matrix Analysis of FPW

Devices

3.1 Introduction

The first numerical modelling technique discussed is commonly known as the Trans-

mission Matrix method. It is a well established technique originally devised for the

analysis of tectonic plates within the Earth’s crust in the early 1950’s. Since then it has

been extended to evaluate the propagation of acoustic waves in multilayered media.

The transmission matrix method is quite universal, as it can be applied for various

types of acoustic wave devices, ranging from bulk devices such as QCMs to two di-

mensional propagation in FPW structures. The method can be further extended to

three dimensional propagation, however it this is not strictly necessary for the analysis

of FPW devices.

Although a relatively simplistic method to implement, it will be shown that inac-

curacies exist which are addressed in Chapter 4. In particular, the transmission matrix

becomes unstable when applied to structures with large frequency-thickness products

as well as complex material parameters, which are characteristic of liquid loaded de-

vices. The analysis presented in this chapter serves as an introduction into the basic

electrical and mechanical behaviour of FPW devices in the gas phase. The theory pre-

sented within will be further extended to allow a comparison between conventional

modelling techniques and the author’s novel approach based on the FEM in Chapters
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4 and 5 respectively.

Section 3.2 provides a brief introduction to the mathematical development of the

transmission matrix method. It will be shown that the piezoelectric wave propagation

problem can be solved by considering eight essential field variables which depend only

on the spatial z-location within the FPW structure. Quantities such as stress, strain and

the piezoelectric constitutive equations are reviewed and form the basis of the solu-

tion. Section 3.3 discusses the use of the transmission matrix for multilayered media.

It will be shown that interfacial boundary conditions are automatically satisfied by the

chain multiplication of the individual layer matrices. The solution to the piezoelectric

wave propagation problem is then determined by considering the boundary condi-

tions on the two remaining free surfaces. For a FPW structure, four possible combina-

tions of electrical boundary conditions exist and their effect on the phase velocity of

the propagating modes is presented. Via this analysis, the electromechanical coupling

coefficient, K2, is evaluated.

Finally, Section 3.4.1 explores the numerical instability associated with the trans-

mission matrix method. The two main causes, large frequency-thickness products and

lossy material properties are discussed. A preliminary discussion is presented on pos-

sible solutions for the inherent numerical instability.

3.2 Transmission Matrix Method Development

The transmission matrix method dates back to the early 1950’s where it was devel-

oped for the analysis of stratified media in the Earth’s crust [80]. The method has

since been extended to include piezoelectric materials, which by nature are anisotropic

[20]. Further modifications have allowed the technique to be used with multilayered

structures and a freely available computer program based on these methods has been

written to solve the piezoelectric wave propagation problem [101]. However, several

drawbacks exist in the method, which are detailed in Section 3.4.1. A brief discussion

of the method is presented to prepare the reader for the more advanced stiffness ma-

trix method, spectral domain Green’s function and FEM analysis in Chapters 4 and 5

respectively.

The basis of the transmission matrix method is a mapping of essential field vari-
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ables across two surfaces. The essential field variables are quantities that can be used

to calculate all other fields within a structure. Irrespective of the number of layers

within a structure, the field variables are described by their relationship between the

upper and lower surfaces. For a single isotropic layer, the transmission matrix can be

found analytically. The concept can be further extended to composite structures, where

a transmission matrix is constructed for each individual layer and then cascaded to

form a single global matrix. A solution is then obtained by considering the free surface

boundary conditions.

In its most general form, the transmission matrix method describes the z-plane de-

pendence of the essential field variables. For a piezoelectric SAW or FPW structure

eight essential variables are necessary. In an isotropic material, the problem can be fur-

ther reduced to six. In this study, the essential field variables describe the dependence

of mechanical and electrical displacement, normal stresses and electric potential with

respect to the z-coordinate. The first derivative of mechanical displacement, velocity,

can also be used. For simplicity, it is convenient to also take the time derivative of the

electric potential, which is the approached presented here. Throughout the following

analysis it is assumed that all fields vary as ejωt, thus this term is omitted.

Figure 3.1 illustrates the coordinate system used throughout this thesis unless ex-

plicitly stated otherwise. The FPW device membrane is assumed to extend to infinity

in the x and y directions, with the acoustic wave propagating along x. The thickness of

the plate structure is given by h, with the upper surface located at z = h and the lower

at z = 0.

z

x

y

z = 0

z = h

Figure 3.1: Adopted Coordinate System
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3.2.1 Review of Stress / Strain Relationship

Before the implementation of the transmission matrix method can be discussed, a ba-

sic review of the stress and strain relationship is presented. In conjunction with the

quasistatic piezoelectric constitutive equations, the solution to the wave equation can

be explored.

In the context of this study, strain, a measurement of deformation for a point, is

given by equation 3.1 [74].

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

.
∂uk

∂xj

)
i, j, k = 1, 2, 3, (3.1)

where ui represents the particle displacement in direction xi.

For acoustic wave devices, where displacements are quite small (∂ui/∂xj 6 1), the

quadratic term can be ignored resulting in the linearised strain relationship, equation

3.2.

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(3.2)

The strain tensor is a 3 × 3 matrix, however exhibits properties of symmetry and is

can be reduced to a 6 element vector. The diagonal terms, (i = j), represent in-plane

strain whilst the other values (i 6= j) are shear components. An abbreviated subscript

notation can be adopted, allowing the elements of the strain matrix to be written as in

equation 3.3. A factor of 1/2 is introduced to allow a simple relationship to be estab-

lished between strain and particle displacement [102].

Sij =




Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz


 =




S1
1
2
S6

1
2
S5

1
2
S6 S2

1
2
S4

1
2
S5

1
2
S4 S3


 (3.3)

Strain can also be identified as the symmetric part of the displacement gradient [102],

equation 3.4a. The symmetrical gradient operator, ∇s is converted to a more conve-
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nient notation, as in equation 3.4b.



S1

S2

S3

S4

S5

S6




=




∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0







ux

uy

uz


 (3.4a)

S = ∇su (3.4b)

Similarly to the strain tensor, stress can be described as a second rank tensor which

represents the applied force per unit area on an infinitesimally small volume [74]. It

also exhibits properties of symmetry and thus the complete tensor is described by a

3 × 3 matrix, equation 3.5. Using the convention in equation 3.5, the term Tij is the

stress component in the i-th direction, acting on a surface normal to the j-th direction.

Tij =




Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz


 =




T1 T6 T5

T6 T2 T4

T5 T4 T3


 (3.5)

To further condense the development of the transmission matrix method, the strain

and stress matrices are represented by transposed column vectors, equations 3.6 and

3.7 respectively. The superscript T indicates the transpose operator.

S =
[

S1 S2 S3 S4 S5 S6

]T

(3.6)

T =
[

T1 T2 T3 T4 T5 T6

]T

(3.7)

From Hooke’s law, stress and strain are linearly related by the material stiffness

tensor cijkl, equation 3.8 [1]. Using the Einstein notation convention summation is im-

plied over the repeated subscripts k and l. Up to 81 constants are required to fully de-

scribe the relationship between stress and strain, however a high degree of symmetry is

present such that cijkl = cjikl = cijlk = cjilk = cklij reducing the number of independent

constants to 21. Depending on the crystallinity of the material, the number of constants

can be further reduced. For the piezoelectric material used in the attempted realisation
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of a FPW device, Chapter 6.5, five independent constants are sufficient whereas an

isotropic material only requires two.

Tij = cijklSkl, i, j, k, l = 1, 2, 3 (3.8)

In developing the transmission matrix method a set of essential field variables must

be selected. The decision as to which field variables to select primarily depends on the

assumed solution and the coordinate system adopted. It is also assumed that the width

of the FPW structure is large when compared to the acoustic wavelength, allowing

effects such as diffraction to be ignored. From potential mode theory [61], the field

variables are assumed to be either constant or zero in the y-direction, which allows the

following simplification to be made:

∂

∂y
= 0 (3.9)

Neglecting variation in the y direction, the assumed solution for a wave propagating

along x with variation in z, is given by:

f(x, z, t) = f(z)e
jω(t− x

vp
)
, (3.10)

where vp is the phase velocity of the propagating mode.

The time and spatial derivatives of the assumed can therefore be written as equations

3.11a and 3.11b respectively.

∂f

∂t
= jωf (3.11a)

∂f

∂x
=
−jωf

vp

(3.11b)

In three dimensions, and with no applied force, the vector form of Newton’s equation

of motion is written as equation 3.12a [102]. Considering only the x and z dependance,

the condensed vector form is given by equation 3.12b

∇s ¦ T = ρ
∂2u

∂2t
(3.12a)

∂Tx

∂x
+

∂Tz

∂z
= jωρv (3.12b)
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where the substitutions,

Tx =
[

T1 T6 T5

]T

(3.13a)

Tz =
[

T5 T4 T3

]T

(3.13b)

∂2u

∂2t
= jωv, (3.13c)

have been made. Note that in equation 3.13c, the term v is the time derivative of the

particle displacement vector u, or simply the particle velocity vector.

3.2.2 Piezoelectric Constitutive Equations

The piezoelectric constitutive equations describe the electromechanical properties of a

material. They provide a linear relationship between the mechanical stress and strain

components and the electric displacement, D and electric field, E, via equation 3.14

[103].

Tij = cE
ijklSkl − eijkEk (3.14a)

Di = εS
ijEj + eijkSjk (3.14b)

As illustrated previously, stress is related to the strain by the material stiffness tensor,

cijkl. The dielectric tensor, εij , is a 3 × 3 matrix that relates the applied electric field to

the electric displacement vector. The material stiffness and dielectric tensors are evalu-

ated at constant electric field and constant strain respectively. Finally, the piezoelectric

coefficient matrix, eijk is 3× 6.

In a source free medium, the divergence of the electric displacement can be written

as in equation 3.15 [102] :

∇ ¦ D = 0, (3.15)

where ∇¦ represents the divergence of the vector field.

In a piezoelectric material, the acoustic velocities are typically five orders of magnitude

less than the speed of light. Under these conditions, the electric field component is

described as the gradient of a scalar potential, ϕ, [20]:

E = −∇ϕ (3.16)
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Considering only the x and z dependence, the dielectric displacement vector is written

as:

∇ ¦ D =
∂Dx

∂x
+

∂Dz

∂z
= 0 (3.17)

Equations 3.12b and 3.17 are converted to matrix form, and the substitution of equation

3.11b yields:

−jω

vp


 Tx

Dx


 +

d

dz


 Tz

Dz


 = jωρ


 v

0


 (3.18)

The piezoelectric constitutive equations in their current form, equation 3.14, contain

more terms than the required eight essential field variables. Substitution of equations

3.4b and 3.16 into 3.14, and introducing the velocity vector rather than displacement

yields:

jω


 Tx

Dx


 = Γ11 ∂

∂x


 v

jωϕ


 + Γ13 ∂

∂z


 v

jωϕ


 (3.19a)

jω


 Tz

Dz


 = Γ31 ∂

∂x


 v

jωϕ


 + Γ33 ∂

∂z


 v

jωϕ


 (3.19b)

The Γik matrices contain components of the material stiffness, piezoelectric and per-

mittivity tensors. For the coordinate system used here, the matrix Γik is described as

[104]:

Γik =




c1i1k c1i2k c1j3k ck1i

c2i1k c2i2k c2i3k ck2i

c3i1k c3i2k c3i3k ck3i

ei1k ei2k ei3k −εik




(3.20)

For non-piezoelectric materials the piezoelectric constants e are set to zero and the

method still remains valid. For structures consisting of purely isotropic materials, the

Γik matrices can be further reduced, containing only the material stiffness constants

and permittivity tensors.

For simplicity, the piezoelectric constitutive equations 3.19a and 3.19b have been

separated into individual x and z components. Equation 3.19a contains only the x

normal components of T and D, whilst 3.19b has only the z components of the stress

and electric field vectors. As the x dependence has been assumed, equations 3.19a
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and 3.19b can be converted from partial differential equations to ordinary differential

equations via the substitution:
∂

∂x
=
−jω

vp

(3.21)

Therefore, with the x-dependence removed, the time derivative of the piezoelectric

constitutive equations becomes:

jω


 Tx

Dx


 =

−jω

vp

Γ11


 v

jωϕ


 + Γ13 d

dz


 v

jωϕ


 (3.22a)

jω


 Tz

Dz


 =

−jω

vp

Γ31


 v

jωϕ


 + Γ33 d

dz


 v

jωϕ


 (3.22b)

Equations 3.18, 3.22a and 3.22b are used to remove all other terms except the essential

field variables. The result is an eigenvalue problem, equation 3.23, which describes the

z-dependence of the eight partial modes supported by the structure.

dτ

dz
= jωAτ , (3.23)

with

A =


 Γ13 Z

vp
G− (Γ11−Γ13Z Γ31)

v2
p

Z Γ31 Z
vp


 (3.24a)

τ =
[

Txz Tyz Tzz Dz vx vy vz jωϕ
]T

(3.24b)

=
[

Tz Dz v jωϕ
]
, (3.24c)

where Z = (Γ33)−1. The matrix G is 4× 4 given by:

G =




ρ 0 0 0

0 ρ 0 0

0 0 ρ 0

0 0 0 0




(3.25)

The 8 × 8 system propagator matrix, A, equation 3.24a, consists of components of the

material stiffness, piezoelectric, permittivity matrices as well as density and phase ve-

locity. When considering anisotropic layers the material properties must be rotated

to the correct plane before calculating the propagator matrix. The vector τ , equation

3.24b, consists of the eight selected essential field variables: z plane normal stress,
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velocity, z plane normal dielectric displacement and the time derivative of the scalar

potential.

According to linear system theory [81], the solution to the first order differential

eigenvalue problem, equation 3.23, is the well known matrix exponential:

τ (z + h) = ejωAhτ (z) = φ(h, ω, vp)τ (z) (3.26)

If the solution is known at a plane perpendicular to the z-axis, then via the application

of equation 3.26, the corresponding solution can be determined at a distance h from

the initial point. The transmission matrix, φ, is seen to depend on spatial location,

angular frequency and phase velocity. For the presented analysis, at least one of these

variables is held constant whilst the remaining are varied. It will also be shown that

various substitutions can be made, which reduce the transmission matrix dependence

to two variables.

Several approaches can be used to calculate the solution of a matrix exponential.

The numerical computing language used by the author contained an in-built function

to solve the problem, however the following appeared to be more numerically stable

[105]:

ejωAh = MejωΛhM−1, (3.27)

where M and M−1 are the eigenvector and its respective inverse matrices of the system

propagator matrix A. The eigenvalue matrix of A, which corresponds to the partial

mode wavenumbers, is denoted Λ.

Consider the material constants and their approximate magnitudes listed in Table

3.1. In solving the matrix exponential problem, many of these quantities are added

or multiplied together, thus the smaller terms can be lost due to rounding errors of

the larger numbers. One potential solution is to scale the dielectric and mechanical

displacement variables [105]. Substitution of the normalised field variables into the

piezoelectric constitutive equations shows that the same process can be achieved by

scaling the material constants [21]. For improved numerical accuracy, it is desirable

to bring the variables in Table 3.1 close to unity. Therefore the stiffness and density

parameters are divided by 1011 whilst the permittivity matrix is multiplied by the same

value. The piezoelectric constants are unaltered, however phase velocity is divided by
√

1011.
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Table 3.1: Material Constants - SI Unit Comparison

Parameter Magnitude SI Unit

c 1011 N/m2

e 1 C/m−2

ε 10−11 F/m

The same technique can be used to determine the propagation characteristics of a

SAW device, where the eigenvalue problem is split into two solutions depending on

the direction of energy decay. A physically meaningful partial mode is determined by

evaluating the Poynting vector, of which a decision is made as to which modes decay

with depth. This technique will be further discussed when considering liquid loaded

FPW devices, Chapter 6, where the additional liquid layer is approximated as being

semi-infinite.

3.3 Transmission Matrix Analysis of Multilayered Structures

A distinct advantage of the transmission matrix method is its ability to cater for an

arbitrary number of layers. The algorithm does not depend on the total number of

layers, rather the individual transmission matrices and respective layer thicknesses.

However, the algorithm suffers from numerical instability when working with large

frequency-thickness products which will be discussed in Section 3.4.1.

Consider the multilayered structure consisting of n layers in Figure 3.2. The overall

transmission matrix for the layered structure is given by the chain multiplication of

the individual layer, m, matrices from the upper layer, n, to the lower layer, 1. It is

imperative that the chain multiplication is in the correct order to ensure continuity of

boundary conditions at the layer interfaces. In deriving the transmission matrix, it is

assumed that all essential field variables, the components of τ , are continuous across

both sides of the interface. In Figure 3.2, this is indicated by the terms τ+ and τ−.
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Layer n

z

x τ−
τl

τu

Layer m

Layer 2

Layer 1

τ+
z = h2

z = h1

z = 0

z = hm−1

z = hm

z = hn

Figure 3.2: Multilayered Structure Coordinate System

The overall transmission matrix for a multilayered structure is given by:

φ = φm(hn)φm−1(hn−1)φm−2(hn−2), ...., φ1(h1), (3.28)

with the thickness of the individual layers determined by:

hn = hm − hm−1 (3.29)

From equation 3.28 an important relationship, equation 3.30, can be established that

relates the essential field variables at the upper surface of the structure (subscript u),

through an arbitrary number of layers to the corresponding fields at the lower surface

(subscript l). The upper and lower free surfaces of the structure are commonly termed

the terminal surfaces. For a multilayered structure, the terminal surface essential field

variables are calculated by deriving the individual layer transmission matrices, φm,

then multiplying the corresponding solutions in the appropriate order to obtain the

global transmission matrix, φ. This allows for relatively simple mode identification

by considering the terminal surface essential field variables rather than generating the

complete particle displacement profiles throughout the structure. A simple selection

criteria can be used to identify whether a mode is antisymmetric or symmetric, which

is covered in Section 4.3.1.

τu = φτl (3.30)

From equation 3.30 the solution to the multilayered piezoelectric wave propagation

problem can be determined by substituting the appropriate interfacial boundary con-

ditions.
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3.3.1 Boundary Conditions

For a FPW structure up to four different electrical boundary conditions exist. The up-

per, lower, both or neither surfaces can be metalised, which will alter the phase velocity

of the propagating electro-acoustic modes. A metal ground plane can also be inserted

within the structure which requires further modification of the boundary conditions

between layers. One electrical and three mechanical boundary conditions are required

at each interface to solve the piezoelectric wave propagation problem. Between the

layers, as previously mentioned, the boundary conditions are automatically satisfied

by the chain multiplication of the individual transmission matrices. The solution to

the wave propagation problem can then be determined by considering the essential

field variables at the terminal surfaces of the structure. In a mechanically free struc-

ture, the surface normal stresses, Tz, tend to zero at the upper and lower surfaces. In

formulating appropriate boundary conditions, it is assumed that the no slip condition

is enforced between individual layers and the displacement is identical on both sides

of an interface.

Two alternative boundary conditions exist for the electrical parameters Dz and jωϕ.

If the surface is electrically short, then the scalar potential is zero, however an unknown

charge exists on the surface. Conversely, under open circuit conditions the dielectric

displacement must satisfy Laplace’s equation [106] and the scalar potential remains

unknown. The dielectric displacement must be continuous at the solid-air interface,

therefore a simple substitution can be made which constrains the dielectric displace-

ment according to [76]:

D
′
z = Dz −Dz(free space) = 0 (3.31)

Table 3.2 lists the boundary conditions and constrained variables for all four possi-

ble electrical surface combinations. Applying the appropriate boundary conditions

reduces the number of terms within the transmission matrix, which can also be re-

ordered to minimise the computational effort to solve the problem. Consider the case

where both sides of the FPW device are mechanically and electrically free. For a prop-

agating wave under a open-open circuit boundary condition, the dielectric displace-

ment and the normal mechanical stresses are set to zero, therefore leaving the scalar

potential and particle velocity components unknown. The full solution procedure ap-
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Table 3.2: FPW Device Mechanical and Electrical boundary conditions

Upper Condition Lower Condition Constrained Mechanical Constrained Electrical

Open Open Tz
u = 0, Tz

l = 0 D
′
zu = 0, D

′
zl = 0

Open Short Tz
u = 0, Tz

l = 0 D
′
zu = 0, jωϕl = 0

Short Open Tz
u = 0, Tz

l = 0 jωϕu = 0, D
′
zl = 0

Short Short Tz
u = 0, Tz

l = 0 jωϕu = 0, jωϕl = 0

pears in Appendix A, however an abbreviated set of results is reiterated here. To meet

the conditions implied by equation A.3 the coefficients of the first four equations must

be zero. Mathematically, this can be described as:

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ18

φ25 φ26 φ27 φ28

φ35 φ36 φ37 φ38

φ45 φ46 φ47 φ48

∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.32)

Similarly, the boundary conditions for the other three cases, open-short, short-open

and short-short, are given by:

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ14

φ25 φ26 φ27 φ24

φ35 φ36 φ37 φ34

φ45 φ46 φ47 φ44

∣∣∣∣∣∣∣∣∣∣∣∣

= 0, det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ18

φ25 φ26 φ27 φ28

φ35 φ36 φ37 φ38

φ85 φ86 φ87 φ88

∣∣∣∣∣∣∣∣∣∣∣∣

= 0, det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ14

φ25 φ26 φ27 φ24

φ35 φ36 φ37 φ34

φ85 φ86 φ87 φ84

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(3.33)

The determinants in equations 3.32 and 3.33 are commonly referred to as Φur as they

are mainly composed of elements from the upper right quadrant of the transmission

matrix. The task of finding the determinant of equations 3.32 and 3.33 is well suited

to a numerical search procedure. Due to numerical considerations the magnitude of

the determinant may not go exactly to zero, and as such an iterative search procedure

is required to identify a local minimum. Analysis of equation 3.26 indicates that the

solution is dependant on frequency as well as phase velocity. A simple substitution can

also be made to solve the wave propagation problem in terms of wavelength, rather
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than frequency or phase velocity.

3.3.2 Phase Velocity

Figure 3.3 presents a determinant scan for a FPW device with an open-open circuit

boundary condition. The structure is similar to that reported in literature [8, 14] how-

ever the underlying membrane material has been replaced with Si. The structure con-

sists of a 2.0µm silicon, 0.4µm aluminium and 0.6µm zinc oxide layers. The wavelength

was fixed at 100µm and the phase velocity scanned from 100 to 7, 000m/s. Analysis of

Figure 3.3 indicates that three modes are present in the prescribed velocity range.
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Figure 3.3: Determinant Scan - Open Circuit Boundary Conditions

The scan in Figure 3.3 is quite coarse thus making it quite difficult to determine the

exact points where the determinant approaches zero. To obtain a better indication of

operating points, the approximate phase velocity is calculated and an iterative ’golden

section’ search is performed about that point [107]. The search algorithm resolves

modes at 356, 4558 and 6540m/s, corresponding to resonant frequencies of 3.56, 45.58
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and 65.40MHz respectively.

Although three modes have been calculated, the second mode at 4558m/s is a shear

mode which cannot be excited piezoelectrically [78]. The transmission matrix method

can be easily modified to remove the terms relating to field variables in the y-direction,

neglecting such modes from future determinant scans. When this process is under-

taken, the method resolves only pure Lamb modes.

Figure 3.4 illustrates the dispersion characteristics of the first five piezoelectric modes

generated in the aforementioned FPW structure as a function of normalised Si thick-

ness. Of potential interest for sensing applications are the first two low velocity modes,

denoted A0 and S0. Modes are named according to the particle displacement about

the mid-plane of the structure. In an isotropic plate, the first antisymmetric, or A0,

mode has an antisymmetric displacement about the centre of the structure, where the

symmetric mode, S0, is clearly symmetrical about the median. This will be further ex-

amined in Section 4.3.1, however Figure 3.5 provides a simple model of the particle

displacements, with the arrows indicating the direction of the primary displacements

for the first A0 and S0 modes.

Interestingly, the A0 and S0 modes are present regardless of the plate thickness. These

fundamental modes are identified from the dispersion relationship by their finite phase

velocities as the plate thickness decreases. The higher order modes become asymptotic

and as such exhibit a cutoff characteristic [74]. For the higher order modes their nature,

whether symmetric or antisymmetric, can be obtained from the displacement profile,

or via a comparison with other theoretical models. In an isotropic material, the family

of modes, whether symmetric or antisymmetric, do not cross each other, however the

two mode types may.

The first antisymmetric mode is clearly identified by its reducing velocity as the

plate thicknesses approaches zero. It can also be seen from Figure 3.4 that all modes

appear to be approaching a finite phase velocity as the plate thickness increases, in-

dicated by the dotted line. Recall for a SAW device, the Rayleigh mode acoustic dis-

placement is confined to within one to two wavelengths from the upper surface. As

the thicknesses of the plate increases beyond the acoustic wavelength, the structure

becomes sufficiently large that it can be thought of as an very thick plate with two
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Figure 3.4: Phase Velocity - Normalised Layer Thickness

independent non-interfering Rayleigh modes propagating along both surfaces with a

velocity VR. In the presented device, the Rayleigh mode velocity is 4815m/s.

In terms of density and mass sensing, the A0 mode is a prime candidate for oper-

ation in liquid media [8]. In a liquid environment, the acoustic wave phase velocity

must be lower than the compressional velocity of the fluid to confine energy to the

structure rather than it dissipating into the surrounding medium. For water, this ve-

locity is 1435m/s. Using the characteristics presented in Figure 3.4, the maximum per-

missible thickness of the structure to confine the A0 mode is approximately 17.4µm,

which can easily be obtained using current microfabrication techniques. It will also be

seen from the displacement profiles, Section 4.3.1, that the A0 mode has desirable char-

acteristics for sensing applications in liquid media. Another benefit of the low velocity

A0 mode is that it allows for relatively inexpensive signal processing equipment to be

used due to the low resonant frequency. Furthermore, the necessary support electron-

ics can be integrated onto the substrate paving the way for ’lab-on-chip’ applications.
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Figure 3.5: Primary Mode Displacement

The symmetric mode displacement is primarily longitudinal, and not of interest for

liquid density sensing applications.

3.3.3 Electromechanical Coupling Coefficient

The electromechanical coupling coefficient, K2, is often used as a measure of the cou-

pling between the electrical and mechanical fields. It can be calculated from dispersion

characteristics of a structure by evaluating the fractional difference in phase velocity

caused by a metalised boundary condition:

K2 = 2
vo − vm

vo

, (3.34)

where vo and vm represent the open-circuit and metalised surface phase velocities re-

spectively.

As previously mentioned a plate structure has two free surfaces, of which either,

both, or neither can be metalised. Depending on the boundary conditions, the veloci-

ties will be slightly different. In the multilayered device presented, the coupling coef-

ficient is calculated at the free space interface, which is also the location of the IDTs. If

a further sensitive layer was deposited it would be necessary to determine the value

at the sensitive/piezoelectric layer interface. In calculating K2, it is assumed that an

infinitely thin and conducting metal film is deposited over the device surface that does

not affect the mechanical boundary conditions.
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Figures 3.6 and 3.7 depict the coupling coefficient as a function of normalised plate

thickness for the A0 and S0 modes respectively. The three metalised boundary condi-

tions are presented to illustrate the slight differences in calculations. The ZnO and Al

layers were kept consistent at 0.6µm and 0.4µm respectively whilst the thickness of the

Si membrane was altered.
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Figure 3.6: Primary Antisymmetric Mode Coupling Coefficient

From Figures 3.6 and 3.7, the coupling coefficient varies significantly depending on

which surface is metalised. From this point, the upper metalised approach will be

used to evaluate electromechanical coupling. For both A0 and S0 modes, the coupling

coefficient is not a maximum at the smallest dimension, rather at a normalised silicon

thickness of approximately 0.045, (4.5µm), for A0 and 0.065 for S0, corresponding to

phase velocities of 683 and 7212m/s respectively. For conductometric sensing appli-

cations, the coupling coefficient should be as large as possible to achieve maximum

sensitivity [108], but in terms of non-conductive mass sensing applications the surface

particle displacement profiles and the overall thickness of the structure are far more
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Figure 3.7: Primary Symmetric Mode Coupling Coefficient

important [14, 109]. A FPW device can be used to detect analytes in both liquid and

gaseous media, but in the case of the sensing applications in liquid media the phase

velocity of the A0 mode should be below that of the target liquid, which for the pre-

sented structure, at maximum coupling, is the case. Therefore, the corresponding FPW

structure could be realised to have a relatively high value of K2 as well as low veloc-

ity. The implications of using an FPW in a liquid environment is further discussed in

Chapter 6.

The low value of K2 when compared to other acoustic wave structures can make

it difficult to determine the acoustic response of the device. With such a low coupling

coefficient, it may be necessary to have a significant number of electrode finger pairs

to ensure that sufficient electrical energy is converted to mechanical and vice-versa.
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3.4 Assumptions and Limitations

In the presented discussion on the transmission matrix method, several key simplify-

ing assumptions have been made. The first, and the most important, is the assump-

tion of negligible variation of fields along the y-direction. This is not a shortfall of the

method, as it can be simply adapted for all three dimensions [104], rather a process

to simplify the calculation of the transmission matrix. As will be shown in Chapter 4,

the displacement component along y is non-zero, however significantly less than that

of the x and z directions. In terms of substrate dimensions, the method also assumes

that the plate extends to infinity in x and y, thus reflections from model boundaries

are omitted. For devices with a narrow aperture width it may become necessary to in-

clude these effects. Techniques such as the FEM, discussed in Chapter 5, can be used to

determine the change in response due to decreased substrate dimensions with relative

ease.

In a physical device, the resonant frequency is determined by the combination of

electrode period, the thickness of the structure and the materials employed. It is as-

sumed that these quantities are constant across the device. Due to variations in the

fabrication process, the electrode metallisation ratio may vary, thus affecting the trans-

ducer period of the device as well as the phase velocity and electromechanical coupling

coefficient. For the FPW devices studied here, it is assumed that a metallisation ratio

of 0.5 is used. Secondly, the acoustic wave velocity is perturbed as it travels along the

metalised region of the electrodes [2] which is not accounted for using this method.

Alternative techniques, such as the FEM are ideal for this type of analysis as the prob-

lem is discretised where localised structural and electrical variations can be considered

more appropriately.

Material damping has not been included in the construction of the transmission ma-

trix method. Several authors have attempted to extend the method to include damp-

ing which appears as either a complex wavenumber or frequency [15]. A determinant

scan can still be used to determine the operating parameters of the device, however

the zeros of the determinant occur for complex values of frequency or wavenumber.

Damping is a critical parameter, particularly when dealing with liquid loaded struc-

tures. In the authors implementation, Chapter 6, damping is introduced via a complex
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angular frequency term.

The simulations presented in this chapter do not take into account the electrical

properties of the metallic ground plane within the layer stack. It would be a rela-

tively simple process to include the electrical effects, however analysis using the FEM

in Chapter 5 has shown that there is insignificant influence on the properties of the

propagating modes. However, as was seen in Figure 3.4, it is imperative that all layers

are included as they have a significant influence on phase velocity.

3.4.1 Numerical Instability of Transmission Matrix Method

Although the transmission matrix method has accurately predicted the operating char-

acteristics of a multilayered FPW device [8], the method can suffer from numerical in-

stability. The most prevalent problem is when evaluating structures with large frequency-

thickness products or complex material parameters [15, 80, 82, 110]. Although the

transmission matrix technique developed has been applied to micron size structures, it

can be equally applied to millimetre or larger configurations, provided that the thick-

ness to wavelength ratio is small.

Several techniques exist to improve the computational stability of the transmission

matrix method. The instability will be shown to be brought about by poor condi-

tioning of the transmission matrices, resulting in uneven growth of the partial mode

wavenumbers. Modifications can be made, which appear in Chapter 4, to improve the

numerical stability of the technique, whilst retaining its simplicity. This section will

highlight the computational issues with the transmission matrix method to illustrate

the necessary changes for increased stability.

3.4.1.1 Large Frequency-Thickness Products

Consider a plate structure consisting of a 350µm Si substrate, 0.4µm Al and a 0.6µm

ZnO piezoelectric layers. The wavelength has been intentionally set at 10µm to ex-

aggerate the instability of the method. A determinant scan was conducted, Figure

3.8, between 4, 500 and 7, 500m/s corresponding to a frequency-thickness product of

1.58 × 105 to 2.63 × 105Hzµm respectively. The numerical error can clearly be seen by

the oscillation in the determinant scan. The upper limit, before the method becomes



Chapter 3. Transmission Matrix Analysis of FPW Devices 77

ill-conditioned appears to be 1.84× 105Hzµm.
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Figure 3.8: Determinant Scan - Large Frequency-Thickness Product

As the frequency-thickness product begins to increase, the upper and lower sur-

faces become uncoupled and the solution can be thought of as two independent Rayleigh

modes propagating along the upper and lower surfaces of the structure. The trans-

mission matrix, which relates the essential field variables at the two surfaces becomes

unstable, as the relationship is no longer valid. Recall from equation 3.27 that the

transmission matrix solution is an eigenvalue problem, with the eigenvalues repre-

senting the eight partial mode wavenumbers present in the structure. The extent of

the problem can be illustrated by considering the wavenumber components, Λ, in the

z-direction.

Two different wavelengths were considered, 100µm and 10µm, which through equa-

tion 2.6 are seen to modify the resulting frequency of the device. Table 3.3 depicts

the eigenvalue matrix for both cases at a fixed phase velocity of 7, 000m/s. The fixed

velocity term corresponds to a frequency thickness product of 2.45 × 104Hzµm and
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2.45× 105Hzµm for the 100 and 10µm wavelengths respectively.

Table 3.3: Partial Mode Wavenumbers - Large Frequency-Thickness Products

P.M Wavenumber (m−1),λ = 10µm P.M. Wavenumber (m−1),λ = 100µm

7.2170× 10−1 + 6.9221× 10−1i −4.9974× 1011 − 5.3425× 10−9i

7.2170× 10−1 − 6.9221× 10−1i −1.7508× 106 − 1.8716× 108i

2.2989× 10−32 − 9.0675× 10−46i −4.9974× 10−11 + 5.3425× 10−9i

4.3499× 1031 − 1.7158× 1018i −1.7508× 106 + 1.8716× 108i

7.4085× 10−1 + 6.7167× 10−1i 2.8234× 10−10 + 1.6829× 10−25i

7.4085× 10−1 − 6.7167× 10−1i 3.5419× 10+9 + 2.1112× 10−6i

3.1164× 10−96 2.8143× 10−10

3.2088× 1095 3.5533× 109

Particular attention is drawn to the last two values in Table 3.3. In the case of the

high frequency-thickness product simulation, λ = 10µm, the terms have become in-

creasing large, which is the root of the numerical instability. In terms of numerical

values, the partial mode wavenumbers exhibit solutions across 191 and 19 orders of

magnitude for the high and low frequency-thickness products respectively. For the

λ = 100µm simulations, it can be seen that within the bounds of numerical error, the

eigenvalues occur in conjugate pairs, whereas with a large frequency-thickness prod-

uct this is no longer the case. It should also be noted that a slight numerical error is

present in the 100µm case as the last two terms are purely real, where if the solution

was exact, they would contain a corresponding imaginary term.

Consider the transmission matrix components for a structure with a large frequency-

thickness product. From equation A.1, the first row of the transmission matrix relates

the stress component Txz at the upper surface to essential field variables at the lower

surface. If the two surfaces are sufficiently uncoupled, the components of φ should be

small. However, as φ is also frequency dependent, these terms grow, adding to the

instability of the solution [82]. In the example given previously, terms within the first

row of the transmission matrix exhibit values excess of 1 × 1079. Due to the addition

of the exponentially increasing and decreasing terms significant digits can be lost in
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the mathematical processes performed on these values, thereby further increasing the

numerical error.

3.4.1.2 Complex Material Parameters

As previously mentioned, FPW devices are well suited to liquid sensing applications

due to the low phase velocity of the A0 mode. In a liquid environment it is impor-

tant that attenuation and loading effects are considered, as these will have a marked

impact on the response of the device. The complete solution to the fluid loading prob-

lem is discussed in Chapter 6, however it is necessary to illustrate the inability of the

transmission matrix method in its current form, to work with liquid loaded structures.

For sensing applications, it is typically necessary to deposit a sensitive layer on the

FPW device to promote sensitivity toward a given analyte. Sensitive layers can range

from polymer-based functional materials [64], to thin film metal oxides used for gas

sensing applications. The addition of viscoelastic polymer layers can cause signifi-

cant attenuation of the acoustic wave, which must be accounted for by the analysis

technique applied. Although solid thin film materials cause attenuation of the acoustic

wave, these effects are relatively small and most analysis techniques, including the one

discussed in this chapter, ignore these effects.

Liquid loading can influence the phase velocity, attenuation and mechanical bound-

ary conditions of the structure, requiring modification of the transmission matrix to ac-

curately predict the device response. The simplest approach is to modify the material

properties to introduce damping. Isotropic material properties are adopted for a non-

conductive liquid, thereby allowing the influence of damping to be introduced without

the need to completely reformulate the solution path. With reference to Chapter 6, the

material stiffness matrix properties are modified to allow for the frequency dependent

nature of visco-elastic damping via the relationship:

c11 = K +
4

3
jωη (3.35a)

c44 = jωη, (3.35b)

where η is the first coefficient of viscosity.

With the inclusion of lossy materials, the system propagator matrix also contains com-

plex terms. For a liquid layer, the corresponding eigenvalues are several orders of mag-
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nitude larger than that of a solid material. As was shown for large frequency-thickness

products, the partial mode wavenumbers become increasingly large and hence un-

stable. Therefore, if the partial modes wavenumbers are already excessively large,

multiplication by the frequency-thickness terms increases their size and adds to the

instability of the solution.

One traditional approach to modelling liquid loaded acoustic wave devices is to

assume that the additional liquid layer is semi-infinite. Another suggested method

prescribes that the liquid interaction is limited to the acoustic delay length, thereby the

layer should be at least this thickness. For the presented structure, this corresponds

to approximately 5µm [111]. A determinant scan of the structure at the prescribed

thickness fails to provide an adequate solution. It was necessary to reduce the fluid

thickness to 2.6µm before a phase velocity solution for the A0 and S0 modes could be

found. Examination of the overall transmission matrix, whilst keeping the solid layer

material properties constant, indicates that a change in fluid thickness from 1µm to

5µm, corresponding to a change of 27 orders of magnitude for upper left term, φ11.

Clearly, if the solid parameters are identical, the difference can be attributed to the

liquid layer, which has become dominant in the solution.

In its present form, irrespective of the inherent numerical inaccuracies, the trans-

mission matrix method must be modified before it can be successfully used for the

evaluation of damped modes. Currently it operates in the velocity domain, where the

wavelength is fixed and the phase velocity scanned to determine the minimum of the

determinant. To include the effects of attenuation, it is more convenient to operate in

the wavenumber domain. A simple substitution can be made for phase velocity as:

vp =
ω

kx

(3.36)

The wavenumber can be now fixed according to the wavelength of the device and the

angular frequency scanned to obtain a solution. To include the damping effects of a

lossy material, either the frequency or wavenumber could be complex. Both solutions

are equally valid.
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3.5 Conclusion

This chapter has introduced the Transmission Matrix method and its application in

the evaluation of multilayered Flexural Plate Wave structures. The method has been

shown to be well suited to the analysis of multilayered structures with low frequency-

thickness products typically used for sensing applications. The transmission matrix

method assumes that fields in the y-direction are either constant or zero and the solu-

tion is determined by considering the essential field variables normal to a plane per-

pendicular to the z-axis. The electrical boundary conditions have been fully described

and as a consequence the electromechanical coupling coefficient, K2 calculated. It has

been demonstrated that a FPW device supports many modes, of which the primary

antisymmetric and symmetric are of interest. For liquid sensing applications, the first

antisymmetric is of prime importance. The phase velocity of the antisymmetric mode

has been shown to exhibit a strong dependence on the overall structure thickness. Us-

ing this knowledge, the structure can be configured such that the velocity of the A0

mode is below the compressional velocity of the liquid medium and hence the acoustic

energy is confined to the structure rather than radiated into the surrounding medium.

