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Abstract

Topology optimisation techniques help designers to find the best layout of

structural members. When followed by shape and sizing optimisation, these

techniques result in far greater savings than shape and sizing optimisation

alone. During the last three decades extensive research has been carried

out in the topology optimisation area. Consequently topology optimisation

techniques have been considerably improved and successfully applied to a

range of physical problems. These techniques are now regarded as invaluable

tools in mechanical, aerostructural and structural design.

In spite of great potential in geomechanical problems, however, the appli-

cation of topology optimisation techniques in this field has not been studied

thoroughly. This thesis explores the state-of-the-art topology and shape op-

timisation methods in excavation design. The main problems of concern in

this thesis are to find the optimum shape of an underground opening and to

optimise the reinforcement distribution around it. To tackle these problems,

new formulations for some topology optimisation techniques are proposed in

this thesis to match the requirements in excavation problems.

Although linear elastic material models have limited applications in ex-

cavation design, these models are used in the first part of this thesis to

introduce the proposed optimisation technique and to verify it. Simultane-

xii



ous shape and reinforcement optimisation is considered as well. Using the

proposed optimisation techniques, it is shown that the computational effort

needed for this mixed optimisation problem is almost the same as the effort

required to solve each of shape or reinforcement optimisation problems alone.

In the next part of this thesis, reinforcement optimisation of tunnels in

massive rocks is addressed where the behaviour of the rock mass is influenced

by few major discontinuities. Although discontinuities exist in the majority of

rock masses, due to its complexities, optimising the excavations in these types

of rocks has not been considered by any other researcher before. A method for

reinforcement optimisation of tunnels in such rock masses is proposed in this

thesis and its capability is demonstrated by means of numerical examples.

Lastly, shape optimisation of excavations in elasto-plastic soil is addressed.

In this problem the excavation sequence is also taken into account. A stress-

based parameter is defined to evaluate the efficiency of the soil elements

assuming Mohr-Coulomb material model. Some examples are solved to illus-

trate and verify the application of the proposed technique.

Being one of the first theses on the topic, this work concentrates on the

theoretical background and the possibility of applying topology optimisation

techniques in excavation designs. It has been demonstrated that a prop-

erly tailored topology optimisation technique can be applied to find both the

optimum shape and the optimum reinforcement design of openings. Opti-

mising the excavations in various types of grounds including elastic homo-

geneous rock masses, massive rocks, and elasto-plastic soil and rock media

have been considered. Different objective functions, namely, mean compli-

ance, floor heave, and tunnel convergence have been selected and successfully

xiii



minimised using the proposed techniques. The results obtained in this thesis

illustrate that the proposed topology optimisation techniques are very useful

for improving excavation designs.

xiv



C H A P T E R 1

Introduction

The goal of engineering is economical; its method is scientific.

The goal and the method clearly place engineering in a position

between economics and science.

Greber 1966

1.1 Optimisation and engineering

Science’s goal is understanding natural phenomena and ultimately predicting

future of a system given its current situation. In scientist’s point of view when

such a prediction is possible the problem is no more a problem. However in

the engineering world it is just after this level when comes the real engineering

task: dealing with problems like environmental considerations, practicability,

and profitability. which all are directly or indirectly connected to economical

issues. In the world, the resources are limited while the demand is increasing.

Nowadays unlike old ages, economical considerations limit us more than our

shortage of knowledge. If we don’t construct a 5000m tall sky-scraper it is

usually not because we don’t know how to design it but mainly because of

economical, social, and environmental issues which can all be translated in a

1
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form of “cost”.

In translating physical phenomena to mathematical language one usually

ends up with a partial differential equation or simply a PDE. Economical

considerations in engineering, on the other hand, usually manifest themselves

as optimisation problems. In design process the engineer should seek for the

best possible solutions which need the least resources, yet respond well. This

process can be translated as a constrained optimisation where the goal is

to minimise or maximise a function or a group of functions subject to some

limitations. Solving optimisation problems are hence at the very heart of

engineering practise. Optimisation problems do not appear only in designing.

An engineer might come across optimisation problems in other engineering

practises such as construction and maintenance as well.

In civil engineering, just like the other fields of engineering, optimisation

has been widely used to improve designs. Selecting the best route for a

road between two cities, designing the stiffest structure under certain loading

conditions, and finding the best system to support a pre-stressed concrete

bridge, are few examples of the application of optimisation in civil engineering

discipline.

Dating back to the time of Newton, optimisation is not a new field. How-

ever the development of the state-of-the-art optimisation techniques is due

to the revolutionary advancement of the high-speed computers (Rao 1996).

Nowadays there are several optimisation techniques available, each having

its own benefits and limitations, is suitable for special kind of problems. Ge-

netic algorithms (GA) for instance, can usually yield the global optimum,

but are computationally very expensive to implement. Linear programming
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techniques, as another example, although fast and easy to implement, are

only suitable for a very limited type of problems. Therefore deciding which

method to use is an important part of solving an optimisation problem.

1.2 Different levels of optimisation

Pahl and Beitz (1988) divide the design process into four main phases,

namely: Clarification of the task, Conceptual design, Embodiment design,

and Detail design.

The first phase involves information collection and defining specifications

and/or requirements. In conceptual design stage one should establish the

function structure, combine suitable solution principles into concept variants,

and finally select the best solution concept. In embodiment design phase,

starting from the concept, the designer should select the best preliminary

layout and then provide a definitive layout by optimising the forms. The

final stage consists of selecting the best dimensions, arrangements, and forms

of individual components (Pahl and Beitz 1988).

Similar to design process, the optimisation process can also be divided

into different levels. In the conceptual and embodiment design phases one

may use Topology Optimisation. Topology optimisation aims to find the

best topology, layout or configuration of the members within a basic design

domain fulfilling some constraints and limitations. After this level one can

employ Shape Optimisation methods in order to find the best shapes and

forms of the components of the system within the predefined topology which
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has been found in previous stages. In detail design stage Sizing Optimisation

methods can be found useful in order to find the optimum dimensions of the

components whose shapes have already been selected (Hassani and Hinton

1999).

In simple words, sizing optimisation tries to find the best dimensions of

members with fixed shapes. Shape optimisation helps the designers to find

the best shape of members within a fixed topology. And topology optimi-

sation tries to find the best topology within a design domain. A schematic

illustration of the concept of these three levels of optimisation in a structural

system is depicted in Figure 1.1.

(a)

(b)

(c)

Figure 1.1 The three levels of optimisation: a) Topology optimisation; b)
Shape optimisation; c) Sizing optimisation.
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The considerable improvements in computational abilities of digital com-

puters has changed the traditional trial and error design process drastically.

Several numerical optimisation techniques have since been developed and im-

proved continuously (Hassani and Hinton 1999; Ghabraie 2005). In structural

design, among different levels of optimisation, sizing optimisation problems

have been studied earlier. Finding the best cross area of a member in a

truss or optimising the dimensions of the cross section of an I beam are

examples of applying sizing optimisation in structural design. This was fol-

lowed by research studies on shape optimisation techniques. Problems like

finding the best shape of a hole in a loaded plate have been tackled by imple-

menting shape optimisation techniques. Topology optimisation techniques,

due to the complexity of the topology optimisation problems, have been de-

veloped more recently. Nevertheless in the past 20 years these techniques

have attracted great attention and numerous research papers have been pub-

lished in this area. Finding the best topology of a short cantilever beam

in a rectangular design domain is one of the classical problems that can be

solved by state-of-the-art topology optimisation techniques in structural de-

sign. Apart from structural engineering, topology optimisation techniques

have been also used in material design, designing MicroElectroMechanical

Systems (MEMS), and wave propagation problems among others (Bendsøe

and Sigmund 2003). Most of the topology optimisation techniques can also

be applied to shape optimisation or even sizing optimisation problems.
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1.3 Topology optimisation in geomechanics

In geomechanical design there are many cases where topology or shape op-

timisation may be found helpful. Finding the best shape of an underground

excavation to maximise stability, optimising the shape of the clay core of

an earth dam to minimise seepage, and finding the best layout of piles in

a raft-pile foundation minimise settlement are just few examples showing

the potential applicability of topology and shape optimisation techniques in

geomechanical engineering. Despite this great potential, however, only a

few works have explored the application of these optimisation methods in

geomechanics.

In underground excavations, just recently, a few attempts have been made

to optimise the shape of the opening or the reinforcement around it. Ren et al.

(2005) employed the Evolutionary Structural Optimisation (ESO) method to

optimise the shape of underground openings. Yin et al. (2000) optimised the

reinforcement topology around an underground tunnel using a method called

the homogenisation method. Yin and Yang (2000a) used another topol-

ogy optimisation method named Solid Isotropic Material with Penalisation

(SIMP) to find the best reinforcement design of tunnels in layered geolog-

ical structures. This approach was also used by Yin and Yang (2000b) to

minimise tunnel heaves. Liu et al. (2008) addressed a similar problem using

a different method. They implemented fixed grid finite element framework

and used Bidirectional Evolutionary Structural Optimisation (BESO) tech-

nique to solve their optimisation problem. A review of these research works

is presented in Chapter 3. Before that, the numerical methods used in these



Chapter 1 Introduction 7

studies are covered in detail in Chapter 2.

Applying topology and shape optimisation techniques to geomechanical

design problems is not as straightforward as in structural design problems.

The complex behaviour of natural materials like rock and soil, compared

to well-known behaviour of manufactured materials, introduces modelling

problems in finite element analysis. The existence of discontinuities such as

joints, fractures, and bedding planes makes the rock mass anisotropic and

inhomogeneous. The loading sequence can also be quite different in geotech-

nical problems in comparison to structural design. In structural design the

members are manufactured into their final shapes before being installed and

taking the loads. In excavation design, on the other hand, a change in the

shape of the opening, during the excavation process, causes stress relief in

the surrounding ground and thus alters loading conditions.

There are also some convergency and stability issues in topology and

shape optimisation techniques especially when one deals with two-material

design problems. This is the case for reinforcement optimisation of a tunnel

where the two material phases are the host rock and the reinforced rock.

Controlling these numerical instabilities can be difficult and need special

considerations.

In this thesis these difficulties are addressed and some approaches are

proposed to overcome them. Attempts are made to improve the shortcomings

of the aforementioned initial research works and possibly take a further step

in applying the state-of-the-art topology and shape optimisation techniques

in geotechnics. However this area is still very new and this work is not

claiming to cover the whole or even a major part of it. Geotechnical engineers
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might find the numerical models too simplified or the optimisation methods

too theoretical for practical use. It needs to be noted, however, that in the

first step one has no choice rather than dealing with the most simplified

problems leaving the complicated ones to after further studies. This thesis

tries to propose a systematic approach to tackle the complexities involved in

excavation design problems. The author believes that following the proposed

approach it is possible to optimise more complicated and detailed models. It

is hoped that this work will open a path to more comprehensive and more

practical research studies in this area in the future.

1.4 Layout of the thesis

The next chapter introduces the state-of-the-art topology and shape opti-

misation techniques. Different methods in the literature are explained with

special emphasis on the more commonly used material distribution based

methods. The chapter addresses advantages and disadvantages of different

techniques.

The third chapter provides an overview of underground excavation design.

The usual techniques are reviewed and the issues regarding the numerical

modelling of the problems are discussed. At the end of the chapter the

previous works in applying topology optimisation techniques in underground

excavation design are reviewed.

The fourth chapter discusses the special requirements in excavation de-

sign problems and proposes a topology optimisation techniques tailored to
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match these requirements. Some improvement to overcome numerical in-

stabilities in multi-material design problems are presented in this chapter.

Considerations for shape optimisation problems are discussed. The effect of

different algorithmic parameters are investigated as well.

The remaining chapters are devoted to the results achieved by imple-

menting the proposed techniques. This starts from the simplest problems

and gradually some complexities are introduced. Shape and reinforcement

optimisation of tunnels in linear elastic ground, reinforcement optimisation

of excavations in massive rocks with discontinuities, and optimising the shape

of underground openings in elaso-plastic soil are the key problems which are

covered.



C H A P T E R 2

Topology optimisation techniques

The art of structure is how and where to put holes.

Le Ricolais 1973

2.1 Brief history

Topology optimisation techniques can be divided into two groups (Rozvany

2001; Eschenauer and Olhoff 2001):

B Topology optimisation of truss-like structures where the material vol-

ume is far smaller compared to the size of the design domain (low

volume fractions) and the design domain is of discrete nature

B Topology optimisation of continuum structures where the material vol-

ume is a considerable ratio of the design domain (higher volume frac-

tions) and the design domain is continuous

The earlier studies were focused on the former class. Dating some one and a

half century back, Culmann (1866) tried to find the optimum layout of trusses

to carry specified loads (Prager 1974). More than a hundred years back

Michell (1904) laid down the principles of topology optimisation of structures

10
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with very low volume fractions. His theory describes the optimum layouts

of a truss-like continuum with infinite bars of infinitesimal size minimising

the weight. After nearly seven decades Michell’s theory was generalised and

significantly improved by works of Prager (1969, 1974), Rozvany (1972a,b),

and Rozvany and Prager (1976).

Layout optimisation in continuum structures started with works of Cheng

and Olhoff (1981) on solid elastic plates. This was followed by some research

studies on optimising elastic perforated plates by e.g. Lurie et al. (1982)

and Kohn and Strang (1986). In these works non-homogeneous perforated

microstructures were used to model the design domain. The material char-

acteristics and orientation of these microstructures were taken as control

variables.

Yet no practical approach to topology optimisation was proposed until

two decades ago when Bendsøe and Kikuchi (1988) introduced their method.

They used the homogenised properties of microstructures in finite element

analysis and reduced the topology optimisation problem to a sizing opti-

misation problem. A different and simple FE-based topology optimisation

technique was then proposed by Xie and Steven (1993). This method em-

ployed an evolutionary procedure to gradually remove the inefficient parts

of the design domain. These two works started a new era in state-of-the-

art topology optimisation and attracted numerous researchers to the field.

Since then topology optimisation techniques have been developed and grown

rapidly until now.

In geomechanical problems the design domain is a continuum, hence

topology optimisation of truss-like structures will not be used or explained
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in this thesis.

2.2 Defining topology

In topology optimisation the topology of the design domain should change.

This means the produced shapes should have the freedom to be not homeo-

morphic to each other. Hence using conventional methods in shape optimisa-

tion, like changing the boundaries, can not be used in topology optimisation.

In topology optimisation of continuum structures the design variables are

selected in such a way that without the need of substantial re-meshing dif-

ferent topologies can be achieved by changing these variables. To define the

topology of continuum structures, two approaches are mainly used (Ghabraie

2005). The first approach is to use material properties as control variables.

In this case the topology can be defined by the material distribution. In the

second approach a surface (or a hyper-surface in three dimensional problems)

is defined over the design domain. A cut-off plane will pass this surface at a

certain level. The topology is then defined as the projection of the parts of

the surface above the cut-off plane on the design domain. These approaches

are discussed in the next two sections.

2.2.1 Topology as material distribution

Defining topology as material distribution was the first and is still the most

common approach to define the topology. The first two pioneering works of

Bendsøe and Kikuchi (1988) and Xie and Steven (1993) were both based on
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this approach.

In this approach a function or a group of functions are defined on a

fixed design domain. These functions specify the material properties (usu-

ally modulus of elasticity) of every point in this fixed domain based on the

values of design variables. We refer to these functions as material distribution

functions. In special cases these functions may be referred to as material in-

terpolation schemes (Bendsøe and Sigmund 1999; Stolpe and Svanberg 2001).

If modulus of elasticity of a point approaches zero it can be deduced that

there is no material in that point. Or there is a hole in that location. Hence

this approach has the ability to change the topology of the design domain

without re-meshing. In this approach, modifications in design variables will

change the material distribution over the domain of interest. That is why

this approach is known as material distribution.

Different classes of topologies can be achieved via material distribution

definition. Rozvany (2001) has divided these topologies into three cate-

gories, i.e. Isotropic-Solid/Empty (ISE), Anisotropic-Solid/Empty (ASE),

and Isotropic-Solid/Empty/Porous (ISEP) topologies.

ISE topologies

Suppose that a given domain is discretised into a finite number of cells. In an

ISE topology each of these cells can either be empty or filled with an isotropic

material. There are also the cases of multi-material design problems where

the filling material can be chosen from two or more available materials. Note

that within a domain containing a finite number of elements, the number of
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possible ISE topology designs is a finite number.