Limitations of the method have been highlighted, particularly when analysing ma-

terials with lossy material parameters and structures with large frequency-thickness

products. The cause of the numerical error has been determined to be caused by expo-

nentially growing partial mode wavenumber terms when evaluating the transmission

matrices of the individual layers. Due to the numerical error alternative methods are

required to solve the piezoelectric wave propagation problem in such structures. The

suggested method, known as the Stiffness Matrix method, extends on the transmis-

sion matrix whilst retaining much of its computational efficiency and simplicity. This

technique will be discussed in Chapter 4.
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Chapter 4

Stiffness Matrix Analysis of FPW Devices

4.1 Introduction

This chapter presents an improved numerical technique for the analysis of multilay-

ered FPW structures known as the Stiffness Matrix method. Whereas the transmission

matrix method presented in Chapter 3 was formulated as a first order differential equa-

tion, the stiffness matrix method is based on a nonlinear Riccati equation which has

been shown to be well suited to problems with unevenly growing terms. The stiffness

matrix method will be shown to be numerically stable even when working with large

frequency-thickness products, whilst retaining much of the simplicity of the transmis-

sion matrix method.

Similar to the transmission matrix method, this technique can be applied to piezo-

electric structures consisting of an arbitrary number of layers. The increased stability

of the stiffness matrix method is attributed to the choice of local coordinate system as

well as the field variables used to map the components across the layer interfaces. The

stiffness matrix method relates displacement on both sides of a layer to the normal

stress, rather than mapping the essential field variables across the terminal surfaces as

was done in the transmission matrix method. For large frequency-thickness produces,

the external surfaces of the structure become decoupled, thus the transmission matrix

becomes ill-conditioned. It will be shown that the stiffness matrix method, when ap-

plied to acoustically thick structures, converges to the Rayleigh case. The use of the

stiffness matrix method for acoustically lossy materials will be discussed in Chapter
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6. The techniques developed within this chapter will serve as a benchmark for the

author’s novel approach to the analysis of FPW devices based on the FEM.

Section 4.2 presents an overview of the necessary modifications to the transmission

matrix to convert to the improved stiffness matrix method and examples given to il-

lustrate its increased stability. It will be shown that the overall stiffness matrix for a

multilayered structure can be generated by applying a computationally efficient recur-

sive algorithm.

Section 4.2.3 relates the stiffness matrix method to a generalised Green’s function

which fully describes the electrical and mechanical interactions of the FPW device. The

appropriate boundary conditions will be discussed for a FPW device, which varies

significantly from the SAW case. The effective permittivity function will be employed

as an alternative method to calculate the operating parameters of a FPW device. The

effective permittivity will be used in subsequent sections to evaluate the insertion loss

characteristics of a FPW device using interdigital transducers as an excitation source.

Section 4.3 examines the displacement profiles and mass sensitivity of a multilay-

ered FPW device operating in the gas phase. A comparison will be given between sin-

gle isotropic layer devices, where in many cases simplistic analytical expressions exist

to describe operational parameters, and more complex multilayered structures. Due

to the nature of multilayered structures analytical solutions are typically not possible,

and hence utilising the author’s implementation of the stiffness matrix method, para-

meters such as mass sensitivity and particle displacement are evaluated numerically.

A general rule will be developed to identify the numerous possible acoustic modes

in a FPW structure, with an emphasis on the difference between purely isotropic sin-

gle layer and composite piezoelectric multilayered devices. Mass sensitivity will be

analysed for two primary modes operating in a gaseous environment using pertur-

bation theory. It will be shown that the multilayered design has significantly higher

sensitivity than a single isotropic layer structure.

Finally, Section 4.4 develops the necessary processes to analyse the electrical per-

formance of a FPW device based on a spectral domain Green’s function. The particular

approach taken will focus on the frequency domain response of a FPW device with a

ground plane between the Si membrane and the piezoelectric layer. It will be shown
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that many of the assumptions used for SAW devices can no longer be applied when

evaluating the characteristics of a FPW transducer and in such cases potential modifi-

cations will be discussed and implemented.

4.2 Stiffness Matrix Method Development

Section 3.4.1 demonstrated the inability of the transmission matrix method to accu-

rately solve the piezoelectric wave propagation problem in lossy as well as acoustically

thick materials. It was shown that the cause of the transmission matrix’s numerical in-

stability is due to exponentially growing eigenvalue terms. This section will present a

recently developed approach known as the Stiffness Matrix method which is uncondi-

tionally stable and retains much of the computational efficiency and simplicity of the

transmission matrix method [85].

In this approach the transmission matrix is reformulated to prevent the exponen-

tially increasing eigenvalue terms from affecting the stability of the solution. Part of

the reformulation is based on the selection of an alternative coordinate system when

considering the propagating modes. In the previous method, the solution did not de-

pend on the direction of power flow of the eight partial modes, whereas the stiffness

matrix method requires the partition of these modes into either ’upwards’ or ’down-

ward’ modes. With reference to Figure 4.1, for modes propagating ’downwards’, z−,

the local origin is defined as the top of layer m, denoted z = hm. Conversely, for modes

propagating ’upwards’, z+, the origin is located at the bottom of layer m, z = hm−1.

z

x

Layer n

Layer 2

Layer 1

z = h2

z = h1

z = 0

z = hm−1

Layer m

z = hm

z = hn

z−z+

Figure 4.1: Stiffness Matrix Method Multilayered Coordinate System

The transmission matrix discussed in Chapter 3 was formulated as a first order lin-
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ear ordinary differential equation, with the solution describing the z-dependence of the

essential field variables. Although describing a slightly different set of essential field

variables, the stiffness matrix method is quite different in that it satisfies a nonlinear

Riccati equation. This method is quite well suited to systems with unevenly growing

terms, such as those found in the partial mode eigenvalues of nonhomogeneous waves

[86]. The technique is routinely applied to ’decision and control systems’ where it has

been shown that the Riccati equation can be decoupled into pure-fast and pure-slow

terms which allows the problem to be solved by considering a single differential equa-

tion [112]. Much of the derivation of the stiffness matrix method is similar to that seen

in Chapter 3, however the field variables are redefined to clearly indicate the changes

in the solution path.

4.2.1 Reformulation of the Transmission Matrix Method

Reformulation of the transmission matrix involves relating stress to displacement on

both sides of a layer. Therefore, apart from the increased stability of the stiffness

method, there is a slight difference in field variables, which are defined as:

U =
[

ux uy uz ϕ
]T

(4.1a)

T =
[

Txz Tyz Tzz Dz

]T

(4.1b)

As the stiffness matrix method operates on displacement rather than velocity, it is not

necessary to take the time derivative of the scalar potential in equation 4.1a.

The same assumed solution, equation 3.10, is used, with a substitution made to op-

erate in the wavenumber domain rather than velocity. By assuming the same solution,

the system propagator matrix, A, can be used, but is reordered to accommodate for

the change in field variables. The state vector, ζ which is conceptually identical to τ is

given by:

ζ =


 U

T


 , (4.2)

with the modified system propagator matrix given by:

As =


 kxXΓ31 −jX

−j (Γ11 − Γ13XΓ31) k2
x + jρω2I kxΓ

13X


 , (4.3)
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which allows the ordinary differential equation and the subsequent solution to be writ-

ten as:

dζ

dz
= jAsζ (4.4a)

ζ (z + h) = ejAshζ (4.4b)

The terms in equation 4.3 are the same as in equation 3.24a, with the exception of kx be-

ing introduced as the propagation direction wavenumber. The term ejAsh, is equivalent

to φ in the transmission matrix method. As before, the eigenvalues of equation 4.4a are

the partial mode wavenumbers with the eigenvectors corresponding to the individual

components of the state vector ζ. As was with the transmission matrix, the parameters

in equation 4.4b are assumed to vary as ejωt−kxx−kzz and are hence omitted. The mater-

ial scaling factors introduced in Table 3.1 are also consistent between the transmission

and stiffness matrix methods. With reference to equation 4.4a, the solution of the dif-

ferential equation is still the matrix exponential. The initial part of the procedure is the

same as before, with the eigenvalues of the propagator matrix calculated.

To evaluate the power flow direction of the propagating modes the quasi-static

approximation of the complex Poynting vector is calculated. The eight propagating

modes are sorted into two groups, upwards and downwards modes by considering

the imaginary component of the eigenvalue matrix. Solutions with purely negative

imaginary eigenvalues are deemed to be a downwards propagating modes and con-

versely a positive purely imaginary wavenumber corresponds to an upwards mode.

These two mode directions can be determined simply by inspection which improves

the computational efficiency. This procedure is valid only for propagation of partial

modes, whereas evanescent modes requires the complete Poynting vector to be evalu-

ated. On the other hand, if a real or complex eigenvalue is found, then it is necessary

to calculate the quasistatic Poynting vector, which is defined as [102]:

P = Re

(−v∗ ·T
2

+
jωDzϕ

∗

2

)
, (4.5)

where the superscript ∗ represents the complex conjugate.

If the result of equation 4.5 is positive, then an upwards mode is identified, or if neg-

ative a downward mode has been found. The quasi-static Poynting vector is also
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checked for zero, which represents the critical velocity of a bulk wave in the mater-

ial. A FPW device does not support bulk waves if a zero value was found the solution

process was halted.

The cause of the numerical instability of the transmission matrix was found to be

due to large uneven partial mode eigenvalues. The root of the problem is much more

evident if the system propagator matrix is rewritten in a diagonalised form [87]:

As = MβzM
−1 (4.6a)

=


 P− P+

D− D+





 β−z 0

0 β+
z





 P− P+

D− D+



−1

(4.6b)

The eigenvector matrix M is split into general components of displacement, P and

stress, D. The subscripts + and − indicate the mode direction as determined from the

power flow direction. Therefore, analogous from equations 3.26 and 4.6, the solution

to the eigenvalue problem is given by:


 U (z + h)

T (z + h)


 =


 P− P+H+

D− D+H+





 P−H− P+

D−H− D+



−1 

 U (z)

T (z)


 (4.7)

The H matrices are the exponential of the partial mode wavenumbers, given by:

H+ = I
[

ejβ+1
z h ejβ+2

z h ejβ+3
z h ejβ+4

z h

]T

(4.8a)

H− = I
[

e−jβ−1
z h e−jβ−2

z h e−jβ−3
z h e−jβ−4

z h

]T

, (4.8b)

where I represents the 4×4 identity matrix. Note that the superscripts in equation 4.8a

and 4.8b relate to the partial mode wavenumbers and are not mathematical operators.

Inclusion of the partial mode wavenumbers into the general displacement and stress

vectors prevents the numerical instability demonstrated in Section 3.4.1 from arising

[84]. For example, if a partial mode becomes nonhomogeneous or evanescent, the

wavenumber in the z-direction will become complex. As the magnitude of the imagi-

nary component increases, the exponential term becomes increasingly smaller. When

the inverse is taken, this naturally becomes quite large, thus promoting instability. By

including these terms with the general displacement and stress vectors, the instability

is avoided. If equation 4.7 is reordered, then the stiffness matrix, which relates normal
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stress to displacement is written as:

 T (z + h)

T (z)


 = K


 U (z + h)

U (z)


 (4.9a)

K =


 D− D+H+

D−H− D+





 P− P+H+

P−H− P+



−1

(4.9b)

4.2.2 Stiffness Matrix Analysis of Multilayered Structures

Similar to the transmission matrix, the stiffness matrix can be formulated to solve the

piezoelectric wave propagation problem for multilayered structures. For a multilay-

ered FPW structure, a global stiffness matrix, KT, to relate stress and displacement

between the two exposed terminal surfaces must be calculated. With the bottom of

the structure, z = 0, defined as the reference plane, the recursive calculation is applied

in an upwards manner. Care should be taken in this regard, as the transmission ma-

trix multiplied the successive layer matrices from the upper to the lower surfaces. The

global stiffness matrix for a multilayered structure is given by the repeated application

of:

KT =


 Km

11 + Km
12

(
KM

11 −Km
22

)−1
Km

21 −Km
12

(
KM

11 −Km
22

)−1
KM

12

KM
21

(
KM

11 −Km
22

)−1
Km

21 KM
22 −KM

21

(
KM

11 −Km
22

)−1
KM

12


 , (4.10)

where Km is the layer under consideration, and KM is the stiffness components of the

bottom M layers. The subscripted terms relate to the individual 4× 4 matrices derived

from the overall 8 × 8 global matrix. For example, K11 represents the upper left hand

components and K12 is the upper right section. In the case of the first layer, KM is

simply the stiffness matrix for the bottom layer. Similar to the transmission matrix

method, the stiffness matrix method can be applied to an arbitrary number of layers

as the algorithm is dependent on the individual layer characteristics rather than the

dimensions of the overall structure.

To highlight the computational stability of the stiffness matrix method consider

Figure 4.2 which presents an open-circuit boundary determinant scan using the same

parameters as those in Section 3.4.1.1. Recall for the transmission matrix the solution

could not be sufficiently resolved. A small frequency attenuation term is also included

to promote solution convergence [113]. The frequency-thickness scanning range has
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been slightly enlarged to illustrate the solution approaching the Rayleigh wave velocity

of 4815m/s corresponding to a frequency-thickness product of 1.67× 105Hzµm.
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T
|

Guided Mode Pure Mechanical Mode

Figure 4.2: Determinant Scan - Large Frequency-Thickness Product

From Figure 4.2, two modes have been resolved, however only the first at a frequency-

thickness product of 1.44×105Hzµm, or 4151m/s, is piezoelectric as determined by the

electromechanical coupling coefficient. If the effective permittivity was used instead to

determine the operating frequencies of the structure, discussed in Section 4.2.4, only

the piezoelectric mode would be found. As the thickness of the structure is increased

the solution is found to converge to the Rayleigh wave velocity, thus even in its cur-

rent form the stiffness matrix could potentially be used to model a multilayered semi-

infinite structure. However to further improve the stability, the method is modified to

consider only modes that propagate with depth, which will be discussed in Chapter 6.

A reported benefit of computing the wave propagation solution using the stiffness

matrix method is the ability to incorporate imperfect interfaces. In such a scenario,

the normal stress is consistent on both sides of the imperfect interface, however a dis-
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continuity in displacement exists [113]. Mathematically, an imperfect interface can be

included in the global stiffness matrix recursive calculation by incorporating a modi-

fied layer stiffness matrix. This type of calculation would be beneficial when working

with films with different crystal structures or microstructural defects.

4.2.3 Stiffness Matrix Method and the Generalised Green’s Function

To solve for finite thickness structures the stiffness matrix approach can be used to

derive a generalised Green’s function via the application of equation 4.11a. The Green’s

function describes the mechanical displacement and electric potential generated by the

mechanical stresses, σ and electrical charge, γ [87]. The subscripts l and u relate to the

lower and upper surfaces of the structure respectively.



uu

ϕu

ul

ϕl




= G




σu

γu

σl

γl




(4.11a)

G =




Kf
11 Kfe

11 Kf
12 Kfe

12

−Kef
11 θ + Ke

11 −Kef
12 −Ke

12

Kf
21 Kfe

21 Kf
22 Kfe

22

Kef
21 Ke

21 Kef
22 Ke

22 − θ




−1

(4.11b)

θ = ε0|kx| × 1011 (4.11c)

As the material properties are scaled, similar to that for the transmission matrix

method, it is also necessary to scale θ which accounts for the free space above and

below the structure.

The terms in equation 4.11a relate to the electrical and mechanical properties of the

multilayered plate structure, and as such fully describe the acousto-electric problem.

Table 4.1 lists the parameters of equation 4.11a and provides a brief description of their

significance.

If i = j, then the components of the stiffness matrix relate to self action terms, otherwise

they are mapped across the multilayered structure. By using the stiffness matrix to de-

rive a Green’s function, device parameters, such as electromechanical coupling and
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Table 4.1: Stiffness Matrix Method to Green’s Function Conversion

Parameter Size (n×m) Terms

Kf
ij 3× 3 Pure Mechanical Terms

Kfe
ij 3× 1 Mechanical to Electrical Coupling

Kef
ij 1× 3 Electrical to Mechanical Coupling

Ke
ij 1× 1 Pure Electrical Terms

conductometric sensitivity, can be calculated at any interface within the layer stack.

This is particularly useful when considering a structure containing buried electrodes.

It should be noted that this approach does not take into account the mass of the elec-

trodes, however this has recently been reported in [21]. The Green’s function technique

is well established in literature and has been shown to be a robust method to solve the

piezoelectric wave propagation problem.

4.2.4 Boundary Conditions and Effective Permittivity

The boundary conditions for the stiffness matrix method can be obtained either from

considering the Green’s function presented in Section 4.2.3, or from the global stiff-

ness matrix KT. For a simple single isotropic layer FPW device, where no sources are

present, the normal stress and the discontinuity in the dielectric displacement, must

vanish at the surface. These conditions can be expressed by satisfying the following

equation:

det
(
KT

)
= 0 (4.12)

The same boundary determinant scan procedure developed for the transmission ma-

trix can be used to determine the solution to equation 4.12.

In a structure where an excitation source exists the solution is slightly more com-

plex. As previously intimated, by applying the generalised Green’s function, the ter-

minal boundary conditions can be described in terms of charge, electric potential, dis-

placement and normal stress. Alternatively, the effective permittivity, discussed later

in this section could be used, but requires a modified determinant search procedure.

For mechanically free surfaces the normal stress components are zero. Under an open-
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circuit condition, the surface charge density is zero, whilst the potential remains un-

known. For the metalised condition, the charge density is unknown and the electric

potential is set to zero. Equation 4.11a is reordered to suit the particular boundary

condition of interest. Thus, for the top short-bottom open configuration, the following

conditions must be met:



uu

0

ul

ϕl




=




Kf
11 Kfe

11 Kf
12 Kfe

12

−Kef
11 θ + Ke

11 −Kef
12 −Ke

12

Kf
21 Kfe

21 Kf
22 Kfe

22

Kef
21 Ke

21 Kef
22 Ke

22 − θ




−1 


0

γu

0

0




(4.13a)

σu,σl, ϕn, γ0 = 0 (4.13b)

Equation 4.13a is then rearranged to describe the displacement in terms of the un-

known charge and electric potential. As was found with the transmission matrix

method, the only way in which the reordered equation can be satisfied is if the coeffi-

cients of the remaining terms are zero. Therefore, the same computational procedure

used with the transmission matrix can be used. Due to complexity of the boundary

condition equations, they are included in Appendix B rather than being discussed here.

A more convenient method of determine the operating wavenumbers of multilay-

ered piezoelectric structures is via the poles and zeros of the effective permittivity func-

tion. This technique also improves the reliability of the stiffness matrix method as only

piezoelectrically excited modes are found. Another benefit of this approach is the abil-

ity to determine the solution for both metalised and open-circuit boundary conditions

during one calculation process.

Evaluation of the effective permittivity for a FPW device is not a simple as that for a

semi-infinite substrate. In semi-infinite structures, where it is assumed that negligible

electrical or mechanical contributions exist due to the lower surface of the substrate,

the generalised Green’s function is reduced to a 4×4 matrix. The effective permittivity

can then simply be written in terms of a single component of the Green’s function.

However, in a FPW device, as was discussed in Chapter 3, there are four possible

electrical boundary conditions, of which two can be described by a single effective

permittivity function. That is, for a FPW structure, the effective permittivity of the

upper piezoelectric surface can be described by considering two different electrical
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boundary conditions on the bottom layer. The concept of effective permittivity was

introduced in [114], and is defined as:

εeff (kx, ω) =
γ (kx, ω)

|kx|ϕ (kx, ω)
(4.14)

From equation 4.14 it can be seen that the effective permittivity is dependent on both

angular frequency and wavenumber. The value of the effective permittivity, evaluated

at infinite kx, is also used in the calculations for the transducer frequency response

covered in Section 4.4.3. In formulating the effective permittivity, it is assumed that

all mechanical stresses are zero at the top and bottom surfaces. Therefore, considering

only pure electrical terms, a relationship between charge, γ, and voltage, ϕ, can be

established via the Green’s function:

 ϕu

ϕl


 =


 Ge

11 Ge
12

Ge
21 Ge

22





 γu

γl


 , (4.15)

where the terms Ge
11, Ge

12, Ge
21, Ge

22 can be obtained from the inversion of the modified

stiffness matrix presented in equation 4.11b, which are the terms G(4,4), G(4,8), G(8,4),

G(8,8) respectively. Of interest in this study is the effective permittivity evaluated at the

uppermost surface. Typically this is where the piezoelectric layer is deposited and the

interdigital transducers are placed. Where electrodes are buried within the structure, it

is necessary to calculate the effective permittivity at that particular interface. Equation

4.15 can be rearranged to describe the potential and charge on the upper surface for the

electrical conditions on the bottom interface. The two effective permittivity functions

for the upper surface are written as:

εOC
eff (kx, ω) = ε0 − 1

|kx|
(

Ge
11 −Ge

12

(
1
η

+ Ge
22

)−1

Ge
21

) (4.16a)

εSC
eff (kx, ω) = ε0 − 1

|kx|
(
Ge

11 −Ge
12 (Ge

22)
−1 Ge

21

) , (4.16b)

where equation 4.16a represents the open circuit bottom condition, γl = 0, and equa-

tion 4.16b is the short circuit bottom condition, ϕl = 0.

Figure 4.3 presents the effective permittivity for the structure discussed in Section

3.3.2. The poles correspond to the top surface short-circuit surface condition and the

zeros represent an electrically open upper surface. In comparison with Figure 3.3, only
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the first two piezoelectrically coupled antisymmetric and symmetric modes have been

resolved.
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Figure 4.3: Upper Surface Effective Permittivity - Bottom Surface Open Circuit

4.3 Device Analysis

In this section the displacement profiles and mass sensitivity for an ideal FPW device

will be presented. The simulated structure studied is identical to that discussed in

Chapter 3 which will be shown to be well suited to sensing applications in liquid me-

dia. Where appropriate the differences between FPW and SAW device calculations will

be highlighted. A general rule will be developed to identify the piezoelectrically cou-

pled acoustic modes within a FPW structure by considering the particle displacement

profiles in conjunction with the dispersion characteristics. In developing the transmis-

sion matrix method of Chapter 3, and also forming the basis of this chapter, it was

assumed that the y-component of the essential field variables is either zero or constant.
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By examining the displacement profiles this hypothesis can be further examined.

Perturbation theory will used to evaluate the mass sensitivity of a FPW device op-

erating in a gas phase. It will also be shown that a FPW structure is well suited to liquid

media sensing applications provided that the phase velocity of the primary A0 mode is

below that of the compressional velocity of the liquid environment. A more in-depth

discussion on the use of a FPW device in a liquid environment will be presented in

Chapter 6. Potential methods to increase the mass sensitivity of a FPW device will also

be discussed.

4.3.1 Displacement Profiles and Mode Identification

It was found in Chapter 3 that a FPW structure can theoretically support an infinite

number of piezoelectrically coupled Lamb modes. Although the A0 and S0 modes can

be determined by their finite phase velocity as the thickness of the structure decreases,

Figure 3.4, it becomes increasingly difficult to identify other modes by solely consid-

ering the dispersion characteristic. For FPW structures comprised of a single isotropic

layer the task is relatively straightforward, but with the inclusion of alternative mate-

rials within the layer stack the task becomes significantly more difficult. This section

investigates the particle displacement profiles of a FPW device, highlighting the differ-

ence between structures comprised of isotropic and anisotropic materials. A general

rule will be developed to allow simple mode identification in conjunction with the dis-

persion characteristics when considering the displacement about the cutoff point of the

higher order modes. By identifying the modes about this point, an iterative algorithm

can be used to track a particular mode to a given operating point. With the aid of the

surface displacement profiles recommendations will be given on appropriate modes

for mass sensing applications. However, this does not mean that a FPW structure

is strictly limited to sensing applications. Due to the surface particle motions, these

types of structures have been successfully applied as micropumps and fluid mixers in

biomedical applications [115].

Recall that for a FPW structure eight partial modes are present. As previously dis-

cussed, under free electrical and mechanical surface conditions, the normal stress and

charge components are zero. Therefore, to obtain the displacement at the upper and
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lower surfaces of the structure, the Green’s function is rewritten as:



σu

γu

σl

γl




=




Kf
11 Kfe

11 Kf
12 Kfe

12

−Kef
11 θ + Ke

11 −Kef
12 −Ke

12

Kf
21 Kfe

21 Kf
22 Kfe

22

Kef
21 Ke

21 Kef
22 Ke

22 − θ







uu

ϕu

ul

ϕl




(4.17)

At the device surface the components on the left side of equation 4.17 are set to zero

and the mode of interest identified via a boundary determinant scan. The resulting

eigenvector matrix describes the stress and displacement components of the eight par-

tial modes which is of interest for evaluating the particle displacement profiles. The

components of seven partial modes are normalised to the eighth which allows the rel-

ative stress and displacement at the upper and lower surfaces to be evaluated.

Once the displacement at the surfaces of the structure has been calculated, their

respective values within the structure can be evaluated by considering the state vec-

tor ζ, equation 4.4b, which describes the individual fields by their respective values at

the interface (z + h). To determine the complete internal particle displacements, it is

necessary to divide the physical layers into n virtual layers. There is no apparent limit

on the layer divisions, however a too fine segregation will greatly affect the computa-

tion time. For the multilayered FPW structure presented, the lower 2.0µm Si layer can

be split into a further 20 individual layers, all consisting of the same material proper-

ties. From the application of the recursive stiffness matrix equation, equation 4.10, the

global stiffness matrix is identical, however now the fields can be described in terms of

the interfaces of the newly created n layers via the application of:

Um−1 =
(
Km

11 −KM
22

)−1
KM

21 Uu −
(
Km

11 −KM
22

)−1
K12Um (4.18a)

Tm−1 = KM
22 Um + KM

21 Uu (4.18b)

Note that the terms in equations 4.18a and 4.18b are in a different order to those in [87]

to allow the profiles to be generated from the lower to upper surface.

Dividing a physical layer into n individual virtual layers requires the stiffness ma-

trix to be recalculated for the remaining components of the layer. As an example for the

Si layer, when considering the 10th virtual layer, it would be necessary to calculate the

stiffness matrix for the below 10 layers as well as the 10 above. Once this has been per-
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formed, the global stiffness matrix is calculated by applying the recursive algorithm,

equation 4.10, for all other physical layers.

To determine the internal particle displacement profiles, the propagating wavenum-

ber is set and a boundary determinant scan performed to determine the operating fre-

quency of a particular mode. Once the operating frequency has been obtained, the rela-

tive displacement at the interfacial surfaces is calculated followed by the displacement

and normal stress throughout the structure by the continual application of equation

4.18a and 4.18b. Figure 4.4 presents the displacement profile for the first antisymmetric

mode. The displacement profiles have been normalised to the maximum displacement

in the propagation direction, x. The mid-plane of the structure and the upper surface is

located at a normalised structure thickness of 0.5 and 1 respectively. Due to the limited

interaction of the fields in the y-direction, where the normalised maximum displace-

ment is approximately 13 orders of magnitude less than that of the x, or longitudinal,

component, the particle displacement for the primary A0 can be thought of as only in

the longitudinal and transverse directions. Individual layer boundaries have also been

included on all displacement profiles to illustrate the derivative discontinuities caused

by changes in material properties.

Analysis of Figure 4.4, although defined as an antisymmetric mode, shows that the

transverse displacement profile is not symmetrical about the centre of the structure.

This discrepancy is caused by the inclusion of different materials within the layer stack.

If a structure comprised of a single isotropic material is considered, such as silicon, then

the profile is indeed symmetrical. However, under such conditions to successfully ex-

cite an acoustic wave, it would be necessary to use an externally coupled transducer

which is typically the case in NDE rather than sensing applications. The antisymmetric

mode can be seen to consist of both transverse and longitudinal components, however

the transverse component is dominant. For small thickness-wavelength ratios, the lon-

gitudinal component can be seen to be a factor of 2/kxh smaller than that of the trans-

verse component [24]. The longitudinal component undergoes a change in direction

between the free surfaces of the structure and is a maximum at the external faces. Par-

ticle displacement also approaches zero at the median of the structure. Again, as the

device under consideration is a multilayered structure, the displacement is not exactly
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Figure 4.4: Primary Antisymmetric Mode Displacement Profile

zero at the mid-plane.

For a device consisting of a single isotropic layer the transverse component should

be constant throughout the device. In the presented multilayered structure this is not

the case, however the variation is insignificant. Derivative discontinuities can be seen

at the various layer interfaces indicating a change in normal stress at these locations.

For the structure presented, the interfaces correspond to a normalised thickness of 0.66

and 0.80 for the Si-Al and Al-ZnO layers respectively. It can also be seen that in the

multilayered structure the maximum transverse displacement is at the mid-plane of

the device. Due to its dominant transverse component, the primary A0 mode is well

suited to mass sensing applications in both gas and liquid mediums. A further restric-
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tion is placed upon the use of a FPW structure in a liquid environment as the phase

velocity of A0 should be below the compressional velocity of the liquid to minimise

the loss of acoustic energy into the surrounding environment. For the FPW structure

presented, the transverse displacement is virtually identical at either external interface

and thus one, or both sides of the structure, could be used for mass sensing applica-

tions. However, in potentially corrosive environments it is beneficial to protect the

IDTs and piezoelectric layer from the target analyte. This is typically achieved by de-

positing a passivation layer such as SiO2.

Once the displacement profiles have been established, equation 4.18b can be used

to determine the normal stress profile within the structure, Figure 4.5. As stress is

related to the change in longitudinal and transverse displacement with respect to a

given point, a large variation in displacement will cause a corresponding large change

in stress. Considering the mid-plane of the structure, the stress component Txz is a

maximum as the phase of the displacement profile changes and is generally parabolic

in nature. The derivative discontinuities in the upper half of the structure are caused

by the layer change from Si to Al and then finally to ZnO. The normalised transverse

stress component, Tzz, is quite small as the displacement profile is relatively consistent

throughout the layers.

Conversely, Figure 4.6 presents the displacement profile for the first symmetric

mode. Similar to the antisymmetric mode, the y-component is 15 orders of magnitude

smaller than the longitudinal component and hence can be disregarded. For the sym-

metric mode the longitudinal motion dominates and is relatively constant throughout

the structure. The maximum longitudinal displacement for both primary modes are

approximately equal. In comparison to the antisymmetric mode, the symmetric lon-

gitudinal displacement does not undergo a change in particle direction between the

upper and lower surfaces. In a FPW device comprised of a single isotropic layer, the

longitudinal displacement should be the same at all points within the structure, how-

ever as discussed for the antisymmetric mode, the inclusion of alternative materials

slightly alters the particle profile. The displacement in the transverse direction is also

seen to be significantly smaller than that of the longitudinal direction. According to

[24] this is caused by the Poisson effect which reduces the displacement by a factor
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Figure 4.5: Primary Antisymmetric Mode Normal Stress Profile

of 2/ktlh. Unlike the transverse component of the antisymmetric mode, the symmet-

ric mode component undergoes a change of direction between the upper and lower

surfaces of the structure and is approximately zero at the mid-plane of the device.

The normal stress profiles for primary symmetric mode appear in Figure 4.7. A max-

imum in the normalised longitudinal stress component appears at the Si-Al interface,

whereas for the transverse component it can be found between the Al and ZnO layers.

As the displacement profiles have been evaluated for the primary A0 and S0 modes

a simple selection process can be established to identify the modes when performing

a boundary determinant scan rather than relying solely on the phase velocity charac-

teristic. If a change in particle direction is present in the longitudinal component and a

minimum occurs at some point within the structure, then an antisymmetric mode has

been identified. Alternatively, if the sign of the longitudinal component is the same at

the FPW external interfaces, then a symmetrical mode has been found.
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Figure 4.6: Primary Symmetric Mode Displacement Profile

As the thickness of the FPW structure increases it becomes increasingly difficult

to correctly identify the higher order modes due to the complex nature of the parti-

cle displacements. One viable solution is to identify the normalised cutoff thickness

and velocity for a particular mode from the dispersion characteristics, Figure 3.4, and

then use this information in conjunction with the displacement profiles to confirm the

family of a given mode. Once a mode has been identified as either antisymmetric or

symmetric, it can then be tracked to any other value of normalised thickness of inter-

est. A simulation was performed to evaluate the displacement profiles of the next two

antisymmetric and symmetric modes to confirm whether these selected higher order

modes conform to the selection criteria for the A0 and S0 modes. The FPW Si thick-

ness was set at 22µm, 25µm, 46µm and 50µm to resolve A1, S1, A2 and S2 respectively,

Figure 4.8.

The particle displacement profiles have been normalised to their respective maximum

values of displacement in the longitudinal direction. With the Si thickness set to the
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Figure 4.7: Primary Symmetric Mode Normal Stress Profile

modes respective cutoff values, it appears that the antisymmetric modes adhere to

same selection criteria used for A0. That is, a change in particle direction is present be-

tween the upper and lower surfaces in the longitudinal component, whilst the trans-

verse component motion is in the same direction at the external interfaces. As ex-

pected, as the order of the mode increases, an increase in the number of oscillations

within the structure can be seen. This also implies that for identification purposes of

the higher order modes particle displacements at the surfaces should be used, rather

than searching for a local maximum at the mid-plane of the structure.

For the symmetric modes, it also appears that the basic selection criteria can also

still be used. When considering S0, the transverse displacement is significantly less

than the longitudinal component, however this is shown not to be the case for the

higher order symmetric modes. Again, examining the particle displacement at the ex-

ternal interfaces appear to be the most appropriate method of identification. Therefore,

if the direction of the particle motion of the longitudinal component is consistent at the
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Figure 4.8: Higher Order Mode Displacement Profiles

interfaces and a change found for the transverse component, then a symmetric mode

is determined.

In terms of mass sensing applications, to be discussed further in Section 4.3.2, dis-

placement at the external interfaces is of interest. Table 4.2 lists the normalised dis-

placements for the first six modes in the transverse and longitudinal directions. To

allow the displacement of the various modes to be compared, the calculated values are

normalised to the power flow per unit width of the lowest order family modes. The

components have also been normalised to the longitudinal displacement of A0 or S0

at the lower surface and group in their respective mode families. As usual, the upper

surface is the top piezoelectric layer and the lower the Si layer. A negative sign in-

dicates a change in direction between the upper and lower surfaces. Although it has

been shown that alternative materials within the FPW layer stack cause the modes to
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be no longer purely antisymmetric or symmetrical, the variation for at least the first

two primary modes is insignificant.

Table 4.2: Normalised Surface Particle Displacement Profiles

Mode Uxu Uxl Uzu Uzl

A0 1 −1.08× 100 1.03× 101 1.03× 101

A1 1.63× 10−3 −1.78× 10−3 −7.84× 10−4 −6.14× 10−4

A2 1.06× 10−3 −9.62× 10−4 3.44× 10−4 4.84× 10−4

S0 1 1.01× 100 −2.37× 10−2 5.19× 10−2

S1 5.19× 10−3 4.11× 10−3 5.80× 10−3 −6.22× 10−3

S2 1.27× 10−3 1.71× 10−3 1.92× 10−3 −1.73× 10−3

Examining Table 4.2, the A0 transverse displacement is virtually identical at the upper

and lower surfaces. Therefore, either side of the structure could be potentially used

for mass sensing applications. As the order of the antisymmetric mode increases, the

maximum displacement shifts between the upper and lower surfaces. If a symmetric

mode was of interest, then from the surface displacements, it would be advisable to

use lower order modes as the displacement is significantly larger.

When the thickness-wavelength ratio is greater than unity, the primary A0 and S0

modes approach the Rayleigh velocity and as previously discussed behave as two de-

coupled acoustic waves propagating on both surfaces of the structure. To investigate

this phenomenon the Si thickness of the presented FPW device was increased to ap-

proximately 400µm, whilst keeping all other layers constant. Under these conditions,

the A0 and S0 phase velocities have not fully converged to the Rayleigh velocity and

two different solutions, albeit very close, have been resolved. The displacement pro-

files for this condition appear in Figure 4.9. The particle displacement for the trans-

verse component appears to penetrate to a normalised thickness of 0.4, corresponding

to a physical depth of 160µm. This is consistent with SAW theory in that the acoustic

energy is confined to between one and two wavelengths from the surface [2]. The

longitudinal component indicates that the particle displacements are in opposite di-

rections on the surfaces of the structure.
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Figure 4.9: FPW Device Mode Decoupling

4.3.2 Mass Sensitivity

This section examines the use of a FPW device for mass sensing applications in the gas

phase. The performance of a multilayered FPW structure is compared against a com-

mercially available SAW device and an equivalent thickness FPW device comprised of

a single isotropic layer. A brief review of the sensing mechanism and assumptions for

modelling an added mass on the surface of the device is also discussed. The evaluation

of a FPW for liquid sensing applications is reserved for Chapter 6.

As previously mentioned, a FPW structure can support an infinite number of prop-

agating Lamb modes. This is advantageous in a sensing environment as any given

mode can be selected and tuned for a particular application. For sensing applications

in liquid media, the primary A0 mode is of interest, however in the gas phase, either A0

or S0, or indeed any of the higher order modes, could be used. Depending on the mea-

surement configuration, either or both primary modes could be used simultaneously.

To configure the FPW device as a sensor, a chemically active film is added to the
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surface of the structure, Figure 4.10. The active film is designed to attract and capture

specific molecules on the surface of the device thereby increasing the mass on the sensi-

tive area of the structure. The effects of the chemically active film can also be modelled

as an additional layer within the overall stack, provided that it can be described in

terms of stiffness, density, permittivity and piezoelectric properties. However, many

of the currently applied thin films are polymer based and as such the damping effect

on the propagating wave must also be determined.

Chemically Active Film

Si Substrate

FPW Membrane Structure

Input IDT Output IDT

Af

Figure 4.10: Mass Sensor Configuration

The system pictured in Figure 4.10 is configured for resonant frequency measure-

ments, where an amplifier, Af , is employed to ensure that the closed loop gain is

greater than unity. If the primary A0 mode was of interest, a low pass filter could

be included to ensure that on startup that this was the only mode excited. Note that

the frequency at which the device would oscillate is dependent on the period of the

IDTs which is discussed in Section 4.4. Utilising this configuration, once exposed to

a target analyte, the frequency of oscillation will vary based on the concentration and

hence applied mass. Via a frequency counter this deviation can be evaluated and a

measurement of target gas concentration can be determined. For the relatively low fre-

quencies of a FPW structure, this method is typically used as the required electronics

are quite inexpensive. An alternative technique, based on the direct measurement of

the phase difference between the applied and received acoustic wave can also be used.

Here a fixed frequency is applied to the input IDT and the corresponding output de-

tected with a vector voltmeter. Although a simplistic technique this approach requires

significantly more support equipment and hence is typically not used in sensing ap-
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plications [116]. Depending on the approach taken, the sensitivity of the FPW will be

different. In this study, the resonant frequency measurement technique of Figure 4.10

will be used.

The mass sensitivity of a FPW device is based upon the Rayleigh hypothesis [117],

where it is assumed that the added mass layer is infinitesimally thin and the effect of its

elasticity is negligible. Furthermore, it is assumed that the perturbing mass layer does

not significantly alter the distribution of the acoustic wave within the structure. This

can be confirmed by examining the displacement profiles described in Section 4.3.1.

For a FPW device, which by nature is quite thin, this may not strictly be the case.

When configured in a feedback element in an oscillator system, mass sensitivity is

defined as [118]:

Sf
m =

1

f0

lim
∆ms→0

∆f

∆ms

(
cm2/g

)
, (4.19)

where ms is the applied mass per unit area and f0 is the unperturbed resonant fre-

quency. The term ∆f is the change in frequency due to the change in applied mass,

∆ms. The subscripts f indicates that the FPW structure is configured for frequency

measurements.

A simple conversion can be applied to determine the mass sensitivity of a FPW

structure when configured for phase velocity measurements:

Sv
m =

vp

vg

Sf
m (4.20a)

vg =
dω

dk
(4.20b)

The term vg in equation 4.20a is known as the group velocity. It is defined as the change

in angular frequency due to the change in wavenumber and can be numerically eval-

uated by considering the gradient of the dispersion characteristic at the device wave-

length. The group and phase velocities must clearly be recalculated for every mode of

interest. The subscript v indicates that FPW structure is configured for phase velocity

measurements.

For a FPW device consisting of a single isotropic layer, the mass sensitivity can

be determined by analytical means. If the primary A0 mode is considered and the

FPW structure acoustically thin, then only the transverse displacement component is
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present. Under this assumption, the mass sensitivity can be written as [14]:

Sf
A0m =

−1

2ρd
, (4.21)

where d represents the half thickness of the FPW structure. The negative sign indicates

that the added mass causes a reduction in resonant frequency. In the case of the S0

mode, the mass sensitivity is twice that of equation 4.21 due to the symmetry of the

structure [40].

However, from Table 4.2 it can be seen that for the presented FPW structure, dis-

placement components exist in the transverse and longitudinal direction making the

assumptions for formulating equation 4.21 invalid. To determine the mass sensitivity

of a multilayered FPW structure all surface displacement components must be consid-

ered. An alternative method to evaluate the mass sensitivity of an FPW structure is to

model the effect of an additional acoustically thin isotropic layer. The added mass layer

must be sufficiently small as that it does not greatly affect the acoustic displacement

profile. A recent study [21], found this approach to be suitable for evaluating the mass

sensitivity of a SAW structure. In this study, a fictional mass layer with a thickness

of 1 × 10−12m was added to the structure and the corresponding shift in resonant fre-

quency determined. In terms of computational efficiency, this method is advantageous

as the simulated mass layer can simply be added to the overall layer stack and the

sensitivity easily determined. However, this technique can not be used to determine

the mass sensitivity using the FEM described in Chapter 5. This is primarily due to the

small dimension of the mass layer causing elemental mesh inconsistencies in the FEM

software. Therefore, the perturbation method approach, where it is assumed that the

added mass is infinitesimally small, will be adopted to determine the mass sensitivity

of a FPW device.

Using perturbation theory, the mass sensitivity for a FPW device operating in reso-

nant frequency mode can be described by [117]:

Sf
m =

−1

4Ua

[(
1− cp

44/ρp

v2
p

)
|vx|2 + |vy|2 +

(
1− cp

44 (3cp
11 − 4cp

44)

ρp (cp
11 − cp

44) v2
p

)
|vz|2

]
(4.22a)

Ua =

∫ h1

0

U1
av dz +

∫ h2

h1

U2
av dz +

∫ h3

h2

U3
av dz (4.22b)

U i
av =

ρi

2

∑
j

|vj (z) |2, (4.22c)
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where Ua is the area density of the average stored energy in the structure, ρp is the

density of the added perturbing layer, cp represents the material stiffness coefficients

of the added mass layer and the subscript i indicates the layer under consideration.

Note in equation 4.22b, the area density of the average stored energy is calculated for

each individual layer as indicated by the integration limits, which specify the start and

end z-coordinate of the layer under consideration.

If the added layer is soft, that is the phase of the added perturbing layer is signifi-

cantly lower than that of the device, then equation 4.22a can be simplified to:

Sf
m =

(|vx|2 + |vy|2 + |vz|2)
4Ua

(4.23)

The mass sensitivity can be seen to be highly dependent on the surface velocity of the

structure. Therefore, for maximum mass sensitivity, a mode should be selected with

the largest surface velocity profile for a fixed total power flow.

Due to the physical construction of a FPW device, the added mass can be applied to

either the upper or lower surface. In harsh environments it is advantageous to isolate

the delicate IDTs to prevent damage to the device. For the A0 mode, there is insignifi-

cant variation in the mass sensitivity when shifting the mass layer between the upper

and lower. Conversely, a deviation of −10 cm2/g was found for the S0 mode.

Figure 4.11 depicts the mass sensitivity of primary A0 and S0 modes of the pre-

sented FPW structure as a function of Si thickness. The Al and ZnO layers were kept

consistent at 0.4µm and 0.6µm respectively. For comparative purposes the theoretical

sensitivity for a single layer Si structure of identical thickness is also included.

From Figure 4.11, it can be clearly seen that the mass sensitivity is inversely propor-

tional to the overall structure thickness. Maximum mass sensitivity is achieved when

the composite membrane thickness is at a minimum, however this will greatly depend

on the fabrication constraints. If the FPW device is too thin and thus fragile, it may

not be suitable for environments where abrupt pressure or flow changes occur, caus-

ing the device to fracture. In terms of individual modes, the higher velocity S0 mode

appears to have a higher sensitivity than A0 until the thickness of the structure reaches

approximately 16µm corresponding to a S0 phase velocity of 7467m/s.

An investigation was also performed on the next four higher order modes. The dis-

persion characteristic, Figure 3.4, indicates that the cutoff frequencies for these modes
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Figure 4.11: Mass Sensitivity

are quite high, which in a fabricated device would require more expensive signal

processing electronics. The initial thickness of the structure was set at 40µm and then

systematically increased to 60µm. Over this range, the third symmetrical mode, S2, had

the highest sensitivity at approximately −68cm2/g , whereas at the same thickness the

sensitivity of the A0 and S0 modes is −38 and −23cm2/g respectively. Although hav-

ing a potentially higher sensitivity, the increased velocity, which then leads to increased

frequency, means that the device could not be used in liquid media sensing applica-

tions as the energy of the mode would radiate into the surrounding environment.

In comparison with SAW devices, the mass sensitivity of FPW devices is signifi-

cantly larger, which in turn decreases the minimal detectable concentration. In [119]

a FPW device with a centre frequency of 5.5MHz was compared against a 250MHz

SAW used in a gas chromatograph system. With a sensitive layer, the minimum de-

tectable methanol concentration using FPW device was 75ppm, whilst that of the SAW

structure was 535ppm, corresponding to a 613% increase. The FPW device was also
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subjected to nitrous oxide and helium where in both cases the minimum detectable

limit was below that of the SAW sensor.

A comparison was also performed against a device fabricated by the authors col-

leagues. Here a SAW device was fabricated on a lithium tantalate substrate with a ZnO

intermediate layer. The mass sensitivity was determined as a function of guiding layer

thickness. A maximum sensitivity of−120 cm2/g was found at a thickness-wavelength

ratio of 0.16 corresponding to a ZnO thickness of approximately 3.2µm. For the pre-

sented FPW device, the same sensitivity can be achieved in a structure with an overall

Si thickness of 11.8µm.

To increase the mass sensitivity of a SAW device, the operational frequency must

be increased [8], whereas for a FPW structure, the thickness of the overall structure

should be reduced. Although potentially making the device more difficult to handle,

a reduction in device thickness also brings about a decrease in centre frequency and

the requirements for the signal processing electronics. Another method to increase the

mass sensitivity of a FPW device, by examining equation 4.23, is to increase the surface

velocities. This can be achieved by using a higher velocity piezoelectric layer, which in

turn increases the operational frequency of the device.

Recently, aluminium nitride has gained popularity as a suitable guiding layer for

acoustic wave devices. It can be d.c. reactively sputtered from a pure aluminium target,

or deposited in a r.f. sputtering system using an AlN target. Figure 4.12 represents

the mass sensitivity for the FPW device presented as a function of Si thickness, with

the exception of the ZnO layer being replaced with 0.6µm of AlN. For comparative

purposes, the sensitivity for the ZnO layer is included. Further discussion on the use

of AlN as a piezoelectric layer will be discussed in Chapter 6.5.

From Figure 4.12 it can be seen that the AlN piezoelectric layer improves the sensi-

tivity of the device, particularly in the low thickness limit. For the two primary modes,

an increase in sensitivity of 97 and 110cm2/g is shown for A0 and S0 respectively. Us-

ing identical layer thicknesses as the ZnO based device, the centre frequencies for A0

and S0 have increased to 4.7 and 80.9MHz respectively. In deriving the mass sensitiv-

ity, it is assumed that the added mass and sorptive layers are homogenous, which may

not be the case for biosensing applications.
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Figure 4.12: Mass Sensitivity - AlN and ZnO

4.4 Analysis of Interdigital Transducers

The analysis so far presented for a FPW device has not taken into consideration the

generation and detection of acoustic waves. A multitude of techniques exist for excit-

ing an acoustic wave, ranging from wedge bonded transducers used for NDE appli-

cations [24], non-contact laser excitation [33], magnetic excitation [30] and an array of

differentially driven electrodes commonly referred to as interdigital transducers (IDTs)

[120]. Each technique has its own advantages, however the application of any given

process has been shown to affect the response spectra of the device. In a sensing envi-

ronment, a cost effective, simple and low power approach is required. To that end, an

analysis will be presented on the use of IDTs as an excitation source with a discussion

on the frequency response spectra. The IDT electrodes are fabricated by the deposition

a metallic layer and a selective pattern produced via a photolithographic process.

The technique reviewed here is developed for a finite number of electrodes allow-

ing end effects to be closely examined, which can not be achieved with a periodic, or
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infinite array, model [121]. Although the computation time is increased using the dis-

cussed method, for structures with a small number of electrodes, second order effects

of which the Green’s function approach takes into full account, may be significant. Al-

though not discussed here, the technique employed can also be used to evaluate charge

accumulation caused by grounded guard electrodes and acoustic end reflections[19].

Numerous techniques exist to determine the spectral characteristics of SAW devices

[93, 94, 122], however not so for FPW devices. Many analogies can be drawn between

the FPW and SAW device cases, with the main difference of a metalised ground plane

inserted between the Si and piezoelectric ZnO layers.

To analyse the influence of the IDTs, a spectral domain Green’s function is applied

which considers the response due to a Dirac, or line source, excitation. The inclusion of

the metallic plane also allows the problem dimension to be reduced. The metallic plane

is electrically grounded, which implies that the effective permittivity of the structure

can be calculated by considering only the upper piezoelectric layer and ground plane.

In developing the spectral characteristics for the FPW structure, it is assumed that the

IDTs are infinitely thin and conductive, neglecting the effects of electrode mechani-

cal loading. In a FPW device where the IDT metallisation layer is comparable to the

thickness of the composite layers, these effects can simply not be ignored. A recent dis-

cussion in [21] illustrates an approach to include electrode effects utilising a periodic

model.

The following analysis is split into two sections. The first deals with the electro-

static problem, whilst the second considers the effect of the propagating wave on the

response spectra. FPW device performance is evaluated in terms of admittance charac-

teristics and then converted to the more commonly used insertion loss characteristics.

4.4.1 Spectral Domain Green’s Function

A comprehensive discussion of the electrostatic spectral Green’s functions appears in

[19], however the essential details are reiterated here to highlight the differences in so-

lution paths between this method and the novel technique developed by the author

using the FEM in Chapter 5. Under the quasi-static approximation electrode interac-

tions are ignored and it is assumed that no bulk modes are excited [93]. Similarly it is
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assumed that the magnetic and electrical fields do not interact.

From analysis described previously in this chapter, the electrical components of the

Green’s function can be formulated to relate charge and voltage on both sides of a

layered structure. When considering the properties of an IDT, the same concept can be

used. If only the electrical conditions are considered, then the potential on the surface

of a piezoelectric layer can be written as:

Φ (x) =

∫ +∞

−∞
G

(
x− x

′
)

σ
(
x
′
)

dx
′
, (4.24)

where G (x) represents the Green’s function describing the problem and σ is the charge.

If the Green’s function is split into two components, representing the electrostatic and

surface wave solutions respectively, then it can be stated:

G (x) = Ge (x) + GFPW (x) (4.25a)

Φ (x) = Φ(1) (x) + Φ(2) (x) (4.25b)

Φ(1) (x) =

∫ +∞

−∞
Ge

(
x− x

′
)

σ
(
x
′
)

dx
′

(4.25c)

Φ(2) (x) =

∫ +∞

−∞
GFPW

(
x− x

′
)

σ
(
x
′
)

dx
′

(4.25d)

The superscript in equation 4.25b indicates the equation component, rather than a

mathematical operation. By inspection, equation 4.25c can be identified as convolu-

tion in the spatial domain. Recall that convolution in the spatial domain is identical to

multiplication in the spectral domain [123]. For simplicity, equation 4.25c is therefore

converted to the spectral domain, and written as:

Φ(1) (x) =
1

2π

∫ +∞

−∞
Ge (kx) σ (kx) e−jkxx dkx, (4.26)

where the bar over the operators indicates the Fourier transform of the respective com-

ponents. In most cases, the inverse Fourier transform of equation 4.26 can not be deter-

mined by analytical means, and hence must be evaluated numerically. To determine

the solution to equation 4.26, a change of integrand is performed, which allows the

Fourier transform of the metalised approximation electrostatic Green’s function to be

written in closed form as [19]:

Ge (kx) =
1

ε0|kx|
1

1 + εP coth
(

εP

ε33
D|kx|

) , (4.27)
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where

εP =
√

ε11ε33 − ε2
13, (4.28)

and D represents the thickness of the piezoelectric layer. If further layers were in-

troduced it would be necessary to include their contribution in a similar method de-

scribed in [124]. The change of integrand in equation 4.26 implies that the integration

is performed across the unknown charge density rather than the electrostatic Green’s

function, equation 4.27.

Consider the section of a single electrode depicted in Figure 4.13. The electrode is

split into N strips of varying widths. About the electrode edges, more strips can be

included to account for the logarithmic singularity at the electrode edge [125–127]. By

subdividing the problem in a similar procedure to the FEM, the effect of each indi-

vidual strip can be determined by the superposition theorem [128]. That is, a single

electrode strip is considered to be a pulse source of charge in isolation, and the result-

ing potential determined on all other electrode strips within the array.
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��
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��
��
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Figure 4.13: Electrode Subdivision

A known voltage is placed on the electrode strips, ensuring that all strips within one

electrode have the same applied potential. For simplicity, typically ±0.5V is applied

on alternating input electrode fingers, therefore defining the total potential difference

VT as 1V. Floating electrodes can also be incorporated with their voltage determined

by forcing the overall structure to be charge neutral [16]. The output electrodes are set

at 0V to allow the short-circuit output current to be determined.

With reference to Figure 4.13, two important parameters are used, ϑm
l and δl which

denote the mid-point and half the width of strip l respectively. The start and end points

of the electrode strip are given by xb
l and xe

l respectively. For a given electrode the end

point of one strip, xe
l is identical to the start of the following, xb

l+1. Employing pulse

basis functions [19], the individual strip charges can be written as equation 4.29b, with
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the spatial charge density given by equation 4.29c.

σ (x) =
N∑

l=1

σlPl (x) (4.29a)

ql = σl

(
xe

l − xb
l

)
(4.29b)

σ (x) =
N∑

l=1

ql
1(

xe
l − xb

l

)Pl (x) , (4.29c)

where Pl is a function of the electrode polarities. For the input electrodes, if a positive

voltage is applied then Pl has a value of 1. Conversely, if a negative voltage is applied

then Pl assumes a value of −1. For the output electrodes, as the voltage is forced

to zero, the polarity function depends on connection to the upper or lower bus-bar,

corresponding to 1 and−1 respectively. The term ql is the strip charge density integral.

The Fourier transform of equation 4.29c is taken and then substituted in equation

4.26, resulting in the spectral domain solution for the electrostatic charge density:

Φ(1) (x) =
N∑

l=1

ql
1(

xe
l − xb

l

) × 1

2π

∫ +∞

−∞
Ge (kx)

ejkx(xe
l−x) − ejkx(xb

l−x)

jkx

(4.30)

The solution to equation 4.30 can be evaluated in terms of the unknown electrode strip

charge densities ql. Therefore, considering only the electrostatic component of the spec-

tral domain Green’s function, the solution in terms of the known voltage applied to the

individual strips, is written as:

ϕ
(1)
k =

N∑

(l=1)

qlI
(1)
kl k = 1, 2, ..N, (4.31)

where

I
(1)
kl =

1

π

∫ +∞

0

Ge (kx) sinc (δkkx) sinc (δlkx) cos (kx|ϑm
k − ϑm

l |) dkx (4.32)

I
(1)
kl is symmetrical about kx = 0 and therefore the integration limit has been changed.

From a computational perspective it is not possible to integrate to infinity and hence

an upper limit must be defined. In the results presented here, a linear integration space

is taken consisting of 25, 000 points, between kx = 0.01 and kx = 1× 107.

An alternative device structure was used to determine the electrostatic characteris-

tics of a FPW transducer to coincide with an attempted physical device fabricated by
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the author. The simulated device consists of a 24µm Si, 0.2µm Au and 3.0µm piezoelec-

tric ZnO layers. The acoustic wavelength was fixed at 96µm corresponding to theoret-

ical centre frequencies for A0 and S0 of 28.5 and 70.5MHz respectively. For calculation

of the admittance, an aperture of 200µm was used. The simulated device consists of

eight electrode pairs, with 8 strips of equal width per electrode.

With reference to equation 4.32, the integral depends on the width of the source and

observing strip and the distance between their centres, therefore for a regular array of

electrodes a slight optimisation can be made. A routine was constructed that identi-

fied the unique combinations of δl and ϑl and only calculated the quasi-static spectral

Green’s function for these components. For the presented structure, equation 4.32 must

be calculated 9, 269 times, whereas without the optimisations a total of 65, 536 points

would need to be evaluated.

Figure 4.14 depicts the electrostatic charge density per unit area, for the aforemen-

tioned device designed by the author. The input electrode is located between x = 0

and x = 7.455× 10−4 and the output between x = 1.141× 10−3 and x = 1.888× 10−3.

From Figure 4.14 it is quite difficult to identify the electrode end effects. This is primar-

ily caused by the relatively small thickness of the ZnO piezoelectric layer. The method

employed has assumed that the charge density is constant in the y-direction, which

will be shown not to be precisely the case in Chapter 5. In many cases where the elec-

trode width is several multiples of the acoustic wavelength, the variation in y can be

safely ignored [129]. A small charge exists on the output electrodes due to the voltage

applied across the input electrodes. This is commonly referred to as electromagnetic

feedthrough and can be considered to be a capacitive coupling between the input and

output electrodes. It is a quite important parameter as its influence can significantly

degrade the frequency response characteristics of the FPW device. It will discussed in

further detail in Section 5.3.2.

The transducer static capacitance, which forms part of the overall admittance char-

acteristic, is determined by equation 4.33. Using the lumped and ground capacitance

model [130], this value can be used to quantify the electromagnetic feedthrough be-

tween the input and output IDTs. The technique is not applied here but will be eval-

uated using the FEM in Chapter 5. Note that as a pulse basis function was used, it is
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Figure 4.14: Electrostatic Charge Density

necessary to divide the obtained charge density integral by the individual strip widths

to obtain the effective charge density, σl.

CT =
1

2
W

∫ +∞

−∞
Pl (x) σe

l (x) dx, (4.33)

where σe
l indicates the electrostatic component of the charge density and W is the trans-

ducer aperture.

The contribution of the electrostatic Green’s function only needs to be calculated

once for a given transducer arrangement. In the following section, the surface wave

component is evaluated therefore allowing the complete solution to equation 4.25b to

be evaluated.

4.4.2 Green’s Function Analysis of FPW Surface Wave Component

Conversely to SAW structures, the overall thickness of a FPW device should ideally

be less than the acoustic wavelength. In calculating the electrostatic component of
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the spectral domain Green’s function the finite thickness of the piezoelectric layer has

been accounted for. For a SAW device, the substrate is assumed to be semi-infinite and

hence the surface wave component of the Green’s function can is written as [131]:

GSAW (x) = −jGse
−jkx|x|, (4.34)

The term Gs, in the case of a dominant Rayleigh wave, can be seen to be essentially

K2/2 multiplied by the inverse of the effective permittivity at zero velocity:

Gs ≈ 1

ε0 + εP

v0 − vm

v0

(4.35)

The approximation in 4.35 assumes that there are no piezoelectrically coupled bulk

modes, no leaky modes exist and a Rayleigh wave is the primary acoustic mode [93].

For a FPW device the approximation is invalid and thus term Gs should be calculated

from the surface-wave power flow [2]. The term Gs is a measure of coupling of electri-

cal sources to the piezoelectric eigenmode and can be determined from the residue of

the pole of the spatial Green’s function corresponding to the guided mode. In the case

of a FPW structure this term must be calculated separately for the A0 and S0 modes.

An alternative definition of Gs is written as equation 4.36.

GFPW
s =

−1

kx

(
εeff (k+)− εeff (k−)

k+ − k−

)
, (4.36)

where k+ and k− represent slight positive and negative shifts in the operating wavenum-

ber kx. A comparison of calculated insertion loss characteristics between the SAW and

FPW definitions of Gs is presented later in this chapter.

A further assumption was made in determining the effective permittivity of the

multilayered FPW structure. As the piezoelectric layer is bounded by an ideal metallic

ground plane, no electric field, and hence no contribution to the effective permittivity,

is given by the underlying Si layer. This allows the effective permittivity to be evalu-

ated by considering only the upper piezoelectric and metallic layer. However, if only

the upper layer is considered, the wavenumber term will be incorrect, as a change in

structure thickness also causes a deviation in operating wavenumber. If the effective

permittivity were to be evaluated at the overall structure wavenumber then a constant

value would be obtained, rather than evaluation about the pole-zero pair expected.

Therefore, the SAW modelling assumption was used, where the effective permittivity
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was calculated by considering the piezoelectric layer to be a semi-infinite substrate.

Excellent agreement in insertion loss characteristics has been obtained when making

this assumption when comparing against the FE Method presented in Chapter 5.

Another key difference between the FPW and SAW device case is the number of

solutions. For a Rayleigh mode SAW, only one solution is typically of interest, cor-

responding to a singular wavenumber term which varies with frequency. In a FPW

device a minimum of two modes propagate along the structure, therefore by applying

the superposition principle [128], the Green’s function surface wave term is written as:

GFPW
s (x) = −j

(
GFPW

s(A0) e
−jkA0

|x| + GFPW
s(S0) e−jkS0

|x|) , (4.37)

Recall from equation 4.25b, the potential on the surface of the piezoelectric is the contri-

bution to both electrostatic and surface wave components. Following the same process

as the electrostatic component, the surface wave potential can be written as:

ϕ
(2)
k =

N∑

l=1

qlI
(2)
kl k = 1, 2, ..N, (4.38)

where

I
(2)
kl =




−jGFPW

s e−jk0|ζm
k −ζm

l |sinc (δkk0) sinc (δlk0) if k 6= l,

GFPW
s

δlk0

[−1 + e−jk0δlsinc (δlk0)
]

if k = l,
(4.39a)

In formulating equation 4.38, only the forward propagating acoustic wave has been

considered. Although in a physical device the output IDT will generate another acoustic

wave travelling back towards the input electrodes via regeneration, the effects are rel-

atively small and can be ignored [93].

Once the electrostatic and surface wave components have been calculated, the total

charge density is determined via the solution of:

ϕk =
N∑

l=1

ql

(
I

(1)
kl + I

(2)
kl

)
k = 1, 2, ..N (4.40)

The total transducer current can be obtained by summing the charge across the elec-

trode surface and multiplying by the transducer aperture, equation 4.41 [94]. For con-

sistency with SAW device techniques, the charge is evaluated across the even input

electrodes. In most cases, the input electrodes are identical, and thus the overall cur-

rent can be determined by doubling the calculated current. The same process can also
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be applied on the output electrodes, which will provide the short-circuit current used

as a basis for the frequency response characteristics.

ITX = jωW

+∞∑
−∞

σTX (4.41a)

IRX = jωW

+∞∑
−∞

σRX , (4.41b)

where TX and RX represent the transmitting and receiving IDTs respectively. If the

input and output IDTs are physically identical, then the admittance characteristics of

the FPW device can be described as:

Y11 = Y22 =
ITX

VT

(4.42a)

Y12 = Y21 =
IRX

VT

, (4.42b)

with the individual components of the admittance characteristic defined as:

Yxy (ω) = Ga (ω) + jBa (ω) + jωCT , (4.43)

where Ga represents the radiation conductance and Ba the susceptance. The suscep-

tance component, Ba (ω) can be evaluated as the imaginary component of the admit-

tance as the capacitive term can be subtracted by the application of equation 4.33.

These terms can be used to create a matching network for maximum power transfer.

4.4.3 Frequency Response of FPW Devices

The device admittance characteristics are usually converted to the more commonly

used four-port scattering parameters [1, 128]. Of particular interest is S21, which is

termed the forward transmission coefficient. If the magnitude of S21 is taken, then the

insertion loss characteristics can be obtained. Figure 4.15 illustrates the insertion loss

characteristics for the presented device under an assumed load termination of 50Ω. A

comparison between the SAW approximation for Gs and the direct calculation from

the effective permittivity has also been included.

From Figure 4.15, it can be seen that the two primary A0 and S0 have been resolved

at the correct frequencies. The most noticeable difference between the two implemen-

tations of Gs is the deviation in insertion loss characteristics at the primary mode cen-

tre frequencies. Using the FPW formulation, the insertion loss is −51.1 and −44.21dB
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Figure 4.15: Insertion Loss Characteristics

for A0 and S0 respectively, whereas under the SAW assumption values of −56.8 and

−49.9dB are obtained. The insertion loss characteristics presented here are quite low

and in many cases are unsuitable for sensing applications. The inclusion of more finger

pairs, as in most physical devices, will decrease the insertion loss at the centre frequen-

cies as well as reducing the bandwidth of the primary modes. For example, using

the same structure, but with 16 finger pairs, the insertion loss decreased by 11.3dB for

both primary modes. A typical FPW device contains approximately 25 finger pairs,

thus much lower insertion loss values can be expected for a physical device. It should

be noted that the insertion loss characteristics presented have assumed than an ideal

metallic ground plane exists below the piezoelectric layer and as such the electrical

effects of the Si have been neglected.

A significant deviation can be seen between the two insertion loss curves in the low

frequency limit of Figure 4.15. In this region, where with a small fixed frequency a

large wavelength is assumed, the primary modes behave as ideal antisymmetric and
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symmetric modes. Under these conditions, the approximation for Gs is known to be

inaccurate [92]. Even for SAW structures with a high value of K2, errors as high as

7 − 12% have been reported [132]. As the frequency term is increased the primary

modes begin to behave similar to Rayleigh modes, and hence the SAW approximation

for Gs becomes more accurate but not sufficiently so to use for the analysis of a FPW

transducers. However, before assuming that the FPW formulation was correct, the in-

sertion loss characteristics were compared against the authors novel approach using

the FEM, where excellent agreement was obtained. A full discussion of the implemen-

tation of the FEM to analyse multilayered FPW devices appears in Chapter 5.

Care must also be taken in ensuring that the Green’s function solution has con-

verged. Many numerical assumptions, ranging from the integration of the electrosta-

tic component of the Green’s function to the number of strips used to simulate the

electrodes, will have an impact on solution convergence. Of particular interest is the

number of individual strips used to represent the charge on an electrode. An analysis

was performed on the change in insertion loss characteristics due to a reduction in the

number of individual electrode strips, Figure 4.16.

From Figure 4.16, the insertion loss characteristics do not significantly deviate until

2 strips are used to represent the physical electrodes. Here, the electrostatic component

of the charge density is grossly approximated and end effects are totally disregarded.

Therefore, for a large number of electrode pairs, it appears appropriate to use a mini-

mum of 4 individual divisions to represent the electrodes, with a fixed period of 96µm.

Between all simulations, the centre frequencies of the primary A0 and S0 modes do not

change.

4.5 Conclusion

In this chapter key operating parameters of a multilayered FPW device have been eval-

uated. A recent development in the analysis of the piezoelectric wave propagation

known as the stiffness matrix method has been presented. The technique, based on

a nonlinear Riccati equation, has been shown to be unconditionally stable for large-

frequency thickness products and complex material parameters. The stiffness ma-

trix method retains much of the simplicity of the transmission matrix and similarly
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Figure 4.16: Insertion Loss Characteristics - Alternative Strip Sizes

is capable of determining the propagation characteristics of multilayered structures

via a recursive calculation. A relationship was established between the stiffness ma-

trix method and the generalised Green’s function which fully describes the acousto-

electrical properties of the structure. As a consequence the effective permittivity has

been defined and the appropriate electrical boundary conditions discussed for satisfy-

ing the piezoelectric wave problem.

Particle displacement profiles for a multilayered FPW device have been considered

in the low thickness limit which has allowed a procedure to be developed for the iden-

tification of the various modes generated. In conjunction with the particle displace-

ment profiles, mass sensitivity for a multilayered FPW device has been calculated and

compared against a single layer structure. It was found that the multilayered device

provided significantly higher mass sensitivity for a given structure thickness.

It was also shown that the mass sensitivity of the first two primary modes in a

multilayered FPW device is dependent on the overall device thickness, where a thin-
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ner structure results in higher sensitivity. A thinner structure reduces the operating

frequency of the device, whereas for SAW devices sensitivity is typically improved

by increasing the operational frequency. Alternative methods of increasing the mass

sensitivity have been presented, where it was found that the optimal solution was to

replace the piezoelectric ZnO layer with a higher velocity AlN thin film. Although

marginally increasing the frequency of the primary modes, an increase in mass sensi-

tivity of 19.8% and 21.5% was found for the A0 and S0 modes respectively.

Using a spectral Green’s function, the theoretical insertion loss characteristics of a

FPW device have been developed. It was found that many of the assumptions used in

SAW theory can not be applied for a FPW structure and as such an explanation pre-

sented. Between the SAW and FPW device assumptions, an average deviation in in-

sertion loss characteristics at centre frequency of 11.9% was found. The applicability of

the modified FPW theory will be fully compared against the universal FEM discussed

in Chapter 5.
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Chapter 5

FEM Analysis of FPW Devices

5.1 Introduction

This chapter presents a novel two and three dimensional Finite Element Method (FEM)

analysis of multilayered Flexural Plate Wave devices. The author has successfully eval-

uated key electrical and mechanical parameters that until recently were evaluated via

more traditional numerical methods, such as those discussed in Chapters 3 and 4. In

this chapter, the author combines the FEM with modified SAW analysis techniques and

related procedures to determine essential performance parameters of FPW structures.

The result is a unified analysis technique, that to the best of the author’s knowledge,

can be applied to FPW structures as well as other acoustic wave devices, thereby il-

lustrating the unique and powerful modelling procedures developed. Although the

computation time for the proposed simulations are potentially longer, the develop-

ment time of a suitable FEM simulation may take only a fraction of that required for

alternative numerical techniques. The techniques presented in Chapters 3 and 4 are

problem specific, thus small changes in geometry or boundary conditions require an

alternative mathematical description. In contrast, the FEM method is non-specific al-

lowing it to be applied across a wide range of problems.

In particular, the author has been able to successfully calculate device admittance,

input capacitance, particle displacement profiles and electromechanical coupling coef-

ficient with excellent agreement to the stiffness matrix methods and spectral domain

Green’s function previously employed. To the best of the author’s knowledge, this is
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the first time that the aforementioned parameters of a FPW structure have been ob-

tained via a FEM based approach. From the techniques and simulations presented, the

author has also successfully developed a series of guidelines relating to the use of the

FEM for the analysis of acoustic wave structures. Furthermore, it is shown that the

FEM techniques developed improve on previous classical simulation procedures by

allowing the simultaneous calculation of various second-order effects, such as electro-

magnetic feedthrough and diffraction.

Section 5.2 describes the development of the FEM with an emphasis placed on

structural analysis. The discretisation process is introduced and a simple example il-

lustrating the underlying concepts of the FEM is presented. Application specific im-

plications of using the FEM to model piezoelectric media are discussed. Section 5.3

presents the three dimensional (3D) FPW device simulated and demonstrates how fu-

ture FEM simulations can be refined for more efficient processing. Section 5.4 intro-

duces the two dimensional (2D) FPW structure studied and provides further insight

into potential modelling optimisations. The reader will be introduced to the math-

ematical methods behind the electrical and structural parameter extraction and how

they differ from previous implementations. Section 5.5 illustrates the change in sim-

ulated device characteristics caused by modification of the FEM simulation package

parameters. The effect of timestep, simulation time and substeps on insertion loss, or

frequency response, characteristics is presented. Attention is drawn to the difficulties

in simulating a high aspect ratio structures such as a FPW devices and how careful

design of the FEM simulation can greatly reduce errors in the subsequent analysis.

Section 5.6 provides a comparison of the two dimensional FEM FPW device insertion

loss characteristics against those obtained via the more computationally efficient spec-

tral Green’s function presented in Chapter 4, where excellent agreement has been ob-

tained. Finally, Section 5.7 presents the potential disadvantages of the FEM and how

future advances in analysis software will lead to a simplification of simulation devel-

opment and analysis. Liquid loading of a FPW device, in terms of the novel approach

undertaken by the author, will be discussed in Chapter 6.

All results presented in this chapter were developed with the commercially avail-

able ANSYS 8.0 FEM package, produced by ANSYS Inc. The author decided to utilise
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a commercially available package to enable other research groups to directly employ

the methods developed within this thesis.

5.2 FEM Theoretical Background and Assumptions

In this section, a brief introduction to the theoretical background and underlying as-

sumptions of the FEM is presented. An example of the basic FEM solution procedure

is presented with an analysis undertaken on the displacement of a simple beam struc-

ture. This example serves to illustrate the powerful analysis capabilities and the gen-

eral applicability of the FEM to a wide range of problems. It will be seen that the FEM

is independent of problem geometry, thereby making the technique attractive for the

analysis of acoustic wave devices.

As previously mentioned in Chapter 2, the FEM was historically applied for the

analysis of structures such as beams, trusses and frames. More recently, the technique

has been extended and refined to determine the influence of piezoelectric materials,

perform complex electromagnetic analyses and even model the behaviour of liquids

[96]. Many analogies can be drawn between different scientific fields such as heat

transfer, one dimensional fluid flow and axial loading. The general applicability of the

FEM makes it a valuable tool in the many different facets of science.

Several commercial packages, such as ANSYS, ABACUS and NASTRAN/MSC, are

used in industry to solve these often complex problems. The FEM used throughout

this chapter was ANSYS 8.0, provided by ANSYS Inc. This software was initially de-

veloped for the nuclear industry [133], however in recent years has been expanded to

perform static, transient, modal and harmonic analyses of various structures.

The FEM revolves around the discretisation of a large problem into smaller, more

manageable sections. Depending on the required solution accuracy, a tradeoff exists

between the computation time and the number of finite elements, or simply elements,

used. As expected, employing more elements results in an increase in computation

time, however may increase the solution accuracy. As will be shown in this chapter,

when working with piezoelectric structures, the number of elements and hence nodes

has a marked impact on solution convergence.

To solve a FEM problem, appropriate boundary conditions must be applied to the
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simulated structure. These are areas in which the solution is at least partially known

which provides the FEM tool with a starting point for the solution. The FEM can be

applied to any problem where a ’field’ and the associated ’potential’ is to be calculated.

In most cases these two quantities are related by a differential equation. Considering

a simple structural analysis, the mechanical stress is the ’field’ and the displacement is

the ’potential’. In this thesis, the structural analysis is extended to include a piezoelec-

tric material, hence the author’s work with the FEM is termed a coupled-field analysis,

the implementation of which will be discussed later in this section.

The FEM solves a problem by attempting to minimise the equations of equilibrium

[134]. The conservation of energy law states that the total energy in a system must be

equal to zero. In terms of a structural analysis, the equilibrium equation can be written

as:

Ku = F, (5.1)

where K represents the structural stiffness matrix, u is a vector of displacements and F

is the total applied force. Depending on the type of solution required, the meaning of

the symbols in equation 5.1 will change.

To illustrate the use of the FEM, consider the simple structural problem of a beam

fixed at one end, under a constant load as shown in Figure 5.1. The two beam sections

are comprised of the same material, however have different cross-sectional areas.

��

x

y

10 cm 10 cm

A2n2A1n1

F
n3

Figure 5.1: FEM Structural Analysis

A distinct advantage of the FEM is the structured approach of the solution com-

putation. Irrespective of the physics under consideration, the same six steps can be

followed. However in most FEM packages five of the following steps are handled by

the application. For the given example, the solution path is as follows:

• Discretisation. The structure is converted from a single large complex problem

into smaller, more manageable ’finite elements’. In the above example, the prob-
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lem has been split into two elements (A1 and A2), with a total of three nodes and

one degree of freedom. The term ui, is defined as the nodal displacement where

the subscript i indicates the node under consideration.

• Define Interpolation Model. The interpolation model, or element shape func-

tion, defines the quantity sought in a given element. For this model, a linear

shape function is assumed of the form in equation 5.2 [135]. The superscript

(e) indicates that this quantity is per element. Care must be taken to select the

correct interpolation model as this will dictate the accuracy of the solution. For

example, if a problem contains a field that varies significantly within the element

interior then a linear approximation may be insufficient. Here, an element with

a quadratic, or higher order shape function would be selected. Such elements

typically have nodes in the centre of the element as well at the vertices.

u(e) = u
(e)
1 + x

(
(u

(e)
2 − u

(e)
1 )

l

)
(5.2)

• Construction of the local stiffness matrices and loads. From equation 5.1, the

stiffness matrices are constructed. When the structure is deformed, the work

done by the applied external force is stored as strain energy. The strain energy, Λ

for each element is given by:

Λ(e) =

∫

x

σν

2
dx =

∫

x

Eν2

2
dx, (5.3)

where σ and ν and element stress and strains respectively.

The total system potential energy, equation 5.4, is given by the addition of the

strain forces minus the work done by any applied forces. As previously stated,

the aim of the FEM is to minimise this function as shown in equation 5.5.

∏
=

e∑
e=1

Λ(e) −
n∑

i=1

Fiui (5.4)

∂
∏

∂ui

=
∂

∂ui

(
e∑

e=1

Λ(e) −
n∑

i=1

Fiui

)
= 0 (5.5)

Substitution of equation 5.2 into equation 5.3 yields the strain energy per element:

Λ(e) =
AE

2l

(
u

(e)2
2 + u

(e)2
1 − 2u

(e)
2 u

(e)
1

)
, (5.6)
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where A represents the cross-sectional area of the element and l is the element

length.

The strain energy must now be minimised. Substituting equation 5.6 into 5.5 and

converting into matrix form gives the derivative of the total strain energy for a

given element. 


∂Λ(e)

u1

∂Λ(e)

u2


 =

A(e)E(e)

l


 1 −1

−1 1





 u1

u2


 (5.7)

• Evaluation of the overall equilibrium equation. Once the element strain func-

tions have been constructed, the overall equilibrium equation can be determined.