Figure 2.1 shows some possible ISE topologies for a simple design domain.

The domain consists of 3 × 5 similar elements. The 5 elements on the left

edge have their left nodes fixed. A vertical point load is applied on the

mid-point of the right edge of the middle element in the right side of the

domain (Fig. 2.1a). The amount of material to be used is restricted to one-

third of the domain’s size (or 5 elements). The objective is to minimise the

displacement of the loaded point.

The solution depicted in Figure 2.1b is infeasible as it will not transmit

the load to the given support. Solutions illustrated in Figure 2.1c-f are all

feasible and Figure 2.1c is the optimal solution.

The mathematical expression of this minimisation problem can be stated

as

min
x1,x2,...,xN

uf2 (2.1a)

such that
N∑
i=1

xive = 5ve; (2.1b)

Ei = xiEm, i = 1, 2, . . . , N (2.1c)

xi ∈ {0, 1}, i = 1, 2, . . . , N (2.1d)

where uf2 is the second component (vertical component) of the displace-

ment at the loaded point (the objective function). N is the number of el-

ements (here 15). The statement in (2.1d) states that the design variables

x1, x2, . . . , xN can take binary values of 0 or 1. In (2.1c) Em is the modulus of

elasticity of the considered isotropic material. Here the modulus of elasticity
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Figure 2.1 An example showing some possible ISE topologies for a simple
problem: a) problem statement; b) an infeasible design; c) optimal design;
d-f) three feasible but non-optimal solutions.
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of the i-th element (Ei) is defined as a function of the element’s design vari-

able (xi). This function is the material distribution function in this problem.

By looking at (2.1c) and (2.1d) one can state that the values of 0 and 1 for

the design variables are associated to void and filled elements respectively.

The equality condition in (2.1b) restricts the volume of the using material

to the volume of 5 elements. In this expression ve is the volume of a single

element.

ASE topologies

If the material in use is not isotropic, one will end up in an ASE topology. In

this class the number of changing material properties within each element are

more than one. The material orientation and the components of the rigidity

tensor Eijkl need to be specified in each solid element. A schematic ASE

solution for the simple problem in Figure 2.1a is illustrated in Figure 2.2.

Figure 2.2 An example showing an ASE topology.

The mathematical expression of the problem involving ASE topologies
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will take the following form

min
x1,x2,...,xN
y1,y2,...,yN
z1,z2,...,zN

uf2 (2.2a)

such that
N∑
i=1

vi ≤ v̄; (2.2b)

Ei
klmn = fklmn(xi, yi, zi), i = 1, 2, . . . , N (2.2c)

θi = g(xi, yi, zi), i = 1, 2, . . . , N (2.2d)
xi ∈ [xmin, xmax]

yi ∈ [ymin, ymax]

zi ∈ [zmin, zmax]

, i = 1, 2, . . . , N (2.2e)

In ASE class the number of design variables are greater than the number

of elements. Here for any element i three independent design variables have

been assumed (i.e. xi, yi, zi). The volume constraint is defined in (2.2b). An

inequality condition has been used which states that the volume of the ma-

terial used should not exceed the predefined value of v̄. The equations (2.2c)

and (2.2d) define the material distribution functions. θi is the orientation of

the material within element i and Ei
klmn are entries of the element’s rigidity

tensor. Note that in general case any material property in an element is a

function of all design variables of that element. However it is straightforward

to assume that each design variable is controlling a specific material property.

For example one can assume Ei
1111 = f1(xi), E

i
2222 = f2(yi), and θi = g(zi).

The conditions in (2.2e) are usually referred to as box constraints. These

conditions define the minimum and maximum of each controlling variable.
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In ASE topologies at least one variable (orientation) need to change contin-

uously. Hence the number of definable ASE topologies for a problem (even

with finite number of elements) is infinite.

ISEP topologies

One might use an isotropic material to build some microstructures with some

holes inside them. Then instead of filling elements with the solid material

these porous microstructures can be used as filling material. In this case

the mechanical properties of the filled elements can be calculated through

homogenisation theory. Apparently the elements in macroscopic scale will

not be necessarily isotropic any more. The resulted topology is then an

ISEP topology. An example of ISEP topologies is shown in Figure 2.3.

Figure 2.3 An example showing an ISEP topology.

In this figure it is assumed that the microscale holes are of square shape.
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The mathematical representation of the problem then can be expressed as

min
a1,a2,...,aN
θ1,θ2,...,θN

uf2 (2.3a)

such that
N∑
i=1

vi ≤ v̄; (2.3b)

Ei
klmn = fklmn(ai), i = 1, 2, . . . , N (2.3c)
ai ∈ [0, ā]

θi ∈ [−π
2
, π

2
]

, i = 1, 2, . . . , N (2.3d)

where ai and θi are the microscale hole dimension and the orientation of

the microstructures in the i-th element respectively. Here the orientations

themselves have been taken as design variables. The material distribution

functions are defined in (2.3c). In the box constraints (2.3d) the lower limit

of 0 for a represents the solid case. The upper limit ā is associated to the

case when the hole expands to the whole microstructure and hence represents

void. In intermediate values a porous material will be resulted. Note that

in ISEP topologies the design variables are continuous, so like ASE class, an

infinite number of topologies are imaginable.

2.2.2 Topology as a level set

Another way of defining topology is using level set model (Wang et al. 2003;

Yulin and Xiaoming 2004; Belytschko et al. 2003). Having a scalar function

φ a level set of this function is a set defined by Lf (k) = {x|φ(x) = k} where

k is a constant. In a three dimensional domain φ : R3 7→ R and any level set
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defines a surface which is referred to as iso-surface, implicit surface, or level

set surface. k is known as iso-value (Wang et al. 2003).

Suppose that the function φ is defined on the domain D. For any value of

k the related iso-surface can divide this domain into a partition. For k = 0

one can write

Ω = {x|φ(x) < 0}

∂Ω = {x|φ(x) = 0}

Ω′ = {x|φ(x) > 0} = D \ (Ω ∪ ∂Ω)

(2.4)

The area covered by Ω is filled with a material while Ω′ represents void.

The surface (or curve in two dimensional cases) defines the boundary of

the solid part. Now by defining φ as a function (implicitly or explicitly) of

design variables, a change in these variables can result in a different topology.

Figure 2.4 shows the idea of using level sets to define different topologies.

In level set approach materials in use are usually isotropic. Theoretically

ISE topologies can be also obtained by using level sets (Fig. 2.5). However

note that in this case the function φ is not continuous over the design domain.

Compared to level sets approach, defining topology using material dis-

tribution is much easier to implement. The variety of topologies covered by

material distribution approach and the flexibility of this approach in deal-

ing with different types of materials can also be considered as an important

advantage. Moreover topology optimisation techniques based on material

distribution are more developed and more practical. Most of these tech-

niques can be easily linked to available finite element analysis packages. On
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Figure 2.4 Defining topology using a level set model: a) the function φ; b)
the domain D and the level sets for different iso-values; c) the sets Ω and Ω′

and the final topology



Chapter 2 Topology optimisation techniques 22

Figure 2.5 Defining an ISE topology using level set approach: a) the noncon-
tinuous function φ; b) the level set is the intersection of z = φ and z = k; c)
the final topology.

the other hand level set methods are relatively complex and have more lim-

itations. Because of these reasons in this thesis the material distribution

approach is followed. Some very popular topology optimisation techniques

which all treat the topology problem using material distribution approach are

presented later in this chapter. But before that we look at solution methods

for topology optimisation problems.

2.3 Solution methods for optimal topology prob-

lems

Using material distribution approach the topology optimisation problem can

be converted into a sizing optimisation problem over a fixed design domain

(Bendsøe and Sigmund 2003). However the number of design variables in

topology optimisation problems are substantially larger compared to usual

sizing optimisation problems.

Suppose that a given domain is discretised into n (a finite number) cells.
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In an ISE topology each of these cells can either be empty or filled with

an isotropic material. Thus there will be 2n different designs possible in ISE

topology class. Restricting the maximum volume of materials to m elements,

the number of possible ISE designs will be reduced to
(
n
m

)
. Apparently not

all of these designs are feasible, but even after subtracting infeasible ones the

number of possible designs will be a huge number. For the sake of illustration

in case of a domain size of 500 elements where the volume ratio of material

is restricted to 26%, the number of possible ISE designs with one material

will be
(

500
130

)
, something above 1.1 × 10123. This is more than the number

of protons which can be fitted in the observable universe.∗ In a normal

practical case one might deal with a finite element mesh of order of 10,000

or even 100,000 elements. So the feasible space of the topology optimisation

problem can be really huge. To deal with such a great number of design

variables the usual optimisation techniques are not applicable.

A common approach to solve these large-scale problems is via optimality

criteria methods. Unlike mathematical programming techniques, optimality

criteria methods solve the optimisation problem indirectly. In these methods

a set of criteria are satisfied which are related to the optimality condition

of the system (Hassani and Hinton 1998c). These criteria can be selected

intuitively. An example of intuitive optimality criteria is the so-called fully

stressed design which assumes that a structure is optimum when all of its

components are fully stressed. Another possible approach is to derive opti-

mality criteria mathematically. These types of optimality criteria are mostly

∗The diameters of the proton and the observable universe are taken as 10−15m and
1026m respectively (Ford 1991). The volume of the observable universe divided by the
volume of a proton is thus equals to 10123.
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based on Karush-Kuhn-Tucker (KKT) optimality conditions (Karush 1939;

Kuhn and Tucker 1951). The KKT conditions state the necessary conditions

for optimality of a solution.

Karush-Kuhn-Tucker conditions

A general optimisation problem can be stated as

min
x∈Rn

f(x)

such that gi(x) ≤ 0, i = 1, . . . , n

hj(x) = 0, j = 1, . . . ,m

(2.5)

where f : Rn 7→ R, gi : Rn 7→ R and hj : Rn 7→ R. Let x∗ be a regular point

in Rn. This means at this point the gradients of all active constraints are

linearly independent. Also assume that all functions in (2.5) are continuously

differentiable at x∗. The KKT conditions state that if x∗ is a local minimum,

there exists constants µi and νj such that


∇f(x∗) +

∑m
i=1 µi∇gi(x∗) +

∑m
j=1 νj∇hj(x∗) = 0,

hj(x
∗) = 0, ∀j = 1, . . . ,m,

gi(x
∗) ≤ 0, µigi(x

∗) = 0, µi ≥ 0, ∀i = 1, . . . , n

(2.6)
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2.3.1 Minimum compliance design

A fairly common objective function selected in structural topology optimisa-

tion is the mean compliance. For a general linear elasticity problem depicted

in Figure 2.6, the mean compliance can be defined as

l(u) =

∫
Ω

fudΩ +

∫
Γt

tudΓ, (2.7)

with u representing displacement field and f and t standing for body forces

and surface tractions respectively. Ω represents the whole domain and Γt is

that part of boundary where surface tractions apply. Another part of bound-

ary Γu is fixed (Fig. 2.6). It can be seen in (2.7) that the mean compliance

is equivalent to the external work.

Figure 2.6 A general topology optimisation problem in a two-dimensional
domain.

The internal energy for an arbitrary virtual displacement v at the equi-
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librium u can be expressed as

a(u, v) =

∫
Ω

Eijkl(ξ)εij(u)εkl(v)dΩ (2.8)

where Eijkl(ξ) is the stiffness tensor which can vary with location ξ. εij(u) =

1
2
(ui,j + uj,i) are linearised strains. The minimum compliance problem can

thus be expressed as

min
u∈U ,x

l(u) (2.9a)

such that ax(u, v) = l(v), ∀v ∈ U , (2.9b)

x ∈ X (2.9c)

Here x denotes the field of topological design variables. The notation ax(u, v)

means the stiffness tensor Eijkl in (2.8) is a function of design variables. In

other words, Eijkl = Eijkl(x) where x = x(ξ). The first condition (2.9b)

is the equilibrium condition expressed in the form of virtual work. In this

equation U is the space of kinematically admissible displacement fields. The

second condition (2.9c) expresses the design restrictions. Here X is the set

of admissible design variables.

In (2.9b) if one substitutes v = u, one will get a(u, u) = l(u). Noting

that 1
2
a(u, u) is the strain energy, one can conclude that mean compliance is

twice the strain energy.

It should be noted that in (2.9) two fields (x and u) are of interest. If

one discretises both of these fields with the same finite element mesh, the
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problem (2.9) can be rewritten as (Bendsøe and Sigmund 2003)

min
u,x

c(x) = fTu

such that K(x)u = f ,

xi ∈ X , ∀i

(2.10)

with f and u denoting nodal displacement and nodal force vectors respec-

tively. c(x) is the mean compliance and x is the vector of design variables.

The global stiffness matrix K can be derived by assembling element stiffness

matrices in the form of K(x) =
∑N

i=1 K̂i(x). Here K̂i is the element stiffness

matrix at global level. If one assigns one design variable to each element this

relation can be simplified to K(x) =
∑N

i=1 K̂i(xi).

2.3.2 Sensitivity analysis

In order to derive optimality conditions for (2.9) one can use KKT conditions

in (2.6). This, however, requires the sensitivity of objective function to be

calculated. The sensitivity of the mean compliance can be calculated directly

(Tanskanen 2002) or by using adjoint method (Bendsøe and Sigmund 2003).

Here the latter approach is used.

The mean compliance can be rewritten in the following form by adding

the adjoint field ũ multiplied by a zero function

c(x) = fTu− ũT (K(x)u− f) (2.11)
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After differentiation one will get

∂c

∂xi
= (fT − ũK)

∂u

∂xi
− ũT

∂K

∂xi
u (2.12)

The adjoint equation derived for the mean compliance is fT − ũK = 0. This

equation is the same as equilibrium equation and does not need to be solved

separately. For this, mean compliance is known to be a self-adjoint function.

The adjoint equation can be satisfied by setting ũ = u. Hence (2.12) can

be simplified to

∂c

∂xi
= −uT ∂K

∂xi
u (2.13)

If one design variable is assigned to each element this relation can be sim-

plified to ∂c
∂xi

= −uT ∂K̂i

∂xi
u. Again noting that the only non-zero components

of K̂i correspond to the i-th elements degrees of freedom, one can further

simplify this equation to

∂c

∂xi
= −uTi

∂Ki

∂xi
ui (2.14)

where Ki and ui are the local level stiffness matrix and displacement vec-

tor of the i-th element. This equation shows that sensitivities of the mean

compliance are local i.e. the sensitivity of an element only depends on the

responses of that element.

Using (2.14) and KKT conditions, the optimality conditions of (2.10)

can be easily obtained. It should be noted that the KKT conditions shown

in (2.6) are only valid for problems written in the form of (2.5). That is,

the problem should be a minimisation problem and the inequality conditions
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should be of the form gi(x) ≤ 0. Changing the direction of inequalities or

changing the problem from minimisation to maximisation will change the

sign of µi in (2.6) (Hassani and Hinton 1999).

The following four sections introduce the four most common topology

optimisation techniques in chronological order. All these techniques solve the

topology optimisation problem indirectly using optimality criteria approach.

2.4 Homogenisation method

The homogenisation method was originally presented by Bendsøe and Kikuchi

(1988). It was the first practical method in the field of structural topology

optimisation and set up the basis for many further studies in the field.

In this method the design domain is assumed to be made of periodic mi-

crostructures. These microstructures have some microscale voids inside them

whose size and orientation can be controlled by design variables. The mi-

crostructures are selected in such a way that they can yield the two limiting

cases of solid material and void. That is, by changing the design variables, it

should be possible that the void area inside a microstructure become zero or

cover the whole area of that microstructure. Two commonly used microstruc-

tures are microcells with rectangular holes and layered materials (Hassani

and Hinton 1998b, 1999). Figure 2.7 shows these types of microstructures.

Other types of microstructures may also be used in homogenisation method

(Bendsøe and Kikuchi 1988; Matsui and Terada 2004). Using microstructures

results in an ISEP topology (Rozvany 2001).
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Figure 2.7 Two commonly used microcells in the homogenisation method: a)
the macroscopic and microscopic scale; b) control parameters of microcells
with rectangular holes; c) control parameters of second rank layered material.