By inspection, and with reference to equations 5.1 and 5.7, the element stiffness

matrix, K(e),is defined as:

K(e) =
A(e)E(e)

l


 1 −1

−1 1


 (5.8)

Thus, the total equilibrium equation is the addition of all elemental stiffness ma-

trices and the corresponding load vectors.

∂
∏

∂ui

=
e∑

e=1

(
K(e)u(e) − F(e)

)
= 0 (5.9)

• Solve for unknown nodal displacements. To solve for the nodal displacements,

the appropriate boundary conditions are substituted into equation 5.8. For the

problem given, the Young’s modulus for both elements is identical at 23.2 × 109

N/cm2, the cross sectional area of A1 is 5cm2 and A2 is 2.5cm2. Both elements

have a length of 10cm and the applied force, F, is 1N. The displacement of node

n1 is zero, and hence the associated column and row in the FEM stiffness matrix

can be removed. Firstly, consider the FEM stiffness matrix:

K1 =
5× 23.2× 109

10


 1 −1

−1 1


 (5.10a)

K2 =
2.5× 23.2× 109

10


 1 −1

−1 1


 (5.10b)
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The equilibrium equation, equation 5.1 becomes equation 5.11

5.8× 109




2 −2 0

−2 3 −1

0 −1 1







u1

u2

u3


 =




F1

F2

F3


 (5.11)

The initial problem shows that the displacement of u1 is set to zero. Thus the

associated column and row in the equilibrium equation can be removed. The

applied load, F3 is set to 1. This results in the final equilibrium equation, equation

5.12 which can be solved easily,

5.8× 109


 3 −1

−1 1





 u2

u3


 =


 0

1


 , (5.12)

resulting in displacements u2 = 8.62× 10−11cm and u3 = 2.59× 10−10cm

• Calculation of element stress and strains. The final step in the example FEM

problem given is to calculate the element stress (σ) and strains (ν). For element 1,

ν(1) =
∂u

∂x
=

u2 − u1

l
= 8.62× 10−12 (5.13a)

σ(1) = E(1)ν(1) = 23.2× 109 × 8.62× 10−12 ≈ 2.0× 10−1N/cm2 (5.13b)

And for element 2,

ν(2) =
∂u

∂x
=

u3 − u2

l
= 1.73× 10−10 (5.14a)

σ(2) = E(2)ν(2) = 23.2× 109 × 1.73× 10−10 ≈ 4.01 N/cm2 (5.14b)

The FEM, although a very useful tool, is an approximation to the exact solution.

When performing a transient analysis, it will be shown that solution convergence can

be increased with more timesteps, elements and finer iterations. In most cases the

solution obtained via the FEM is sufficiently accurate for most problems. Although

extra simulations are required to confirm solution convergence, the benefits of the FEM

are numerous and outway the potentially longer computation time. The FEM can be

applied to complex geometries which are often very difficult to describe via alternative

numerical techniques.
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To achieve a relatively accurate solution, the FEM makes various assumptions about

the problem. In the example presented in Figure 5.1, the shape functions were assumed

to be linear. In a piezoelectric problem, relatively high stresses and electric fields may

be present in a localised region and hence a linear approximation may not be sufficient.

Higher order elements, known as p-elements, typically have mid-point nodes and as

such may be more suitable for this type of analysis. One drawback of using a higher

order element is the total number of nodes required for a particular simulation. Whilst

a high number of nodes translates into a more accurate solution, the computation time

will increase considerably. This may be rectified by using a simpler h-element struc-

ture, with a smaller aspect ratio.

For the work presented here, the frequency response, or insertion loss characteris-

tics, of a FPW device are studied. Other electrical and mechanical solutions are dis-

cussed, however the insertion loss characteristics are typically the metric to evaluate

device performance. In constructing the FEM simulations, several key assumptions

have been made. These range from assuming a perfectly flat homogenous layered

structure to the type of function used to excite the device. It will also be shown that

several other assumptions have been made to convert the structure from a 3D to a

much more manageable 2D simulation.

To fully simulate a FPW device, several different fields of engineering are required.

A simple structural analysis, as illustrated previously, is insufficient as there needs to

be a method to determine the contribution due to piezoelectric materials. Thus, the

structural analysis must be coupled to the piezoelectric constitutive equations which

were discussed in Chapter 3. Dedicated elements, known as coupled-field elements are

used to couple different degrees of freedom together. Depending on the type of prob-

lem, the coupling is calculated by the inclusion of a coupling matrix, or converting the

particular field to another load. In the case of a thermal-electric problem, coupling be-

tween the two fields is determined by converting the electrical parameters to a thermal

load. In a piezoelectric-structural analysis a coupling matrix is used. The advantage

of using coupled-field elements is that the software package automatically handles the

necessary matrices. The same results could be achieved by performing a multiphysics

analysis, however this process is significantly more computationally intensive and re-
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quires an intimate knowledge of the FEM and how load vectors are translated between

different engineering fields.

The ANSYS coordinate system varies from the industry adopted IEEE standard

therefore requiring the elements of the stiffness and piezoelectric matrices to be en-

tered as shown in Tables 5.1 and 5.2 respectively. The table headings relate to the

ANSYS coordinate system, whilst the values indicate the IEEE standard form of the

respective constants. In the case of piezoelectric materials, the IEEE coordinates must

first be rotated to the correct material orientation, and then reordered to suit the AN-

SYS implementation. The ε33 and ε22 components of the dielectric matrix, ε, must also

be interchanged. Care must also be taken to ensure that the simulated FPW device is

aligned along the correct working plane. The alignment of the particular structures

will be discussed in their respective sections, however it should be noted that it is

necessary to reorder the y and z components as the ANSYS XY workplane was used

instead of the XZ. The second reordering is not shown in Tables 5.1 and 5.2.

Table 5.1: IEEE and ANSYS Stiffness Matrix Conversion

DIJ =

x (1) y (2) z (3) xy (4) yz (5) xz (6)

x (1) c11 - - - - -

y (2) c21 c22 - - - -

z (3) c31 c32 c33 - - -

xy (4) c61 c62 c63 c66 - -

yz (5) c41 c42 c43 c46 c44 -

xz (6) c51 c52 c53 c56 c54 c55

5.2.1 Coupled-Field Solution

The full solution for an undamped structure can be found in [136], equation 2.58. In

this study, many simplifications can be made to reduce the complexity of the problem.

For the analysis undertaken here all mechanical surface resistances, pressure and ther-

mal effects are set to zero and with the inclusion of damping, results in the modified
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Table 5.2: IEEE and ANSYS Piezoelectric Matrix Conversion

eIJ =

x (1) y (2) z (3)

x (1) e11 e21 e31

y (2) e12 e22 e32

z (3) e13 e23 e33

xy (4) e16 e26 e36

yz (5) e14 e24 e34

xz (6) e15 e25 e35

structural solution equation:

Mü + Cu̇ + Ku = F(t), (5.15)

where M is the mass matrix, C is the damping matrix, K is the FEM stiffness matrix,

F(t) is the time varying load vector. The single and double dotted displacement refer

to the velocity vector and nodal acceleration respectively.

Coupling between the piezoelectric and structural solution is achieved via a strong

coupling matrix. For an arbitrary problem with two degrees of freedom, coupling is

obtained by the off diagonal matrices K12 and K21 as shown in equation 5.16, with Xn

the degree of freedom under consideration and Fn the applied load vector. In terms

of a piezoelectric transducer, the nodal voltage and displacements are coupled via the

piezoelectric constitutive equations.

 K11 K12

K21 K22





 X1

X2


 =


 F1

F2


 (5.16)

The size of the coupling matrices is dependant on the simulation degrees of freedom.

In a 3D FPW simulation there are four degrees of freedom, thus the coupling matrices

are 4× 4. Conversely, the 2D simulations contain a coupling matrix of size 3× 3.

For the simulations performed in this thesis, the complete solution is obtained via

the solution of equation 5.17 with the parameters given in Table 5.3.

 M 0

0 0





 ü

v̈


 +


 C 0

0 0





 u̇

v̇


 +


 K Kz

Kz
T Kd





 u

v


 =


 F

L


 (5.17)
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Table 5.3: Equation 5.17 Parameters

Parameter Description

K =
∫

vol
BT DB dvol Structural Stiffness

Kz =
∫

vol
BT eBv dvol Piezoelectric Coupling Matrix

Kd = − ∫
vol

Bv
T εBv dvol Dielectric Conductivity

M = ρ
∫

vol
NT N dvol Element Mass Matrix

Nv Finite Element Electrical Shape Function

N Finite Element Structural Shape Function

v Nodal Electric Potential Vector

F Applied Structural Loads

L Applied Electrical Loads

From the strain relationship equation 3.4b, it can be seen that the matrices B and Bv

can be identified as the structural and electrical divergence operators.

A dynamic transient analysis, where the load varies with time, was used to deter-

mine the impulse, or frequency response of the simulated structure. If the FPW device

did not have an excitation source, then the natural frequencies could be determined by

performing a simpler modal analysis. This has typically been the approach used by

other researchers. The solution path varies depending on the type of elements used in

the simulated structure. First order systems, such as thermal, magnetic and electrical

are solved using the general trapezoidal rule. Second order systems, including acoustic

and structural problems, are solved either using the Newmark method or the forward

difference method. The ANSYS Sparse Solver is used to solve the piezoelectric trans-

ducer problem. As its name suggests, this solver takes advantage of the sparseness

of the finite element matrices as a majority of the terms are located on, or around, the

main diagonal. The equations are reordered to minimise the total computation time of

the problem. Although potentially a more efficient solver than other iterative methods,

the sparse solver is computationally intensive in terms of hardware requirements. Due

to reordering of the matrices, several temporary files are created so it is not possible to
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gauge the total simulation temporary storage requirements.

ANSYS uses the implicit Newmark time integration to solve equation 5.17, where

each timestep is considered a discrete static problem. The integration parameters α,

β are set to 0.25 and 0.5 respectively to ensure numerical stability [137]. The damp-

ing matrix is computed from α and β as well as the mass and stiffness matrices via

equation 5.18.

C = αM + βK (5.18)

5.3 3D Simulation of a Multilayered FPW Device

Initially, a 3D simulation of a multilayered FPW device was considered by the author to

evaluate potential sensor designs. A 3D simulation contains significantly more infor-

mation about the device behaviour and in particular can graphically illustrate various

second-order effects such as beam-steering, diffraction and triple transit. Such a de-

sign would require up to 1, 000, 000 nodes which was, at the time of writing, beyond

the research licence purchased by the author’s university. Therefore a simplified 3D

structure has been constructed to illustrate the use of the FEM in such an environment.

Although the natural progression is from 2D to 3D simulations, due to limitations im-

posed, a distinct set of criteria were developed to determine whether a 2D simulation

would be sufficient to accurately analyse a FPW device. Several geometrical optimisa-

tion plans have been developed for the simplified structure whilst still retaining a high

degree of accuracy.

Two different analyses of the 3D FPW structure were conducted. The first, an elec-

trostatic analysis, was used to determine the electrode charge density. The second, a

dynamic transient analysis, was used to evaluate the acoustic displacement profiles. To

ensure consistency between both simulated devices, a higher order element was used

for both simulations.

The 3D structure simulated appears in Figure 5.2 and consists of a 2.0µm Si layer, a

0.2µm Au ground plane and a 3.0µm ZnO piezoelectric layer. The material properties

appear in Appendix C. Initially a static analysis was performed, allowing the overall

structure length to be reduced to 1500µm. Nodes were evenly distributed through

device to the licence limit of 128, 000.
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Figure 5.2: Simulated 3D FEM FPW Device

The ANSYS element Solid98 was used throughout the structure. This is a 10 node

tetrahedral element that supports up to six degrees of freedom per node. Although

another element, Solid5, with less nodes could be equally used, Solid98 is more suited

for large displacements which may be the case when considering a transient analy-

sis. Solid98 can be used for a wide variety of analyses, including magnetic, electric,

structural and piezoelectric. Although having six degrees of freedom, several can

be disabled in the preprocessing stage to reduce the number of variables, increasing

the speed of calculation and reducing the computing resource requirements. For this

analysis, three displacement (Ux, Uy, Uz) and one electrical (V) degrees of freedom are

used. The term degree of freedom is used within the ANSYS package to define the

known nodal solution at a given point. The ’free space’ around the device perimeter

was not modelled for simplicity.

Interdigital transducers were simulated by coupling the voltage degree of freedom

on the ZnO surface. This approximation depicts the electrodes as an infinitely thin

and conductive layer, thus neglecting mass loading effects. The simulations could

quite simply be extended to include mass loading effects, however the impact of these

changes is beyond the scope of this thesis. Coupling of the voltage degree of freedom
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involves selecting a group of nodes in a given xyz-plane and issuing the ’CP’ com-

mand. The IDTs consisted of four input and output electrode pairs with a period of

96µm. Four different coupling groups were assigned for the input and output IDTs. A

fifth group was also used to simulate the electrical ground plane between the ZnO and

Si layers. The total thickness of the Au was coupled instead of just the interfacial nodes

between the ZnO and the ground plane. All electrodes had the same acoustic aperture

of 10µm.

5.3.1 Initial Conditions

In terms of a piezoelectric analysis, and provided that no displacement load has been

set, ANSYS assumes that initial displacements are equal to zero. This in turn assumes

that velocity and acceleration are also zero. In the simulations presented the only initial

condition set was the voltage on the electrodes and unless explicitly stated, all output

electrodes were set to zero volts. Alternating input electrodes were either set at ±0.5V

depending on their location and the type of analysis performed. With the output elec-

trodes set to 0V, the output short circuit current can be measured by integrating the

charge across the electrodes. Figure 5.3 depicts the voltage degree of freedom initial

conditions. A ′+′ sign indicates +0.5V where a ′−′ sign indicates −0.5V.

+ + +− − − − 0 0 0 0 0 0 00+

0VAl
Si

ZnO

Figure 5.3: FEM Simulation Initial Conditions

Depending on the type of analysis undertaken, whether electrostatic or transient, a

slightly different electrical load was placed on the input electrodes. In the case of the

electrostatic analysis the input was set at a constant ±0.5V, whereas in the subsequent

transient analyses, an input step function was defined, equation 5.19. It should be

noted that the step function is an approximation to an impulse function typically used

to define the transient response of a system. The approximation is known to have a

marginal effect on the frequency response, however this discrepancy will be minimised
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in the postprocessing stage of the analysis.

Vs =




±0.5V if 0 < t < ts

0 if t > ts,

(5.19)

where ts is the discrete sampling time, Vs is the voltage applied to the input electrodes

and t is the current simulation time.

5.3.2 3D FPW Device Electrostatic Charge Density

A 3D electrostatic analysis was performed to evaluate the electrode charge density.

In this type of first order analysis, inertia and damping effects are ignored. An elec-

trostatic analysis solves the Maxwell equations and assumes that the electric field is

proportional to voltage [126]. The piezoelectric constants are ignored and the device

is modelled as a dielectric thin film. The electrode flux density in x, y and z directions

was extracted into an element table. Of interest is the flux density in the y direction,

termed FLUXDY. A plot of this data for the input and output electrodes appears in

Figures 5.4 and 5.5 respectively.

Firstly consider the input electrode flux density, Figure 5.4. As expected, in loca-

tions where a positive voltage was placed on the electrode, a positive region of charge

exists and vice-versa. It can also be clearly seen that the tangential electrode flux den-

sity exists only on the electrode positions, consistent with the approach developed

in [94]. Square root singularities exist on the electrode edges caused by the imposed

boundary conditions [138].

An interesting second-order effect is noticeable in Figure 5.5, the output electrode

flux density. It can be seen that charge exists on the electrode fingers with no acoustic

wave present. This is commonly known as electromagnetic feedthrough, which es-

sentially is capacitative coupling between input and output electrodes. This effect

is often disregarded by many modelling techniques for simplicity. Electromagnetic

feedthrough is an important parameter particularly when working with highly dielec-

tric thin films such as zinc oxide or aluminium nitride. If the coupling between the

input and output electrodes is relatively high then the output signal of the transducer

can be degraded. Several manufacturing techniques, such as the inclusion of a care-

fully designed metal package, can be applied to minimise this effect [1]. In this manner,
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Figure 5.4: 3D FEM FPW Device - Input Electrode Electrostatic Charge Flux Density

a metal construct is placed between the input and output electrodes to minimise the

feedthrough effect. Such packaging effects could easily be applied to the presented

analysis, which is not as easily achieved with other numerical techniques as the prob-

lem basis equations must be redefined for each specific geometry. In a research envi-

ronment, the influence of electromagnetic feedthrough can be minimised by analysing

the device using a Vector Network Analysis with a time domain gating function.

Using the FEM for an electrostatic analysis allows complex geometric structures

to be evaluated. The more computationally efficient Green’s function analysis, intro-

duced in Chapter 4, requires an expression to be derived for each different structure

[19] thus requiring intimate knowledge of its construction and associated techniques.

Here, it has been shown that readily available software tools can be used to solve the

electrostatic problem with ease.



Chapter 5. FEM Analysis of FPW Devices 143

Figure 5.5: 3D FEM FPW Device - Output Electrode Electrostatic Charge Flux Density

5.3.3 3D FPW Device Displacement Profiles

To determine the displacement profiles of the 3D FPW device a dynamic transient

analysis was performed. A step function, equation 5.19, was applied to the input elec-

trodes. The simulation was conducted for a total of 250ns with a timestep of 1ns. Us-

ing the method described in Chapter 3, the first antisymmetric and symmetric modes

propagate at approximately 509 and 5247m/s respectively. The FPW structure was

extended to a total length of 2000µm in the x-direction to minimise the impact of the

reflected symmetric mode at the simulated structure boundaries.

In a physical device, the reflection of the acoustic wave at the device boundaries

is commonly termed triple-transit. In practise, the reflected acoustic wave is substan-

tially attenuated and the reflection appears as ripple on the transducer frequency re-

sponse. However, at the time of writing, the ANSYS package did not contain an infinite

acoustic element that could be used when performing a piezoelectric analysis, thus the

reflected wave was of significant amplitude. Further details of this limitation and po-
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tential methods to reduce its effect are discussed in Section 5.5.1.1.

The displacement profiles were constructed by considering a node at centre of the

top surface of the structure. Displacement in all three primary directions was extracted

for the total simulation time and appears in Figure 5.6. For comparative purposes

the displacement profiles have been normalised to the peak displacement in the x-

direction. Immediately noticeable is that the displacement profiles are not sinusoidal

in nature. This is due to the many different acoustic modes interfering with each other

as they propagate along the structure.
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Figure 5.6: 3D FEM FPW Device - Displacement Profile
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To confirm that both primary modes were successfully excited, an Fast Fourier Trans-

form (FFT) of the displacement profiles was performed [7]. This analysis is not as

rigourous as the method introduced for the 2D FPW device simulations in the follow-

ing sections and as such should only be used as a guide. The FEM resolves the primary

modes at approximately 4.0MHz and 52.0MHz for A0 and S0 respectively, whereas the

theoretical frequencies, obtained using the techniques of Chapter 4, generated from a

2D approximation are 5.3MHz and 54.6MHz. Although there is an apparent deviation

from the theoretical frequency, the FEM has shown that it can successfully model a

FPW device. Techniques for improving the frequency domain resolution will be dis-

cussed later in Section 5.5.

Due to the limitations of the ANSYS licence, it was not possible to simulate a device

sufficiently wide to examine other second order effects such as beam-steering. Several

authors have confirmed that these phenomena can be successfully modelled with the

ANSYS package [7].

5.3.4 2D FPW Device Simulation Criteria

Whilst is has been shown that the FEM is capable of successfully modelling a 3D FPW

device, the significant computation time makes the technique unsuitable to evaluate

preliminary sensor designs in a commercial environment. In terms of computation

time, the 3D transient analysis presented took over 120 hours to complete. Therefore,

at least for the initial development process, where possible, further assumptions and

geometrical approximations should be undertaken, however the simulations must still

be capable of providing sufficiently accurate results. To that end, a 2D FPW device

simulation was investigated.

Two separate criteria were used to determine if a 2D approximation would be suf-

ficient to accurately simulate a FPW device. The first related to the charge density on

the electrodes. The assumption made in Chapter 4 is that charge is uniform in the

ANSYS z-plane and hence the total charge density can be calculated by integrating

across the electrode surface and then multiplying by the electrode aperture. If the FEM

simulations proved this hypothesis, within the bounds of numerical error, then a 2D

simulation would be considered sufficient. The second criterion involves the displace-
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ment of the individual x, y and z-components. Potential theory [61] shows that FPW

devices mainly support longitudinal and normal displacements. If the displacement

in the z plane, Figure 5.2, was at least one order of magnitude less than that of in the x

and y-plane, then this particular criterion would be met.

With reference to Figure 5.4, the 3D electrostatic simulations have shown that the

charge density is approximately uniform along the z axis and hence one criterion is

filled for the further development of a 2D FPW device simulation. In devices with a

narrow substrate, in comparison to the acoustic wavelength, the z-direction electrode

end-effects must also be considered [16]. The z-direction end effects will manifest as a

diffraction pattern at the receiving IDT. In the following 2D analysis it is assumed that

the electrode is many multiples of the acoustic wavelength and hence these effects can

be safely ignored.

From Figure 5.6 the normalised displacement in the z-plane is approximately 0.03

times that of the peak x displacement. Thus, the two criteria for the use of a 2D sim-

ulation have been successfully satisfied. A more in-depth analysis of FPW device dis-

placement profiles will be presented in Section 5.4.5.

Further simplifications are made with respect to the simulated 2D FPW device,

however will be discussed in Section 5.4.1.

5.4 2D Simulation of a Multilayered FPW Device

The analysis performed in the preceding section has demonstrated that FEM, and in

particular ANSYS, is capable of simulating a FPW device. The two criteria specified

for a 2D FPW device simulation, constant charge density across the electrode depth

and displacement in the z-plane is less than one order of magnitude less than that of in

other directions, has been successfully met. The computation time for a 2D simulation

is also significantly less as size of the matrices to be solved are greatly reduced. The

reduction in computation time, combined with more available elements has allowed

the author to investigate the impact of node density, simulation run and step time on

solution convergence. As a benchmark, the frequency response obtained via the FEM

is compared against the spectral Green’s function in Chapter 4.

Another advantage of a 2D FPW device simulation is the ability to simultaneously
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study various second-order effects that cannot be determined via other techniques. In

particular, simulations can be developed to examine triple-transit interference caused

by structural boundaries and the bidirectional nature of IDTs.

Two different approaches have been used to determine the device frequency re-

sponse. The first evaluates the open circuit voltage on the output electrodes due to

equation 5.19 [17]. The second measures the short circuit current in the output elec-

trodes by integrating the electric flux density across the electrode surface. To the best

of the authors knowledge, this is the first time that this approach has been used to cal-

culate the frequency response of a FPW device using the FEM package ANSYS. During

the course of this PhD programme the author has been in contact with various other re-

searchers to discuss this approach and ultimately suggest that this method is the most

accurate when compared against other proven methods.

All 2D simulations were constructed with the four node ANSYS Plane13 coupled-

field element. Similar to the Solid98 used in the 3D simulations, Plane13 is used in

magnetic, thermal, electric, piezoelectric or structural analyses [136]. Three degrees of

freedom, two displacement and one voltage were used for all 2D simulations. The IDTs

and ground plane were constructed using the same technique as the 3D simulations.

When meshing the structure, care must be taken to ensure that the element does not

become degenerate as the voltage degree of freedom will be automatically deleted.

5.4.1 2D FPW Device Design and Development

Although is has been shown that the 2D FPW device approximation is valid, there are

still several optimisations that can be made to the structure. This section examines

how the simulated structure can be modified to improve computation time and re-

duce storage requirements. In most simulation techniques a FPW device is considered

to consist solely of an acoustically thin plate, thus ignoring the surrounding silicon

structure. At the point where the silicon substrate thicknesses increases due to the fab-

rication process a disruption of the propagating wave will occur. Using the FEM, the

changes in the wavefront, in terms of insertion loss characteristics, can be analysed.

The full 2D structure under consideration can be found in Figure 5.7. It consists

of a 350µm silicon wafer which has been preferentially etched at 54.6◦ to the surface
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normal. The etched section consists of a 24µm Si layer, a 0.2µm Au ground plane and

a 3.0µm ZnO piezoelectric layer. The overall simulated device measures 5500µm in

the x direction, with the etched cavity measuring 1888µm. The layer thicknesses were

chosen so that the FEM simulations could be compared against a device fabrication

attempt by the author. The simulated structure consisted of eight electrode pairs, with

an IDT edge to edge spacing of 400µm and a wavelength of 96µm. The first input

electrode was placed at −944µm in x.

5500µm

400µm

1888µm

Input IDT Output IDT

353.2µm

y

x

Figure 5.7: Simulated 2D FEM FPW Device

Various node densities were used throughout the full 2D simulated structure. The

etched cavity consisted of one node per 2.0µm in x, with one node per 0.5µm, one

node per 0.1µm and one node per 1.0µm in the thickness direction of the ZnO, Au and

Si layers respectively. Outside the etched cavity, in the bulk of the silicon, a reduced

nodal density was used. For the simulated device, the velocities of the first antisym-

metric and symmetric modes using the techniques developed in Chapter 4 are 2790 and

6836/ms respectively. Although these velocities are typically higher than devices used

liquid media, the spacing between the two primary modes in the frequency domain is

quite close allowing the subsequent analysis to be simplified.

5.4.2 Electrical Output Parameters

Two different techniques were used to evaluate the frequency response of the simu-

lated FPW device. In the subsequent analysis, an impulse was applied as per equation

5.19, however the boundary conditions on the output electrodes were altered. In the

first case, the output electrodes were electrically coupled, however left ’floating’ to
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measure the induced output voltage. The second series of simulations set the output

electrodes to 0V to measure the output short circuit current.

To determine the insertion loss characteristics of the simulated device, a full dy-

namic transient analysis was performed. The simulations were ran for a total time of

758ns, with a timestep of 1ns. The results file options were modified to output all flux

densities as this option is disabled by default. It is not possible to specify a group of

nodes to be written to the results file, thus the output contain the solution for the com-

plete structure. This produces a extremely large results file, which is generally split

into numerous 1GB files for easy postprocessing.

5.4.2.1 Open Circuit Voltage Model

The first technique is similar to that described in [139], where the induced output volt-

age is used to determine the frequency response. This approach has been successfully

applied to SAW devices and since been used by several other researchers. In the orig-

inal simulations, termed ’Single Electrode Model’, a positive voltage was placed on

the even numbered input electrodes whilst the output electrodes were coupled, but

left floating. The amplitude of the applied voltage was inversely proportional to the

timestep. Thus, in many cases, a d.c. impulse of 100V was applied. A further series of

simulations, where a ±0.5V step function is placed on alternating electrodes, to main-

tain consistency with Chapter 4, have also been completed to provide a comparison

with the charge based model. This simulation is referred to as ’Differential Electrode

Model’.

The response of the FPW device is determined by taking a Fourier Transform of the

induced voltage on the even electrodes. As the output electrodes are electrically cou-

pled, the same voltage appears on all nodes in the finger. The result implies that the

response for a large number of output electrodes can be determined by multiplying the

output voltage on one electrode by the total number of electrode pairs. This approach

is typically used in a periodic model where the response for one electrode pair is deter-

mined and simply cascaded for all other electrodes in the IDT. The response of the de-

vice was originally determined using the power spectral density function (PSD), which

is a measure of the relative power of each frequency, Figure 5.8. The response has been
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Figure 5.8: 2D FEM FPW Device - Voltage Model Output Spectral Power Density

normalised to the peak intensity of the first antisymmetric mode. Two different results

are presented, where the ’differential’ curve represents the structure that had ±0.5V

placed on alternating input electrodes. For both structures it can be clearly seen that

the first antisymmetric and symmetric modes have been excited at 30.15 and 71.02MHz

respectively. It is believed that the deviation from the theoretical centre frequencies of

29.06 and 71.21MHz is caused by the inclusion of the silicon support structure. For the

single electrode model, there appears to be an inconsistency in the sidelobe values at

the extreme ranges of frequency. This is caused by the impulse being placed only on

the even input electrodes. The same type of phenomenon can be achieved using the

techniques in Chapter 4 if the odd input electrodes are grounded. For the antisym-

metric mode, the sidelobes are approximately −55dB from the main response. Using

the modelling techniques of Chapter 4, they are less than −29dB. Therefore the PSD

method has not been able to accurately resolve the sidelobes, thus another technique

is required.
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Although the voltage model is not suitable to determine the insertion loss of a FPW

device, it can still be successfully used to determine centre frequencies, displacement

profiles and other time domain characteristics. Other groups have applied this tech-

nique to determine the mass sensitivity of a SAW device by measuring changes in the

induced voltage on the output electrodes due to modification of a sensitive layer in the

time domain [18].

5.4.2.2 Short Circuit Charge Density Model

The second technique used evaluates the frequency response of the simulated device

by measuring the output short circuit current. This method is basically identical to that

used in the spectral domain Green’s function analysis discussed in Section 4.4. The

electric flux density is extracted by selecting the nodes at the IDT electrode locations

and tabulating the results using the element table command. Electric flux density in

both x and y-planes is stored as well as the node spatial locations. Figure 5.9 depicts

the y-component of the electrode flux density on the output electrodes at 100ns. As

expected, the electrode flux density is present only at the simulated electrode locations.

At this particular point in time, the acoustic wave has not fully propagated along the

total length of the IDT.

Integration of the electric flux density presented in Figure 5.9, via the trapezoidal

rule, results in the total charge on the IDT for a given point in time. The integration

process was performed across all timesteps using a script written in Microsoft Quick-

Basic 4.5. Due to the limited number of surface nodes, 13 in this case, and the timestep

used, the calculated charge density has relatively poor resolution. To improve the time

domain response of the charge density, several signal processing techniques were con-

sidered. The most beneficial was a simple interpolation technique, where the average

value between two successive calculated samples was added. Figure 5.10 depicts the

total charge for the first output electrode after interpolation. Whilst the raw nodal

charge data exported from ANSYS could have been interpolated, the solution would

be slightly inaccurate due to the limited floating point calculation ability of the Quick-

Basic application. Therefore, the integrated charge density was interpolated via MAT-

LAB. An issue with Figure 5.10, the interpolated total charge density, is the inability to
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Figure 5.9: 2D FEM Current Model - Output Electrode Flux Density, t=100ns

gain useful information with regards to the spectral characteristics of the device. Thus,

further processing is required to convert the data to a more usable form.

To determine the short circuit current of the device, equation 5.20 is used. As was

shown in Section 5.3, the electrode flux density is assumed to be constant in the z-plane

and hence the charge integral is multiplied by a constant aperture, W , of 200µm. For

consistency between the voltage and current models, the total electrode charge, ql, is

calculated by summing the even numbered input and output electrode components.

The frequency term, f , in equation 5.20 is obtained from a FFT of the charge data.

Isc = j2πfWql (5.20)

Once the short circuit current of both IDTs has been determined, the device admit-

tance, Y can be calculated, equation 5.21. This is an important parameter as describes

the interaction of the transducer with external circuity. The admittance is converted to

an equivalent scattering parameter representation where the insertion loss, S21, can be
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Figure 5.10: 2D FEM Current Model - Interpolated Total Charge

determined. Note the presented insertion loss characteristics assume a 50Ω load termi-

nation. The voltage term in equation 5.21 is the total differential voltage applied to the

input transducer, which for convenience has been set to 1V .

Y =
Isc

VT

(5.21)

Ideally the ANSYS transient simulation should continue until equilibrium is reached

or the acoustic wave sufficiently decayed. For any finite length time domain analysis

the frequency domain representation will contain spectral leakage or unwanted ripple

caused by the effective truncation of the data [123]. The truncation of the data can be

considered the same as applying a rectangular windowing function. Spectral leakage

can be minimised by applying a windowing function whose Fourier transform has low

sidelobes compared to the main response. For this analysis a Hann window, which has

sidelobes at −32dB compared to −13dB for the rectangular window, is applied to the

spectral data. Although other windowing functions exist with even lower lobes, they

can suppress low amplitude signals making it difficult to correctly resolve the side-
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lobes of the original function. An issue with applying a Hann window to the data is

that the bandwidth of the main lobe is slightly larger than the effectively applied rec-

tangular window, thus a slight shift in frequency of minor features may be observed

[123]. Figure 5.11 illustrates the insertion loss characteristics for the simulated 2D FPW

device between 1 and 100MHz. The blue trace represents the rectangular windowed

spectral data, whilst the green trace is the Hann windowed spectral data.
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Figure 5.11: 2D FEM Current Model - Insertion Loss Window Comparison

It can be seen from Figure 5.11 that the application of a windowing function greatly

improves the ’resolution’ of the insertion loss characteristics. The perceived increase in

resolution is not due the addition of extra time domain values, but rather from the re-

duction in spectral leakage. Both antisymmetric and symmetric modes appear to have

been resolved correctly at approximately 30.15 and 70.97MHz respectively. The shift

in amplitude is caused by the leakage factor of the windowing functions [140]. For a

rectangular window, the ratio between the amplitudes of the mainlobe and the side-

lobes is approximately 9.14% whilst for the Hann window, the ratio is 0.05%. Thus it
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is anticipated that before a comparison is made with a physical device, the amplitudes

should be scaled accordingly.

In comparison to the voltage model presented in Section 5.4.2.1 a slight discrep-

ancy exists between the centre frequency of the two primary modes. This is caused

by the integration technique used, which assumes that the charge density across the

electrode surface is well behaved. From Figure 5.10, the charge can become singular at

the electrode edge possibly introducing error particularly when using the trapezoidal

rule. A higher order integration technique, such as Simpson’s rule, could be used to

improve the accuracy of the integration, however within the bounds of this study the

slight discrepancy is considered negligible.

Another key difference between the voltage and charge-based models is the side-

lobe characteristics. For the first antisymmetric mode, the lobes correspond to −55.2

and −30.7dB from the centre frequency peak, for the differential voltage and Hann

windowed charge model respectively. A full comparison between the charge model

and the Green’s function described in Section 4.4 will be discussed later, however pre-

liminary results indicate that the simulation has correctly resolved frequency response

of the device including the sidelobes. From the results presented here, it is clearly

evident that the PSD is not an appropriate tool to evaluate the insertion loss character-

istics of a FPW device. Thus, from this point the charge-based approach will be used

to evaluate the use of the FEM to accurately determine the characteristics of a FPW

device.

5.4.3 2D FPW Device FEM Structural Simplification

Most analytical techniques, such as those discussed in Chapters 3 and 4, model the

FPW device as a thin plate or membrane without the silicon supporting structure. This

section investigates the effect on the FPW device frequency response by making these

assumptions. One advantage of neglecting the support structure is the significant re-

duction in computation time. For the 2D simulation developed previously, a total of

120, 309 elements were used, comprising of 122, 095 nodes. A membrane structure,

with the same major dimensions, contains a total of 55, 000 elements and 57, 771 nodes.

This results in greatly reduced computation and storage requirements making the FEM
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a more viable analysis tool.

Two alternative investigations were undertaken to evaluate the change in device

frequency response brought about by neglecting the supporting structure. The first

examines the displacement profiles of the full FPW device in the silicon bulk and the

second evaluates the change in the insertion loss.

An advantage of ANSYS platform is the ability to plot a particular solution over

time, thus providing immediate visual feedback to the designer. In terms of the bulk

silicon, the displacement degree of freedom was animated over time to confirm that

there was indeed motion in the depth of the device warranting further investigation.

A plane within the bulk silicon, approximately 1446µm from the last input electrode,

was selected to determine the displacement versus depth profiles. Figure 5.12 illustrate

the displacement at 410ns for the specified plane. The lack of resolution, particularly

towards the bottom of structure, −350µm, is brought about by the relatively small

amount of nodes in the bulk of the device. It is evident that a displacement occurs

throughout the bulk of the material which requires further investigation.

As silicon is a non-piezoelectric material and no electrodes exist on the bottom of

the device, it is not possible to use the previously described insertion loss technique

to determine the oscillation frequency throughout the bulk of the material. However,

an FFT can be applied on the nodal displacement to gain an approximate oscillation

frequency. The analysis was repeated for three alternative points within the structure

corresponding to the upper and lower surfaces as well as point at the middle of the

silicon structure. If a mode conversion occurred, where the antisymmetric or symmet-

ric modes converted to a Rayleigh wave, a peak at 46.56MHz would be seen in FFT of

the displacement data. A Rayleigh mode could also be identified by the confinement

of the acoustic energy to one to two wavelengths from the surface, corresponding to

approximately 192µm in depth. The frequency domain representation of the y-plane

displacement data is shown in Figure 5.13. It can be seen that the frequency domain

resolution is far less than that used for the insertion loss characteristics but is suitable

for a basic determination of frequency. The plots correspond to the upper surface,

middle and lower surface of the structure respectively.

The main acoustic peaks appear to be present throughout the complete depth of the
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Figure 5.12: 2D FEM FPW Device - Substrate Displacement Analysis, t = 410ns

structure however appear slightly shifted and broader towards the bottom of the de-

vice. It is therefore assumed that mode conversion does not occur and that the main

two modes exist at the depth of the structure for the simulated wavelength of 96µm. A

further series of simulations would be required to investigate the impact of a smaller

wavelength, however it is believed that the two primary modes would converge to the

Rayleigh mode phase velocity [24].

A second simulation was developed to evaluate the change in insertion loss charac-

teristics due to the removal of the membrane support structure. The simulated device

appears in Figure 5.14. This particular structure is typical of that used by other sim-

ulation techniques where the FPW device is assumed to be a thin plate or membrane.

For consistency, the overall length of the two structures is identical. The insertion loss

characteristics for the pure plate structure appears in Figure 5.15. For comparative

purposes the frequency response characteristics for the complete structure are also in-

cluded.
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Figure 5.13: 2D FEM FPW Device - Spectral Content of Substrate Displacement (y)

Immediately noticeable is a change in the centre frequencies of the pure plate struc-

ture simulation. The centre frequency for antisymmetric mode has decreased to 29.46MHz,

corresponding to a shift of 0.67MHz. The symmetric mode appears to be unaffected by

the change in geometry, with a centre frequency of 70.97MHz. With respect to the spec-

tral domain Green’s function model, the centre frequencies are 29.06 and 71.21MHz.

The deviation from the theoretical simulation can be attributed to the frequency do-

main resolution of the ANSYS model. It will be shown in Section 5.5.1, that the timestep

and total simulation length are related to the frequency domain resolution, thus tech-

niques will be developed to improve the accuracy of results. As expected, there is also a

slight change in the amplitude of the insertion loss characteristics between the two sim-

ulated structures, with improved insertion loss at the centre frequencies for the pure
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Figure 5.14: Simulated 2D FEM FPW Simplified Device

plate structure. With respect to the full FPW structure, Figure 5.7, small acoustic reflec-

tions occur at the point where the silicon thickness begins to increase thus interfering

with the electrode flux density. Currently it is not possible to image this with ANSYS,

however it is these reflections that bring rise to destructive interference, increasing the

insertion loss characteristic of the device.
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Figure 5.15: 2D FEM FPW Device - Insertion Loss Characteristics

From the results presented in this section, it is plausible to simulate a FPW device as
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a thin plate without the supporting silicon structure. However, the centre frequencies

of a fabricated device may deviate slightly from the FEM simulation results due to

the geometrical assumptions applied. The deviation is response may be insignificant

as process parameters, such as layer thickness, metallisation ratio and crystallography

could induce a larger shift than those brought about by these assumptions. For the rest

of the simulations presented in this chapter, the thin plate structure will be used.

5.4.4 2D FPW Device Electrostatic Charge Density and Capacitance

Whilst the insertion loss characteristics for a 2D FPW device have already been pre-

sented, Figure 5.15, it is instructive to examine the 2D electrostatic charge density. In

particular, the electrode node density and its relationship to solution convergence is in-

vestigated. To undertake this analysis, it is necessary to increase the number of nodes

on the surface, thus to avoid licensing limitations an alternative structure is used. Sur-

face densities in x are varied between 5000 and 1400 nodes and the input transducer

charge density determined. The particular design considered is similar to devices stud-

ied in literature used for sensing applications in liquid media [8], however this struc-

ture consists of a reduced number of IDT electrodes. The simulated device consists of

2 electrode pairs, with a 2.0µm Si3N4, 0.4µm Al and a 0.6µm ZnO layers and a wave-

length of 96µm. As the output IDT was not modelled, electromagnetic feedthrough

is ignored. The simulated device measures 2800µm in the x-direction. Similarly to all

other charged-based simulations, the aluminium ground layer is forced to 0V and a

d.c. voltage of ±0.5V is applied on alternative transmitter electrodes.

Electrostatic analysis of an IDT indicates that the charge density approaches in-

finity at the electrode edge. The FEM however assumes that the field variables vary

smoothly, thus some error will be associated with the charge at these edges. However,

provided that the nodal density is relatively high over the electrode width, this error

should be insignificant. The spectral domain Green’s function analysis of interdigital

transducers already discussed will serve as a benchmark as which to compare the FEM

simulations. Care must be taken when comparing the alternative modelling techniques

as the spectral domain Green’s function results must be scaled by the effective nodal

spacing to convert to the correct units.
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Figure 5.16 depicts the FEM derived surface charge density with a nodal density of

1 node / 2.0µm. It can be seen that along the electrode edges, the charge begins to in-

crease, however does not approach infinity. The FEM simulation demonstrates that the

charge density changes polarity at the electrode edge. It is believed that this discrep-

ancy is caused by the linear interpolation used in the analysis. If the node density is

increased about the electrode edge, this effect is reduced, however not totally negated.

As there is no conducting medium between the IDT fingers, the charge in this region

should be zero.
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Figure 5.16: 2D FEM FPW Device - Input Electrode Electrostatic Analysis

To perform a comparison between the spectral domain Greens function and FEM

results, charge must be integrated over the device surface. Charge neutrality states that

the total charge across the device surface must equal zero. Table 5.4 indicates that de-

spite the previously mentioned issues with the FEM, the electrostatic analysis appears

to be converging to the theoretical solution of zero. Whilst increasing the nodal den-

sity increases accuracy, consideration must be taken into account of the computational
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effort required to solve the problem. As the piezoelectric layer is bounded by a ground

plane, the simulation can be simplified further by removing the Si3N4 and Al ground

layers, provided that the bottom of the ZnO is electrically grounded. However, it was

found that this approximation was invalid for the 3D structure as fringing effects need

to be considered.

Table 5.4: Residual Charge vs. Node Density

Node Density Total Nodes Residual Charge (C/m)

1 node / 2.0µm 9807 −2.94× 10−14

1 node / 1.0µm 19607 1.97× 10−16

1 node / 0.6µm 29407 2.57× 10−17

Green’s function 52 0.00× 100

To determine the static input capacitance of the transducer, a modified version of

the ANSYS macro CMATRIX is used. Equally, the integral of the electrostatic charge

density could be undertaken, however this process only provides the self-capacitance

of the electrodes. By using the modified macro, the self and mutual capacitances of the

electrodes can be calculated. In terms of modifications, the macro was edited to pre-

vent the removal of nodal charge loads and the applied boundary conditions adjusted

to apply a differential load voltage of 1V . For this analysis, an IDT can be considered

to be two capacitors connected in series with an voltage source, Figure 5.17, with the

self-capacitances denoted C11 and C22 and a mutual capacitance C12. In practical ap-

plications, the mutual capacitance is typically one to two orders of magnitude smaller

than the self-capacitance and hence typically neglected. Table 5.5 lists the ANSYS gen-

erated capacitances for a variety of finger pair combinations per unit length. To obtain

the actual capacitance of the device, the values in Table 5.5 must be multiplied by the

IDT aperture. The simplified FPW structure in Figure 5.14 was used for this analy-

sis. For comparative purposes, the equivalent capacitances derived from the spectral

domain Green’s function are also presented.
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Figure 5.17: FPW Device FEM Equivalent Input Capacitance

Table 5.5: Static Capacitance for Varied Electrode Configurations (F / unit length)

Electrode Pairs C12 C11 + C22 CT Greens Function

1 9.86× 10−12 5.19× 10−10 5.29× 10−10 6.19× 10−10

2 2.89× 10−11 1.08× 10−9 1.11× 10−9 1.24× 10−9

3 4.84× 10−11 1.59× 10−9 1.64× 10−9 1.86× 10−9

4 6.80× 10−11 2.10× 10−9 2.17× 10−9 2.48× 10−9

8 1.46× 10−10 4.13× 10−9 4.28× 10−9 4.48× 10−9

5.4.5 2D FPW Device Displacement Profiles

Alternative numerical models presented in Section 3.3.2 indicated that a FPW device

can support an infinite number of Lamb modes. At higher thickness-frequency prod-

ucts, where the dispersion curves begin to cross each other, Figure 3.3, it becomes quite

difficult to differentiate between antisymmetric or symmetric modes. One technique is

via the depth versus displacement profiles, which can be readily achieved by exporting

the ANSYS degree of freedom solution files for further processing.

The analysis presented in Section 4.3.1 operated solely in the frequency domain and

hence time independent. Conversely, a dynamic transient analysis by nature operates

in the time domain. To determine the displacement profile of a given mode, the time

domain simulation must be ’paused’ at an appropriate point where the displacement

is a maximum. A plane through the depth of the device at the x origin, 224µm from the

furthermost edge of the first input electrode, was selected to evaluate the displacement
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of two primary modes. A total of 21 nodes were selected through the device depth. As

the distance to the reference plane and the frequency of the modes was known, an ap-

proximate time could be determined at which the mode of interest would be passing

over the reference plane. For the antisymmetric mode, this corresponded to 72ns and

33ns for the symmetric mode. Figures 5.18 and 5.19 depict the absolute normalised dis-

placement profiles for the primary antisymmetric and symmetric modes respectively.

For simplicity, both graphs are normalised to the peak displacement in the propaga-

tion direction x. The piezoelectric surface of the device is indicated by a normalised

thickness of 1.
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Figure 5.18: 2D FEM FPW Device - Primary Antisymmetric Mode Displacement Profile

In an isotropic material the longitudinal component of the antisymmetric displace-

ment is a maximum at the plate edges and a minimum at the median. In contrast,

Figure 5.18, the longitudinal displacement is not quite symmetrical about the centre

of the plate. This is due to the multilayered structure used, where different stresses

are distributed throughout the device thickness. However, the maximum longitudi-
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Figure 5.19: 2D FEM FPW Device - Primary Symmetric Mode Displacement Profile

nal displacement is as expected at the two plate surfaces. Derivative discontinuities

can be seen at the various layer interfaces, verifying the presence of different stress

fields within the structure. The transverse displacement is larger than the longitudi-

nal displacement, and hence dominates the motion of the antisymmetric mode. This

behaviour was illustrated in the analysis presented in Section 4.3.1, thereby verifying

the FEM derived solutions. The larger displacement of the bottom side of the structure

could be potentially advantageous for sensing applications in liquid media for two rea-

sons. Firstly, sensitivity analysis presented in Section 4.3.2 indicates that higher mass

sensitivity can be obtained when a larger displacement is present, and secondly the

fabrication process creates a natural reservoir on the silicon side of the structure, thus

shielding the sensitive IDTs from potentially corrosive substances. The mode type,

either antisymmetric or symmetrical, can also be confirmed by the displacement pro-

file presented. As a basic rule, if the x displacement is greater at the device surface,

and tends to zero at some point within the structure, then an antisymmetric mode is
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assumed. Note that this process is valid for the first two primary modes.

Conversely, the longitudinal displacement is dominant for the first symmetric mode,

Figure 5.19. At its maximum, the displacement of the transverse component is only

20% of that in the longitudinal direction. In terms of liquid sensing applications, the

relatively small displacement in the transverse direction would be dissipated in the

target liquid. Similar to the antisymmetric mode, the symmetric mode is identified by

its displacement profile. Although the absolute displacement is presented, a change

of particle direction exists in the transverse displacement component between the two

surfaces of the plate. If this change is identified, then it is assumed that a symmetric

mode is present.

Once the displacements have been determined, mass sensitivity of the device can

be calculated via perturbation theory [14]. This process assumes that the target analyte

does not significantly alter the propagation characteristics of the device. To apply this

approach to the FEM model also requires extraction of the acoustic power, which can

be determined via the Poynting vector, however this is beyond the scope of this thesis.

5.4.6 Electromechanical Coupling Coefficient

Evaluation of the electromechanical coupling coefficient is essential to critically evalu-

ate any acoustic wave device design. If the coupling coefficient is small, the acoustic

response could be lost due to background noise or feedthrough effects. To evaluate

K2, several different techniques can be applied. The most commonly used technique

is a modification of the electrical boundary conditions, placing an effective short cir-

cuit over the device surface. By altering the boundary conditions, the voltage on the

piezoelectric surface is set to 0V, whilst the charge remains unknown.

In ANSYS terms, a metalised boundary condition is obtained by coupling the volt-

age degree of freedom for all free piezoelectric surface nodes. The space between the

IDTs is also completely metalised and hence set to 0V . It should be noted that the AN-

SYS metalised surface coupled set is not the same as the ground plane set. Although

the simulation can be easily modified to enforce metalised surface conditions, obtain-

ing accurate results is not a simple task primarily due to the lack of spectral resolution.

Coupling coefficients for the FPW in Figure 5.7 are approximately 0.59% and 0.35% for
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the first antisymmetric and symmetric modes respectively as calculated via the stiff-

ness matrix method. In terms of frequency, approximate shifts of 85kHz and 123kHz

are expected between open and short circuit boundary conditions. Investigation of

simulation parameters, to be discussed shortly, have shown that in order to achieve

sufficient resolution to determine the change in operating frequency, a timestep of 1ns,

with a total of 5882 substeps would be required. Due to resource limitations, a simu-

lation with these parameters was not conducted, however a 758 step metalised surface

simulation was performed with a 1ns timestep. Figure 5.20 illustrates the results of the

metalised surface simulations.
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Figure 5.20: 2D FEM FPW Device - Metalised Surface Insertion Loss Characteristics

From Figure 5.20, it is not possible to accurately determine the shift in operating fre-

quency due to the metalised boundary conditions. Upon closer inspection, the met-

alised frequencies are 29.46 and 70.58MHz for the antisymmetric and symmetric modes

respectively. Under a metalised surface condition, the centre frequency of a mode

should be reduced, which is shown not be the case with the symmetric mode. Thus,
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for the developed simulation, the FEM is unable to accurately determine the met-

alised conditions. A potentially more appropriate method is the crossed-field model

[1] which considers the device admittance characteristics rather than a visual identifi-

cation of the metalised boundary condition frequency shift.

To determine K2, it is necessary to know the device input admittance, Y11. This

calculation was previously obtained to determine the insertion loss characteristics of

the device. From the crossed field model, K2 is determined by equation 5.22. The

electrode capacitance previously determined, Section 5.4.4, is used for this calculation.

All other parameters are constants and do not depend on the FPW structure.

K2
A0

=
Re (Y11)

8f0CsN2
, (5.22)

where N is the number of electrode pairs.

Figure 5.21 illustrates the simulated FPW input admittance characteristic, Y11. Us-

ing equation 5.22, with 8 electrode pairs and an aperture of 200µm, the antisymmetric

mode K2 is evaluated at 0.55%.

Whilst the crossed-field model has been shown to work for the antisymmetric mode,

there appears to be a slight discrepancy in the K2 value for the symmetric mode. In

both the spectral domain Green’s function and ANSYS simulations, it was not possible

to accurately determine the symmetric mode coupling coefficient from the device ad-

mittance characteristics. Further investigation of the Mason equivalent circuit used to

derive the crossed-field model has shown that its application depends on the primary

displacement of the acoustic wave. Investigation of the symmetric mode presented in

Section 5.4.5 has shown that the primary motion is in the longitudinal direction. The

crossed-field model assumes that a Rayleigh mode displacement occurs, and hence

should not be used for the evaluation of the coupling for the symmetric mode. The al-

ternative in-line model also does not accurately predict the symmetric mode coupling.

Thus, the only effective solution to determine K2 for the symmetric mode is by the

shift in frequency caused by the metallisation of simulated FPW structure surface. In

liquid density sensing applications, the symmetric mode is typically not used as it has

a strong displacement component in the transverse direction, which is damped by the

applied liquid.

In this section, it has only been possible to accurately determine the antisymmetric
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Figure 5.21: 2D FEM FPW Device - Input Admittance

coupling coefficient using the crossed-field model. If a stronger piezoelectric material,

or an alternative configuration used, it may be possible to determine coupling coef-

ficient via the metalised operating frequency shift. In other acoustic wave devices,

coupling coefficients as high as 6% are routinely obtained [141]. With such a large

frequency shift, it would be a relatively simple task to obtain the value of K2 by in-

spection.

5.5 FEM Parameter Modification

Although simplifications in terms of simulated structure geometry have been shown

to improve the computation time of the FEM, there are several other user controllable

parameters within ANSYS that can also be modified. Depending on the parameters,

these can either reduce the computation time, or greatly increase it. This section exam-

ines three different ANSYS simulation parameters and their impact on the frequency
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response characteristics of a FPW structure. This analysis also demonstrates the need

for a careful and rigourous approach to applying the FEM when simulating an acoustic

wave device. Throughout this study, the simplified charge model of Figure 5.14 is used.

5.5.1 Simulation Time

With regards to a transient analysis, simulation time dictates the virtual ANSYS time

that the physical solution is calculated over. From the overall time and the stepping

between successive calculations, known as a timestep, the total number of substeps is

determined. In terms of an acoustic wave device, the simulation time will determine

the distance travelled by the propagating wave. Particular care must be taken when

working with multiple acoustic modes as they propagate at different velocities. In

these scenarios, the simulation time must be long enough to allow the lower order

modes to pass a given reference point, however not too long as to bring about triple

transit interference. In terms of the insertion loss characteristics, triple transit effects

are undesirable and therefore simulation time should be selected to avoid these effects.

Section 5.5.1.1 illustrates the effects of triple transit and suggests methods to reduce its

influence.

For the results presented, the two primary modes propagate at 2828.2 and 6813.1m/s

respectively. The ANSYS simulation length is dictated by the time it takes for the lower

velocity antisymmetric mode to travel from the furthermost input electrode to the last

output electrode, an overall distance of 1888µm. With the given velocities the anti-

symmetric mode would reach its destination at approximately 668ns. To ensure that

mode passes the last output electrode the simulation was extended to 758ns. During

the same period of time the higher velocity symmetric mode will propagate 5164µm.

Therefore, the simulated structure must be made sufficiently large that over the given

period of time the symmetric mode has not reflected from the simulation boundaries

and impinged for a second time on the output electrodes. The round trip distance for

the simulated device presented is 5550µm, thus the reflected symmetric mode should

not influence the insertion loss characteristics. It should be noted that this analysis fo-

cuses directly on the first two primary modes and refections will still be preset from

various higher order modes.
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One issue with modelling a FPW device is the relatively high aspect ratio of the

structure. That is, the device may be up to 100 or more times larger in the propagation

direction than in the thickness of the layers. Using the theory from Section 3.3.2, the

thinner the device, the larger the frequency separation of the two primary modes, cor-

responding to vastly different velocities. In these cases, it may not be possible to make

the structure large enough to negate the reflected symmetric mode.

Figure 5.22 illustrates the change in insertion loss characteristics due to modifica-

tion of the overall simulation length. Simulation time was varied between 200 and

758ns, with the timestep set to a constant 1ns. In terms of frequency, all simulations

correctly resolved the first two primary modes. Although the centre frequencies are

correct, there appears to be a logical change in insertion loss value. With a shorter sim-

ulation time, less of the acoustic wave passes over the receiving electrode, and thus its

relative amplitude will be decreased in comparison to higher frequency modes.
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Figure 5.22: 2D FEM FPW Device - Simulation Length Modification

Although not visually apparent in Figure 5.22, the modification of simulation length
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has changed the spectral resolution of the results. This is quite an important result as

a link can now be established between the minimum frequency resolution and its rela-

tionship to the time domain FEM simulation. Table 5.6 describes the spectral resolution

of the various simulations as well as the calculated change in insertion loss.

Table 5.6: FEM Simulation Length vs. Insertion Loss and Spectral Resolution.

Simulation Length A0s21 (dB) S0s21 (dB) Frequency Resolution fres (MHz)

200ns −72.16 −53.09 2.50

400ns −53.05 −41.35 1.25

600ns −50.55 −43.03 0.833

758ns −51.75 −45.46 0.6596

By inspection the frequency resolution can be seen to obey equation 5.23. Thus,

to improve the frequency domain resolution, either a smaller timestep is required, or

the number of substeps increased. Either parameter will increase the computational

time, but only a smaller timestep will provide beneficial results. If the simulation

time was increased, the higher order modes would cover a greater distance and be

reflected at the simulated device boundaries, causing triple transit interference. With a

smaller timestep the acoustic wave travels the same distance and, provided the simu-

lated structure is of appropriate length, will not degrade the results.

fres =
1

2nts
, (5.23)

where n is the number of substeps and ts is the simulation step time.

The insertion loss values in Table 5.6 do not appear to follow a pattern as the simu-

lation time is changed. To confirm that the solution had correctly converged, the inser-

tion loss was compared against the spectral Green’s function model, where excellent

agreement was obtained.

5.5.1.1 Triple Transit Interference

Triple transit interference is an undesirable effect brought about by the reflection of an

acoustic wave at physical device boundaries. In practice, the reflected wave is usually
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at a reduced amplitude and causes a small degradation in performance of the device

[1]. A difficulty with the ANSYS simulation package is that it is not possible to include

damping or infinite elements that can be used in conjunction with a piezoelectric tran-

sient analysis. In a pure acoustic problem, where the wave is caused by a localised

change in pressure, a 2D infinite boundary can be simulated using the Fluid129 ele-

ment. The author did attempt to incorporate this into the presented simulations, how-

ever the ANSYS package would not commence the solution phase due to a mismatch

of boundary conditions.

To determine the impact of triple transit, either the total simulation runtime should

be increased to allow for reflections, or the simulated device boundaries shortened

whilst keeping the overall simulation time constant. It was decided to reduce the sim-

ulated device length as this procedure requires less computational effort. The x di-

mension of the 2D FPW structure in Figure 5.14 was reduced to 2800µm with all other

values left constant. In order to visualise the effect of triple transit interference, the

displacement degree of freedom was animated over time. Figure 5.5.1.1 provides an

exaggerated snapshot of the FPW displacement as the two primary modes reach the

physical boundaries of the device. Once the modes reached the boundaries, both were

reflected and travel towards the output IDT for a second time.

Figure 5.23: 2D FEM FPW Device - ANSYS Mode Displacement
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Figure 5.24 illustrates the quite profound change in insertion loss characteristics

due to a reduction in simulated FPW device boundaries. The centre frequencies of the

two primary modes are significantly obscured, making it difficult to obtain an accurate

measure of operating frequency. It can also be seen that the bandwidth of the modes

has been reduced, thus the centre frequencies could not be determined by this method

either.
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Figure 5.24: 2D FEM FPW Device - Insertion Loss Characteristic with Triple Transit

Influence

To reduce the effect of triple transit, several simulations were conducted that fo-

cused on the modification of the material parameters at the boundaries of the device.

Initially it was believed that a fictional material could be constructed that exhibited

low shear and longitudinal velocities, determined by equations 5.24a and 5.24b. Sili-

con material properties were used as the basis for the fictional damping material and

the density modified with the stiffness constants held constant. The simulated FPW de-

vice was modified to 4 electrode pairs, silicon thickness altered to 12.0µm and the gold



Chapter 5. FEM Analysis of FPW Devices 175

layer increased to 0.3µm, with corresponding centre frequencies of 17.85 and 67.28MHz

for the antisymmetric and symmetric modes respectively.

vs =

√
c44

ρ
(5.24a)

vl =

√
c11

ρ
(5.24b)

The undamped structure x dimension was reduced to 3568µm. Damping material

was placed at the simulated device boundaries and extended for a further 1000µm,

resulting in an overall length of 5568µm. The piezoelectric and ground plane layers

were also placed on the damping material. To confirm that this method, an initial sim-

ulation was completed that set the density of the damping material identical to that

of silicon. This result was compared against another structure that did not include the

damping material, however was the same length, where the insertion loss characteris-

tics proved to be identical. Once it has been established that the technique was viable,

the density of the fictional material was modified according to Table 5.7. The shear and

longitudinal velocities are also presented for comparative purposes.

Table 5.7: Fictional FEM Damping Material Densities and Velocities.

Density (ρ) vl (m/s) vs (m/s)

2332 8729.4 5840.9

4664 5960.5 4130.2

9892 4092.8 2836.0

18584 2986.0 2069.1

Figure 5.25 illustrates the insertion loss characteristics of the device with the ad-

dition of a fictional damping material. The antisymmetric mode has been resolved

correctly, but the higher velocity symmetric mode has not. The displacement degree

of freedom for all modes was animated over time, and it could clearly be seen that the

symmetric mode did indeed propagate to the end of the structure. In comparison to

Figure 5.24, the symmetric mode appears to show characteristics of triple transit in-

terference. To confirm the nature of the reflection, the displacement about the point

where the silicon joined the damping material was animated. As the symmetric mode
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reached this interface, part of the wave was reflected back towards the output IDT, thus

providing characteristics very similar to triple transit interference. It is also apparent

from Figure 5.25 that the higher the density of the damping material, the greater the

reflected energy. This correlates with a greater mismatch in material properties, hence

more ’energy’ is reflected.
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Figure 5.25: 2D FEM FPW Device - Damping Material Simulation

Although numerous simulations have been undertaken, the author has not been

able to find a suitable technique to simulate an infinite boundary that can be used in a

piezoelectric analysis. The most appropriate solution has been to extend the simulated

structure boundaries to prevent the higher velocity modes from reaching the output

IDT a second time.

5.5.2 Simulation Timestep

The second time based parameter that can be modified is simulation timestep. Recall

that a transient analysis consists of a series of static solutions, where the simulation
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timestep sets the spacing between subsequent analyses. If the timestep is set too large

small changes in the solution may be overlooked, however care should be taken as

not set a too fine timestep as this will greatly increase the computational resources re-

quired. Where possible, the overall simulation time was kept constant at 758ns and

the timestep varied between 1 and 5ns. As the timestep and the overall number of

substeps are naturally related, an increase in timestep results in a corresponding re-

duction in the number of simulation substeps. Figure 5.26 illustrates the insertion loss

characteristics of the simulated FPW device of Figure 5.14 with respect to the modi-

fied timesteps. The excitation function, equation 5.19 was also redefined to match the

width of the timestep under consideration.
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Figure 5.26: 2D FEM FPW Device - Timestep Modification

To quantify the change in device frequency response, the deviation in centre fre-

quency for the two primary modes was tabulated, Table 5.8. The deviation in fre-

quency is referenced to the spectral domain Green’s function centre frequencies. Also

indicated is the simulation timestep and total number of substeps.
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Table 5.8: FEM Node Density vs. Primary Mode Centre Frequencies.

Timestep fA0(MHz) M fA0 (MHz) A0s21(dB) fS0(MHz) M fS0 (MHz) S0s21(dB)

1ns 29.46 - −51.75 70.97 - −45.46

2ns 28.79 −0.67 −51.69 67.62 −3.35 −44.62

3ns 28.75 −0.71 −52.38 63.52 −7.45 −43.39

4ns 28.05 −1.41 −51.53 58.76 −12.21 −44.05

5ns 27.38 −2.09 −52.43 54.09 −16.88 −45.31

From Figure 5.26, an increase in the timestep significantly varies the insertion loss

characteristics of the simulated device. The antisymmetric mode has typically been re-

solved within 7% of its nominal value, however the symmetric mode is greatly shifted

towards the lower end of the spectrum with a maximum deviation of 23.8%. As well

as a reduction in centre frequency, the bandwidth of the mode is reduced by approx-

imately the same value. Visually, the modification of the timestep causes ’frequency

compression’, where the higher frequencies are compressed, or shifted to lower fre-

quency bands [142]. Investigation of the frequency shift associated with the symmetric

mode indicates a linear dependence on the timestep, with a relatively consistent inser-

tion loss value. Due to the limited spectral resolution it is not possible to determine the

dependence of timestep of the antisymmetric mode, but it appears that it would also

be linear. Further analysis of the 3ns simulation illustrates a mode at approximately

90.5MHz. This is not a true mode, but rather an artifact of the post-processing stage.

Although the centre frequency of the modes has clearly shifted, the spectral reso-

lution between all simulations is identical. Thus the shift in response is not brought

about by a lack of spectral resolution, but rather the inability of the FEM to accurately

determine the device response for a given timestep.

Modification of the timestep also influences the maximum resolvable frequency

determined by the FFT used in the post-processing of the FEM results. In frequency

terms, the sample points are inversely proportional to the timestep used, thus an in-

crease in timestep is analogous to a reduction of the sample rate. From basic signal
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processing, a reduction in the sample rate and the total number of data points results in

a corresponding reduction in maximum frequency. Within the bounds of this study, it

is apparent that the deviation in results presented is caused by an insufficient timestep

rather than the lack of FFT data.

To confirm that the solution had converged, a final simulation was conducted with

a timestep of 0.5ns and the response compared to the 1ns simulation. No measurable

change in frequency response over the range of interest could be determined.

5.5.3 Node Density

The final parameter investigated was node density. Of all parameters discussed, node

density can set the most constraints on the FEM simulation. For an optimum solution,

particularly when dealing with rapidly changing field variables, the more nodes in a

structure, typically the more accurate the solution. Nodal limits are typically set by the

purchased licence, so a tradeoff must be made between solution accuracy and the cost

to obtain the results. As previously mentioned, the research licence purchased by the

author’s university had an upper node limit of 128, 000, for which nodal densities were

investigated up to this limit.

From the electrostatic analysis of the 2D simulations, it has been seen that an in-

crease of nodes is beneficial to theoretical convergence. To examine the effect of nodal

densities in a transient analysis, the number of nodes in the y-direction was kept con-

stant, while the number in the propagation direction, x, were varied. As a metric, the

point where the insertion loss deviated from the 1 node / 2.0µm structure, termed the

maximum resolvable frequency, was used. Figure 5.27 illustrates the change in inser-

tion loss characteristics for the simulated 2D FPW device when adjusting the nodal

densities.

The deviation in response due to a change in nodal densities is far less than those

found by modifying the timestep. With the exception of the last simulation, 1 node per

8.0µm, the centre frequencies and insertion loss values of the two primary modes have

been resolved.

To further determine the impact of the nodal densities, a FPW device was simulated

with uneven spacing in the x-direction. This technique has been used by several other
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Figure 5.27: 2D FEM FPW Device - Node Density Modification

researchers, particularly when working with SAW structures [7]. For a FPW device, it

was found that this approach leads to erroneous results.

5.6 FEM Simulated FPW Device Verification

Before the FEM is accepted as an effective tool for the analysis of acoustic wave de-

vices, it must be verified against more traditional analysis techniques. In particular,

this section provides a comparison between the results obtained via the novel FEM

techniques presented and the spectral domain Green’s function introduced in Chapter

4.

Basic electrical characteristics, such as capacitance and admittance, developed through-

out this chapter, have demonstrated excellent agreement between the two models. The

piezoelectric coupling coefficient has shown reasonable agreement for the antisym-

metric mode, but a small discrepancy exists for the higher velocity symmetric mode.
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Table 5.9: FEM Node Density vs. Primary Mode Centre Frequencies.

Node Density fA0(MHz) M fA0 (MHz) fS0(MHz) M fS0 (MHz) fmax(MHz)

1 node / 2.0µm 29.46 - 70.97 - -

1 node / 4.0µm 29.46 0.00 70.97 0.00 79.00

1 node / 4.8µm 29.46 0.00 70.97 0.00 77.80

1 node / 6.0µm 29.46 0.00 70.98 0.01 68.90

1 node / 8.0µm 30.13 −0.67 71.64 +0.67 30.38

In terms of liquid density sensing applications, the antisymmetric mode is primarily

used and as such the deviation in the symmetric mode value of K2 is deemed irrele-

vant. Potentially more important than the basic electrical parameters presented is the

overall performance of the device across a wide frequency range. Insertion loss char-

acteristics are used as a metric to evaluate relative performance and accuracy of both

techniques, Figure 5.28. For the spectral domain Green’s function analysis, the same

number of electrodes are used, with 8 spatial divisions representing one electrode. In

comparison, the FEM simulated device contained 13 nodes per electrode. Although

the same number of divisions could be used for the spectral domain Green’s function

analysis, the solution had successfully converged and hence the extra computational

load was not necessary.

In terms of centre frequencies, the spectral Green’s function model calculates the

antisymmetric mode at 29.06MHz, and the symmetric mode at 71.21MHz. In compari-

son with the FEM model, the antisymmetric mode deviates by approximately 0.4MHz

and small shift of 0.24MHz is found for the symmetric mode. The minor deviations

in response can be attributed to the FEM simulation frequency resolution. Recall that

for the FEM simulations the frequency stepping is approximately 0.67MHz, thus the

centre frequencies may not exactly coincide. Excellent agreement has been obtained

between the FEM simulations and the spectral domain Green’s function results for

sidelobe values throughout the regime of interest.

The insertion loss values at the centre frequencies also appear to be well matched.

For A0, the insertion loss magnitude is 51.75 and 51.27dB for the FEM and spectral
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Figure 5.28: 2D FEM FPW Device - Simulation Verification

domain Green’s function models respectively. Likewise, the symmetric mode predicts

insertion loss values of 45.46 and 44.24dB for the two modelling techniques. The slight

variations are certainly acceptable, as variances in the manufacturing process will have

a greater impact than the slight differences in modelling techniques.

It was also envisaged to compare the two techniques described here against a de-

vice fabricated by the author. Unfortunately the fabrication process is still being de-

veloped and as such a comparison can not be drawn. However, the spectral domain

Green’s function has been verified against another devices in literature where excellent

agreement has been obtained. Between the agreement with the FEM and spectral do-

main Green’s function, it is deemed that the FEM technique can successfully simulate

multilayered FPW devices.

Throughout this analysis, the insertion loss characteristics were used to determine

the centre frequencies of the transducer. Equally valid is Y21, the short circuit, forward-

transfer admittance parameter. An example of these results can be found in the authors
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published work [143]. Note that the incorrect axis label was used in Figure 2 and

should read Y21.

5.7 Limitations of the FEM

In the realm of this study, the FEM has successfully been applied to determine key

electrical and mechanical parameters of a wide variety of multilayered FPW devices.

Whilst the use of the FEM ultimately isolates the designer from the device physics,

greatly simplifying the design process, care must be taken to ensure that solutions

are feasible and provide meaningful results. A comprehensive understanding of the

analysis tool and its limitations is essential to the successful completion of any engi-

neering problem. The associated benefits of the FEM are numerous, such as geometry

independent analysis and ease of use, however limitations also exist. This section dis-

cusses such limitations and how a simulation should be structured to minimise their

influence.

The FEM assumes that fields, whether electrical or structural, vary slowly between

nodes. In the case of IDT, where the charge density becomes singular at the electrode

edge, the FEM miscalculates and the charge appears to have inverted polarity at these

locations. A potential cause of the problem is the shape function used to approximate

the solution. For the Plane13 element used, a linear interpolation model is assumed.

To improve the solution at the electrode edge a higher order element, such as Plane223

could be utilised. Whilst the solution would be more accurate, the resulting extra nodes

would significantly increase the computational requirements. The author has investi-

gated the use of uneven node spacing across the device surface and has found that

the results are vastly different than from fixed spacing. Thus, to increase the number

of nodes at the electrode edges, more nodes would be required across the complete

device.

To accurately determine the behaviour of a FPW device, prior knowledge about the

structure is required. For example, if the velocities of the first two primary modes are

miscalculated, then due to incorrect device dimensions triple transit may occur, or the

acoustic wave may not reach the output transducer over the given simulation time.

A free application is available that uses the methods describe in Chapter 3 to deter-
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mine the approximate velocities, and hence overcome this problem. Once the software

was well understood, a solution can be found within minutes, therefore starting point

issues are of little concern.

Highlighted throughout this chapter is the high computational requirements of the

FEM package ANSYS. The author has had limited experience with other FEM tools,

however believes that this is characteristic of the solution method. All results pre-

sented were calculated on a 2.66GHz Pentium 4 workstation with 2GB of RAM and

160GB of storage. Even with a significant amount of computing power, the complete

solution for the FPW plate structure discussed in Section 5.4.3 took approximately 6

hours to calculate, with a further 2.75 hours to extract the results. The spectral do-

main Green’s function approach presented in Chapter 4 is certainly a more efficient

technique, however the same time, if not more, must be invested to develop an appro-

priate solution for complex geometries. The benefit of the FEM is its ability to discretise

the problem and thus is very capable of solving complex structures.

Model verification plays a significant rile in any FEM analysis. In terms of a FPW

device, the basic device has been verified using the spectral Green’s function method

which is sufficient verification for all other simulations presented. The verification

does not have to be as in-depth as that presented in Section 5.6, and may be as simple

as confirming the centre frequencies of the device against the methods in Chapters 3

and 4. When verifying the model, care must be taken to ensure that the alternative

technique also makes the same assumptions about the given fields. For example, with

the exception of the 3D FPW device simulation presented, all techniques within this

thesis assume that the displacement in the z plane is insignificant when compared

against other directions. If this was not the case, then model verification would most

probably fail. It should also be noted that verification can be as simple as the solution

lies within an acceptable bounds when compared against another solution method.

Further to verification issues, simulation parameters can cause inaccuracies and

convergence issues. It was shown in Section 5.5.2 that a too large timestep causes a

shift in the centre frequency of the symmetric mode. Subsequently another simulation

was developed that had a smaller timestep to confirm that the previous simulation

had successfully converged. Whilst a smaller timestep is desirable, a tradeoff must be
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made between the computational resources available and the time required to obtain

a solution. It is suggested that in the preliminary stages of analysing an acoustic wave

device using the package ANSYS, that simulation parameters are at least doubled to

ensure that the suitable convergence has been reached.

Contrary to most other transducer analysis techniques, the FEM operates in the

time domain, therefore a conversion to the frequency domain is required before usable

data can be obtained. A major issue when converting between the two domains is

equivalent representation of the data. Although the timestep and overall simulation

time can be specified, the corresponding conversion to the frequency domain is not as

well defined. Through experimentation, it has been found that frequency resolution

can be defined by equation 5.23, however it is most beneficial to specify the frequency

resolution for comparative purposes.

During the course of this study, the author has been in contact with several re-

searchers regarding the use of ANSYS for the analysis of acoustic wave devices. A key

issue has been the ability to determine variation in response brought about by changes

in surface boundary conditions. Primarily, the difficulties lie in the lack of frequency

domain resolution, particularly when adding small loads to the surface. One particular

group [18] assumed that the introduction of an analyte causes a sensitive layer to swell,

thus increasing the effective area covered by the sensitive film. While a perfectly valid

assumption, is can be quite difficult to measure changes in surface geometry in-situ,

thus it is quite difficult to correctly model the changes in structure. In this approach, it

is assumed that the sensitive layer changes homogenously, which may not be the case

due to defects in the film.

A significant issue when modelling a FPW device is its high aspect ratio. That is,

the device simulated has a quite small thickness in comparison to its overall length.

This can cause errors in the FEM calculations due to excessively large deformations of

the elements.

5.8 Conclusion

In this chapter a novel FEM based approach to the analysis of multilayered FPW struc-

tures has been presented. The author has successfully combined the FEM with modi-
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fied SAW analysis techniques to determine key electrical and mechanical performance

parameters of various FPW structures. In particular, the author has demonstrated the

ability of this novel approach to evaluate essential parameters such as admittance,

particle displacement profiles and the primary antisymmetric mode electromechanical

coupling coefficient. Furthermore, the results obtained have been verified using more

conventional modelling techniques such as the stiffness matrix method and spectral

domain Green’s function where excellent agreement has been obtained.

A thorough discussion of simulation parameters has been undertaken, highlighting

the need for careful consideration of device structure and features when using the FEM

for this type of analysis. From the presented results, a series of modelling guidelines

have been established which, to the best of the author’s knowledge, can be applied

to other acoustic wave devices. Advantages and limitations of the author’s approach

have been critically addressed and potential methods for increasing the reliability and

accuracy of the FEM when used for this type of analysis has also been discussed.

Two different models were presented which illustrate the assumptions made when

converting from a complex 3D structure to a much simpler 2D layout. An electrosta-

tic analysis has shown that effect of electrode end effects, in both x and z-directions.

Several simplifications have been made ranging from the assumed form of the charge

density in the z-plane to geometrical considerations and the impact on simulated de-

vice response has been presented.

The FEM has shown that it can simultaneously model various second-order phe-

nomena, such as electromagnetic feedthrough, diffraction and triple transit, which are

not easily accounted for using other more conventional analysis techniques. In partic-

ular, the effect of triple transit interference has been discussed and potential methods

to reduce its influence discussed.

Using the knowledge gained from this chapter, the author’s novel technique is fur-

ther extended for the purpose of modelling liquid loaded FPW structures in Chapter

6.
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Chapter 6

Modelling of FPW Devices for Liquid

Media Applications

6.1 Introduction

This chapter investigates the use of Flexural Plate Wave devices for sensing applica-

tions in liquid media. FPW structures are well suited to sensing applications in liquid

media for two main reasons. The first it based on their physical construction. During

the etching process a natural reservoir is formed which can be used to contain the liq-

uid. In other acoustic wave structures, liquid flow cells are typically attached to the

substrate, thus affecting propagation characteristics as well as increasing fabrication

cost. The second advantage of FPW structures is the relatively low phase velocity of

the primary antisymmetric mode. If the phase velocity of this mode is below that of

the liquid medium compressional velocity, the acoustic energy is confined to the plate,

rather than dispersing into the surrounding medium.

Section 6.2 describes the required modifications to the stiffness matrix method dis-

cussed in Chapter 4 to incorporate an additional liquid layer. Using this approach,

the liquid layer is approximated as a semi-infinite, similar to the techniques used to

analyse SAW structures. The viscous properties of the liquid layer are described by

complex, frequency dependent, material parameters.

This section also examines the displacement profiles for a liquid loaded FPW de-

vice, revealing a tightly coupled surface wave, known as a Scholte mode. This particu-
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lar mode is typically deemed responsible for the ability of FPW structures to measure

changes in liquid parameters. The presence of this mode is highly dependent on the

overall thickness of the structure. It will also be seen that once the thickness of the

FPW structure increases beyond a given threshold, the primary antisymmetric mode

is no longer confined to the structure and begins to radiate energy into the surrounding

medium. This will be explained with the aid of the particle displacement profiles for an

acoustically thick structure. The particle displacement profiles for the symmetric mode

will also be examined revealing how this mode can be used for sensing applications in

liquid media.

Section 6.3 presents the author’s novel approach to the analysis of liquid loaded

FPW devices using the FEM. It will be shown the techniques developed by the author

are more suitable to calculating the liquid loaded frequency response characteristics

of multilayered FPW structures when compared against the commonly used spectral

Green’s function. A study is also undertaken on the FEM optimum node density and

assumed liquid thickness to minimise computation time as well as ensure that the cal-

culated results are consistent and accurate. A brief introduction into the additional

elements and theory behind the use of the FEM in conjunction with liquid loaded struc-

tures will also be given.