2.4.1 Calculating homogenised properties of microcells

Mechanical properties of microstructures can be calculated using homogeni-

sation theory (Hassani and Hinton 1998a). This results in a relationship

between density of material in microstructures and their effective mechanical

properties (Bendsøe and Kikuchi 1988). The homogenisation theory links

the mechanical properties of homogenised cells in macroscopic scale to the

properties of microstructures in microscopic scale. The so-called homogeni-

sation equations should be solved for microstructures at microscopic scale.

The resulted homogenised mechanical properties can then be used in macro-

scopic scale to analyse the homogenised structure. After homogenisation the

original ISEP topology changes into an ASE topology (Rozvany 2001).

For elasticity problems the homogenisation theory results in the following

equation for homogenised modulus of elasticity (Bendsøe and Kikuchi 1988;



Chapter 2 Topology optimisation techniques 31

Hassani and Hinton 1998a)

EH
ijkl(x) =

1

|Y |

∫
Y

(
Eijkl − Eijpq

∂χklp
∂yq

)
dY (2.15)

where EH
ijkl are the homogenised elasticity coefficients of the considered

microcell. Eijkl are elasticity constants of the base material, i.e. the material

the microcell is made of. x and y denote the macroscopic (general) and

microscopic (local) coordinates respectively. |Y | is the size of the base cell

and is defined as |Y | =
∫
Y

1 dY . The tensor χkl = χkl(y) should satisfy the

following equation

∫
Y

Eijpq
∂χklp
∂yq

∂vi
∂yj

dY =

∫
Y

Eijkl
∂vi
∂yj

dY, ∀v ∈ VY (2.16)

Here VY can be defined as the space of all Y -periodic functions over the

microcell (Bendsøe and Sigmund 2003). After solving (2.16) for χkl in mi-

croscopic scale (y), one can calculate homogenised mechanical properties of

the microstructure through (2.15).

The equation (2.16) for layered materials can be calculated analytically.

But for microcells with rectangular holes there is no close-form solution for

(2.16) and one need to apply numerical methods (such as finite element

method) to calculate effective homogenised properties of these microstruc-

tures (Hassani and Hinton 1998b). Here, for sake of brevity, we only re-

port the calculated values of homogenised properties of these microstructures

in a special case. The interested reader may consult Hassani and Hinton

(1998a,b), Eschenauer and Olhoff (2001), or Bendsøe and Kikuchi (1988)
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for further information about homogenisation theory and the procedures to

calculate these results.

The control parameters for microcells with rectangular holes and second

ranked layered materials have been illustrated in Figure 2.7b and Figure 2.7c.

Here, for simplicity, it is assumed that in both types of microstructures the

holes are square shaped, i.e. b = a and µ = γ. It is assumed that the

material in use is an isotropic material with Young’s modulus of E = 0.91 and

Poisson’s ratio of ν = 0.3. The elasticity matrix for plane stress hence reads( 1 .3 0
.3 1 0
0 0 .35

)
. It can be readily concluded that the microstructures made of this

isotropic material will response like an orthotropic material in macroscopic

scale. The microcells are assumed to be square-shaped with unit length

(Y =]0, 1[×]0, 1[). The homogenised elasticity constants of microcells with

square hole and of second ranked layered materials are reported in Table 2.1

and Table 2.2 for different values of a and γ respectively (Hassani and Hinton

1998b, 1999).

Table 2.1 Homogenised elasticity constants of microcells with square holes.
The base material is an isotropic material with E = 0.91 and ν = 0.3.

a = b EH1111 EH2222 EH1122 EH1212 ρ

1.0 0.0000 0.0000 0.0000 0.0000 0.00
0.9 0.0925 0.0925 0.0035 0.0005 0.19
0.8 0.1886 0.1886 0.0141 0.0045 0.36
0.7 0.2891 0.2891 0.0328 0.0168 0.51
0.6 0.3955 0.3955 0.0606 0.0441 0.64
0.5 0.5101 0.5101 0.0992 0.0917 0.75
0.4 0.6348 0.6348 0.1487 0.1582 0.84
0.3 0.7644 0.7644 0.2039 0.2313 0.91
0.2 0.8833 0.8833 0.2540 0.2947 0.96
0.1 0.9689 0.9689 0.2882 0.3360 0.99
0.0 1.0000 1.0000 0.3000 0.3500 1.00
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In case of layered materials the homogenised stiffness matrix will be sin-

gular. To avoid singularity one should use a soft material instead of voids.

Here this soft material has been chosen a hundred times softer than the actual

material by setting its Young’s modulus equal to 0.0091.

Table 2.2 Homogenised elasticity constants of second ranked layered materi-
als. The base material is an isotropic material with E = 0.91 and ν = 0.3.

γ = µ EH1111 EH2222 EH1122 EH1212 ρ

0.0 0.0100 0.0100 0.0030 0.0035 0.00
0.1 0.1101 0.1013 0.0066 0.0043 0.19
0.2 0.2272 0.1932 0.0172 0.0054 0.36
0.3 0.3579 0.2865 0.0360 0.0071 0.51
0.4 0.4957 0.3820 0.0635 0.0096 0.64
0.5 0.6314 0.4803 0.0988 0.0136 0.75
0.6 0.7548 0.5817 0.1399 0.0208 0.84
0.7 0.8570 0.6862 0.1839 0.0353 0.91
0.8 0.9325 0.7930 0.2275 0.0706 0.96
0.9 0.9797 0.9013 0.2678 0.1759 0.99
1.0 1.0000 1.0000 0.3000 0.3500 1.00

In these tables the last column shows values of relative density ρ of mi-

crostructures. For microcells with rectangular holes one can write ρ = 1−ab

while for layered materials this relation takes the form of ρ = γ + µ − γµ

(Fig. 2.7). In Figure 2.8 the homogenised elasticity constants of the two

considered microstructures are shown against the relative density of the cell.

It can be seen that the homogenised properties of the two microstructures

are close to each other except for the shear term E1212 where rank-2 layered

materials are substantially weaker in intermediate densities.
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Figure 2.8 Comparing the homogenised elasticity constants of microcells with
rectangular holes and rank-2 layered materials.
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2.4.2 Deriving optimality criteria

The minimum compliance design problem using microcells with square holes

can be expressed as

min
u,a,θ

c(a,θ) = fTu

such that K(a,θ)u = f ,

ai − 1 ≤ 0, i = 1, . . . , N

− ai ≤ 0, i = 1, . . . , N

N∑
i=1

(1− a2
i )Vi − V̄ ≤ 0

(2.17)

Here N is the number of elements; Vi is the volume of the i-th element; and V̄

is the maximum allowable volume of material. For laminated materials a and

ai should be changed to γ and γi respectively. The Lagrangian functional

associated to (2.17) takes the following form

L = fTu + ūT (Ku− f)+

N∑
i=1

(
λui (ai − 1) + λli(−ai)

)
+ Λ

N∑
i=1

(
(1− a2

i )Vi − V̄
)

(2.18)

where ū is the vector of Lagrange multipliers for equilibrium condition and

is a kinematically admissible displacement vector. λui and λli are Lagrange

multipliers for upper and lower limit conditions of design variables a and Λ is

the Lagrange multiplier for volume constraint. Differentiating L with respect

to displacement u and setting it to zero implies ū = u. Stationarity of the
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Lagrangian with respect to a and θ requires that

∂c

∂ai
+ λui − λli − 2aiViΛ = 0, ∀i = 1, . . . , n (2.19a)

∂c

∂θi
= 0, ∀i = 1, . . . , n (2.19b)

The sensitivities of the mean compliance can be substituted in (2.19) from

(2.14) i.e. ∂c
∂ai

= −uTi ∂Ki

∂ai
ui and ∂c

∂θi
= −uTi ∂Ki

∂θi
ui. Note that the (2.17) is

written in the same format as (2.5). Hence the KKT conditions (2.6) yield

the following necessary conditions of optimality

Ku− f = 0,

ai − 1 ≤ 0, λui (ai − 1) = 0, λui ≥ 0, ∀i = 1, . . . , N,

− ai ≤ 0, λli(−ai) = 0, λli ≥ 0, ∀i = 1, . . . , N,

N∑
i=1

(1− a2
i )Vi − V̄ ≤ 0, Λ

N∑
i=1

(
(1− a2

i )Vi − V̄
)

= 0, Λ ≥ 0

(2.20)

The conditions in (2.20) together with (2.19) are the necessary conditions of

optimality for any solution of (2.17).

To solve the problem (2.17), using the optimality conditions (2.19) and

(2.20), Bendsøe and Kikuchi (1993) proposed the following resizing scheme

aK+1
i =


min{(1 + ζ)aKi , 1} if aKi (BK

i )η ≤ max{(1− ζ)aKi , 0}

max{(1− ζ)aKi , 0} if aKi (BK
i )η ≥ min{(1 + ζ)aKi , 1}

aKi (BK
i )η otherwise

(2.21)

Here the superscript K denotes the value of parameters at iteration step K;
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ζ is the move limit and η is a weighting factor (Bendsøe and Kikuchi 1988)

with typical values of 0.2 and 0.5 respectively. Bi is defined as

Bi =

(
∂c
∂ai

)
2aiViΛ

=
−uTi ∂Ki

∂ai
ui

2aiViΛ
(2.22)

Using (2.19a) one can easily show that Bi = 1+
λli

2aiViΛ
− λui

2aiViΛ
. If 0 < ai < 1 it

can be readily seen from (2.20) that λui = λli = 0 and hence Bi = 1. Suppose

at some iterationK, in order to move towards optimum, more material should

be added to the i-th element. This means that at this iteration ai should be

reduced and hence ai < 1 which implies λui = 0 and consequently Bi ≥ 1.

Similarly for increasing ai one will get Bi ≤ 1 (Hassani and Hinton 1999).

This justifies the update scheme (2.21). An improved version of this update

scheme has been suggested by Hassani and Hinton (1998c).

In order to use the resizing scheme (2.21) one needs to calculate Γ. This

can be achieved by solving Λ
∑N

i=1

(
(1− a2

i )Vi − V̄
)

= 0 using, for example,

bisection method in an inner loop (Hassani and Hinton 1999; Bendsøe and

Sigmund 2003). The optimal orientation can be calculated by solving (2.19b)

via a combined Newton-bisection method (Bendsøe and Kikuchi 1988) or by

matching the orientation of microstructures to those of principal stresses

(Suzuki and Kikuchi 1991). It is also possible to use other approaches to

update microcells’ orientation (Hassani and Hinton 1999).

A brief algorithm for the homogenisation method is shown in Figure 2.9.

Once the homogenised properties of microstructures are found, one can use

them to solve different topology optimisation problems.
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1: Find the homogenised mechanical properties of microstructures as func-
tions of the design variables (eqs. 2.15 and 2.16).

2: Discretise the problem’s domain.
3: Select initial values of design variables within the feasible space.
4: repeat
5: Assign the homogenised properties of microcells to elements.
6: Perform FE analysis and calculate the objective function.
7: repeat
8: Update the design variables using the update scheme (eq. 2.21).
9: Update Lagrangian multiplier of volume constraint.

10: until volume constraint becomes active
11: until convergency criteria are met
12: print the results
13: end

Figure 2.9 An algorithm for the homogenisation method.

2.4.3 Numerical examples

To illustrate the application of the homogenisation method, the optimal

topology of a short cantilever beam is found using this method by min-

imising the mean compliance. The design domain and loading conditions of

the beam are illustrated in Figure 2.10. The width and length of the domain

are taken as l = 16 and w = 10 respectively. The volume of using material

is restricted to 40% of the design domain. Young’s modulus of the material

is E = 0.91 and its Poisson’s ratio is ν = 0.3. All units are consistent. The

domain Ω is discretised into 32× 20 square shaped finite elements.

The final topologies and the evolution histories of objective function are

shown in Figure 2.11. The high-order 9-node square-shaped finite elements

have been used in these examples.

The initial solutions correspond to a uniform distribution of similar mi-
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Figure 2.10 Problem definition and design domain of short cantilever beam.

crocells. It can be seen that in both cases the final topology shows a sig-

nificantly smaller value of mean compliance. The initial and final values of

the objective function in case of microcells with square holes are 486.8 and

69.07 respectively. For layered materials these values are 16623.3 and 87.61

respectively. The large drop at the beginning of the case of layered materials

corresponds to updating microcells’ orientation.

2.5 The SIMP method

Bendsøe (1989) presented a new topology optimisation method based on the

homogenisation method. In this new approach Bendsøe (1989) used the rel-

ative densities directly as design variables. He called it the direct approach.

Unlike the preceding homogenisation method, in the direct approach there is

no need to calculate the homogenised properties of microstructures. In fact
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(a) microcells with square holes

(b) layered materials

Figure 2.11 The final results obtained by the homogenisation method for
SCB problem.
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there is no microstructures in use. Instead it is assumed that the structure

is made of an artificial material whose elasticity constants are changing by

its density. For this reason the approach is also referred to as ‘the artificial

material model’ by some authors (e.g. Hassani and Hinton 1998c). Later on

the name SIMP standing for ‘Solid Isotropic Microstructures with Penalisa-

tion’ was selected by Rozvany et al. (1992) for this approach. The same term

SIMP was also used by Bendsøe and Sigmund (1999) with ‘M’ standing for

‘Material’.

2.5.1 Material model

The relationship between the elasticity tensor and the density of the base

material is commonly referred to as material interpolation scheme (Bendsøe

and Sigmund 1999). In his original paper Bendsøe (1989) used the so-called

power-law approach as material interpolation scheme. The power-law inter-

polation scheme can be written as

Eijkl(ρ) = [ρ(ξ)]pĒijkl, ξ ∈ Ω (2.23)

where Eijkl is the interpolated stiffness tensor which replaces the homogenised

stiffness tensor in the homogenisation method; Ēijkl stands for elasticity con-

stants of the base material and ρ(ξ) is the relative density function with

0 ≤ ρ(ξ) ≤ 1. ξ indicates the location and Ω is the design domain. The

parameter p is a penalisation factor which penalises the intermediate density

values 0 < ρ < 1 and push the topology towards a solid/empty (with ρ = 1
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and ρ = 0) topology.

Using an isotropic base material, unlike homogenisation approach, this

material model yields an isotropic interpolated material. The resulted topol-

ogy is thus an ISE topology. However note that in (2.23) the material changes

continuously from void to solid and hence the resulted topology is not a bi-

nary ISE but rather a relaxed one. Applying high penalty factors, the re-

sulted topology will be more close to a binary ISE topology. On the other

hand setting p = 1 in (2.23) the optimisation problem will change to a vari-

able thickness sheet problem (Bendsøe 1989). For comparison, the resulted

elasticity constants of SIMP material model with p = 2 and p = 3 are de-

picted in Figure 2.12 along with results of homogenised microcells with square

holes. In this graph, the base material has modulus of elasticity of 0.91 and

Poisson’s ratio of 0.3.

Figure 2.12 The SIMP material model with penalty values of p = 2 and p = 3
compared with microcells with square holes.

Despite simplicity and satisfactory results of the SIMP method, Bendsøe
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(1989) mentioned the fictitious material properties in the SIMP material

model and stated that the homogenisation method is preferred. Nevertheless

the SIMP approach superseded the original homogenisation method shortly

after introduction. Later Bendsøe and Sigmund (1999) proposed a physical

interpretation of the so-called artificial material model. According to Bendsøe

and Sigmund (1999) the power-law material model can correspond to a real

physical microstructural model providing

p ≥max

{
2

1− ν
,

4

1 + ν

}
, in 2D (2.24)

p ≥max

{
15

1− ν
7− 5ν

,
3(1− ν)

2(1− 2ν)

}
, in 3D (2.25)

with ν denoting the Poisson’s ratio of the base material.

Note that the power-law interpolation scheme will result in singular stiff-

ness for ρ = 0. In order to avoid singularity, a soft material should be used

instead of void. This can be achieved by increasing the lower bound of ρ

from 0 to a small positive number ρ. The box constraints on relative density

in the SIMP method thus becomes 0 < ρ ≤ ρ ≤ 1.