Section 6.4 investigates the ability of FPW structures to detect changes in density

and viscosity of liquid media. It will be shown that the primary antisymmetric mode is

well suited for density measurements, whereas the symmetric mode can be applied to

viscosity sensing. As both of these modes can be excited simultaneously, a FPW device

can theoretically be employed to measure both of these parameters using one struc-

ture. An investigation is also undertaken on the application of alternative piezoelectric

layers, where is found that aluminium nitride, which is a higher velocity material than

the commonly used zinc oxide, provides significantly higher sensitivity towards den-

sity, viscosity and additional mass. Mass sensitivity will also be explored, where it is

shown that under liquid loading, the sensitivity of the symmetric mode remains rela-

tively unchanged.

Finally, Section 6.5 concludes the theoretical analysis of liquid loaded FPW struc-

tures with a preliminary discussion on the author’s attempts to fabricate a functional
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device. It is envisaged that the FPW device presented can be used as further verifica-

tion of the author’s novel approach to the analysis of FPW structures.

6.2 Modification of the Stiffness Matrix Method for Liquid

Media

As was highlighted in Chapter 4, the stiffness matrix method can be applied to lossy

media. In this section, the necessary modifications are presented, allowing the tech-

nique to be applied to multilayered FPW structures in contact with an additional liquid

layer.

During the fabrication process of a FPW device a natural reservoir is formed, which

for the author’s design measures approximately 300µm in depth, corresponding to

approximately 3λ. Recall that for a Rayleigh mode, the acoustic energy is confined to

1 − 2 wavelengths from the surface. Therefore, in the FPW device case, the liquid is

analogous to a semi-infinite substrate allowing the complete structure to be modelled

similar to a SAW device. By expressing the liquid layer as semi-infinite, the number

of free mechanical surfaces is reduced to one. Although this study is concerned with

the use of a FPW device in contact with water, the same process can be applied to

determine the viscoelastic properties of other materials by analysing the change in

phase velocity as well as attenuation of the propagating wave [144].

To incorporate viscous loading either the wavenumber component, kx, or the angu-

lar frequency, ω, must become complex, equation 6.1.

ωfluid = ωunloaded + jωdamping (6.1a)

kfluid
x = β − jχ, (6.1b)

where β and χ represent the real and imaginary components of the wavenumber for

the liquid loaded FPW structure. The phase velocity of the structure is still determined

from the real component of the wavenumber, ie. vp = ω/Re
(
kfluid

x

)
.

Depending on the solution required, either expression in equation 6.1 is applied. As

before, if the frequency term is held constant, such as when determining the insertion

loss characteristics, the complex wavenumber is scanned. Conversely, to determine
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the frequency shift due to modification of the liquid density, the frequency component

becomes complex with the wavenumber purely real.

Several analytical models exist to determine the influence of liquid loading on the

operating parameters of acoustic wave devices [145, 146]. Many of these models are

severely limited as they assume that the device consists of a single isotropic layer, or

can be effectively modelled as a simple harmonic oscillator. In the authors implemen-

tation of the stiffness matrix method, multilayered FPW structures can be analysed

with relative ease. It will be shown in Section 6.4 that significant differences exist in

terms of density and viscosity sensitivity between single layer devices comprised of

isotropic materials and multilayered structures which validate this approach.

6.2.1 Stress / Strain Relationship for Liquid Media

In Section 3.2, the basic constitutive equations for stress and strain were developed for

solid media. Here a similar technique is employed to describe the properties of a liquid

by the same parameters allowing many analogies to be drawn from the solid material

case. By describing the properties of a liquid in terms of material stiffness matrices

the effects of viscous loading on wave propagation can be studied without the need to

greatly modify the solution procedure. This will allow the liquid media to be inserted

within the structure stack as simply another layer.

In developing the equivalent material properties for liquid media, it is assumed

that the fluid is non-conductive and exhibits Newtonian properties. That is, the stress

and strain are linearly related analogous to Hooke’s Law, equation 3.8. In a simple

liquid, such as water, isotropic material properties are assumed [147]. For most cases

this is sufficient, but for biomedical applications, where long chains of molecules may

align to a preferred orientation, anisotropic material properties can be applied [148].

By assuming isotropic material properties, the material stiffness matrix for a liquid can

be fully described by two frequency dependent terms, c11 and c44. Similarly, the liquid

dielectric matrix contains the same terms on the main diagonal. Naturally, as with a

solid isotropic material, the piezoelectric matrix is also zero.

Consider the liquid loaded FPW structure depicted in Figure 6.1. For convenience

the added liquid layer is placed on the upper surface of the structure. Calculations
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performed in Chapter 4 indicate that there is a marginal difference in mass sensitivity

for the primary A0 mode if this side of the structure is subjected to the liquid layer.

Due to the physical construction of the device, the Si side is preferred as a natural

reservoir exists to contain the target liquid. Secondly, the sensitive IDTs are isolated

from potentially corrosive analytes, thus negating the need for a further passivation

layer which is known to reduce the overall device sensitivity.

z

x

Layer n

Layer 2

Layer 1

z = h2

z = h1

z = 0

z = hm−1

Layer m

z = hm

z = hn

z−z+

IDTs

z = hf

Semi-Infinite Liquid Layer

Figure 6.1: Liquid Loaded Multilayered FPW Device Coordinate System

Assume that a wave is propagating through the solid in the positive x direction.

The liquid molecules located at the fluid-solid interface, z = hn, will move faster than

those at the upper surface z = hf and will cause a drag force on the lower molecules.

This allows a viscosity stress tensor to be defined as [149]:

Tij = −Pδij + Πij, (6.2)

where P is the hydrostatic pressure, δij is the Kronecker delta and Πij is a second rank

tensor that describes the shear stress components.

If the liquid remains at rest or is under uniform motion, then the Πij terms in equation

6.2 are zero and the resulting stress is simply the hydrostatic pressure. Similarly, if

viscosity effects are ignored, then the total stress is simply due to the hydrostatic case

[150]. As with solid structures, in the liquid acoustic approximation, which states that

the change in localised pressure is far less than the static pressure, all second order
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stress terms are ignored, thereby allowing the condensed stress tensor to be written as:

Tij =




−P + η
′
(∇s · v) + 2η

(
∂vx

∂x

)
η

[
∂vx

∂y
+ ∂vy

∂x

]
η

[
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∂z
+ ∂vz
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]

η
[
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]
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(
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η
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]
η

[
∂vy

∂z
+ ∂vz
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]
−P + η

′
(∇s · v) + 2η

(
∂vz

∂z

)


 ,

(6.3)

where η is the first coefficient of, or shear, viscosity and η
′ is the second.

The terms in equation 6.3 are a function of velocity rather than displacement for the

solid case. A simple conversion can be applied, equation 3.11a, allowing the displace-

ment vector to be used instead. Following the approach in [104], equation 6.3 is written

in vector form as:

Tijkl = K (∇s · u) δijδkl + η
′ d

dt
(∇s · u) δijδkl + η

d

dt
(∇s · u) (δikδjl + δilδij) , (6.4)

where the substitution [74]:

P = −KS = −K (∇s · u) , (6.5)

has been made. The term K is the fluid bulk modulus of elasticity.

6.2.2 Modification of Material Properties

Analogous to Hooke’s Law, equation 3.8, the coefficients in equation 6.4 can be treated

similarly to the material stiffness matrix, cijkl. Assuming isotropic material properties,

the individual components of the fluid stiffness matrix are written as:

cijkl = Kδijδkl + η
′
jωδijδkl + ηjω (δikδjl + δilδjk) , (6.6)

which is seen to coincide with the material parameters for an isotropic thin film [74].

By modifying the material properties to correspond to the liquid case, no significant

changes are required to the basic solution path. The Γik matrices, equation 3.20, are

identical with the exception of the imaginary terms. A boundary determinant scan can

still be used to define the operating point of any given structure, however it is neces-

sary to include a secondary scan that finds the imaginary component of the solution,

which represents the attenuation of the acoustic wave.
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In the Navier-Stokes approximation [149], the second coefficient of viscosity, η
′ , is

related to the first, η, by:

η
′
=
−2η

3
, (6.7)

which allows the isotropic liquid stiffness matrix to be fully described by:

c11 = K +
4jωη

3
(6.8a)

c12 = K − 2jωη

3
(6.8b)

c44 = jωη (6.8c)

It can be seen that the resulting shear stress component, c44 is purely imaginary, corre-

sponding to the inability of a non-viscous liquid to support shear stress.

6.2.3 Boundary Conditions for Liquid Loaded FPW Devices

To accurately determine the influence of liquid loading on a FPW device, it is neces-

sary to examine the boundary conditions at the fluid-solid interface (FSI) as well as at

the corresponding free liquid surface. Considering the FSI, both the normal and tan-

gential velocity components must be continuous across the liquid and solid materials.

Enforcing the continuity of the tangential velocity is known as the no-slip condition

[148]. In formulating equation 6.7, which is based on the acoustic approximation of the

Navier-Stokes equations, the no-slip condition is enforced at the FSI. Furthermore, the

acoustic approximation assumes the liquid is incompressible and neglects temperature

gradients[148].

A Newtonian fluid does not support shear stress, and hence only the term, Tzz

should be continuous[151]. The other two normal stress terms, Txz and Tyx should be

zero in the liquid, but clearly non-zero within the FPW structure. If the electrical prop-

erties of the fluid are considered, then the dielectric displacement, Dz, is continuous

between the fluid and the solid. By appropriately modifying the components of the

material stiffness matrix, equation 6.8, the mentioned interfacial boundary conditions

are automatically satisfied by the recursive calculation of the overall stiffness matrix,

KT.

In developing the solution for the liquid loaded FPW, the additional liquid layer has

been approximated as semi-infinite. Under these conditions, identical to the SAW case,



194 Chapter 6. Modelling of FPW Devices for Liquid Media Applications

it is assumed that the semi-infinite material is sufficiently thick that no contributions

exist from the essential field variables at the liquid-gas, or liquid-vacuum, interface.

From the discussion of boundary conditions, it is apparent that with minor modifica-

tions, the stiffness matrix method can be successfully applied to determine the effect

of liquid loading on a FPW structure. The first modification, where the added liquid

layer is described in terms of complex material parameters, has already been discussed.

A further simplification can be made to the stiffness matrix method to determine the

influence of the additional liquid layer, whilst retaining many of the numerical solu-

tion techniques used to solve piezoelectric wave propagation problem for an unloaded

FPW device. In the presented approach, the liquid loaded structure can be considered

to consist of a multilayered FPW device of finite thickness coupled with a semi-infinite

substrate.

The analysis performed in Chapters 3 and 4 indicated that the wave propagation

problem for an unloaded FPW structure can be described by eight partial modes, each

consisting of eight individual components, resulting in a global stiffness matrix of size

8×8. Under the assumption that a liquid loaded FPW can be fully described by approx-

imating the liquid layer as semi-infinite [152], the global stiffness matrix is reduced to

a 4× 4 matrix. As previously mentioned, in formulating the liquid loaded FPW device

global stiffness matrix, it is beneficial to split the analysis in two, with the individual

sections considering the semi-infinite and layered FPW structure respectively.

In a semi-infinite medium, where it is assumed that there is no interaction from the

lower surface of the substrate [87], the stiffness matrix can be described by considering

only the normal stress and displacement at the upper surface as:

T (z + h) = KS
11U (z + h) (6.9)

The term KS
11 can be calculated by considering the four partial modes, identified by

the scalar component of the complex Poynting vector, that decay with depth into the

liquid media via:

KS
11 =

[
D− (

P−
)−1

]
, (6.10)

where from Chapter 4, D− and P− represent the general displacement and stress com-

ponents. Care must be taken with the assigned direction of the partial mode compo-
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nents as the coordinate system has been reversed from that of the unloaded FPW in

Chapters 3 and 4.

Calculation of the stiffness matrix for the multilayered FPW structure is slightly

different to that in Chapter 4 due to the change in coordinate system. In this case,

the piezoelectric surface of the FPW is at the bottom of the layer stack, rather than

the top, requiring the terminal boundary conditions to be subsequently modified. The

recursive algorithm in equation 4.10 is still applied, however the subscripts M − 1

and m must be interchanged. The resulting stiffness matrix, denoted KN, can then be

combined with the semi-infinite component and the global stiffness matrix evaluated

via the application of:

KT = KN
11 + KN

12

(
KS

11 −KN
22

)−1
KN

21. (6.11)

Similar to the unloaded device case, either the effective permittivity function or the

determinant of the global stiffness matrix, KT, can be used to find a numerical solu-

tion for the piezoelectric wave propagation problem. In the author’s implementation,

a boundary determinant scan is used as this is the most compatible with the computa-

tional processes developed in Chapter 4. In terms of the generalised Green’s function,

the piezoelectric wave propagation problem can be fully described by:


 ul

ϕl


 =


 Kf

S Kfe
S

Kef
S Ke

S − θ



−1 

 σl

γl


 , (6.12)

Equation 6.12 is then rearranged to determine the open-circuit and short-circuit termi-

nal boundary conditions, equations 6.13a and 6.13b respectively.

Open-Circuit : det

∣∣∣∣∣∣
Kf

S Kfe
S

Kef
S Ke

S − θ

∣∣∣∣∣∣
= 0 (6.13a)

Short-Circuit : det

∣∣∣∣∣∣
Kf

S +
Kfe

S +Kef
S

Ke
S−θ

− Kfe
S

Ke
S−θ

Kef
S

Ke
S−θ

− 1
Ke

S−θ

∣∣∣∣∣∣
= 0 (6.13b)

As the material properties for the liquid layer contain complex terms, it is necessary

to slightly modify the boundary determinant scan procedure to identify the local min-

ima corresponding to a propagating wave. A minimum of two determinant scans must

be performed per solution iteration. Any real component can be set, be it frequency
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or wavenumber, and the other variable determined. For example, if the frequency is

set to a finite real value, then in a lossy medium, the complex wavenumber must be

determined. In the author’s implementation the real component is set and then the

imaginary evaluated. In the next solution phase, the imaginary component is then

fixed, while the subsequent real value is re-evaluated. This process is continued until

a specific convergence criterion is met. Several other techniques, such as the Newton-

Raphson and Regula Falsi methods have also been used to determine the complex pa-

rameters with varying levels of success [15]. Although these techniques can potentially

determine the solution more efficiently than the simple scheme utilised, they are poten-

tially not as robust and require careful boundaries to ensure that the calculated solution

has not widely deviated from the correct value. To determine the insertion loss char-

acteristics of a fluid loaded FPW device, the frequency term is set as the real variable

and then the complex wavenumber determined. The phase velocity of the propagating

modes is still given by the real part of the wavenumber, whereas the imaginary compo-

nent represents attenuation, which is typically measured in dB/wavelength, and given

by [1]:

α = 40πlog10 (e)
Im (kx)

Re (kx)
(6.14)

6.2.4 Liquid Loaded FPW Device Analysis

To evaluate the influence of liquid loading on a FPW device an alternative structure

was defined consisting of a 12µm Si, 0.3µm Au and 3.0µm ZnO layers. The added

liquid layer, in this case water, was simulated as semi-infinite. Due to the frequency

dependent nature of the added liquid layer the material stiffness constants were re-

calculated during every solution iteration, however their initial values are listed in

Appendix C. In this implementation the electrode period was fixed at 96µm, identical

to the device studied in Chapter 5, and the corresponding complex frequency deter-

mined. Figure 6.2 presents the real component of an open-circuit boundary determi-

nant scan for the liquid loaded structure.

Analysis of Figure 6.2 indicates that the phase velocity for the first two primary

modes, under liquid loading, is approximately 1324.7 and 6335.2m/s for the A0 and

S0 modes respectively. For the equivalent unloaded structure, the velocity of the two
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Figure 6.2: Liquid Loaded Determinant Scan - Open Circuit Boundary Conditions

modes is to 1653.3 and 6330.9m/s respectively. An important feature, not found in

the unloaded case, can also be seen in the boundary determinant scan of Figure 6.2.

Whereas guided modes are described by the solution of equation 6.13a approaching

zero, a maximum is found at a frequency of approximately 15MHz, corresponding to

the compressional velocity of the liquid layer. This appears to be limiting phase veloc-

ity of the primary A0 mode in the liquid loaded case. To further examine this phenom-

enon, the dispersion characteristics of the liquid loaded FPW structure are presented

in Figure 6.3 as a function of Si thickness. As a reference the unloaded FPW device dis-

persion characteristics are included as well as the compressional velocity of the added

liquid layer at 1435m/s.

Under the liquid loading condition, the dispersion characteristics are virtually iden-

tical for the primary S0 mode. A maximum deviation of 4m/s is found across the com-

plete Si thickness range. As will be discussed shortly, the limited change in S0 is caused

by the dominant particle displacement being in the longitudinal direction rather than



198 Chapter 6. Modelling of FPW Devices for Liquid Media Applications

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1000

2000

3000

4000

5000

6000

7000

Normalised Si Thickness (h/λ)

P
ha

se
 V

el
oc

ity
 (

m
/s

)

Loaded
A0

Loaded
S0

Unloaded
S0

Unloaded
A0

Figure 6.3: Liquid Loaded Phase Velocity - Normalised Layer Thickness

the transverse for the A0 mode. As suspected, the characteristics for the low phase

velocity A0 mode vary significantly, particularly as the thickness of the underlying Si

layer is increased. The phase velocity of the A0 mode asymptotically approaches that of

the compressional velocity of the liquid layer, which is often termed a Scholte mode[8].

In an inviscid material this mode is lossless and is typically attributed to the acoustic

mode applied in most FPW device sensing experiments in liquid media. Figure 6.4

depicts the attenuation of the primary two modes as a function of Si thickness. Under

the liquid loaded assumption, the term Scholte mode is used to describe the behaviour

of the A0 mode.

Due to the viscous nature of the liquid, the Scholte mode shows a slight frequency

dependent attenuation. In the presented structure, the attenuation appears to be a

maximum in the low thickness region corresponding to a smaller phase velocity, with

the attenuation decreasing as the structure becomes thicker. As a comparison, a typi-

cal Love mode SAW device constructed on a ST-cut quartz substrate used for sensing
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Figure 6.4: Liquid Loaded Primary Mode Attenuation

applications in liquid media, operating at 123.5MHz, exhibits attenuation on the order

of 0.014 dB/λ [153]. The low attenuation is caused by the predominant displacement

in the structure being in the y, or shear, direction. Although these types of structures

can be used for sensing applications in liquid media, they are not as sensitive as FPW

structures and also require significantly more elaborate processing electronics due to

their relatively high frequency. For higher order modes, which are not of interest here,

attenuations in the order of 800dB/cm have been reported for the second antisymmet-

ric mode[8]. Examination of the unloaded higher order mode FPW particle displace-

ment profiles, Table 4.2, indicates that the transverse and longitudinal components are

comparable which coupled with the high phase velocity, causes significant amounts

of energy to be dissipated into the surrounding medium and hence these modes are

typically not used for sensing applications in liquid media.

Figures 6.5 and 6.6 depict the particle displacement profiles within the liquid loaded

FPW structure for the A0 and S0 modes respectively. As a reference, the unloaded pro-
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files are also included as indicated by the term ’Free’. The underlying Si membrane

was fixed at 20.0µm corresponding to unloaded and loaded antisymmetric and sym-

metric phase velocities of 2398.9 and 6601m/s and 1489.1 and 6607.8m/s respectively.

Figures 6.5 and 6.6 have been normalised to the maximum longitudinal displacement

for each respective mode in the unloaded condition.
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Figure 6.5: Liquid Loaded Primary Antisymmetric Mode Displacement Profile

From Figure 6.5 the transverse displacement in the liquid loaded condition is still dom-

inant, however the position of the local maximum has shifted towards the fluid-solid

interface, indicated by a normalised structure thickness of 1. Whereas in the unloaded

condition, the displacement at the piezoelectric free surface is slightly larger than at

the Si surface, the converse is true for the loaded case. A slightly higher displacement

at the FSI is beneficial for sensing applications. A reduction in peak displacement of

26.7% is observed for the transverse component, where the corresponding reduction

in phase velocity is 36.3%. The characteristics of the longitudinal component remain

virtually unchanged, with the exception of a slight reduction in amplitude.
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Figure 6.6: Liquid Loaded Primary Symmetric Mode Displacement Profile

Conversely, the transverse component of the S0 mode, although significantly less

than the longitudinal displacement, virtually remains unchanged in the liquid loaded

case. The liquid loading is therefore shown not to significantly load the transverse par-

ticle displacement of the structure, which will be used to explain the limited change in

mass sensitivity for the S0 mode. The longitudinal component of S0 shows a reduction

in particle displacement of approximately 13.2%, however the general characteristics

of remain unchanged.

The same identification process discussed in Chapter 4 can still be used to identify

the A0 and S0 modes in the liquid loaded case. The particle displacement profiles were

also considered with an similar structure with a Si thickness of 2.0µm. In this case, as

expected, there was insignificant change in the displacement profiles.

It is also instructive to evaluate the displacement profiles within the added liquid

layer. Although the stiffness matrix method has been modified to consider the liquid

layer as semi-infinite, a reference thickness of 350µm is used to determine the particle
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displacement profiles within the liquid. Typically, velocity fields are used to describe

the motion within a liquid medium [154], however for consistency with the under-

lying solid structure and the analysis performed so far, particle displacement will be

used instead. Initially, a separate model was defined, the same as presented in Section

3.3.2, consisting of a 2.0µm Si, 0.4µm Al and a 0.6µm ZnO piezoelectric guiding layers.

The added fluid in the case was water. This structure allows the particle displacement

to be determined before the primary A0 mode begins to behave as a Scholte mode,

where the displacement and attenuation profiles vary significantly. Also included is

an alternative FPW device with a Si thickness of 20µm to demonstrate the unique be-

haviour of liquid loaded FPW structures as the resonant frequency is increased. Figure

6.7 depicts the real component of the particle displacement profiles for the A0 mode for

both structures. The particle profiles have been normalised to the respective maximum

longitudinal displacement values within the 2.0µm Si simulated structure.
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Figure 6.7: Liquid Loaded Primary Antisymmetric Mode Displacement Comparison

Considering the displacement profile of the A0 mode in Figure 6.7, it can be seen
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that the maximum displacement for the longitudinal component is in the liquid, rather

than within the FPW structure. The local maximum, which occurs at a small distance

from the fluid-solid interface illustrates the tightly-coupled surface wave component,

even in the case of the lower frequency 2.0µm structure. The evanescent decay length,

which defines the depth where the energy within the target fluid drops to a value of 1/e

of its peak value, can be obtained in both the transverse and longitudinal directions by

considering the real component of the displacement profiles. An analytical expression

exists for isotropic materials, and is given by [13]:

δe =
λ

2π

[
1−

(
vp

vf

)2
] 1

2

, (6.15)

where vf represents the compressional velocity of the target fluid.

One issue associated with equation 6.15 is that it can only be applied where the

phase velocity of the propagating mode is less than the compressional velocity of the

liquid. By applying the techniques introduced here, the decay length can be deter-

mined for arbitrary structures. From Figure 6.7, the actual transverse decay length is

15.98 and 127µm for the 2.0 and 20.0µm structures respectively. If the absolute value of

the square root in equation 6.15 is taken, theoretical decay lengths of 15.73 and 21.32µm

are obtained for the 2.0 and 20µm structures respectively. As expected, the decay length

is incorrectly calculated for the thicker structure, thus illustrating the benefit of the au-

thor’s approach. For biosensing applications a small evanescent decay length is nec-

essary to sense the molecules of interest which are typically within 50nm of the device

surface [8].

The transverse displacement component of A0 demonstrates significantly different

characteristics than the longitudinal component for both simulated structures. Consid-

ering the 2.0µm structure, the peak displacement is seen to be within the FPW structure

rather than within the liquid. The transverse displacement then decays within the liq-

uid, with a majority of the energy contained within one wavelength of the FPW device

surface, a characteristic typical of SAW structures. However, once the Si thickness is

increased to 20µm, the behaviour of the A0 mode varies significantly. Figure 6.8 pro-

vides an enlarged view of the fluid-solid interface for the 20µm Si structure, allowing

the existence and behaviour of Scholte mode to be highlighted. For simplicity, the dis-
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placements have been individually scaled to highlight the characteristics of the mode.

The solid interface exists at a normalised wavelength of 0.2427.
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Figure 6.8: Liquid Loaded FPW Device - Scholte Mode Displacement Profile

A Scholte mode is identified by a wave that decays with distance from the fluid-solid

interface. Two wave components are typically present, however due to the forced dis-

placement within the FPW, the wave decay into the solid structure is not as obvious.

Firstly, considering the longitudinal component of the Scholte mode, an abrupt in-

crease in displacement is observed at the fluid-solid interface, which represents the

one of the evanescent waves. The longitudinal maximum is not at the FSI, rather it is

shifted to a fraction of a wavelength within the liquid. Interestingly, other examples

presented in literature [74], shows that the peak of the longitudinal component, at least

when considering solid structures is within the material with lower density, unlike the

presented FPW case. Also, as the added water layer is a lossy material, the acoustic

wave decays slowly with depth, rather than within one to two wavelengths as shown

in the solid case in literature.
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The transverse displacement, apart from being significantly smaller in magnitude

than the longitudinal component, also exhibits a local maximum within the liquid

medium. This behaviour is also shown for the solid case in [74], however as with the

longitudinal component, the peak transverse component is in the liquid, rather than

the solid. Note that the transverse displacement direction has been inverted to allow a

direct comparison between the two components.

Under the liquid loading assumptions, the first symmetric mode causes a com-

pressional wave to be established in both the longitudinal and transverse directions,

Figure 6.9. This is true in both simulated structures, however more prevalent in the

thicker 20µm Si FPW device. Unlike the lower velocity A0 mode, there appears to be

insignificant acoustic coupling at the device surface. It can also be seen that the trans-

verse component is still dominant, whereas in the 2.0µm structure the longitudinal and

transverse components are of approximately the same magnitude within the liquid.
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Figure 6.9: Liquid Loaded Primary Symmetric Mode Displacement Comparison
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6.3 FEM Simulation Modification

Chapter 5 has demonstrated that the FEM is capable of evaluating the electrical and

displacement characteristics of a multilayered FPW structure. As FPW devices are

typically employed for sensing applications in liquids, the FEM techniques developed

by the author must also be able to determine the device response when subjected to

such media. This section presents a novel approach to determine the liquid loaded

characteristics of a FPW device. In particular, the FEM derived frequency response

characteristics are determined and compared against the equivalent spectral domain

Green’s function results. It will be shown that the FEM is certainly a viable tool when

working with liquid loaded structures mainly due to the ability to visualise the inter-

action between the liquid media and the solid FPW structure.

6.3.1 Additional Elements

In constructing the FEM simulation of a FPW device in Chapter 5, a single element

type, Plane13, was used throughout the complete structure. This particular element

was configured to utilise two displacement and one electrical degrees of freedom. To

accurately model a liquid loaded FPW device, additional elements are required that

can be used in conjunction with Plane13. Although seemingly a trivial issue, care

must be taken when using ANSYS that the correct nodal loads can be transferred be-

tween two different element types. Secondly, the selected element must be capable

of modelling the fluid-solid interface. Two elements were initially considered, Fluid29

and Fluid79, with slight differences in capabilities. Fluid29 will accept pressure loads,

whereas Fluid79 directly incorporates the displacement degree of freedom, thus mak-

ing the element more suitable for this type of analysis. Alternatively, if a pressure load

were required, a script can be written to manually calculate the structural displacement

of an element and then map this as a pressure field on the liquid. However, this process

is often time consuming and must be repeated until an equilibrium is reached before

the next timestep can be evaluated. In using Fluid79, it is assumed that the liquid is

contained, thus it is necessary to set displacement boundary conditions on the exter-

nal interfaces. By using a constrained fluid, net flow effects are negated, therefore the
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response generated would be typical of directly placing a drop of liquid on the surface

and allowing it to settle rather than pumping it in via microfluidic channels.

Fluid79 consists of four nodes per element with two structure degrees of freedom.

Material properties are entered in terms of density, viscosity and compressional ve-

locity. The element shares the same interpolation functions as the structural Plane13

element. Due to product limitations within the FEM package the simulated structure

is inverted such that the fluid-solid interface coincides with y = 0.

Unlike the technique presented in Section 6.2, the FEM initially assumes that the

liquid is incompressible and inviscid. This allows the Navier-Stokes equations to be

greatly simplified and converted to a diagonalised form. To represent the losses in

the liquid layer a coupling matrix is used. A similar process can be used to evaluate

thermal expansion effects, however this is beyond the scope of this thesis. In the liquid-

structural problem, three different equations must be considered. Firstly, the effect of

the liquid on the structural component of the solution is considered. Note that in the

FEM package, the term fluid is used to represent a liquid layer, thus in this section, the

two terms are interchangeable.

In Chapter 5, it was shown that the solution to the unloaded FPW device prob-

lem is described by equation 5.17. This particular solution incorporated the piezoelec-

tric component of the problem by considering the electrical load vector as well as the

piezoelectric and dielectric constants. The particular problem had two displacement

degrees of freedom and one electrical. In the fluid coupled solution the influence of

the liquid loading must be determined on the structural component of equation 5.17.

It is assumed that the added fluid is non-conductive and added on the Si side of the

structure. To demonstrate the effect of fluid loading, consider the structural component

of the FEM simulations, equation 5.15, which is repeated here:

Mü + Cu̇ + Ku = F(t), (6.16)

To incorporate the liquid loading effect on the structure an additional fluid coupling

mass matrix, R, is included. Although the effect of the fluid coupling matrix is applied

throughout the entire structure, it depends primarily on the fluid-solid interface. With

the inclusion of the liquid loading effects, the modified structural relationship becomes
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[136]:

Mü + Cu̇ + Ku− RP = F(t), (6.17)

where the fluid coupling mass matrix is given by:

R =

∫

S

NnT N
′T

d (S) (6.18)

Note, Table 6.1 lists the parameters used in the analysis of the FSI equations. In the

FEM package, the FSI must be correctly flagged during the construction of the model.

It was found that the interface must be set once the model had been meshed. If loads,

whether structural of electrical were applied, then it was not possible to correctly set

the flag.

At the FSI, another set of equations must be considered. Again, negating the piezo-

electric and dielectric influence, and analogous to the purely solid case, the motion of

the nodes at the interface can be described in terms of both pressure and displacement

via the application of:

 M 0

Mfs Mp





 ü

P̈


 +


 C 0

0 Cp





 u̇

Ṗ


 +


 K Kfs

0 Kp





 u

P


 =


 F

0


 (6.19)

Equation 6.19 implies that the nodes at the interface contain both displacement and

pressure degrees of freedom, evidencing the need to correctly set the FSI flag. The

superscript P indicates terms related to the additional liquid layer. The parameters of

equation 6.19 can be found in Table 6.1. Similar to the development of the stiffness

matrix method for liquid media, the FEM treats the added fluid layer as a structure

allowing direct integration to the previously developed techniques and procedures.

The interaction between the solid and liquid layer can be seen in the off diagonal

terms of equation 6.19, in particular the terms M fs and Kfs. The first of these para-

meters M fs is the mass interaction from the liquid to the structure as indicated by the

sign. Conversely, Ks acts from the structure to the liquid.

The final component to be considered is the motion of the liquid away from the

fluid-solid interface. Assuming that the liquid is inviscid, incompressible, no mean

flow exists and the mean density and pressure are constant, the discretised wave equa-

tion is given by:

MPP̈ + KPP + ρ0R
Tü, (6.20)
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Table 6.1: FEM Fluid-Structural Equation Parameters

Parameter Description

MP = 1
c2

∫
vol

NNT dvol Fluid Mass Matrix

KP =
∫

vol
BT B dvol Fluid Stiffness Matrix

RT =
∫

S
N
′
NT n d (S) Transpose of Coupling Mass Matrix

Mfs = ρ0R
T Fluid-Structure Coupling Mass Matrix

Kfs = −R Fluid Coupling Mass Matrix

CP = β
c

∫
S

NNT d (S) Fluid Damping Matrix

N Finite Element Pressure Shape Function

N
′ Finite Element Structural Shape Function

S Fluid-Structure Interface

β Boundary Adsorption Coefficient

c Compressional Velocity of Fluid

ρ0 Fluid Density

with the parameters given in Table 6.1. However, this equation does not take into ac-

count the inherent losses at the fluid-structure interface. To include these effects, a

damping term is added to equation 6.20. Note that this approach does not take into ac-

count other losses away from the interface. The damping term takes on the same form

as for the solid elements, which greatly simplifies the solution process. After incorpo-

rating the losses due to the interface, the motion within the liquid can be described by

to solution of:

MPP̈ + Cu̇ + KPP + ρ0R
Tü = 0, (6.21)

where the terms in equation 6.21 are given in Table 6.1. The solution to the liquid

loaded FPW device is obtained from the simultaneous consideration of equations 6.17,

6.19 and 6.21.

Up to this point, the liquid loaded FPW device FEM analysis has assumed that the

structure is fabricated from ideal isotropic materials and thus piezoelectric and dielec-

tric effects have been neglected. However, to achieve a usable solution these effects

must be taken into consideration during the solution phase. As illustrated, a strong
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coupling matrix is used to evaluate the interaction between the added liquid load and

the FPW device. In the purely structural solution of Chapter 5, the coupling matrices

considered the influence of the electrical parameters on the displacement and vice-

versa, resulting in a 2 × 2 effective coupling matrix. Here, piezoelectric, pressure and

displacement effects must be considered, increasing the problem dimension, which

naturally increases the computation time.

In the preceding analysis it was assumed that the added liquid layer was contained

within a vessel, which leads to the necessary FEM boundary conditions. With reference

to Figure 6.10, and considering the alternative coordinate system used by ANSYS, it is

assumed that x-displacement is zero at the external edges of the vessel. The end points

of the FPW structure were also clamped to ensure that the liquid and FPW device were

correctly coupled. The same electrical boundary conditions were set as in the transient

analysis performed in Section 5.3.1.

Ux = 0

Ux = 0

Ux = 0

Ux = 0

Ux = 0

Ux = 0

Ux = 0 Ux = 0ZnO

Au

Input IDT Output IDT

3568µm

Fluid-Solid Interface

Si

Water 500µm

12µm

0.3µm

3.0µm

Ux, Uyunconstrained

Figure 6.10: Simulated 2D FEM Liquid Loaded FPW Device

To evaluate the effect of liquid loading on the FPW device, a FEM simulation was

performed with a structure consisting of 12µm Si, 0.3µm Au and 3.0µm ZnO piezoelec-

tric layers. Using the design process of Chapter 5, the simulated structure length was

set at 3568µm. Four electrode pairs were defined with a period of 96µm corresponding

to a unloaded phase velocity of 1661.7 and 6337.2m/s for A0 and S0 respectively. The

thickness of the added liquid layer was varied between 100 and 500µm which brought

about mixed effects on both the displacement profiles and frequency domain character-

istics of the structure, which will be investigated momentarily. In the x- direction, node
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densities were kept constant for all models at one node per 4µm. In the y-dimension,

6, 2 and 3 nodes were used in the Si, Au and ZnO layers respectively. For continu-

ity between the alternative liquid height simulations, this layer was defined with one

node per 5µm in y. The nodal x-spacing within the liquid layer was consistent with the

solid structure. With the available ANSYS licence, the FPW device had to be reduced

to 4 electrode pairs to accommodate for the necessary nodes to adequately model the

liquid layer.

As a reference an identical unloaded FPW structure, with a total length of 6880µm,

was simulated for the same number of timesteps as the liquid loaded structure. The

length of the structure was selected to minimise triple-transit interference. The fre-

quency domain characteristics obtained from this simulation were used to compare

against the liquid loaded FPW structure. As has been shown in Chapter 5, the FEM

is capable of accurately determining the insertion loss characteristics of an unloaded

FPW structure when compared against the more computationally efficient spectral do-

main Green’s function. However, in the case of a liquid loaded FPW device, the spec-

tral domain Green’s function approach requires significant modification and thus in its

current form is not suitable for the frequency domain analysis of a liquid loaded FPW

device. This hypothesis was also confirmed against the reported behaviour of various

liquid loaded FPW structures available in literature. Therefore, the results calculated

from the FEM will serve as a benchmark for the analysis of a liquid loaded FPW device.

To the best of the author’s knowledge, this is the first time that the FEM and associ-

ated techniques have been used to determine the frequency domain characteristics of

a multilayered liquid loaded FPW structure.

A dynamic transient analysis was performed, utilising an equation 5.19 as an exci-

tation source. The timestep was set at 1ns and the simulation performed for a total of

558 substeps, corresponding to a frequency resolution of 0.896MHz. Application of the

stiffness matrix method to the same structure reveals a liquid loaded phase velocity of

1324.9 and 6335.2m/s for A0 and S0 respectively. Before considering the frequency do-

main characteristics of the structure, it is intuitive to consider the displacement profiles.

Figure 6.11 presents a contour plot of the displacement at various timesteps within the

composite structure with an added liquid layer thickness of 500µm.
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Figure 6.11: 2D FEM Liquid Loaded FPW Device Displacement Profile

From the FEM displacement contour plots, Figure 6.11, the behaviour of the pri-

mary acoustic modes under liquid loading can be clearly seen. Considering the plot

when t = 150ns, the S0 mode can be clearly identified propagating along the solid

FPW structure, however there appears to be very little energy dispersed into the liquid

media in comparison to A0. It will be shown later in this section, that even though

the velocity of the A0 mode is below that of the compressional velocity of the liquid,

there is an increase in insertion loss, which indicates that some of the acoustic energy

is lost to the liquid layer. This can be particularly evidenced at t = 300ns, where a com-

pressional wave has been established within the liquid layer which appears to have

a similar phase velocity to the A0 mode. It is not until t = 450ns that the effect of

the S0 mode on the liquid can be identified. The displacement in the liquid layer is

significantly smaller than that caused by the A0 mode, which will also be shown to

correspond to a smaller deviation in insertion loss for the S0 mode.

6.3.2 Frequency Response of a Liquid Loaded FPW Device

Of more importance than the displacement profiles are the frequency domain charac-

teristics of a liquid loaded FPW device. Using the same approach developed in Chap-

ter 5, the forward transmission coefficient, S21, can be obtained for the liquid loaded

FPW device. Figure 6.12 presents the frequency response characteristics for the sim-

ulated structure with an added 500µm water layer. As a reference, the FEM derived
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characteristics are also included from the unloaded test structure.
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Figure 6.12: 2D Liquid Loaded FEM FPW Device - Insertion Loss Characteristics

From Figure 6.12, due to the influence of the Scholte mode, the spectral characteris-

tics of the liquid loaded structure are vastly different from the unloaded case. Based

on the stiffness matrix method of Chapter 4, the A0 mode centre frequency is reduced

to approximately 13.80MHz, whereas the S0 mode remains relatively unchanged at

65.98MHz which is also shown in Figure 6.12. However, another peak appears quite

close to A0 which appears to be the Scholte mode. This mode appears at approximately

18.75MHz and can be seen to interfere with A0. In comparison to the unloaded case,

the insertion loss of the A0 mode is increased by approximately 4.74dB, where for the

S0 mode, the loss is increased by 1.18dB. Using the spectral domain Green’s function

approach of Chapter 4, there is a difference in insertion loss characteristics, with values

of −59.7 and −58.9dB for A0 and S0 respectively. In this particular FEM simulation the

calculated insertion loss value for A0 and S0 is −71.3dB and −61.5dB respectively. The

calculated insertion loss values for the spectral domain Green’s function simulation are
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above the unloaded case for the equivalent FEM simulations, and thus is deemed that

the spectral domain Green’s function, at least in its current implementation, is unsuit-

able for calculating the insertion loss characteristics of a liquid loaded FPW structure.

The FEM simulations were further verified by examining the behaviour of FPW de-

vices studied in literature [6, 13, 147], where it was shown that the FEM simulations

are more correct.The inability of the spectral domain Green’s function to accurately re-

solve the spectral characteristics of a liquid loaded FPW will be further illustrated in

the next simulation.

Although identifiable from Figure 6.12, the influence of the Scholte mode can be

more readily determined by considering the two dimensional FEM FPW device used

in Chapter 5. Here, the same structure dimensions were used, however an additional

600µm liquid layer was incorporated. Due to reflections at the upper liquid boundary

and the end of the simulated structure, the insertion loss characteristics contain a slight

distortion, similar to the triple transit reflections seen in Chapter 5. As was discussed,

these reflections can be minimised by extending the model boundaries, however this

was not possible given the licence limitation of the FEM package available to the au-

thor. Figure 6.13 depicts the insertion loss characteristics of the two dimensional FEM

liquid loaded FPW structure. Also included is the calculated insertion loss character-

istics of the same structure via the spectral domain Green’s function.

From Figure 6.13 it is once again clearly apparent that the spectral domain Green’s

function of Chapter 4 is unsuitable to determine the frequency characteristics of a liq-

uid loaded FPW structure. The Scholte mode has been correctly resolved using the

spectral Green’s function, however the insertion loss values for the two primary modes

are vastly different. The cause of the problem with the spectral domain Green’s func-

tion lies with the calculation of GFPW
s (x), equation 4.37, which represents the guided

mode component of the Green’s function. Due to the highly dispersive nature of liq-

uid loaded structure, this term is inaccurate and therefore the insertion loss character-

istic becomes invalid. As the added liquid layer has been modelled as a semi-infinite,

the SAW approximation for Gs, equation 4.35 was applied, however again due to the

highly dispersive nature of the structure also provided unusable results. It is therefore

concluded that the author’s novel application of the FEM to determine the spectral
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Figure 6.13: Liquid Loaded FPW Device - Insertion Loss Characteristics Comparison

characteristics of a liquid loaded FPW is highly appropriate.

Considering the FEM derived insertion loss characteristics of Figure 6.13, it can be

seen that the S0 mode is largely unaffected by the addition of the liquid layer. This

has been confirmed through various experiments in literature [13]. A slight frequency

shift of 1.93MHz was found with the insertion loss remaining relatively unchanged.

As expected, there is significant variation in the insertion loss of the A0 mode which is

caused by the energy of the mode radiating into the surrounding liquid media. Under

liquid loading, the A0 insertion loss changes from −51.75 to −67.85dB, a decrease of

16.10dB. A small shift in frequency is also found, however it is believed that this is

caused by the frequency resolution increase of the FEM simulation as the number of

substeps, and hence simulation time, was increased to allow the Scholte mode to be

identified. To confirm that the energy of the A0 mode is radiated into the surrounding

liquid, a FFT was taken of the nodal displacement degree of freedom 100µm above the

FPW surface within the liquid media. The resulting calculation can be found in Figure
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6.14. Figure 6.14 indicates that the A0 mode is radiated into the surrounding liquid
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Figure 6.14: 2D Liquid Loaded FEM FPW Device - Displacement Spectral Content

with both longitudinal and transverse components. There appears to be insignificant

displacement components in the Fourier Transform for the S0 mode, indicating that

the majority of the motion within the liquid is caused by the radiation of A0. Inter-

estingly, there appears to be a longitudinal displacement component corresponding to

the Scholte mode.

A study was also undertaken on the effect of the added liquid layer thickness on

the frequency domain characteristics of the simulated FPW device. In presenting the

stiffness matrix method for liquid media, the added layer was approximated as a semi-

infinite, however in the available FEM package this was not possible. Similar to Chap-

ter 5 it was found that an infinite fluid element, although designed to be used in con-

junction with Fluid79, is not compatible with the piezoelectric coupled-field analysis

undertaken. Therefore it was necessary to model the added liquid as a finite height

layer. The previously presented 12µm Si structure was used for this series of simula-
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tions, with the node densities kept constant at 1 node per 5µm within the added liquid

layer. Figure 6.15 illustrates the effect on the frequency domain of varying the liquid

thickness between 100 and 500µm.
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Figure 6.15: 2D Liquid Loaded FEM FPW Device - Alternative Liquid Thicknesses

Considering the 100µm case, it can be seen that a significant amount of ripple is present

at the frequency corresponding to the S0 mode. This is caused by the compressional

wave within the liquid being reflected at the simulation boundaries and repeatedly im-

pinging on the FPW structure. This phenomenon is similar to triple transit interference

discussed in Section 5.5.1.1 except that this particular example occurs in the transverse

direction rather than longitudinal. The insertion loss value for both A0 and S0 modes is

slightly different from the 500µm liquid layer structure, however the centre frequency

of the S0 mode is correct. The A0 mode shape is completely distorted and the Scholte

mode has not been sufficiently resolved. The next liquid layer thickness of 200µm cor-

rectly resolves the A0 and S0 modes in terms of frequency as well as insertion loss

magnitudes. The Scholte mode is still not identified and only a small amount of ripple
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appears on the insertion loss characteristic at higher frequencies. It is not until the liq-

uid height is at, or beyond, 300µm that all modes of interest are correctly identified. If

the displacement degree of freedom is animated, it can be clearly seen that the trans-

verse component of the compressional wave does not reach the structure once it has

been reflected at the simulated device boundaries. Thus, as a guideline, when evaluat-

ing the frequency domain characteristics of a liquid loaded FPW device, the additional

thickness of the liquid layer should be, as a minimum, at least 1.5 times the IDT edge-

to-edge spacing. In this particular series of simulations, the IDT edge-to-edge spacing

is 200µm, which translates to a liquid thickness of 300µm.

Another series of simulations was developed to examine the effect of the y-direction

node spacing within the added liquid layer. The node spacing within the solid FPW

structure was held constant, whilst the liquid layer node spacing was varied between

one node per 5µm and one node per 50µm, with an overall added liquid layer thickness

of 500µm. Figure 6.16 illustrates the effect on the frequency domain characteristics as

the node densities are altered.
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Figure 6.16: 2D Liquid Loaded FEM FPW Device - Liquid Layer Node Spacing
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Unlike the purely structural simulations of Section 5.5.3, a reduction in the num-

ber of nodes in the y-direction is shown to have a significant effect on the insertion

loss characteristics. In particular, once the nodal spacing is beyond λ/2, the resolved

frequency for A0 and S0 are 15.2 and 54.6MHz respectively, which typically indicates,

at least in an unloaded structure, that the overall thickness of the FPW has increased.

Also, in the 50µm node spacing simulations, the Scholte mode can no longer be iden-

tified. With the exception of the 1 node per 5µm structure, a reduction in the number

of nodes causes the insertion loss characteristics to be poorly resolved. To confirm that

the 1 node per 5µm simulation was correct, another simulation was performed at half

the spacing where it was found that the insertion loss characteristics did not notice-

ably change. It is believed that the inaccuracies of the FEM are caused by the inability

of the element shape functions to effectively describe the displacement degree of free-

dom within the element. As a result, it appears that a portion of the acoustic wave is

reflected towards the solid FPW structure at the element interface thus distorting the

frequency domain characteristics.

To confirm this hypothesis, a final simulation was undertaken to determine the

influence of variable node spacing within the liquid layer. The fluid layer thickness was

fixed at 300µm with variable node spacing in the y-direction. The same overall number

of nodes was used, with a larger density at the fluid-solid interface than at the upper

boundary of the liquid layer. The spacing ratio was set at 3.2, with 60 nodes in the y-

direction of the liquid layer. As expected, the frequency domain characteristics did not

exhibit ripple caused by reflections at the elemental boundaries, however the insertion

loss of the Scholte mode decreased by approximately 4dB. As the characteristics of the

Scholte mode depend on the FSI, it is concluded that constant spacing must be used

within the liquid layer.

6.4 FPW Device Performance in Liquid Media

It has been shown in Section 4.3.2, that a FPW device can potentially have a higher

mass sensitivity than other acoustic wave devices. In liquid media, typically devices

containing a dominant shear component, such as QCM’s and Love mode structures

are employed [155, 156]. As an ideal inviscid liquid does not support shear waves
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the acoustic energy is confined to the device rather than radiated into the surround-

ing medium [155]. Clearly, a FPW structure is unique as with its longitudinal and

transverse motion, it has successfully been applied to sensing applications in liquid

media [6]. This section examines the use of an ideal FPW device for density, viscosity

and mass sensing applications. The stiffness matrix approach presented earlier in this

chapter is also slightly modified to calculate the density and viscosity sensitivity of a

FPW where both sides of the structure have been loaded with alternative fluids.

Several techniques have been developed in literature to describe the effect of liquid

loading on similar acoustic wave devices. In equivalent circuit models, the influence of

the added liquid media is modelled as a resistor and inductor in series. If mass loading

is considered, an additional inductor is added [157]. In the author’s implementation

mass sensitivity is calculated at the fluid-solid interface by considering the area den-

sity of the average stored energy as was done for the unloaded structure in Chapter

4. This technique is based on a perturbation approach and therefore is only applicable

when the added mass layer within the fluid does not greatly affect the wave propa-

gation characteristics, which is typically the case in biomedical applications [158]. An

alternative approach was also considered where a mass layer was added to the surface

as in [21], where good agreement was achieved.

One associated problem with other acoustic wave devices is the inability to dif-

ferentiate between density and viscosity effects. Currently a SH-SAW can be used to

concurrently determine the effects due to density, viscosity, relative permittivity and

conductivity [159], however in the case of a SAW structure, typically a multichannel

array is required to differentiate between these effects. To obtain such a measurement

three channel arrays are used, each with different mechanical and electrical boundary

conditions [160]. It will be shown through the techniques developed by the author

that a multilayered FPW structure is theoretically capable of differentiating between

density and viscosity effects [13]. The numerical techniques developed by the author

are quite powerful as they allow the evaluation of multilayered devices, where most

examples in literature are for the much simpler single layer structures [158].

In the following analysis, the sensitivity to changes in density and viscosity will

be presented in terms of simple measurement parameters such as frequency and at-
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tenuation. With the exception of the density-viscosity product solutions presented in

Section 6.4.2, this analysis is concerned with relative changes in density and viscosity

of −1% and 11% respectively. However, recall that for water, the examined deviation

in viscosity can be brought about by a change in temperature of less than 5◦C.

6.4.1 Density Sensitivity

It has been shown, both via the FEM and stiffness matrix methods, that due to the

relatively low phase velocity and particle displacement profile of the A0 mode, that a

FPW device is well suited to sensing applications in liquid media. In this section, an

analysis is performed on the use of a FPW structure for density sensing applications.

For this analysis water is used as the ambient medium, and the change in frequency

and attenuation determined as a function of a change in liquid density.

To investigate the density sensitivity of a FPW device, the model presented in Sec-

tion 3.3.2 will be used. To reiterate, this structure comprises of a 2.0µm Si, 0.4µm Al

and 0.6µm ZnO layers with a wavelength of 100µm. The liquid layer was modelled

on the back of the Si layer, thus neglecting the conductivity of the medium. Using the

techniques described in Section 6.2.3, the liquid loaded centre frequencies of the A0 and

S0 modes are 2.15 and 65.28MHz, corresponding to velocities of 214.6 and 6527.7m/s

respectively. A preliminary investigation of density sensitivity was conducted at a

fixed structure thickness, where the density was varied ±1% from its centre value of

997kg/m3. Over this range, it was found that the change in phase velocity was linear

with both positive and negative variations in density. For the presented structure, the

maximum shift in operational frequency, with a 1% change in density was −6.873kHz

and −619.34Hz for the A0 and S0 modes respectively, corresponding to a fractional

change in frequency of −3.1967× 10−3 and −9.49× 10−6.

In evaluating the density sensitivity of a FPW, the wavelength is fixed, whilst the

complex frequency is determined. However, to investigate the effect of liquid den-

sity on the attenuation, the frequency must be fixed and the corresponding complex

wavenumber determined. Therefore, all calculations relating to density sensitivity

were performed twice, with the real component of frequency used to determine the

attenuation. Using this process, a change in attenuation of 8.68 × 10−5 and −5.072 ×
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10−4dB/λ was found for A0 and S0 respectively for a density deviation of 1%. The

typical spacing between IDTs for a FPW device is approximately 2500µm, therefore the

theoretical measurable change in attenuation over this distance would correspond to

2.17×10−3 and−1.27×10−2dB respectively. Accurate measurement of attenuation can

be difficult [155], and thus for density measurements, changes in phase velocity are

typically more suitable [145, 157].

Of more interest is the change in resonant frequency of the FPW structure as a func-

tion of underlying Si thickness. In this analysis the thickness of the Si layer is varied,

whilst all other layers remain constant. Figure 6.17 depicts the change in resonant

frequency for the first two primary modes as the density of the liquid medium is de-

creased by 1%. Figure 6.17 is generated by calculating the variation in resonant fre-

quency between the theoretical liquid density and a corresponding 1% reduction. A

negative frequency shift indicates an increase in resonant frequency.
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Figure 6.17: Liquid Density Modification and Si Thickness Frequency Shift

From Figure 6.17, it can be clearly observed that A0 is highly sensitive to changes in
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liquid density. As a function of centre frequency, a maximum shift of −0.49% is found

at a Si thickness of 20µm. At this point the phase velocity of the mode is beyond the

compressional velocity of the liquid medium and energy is radiated into the surround-

ing environment. For density sensing applications, the Si thickness should be selected

to ensure the phase velocity of the mode is below that of the compressional velocity

of the liquid. In this particular structure a Si thickness below 15.3µm would minimise

the acoustic energy being dispersed into the surrounding medium. If operating at the

prescribed thickness, a relative change in frequency of −0.41% would be obtained. Al-

though not shown here, at the maximum desired thickness, the attenuation of A0 has

increased by a factor of three, however this is still too small to be used to detect changes

in density.

With respect to S0, a relatively small frequency shift is observed in comparison

to A0. This is due to the mainly longitudinal particle motion as was discussed in

Section 4.3.1. Similar to the mass sensitivity to be discussed shortly, the shift in res-

onant frequency when subjected to a change in density is a maximum in the low

frequency-thickness limit. At this point, the phase velocity of the S0 mode is at a

maximum. In terms of frequency, a maximum deviation of 625Hz is calculated at a

Si thickness of 2.0µm, which corresponds to a previously discussed fractional devia-

tion of −9.49 × 10−6. In many practical applications, a variation of 625Hz could be

attributed to system noise, therefore reinforcing the concept that S0 is unsuitable for

liquid media density sensing applications.

An analysis was also performed on potential methods to increase the observed

change in resonant frequency of the presented FPW structure when subjected to a 1%

reduction in density. Using the premise of Section 4.3.2 an alternative piezoelectric

layer was selected, in this case AlN. The ZnO layer was replaced with AlN layer of

identical thickness and the change in resonant frequency recalculated as a function of

underlying Si thickness. For comparative purposes, a purely Si structure with iden-

tical overall dimensions was also investigated. Although a far simpler structure to

fabricate, it is necessary to use an external means to excite the acoustic waves such as

bonded transducers or laser excitation, which would not only increase the size of the

device, but also greatly increase its complexity. Figure 6.18 illustrates the change in A0
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resonant frequency as a function of Si thickness for all three cases.
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Figure 6.18: Primary Antisymmetric Mode Variation in Resonant Frequency - ZnO,

AlN and Si Layers

As was found in the purely structural analysis of Chapter 4 the FPW device with an

AlN piezoelectric layer has a higher sensitivity towards density. This is caused by the

increase in velocity, and hence the frequency of A0 for a given thickness. At an under-

lying Si thickness of 2µm the ZnO, AlN and Si structures exhibit frequency shifts of

0.342%, 0.321% and 0.351% respectively. Therefore, the addition of the higher velocity

AlN layer slightly increases the ability of the FPW device to sense changes in density.

However, it appears that the Si structure offers the highest density sensitivity, but the

associated difficulty to excite the acoustic wave must be considered before this type of

device is employed. Also of note is the change in resonant frequency of Figure 6.18

when compared against other simplified isotropic models [145]. In such models, the

resonant frequency variation appears is linear with layer thickness when subjected to

changes in liquid density. It is believed that the author’s approach, which takes into
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account the anisotropic nature of the materials and the frequency dependence of the

added liquid layer provides a more realistic view of the physical phenomena.

A final simulation was performed to evaluate the effect of alternative guiding lay-

ers on the change in resonant frequency of S0. As was found previously, the deviation

in centre frequency caused by a slightly reduction in density is negligible when com-

pared to the resonant frequency of the structure. Figure 6.19 illustrates the calculated

deviation in frequency as a function of Si layer thickness. The maximum frequency

shift is observed when the supporting Si thickness is at a minimum, which is opposite

to A0. It also appears that the density sensitivity of the AlN and single isotropic layer

structures are approximately equal for S0.
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Figure 6.19: Primary Symmetric Mode Variation in Resonant Frequency - ZnO, AlN

and Si Layers
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6.4.2 Viscosity Sensitivity

Viscosity sensing is of great interest in the automotive industry, particularly in the areas

of engine oil quality monitoring. In [161] a thickness shear mode resonator operating

at 6MHz was used determine the appropriate intervals to change the oil, allowing both

cost and environmental savings. Whilst at low temperatures engine oil is a relatively

viscous material, over the course of its normal use the viscosity can change by several

orders of magnitude. With such a large change in viscosity, it is a relative straight for-

ward task to detect the quality of the oil. However, for small values, such as those seen

by slight changes in liquid temperature, the task of measuring liquid viscosity can be

quite difficult. For a single isotropic layer FPW structure it is well known that the at-

tenuation of the acoustic mode is caused by changes in the liquid viscosity [162]. In a

multilayered structure, as will be shown, the combination of frequency and attenuation

can be used to detect changes in the liquid viscosity. Throughout these series of sim-

ulations, unless explicitly stated, the density of the liquid medium was kept constant,

whilst the first coefficient of viscosity, η, was modified.

As the viscosity of the media increases, a trapping effect can occur where the fluid

acts as a deposited mass on the surface which resonates at the centre frequencies of the

structure. If the thickness of the entrained fluid layer is larger than the evanescent de-

cay length, equation 6.15, then the layer can cause substantial changes in resonant fre-

quency. It has been shown that for a TSM resonator, the frequency deviation, although

initially caused by the increase in viscosity, is dependent on the entrained liquid den-

sity [157]. For long term measurements, the highly temperature dependent nature of

viscosity also requires some form of in-situ heating / cooling to ensure that results

are consistent. To measure the temperature of the liquid, a meandering line resistor is

typically used.

Both frequency and attenuation shifts were used to identify slight changes in liquid

viscosity for the presented FPW structure. Throughout these experiments, water was

used as the additional liquid layer. The viscosity was increased by 11%, corresponding

to 5◦C temperature reduction [148], and the shift in frequency and attenuation deter-

mined. Through the application of equation 6.14 the change in attenuation can be

obtained. Figure 6.20 depicts the variation in attenuation for the presented structure.
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Figure 6.20: Liquid Viscosity Modification and Si Thickness Attenuation Shift

With reference to Figure 6.20 a negative value indicates that the increase in viscos-

ity causes a corresponding increase in attenuation. For S0 a thicker overall structure

provides a higher deviation in relative attenuation, however the actual attenuation is

decreased. The variation in actual attenuation appears to follow a 1/thickness trend.

A thicker structure allows more energy to be confined to the device rather than being

lost due to viscous loading [13]. However, with respect to the A0 mode, the maximum

shift in attenuation is found for a Si thickness of 8µm, corresponding to variation of

−1.48 × 10−3dB/λ. Thus in terms of attenuation, for the presented structure the S0

mode appears to provide better sensitivity towards small changes in viscosity than the

A0 mode.

In an attempt to improve the viscosity sensitivity of the presented FPW structure,

alternative piezoelectric layers were investigated. A comparison was performed be-

tween structures having ZnO, AlN and a purely isotropic layers. Figures 6.21 and 6.22

illustrate the effect of different layers for the A0 and S0 modes respectively.
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Figure 6.21: Primary Antisymmetric Mode Variation in Attenuation - ZnO, AlN and Si

Layers

From Figures 6.21 and 6.22 it can be confirmed that the largest variation in attenuation

for all three structures is at the lowest Si thickness. Similar to density, it appears that

a FPW device comprised of a single isotropic Si layer provides the largest measurable

variation. Considering A0, the local minimum at an Si thickness of 16−18µm is caused

by the acoustic mode being converted to a Scholte mode. As this mode is tightly cou-

pled to the FPW surface, the attenuation is expected to be quite small. In comparison

to A0, the S0 mode, although having a larger phase velocity and hence frequency, has

significantly higher attenuation for small Si thicknesses.

The author also decided to investigate the variation in resonant frequency caused

by modification of the viscosity to examine whether this could also be used as a suit-

able measurand. A maximum frequency shift for A0 of −712Hz was obtained at a Si

thickness of 16µm, corresponding to a fractional shift of 5.01× 10−5. At the same thick-

ness, the variation in resonant frequency when considering density is approximately
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Figure 6.22: Primary Symmetric Mode Variation in Attenuation - ZnO, AlN and Si

Layers

4.30×10−3. Thus, it appears that the A0 mode is more suited to density sensing applica-

tions and is only marginally affected by changes in liquid viscosity. This will be further

illustrated when considering the density-viscosity products later in this section.

Figure 6.23 illustrates the change in S0 frequency for alternative layer configura-

tions as a function of underlying Si thickness. In the low thickness limit, for the ZnO

piezoelectric layer, a frequency shift of−6.874kHz is observed, corresponding to a frac-

tional frequency deviation of 1.05 × 10−4. In comparison to the density sensing simu-

lations performed earlier in this section, for a 1% change in density, a maximum fre-

quency shift of approximately 626.38Hz was observed. Therefore, in comparison with

the viscosity sensing results, which clearly indicate a larger deviation in frequency, the

combination of frequency and attenuation can be used to determine the viscosity in a

given liquid medium. For the same thickness, an increase in frequency deviation of

2.3kHz is obtained by using AlN rather than ZnO as a piezoelectric layer. It is also
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interesting to note that if a thicker structure were desired, then either ZnO, AlN could

be used as a guiding layer with only slight differences in frequency variation.
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Figure 6.23: Primary Symmetric Mode - Viscosity Influence on Resonant Frequency

One associated issue with using SH-SAW and QCM acoustic wave sensors to mea-

sure liquid parameters is their inability to differentiate between density and viscosity

effects [155]. In many cases a sensor array is used, where several acoustic wave struc-

tures are created with different electrical and mechanical boundary conditions. The

information obtained from these structures, whether it be attenuation or frequency

data, is then combined allowing the parameters of the liquid to be evaluated. A prob-

lem with this type of approach is that costs are typically increased, making the tech-

nology prohibitive when compared against other methods. A relatively recent study

[157] has shown that a smooth-surfaced TSM resonator is incapable of discriminating

between liquid density and viscosity. This can be rectified by creating a textured de-

vice which entraps the liquid at the device surface, however requiring extra fabrication

steps. Love mode SAW structures also suffer from the same inability to discern liquid
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media parameters from a single structure [157].

Unlike SAW and TSM structures, a multilayered FPW is theoretically capable of dif-

ferentiating between density and viscosity effects. Although briefly illustrated when

considering viscosity effects, the true ability of a FPW structure to theoretically dis-

criminate between density and viscosity can be seen by evaluating the change in res-

onant frequency as a function of the density-viscosity product. Figure 6.24 presents

the density-viscosity product for A0 and Figure 6.25 depicts the same information for

S0. In these figures, the density was held constant whilst the viscosity range modified,

and vice-versa. The square root of the density-viscosity product was varied between

0.1 and 2
√

kgPam−3s−1 and is plotted against the change in resonant frequency. For

this analysis, the 2.0µm Si structure is used with a piezoelectric ZnO layer.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

∆ 
F

re
qu

en
cy

 A
0 (

M
H

z)
, ρ

=
co

ns
t

(ηρ)0.5

 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

−7.5

−5

−2.5

0

2.5

5

7.5

10

∆ 
F

re
qu

en
cy

 A
0 (

kH
z)

, η
=

co
ns

t

 

 

η=const

ρ=const

Figure 6.24: Primary Antisymmetric Mode - (Density × Viscosity)0.5

Considering Figure 6.24, it can be immediately seen that there is a noticeable differ-

ence in resonant frequency variation between constant density and constant viscosity

simulations. The A0 mode appears to have a far higher sensitivity towards changes in
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Figure 6.25: Primary Symmetric Mode - (Density × Viscosity)0.5

density rather than viscosity. Frequency shifts of up to 1.42MHz are obtained for den-

sity modification (constant viscosity), whereas when the viscosity is varied (constant

density), the maximum deviation in resonant frequency is approximately −5.85kHz

for the same density-viscosity product. As a percentage of centre frequency, the max-

imum deviation for A0 is 40% reinforcing that A0 is better suited for density sensing

applications than viscosity sensing.

In comparison, the S0 mode shows a relatively linear dependence on the square root

of the density-viscosity product. However, as previously mentioned, if the S0 mode

were to be used for sensing applications in liquid media, it would also be necessary to

examine the attenuation component as well.

6.4.3 Differential Measurements

A key advantage of using a FPW device in liquid media sensing applications is the

ability to shield the sensitive IDTs and piezoelectric layer from the liquid media. As
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the device is constructed with a metallic ground plane between the Si and piezoelectric

layers, the electrical influence of the liquid can also be ignored. However, if so desired,

both sides of the FPW can be used for differential measurements. Using this approach

a reference liquid is placed on one side of the structure whilst the other surface con-

tains the liquid media under test. Using this approach there are additional concerns

with delivering the liquid to both surfaces of the structure simultaneously, which typ-

ically requires the inclusion of a flow-cell which will also effect the propagation of the

acoustic wave.

It was found in the previous sections that A0 is well suited to measuring changes

in density, whereas S0 is better for detecting changes in viscosity, provided both fre-

quency and attenuation are considered. Figure 6.26 illustrates the change in resonant

frequency of the A0 mode when both sides of the structure are loaded with a water

layer, with one side having 1% reduction in density. As a reference, the frequency de-

viation for a single sided liquid loaded structure is included, indicated by the ’S’ prefix.
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Figure 6.26: Primary Antisymmetric Mode - Density Reference Liquid Sensitivity
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In this configuration the ability of the FPW device to detect changes in density is

greatly reduced. Recall for a liquid loaded FPW structure the dominant displacement

component is in the transverse direction. When both sides of the structure are loaded

this motion becomes highly damped. The frequency deviation is less than half across

the range of Si thicknesses of interest. Even with the addition of alternative piezo-

electric layers, the FPW density sensitivity is reduced. Therefore, for density sensing

applications, the delivery of the liquid media on one side of the structure provides the

highest measurable frequency deviation.

For the S0 mode, the frequency variation under the dual liquid layers does not

vary significantly. Again, by considering the displacement profiles, this can be simply

explained. The primary displacement for S0 is in the longitudinal direction, and as it

has been shown that density mainly affects the transverse components, such as those

in A0, the frequency shift is minimal.

Interestingly, when both sides of the structure are loaded and the viscosity var-

ied between the two liquid layers, the A0 mode becomes more sensitive to viscos-

ity changes than S0. In reality, the variation in attenuation for S0 is reduced from

−1.2 × 10−2 to 1.9 × 10−3dB/λ. However, as shown in Figure 6.27, the attenuation

for A0 is increased from −2.54dB/λ to 6.64dB/λ. Also of note is the sign change in at-

tenuation shift between single and dual layer configurations. Therefore, if the structure

is loaded on both sides, then A0 provides a far greater measure of changes in viscosity.

Considering the particle displacements, as the A0 displacement is mainly transverse,

the addition of another liquid layer greatly damps the motion, causing larger varia-

tions in attenuation.
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Figure 6.27: Primary Antisymmetric Mode - Viscosity Reference Liquid Sensitivity
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6.4.4 Mass Sensitivity

For biosensing applications the ability of the FPW structure to detect an added mass

within the liquid medium is of prime importance. The calculation of the mass sensitiv-

ity of a liquid loaded FPW is based on the perturbation approach, where it is assumed

that the added mass does not significantly effect the wave propagation throughout the

structure. It is also assumed that the attached mass layer does not induce shear stresses

in the liquid, and thus the liquid layer can still be modelled as a Newtonian fluid.

Two approaches were used to evaluate the mass sensitivity of a liquid loaded FPW

device. The first was based on the surface particle displacement presented in Chap-

ter 4, allowing the sensitivity to be calculated at the fluid-solid interface. The second

approach involved placing a fictional mass on the surface and then determining the

corresponding change in frequency. Good agreement was achieved between the two

different techniques. In the following analysis, the mass sensitivity calculations are

based on the perturbation approach presented in Chapter 4. The simulated FPW struc-

ture is identical to that studied in Section 4.3.2 to allow a direct comparison to be made.

Figure 6.28 presents the mass sensitivity of a liquid loaded FPW as a function of un-

derlying Si thickness. As a reference, the sensitivity is also presented for the unloaded

case discussed in Chapter 4 indicated by the ’Ul’ prefix. From Figure 6.28 it can be

seen that the mass sensitivity of the A0 mode is significantly reduced in the presence

of an additional liquid medium. In comparison to the unloaded scenario, in the low

thickness limit, the mass sensitivity is reduced by approximately 268cm2/g. This is

caused by a reduction of the particle velocity at the fluid-solid interface caused by the

addition of the lossy liquid layer. However, when compared to other acoustic wave

sensors that can be used in liquid media [163], the calculated sensitivity is still quite

high. The S0 mode shows only a slight reduction in mass sensitivity when used in

liquid media. This is due to the relatively high frequency of operation, coupled with

the dominant particle displacement being in the longitudinal direction. A negligible

reduction of 6 cm2/g is found for the S0 mode when operating in liquid media. As was

found in Chapter 4, by replacing the ZnO piezoelectric layer with AlN, the sensitivity

of the device, even when operating in liquid media, increases by 15.4% and 26.7% for

A0 and S0 respectively.
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Figure 6.28: Liquid Loaded FPW Device - Mass Sensitivity

6.5 Device Fabrication

To confirm many of the analysis techniques and results presented in this thesis, the

author has begun fabrication of a multilayered FPW structure with a layout similar to

that of Figure 2.1. Many of the materials listed in Figure 2.1 were not available to the

author and as such appropriate substitutions have been made. At the time of writing,

the author had successfully formed a 24µm Si membrane on which all other layers will

be deposited. Although the thickness of the structure is above ideal for liquid media

sensing applications, the fabricated structure is consistent with that used for the FEM

analysis demonstrated in Chapter 5.

The fabrication of the thin membrane, which defines the active area of the device,

relies on the successful deposition of an appropriate mask material whilst the bulk sil-

icon is chemically etched. Several different materials were considered, ranging from

r.f. sputtered Si3N4 and SiO2, to spin coated polymers. Microscopic examination of

the sputtered films indicated numerous pinhole defects which would ultimately allow
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the etchant to reach the underlying substrate in incorrect regions. The deposition con-

ditions for the films were continuously altered, however no viable solution could be

found. To alleviate the Si masking issue, a thermally grown SiO2 was used. The ther-

mally deposited SiO2 provided a far superior etch mask, although the process took

significantly longer to complete. A 4-inch silicon substrate was quartered and placed

in an oxidation furnace for 6 hours, at a temperature of 1050◦C, with an oxygen back-

ground flowing at 1l/m, resulting in a native oxide layer of 1.22µm. The thickness of

the layer was determined by placing a photoresist mask on the sample and etching a

section of SiO2 in a buffered hydrofluoric acid (HF:NH4F:H2O, 3ml:6g:10ml) solution.

Once an appropriate etch mask was found a rectangular section, measuring approxi-

mately 9 × 3mm, was photolithographically patterned and opened on the backside of

the sample to define the membrane area of the FPW device.

To etch the Si sample, 45% Potassium Hydroxide (KOH) in water was used. Both

materials, Si and SiO2, are known to be chemically attacked in KOH, however depend-

ing on the quality, thermally grown SiO2 is etched at a rate up to ten times less than Si

[164]. An approximate etch depth of 320µm was required, thus the mask layer alone

would be insufficient to resist the etch for the required depth. To ensure that the SiO2

film would last the length of the silicon etch, a stainless steel sample holder was fab-

ricated. It consisted of two 316 stainless steel plates with two teflon (PTFE) gaskets

to hold the samples in place. A section was removed from the top stainless steel and

teflon gaskets to allow the etchant to gain access to the previously exposed rectangular

section of the Si samples.

The etch rate of Si in KOH is a well studied process [165] and is known to be a non-

linear function of temperature as well as KOH concentration. Several experiments

were conducted, each with varying degrees of success. Initially it was believed that

a fast etch rate would be favourable as the mask layer would have to withstand less

time in the heated etch solution. A temperature of 90◦C was used, which etched the

complete Si in less than three hours. The resulting thin membrane appeared to be quite

rough, even to the naked eye, which is unsuitable for acoustic wave propagation. The

surrounding mask layer was also totally removed, which caused several unwanted

pits in the silicon. In light of these results, it was decided to etch the Si at a lower
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temperature. The author then attempted to etch the wafer at 70◦C, where excellent

results were obtained. The membrane was etched to a thickness of 24µm over a 12 hour,

45 minute period, undertaken over two days. The etch solution was not replaced, nor

stirred and gave an approximate rate of 26.26µm/hr. Around the cutout in the stainless

steel the etch mask had been totally removed, however remained on the backside of

the wafer. After decontamination of the sample, the remaining SiO2 was removed in

the aforementioned buffered hydrofluoric acid solution.

Once the membrane of the structure was created, a decision had to be made with

regards to the metallic ground plane and piezoelectric guiding layer. A reactive d.c.

sputtering system was designed, developed and commissioned by the author to de-

posit the aluminium ground plane as well as the essential piezoelectric aluminium

nitride layer. Although the author had previous experience with other piezoelectric

materials such as zinc oxide, the selected materials could be deposited in one system

without breaking the vacuum seal, thereby limiting contamination by manual han-

dling of the samples.

The sputtering system developed by the author consists of a stainless steel chamber,

integrated substrate heater, two mass flow controllers and a MDX 10KW d.c. power

supply. A base vacuum of 8.7 × 10−7 Torr was achieved using an Edwards Diffstak

diffusion pump. As these types of pumps can not be safely used at sputtering pres-

sures, a secondary Alcatel 5081 turbomolecular pump was used to maintain sputtering

pressure. The system was continually loaded with a 4-inch diameter 99.999% pure

aluminium target that was liquid cooled during the sputtering process. A custom

built substrate heater was fabricated, capable of maintaining sustained temperatures

of 600◦C. For operation at these temperatures a secondary cooling loop was integrated

into the chamber sidewalls. Two variable power circular electromagnets were used

form the sputtering magnetron, which in turn increased the number of secondary elec-

trons, lowered the deposition pressure and in turn increased the yield [166]. The elec-

tromagnet current was fixed during the deposition process. It was found that a higher

magnetic field was required to initiate the plasma, with the field being reduced to a

specified value during the deposition process. The influence of the electromagnet volt-

age and currents has been studied, however is beyond the scope of this preliminary
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discussion. In this configuration, the target to substrate height was fixed at approxi-

mately 11cm. Table 6.2 indicates the basic d.c. sputtering parameters for the Al and

AlN thin films:

Table 6.2: FPW Thin Films - Deposition Conditions

Parameter Al AlN

Magnetron Power (W) 120 120

Magnetron Voltage (V) 417 305

Inner DC Electromagnet Voltage (V) 9.7 10.4

Inner DC Electromagnet Current (A) 1.2 1.2

Outer DC Electromagnet Voltage (V) 7.9 10.3

Outer DC Electromagnet Current (A) 6.8 1.0

Sputtering Gas Ar 40% Ar, N2 balance

Sputtering Pressure (Torr) 1.5× 10−2 1.0× 10−2

Deposition Time (min) 10 120

Deposition Rate (µm/hr) 1.35 0.516

Substrate Temperature 22◦C 350◦C

A four point probe measurement technique [167] was applied to the Al thin films to

determine their quality. A sheet resistivity of 25.79µΩcm was obtained, 9.5 times larger

than the standard thin film value [167], however still suitable for the electrical ground

plane. The adhesion of the Al thin film was determined by a simple adhesive tape

test. Here, a thin piece of adhesive tape was placed over the deposited film, pressed

down, and then removed. If the film is also removed with the tape, then the adhe-

sion is deemed to be insufficient. Due to the sputtering process, where electrons are

accelerated towards the substrate, the deposited Al thin film was not removed, further

indicating a high quality film.

To determine the quality of the AlN thin film, several different techniques were em-

ployed. For the AlN to be piezoelectric, the film should be c-axis orientated [168]. As

the film could not be directly viewed via a Scanning Electron Microscope (SEM), an

Atomic Force Microscope (AFM) was used. Figure 6.29 depicts a 1µm square scan of
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the deposited AlN film. It can be seen that a majority of the grains are aligned per-

pendicular to the substrate surface, thereby confirming the c-axis orientation of the

film. Furthermore, the AFM was used to determine the piezoelectric properties of the

film using a recently developed technique, of which the results have been accepted

for publication in an international journal in late 2007. The piezoelectric properties of

thin films until recently have been evaluated using a piezoresponse force microscope.

This is typically a very costly machine, and thus an alternative approach was required.

In the author’s approach, a standard AFM can be used to evaluate the piezoelectric

properties without modification of the instrument. A planar sandwich structure is fab-

ricated, where a bottom Al electrode is deposited on a Si substrate. The film under

test is then deposited, followed by an upper Al electrode. A low frequency alternat-

ing voltage is then applied to the top and bottom electrodes which in a piezoelectric

material causes a slight deformation. The AFM is operated in contact mode, with the

non-conductive tip placed on the upper electrode. The scan area is set to zero, which

causes the tip to continuously measure the same point. The transverse displacement of

the tip corresponds to the applied voltage and frequency, and hence the piezoelectric

coefficient d33 can be directly obtained. The resulting scan image includes a series of

bright and dark bands which represent the change in tip height as a function of time.

For the deposited AlN thin film, an average displacement of 0.44nm was obtained,

corresponding to a value of 2.132pm/V for d33, therefore further proving that the de-

posited film is piezoelectric. The validity of the measurement technique has also been

confirmed using a PLZT thin film.

Furthermore, an X-ray Photoelectron Spectroscopy (XPS) analysis was performed

on the film to identify its composition. A depth profile was performed, where through-

out the thickness of the film, a relatively constant atomic ratio of aluminium to nitrogen

of 41.8 : 43.3 was obtained, indicating good stoichiometry. The remaining materials in

the sample were carbon and oxygen. It is believed that the process gas line had been

opened to atmosphere hence causing the abnormally high oxygen concentration.

The final step in the fabrication process is the deposition of the electrodes to form

the interdigital transducers. A chromium photolithographic mask has been developed

by the author, however at the time of writing, the author had not successfully patterned
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Figure 6.29: AlN Thin Film - AFM Results

the structure onto the FPW membrane. The mask consists of various FPW designs,

however the most promising design consists of 25 input and output electrode pairs,

with an edge to edge spacing of 2500µm, corresponding to 25λ. The acoustic aperture

was set at 3000µm. It is envisaged that a FPW device will be successfully fabricated by

December 2007 as the author continues at RMIT University in a post-doctorial research

position.