2.5.2 Deriving optimality criteria

The solution procedure for the SIMP method is similar to that of the ho-

mogenisation method. Using finite element discretisation, the minimum com-
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pliance design problem takes the form

min
u,ρ

c(ρ) = fTu

such that K(ρ)u = f ,

ρi − 1 ≤ 0, i = 1, . . . , N

ρ− ρi ≤ 0, i = 1, . . . , N

N∑
i=1

(ρiVi)− V̄ ≤ 0

(2.26)

The Lagrangian functional for the above equation can be expressed as

L = fTu + ūT (Ku− f)+

N∑
i=1

(
λui (ρi − 1) + λli(ρ− ρi)

)
+ Λ

( N∑
i=1

(ρiVi)− V̄
)

(2.27)

Stationarity of L with respect to ρi implies that

∂c

∂ρi
+ λui − λli + ViΛ = 0, ∀i = 1, . . . , n (2.28)

Similar to homogenisation method, if the parameter Bi is defined as

Bi =
−
(
∂c
∂ρi

)
ViΛ

(2.29)
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the following update scheme for ρ can be proposed

ρK+1
i =


max{(1− ζ)ρKi , ρ} if ρKi (BK

i )η ≤ max{(1− ζ)ρKi , ρ}

min{(1 + ζ)ρKi , 1} if ρKi (BK
i )η ≥ min{(1 + ζ)ρKi , 1}

ρKi (BK
i )η otherwise

(2.30)

The partial derivatives of the mean compliance with respect to ρ in (2.29)

can be easily calculated using the power-law equation (2.23) in (2.14)

∂c

∂ρi
= −pρp−1

i uTi Kiui, i = 1, . . . , N (2.31)

Like homogenisation method, the Lagrange multiplier of volume constraint

Λ need to be calculated in an inner loop in each iteration.

The algorithm of the SIMP method has been reviewed in Figure 2.13. A

99-line code in Matlab for the SIMP method has been published by Sigmund

(2001).

1: Discretise the problem’s domain.
2: Select initial values of densities. A uniform distribution is a good starting

point.
3: repeat
4: Perform FE analysis and calculate the objective function.
5: repeat
6: Update the design variables using the update scheme (eq. 2.30).
7: Update Lagrangian multiplier of volume constraint.
8: until volume constraint becomes active
9: until convergency criteria are met

10: print the results
11: end

Figure 2.13 An algorithm for the SIMP method.
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2.5.3 Numerical example

The short cantilever beam problem depicted in Figure 2.10 is solved using the

SIMP method to demonstrate the application of this method. Using (2.24),

the minimum penalty factor for a two dimensional case with the Poisson’s

ratio of 0.3 can be calculated as p = 3. Here this minimum value is adopted.

The lower limit of densities is chosen as ρ = 0.001. The move limit and the

damping factor in (2.30) are selected as ζ = 0.1 and η = 0.5 respectively.

The final topology and the evolution of the objective function are illustrated

in Figure 2.14.

Figure 2.14 The final results obtained by the SIMP method for SCB problem.
The graph on the right side shows the values of objective function in each
iteration.

The initial objective function was 338.72 corresponding to the initially

uniform distribution of material. This value reduces to 54.89 after optimi-

sation. Note that because of the power-law material model, the objective

function values in the SIMP method are not comparable to those obtained

by the homogenisation method. The evolution of the topologies obtained by
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the SIMP method for this problem is illustrated in Figure 2.15.

Figure 2.15 The topologies obtained by the SIMP method for the SCB prob-
lem at different iterations. The darkness of the elements in these grey-scale
images corresponds to the value of their relative densities.

2.6 Evolutionary structural optimisation

Although choosing a large penalty in the SIMP method will result in a near-

binary ISE topology, there will be still some elements with intermediate densi-

ties (0 < ρi < 1) in the final topology even for large penalty values. Moreover

choosing large penalties causes convergency problems in the SIMP method.

Hence to achieve a binary ISE topology one usually needs to perform some

post-processing on the final topology obtained by the SIMP method.

Proposed by Xie and Steven (1993), the Evolutionary Structural Opti-

misation method, short-formed to ESO, was another topology optimisation

technique which could provide binary ISE topologies. The ESO method is
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based on the simple idea that by progressively removing inefficient parts, the

structure will evolve towards an optimum. The removal of elements is con-

trolled by a rejection criterion. This rejection criterion typically compares a

scalar functional of the mechanical responses of the elements with a thresh-

old value. The elements with values less than the threshold will then be

removed. The ESO procedure totally removes the inefficient elements. This

behaviour is sometimes referred to as hard killing as opposed to soft killing

where a very soft material will be assigned to the inefficient elements. The

ESO method is hence known as a hard kill method.

2.6.1 Stress-based ESO

In the original version of the ESO method (Xie and Steven 1993) the rejection

criterion was based on the von Mises stress. The threshold value was defined

as a ratio of the maximum von Mises stress in the structure in each iteration.

This ratio, referred to as rejection ratio RR initially takes a small value like

1% (Xie and Steven 1993). After few iterations, because elements with low

stress levels are being removed, all elements in the structure will have stress

levels higher than the threshold level. This stage is referred to as steady

state. After reaching a steady state the rejection ratio RR is increased by a

predefined step size called evolution rate ER. Then the procedure continues

with the new rejection ratio to reach a new steady state and henceforth until

reaching a desired optimum level. The solution procedure can be seen as

an intuitively based optimality criteria which defines the optimality based

on the fully stressed design idea. The algorithm of this stress-based ESO
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procedure is shown in Figure 2.16.

1: Discretise the problem’s domain.
2: Initialise ER and RR and set the final value for RR (RRmax).
3: repeat
4: Perform FE analysis and calculate the von Mises stresses in all ele-

ments.
5: if σvmi ≤ RR · σvmmax then
6: Remove the element i.
7: end if
8: if no element is removed (steady state) then
9: RR← RR + ER.

10: end if
11: until RR ≥ RRmax (or another termination criteria)
12: print the results
13: end

Figure 2.16 Algorithm for topology optimisation using a stress-based ESO
method. σvmi and σvmmax are the von Mises stress level in element i and the
maximum von Mises stress of the structure respectively.

Since its original appearance, the ESO method has been improved mainly

by its original developers and their colleagues and few other researchers (e.g

Hinton and Sienz 1995; Kim et al. 2003). The application of the ESO method

to other types of problems has been investigated by Xie and Steven (1997).

2.6.2 Compliance-based ESO

Chu et al. (1996) modified the ESO method to minimise the compliance

(maximise the stiffness) of structures. To evaluate the efficiency of the ele-

ments in compliance-based ESO, Chu et al. (1996) used a sensitivity number.

This number is an approximation of the change in the compliance due to re-

moving an element. Here we report the procedure used by Chu et al. (1996)
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to find the sensitivity numbers corresponding to minimum compliance de-

sign. Suppose that the i-th element is removing from a structure consisting

N elements. The stiffness matrix K will then change to
−i
K. The change in

the stiffness matrix can be expressed as ∆K =
−i
K−K = −K̂i where K̂i is the

stiffness matrix of the i-th element in global level. Note that the force vector

f will not change by removing the elements. The change in compliance can

thus be expressed as ∆c = fT∆u which is defined as the sensitivity number

for the i-th element, αi. Ignoring higher order terms, the change in displace-

ment vector takes the form ∆u = −K−1∆Ku. Using this expression the

sensitivity number for the i-th element can be defined as (Chu et al. 1996)

αi = uTi Kiui (2.32)

where ui and Ki are the local level displacement vector and stiffness matrix

of the i-th element. Using this definition, the solid elements with the lowest

sensitivity numbers are the least efficient ones and consequently need to be

removed.

The stress-based algorithm presented in Figure 2.16 can also be used in

minimum compliance design. The only necessary modifications is changing

σvmi and σvmmax to αi and αmax respectively. As pointed out by Li et al.

(1999b) there are considerable similarities between the results obtained by

stress-based ESO and compliance-based ESO.

The ESO method originally was not proposed on a mathematical basis.

However Tanskanen (2002) discusses the equivalence of the compliance-based

ESO method and “the sequential linear programming (SLP)-based approx-
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imate optimisation method followed by the Simplex algorithm” with the

compliance-volume product as the objective function provided that all ele-

ments are of same size.

In the ESO method the values of the mean compliance are not comparable

in different iterations as the volume in each iteration is different. However the

performance index defined by Yang et al. (2003) can be used as an indicator

of optimality. The performance index is defined as PI = c× V /V̄ with V̄

denoting the target volume. This definition is in line with Tanskanen (2002)

who discussed that the actual objective function of the ESO method is the

product of mean compliance and volume.

2.6.3 Numerical results

To demonstrate the application of the ESO technique the short cantilever

beam problem (Fig. 2.10) has been solved using the compliance-based ESO

method. Instead of 9-node quadrilateral elements, 8-node elements have

been used in this example. In order to produce comparable results with

other methods, the termination criteria in the algorithm has been changed

to a condition on the materials volume. Here the main loop of the algorithm

is repeated until at least 60% of the designable domain is removed. The final

result will thus have at most 40% of its design domain volume occupied by

material. The evolutionary ratio and the initial rejection ratio have been

taken as ER = 0.2% and RR = 0.2% respectively. The resulted topology is

illustrated in Figure 2.17. Unlike the results of the SIMP and homogenisation

method there is no grey elements in the ESO results.
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Figure 2.17 The final topology obtained by the ESO method for the SCB
problem.

In the final result the volume fraction is 39.69% and the compliance is

56.82. Note that the final value of the objective function obtained here is

not directly comparable with the SIMP results due to the penalty power in

the SIMP material model. Figure 2.18 shows the topologies at some steady

states as well as the final topology.

Figure 2.18 The topologies obtained by the ESO method for the SCB problem
at steady states. K is the iteration number, RR is the rejection ratio, and
V F is the volume fraction.
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2.7 Bidirectional evolutionary structural optimi-

sation

The ESO method only removes inefficient parts of the structure. Once an

element is removed it can not be reintroduced. This can lead to non-optimal

solutions, unless very small evolutionary ratio is used. On the other hand,

using small evolutionary ratios will prolong the optimisation procedure. Fur-

thermore in the ESO method one should always start the optimisation proce-

dure from the largest possible designable area fully filled by material. These

shortcomings were solved in late 90s when an improved version of the ESO

algorithm was introduced by Querin (1997), Querin et al. (1998) and Yang

et al. (1999). The improved ESO algorithm was able to add materials to

the efficient areas as well as removing inefficient parts. The new approach

was hence named as “Bidirectional Evolutionary Structural Optimisation”,

or simply BESO.

Although the idea of the BESO method is a natural extension of the

ESO’s, the two procedures are different from each other. One of the main

differences lies in using the concept of ground structure in the BESO method.

The ground structure covers the whole designable domain. It contains the

solid elements as well as void elements which potentially can be switched to

solid elements. In the ESO method one does not need to keep any record of

removed elements because there is no hope in recalling them. In BESO, on

the other hand, when an element needs to be removed, the procedure turns

it off in the ground structure but its geometrical information is not removed.
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The ground structure keeps all the information of the void elements as well

as solid ones. And when the BESO procedure urges to add an element, the

element can be easily added by turning it on in the ground structure. One

can assign values of 1 and 0 to elements’ design variables to turn them on

and off respectively. Using this notation, the minimum compliance design

problem will take the following form

min
u,x

c(x) = fTu

such that K(x)u = f ,

xi ∈ {0, 1}, i = 1, . . . , N,

N∑
i=1

xiVi ≤ V̄

(2.33)

where Vi is the volume of the i-th element; N is the number of elements, and

V̄ is the upper limit of materials’ volume. Note that (2.33) is exactly similar

to (2.10) with X =
{
xi ∈ {0, 1}|

∑N
i=1 xiVi ≤ V̄

}
.

2.7.1 Sensitivity number of void elements

In the BESO method, referring to the idea behind the method, the material

should be added to the neighbourhood of the most efficient elements. In this

method, the elements with the higher sensitivity numbers are nominated to

be added. However, because the void elements are not included in finite

element analysis, their sensitivity numbers are equal to zero. Hence to add

the void elements in the neighbourhood of efficient areas, the sensitivity

number of these void elements should be changed to higher values. This can
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be done in several ways.

In the BESO algorithm used by Querin (1997), all void elements which

has a common node with the most efficient elements gain that element’s sen-

sitivity number and subsequently are added to the mesh. Another algorithm

has been used by Yang et al. (1999) and Li et al. (1999a) where the nodal

displacement of void elements are calculated by extrapolating the nodal dis-

placements of their neighbouring solid elements. The sensitivity number of

the void elements can then be calculated using these extrapolated nodal dis-

placements. Other researchers like Huang et al. (2006) directly extrapolated

sensitivity numbers.

More recently Huang and Xie (2007) have used a linear filter to extrapo-

late the sensitivity number of voids. In this approach the filtered sensitivity

number of an element i is calculated through

α̂i =

∑N
j=1wijαj∑N
j=1wij

(2.34)

in which wij is a linear wighting factor defined as

wij = max{0, rf − rij} (2.35)

Here rf is the filtering radius and rij is the distance between the centroids of

elements i and j. Using this filtering scheme, the filtered sensitivity number

of every element is affected by sensitivity numbers of all of its neighbouring

elements within the radius of rf . The filtering approach is also useful in

overcoming numerical instabilities. This is the subject of section 2.8.
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2.7.2 Adding and removing elements

The efficiency of the elements in the BESO method can be measured in the

same way as in the ESO method. However adding and removing material

needs a different procedure. In the original BESO Querin (1997) and Querin

et al. (1998, 2000) used a control parameter name Inclusion Ratio (IR) which

controls the amount of adding material. Material is added to the neighbour-

hood of the elements satisfying the inclusion inequality, αi ≥ IR ·αmax. The

steady state is reached when no more elements are nominated for adding or

removal. Upon reaching a steady state the inclusion ratio is decreased and

the rejection ratio is increased allowing the procedure to continue further.

In this algorithm the rejection and inclusion are treated separately and the

volume fraction can not be controlled easily.

A new BESO algorithm has been proposed by Huang et al. (2006) and

Huang and Xie (2007) in which the volume fraction can be controlled explic-

itly. In this new algorithm, in each iteration, first the target volume of the

next iteration is calculated using a parameter called Evolutionary Volume

Ratio (EV R)

V K+1 = V K(1 + sign(V̄ − V K)EV R) (2.36)

where V̄ is the desired volume of material; V K is the volume at iteration K
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and sign(t) is defined as

sign(t) =


+1 if t > 0

0 if t = 0

−1 if t < 0

(2.37)

After that, the number of adding and removing elements will be calculated

through the following steps.

1: Sort the sensitivity numbers in a ascending order (α1 ≤ α2 ≤ . . . ≤ αN)

2: Assign αth equal to the sensitivity number of the element which corre-

sponds to the target volume V K+1, for example if V K+1 corresponds to

volume of 237 elements, set αth = α237. Set αaddth = αdelth = αth.

3: Set V add equal to the volume of void elements with sensitivity numbers

greater than αth. Calculate the Admission Ratio AR = V add

V
where V is

the total volume of solid and void elements.

4: Compare AR with the maximum allowable admission ratio ARmax which

is a predefined parameter. If AR ≤ ARmax skip to step 7 otherwise

proceed to step 5.

5: Sort the sensitivity numbers of void elements in descending order. Set

V add = ARmax × V . Among the void elements, set αaddth equal to the

sensitivity number of the element which corresponds to the volume V add.

For example if V add corresponds to volume of 14 elements, set αaddth equal

to the sensitivity of the 14th void element.

6: Set the volume of removing elements V del equal to V add + V K+1 − V K .



Chapter 2 Topology optimisation techniques 58

Among the solid elements, set αdelth equal to the sensitivity number of the

element which corresponds to the volume V del.

7: Remove the solid elements satisfying αi ≤ αdelth and add the void elements

satisfying αi ≥ αaddth .

Figure 2.19 illustrates these steps through a simple example. This procedure

needs two tuning parameters, namely EV R and ARmax. The first one con-

trols the change in volume in each iteration and the second one controls the

maximum amount of adding materials.

Figure 2.19 A simple example illustrating the procedure of adding and re-
moving elements in the new BESO algorithm (Huang and Xie 2007). Here
V K and V K+1 are equal to the volume of 8 elements and 7 elements respec-
tively. The maximum admission ratio is ARmax = 2/12. V is equal to the
volume of 12 elements.

After discussing different aspects of the BESO method, we can now briefly

summarise the BESO algorithm. A brief algorithm is shown in Figure 2.20.

This algorithm can be used to solve any optimisation problem provided that

suitable sensitivity numbers are used.
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1: Discretise the problem’s domain.
2: Initialise EV R and ARmax and set the upper limit of material’s volume
V̄ .

3: repeat
4: Perform FE analysis and calculate the sensitivity numbers (αi) for all

elements. At this stage the sensitivity of voids is zero.
5: Calculate the filtered sensitivity numbers (eq. 2.34).
6: Add and remove elements based on the abovementioned algorithm.
7: until Convergency criteria
8: print the results
9: end

Figure 2.20 Algorithm for topology optimisation using the BESO method.

2.7.3 Numerical examples

The application of the BESO method is demonstrated by solving the short

cantilever beam problem (Fig. 2.10). Like the example solved by the ESO

method, 8-node quadrilateral elements have been used for discretising the

domain. As in the BESO method it is not necessary to start from the full

design, here we have used an initial guess design with volume fraction of 80%.

The maximum allowable material’s volume is set equal to 40% of the volume

of the design domain. The evolutionary volume ratio and the maximum

admission ratio are taken as EV R = 0.5% and ARmax = 0.5% respectively.

The filtering radius rf in (2.34) is chosen as twice of the size of the elements.

The initial and the resulted topologies are illustrated in Figure 2.21.

The mean compliance of the final result is 57.89 which is achieved after

104 iterations. The evolution of the topologies through the BESO method is

shown in Figure 2.22.
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Figure 2.21 The initial guess design and the final topology obtained by the
BESO method for the SCB problem.

Figure 2.22 The topologies obtained by the BESO method for the SCB prob-
lem at different iterations. K is the iteration number and V F is the volume
fraction.
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2.8 Dealing with numerical instabilities

Numerical instabilities are not uncommon in topology optimisation tech-

niques. These instabilities can affect the optimality of the results and the

applicability of the optimisation methods. Sigmund and Petersson (1998)

reviewed the possible approaches to treat the three common numerical in-

stabilities in topology optimisation. These three instabilities are known as

checkerboards, mesh dependency, and local minima. In what follows we will

introduce these numerical instabilities and then briefly discuss the known

approaches to overcome them.

2.8.1 Checkerboards

Checkerboard instability refers to the formation of checkerboard-like patterns

made of alternating solid and void (or hard and soft) elements. This problem

was investigated by Dı́az and Sigmund (1995) and Jog and Haber (1996).

They demonstrated that the reason for checkerboard formation is that these

patterns gain artificially high stiffness due to numerical problems in the mixed

formulation of the finite element discretisation. An example of checkerboard

patterns is given in Figure 2.23. This topology is obtained by the SIMP

method solving exactly the same problem already solved in section 2.5.3.

All the parameters have been selected similar to the original problem, but

instead of high order 9-node elements, here, 4-node elements have been used.

The homogenisation, the SIMP, the ESO, and the original BESO methods

are all prone to the checkerboard instability. This is due to the mixed finite
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Figure 2.23 The checkerboard instability in a result obtained by the SIMP
method for the SCB problem. Instead of 9-node elements, 4-node elements
have been used here.

element formulation which is used in all of these methods. However, there

are several ways to prevent formation of checkerboard patterns. Here some

of the well-known techniques will be introduced.

Using stable elements

Jog and Haber (1996) proposed a patch test to identify unstable elements

which can cause the checkerboards formation in topology designs. Also Dı́az

and Sigmund (1995) presented some guidelines for choosing stable elements.

It has been shown in both papers that higher order finite elements can prevent

checkerboard formation. In the examples already presented in this chapter,

9-node and 8-node high-order finite elements have been used and no checker-

board pattern has been found in the final topologies. However in the SIMP

method this approach does not guarantee a checkerboard-free result if one

applies big penalty values (Dı́az and Sigmund 1995). Also this approach

might not work with the ESO and the BESO methods. Furthermore, us-

ing higher order finite elements demands substantially higher computational
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effort compared to 4-node elements.

Special types of non-conforming finite elements may also help preventing

checkerboard formation. Jang et al. (2003) reported checkerboard-free results

using non-conforming 4-node finite elements with their nodes located in the

middle of the edges rather than corners.

filtering techniques

The use of filtering techniques to overcome checkerboard formation has been

first studied by Sigmund (1994). Although no rigorous proof was ever pro-

posed for this approach, it can successfully prevent checkerboard formation

with low computational effort. The filtering scheme is similar to filtering

techniques used in image processing. This technique was originally used in

the SIMP method. However Li et al. (2001) successfully applied a similar

technique to the ESO method. The linear filter used in the BESO algorithm

(2.34) is also capable of preventing checkerboard formation. As mentioned

before, in the BESO method, the filtering scheme plays an additional role of

assigning sensitivity numbers to voids as well.

The short cantilever beam problem is solved here using the SIMP method

with 4-node finite elements but sensitivities are filtered using a radius of twice

of the size of the elements. In the SIMP method the filtered sensitivities are

calculated using the following formula

∂̂c

∂ρi
=

∑N
j=1 ρj

∂c
∂ρj
wij

ρi
∑N

j=1wij
(2.38)

where wij are weight factors defined in (2.35). The final topology is shown
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in Figure 2.24. Note the blurred boundaries in this figure. This is due to

the applied filtering scheme which assures a smooth transition from solids to

voids exists.

Figure 2.24 Preventing formation of checkerboard patterns using filtering
techniques. The filtering radius is twice of the elements’ size.

An approach similar to filtering was proposed by Ghabraie (2005) to

overcome checkerboards instability in the SIMP method. In this approach

the sensitivities at nodes are calculated by averaging the sensitivities of the

elements connected to them. Then the sensitivities of the elements are re-

calculated by averaging the resulted nodal sensitivities.

Perimeter control

Another way to control checkerboards is to impose a constraint on the perime-

ter. Between two topologies with the same amount of material the one with

less holes has a shorter perimeter. By setting an upper limit on the perimeter,

one can thus control the complexity of the resulted topologies and prevent

checkerboards. This approach was first used by Haber et al. (1996). Perime-

ter control was also applied in the BESO method by Yang et al. (2003).
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Other techniques

Apart from the abovementioned techniques, several other approaches have

been proposed that can deal with the checkerboards problem. Guest et al.

(2004), Rahmatalla and Swan (2004), and Matsui and Terada (2004) used

nodal sensitivities instead of elemental ones and reported checkerboard-free

topologies using the SIMP and the homogenisation methods. Another ap-

proach was proposed by Poulsen (2002) in which an additional constraint

is added to prevent one-node connected hinges. A simple method was pro-

posed by Kim et al. (2000) which can control the number of holes in the

final topology produced by the ESO method and also can solve the checker-

boards problem. Using fixed-grid finite element in the ESO method has been

investigated by same researchers (Kim et al. 2003) and it was shown that

this approach is capable of preventing checkerboard patterns. To overcome

the checkerboards problem in the homogenisation method Fujii and Kikuchi

(2000) introduced a gravity control function to be added to the objective

function. This function is similar to the perimeter control function, however

it penalises the intermediate densities as well. It was shown through exam-

ples that this approach can solve the mesh dependency and local minima

problems as well.

It should be noted here that most of the techniques which are used to

deal with the mesh dependency problem can also overcome the checkerboards

instability (Sigmund and Petersson 1998).
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2.8.2 Mesh dependency

Mesh dependency is the problem of obtaining different topologies for different

mesh sizes. This problem is due to nonexistence or sometime non-uniqueness

of solutions for the optimisation problem. One approach to overcome this

instability is to restrict the feasible space to ensure existence of solutions

(Sigmund and Petersson 1998). It is proved by Ambrosio and Buttazzo

(1993) that in topology optimisation problems, restricting the perimeter can

guarantee the problem to have a solution. The aforementioned perimeter

control techniques are thus capable of resolving the mesh dependency prob-

lem. Another kind of restriction is through gradient constraints. Petersson

and Sigmund (1998) used local bounds on the density slopes and proved the

existence of solutions. Via some examples, they also demonstrated the ca-

pability of their approach in dealing with other numerical instabilities. A

global gradient constraint was proposed by Bendsøe and Sigmund (2003) to-

gether with proof of existence of solutions. A different kind of restriction was

used by Bourdin (2001). In this paper the densities in the SIMP method are

replaced by filtered values which are regulated using a convolution operator.

Proof of existence of solutions was given in the paper and it was shown by

numerical examples that the approach can deal with mesh dependency and

checkerboard anomalies.

Apart from restriction approaches, there are other types of techniques ca-

pable of overcoming mesh dependency. Notably the aforementioned sensitiv-

ity filter is useful in preventing mesh dependent solutions. In this approach,

to obtain mesh independent results one should use absolute filtering radius
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values, i.e. the filtering radius should not depend on the elements size.

2.8.3 Local minima

The topology optimisation problems generally are not convex and have sev-

eral local minima. The gradient based optimisation techniques (like all the

four methods presented in this chapter) can therefore be easily trapped in

these local minima and miss the global optimum. This generally means that

one may get different solutions by applying different parameters or by starting

from different initial designs. A common approach to prevent such behaviour

is using the so-called continuation technique (Sigmund and Petersson 1998).

In this approach an artificial convex version of the problem is modified grad-

ually in some steps to the actual non-convex problem. The problem is solved

in each step using the normal topology optimisation technique. Based on

experience this approach is more likely to capture the global optimum.

Different types of continuation has been suggested by different researchers.

Haber et al. (1996), for example, started from low penalties and increased

the penalty gradually to the desired value. Sigmund (1997), on the other

hand, used sensitivity filter with a very big radius at the beginning gradually

decreasing it. Nevertheless the main problem with the continuation method

is the considerable time and effort it needs.
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2.9 Choosing an appropriate method

In this chapter we introduced four methods for topology optimisation, namely

the homogenisation, the SIMP, the ESO, and the BESO methods. In the pre-

vious section we also briefly reviewed some of the approaches to overcome

numerical anomalies in these methods. Each of these methods have their own

benefits and disadvantages and it is not generally possible to state which

method is the best. For a specific problem, one technique might be more

appropriate than the other, while the latter might suite another problem

better than the former. One should know about the capabilities, advantages,

limitations, and shortcomings of these methods and also should have a fair

understanding of the optimisation problem in concern, to be able to select a

proper method. In many cases it might be even necessary to amend a classic

topology optimisation method to fulfil the requirements of a special design

problem. Here the characteristics of the introduced methods are discussed

briefly and we shortlist these methods based on their properties and our

requirements. Then, after explaining the methods and mechanisms of un-

derground excavation design in the next chapter, we will come back to this

point to enhance the selected methods to match the special requirements in

excavation design.

Starting from the homogenisation method §2.4, the underlying microstruc-

tures make the method suitable for designing composite structures. One

can define and use different microcells for different types of problems. The

method gives real solutions for perforated plates and other problems of this

kind. It is made on a sound mathematical basis. However the final results are
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complicated and not easily manufacturable. To obtain a simple ISE topology

the method is certainly not as good as the other methods. Furthermore the

number of design variables needed for a discretised problem are twice or even

trice compared to the other methods. Implementation of the homogenisa-

tion method is also considerably harder. It is also very difficult to link the

homogenisation algorithm with an external finite element solver.

The SIMP method §2.5 is easier to code and implement compared to the

homogenisation method. It can work with isotropic materials and the re-

sults are close to ISE topologies. In terms of computational time and effort,

the method is economical. It is applicable to several types of problems. It

can be linked to external finite element packages. The method can easily

be protected against numerical instabilities by simple techniques like filter-

ing sensitivities. However the main disadvantage of the SIMP method is

the existence of elements with intermediate densities, or grey areas, in final

topologies. These areas may not have physical meaning. It is possible to

assign a composite design to represent these grey areas, however in this case

the manufacturability of the topology decreases. Furthermore employing fil-

tering techniques to overcome mesh dependency and checkerboards results

in blurred images with lots of grey elements. On the other hand, using high

penalty powers to reduce the grey areas causes convergency problems. One

might use a post-processor to sharpen the obtained images, but this approach

can change the shape and even the topology qualitatively.

The ESO method §2.6 does not have this blurred images problem and al-

ways results in clear pure ISE topologies. The implementation is very simple

and it can be linked to external finite element packages almost effortlessly.
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It can also solve shape optimisation problems. One of the main advantages

of this method is its ability to adopt intuitively derived as well as rigorously

derived optimality criteria. This can be very helpful in cases were one cannot

establish the sensitivity analysis. The main disadvantage of the method, on

the other hand, is that it moves towards the optimum from one direction only.

This makes the changes unrecoverable in solution procedure. However this

can be even beneficial in certain problems where the nature of the problems

enforces a one directional evolution. Another drawback of the ESO method

is its vulnerability to small changes in tuning parameters (RR and ER). A

small change in these parameters can change the final topology considerably.

Finally because of hard killing nature of the ESO procedure, in some cases

it might remove all the links between a part and the rest of the structure

causing an unstable solution.

The BESO method §2.7 is capable of recovering removed elements. Like

the ESO method, the final results are pure ISE topologies. Again like ESO,

this method can also use either intuitively or mathematically derived op-

timality criteria. The method is more robust than ESO and is not very

vulnerable to changes in its algorithmic parameters. It can be applied (and

has been applied) to a range of physical problems. It is easy to implement

and it can be easily linked to an external finite element engine for analysis. It

is generally faster than the ESO method. The optimisation problem which

is being solved by the BESO method can be well established and mathe-

matically stated. It can be easily formulated to solve shape optimisation

problems. Moreover, the inbuilt filtering technique can protect the method

against numerical anomalies. However like the ESO method, this method
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can also lead to unstable solutions, although this can be prevented by spe-

cial considerations in the algorithm or by weakening the inefficient elements

instead of totally removing them (soft killing approach).

For problems in underground excavation design, the abilities of the ho-

mogenisation method in dealing with microcells may not be very useful. Fur-

thermore making use of the capabilities of commercial powerful finite element

packages is a highly beneficial point which this method can not enjoy. On the

other hand, the ease of linking with these finite element packages is an impor-

tant advantage. In this regard, the ESO method and the BESO method are

more advantageous than the SIMP method and the homogenisation method.

Also noting the importance of shape optimisation for optimising the shape

of the underground openings, the ESO and the BESO methods are more

beneficial for our case than the SIMP method. The clear topology obtained

by the ESO and the BESO methods is another advantage for these methods

comparing to the SIMP method. Between the ESO and the BESO meth-

ods, the latter is more robust and converges faster. This makes the BESO

method the most proper choice for the types of problems to be considered

in this thesis. However for some non-linear problems which are history de-

pendent, ESO’s one directional optimisation approach matches the nature of

the problem. Hence for these types of problems (which are to be dealt with

in Chapter 7) the ESO method is the most suitable optimisation method.

The next chapter gives a brief review of modelling geomechanical mate-

rials and designing issues in underground excavations. After that, became

more acquainted with the subject, in Chapter 4 we will tailor the BESO

method in accordance to the recognised demands and enhance its capabili-
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ties to deal with underground excavation problems.



C H A P T E R 3

Designing underground
excavations

Unfortunately, soils are made by nature and not by man, and the

products of nature are always complex.

Terzaghi 1936

3.1 Differences between structural and excava-

tion design

In excavation design, unlike structural engineering, the goal is to achieve

particular objectives by perturbing a pre-existing natural system whose be-

haviour is not known a priori. The main differences between structural and

underground excavation designs can be summarised into the following items:

B properties of the ground material need to be estimated and their be-

haviour is more complex

B in-situ stresses need to be estimated

B the loading sequence is different.

73
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In this chapter different ways to estimate mechanical properties of geomate-

rials and in-situ stresses are briefly discussed. In the last section an introduc-

tion to the application of topology optimisation techniques in underground

excavation is presented with a brief review of the previously published papers

in this context.

3.2 Mechanical properties of soil

The material properties of geomechanical materials can be estimated directly

or indirectly. In the direct approach the material properties are determined

through laboratory and in situ tests. In the indirect approach the material

properties are estimated using empirical or theoretical correlations, combin-

ing the properties of discontinuities and intact material through analytical

or numerical methods, and back-analysis (Zhang 2005).