6.6 Conclusion

In this chapter modelling of FPW devices for sensing applications in liquid media has

been discussed. The additional liquid layer has been described in terms of complex,

frequency dependent, material properties. It was found that a liquid layer can be

approximated as a semi-infinite layer thereby reducing the electrical and mechanical

boundary conditions of the wave propagation problem. Modifications have been sub-
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sequently made to the stiffness matrix method, where is has been shown that via the

incorporation of a complex wavenumber, or frequency, the wave propagation problem

is lossy media can be simply calculated.

Using the modified stiffness matrix method, it has been shown that a tightly cou-

pled interface wave, known as a Scholte mode, exists for a FPW structure which is

attributed to being responsible for most liquid density sensing results. The displace-

ment profiles for a liquid loaded FPW structure have also been evaluated, where it was

found that beyond a critical thickness the energy of the low velocity A0 mode disperses

into the surrounding medium. It was also found that S0 is responsible for establish-

ing a compressional wave within the liquid which could potentially be used for liquid

pumping and delivery.

The frequency domain characteristics of a multilayered FPW device have been pre-

sented using the author’s novel approach based on the FEM. The author’s techniques

were compared against the widely accepted spectral domain Green’s function, where

it was found that this technique, at least in its current implementation, is not capable

of accurately determining the frequency characteristics of the structure. The necessary

modifications to the spectral domain Green’s function are quite involved, whereas by

using the author’s approach, liquid loading of a FPW can be applied by simply adding

an additional layer. A series of guidelines have been developed on the use of the FEM

when considering liquid loaded structures, and to the best of the authors knowledge

is the first time such discussions have been presented.

The use of both primary antisymmetric and symmetric modes has been considered

for sensing applications in liquid media. It was found that A0 is well suited to density

sensing applications, whereas S0 can be used for viscosity measurements. Using a dual

band frequency measurement system, the parameters of both modes can be obtained

simultaneously, thereby requiring only a single structure to evaluate liquid density and

viscosity. The mass sensitivity for a FPW device operating in liquid media, which is of

prime importance for biosensing applications, has been discussed. It was found that

in the presence of a liquid medium the sensitivity of the primary antisymmetric mode

was reduced by approximately 268cm2/g, however when compared to other acoustic

wave devices, this value is still relatively high. The mass sensitivity of the symmet-
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ric mode remains largely unaffected by the presence of a liquid due to its dominant

longitudinal particle displacement.

A brief introduction has also been given on the author’s attempts to fabricate a

functional FPW device. The silicon masking and etching process has been described,

from which the author has successfully fabricated a Si membrane with a thickness of

approximately 24µm. Furthermore, preliminary XPS characterisation and the unique

application of an AFM have shown that the deposited AlN thin films are stoichiomet-

ric, c-axis orientated and hence piezoelectric. Optimal deposition parameters for both

Al and AlN thin films, for the d.c. sputtering system designed and commissioned by

author, have been described allowing these materials to be utilised in the future fabri-

cation of FPW structures, as well as other acoustic wave devices.
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Chapter 7

Conclusion and Future Work

In this thesis, a novel approach to the analysis of Flexural Plate Wave devices for sens-

ing applications was presented. The author has successfully demonstrated a novel

simulation and evaluation technique of FPW devices based on the convergence of the

Finite Element method with classical SAW analysis methods and related procedures.

It was shown that the technique demonstrated by the author can accurately and effi-

ciently evaluate key electrical and mechanical characteristics of complex multilayered

FPW devices when compared to more conventional, routinely applied, approaches.

Further to meeting the key objectives of the author’s research, several major achieve-

ments were obtained, including:

• Development of a novel analysis technique for the simulation and evaluation

of multilayered FPW devices based on the convergence of the FEM with classi-

cal analysis techniques and related procedures typically applied to SAW struc-

tures. The necessary modifications to SAW device analysis techniques to suit

FPW structures have been fully described and implemented by the author through

careful consideration of the underlying principals and assumptions.

• Development of a three dimensional FEM simulation for the analysis of multi-

layered FPW structures. Two alternative simulation procedures, the first com-

prising of an electrostatic analysis and the second based on a dynamic transient

analysis, have shown that the approach demonstrated by the author is capable of

simultaneously evaluating various second-order effects such as electromagnetic



246 Chapter 7. Conclusion and Future Work

feedthrough and diffraction. These effects typically have to be considered indi-

vidually by other analysis techniques. The three dimensional dynamic transient

analysis further illustrated that the shear particle displacement of a FPW device

can be assumed to be zero, therefore suggesting that a less computationally in-

tensive two dimensional model is appropriate to simulate the structure.

• Comprehensive development and evaluation of a two dimensional FEM simu-

lation procedure for the analysis of multilayered FPW structures. Various FPW

structures have been simulated, with and without the underlying silicon support

structure, which is typically neglected with other, more conventional, modelling

techniques. It was shown that the support structure causes a measurable shift in

both resonant frequency and attenuation of the first two primary acoustic modes,

thereby providing a significantly more realistic representation of a physical FPW

structure. Various signal processing techniques have been considered to improve

the frequency domain resolution of the FEM results. A clear link has been es-

tablished between the FEM simulation parameters and the calculated frequency

response, which allows a desired resolution to be obtained.

• To obtain the FPW device frequency domain characteristics, the author employed

a two dimensional dynamic transient FEM analysis. A modified impulse func-

tion was applied to the input IDT and the corresponding charge evaluated si-

multaneously on the input and output transducers over the complete simulation

time. By carefully modifying SAW analysis techniques to suit FPW structures,

the complete device admittance characteristics were calculated from the FEM re-

sults. This data was then converted to the more commonly used scattering pa-

rameters, allowing the insertion loss to be evaluated. By employing a modified

impulse function, the complete frequency domain response can be obtained con-

currently, without the need to apply discrete frequencies as previously done by

other researchers. Furthermore, other researchers have typically utilised a modal

analysis to determine the behaviour of FPW structures. This type of analysis

does not take into account the excitation source, nor the piezoelectric nature of

the device. The technique demonstrated by the author fully accounts for both the

electrical influence of the IDTs as well as the anisotropic and piezoelectric proper-
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ties of the individual layers. Although this study focused on the analysis of FPW

structures, the author believes the developed technique can equally be applied to

other acoustic wave devices.

• Key electrical and mechanical parameters of various FPW devices have been de-

termined by the application of the author’s novel approach based on the FEM.

In particular, input capacitance, primary antisymmetric mode electromechani-

cal coupling coefficient, admittance and hence insertion loss, have all been eval-

uated, where excellent agreement has been obtained when compared against

other more conventional techniques. The technique demonstrated by the au-

thor has been verified by the application of both the stiffness matrix method and

the widely accepted spectral domain Green’s function. Via the stiffness matrix

method, basic device parameters such as electromechanical coupling coefficient

were calculated, whilst the spectral domain Green’s function was applied to ver-

ify the FEM derived frequency response characteristics. A study was also con-

ducted on the various FEM simulation parameters and their influence on the

frequency response of a FPW device considered, allowing the author to develop

a series of guidelines for the use of this technique for modelling acoustic wave

devices in both liquid and gas media.

• A detailed description of the necessary additions to both the Stiffness Matrix

method and FEM has been given to allow these techniques to be applied to liquid

loaded FPW structures. For the FEM it was found that an additional dedicated

fluid element could be used, whereas the stiffness matrix method required sig-

nificant modification. A discussion was also given on the appropriate boundary

conditions and assumed thicknesses for liquid media. In particular, the stiffness

matrix method modelled the liquid layer as semi-infinite, whereas an optimum

layer thickness of 1.5 times the IDT edge-to-edge distance was found for the FEM

simulations. The frequency domain characteristics of a liquid loaded FPW struc-

ture was presented using the author’s approach and compared against a spectral

domain Green’s function, where it was found that the FEM provided more cor-

rect results when compared to experimental results available in literature.
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• To further promote the use of the presented FEM based approach for the analy-

sis of multilayered FPW structures, the author has developed a series of detailed

modelling guidelines outlining the influence of the FEM simulation parameters.

To the best of the author’s knowledge, this is the first time that a critical dis-

cussion of these parameters has been presented when applied to acoustic wave

structures. In particular, the influence of node density, simulation time, simulated

structure length and timestep has been critically examined for an FPW device op-

erating in gas media. Furthermore, the effect of node density and assumed liquid

thickness has been discussed for a liquid loaded FPW device.

• Density, viscosity and mass sensitivity of multilayered FPW structures in liq-

uid media has been discussed and compared against commonly quoted isotropic

equivalents. To the best of the author’s knowledge, this is the first time that theo-

retical density, viscosity and mass sensing results have been calculated for a mul-

tilayered FPW structure. Evaluation of the density-viscosity product has shown

that a single FPW structure has the potential to discriminate between these two

parameters. Guidelines, such as substitution of materials, to increase the den-

sity, viscosity and mass sensitivity of an FPW structure have been presented. It

was found that replacement of the ZnO piezoelectric layer with another higher

velocity piezoelectric material, AlN, resulted in an increase in all three quoted

sensitivities.

• A critical review of modelling techniques has been presented and their suitabil-

ity to the analysis of FPW structures has been discussed. Of the considered tech-

niques, it was found that none of the existing approaches could simultaneously

determine key electrical and mechanical properties. Three conventional mod-

elling techniques were considered to verify the author’s novel approach. The

first technique, the transmission matrix method, was used to determine the ba-

sic properties of a FPW structures such as phase velocity and electromechani-

cal coupling coefficient. Although relatively straightforward to implement, the

technique suffered from numerical instability when applied to large frequency-

thickness products and lossy material parameters, which are characteristic of liq-

uid loaded structures. A replacement technique, the stiffness matrix method was
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then considered. This particular technique was used in conjunction with a spec-

tral domain Green’s function to determine the complete frequency response char-

acteristics of a FPW structure in the gas phase. The required modifications to

these two techniques to suit FPW devices was also discussed and implemented.

These techniques were also employed to verify the author’s approach to the

analysis of FPW structures based on the FEM.

• Particle displacement profiles for multilayered FPW structures have been dis-

cussed and compared against isotropic equivalents. It was found that the dis-

placement in composite piezoelectric structures can no longer be segregated into

purely antisymmetric or symmetric due to the differences in the material prop-

erties throughout the device. A simple computational technique was also devel-

oped to identify the predominant displacement in higher order modes near the

cut-off region. When placed in contact with a liquid, a tightly coupled surface

wave, known as a Scholte mode, was identified which exhibited a phase velocity

approximately equal to the compressional velocity of the liquid. This mode is

typically deemed responsible for most liquid sensing results presented in litera-

ture.

• A d.c. reactive sputtering system was also designed, developed and commis-

sioned by the author. The system is capable of depositing both aluminium and

piezoelectric aluminium nitride required for the realisation of the discussed FPW

structures. Preliminary characterisation of the AlN films indicate good stoichiom-

etry, with the piezoelectric properties evaluated by the unique application of an

Atomic Force Microscope of which the results have been accepted for publication

in an international journal.

In addition to the aforementioned major achievements, the author has also published

four papers in international conference journals of which have been included within

this thesis. The author’s list of publications are:

• G. I. Matthews, S. J. Ippolito, W. Wlodarski, and K. Kalantar-zadeh, “Electrical

parameter extraction of a Flexural Plate Wave device using the Finite Element

Method,” Proc. IEEE Ultrason. Symp., pp. 1136–1139, 2006.
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• G. I. Matthews, S. J. Ippolito, K. Kalantar-zadeh, W. Wlodarski, and A. S. Holland,

“Finite Element Modelling of Flexural Plate devices,” Conference on Optoelectronic

and Microelectronic Materials and Devices, (COMMAD), pp. 145–148, 2004.

• A. S. Holland, G. K. Reeves, G. I. Matthews, and P. W. Leech, “Finite Element

Modeling of misalignment in interconnect vias,” Conference on Optoelectronic and

Microelectronic Materials and Devices, (COMMAD), pp. 307–310, 2004.

• S. J. Ippolito, K. Kalantar-zadeh, W. Wlodarski, and G. I. Matthews, “The study of

ZnO/XY LiNbO3 layered SAW devices for sensing applications,” IEEE Sensors,

vol. 1, pp. 539–542, Oct. 2003.

• S. Sriram, M. Bhaskaran, K. T. Short, G. I. Matthews, and A. S. Holland, “Piezo-

electric response characterization using atomic force microscopy with standard

contact-mode imaging,” Micron, In Press.

In addition to the four published conference journal articles, the author presented his

novel approach to FPW analysis at the 2006 IEEE Ultrasonics Symposium, October 3-6,

Vancouver, Canada.

The remainder of this chapter summarises the work conducted by the author dur-

ing the course of this PhD program. Section 7.1 provides an overview of the author’s

work in the analysis of FPW structures for sensing applications. The author’s sugges-

tions for future work are discussed in Section 7.2.

7.1 Thesis Overview

This thesis was devoted to modelling Flexural Plate Wave devices for sensing applica-

tions in both gas and liquid media. Chapter 2 provided a critical review of four widely

used acoustic wave devices which can equally be applied to such tasks. Key perfor-

mance parameters were discussed for each device and when possible experimental

mass sensitivities quoted. It was shown that FPW structures are well suited to sensing

applications in liquid media due to their low phase velocity and therefore low reso-

nant frequency. The phase velocity of the primary two acoustic modes was shown to

be a function of both device membrane thickness and thin-film materials employed. By
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carefully designing the FPW device, the velocity of the primary antisymmetric mode

can be configured to be below that of the compressional velocity of a liquid medium,

therefore confining the acoustic energy to the device thereby potentially enhancing

sensitivity. Examples were given of FPW device performance parameters, where it

was illustrated that these structures can exhibit mass sensitivities up to 31 times greater

than widely used QCM devices, whilst operating a approximately the same frequency.

Chapter 2 also provided an insight into various modelling techniques for the analy-

sis of acoustic wave devices. The first series of techniques discussed focused on the

evaluation of basic device parameters such as phase velocity and electromechanical

coupling coefficient, whilst the second was concerned with FPW device frequency do-

main characteristics. A brief discussion was held on classical analysis techniques, such

as the potential method, to obtain basic properties for single layer structures comprised

of isotropic materials. It was found that such techniques could not be sufficiently mod-

ified for the author’s purpose. To alleviate this issue, two alternative approaches, the

transmission and stiffness matrix methods, were considered. The inherent instability of

the transmission matrix method was highlighted, however the cause of this inaccuracy

was discussed in detail later in Chapter 3. Noting the instability of the transmission

matrix method, particularly when applied to liquid loaded structures, the stiffness ma-

trix method was considered to solve the piezoelectric wave propagation problem. The

stiffness matrix method was shown to be based on the reformulation of the transmis-

sion matrix method and was further demonstrated to be inherently stable. The full

details of its implementation, particularly when analysing FPW structures, was dis-

cussed in Chapter 4.

The remainder of Chapter 2 considered conventional modelling techniques that

could be applied to evaluate the frequency domain characteristics of FPW devices. It

was found that a spectral domain Green’s function appeared to be the most promis-

ing, however the approach required slight modifications to operate with FPW devices.

The last technique introduced in Chapter 2, the Finite Element Method, formed the

basis of the author’s novel approach to the analysis of FPW devices. A discussion

of other researcher’s work was given, where it was found that current approaches

are based on the modal analysis of FPW structures, which ignores both the excita-



252 Chapter 7. Conclusion and Future Work

tion source and the piezoelectric properties of the materials employed. Furthermore,

existing models employed individual gates across the device membrane thickness to

excite the acoustic modes, rather than IDTs as utilised by the author. The author’s

approach extended on current FEM models by considering the piezoelectric nature of

the FPW structure and allowing the complete frequency response to be obtained dur-

ing a single simulation. The author has also further illustrated that the demonstrated

technique is capable of simultaneously modelling various second-order effects such as

diffraction,electromagnetic feedthrough and triple transit, which can typically not be

achieved using other accepted techniques.

Chapter 3 presented the commonly applied Transmission Matrix method and its

application to solving the piezoelectric wave propagation problem for multilayered

FPW structures. A brief review of stress, strain and piezoelectric constitutive equa-

tions was also given. The limiting assumptions for the transmission matrix method

were described. Even though the transmission matrix method suffered from an inher-

ent instability due to exponentially increasing partial mode wavenumbers, the method

served as a basic process to evaluate boundary conditions, dispersion characteristics

as well as electromechanical coupling coefficients. The instability of the transmission

matrix was discussed in detail, where examples were given for FPW structures large

frequency-thickness products and also complex material parameters. Due to the afore-

mentioned numerical instability the transmission matrix method was found unsuitable

for analysis of liquid loaded FPW structures.

Chapter 4 presented the recently developed Stiffness Matrix method which served

as a replacement for the transmission matrix method. The technique is known to be

inherently stable for large frequency-thickness produces as well as for structures con-

sisting of complex material parameters. Based on this method, particle displacement

profiles and mass sensitivity of multilayered FPW devices were calculated and com-

pared against simpler, commonly quoted single layer structures. Using the parameters

obtained from the stiffness matrix method, the frequency domain characteristics of a

FPW device was determined via a spectral domain Green’s function. The necessary

modifications to the spectral domain Green’s function to suit an FPW structure were

also discussed and implemented by the author. The combination of the stiffness matrix
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method and the spectral domain Green’s function served as a verification method for

the author’s novel approach to FPW device analysis presented in Chapter 5.

The author’s novel approach to the analysis of FPW devices, based on the conver-

gence of FEM with modified SAW analysis techniques and procedures, was presented

in Chapter 5. In this chapter, both three and two dimensional simulations were con-

ducted of various FPW structures. Initially a three dimensional simulation was devel-

oped to determine the electrostatic charge density and particle displacement profiles

of a multilayered FPW device. It was shown that the electrostatic charge density is not

constant along the electrode depth, which is a simplifying assumption made by most

other numerical techniques. The presented electrostatic analysis also illustrated the ca-

pability of the FEM to accurately model second-order effects such as electromagnetic

feedthrough and diffraction. To further gain an understanding of wave propagation

in a FPW structure, particle displacement profiles for a three dimensional device were

also presented. Here, it was shown that the shear displacement is several orders of

magnitude smaller than that of the transverse and longitudinal components, therefore

suggesting that a two dimensional approximation can be used to determine the fre-

quency domain characteristics of a FPW device.

Based on the three dimensional FPW device FEM results, a two dimensional FEM

FPW device was simulated. Several different structures were simulated, including de-

vices where the underlying silicon support was included, which is often neglected by

other modelling techniques. With the inclusion of the silicon support structure a mea-

surable shift, in both the resonant frequency and insertion loss was found, thereby pro-

viding a more realistic representation of a physical FPW device. To allow the frequency

domain characteristics of a FPW device to be calculated, several post-processing tech-

niques were applied to convert the FEM simulation output into a more usable form

typically used within the Ultrasonics community. In particular, the charge on the in-

put and output IDTs was evaluated which allowed key electrical parameters, such as

electromechanical coupling coefficient, input capacitance and admittance to be calcu-

lated. To the best of the author’s knowledge, this is the first time that essential per-

formance parameters have been determined for a FPW structure using the commercial

FEM package ANSYS 8.0. In terms of mechanical properties, the particle displacement
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profiles were evaluated for the primary antisymmetric and symmetric modes. The in-

fluence of the FEM package simulation parameters, such as node density, timestep and

simulation time were considered, which has resulted in a set of guidelines for mod-

elling FPW devices based on the author’s novel technique. To the best of the author’s

knowledge, the demonstrated technique could equally be applied to other acoustic

wave structures.

Chapter 6 considered the use of FPW devices for sensing applications in liquid me-

dia. Necessary additions to both the stiffness matrix method and FEM were discussed

to allow both techniques to be used for the analysis of liquid loaded FPW structures.

For the stiffness matrix method, the additional liquid layer was modelled as a semi-

infinite, which allowed many parallels to be drawn from established SAW analysis

techniques. The addition of a liquid layer required significant modification of the stiff-

ness matrix method, whereas for the FEM simulations, a dedicated fluid element was

added to the upper surface of the FPW device. To evaluate the frequency domain

characteristics of the liquid loaded FPW structure, the spectral domain Green’s func-

tion presented in Chapter 4 was applied and compared against the novel approach

developed by the author. It was found that the FEM simulation provided more reli-

able results than the spectral domain Green’s function in its current implementation,

when compared to devices presented in literature. The boundary conditions for a liq-

uid loaded FPW structure were considered, which allowed the particle displacement

profiles to be subsequently evaluated. An analysis was undertaken on the tightly cou-

pled surface wave, commonly termed a Scholte mode, which is often deemed respon-

sible for most sensing results in liquid media. The performance of a FPW structure

in liquid media was also discussed, based on the displacement profiles. The primary

antisymmetric mode, when subjected to liquid media, although being mainly trans-

verse in nature, is confined to the FPW membrane due to its low phase velocity when

compared to the compressional velocity of the applied liquid. As mentioned through-

out this thesis, the phase velocity of this mode is partially determined by the ratio of

acoustic wavelength to the membrane thickness, therefore the structure can be tailored

to an appropriate liquid media sensing application. As the primary antisymmetric

mode displacement is transverse in nature, this particular mode was found to be well
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suited to both density sensing applications. Conversely, for viscosity sensing applica-

tions, the primary symmetric mode can be applied provided both resonant frequency

and attenuation are measured. Furthermore, evaluation of the density-viscosity prod-

uct illustrated that a FPW structure has the potential to differentiate between these two

parameters. An in depth discussion was also held on the ability of FPW structures to

be used for mass sensing applications in liquid media, where it was shown that the

sensitivity of the S0 mode is largely unaffected by the presence of the liquid, whereas

for the A0 mode the sensitivity is greatly reduced. Chapter 6 concluded with a brief

discussion of the author’s attempt to fabricate a functional FPW device. Preliminary

material characterisation has shown that the deposited AlN thin film are stoichiomet-

ric, c-axis orientated and hence piezoelectric.

7.2 Future Work

The work undertaken in this thesis has focused on the modelling of FPW devices for

both gas and liquid media sensing applications. Throughout its development, several

assumptions were made to simplify the analysis. In this section, suggestions are made

to further develop and improve the techniques demonstrated by the author. Future

suggested work, particularly in the area of FEM analysis of acoustic wave structures,

is as follows:

• Electrode Influence. In all FEM simulations performed, the IDT electrodes were

simulated by coupling the electric potential for a given group of nodes. Thus,

by employing this approximation, the electrodes were assumed to be infinitely

thin therefore ignoring mass loading effects. In FPW devices where the electrode

metallisation can be a substantial percentage of the overall membrane thickness,

the mass loading effect should be considered. Further to the mass loading effect,

regeneration and reflections occur at the electrode locations, which can poten-

tially distort the spectral characteristics. It was also assumed that the electrodes

were infinitely conductive, which is an assumption made by most other simu-

lation techniques. The author believes that this effect could be included by an

additional coupling matrix, similar to that used for the fluid-solid interface prob-
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lem.

• FEM Material Parameters Another potential area for improvement relates to the

parameters used to define the structural and electrical behaviour of the material

models used during the FEM simulations. In the FEM simulations conducted,

materials were described by basic parameters such as density, stiffness, dielectric

and piezoelectric matrices. Further improvement of the FEM package is required

to incorporate material parameters such as resistivity, impurity doping levels and

thermal characteristics.

• FEM Simulated Sensitive Layers. In the developed FEM simulations, additional

sensitive layers were not added to the FPW structure. A wide range of potential

sensitive layers exist, ranging from metal oxide thin films to functional polymer

biolayers, each with unique geometries. In newly developed nanomaterials, such

as ZnO nanorods, the additional layer can no longer be assumed to be a homoge-

nous solid, rather clusters of randomly aligned structures. Improvement of the

FEM simulation software is required before these types of layers can be accu-

rately modelled.

• FEM Liquid Flow. In Chapter 6, it was assumed that the additional liquid layer

was constrained within a vessel, therefore no net flow existed. For typical sens-

ing applications in liquid media, the analyte under consideration is pumped in

through a series of microfluidic channels and hence the static assumption be-

comes invalid. Using a FLOWTRAN based technique, it may be possible to in-

clude the influence of liquid flow for the analysis of liquid loaded FPW structures

using the FEM. At the time of writing, the FEM software was unable to conduct

a piezoelectric/liquid flow based analysis, however this may have been rectified

in later releases of the software.

• Imperfect Interfaces.The FEM simulations have also assumed that all layers are

homogenous and the interface between layers is ideal, whereas in reality this is

not the case. Lattice defects cause mismatch of the films at the interface which

in turn can produce attenuation of the propagating acoustic modes. These effects

could be incorporated into the FEM simulations in a similar manner as employed



Chapter 7. Conclusion and Future Work 257

in the stiffness matrix method, where a fictional lossy material is added between

the actual physical layers. Although a viable solution, the added layer would be

quite thin and thus there could be potential issues with the automated meshing

processes. A superior approach would be the inclusion of a loss parameter at the

layer interfaces, however this was not available in the FEM package used by the

author.

• High Aspect Ratio Devices. Another difficulty when modelling micron size

structures is the relatively high aspect ratios. The commercial FEM software em-

ployed was not specifically designed for the analysis of thin film structures, thus

potential issues could have arisen when forming the element mesh. In particular,

it was not possible to determine the mass sensitivity of the structure by the ad-

dition of a fictional layer, whose thickness is typically less than 1 × 10−12m. The

author did attempt to add a 0.1µm mass layer, however meshing errors were gen-

erated by the FEM package. Therefore, to obtain mass sensitivity directly from

the FEM software, the same approach used in Section 4.3.2 could be employed.

• Spectral Domain Green’s Function for Liquid Media Analysis. It was also

shown in Chapter 6 that the spectral domain Green’s function, at least in its cur-

rent form, was unable to accurately determine the insertion loss characteristics of

a liquid loaded FPW structure. It is believed that this inaccuracy is caused by the

evaluation of the piezoelectric coupling value GFPW . A further study is required

to confirm the source of the error, however this is beyond the scope of this thesis.

Once rectified, the modified technique could be compared to the FEM approach

used by the author.

• Influence of Electrical Ground Plane. Throughout the presented analysis of

FPW devices using both the transmission and stiffness matrix methods, the in-

fluence of the electrical ground plane was ignored. When compared against the

results obtained via the FEM, no significant deviation was found, however for

correctness the electrical properties of the layer should be included in the calcu-

lation of the mode phase velocities and wavenumbers.

• FPW Device Fabrication and further FEM Result Verification In this thesis, the
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author has successfully demonstrated a novel approach to the analysis of FPW

devices based on the convergence of the FEM with classical SAW analysis tech-

niques and related procedures. Excellent agreement has been obtained when

compared to more conventional modelling techniques such as the stiffness ma-

trix method and the spectral domain Green’s function. However, to further verify

the author’s approach, a functional FPW device should be fabricated to experi-

mentally confirm the calculated results. Although preliminary materials charac-

terisation has shown that the deposited AlN is correctly orientated further work

is required to reduce the intrinsic stress within the film to reduce buckling of the

FPW device membrane. The author believes that modification of the deposition

parameters should alleviate this issue. Once rectified, the IDTs can be patterned

via a lift-off technique to realise a functional FPW device.
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Appendix A

FPW Device Transmission Matrix

Boundary Conditions

Based on the parameters of Table 3.2 the four alternative boundary conditions can

be obtained for the Transmission Matrix method. This section provides the essential

boundary determinants used to solve the piezoelectric wave propagation problem for

a multilayered FPW structure.

Recall from equation 3.26, the wave propagation problem can be described in terms

of the 8× 8 transmission matrix, and the state vector τ as:
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(A.1)

For the four unique electrical boundary conditions, equation A.1 in conjunction with

Table 3.2 is used to form the appropriate equations. In all cases, the normal stress on

both sides of the structure is assumed to be zero, Tz
u = Tz

l = 0, which greatly simplified

the determinant. The remaining two boundary conditions are therefore based on the

assumed electrical state of the FPW structure.
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Bottom Surface (Layer 1) Open-Circuit, Top Surface (Layer n) Open-Circuit

Under the conditions of zero normal stress at both external surfaces and open-circuit

electrical conditions, equation A.1 can be written as:

φ15v1 l + φ16v2 l + φ17v3 l + φ18jωϕl = 0 (A.2a)

φ25v1 l + φ26v2 l + φ27v3 l + φ28jωϕl = 0 (A.2b)

φ35v1 l + φ36v2 l + φ37v3 l + φ38jωϕl = 0 (A.2c)

φ45v1 l + φ46v2 l + φ47v3 l + φ48jωϕl = 0 (A.2d)

ie. D3 = 0, Tz
u = Tz

l = 0 leaving,

v1u = φ55v1 l + φ56v2 l + φ57v3 l + φ58jωϕl (A.3a)

v2u = φ65v1 l + φ66v2 l + φ67v3 l + φ68jωϕl (A.3b)

v3u = φ75v1 l + φ76v2 l + φ77v3 l + φ78jωϕl (A.3c)

jωϕu = φ85v1 l + φ86v2 l + φ87v3 l + φ88jωϕl (A.3d)

To satisfy equation A.3, the determinant of the coefficients in equation A.2 must be

zero. Thus, for the both layers to be open-circuit, the following condition must be

satisfied:

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ18

φ25 φ26 φ27 φ28

φ35 φ36 φ37 φ38

φ45 φ46 φ47 φ48

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (A.4)
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Bottom Surface (Layer 1) Open-Circuit, Top Surface (Layer n) Short-Circuit

Under the conditions of zero normal stress at both external surfaces, with bottom sur-

face open circuit whilst the top surface is short-circuit, it is convenient to switch the

position of the dielectric displacement vector D3 and the scalar potential, jωϕ in equa-

tion A.1 (interchange columns 8 and 4). This allows the same computational procedure

to be utilised for all alternative boundary conditions. After substituting the appropri-

ate boundary conditions, the modified version of equation A.1 can be written as:

φ15v1 l + φ16v2 l + φ17v3 l + φ18jωϕl = 0 (A.5a)

φ25v1 l + φ26v2 l + φ27v3 l + φ28jωϕl = 0 (A.5b)

φ35v1 l + φ36v2 l + φ37v3 l + φ38jωϕl = 0 (A.5c)

φ85v1 l + φ86v2 l + φ87v3 l + φ88jωϕl = 0 (A.5d)

ie. jωϕu = 0, Tz
u = Tz

l = 0, D3l = 0 leaving,

v1u = φ55v1 l + φ56v2 l + φ57v3 l + φ58jωϕl (A.6a)

v2u = φ65v1 l + φ66v2 l + φ67v3 l + φ68jωϕl (A.6b)

v3u = φ75v1 l + φ76v2 l + φ77v3 l + φ78jωϕl (A.6c)

D3u = φ45v1 l + φ46v2 l + φ47v3 l + φ48jωϕl (A.6d)

To satisfy equation A.6, the determinant of the coefficients in equation A.5 must be

zero. Thus, for the bottom surface to be open-circuit and the upper surface to be elec-

trically short, the following condition must be satisfied:

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ18

φ25 φ26 φ27 φ28

φ35 φ36 φ37 φ38

φ85 φ86 φ87 φ88

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (A.7)
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Bottom Surface (Layer 1) Short-Circuit, Top Surface (Layer n) Open-Circuit

Under the conditions of zero normal stress at both external surfaces, with bottom sur-

face short-circuit whilst the top surface is open-circuit, it is convenient to switch the

position of the dielectric displacement vector Dl
3 and the scalar potential, jωϕl in equa-

tion A.1 (interchange rows 8 and 4). This allows the same computational procedure to

be utilised for all alternative boundary conditions. After substituting the appropriate

boundary conditions, the modified version of equation A.1 can be written as:

φ15v1 l + φ16v2 l + φ17v3 l + φ14D3 l = 0 (A.8a)

φ25v1 l + φ26v2 l + φ27v3 l + φ24D3 l = 0 (A.8b)

φ35v1 l + φ36v2 l + φ37v3 l + φ34D3 l = 0 (A.8c)

φ45v1 l + φ46v2 l + φ47v3 l + φ44D3 l = 0 (A.8d)

ie. D3u = 0, Tz
u = Tz

l = 0, jωϕl = 0 leaving,

v1u = φ55v1 l + φ56v2 l + φ57v3 l + φ54D3 l (A.9a)

v2u = φ65v1 l + φ66v2 l + φ67v3 l + φ64D3 l (A.9b)

v3u = φ75v1 l + φ76v2 l + φ77v3 l + φ74D3 l (A.9c)

jωϕu = φ85v1 l + φ86v2 l + φ87v3 l + φ84D3 l (A.9d)

To satisfy equation A.9, the determinant of the coefficients in equation A.8 must be

zero. Thus, for the bottom surface to be short-circuit and the upper surface to be elec-

trically open, the following condition must be satisfied:

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ14

φ25 φ26 φ27 φ24

φ35 φ36 φ37 φ34

φ45 φ46 φ47 φ44

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (A.10)
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Bottom Surface (Layer 1) Short-Circuit, Top Surface (Layer n) Short-Circuit

Under the conditions of zero normal stress and electrical shorts at both external sur-

faces, it is convenient to switch the position of the dielectric displacement vector D3l, D3u

and the scalar potential, jωϕl, jωϕu in equation A.1 (interchange rows 8 and 4, inter-

change columns 8 and 4). This allows the same computational procedure to be utilised

for all alternative boundary conditions. After substituting the appropriate boundary

conditions, the modified version of equation A.1 can be written as:

0 = φ15v1 l + φ16v2 l + φ17v3 l + φ14D3 l (A.11a)

0 = φ25v1 l + φ26v2 l + φ27v3 l + φ24D3 l (A.11b)

0 = φ35v1 l + φ36v2 l + φ37v3 l + φ34D3 l (A.11c)

0 = φ85v1 l + φ86v2 l + φ87v3 l + φ84D3 l (A.11d)

ie. jωϕl, jωϕu = 0, Tz
u = Tz

l = 0, leaving,

v1u = φ55v1 l + φ56v2 l + φ57v3 l + φ54D3 l (A.12a)

v2u = φ65v1 l + φ66v2 l + φ67v3 l + φ64D3 l (A.12b)

v3u = φ75v1 l + φ76v2 l + φ77v3 l + φ74D3 l (A.12c)

D3 u = φ45v1 l + φ46v2 l + φ47v3 l + φ44D3 l (A.12d)

To satisfy equation A.9, the determinant of the coefficients in equation A.8 must be

zero. Thus, for the both surfaces to be electrically short-circuit, the following condition

must be satisfied:

det

∣∣∣∣∣∣∣∣∣∣∣∣

φ15 φ16 φ17 φ14

φ25 φ26 φ27 φ24

φ35 φ36 φ37 φ34

φ85 φ86 φ87 φ84

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (A.13)
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Appendix B

FPW Device Green’s Function Boundary

Conditions

Based on the parameters listed in Table 4.1 the piezoelectric wave propagation problem

can be solved by considering the determinant of the generalised Green’s function. This

section illustrates the boundary scan determinants used to solve the wave propagation

for the four distinct electrical boundary conditions of a FPW structure.

Bottom Surface (Layer 1) Open-Circuit, Top Surface (Layer n) Open-Circuit

Assumed Boundary Conditions:

γu = γl = 0 (B.1a)

σu = σl = 0 (B.1b)

det

∣∣∣∣∣∣∣∣∣∣∣∣

Kf
11 Kfe

11 Kf
12 Kfe

12

−Kef
11 θ + Ke

11 −Kef
12 −Ke

12

Kf
21 Kfe

21 Kf
22 Kfe

22

Kef
21 Ke

21 Kef
22 Ke

22 − θ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (B.2)

Bottom Surface (Layer 1) Short-Circuit, Top Surface (Layer n) Open-Circuit

Assumed Boundary Conditions:

ϕl = 0 (B.3a)

γu = 0 (B.3b)

σu = σl = 0 (B.3c)
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det
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22 (Ke

22 − θ) +
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= 0 (B.4)

Bottom Surface (Layer 1) Open-Circuit, Top Surface (Layer n) Short-Circuit

Assumed Boundary Conditions:

γl = 0 (B.5a)

ϕu = 0 (B.5b)

σu = σl = 0 (B.5c)

det

∣∣∣∣∣∣∣∣∣∣∣∣
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Kfe
21 − Kfe
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22K
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22−θ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (B.6)

Bottom Surface (Layer 1) Short-Circuit , Upper Surface (Layer n) Short-Circuit

Assumed Boundary Conditions:

ϕu = ϕl = 0 (B.7a)

σu = σl = 0 (B.7b)

When both sides of a FPW are metalised, the boundary determinant is significantly

more complex. To simplify the calculation procedure, the following substitutions are

made:

σuu
u = − Kfe

11

θ + Ke
11

(−Kef
11 −

Ke
12(−Ke

21K
ef
11 −Kef

21(θ + Ke
11))

(θ + Ke
11)(K

e
22 − θ) + Ke

21K
e
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Kfe
12(−Ke

21K
ef
11 −Kef
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(θ + Ke
11)(K

e
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21K
e
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21K
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12 −Kef

22(θ + Ke
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11)(K

e
22 − θ) + Ke

21K12e
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11
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12 −

Ke
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21K
ef
12 −Kef
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e
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21K
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e
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e
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Kfe

11 Ke
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11)(K

e
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21K
e
12
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φuu
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Equations B.8 to B.11 are then used to form the boundary scan determinant matrix,

equation B.12 which must be satisfied to identify a propagating mode.

det

∣∣∣∣∣∣∣∣∣∣∣∣

σuu
u σul

u σγu
u σγl

u

φuu
u φul

u φγu
u φγl

u

σuu
l σul

l σul
l σγl
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l φγu

l φγl

l

∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (B.12)
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Appendix C

Material Properties

To enable the work undertaken by the author to be repeated, it is essential that all

material constants are consistent. Table C.1 lists the material properties used for all

simulations within this thesis. The constants are presented in the standard IEEE form,

therefore in the case of anisotropic materials, must be rotated to the correct orientation.

Only independent constants are listed, where complete relationships can be found in

[102]. A ’−’ symbol indicates that constant is not independent, however this does

not infer that it is zero. For piezoelectric materials, stiffness constants are evaluated

at constant electric field, whilst the dielectric components are evaluated at constant

strain.
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Table C.1: Material constants - IEEE Standard

Material Source Symmetry Density Stiffness (1010 N/m2)

Class (kg/m3) cE
11 cE

12 cE
13 cE

33 cE
44

ZnO [169] 6mm 5720 15.7 8.9 8.3 20.8 3.8

AlN [170] 6mm 3260 34.5 11.25 12.0 39.5 11.8

Si [102] m3m 2332 16.57 6.39 - - 7.97

Au [102] Isotropic 19300 20.7 - - - 2.85

Al [102] Isotropic 2695 11.1 - - - 2.5

Si3N4 [171] 2700 16.0 - - - 5.5

Water [172] Isotropic 997 κ = 2.24×109N/m2, θ = 8.9×10−4Ns/m2

Material Piezoelectric Constants (C/m2) Permittivity

e15 e22 e31 e33 εS
11/ε0 εS

33/ε0

ZnO -0.48 - -0.573 1.32 8.55 10.2

AlN -0.48 - -0.58 1.55 8.0 9.5

Si 0 11.7 -

Au 0 - -

Al 0 - -

Si3N4 0 7.5 -

Water 0 80.36 -
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