Soil is generally a cohesive frictional granular medium. In excavation

design, because the size of the opening is much larger than the size of soil

particles, the soil mass can be assumed as a continuum. For simplification,

the stress-strain relationship is idealised. Common idealisations are elastic-

perfectly plastic, elastic-strain hardening plastic, and elastic-strain softening

plastic models.

The elastic-perfectly plastic model consists of three basic elements (Yu

2006):

1. The elastic stress-strain relation

2. The yield criterion, which distinguishes the elastic and plastic regions
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3. The plastic flow rule, which defines the plastic relation between stress

and strain

The elasticity parameters of soil can be determined via laboratory or in-situ

tests. Assuming the material is isotropic, the elastic behaviour of the soil

can be completely described if the values of the Young’s modulus (E) and

Poisson’s ratio (ν) are determined. Alternatively one can find the value of

the shear modulus (G) instead of the Poisson’s ratio. The shear modulus is

related to the Young’s modulus and the Poisson’s ratio through the following

expression

G =
E

2(1 + ν)
(3.1)

The value of the shear modulus does not depend on the drainage conditions

of the soil (Craig 2004).

The Young’s modulus can be estimated using the results of the triaxial

test. It is also possible to determine the Young’s modulus through in-situ

tests. This can be achieved by, for example, applying load increments to a

test plate. The shear modulus can be determined by using pressuremeter on

site (Craig 2004).

Several yielding criteria have been proposed for soils among which the

Mohr-Coulomb criterion is the oldest and the most widely used. This crite-

rion was proposed by Coulomb (1773). It considers both friction and cohesion

effects. According to the Mohr-Coulomb criterion the yielding starts when

the shear stress reaches the following value

|τ | = c+ σn tanφ (3.2)
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where c is the cohesion and φ is the internal angle of friction. In terms of

principal stresses σ1 ≥ σ2 ≥ σ3, the Mohr-Coulomb yield function takes the

form

f = (σ1 − σ3)− (σ1 + σ3) sinφ− 2c cosφ = 0 (3.3)

The Mohr-Coulomb yield criterion is illustrated in Figure 3.1.

Figure 3.1 Mohr-Coulomb yield surface. a) on τ − σ plane; b) on deviatoric
plane (π−plane).

The cohesion and the friction angle of soils can be determined through

the triaxial or direct shear tests.

The plastic flow rule is commonly assumed to be in the following form

(Yu 2006; Kempfert and Gebreselassie 2006)

dεpij = dλ
∂g

∂σij
(3.4)

where εpij represents the plastic strain; dλ is a positive scalar, and g(σij) = 0

is known as plastic potential function. In the case of associative flow rule, the

plastic potential function is the same as the yield function (g = f). Otherwise
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the flow rule is non-associative.

It is usually assumed that the plastic potential function for the Mohr-

Coulomb model has the same form as the yield function, but the friction

angle is replaced by the smaller dilation angle ψ (Yu 2006). This implies a

non-associated flow rule. The relationship between the angles of friction and

dilation is referred to as stress-dilatancy equation. One of the most successful

stress-dilatancy models is the following proposed equation

ψ = 1.25(φ− φcs) (3.5)

in which φcs is the friction angle at the critical state (Yu 2006).

3.3 Material properties of rock

Naturally rocks contain discontinuities which affect their mechanical be-

haviour. Unlike soils, and most other engineering materials, because of these

discontinuities, rocks do not generally satisfy the continuum assumption. A

clear distinction should be made between rock material and the generally

discontinuous structure of rock in nature. The rock material between two

discontinuities is usually referred to as intact rock. On the other hand the in

situ medium involving intact rock blocks separated by discontinuity sets is

known as rock mass.

For different structures, the size of representative rock mass domain which

is affected by the structure might be different. The simulation of the be-

haviour of a rock mass depends on the size of the structure in concern, or
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the problem’s domain. The influence of the domain size is illustrated in

Figure 3.2. When the representative size is adequately smaller than the dis-

continuity spacing, the properties of intact rock can be used to model the

rock mass behaviour. In this case the rock medium can be assumed as a con-

tinuum, usually with isotropic behaviour. For problem domains containing

few discontinuities, the continuum assumption is not valid. In such cases,

the behaviour of the rock mass is highly influenced by its discontinuities and

is not isotropic. When the size of the problem domain is much larger than

the blocks of rocks, the rock mass can be seen as heavily jointed. In this

case, like soil, an equivalent continuum can be used to model the rock mass

(Brady and Brown 2006).

Figure 3.2 The influence of scale on rock mass behaviour.

The rock material (intact rock) in most cases shows a brittle behaviour

where strength reduces significantly upon reaching a specific stress level

(Hoek et al. 1997). One of the popular failure criteria for intact rock has
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been suggested by Hoek and Brown (1980). This criterion is empirical and

can be expressed in the following form

σ′1 = σ′3 + σc

(
mi
σ′3
σc

+ 1

) 1
2

(3.6)

where σ′1 and σ′3 are the major and minor effective stresses at failure respec-

tively; σc is the uniaxial compressive strength of the intact rock, and mi is a

material constant which only depends on the rock type.

The uniaxial (or unconfined) compressive strength σc and the material

constant mi can be determined by laboratory tests. The most reliable values

for these parameters can be derived from the triaxial test results on rock core

samples (Hoek et al. 1997). The values of unconfined compressive strength

of rocks may vary from 1MPa for weak rocks like claystone to more than

300MPa for Quartzite or some igneous rocks like granite and syenite (Zhang

2005). The material constant mi is a dimensionless parameter which depends

on mineralogy, composition and grain size of the rock material (Hoek et al.

1992). The typical values for this parameter varies between 4 for claystone

to 33 in case of granite (Hoek and Brown 1980; Hoek et al. 1997).

3.3.1 Discontinuities in rocks

The main difference between rock masses and other engineering materials is

the existence of discontinuities in them. The word discontinuity is a general

term referring to any kind of separation in rock mass which effectively has

no tensile strength. This compromises faults, bedding planes, joints, ....
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The shear strength of discontinuities is assumed to obey the Mohr-Coulomb

criterion (3.2). However in discontinuities the parameter c does not have

the same physical meaning (cohesion) as it has in soils (Hoek et al. 1997).

Conservatively c can be eliminated in this case (Hudson and Harrison 1997).

The Mohr-Coulomb criterion can thus be simplified as |τ | = σn tanφ. The

tensile strength of discontinuities is zero by definition and the compressive

strength is equal to that of intact rock.

The geometrical and mechanical properties of discontinuities are mostly

the main factors that govern the mechanical properties of rock masses. How-

ever obtaining a clear picture of discontinuities within a rock mass in most

cases is not possible. The designers often should rely on the information

obtained from borehole cores. One of the most important aspects of dis-

continuity occurrence is the ratio of intact rock pieces in core samples. The

Rock Quality Designation (RQD) is a quantitative measurement of this ratio

developed by Deere et al. (1967). RQD is defined as the ratio of intact rock

pieces longer than 100mm in the total length of core expressed in percentage.

3.3.2 Rock mass classification

Mechanical properties of rock masses depend on both rock material (intact

rock) and discontinuity sets. Rock mass classification schemes can provide

an initial quantitative estimation of overall rock mass properties. The use of

rock mass classification schemes can be considerably beneficial in the early

design stages of projects when detailed information on rock mass is barely

available. These schemes, however, should not be used as a replacement of
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more sophisticated design procedures.

The Rock Mass Rating (RMR) and the Rock Tunnelling Quality Index

(Q) are two well-known rock mass classification schemes for tunnels. The

RMR classification is introduced by Bieniawski (1976) under the name of

‘Geomechanics Classification System’. Since then this system was refined

several times by Bieniawski (1989). The RMR system uses the following six

parameters:

1. Uniaxial compressive strength of the rock material (σc).

2. Rock quality designation (RQD).

3. Spacing of discontinuities.

4. Condition of discontinuities (roughness, separation, etc.).

5. Ground water condition.

6. Orientation of discontinuities.

The rating values corresponding to the these items are derived from the tables

provided by Bieniawski (1989) and added together. These tables can also be

found in Hoek et al. (1997, p. 35). The final value of RMR is in the range

of 0 to 100. Higher values imply better rock quality.

The Tunnelling Quality Index (Q) was proposed by Barton et al. (1974)

for estimating rock mass properties and tunnel support requirements. It is

defined as

Q =
RQD

Jn
× Jr
Ja
× Jw
SRF

(3.7)
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where RQD is the rock quality designation; Jn is the joint set number; Jr is

the joint roughness number; Ja is the joint alteration number; Jw is the joint

water reduction factor, and SRF is the stress reduction factor. All these

factors can be extracted from the tables provided by Barton et al. (1974).

These tables can also be found in Hoek et al. (1997, p. 41). The value of Q

can change from 0.001 to 1,000 on a logarithmic scale.

3.3.3 Strength of rock mass

For rock masses with few dominant discontinuities, the strength of disconti-

nuities should be explicitly considered in terms of a shear strength criterion.

In this case failure of the intact rock blocks can be estimated by using Hoek-

Brown criterion for intact rock (3.6), while the shear strength of discontinu-

ities can be determined by using Mohr-Coulomb criterion.

For heavily jointed rock masses, on the other hand, the strength of dis-

continuities can be implicitly combined with the strength of intact rock to

provide a single failure criterion for the rock mass. In this case the overall

behaviour of the rock mass can be assumed isotropic. Such criterion can also

be used to model the behaviour of a weak rock mass with a single dominant

shear zone or fault. In these rock masses the behaviour of the weak rock mass

can be predicted by the rock mass failure criterion and the strength of the

dominant discontinuity should be explicitly modelled using a shear strength

criterion (Hoek et al. 1992).

Among different empirical failure criteria presented for jointed rock masses,

the Hoek-Brown criterion will be introduced here. This criterion was origi-
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nally proposed by Hoek and Brown (1980). A modified version of this crite-

rion was later presented by Hoek et al. (1992). In the most general form, the

Hoek-Brown failure criterion can be expressed in the following form (Hoek

et al. 1997)

σ′1 = σ′3 + σc

(
mb

σ′3
σc

+ s

)a
(3.8)

This form incorporates both the original and the modified versions of the

criterion. Here mb is the material constant for the rock mass, and s and a

are constants which depend on the characteristics of the rock mass. σ′1 and

σ′3 are the major and minor effective stresses at failure respectively and σc is

the uniaxial compressive strength of the intact rock.

The original Hoek-Brown criterion can be achieved by substituting a =

0.5 in (3.8). This criterion works well with most rocks with good quality

when the rock mass strength is controlled by tightly interlocking angular

rock pieces (Hoek et al. 1997).

The modified criterion is more suitable for poor quality rock masses where

the tight interlocking has been disturbed. Such rock masses have no tensile

strength or ‘cohesion’. The modified criterion can be obtained by setting

s = 0 in (3.8) and thus reads

σ′1 = σ′3 + σc

(
mb

σ′3
σc

)a
(3.9)

To estimate the values of the parameters mb, s, and a in (3.8), Hoek

et al. (1997) proposed some formulae which relate these parameters to the

rock mass classification indexes of RMR and Q through a new index called
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Geological Strength Index (GSI). The value of mb can be estimated from

mb

mi

= exp

(
GSI − 100

28

)
(3.10)

For s and a the following relations have been proposed

s =


exp

(
GSI−100

9

)
for GSI > 25

0 for GSI < 25

(3.11)

a =


0.5 for GSI > 25

0.65− GSI
200

for GSI < 25

(3.12)

Values of GSI > 25 indicate rock masses of good to reasonable quality (when

original criterion should be used) and the values of GSI < 25 are related to

rock masses of poor quality (when modified criterion should be used).

The GSI value can be related to the RMR and Q indexes. Hoek et al.

(1997) proposed the following relationship to estimate the GSI value from

the latest version of RMR (the 1989 RMR classification)

GSI = RMR− 5, for RMR > 23 (3.13)

For RMR < 23 this classification cannot be used to estimate GSI value. For

such cases the modified Q index should be used in the following formula

GSI = 9 lnQ′ + 44 (3.14)
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where Q′ is the modified quality index which is calculated as

Q′ =
RQD

Jn
× Jr
Ja

(3.15)

For extremely poor rock masses GSI takes the value of about 10 and for

intact rock the value of GSI reaches 100 (Hoek et al. 1997).

3.4 In-situ and induced stresses

3.4.1 In-situ stresses

In underground excavations, the stresses involved in the analysis are not

applied but rather induced by disrupting the in-situ stresses. These in-situ

stresses are tolerated by rocks or soils prior to excavating. Measuring or

estimating the pre-existing in-situ stresses is thus a necessary step in any

underground excavation design. The in-situ stresses in ground materials are

mainly caused by the weight of overlying strata and the locked-in tectonic

stresses (Hoek et al. 1997).

The in-situ stresses might be directly measured via several measurement

methods description of which is beyond the scope of this text. It is also

possible to estimate the in-situ stresses through empirical correlations, stress

measurements in the past, and analytical models. The vertical stress, σv, can

be usually safely estimated as the weight of overlying strata (Terzaghi et al.

1996; Hoek and Brown 1980)

σv = γz (3.16)
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where γ is the unit weight of the overlying material and z is the depth below

surface. The ratio of averaged horizontal stress to vertical stress is usually

denoted by k such that

σh = kσv = kγz (3.17)

In soil mechanics the ratio of the in-situ vertical to horizontal stress is

usually referred to as ‘coefficient of earth pressure at rest’ (Jáky 1944; Terza-

ghi et al. 1996; Craig 2004; Mitchell and Soga 2005) and is denoted by k0.

A couple of relations have been proposed by various authors to estimate the

value of k0 in soils which all depend on the friction angle and possibly the

overconsolidation ratio (OCR). A commonly used relationship for normally

consolidated soils is the simplified version of the formula proposed by Jáky

(1944),

k0 = 1− sinφ′ (3.18)

in which φ′ is the effective friction angle of the soil. The typical range of 18◦

to 43◦ for φ′ in (3.18) results in k0 values ranging from 0.31 to 0.67 (Terzaghi

et al. 1996). For overconsolidated soils, Mayne and Kulhawy (1982) proposed

the following relationship.

k0 = (1− sinφ′)(OCR)sinφ′ (3.19)

For rocks the typical value of γ is 2700kg/m3 (Hoek and Brown 1980). For

the value of k and the horizontal stress σh several correlations have been sug-

gested by different authors (Zhang 2005). Considering the worldwide in-situ
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rock stress data, Hoek and Brown (1980) provided the following bounding

limits for k

100

z
+ 0.3 < k <

1500

z
+ 0.5 (3.20)

It can be seen that unlike soils, in rocks the ratio of averaged horizontal to

vertical stress (k) depends on depth (z) rather than material properties.

3.4.2 Induced stresses

Excavating underground openings disturbs the in-situ stresses in the vicinity

of the opening. The stress release caused by excavation will cause the stresses

to redistribute around the opening. Determining these induced stresses is

thus an unavoidable step if one wants to model the responses of the ground

in which an opening is excavated. This can be done by using simplified

analytical models or numerical modelling.

For openings of simple shapes, e.g. circle, a closed form solution might be

available in the literature assuming elastic or elasto-plastic ground response.

A handful of such analytical solutions can be found in Yu (2000).

In general cases, the induced stresses can be calculated using numerical

methods. Some of the most widely used numerical methods in excavation de-

signs are Finite Difference Methods (FDM), Finite Element Method (FEM),

Boundary Element Method (BEM), Discrete Element Method (DEM), and

Discrete Fracture Network (DFN) (Jing and Hudson 2002; Jing 2003). These

methods can be divided into two groups (Jing and Hudson 2002; Jing 2003):

continuum methods including FDM, FEM and BEM, and discontinuum meth-
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ods including DEM and DFN. The first group of methods is more suitable for

analysing rock masses with no discontinuities or with many discontinuities.

These methods are also suitable for rock masses containing few discontinu-

ities, providing the behaviour of these discontinuities are explicitly simulated.

The second group are more appropriate for moderately jointed rock masses.

Because all the previously discussed topology optimisation techniques are

based on finite element method, in this thesis only the finite element method

has been used for numerical analysis.

3.5 Support and reinforcement design

In regard to mechanical stability, excavating an opening will cause two ma-

jor effects on the rock mass environment. Firstly the stress release caused

by excavation will allow the surrounding rock to displace and squeeze the

opening. Secondly the stress tensor on the boundary of the opening would

have no shear stress and two of the normal (principal) stresses would lie on

the boundary surface with the other one (normal to the boundary surface)

dissipating (Hudson and Harrison 1997).

Influenced by the first effect, the rock mass might deform as a whole

or some rock blocks might move towards the opening separately. If the

displacement exceeds certain limits failure can happen either partially or

globally. The second effect involves a significant disruption of the in-situ

stresses. This may increase the magnitude of the deviatoric stresses leading

the rock or soil mass to fail.
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In order to maintain the stability of the excavation and prevent such

failures, in most cases, it is necessary to improve the integrity and stiffness

of the rock or soil mass by means of additional reinforcement or support. In

rock mechanics there is a distinction between the two terms reinforcement

and support (Brady and Brown 2006; Hudson and Harrison 1997). The term

‘reinforcement’ is used when one improves the overall rock mass behaviour

from within the rock mass so that the rock supports itself. Techniques such

as cable bolts, rock bolts, and ground anchors come under this category. On

the other hand, the term ‘support’ refers to use of structural elements such

as timber or steel liners which are installed inside the excavation to support

the rock mass externally.

This thesis is not going to deal with different types and available tech-

niques for stabilisation of excavations. Instead the mechanical effects of rein-

forcement or support on the rock mass are concerned in the numerical models.

To understand these effects and to model them correctly, it is essential to

know how the support and reinforcement systems interact with the ground.

3.5.1 Ground and support interaction

As excavation proceeds, the tunnel face advances into the rock mass. This can

happen, for example, by cycles of drilling and blasting. This advancement

changes the stress distribution in the surrounding rock mass. If one monitors

the stress and displacement of a fixed point in rock mass ahead of the tunnel

face, these values will change dramatically as the tunnel face approaches this

point. Consider the case depicted in Figure 3.3 where the displacements of
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the point P is being monitored. The graph in this figure shows the normalised

values of inward radial displacement of P against its distance from the tunnel

face.

Figure 3.3 The change in displacement of a floor point as the tunnel advances.

The radial displacement of P starts when the tunnel face reaches the

distance of around one half of the tunnel diameter. At tunnel face, the dis-

placement reaches about one third of its final value. Finally when the tunnel

face passes the point, in a distance about one and a half tunnel diameter, the

inward displacement of the point reaches its final value (Brady and Brown

2006; Hoek et al. 1997).

In order to illustrate the disruption caused by excavation, a simple case

of a circular tunnel with the initial radius of r0 is considered here. The stress

field is assumed to be hydrostatic with the value of p0 and the tunnel is

assumed to be long and straight enough to validate the plane strain assump-

tion. The rock mass behaviour is idealised as elastic-perfectly plastic and the

yielding is assumed to be governed by Mohr-Coulomb criterion.

An internal pressure pi acts inside the tunnel. Initially this pressure is

equal to the in-situ stress, i.e. pi = p0. As the excavation proceeds, the
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internal pressure decreases. The rock mass surrounding the tunnel starts to

yield as the internal pressure becomes less than a critical value. This critical

pressure can be calculated as (Hoek et al. 1997)

pcr =
2p0 − σcm

1 + k
(3.21)

where σcm and k are two parameters depending on friction angle and cohesion

defined as

σcm =
2c cosφ

1− sinφ
(3.22)

and

k =
1 + sinφ

1− sinφ
(3.23)

For values of pi > pcr the rock mass behaviour is elastic. In this range

the inward radial displacement can be expressed as

ue =
r0(1 + ν)

E
(p0 − pi) (3.24)

with ν and E denoting the Poisson’s ratio and Young’s modulus of the rock

mass. For pi ≤ pcr the rock mass will undergo a plastic deformation. The

radius of the plastic zone takes the following form (Hoek et al. 1997)

rp = r0

(
2 (p0(k − 1) + σcm)

(1 + k) ((k − 1)pi + σcm)

) 1
k−1

(3.25)

Using this, the total radial displacement can be calculated as

u =
r0(1 + ν)

E

(
2(1− ν)(p0 − pcr)

(
rp
r0

)2

− (1− 2ν)(p0 − pi)

)
(3.26)
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Figure 3.4 shows the variation of inward radial displacement against the

internal pressure pi using (3.24) and (3.26).

Figure 3.4 Ground response curve and support interaction.

As depicted in Figure 3.4 the displacements are elastic for pi > pcr and as

the internal pressure decreases further the rock yields and plastic displace-

ment occurs.

Now suppose that some support system is installed as the tunnel face

advances. As illustrated in Figure 3.3, displacement at the tunnel face itself

would be approximately one third of the final displacement. That means

before installing any support system some deformation has already occurred.

Assume that the displacement at the time of support installation is us. After

adding the support system, as the displacement increases the support stress

becomes greater. The reaction of the support stress acts as an internal pres-
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sure and is added to pi. In Figure 3.4 the reaction of the support system

is depicted using dashed line. As the radial displacement increases further,

the internal pressure decreases while the support pressure increases. Once

the ground response curve meets the support reaction curve equilibrium is

achieved (Fig. 3.4). If the support system yields before reaching equilibrium

or if the support is installed too late, the support will be ineffective.

3.5.2 Modelling rock support and rock reinforcement

According to definition, supports act externally. The effect of supports can

thus be modelled by adding an external pressure acting outward on the sup-

ported parts of the opening boundary. The magnitude of this pressure is

equal to the pressure tolerated by the support system in opposite direction.

Rock reinforcement on the other hand, act internally and their modelling

is more complicated. In terms of the effect on the host rock, generally two

types of reinforcement systems can be recognised. The first group applies

a confining pressure to the reinforced parts of the rock mass. Ungrouted

anchored bolts come in this category. The second group reinforces the rock

mass by adding elements which are generally stronger and stiffer than the

host rock and particularly can withstand tensile stresses. Grouted rock bolts

and dowels are examples of this type of reinforcement.

To simulate the effect of reinforcement one approach is to model the

reinforcing elements explicitly. Such models can provide a high level of ac-

curacy but at the same time might take considerable effort and time to be

analysed. Another simpler approach is to include reinforcement effect by con-
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sidering a stiffer and stronger material for reinforced areas of the rock mass.

Properties of this ‘reinforced material’ can be calculated through homogeni-

sation method (Bernaud et al. 1995, 2009). This is specially useful in case of

fully grouted rock bolts. Using this approach the reinforcement optimisation

problem reduces to finding the optimal distribution of the reinforced mate-

rial. Such problems can be easily solved by topology optimisation techniques.

Throughout this thesis a simplified homogenised reinforced material is used

to simulate the effect of reinforcement.

3.6 Optimising underground excavations

Finding the best shape of the opening and the best arrangement and topology

of the rock reinforcement are two vital and challenging steps in excavation

design. Both of these optimisation problems can be addressed by topology

optimisation techniques presented in Chapter 2. This might however involve

significant complexities due to complex behaviour of ground materials and

the differences in the loading sequence between structural and excavation

problems.

In this section a review of the published works on using topology and

shape optimisation techniques in underground excavations is presented. The

pre-excavation stress fields have been modelled by applying remote distributed

forces on a large finite element mesh. The finite element mesh should be large

enough to eliminate the boundary effects. A linear elastic material model

have been used for rock and soil in all of these papers and the ground media
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has been assumed as an isotropic continuum.

3.6.1 Shape optimisation of the openings

Ren et al. (2005) employed the ESO method to optimise the shape of un-

derground openings assuming linear elastic behaviour for ground material.

They used the mean principal compressive stress defined as

σ̄ =
σ1 + σ2 + σ3

3
(3.27)

as the efficiency measurement in the ESO procedure. The effect of the weight

of ground material was assumed to be negligible in this paper. The results

were verified with theoretical solutions in simple cases where a single opening

is under biaxial principal stresses. In this case the optimum shape is known

to be an ellipse with axial lengths matching the in-situ stress ratio (Ren et al.

2005). The optimum shape of a tunnel intersection was also presented in this

paper. This optimal tunnel intersection shape is reintroduced in Figure 3.5.

A more detailed review of the procedure used in this paper will be pre-

sented in Chapter 7.

3.6.2 Reinforcement optimisation around tunnels

Topology optimisation of the reinforcement around underground openings

was first studied by Yin et al. (2000). The objective function used in this
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Figure 3.5 The optimum shape for two intersecting tunnels obtained by Ren
et al. (2005).

paper is the external work along the tunnel wall defined as

W (u) =

∫
Γ

t · udΓ (3.28)

where u is the displacement vector; Γ is the tunnel’s boundary, and t is the

negating surface traction on tunnel’s boundary prior to excavation. In this

paper the tunnels were assumed to be deep enough so that the difference of

the gravity force is negligible. By assuming linear elasticity, the superposition

principle can be applied. The loading of the tunnel is thus equivalent to the

superposition of two other load cases: the initial in-situ stresses and the

negating surface traction t. Figure 3.6 illustrates this idea.

In their approach Yin et al. (2000) used the homogenisation method to

minimise W . They considered a square base cell of unit length made of
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Figure 3.6 Using superposition principle to analyse a deep tunnel: a) A tunnel
under remote stresses; b) the pre-excavation stress state; c) the negating
surface traction.

reinforced material consisting a smaller square of size µ < 1 in its centre

made of original rock. The reinforcement material was assumed to be linear

elastic with a Young’s modulus five times that of rock mass.

Yin and Yang (2000a) solved the reinforcement optimisation problem for

tunnels in layered rock structures. This structure may consist of layers of

hard and soft rocks with different Young’s moduli. Reinforcement optimi-

sation of tunnels in four different structures were studied by Yin and Yang

(2000a), namely, isotropic soft, hard/soft, soft/hard, and hard/soft/hard rock

structures.

Yin and Yang (2000a) employed the SIMP method to minimise displace-

ment based objective functions. These objective functions correspond to the

sum of the relative displacements around the opening boundary. In their pa-

per, linear elastic behaviour is assumed for both original and reinforced rock.

The following power-law interpolation scheme is used for stiffness tensor

Eijkl(ρ) = ρpE
(r)
ijkl + (1− ρp)E(o)

ijkl (3.29)
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where ρ is the relative density; p is the penalty factor, and E(r)ijkl and

E(o)ijkl are stiffness tensors of reinforced rock and original rock respectively.

In their paper, Yin and Yang (2000a) have solved two examples in the

four rock structures considered with deep tunnel assumption (neglecting the

weight of rocks). In another example, however, they included the gravity

force for a tunnel in isotropic media.

The same approach was applied by Yin and Yang (2000b) to find the

optimum reinforcement topology minimising the floor and side wall heaves

of a tunnel in homogeneous rock. In this paper the weight of rock material

was neglected and the tunnel was considered under stress biaxiality.

The reinforcement optimisation of underground tunnels was also studied

by Liu et al. (2008). Different displacement based objective functions were

considered in this paper. To solve the optimisation problem, Liu et al. (2008)

used the BESO method within a fixed grid finite element framework. The

fixed-grid finite element prevents the formation of checkerboard patterns and

smoothens the final topologies. The following interpolation scheme is used

in this paper

Eijkl(η) = ηE
(r)
ijkl + (1− η)E

(o)
ijkl (3.30)

where η is the design variable field changing between 0 and 1. The two ma-

terial phases differ in their Young’s moduli. The sensitivity numbers for the

BESO method can be calculated by using (3.30) in the results of sensitivity

analysis of the objective functions. More information on this issue can be

found in Chapter 4 where the application of the BESO method in solving bi-

or multi-material problems is discussed.



C H A P T E R 4

Tailoring topology optimisation
algorithm for underground
excavation problems

4.1 Introduction

As mentioned in the previous chapter, in excavation design, the shape of

the opening and the topology of the rock reinforcement can be optimised by

state-of-the-art topology optimisation techniques.

In reinforcement optimisation the material is changing between normal

rock and reinforced rock. The material interpolation scheme is thus different

from solid-void design and the choice of material interpolation scheme is

more critical (Bendsøe and Sigmund 2003). Unlike material-void design, in

bi-material (or multi-material) problems, the ratio of the Young’s moduli of

the two material phases is a finite number. This might lead to convergency

difficulties specially when the elasticity properties of the two materials are

very close to each other.

For optimising the shape of the opening, it is necessary to find the bound-

ary of the opening. The material elements on this boundary may change

99
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to voids and the voids on the inner side of this boundary may change to

material elements. As discussed before, the SIMP and the homogenisation

methods are not very suitable for shape optimisation, because the material-

void boundary is not well definable in these methods. In applying ESO or

BESO methods a normal material-void interpolation scheme would be suf-

ficient provided that the switches between material and void elements are

limited to the elements at the boundary of the opening. This restriction

generally assures that the topology of the opening will not change.

In this chapter a reformulation of the BESO technique is presented. To

derive the sensitivity numbers, a general approach is presented which is based

on sensitivity analysis. The characteristics of the proposed BESO technique

is then tuned and improved to match these special requirements and consid-

erations.

4.2 Deriving sensitivity numbers

In the BESO method, the sensitivity number of the i-th element, αi is an

indicator of the change in the objective function due to switching the material

in that element. We thus try to evaluate the change in objective function

due to a change in an element.

Suppose that the objective function f is a function of design variables,

f = f(x) which is to be minimised. By changing the value of the design

variable of the i-th element from 1 to 0, the vector of design variables will

change from x to
−i
x . Using Taylor series of f in the neighbourhood of

−i
x one
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can write

f(x) = f(
−i
x) +

∂f

∂xi
(xi −

−i
x i) +

∂2f

∂x2
i

(xi −
−i
x i)

2 + · · · (4.1)

Substituting xi = 1 and
−i
x i = 0 in this equation, one can get the following

first-order approximation for the change in f due to weakening (or removing)

the i-th element

∆
−i
f = f(

−i
x)− f(x) = − ∂f

∂xi
(4.2)

The parameter ∆
−i
f represents the effect of the imposed change on the objec-

tive function and thus can be used to define the sensitivity number of the

i-th element.

By increasing the value of the design variable in the i-th element from

0 to 1, the vector of design variables will change from x to
+i
x . Again using

Taylor series and substituting xi = 0 and
+i
x i = 1 the following first-order

approximation for the change in f due to strengthening (or adding) the i-th

element can be achieved.

∆
+i
f = f(

+i
x)− f(x) =

∂f

∂xi
(4.3)

The two equations (4.2) and (4.3) can be summarised into the following

relation

∆
i
f =


∂f
∂xi

if xi = 0

− ∂f
∂xi

if xi = 1

(4.4)

Using (4.4) if one strengthens the i-th element (xi = 0) and weakens the j-th

element (xj = 1), the change in the objective function can be approximated



Chapter 4 Tailoring topology optimisation algorithm 102

to ∆f = ∂f
∂xi
− ∂f

∂xj
. In a minimisation problem the lowest value of ∆f is

desirable. One can thus conclude that the weak elements with the lowest

value of ∂f
∂xi

are more desirable to be strengthened. While in case of elements

with the strong material, the most desirable to be weaken is the one with

the greatest value of ∂f
∂xj

.

Based on this discussion the following definition for sensitivity numbers

can be proposed

αi = − ∂f
∂xi

, i = 1, 2, . . . , n (4.5)

Using this definition and noting the above discussion, the weak elements with

the highest sensitivity number are more desirable to be strengthened (are the

most efficient elements). And the strong elements with the lowest sensitivity

number are more desirable to be weaken (are the least efficient elements).

This definition is consistent with the original definition of sensitivity numbers

and efficiency of elements in the BESO method.

For the compliance minimisation problem one can substitute ∂c
∂xi

from

(2.14) in (4.5) to get the following expression

αi = uTi
∂Ki

∂xi
ui, i = 1, 2, . . . , n (4.6)

To calculate the sensitivities one needs to know the value of the parameter

∂Ki

∂xi
. This value depends on the material interpolation scheme in use.
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4.3 Linear material interpolation

The simplest material interpolation between two materials is a linear inter-

polation formulated below

Eijkl(x) = E
(1)
ijkl + x(ξ)(E

(2)
ijkl − E

(1)
ijkl), ξ ∈ Ω (4.7)

where Eijkl is the interpolated stiffness tensor; E
(m)
ijkl stands for elasticity

tensor of the m-th material and x(ξ) is the design variable field with 0 ≤

x(ξ) ≤ 1. ξ indicates the coordinates and Ω is the design domain.

The elasticity tensor Eijkl for isotropic materials is a function of two

material constants, namely Young’s modulus E and Poisson’s ratio ν. If

one assumes that the Poisson’s ratio is same for the two material phases, the

equation (4.7) can be expressed in terms of Young’s modulus only. Supposing

a similar finite element discretisation for displacement and design variable

fields, (4.7) can be simplified to

Ei(xi) = E(1) + xi(E
(2) − E(1)), i = 1, 2, . . . , n (4.8)

where Ei is the Young’s modulus of the i-th element, and E(1) and E(2)

are the moduli of elasticity of the two materials. xi represents the design

variable of the i-th element, and n is the number of finite elements. Here it

is assumed that E(1) < E(2) which means the first material is weaker than

the second. Note that by setting E(2) = Ē and E(1) = 0, a material-void

interpolation can be derived from (4.8).

Using the linear elasticity assumption, the element level stiffness matrix
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Ki can be expressed as

Ki(xi) =
Ei(xi)

Ē
K̄i (4.9)

where Ē is the modulus of elasticity of the base material and K̄i is the

stiffness matrix of the i-th element when it is made of the base material. For

two-material problems the base material can be chosen as either of the two

materials. Differentiating with respect to xi, one will get

∂Ki

∂xi
=
∂Ei
∂xi

K̄i

Ē
=
∂Ei
∂xi

Ki

Ei
(4.10)

which can be simplified further by substituting ∂Ei

∂xi
from (4.8) to give

∂Ki

∂xi
= (E(2) − E(1))

Ki

Ei
(4.11)

Now substituting ∂Ki

∂xi
from (4.11) into (4.6), one can calculate the following

sensitivity numbers for the compliance minimisation problem.

αi =


E(2)−E(1)

E(1) uTi Kiui for the weak material (xi = 0)

E(2)−E(1)

E(2) uTi Kiui for the strong material (xi = 1)

(4.12)

The linear interpolation scheme with the above sensitivity numbers may

not result in recognisable topologies in two-material problems when a filter-

ing technique is implemented. The reason lies on the coefficients E(2)−E(1)

E(1) and

E(2)−E(1)

E(2) which increase the sensitivity number of the weak elements and de-

crease the sensitivity number of strong elements. The BESO routine sorts the

elements based on their sensitivity numbers and then switches the elements
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based on their ranking. Hence, what is important in BESO is the ranking of

sensitivity numbers, not their numerical value. When no filtering is employed

the neighbouring elements will not affect each other and thus the algorithm

works fine. However, when the filter is turned on the sensitivity numbers of

neighbouring elements affect each other and combine together. In this case,

the two coefficients E(2)−E(1)

E(1) > E(2)−E(1)

E(2) give more weight to the weak ele-

ments. This scatters the materials and ultimately results in non-recognisable

topologies. This problem is illustrated in the numerical examples solved at

the end of this chapter (see Figure 4.4a and Figure 4.5a).

The linear material interpolation is thus only suitable when no filtering is

employed and the sensitivity numbers of the two materials does not influence

each other. However, one can use non-linear interpolation schemes or adjust

the weight factors to overcome this shortcoming. The following sections

propose such interpolation schemes.

4.4 Power-law interpolation

The common material interpolation scheme used in the SIMP method is the

power-law interpolation (2.23). A similar interpolation scheme can be used

in the BESO method (Huang and Xie 2009).

Ei(xi) = xpi Ē, i = 1, 2, . . . , n (4.13)

where Ē is the Young’s modulus of the base material and p ≥ 1 is a penalty

factor.



Chapter 4 Tailoring topology optimisation algorithm 106

Similarly for two-material problems, assuming a similar Poisson’s ratio

for the two materials, the following interpolation scheme can be defined

Ei(xi) = E(1) + xpi (E
(2) − E(1)), i = 1, 2, . . . , n (4.14)

The material-void interpolation scheme (4.13) can be derived from (4.14) by

setting E(2) = Ē and E(1) = 0. Setting p = 1 results in a linear interpolation.

Now by calculating ∂Ei

∂xi
from (4.14) and substituting into (4.10) one can

write

∂Ki

∂xi
= px

(p−1)
i (E(2) − E(1))

Ki

Ei
(4.15)

Using this equation in (4.6), the following sensitivity numbers can be defined

αi =


pxp−1

i
E(2)−E(1)

E(1) uTi Kiui if xi = 0

pxp−1
i

E(2)−E(1)

E(2) uTi Kiui if xi = 1

(4.16)

Assuming p > 1 the above equation can be simplified to

αi =


0 if xi = 0

pE
(2)−E(1)

E(2) uTi Kiui if xi = 1

(4.17)

This equation suggests that the objective function dose not change by strength-

ening an element. In order to overcome this, one can use a small positive

value xmin > 0 instead of 0 for the weak material. In this case the above
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equation can be rewritten as

αi =


p

xp−1
min(E(2)−E(1))

E(1)+xpmin(E(2)−E(1))
uTi Kiui for the weak material (xi = xmin)

pE
(2)−E(1)

E(2) uTi Kiui for the strong material (xi = 1)

(4.18)

As the actual value of the sensitivity numbers are not important in BESO,

for further simplification, the above definition can be divided by p.

4.5 An alternative interpolation scheme

When one uses power-law interpolation, it is necessary to introduce an extra

parameter, xmin, in order to evaluate the change in objective function due to

strengthening an element. This requirement is resulted from the fact that the

slope of the power-law interpolation (4.14) vanishes at xi = 0. On the other

hand, the slope of the interpolation curve at the other end (xi = 1) is always

a positive value. This gives different weights to the sensitivity numbers of

the weak and the strong materials.

The alternative material interpolation scheme proposed by Stolpe and

Svanberg (2001) overrides these shortcomings. This material interpolation

can be expressed in the following form

Ei(xi) = E(1) +
xi

1 + q(1− xi)
(E(2) − E(1)), i = 1, 2, . . . , n (4.19)

where q plays the same role as p in (4.14). Using q = 0 will result in a linear

interpolation (without penalty) while any positive value for q penalises the
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intermediate design variables.

Differentiating (4.19) with respect to design variables, one would get

∂Ei
∂xi

=
(E(2) − E(1))(1 + q)

[1 + q(1− xi)]2
(4.20)

which can then be substituted in (4.10) to give

∂Ki

∂xi
=

(1 + q)

[1 + q(1− xi)]2
(E(2) − E(1))

Ei
Ki (4.21)

Using (4.21) in (4.6), the sensitivity number for the i-th element can be

defined as

αi =


1

1+q
(E(2)−E(1))

E(1) uTi Kiui for the weak material (xi = 0)

(1 + q) (E(2)−E(1))

E(2) uTi Kiui for the strong material (xi = 1)

(4.22)

4.6 Modified linear interpolation

In §4.3 it was mentioned that the sensitivity numbers resulted form linear

interpolation are not suitable for two-material problems. This is due to the

two weight factors (E(2)−E(1))

E(1) > (E(2)−E(1))

E(2) which result in higher sensitivity

numbers for weak elements. Moreover, for voids where E(1) → 0, one would

get (E(2)−E(1))

E(1) →∞ which can cause numerical problems.

In order to overcome these issues, we redefine the sensitivity numbers in
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(4.12) as

αi =


E(1)(E(2) − E(1))uTi Kiui for weak material (xi = 0)

E(2)(E(2) − E(1))uTi Kiui for strong material (xi = 1)

(4.23)

In this definition, for the case of solid-void design, setting E(1) → 0 will result

in αi → 0 when xi = 0. Note that no extra parameter need to be defined in

(4.23).

As in the BESO method the ranking of the sensitivity numbers is what is

important, the sensitivity numbers defined in (4.23) are equivalent to (4.22)

with q satisfying the following equation

q =
E(2)

E(1)
− 1 (4.24)

The results are also equivalent to the definition provided in (4.18) if p and

xmin satisfy the following equation

x1−p
min =

(
E(2)

E(1)

)2

+ xmin

(
1− E(2)

E(1)

)
(4.25)

For example, assuming E(2)

E(1) = 5 and xmin = 0.001, one would get q = 4 and

p = 1.466 from (4.24) and (4.25) respectively.

The sensitivity numbers formulated in (4.18), (4.22), and (4.23) were all

calculated for compliance minimisation. If one chooses another objective

function, similar procedures may be followed to define corresponding sensi-

tivity numbers.
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4.7 Filtering sensitivity numbers

In case of solid-void designs, the mechanical responses of voids cannot be eval-

uated from finite element analysis and the sensitivity number of voids should

be extrapolated from surrounding elements. Filtering sensitivity numbers

is one common approach for such extrapolations. In two-material problems

there is no need for extrapolating sensitivity numbers. However, even in this

case, filtering the sensitivity numbers is beneficial.

Filtering technique is capable of overcoming numerical anomalies such

as checkerboards and mesh dependency. More details on this issue have

been provided in §2.8. Moreover, filtering smoothens the resulted topologies.

This generally reduces the complexities in the final design and increases its

applicability.

The filtering scheme used in this text is a linear filter which has been

previously introduced in §2.7.1. This filtering scheme has been formulated

in equation (2.34) which is repeated here

α̂i =

∑N
j=1 wijαj∑N
j=1 wij

[2.34]

in which wij = max{0, rf − rij} is a linear wight factor. rf is the filtering

radius and rij is the distance between the centroids of the elements i and j.

After calculating the filtered sensitivity numbers from (2.34), these values

should be used instead of the original sensitivity numbers for the rest of

calculations in each iteration.
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4.8 Switching elements

An overview of a recently proposed element switching procedure in BESO

was presented in §2.7.2. One of the capabilities of the BESO algorithm is

that it can start from design points with higher or lower volumes than the

specified volume constraints. Although starting from a full initial design

usually leads to better results, the optimisation procedure is hard to follow

when the volume is changing. In this case the value of the objective function

in two steps with two different volumes are not comparable to each other.

Different performance indices were used by some researchers to make this sort

of comparisons possible (Yang et al. 2003; Querin 1997). However, using these

performance indices, one can not easily express what optimisation problem

is being solved. In order to reduce the complexity of the algorithm and for

verification purposes, in this thesis we always start the BESO algorithm from

a feasible design point and keep the volume fractions constant. In this manner

the value of the objective function at any iteration is always comparable to

the other iterations and the problem which is being solved can be expressed

mathematically. It is trivial that one can use any proper element switching

procedure in the BESO method without this restriction we imposed here.

In order to keep the volume constant, in each iteration, the number of

elements being switched from 0 to 1 should be the same as the number of

elements being switched from 1 to 0. In other words, if one determines the

i-th element to be weakened (be switched from 1 to 0), another element,

say j, should be strengthened (be switched from 0 to 1). The change in the
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objective function, f , could be thus estimated as

∆f = ∆
−i
f + ∆

+j
f (4.26)

In a minimisation problem one would try to make ∆f negative with the

largest possible absolute vale, whilst in a maximisation problem a large pos-

itive value for ∆f is desirable.

For the compliance minimisation problem, considering the sensitivity

numbers defined in (4.18), (4.22), or (4.23), by switching a weak and a strong

element, the change in the objective function can be estimated as

∆c = αS − αW (4.27)

where αS and αW are the sensitivity numbers of the strong and the weak

elements respectively. The maximum drop in the objective function can thus

be achieved by switching the weak elements with the greatest sensitivity

numbers and the strong elements with the lowest sensitivity numbers. Based

on this idea, the switching algorithm first sorts all the sensitivity numbers.

Then the weak element with the highest sensitivity number and the strong

element with the lowest sensitivity number are selected. If the sensitivity

number of the selected weak element is higher than that of the strong element,

the material of these two elements are exchanged. This switching procedure

continues with the remaining elements until the lowest sensitivity number

among strong elements become greater than the highest sensitivity number

among weak elements. In this case αS > αW and any exchange in the
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elements’ material will cause a positive ∆c which is not desirable.

To prevent sudden alterations of the design, the maximum number of

exchanges in the elements is limited to a predefined value. This value is

referred to as move limit and indicated by m hereafter. The above mentioned

switching procedure is not repeated more than m times inside each iteration.

Selecting a large move limit will let the algorithm to update many elements

in one step which generally reduces the accuracy of targeting the optimum

but increases the speed. On the other hand, using a small move limit the

solution procedure takes longer time, but with a higher chance of finding

an optimum path. Selecting small move limits can be helpful in verification

stages.

When in an iteration no more changes take place or when the same series

of changes are repeated in two following iterations, the result is assumed to

be converged. In the latter case, the design with the lowest objective function

among the last two is reported as the optimum result. To prevent infinite

loops the maximum number of iterations should also be limited.

4.9 Shape optimisation using BESO

In the BESO and ESO methods, the design variables have discrete values.

The boundaries between different material phases are thus easily recognisable

and definable in these methods. This property is very helpful when one wants

to use these methods for shape optimisation. In shape optimisation only the

shape of the boundaries between material phases should change and the



Chapter 4 Tailoring topology optimisation algorithm 114

topology of the design should remain constant. This requirement is essential

in shape optimisation of the opening.

In order to maintain the topology of the opening, the boundary between

materials and voids should first be recognised by the shape optimisation

algorithm. This boundary is defined as the set of all nodes which belong

to at least two elements, one of which solid and the other one void. In

mathematical notation this can be expressed as

Bh = {j |∃em ∈M∧ ev ∈ V : j ∈ em ∩ ev } (4.28)

where Bh denotes the boundary of the opening, and M and V are the set

of solid elements and void elements respectively. After finding Bh, the active

set, A, is defined as the set of all elements containing at least two boundary

nodes

A = {e |∃i, j ∈ Bh : i 6= j ∧ i, j ∈ e} (4.29)

An example of boundary and active set definition is illustrated in Figure 4.1.

Figure 4.1 Finding boundary nodes and active set for shape optimisation.

The elements in the active set are the only elements allowed to be changed.

This approach limits the changes to the boundary of the opening. Note that
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this limitation cannot always assure a constant topology. An illustrative

example is provided in Figure 4.2. However this case can only happen if the

boundary forms a concave shape. Specially using the previously discussed

filtering scheme smoothens the boundaries and prevents concave opening

shapes. Note that the move limit should be adjusted for shape optimisation

because the number of designable elements in this case is much smaller than

general topology optimisation problems.

Figure 4.2 Possible alteration of topology in case of concave shapes.

4.10 Mathematical background of the proposed

BESO algorithm

The compliance minimisation problem solving by the proposed BESO method

can be formulated as

Pd : min

{
c(u,x)

∣∣∣∣∣Ku = f , Ei = Ei(xi), xi ∈ {0, 1},
n∑
i=1

xiVi = V̄

}
(4.30)

where Vi is the volume of the i-th element and V̄ is the desired volume

of the stronger material (or solids); Ei(xi) indicates the material interpola-
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tion scheme; Pd is a constrained discrete optimisation problem. The uncon-

strained continuous (relaxed) version of Pd takes the following form

Pc : min {c(u,x) |Ku = f , Ei = Ei(xi), xi ∈ [0, 1]} (4.31)

Note that the continuous problem Pc does not have any constraint on volume

and thus its solution is the whole design domain filled with the stronger

material.

Using this notation the BESO algorithm can be seen as a two-phase

procedure. Firstly it updates the design based on Pc. Then the solution is

modified to match the requirements defined in Pd.

The first phase involves finding a descent vector for Pc. The proposed

BESO algorithm uses the steepest descent method to find a descent vector.

The steepest descent vector for a general objective function f is defined as

d = −∇f where the gradient is calculated with respect to design variables.

This calculation is based on a linear approximation and provides a linear

convergence (Herskovits 1995). Following the discussion in §4.2 and noting

(4.5), one can clearly observe that the steepest descent vector is equivalent

to sensitivity numbers. Denoting the steepest descent vector by d one can

write

di = − ∂c

∂xi
= uTi

∂Ki

∂xi
ui, i = 1, 2, . . . , n (4.32)

As seen in previous sections, the value of ∂Ki

∂xi
and thus d depend on the

material interpolation scheme in use. It can be seen from this equation and

(4.6) that di = αi.

The second phase involves modifying the descent vector to satisfy the
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constraints in Pd. The modified vector is denoted by d̂ and referred to as

move vector hereafter. Using the move vector, the new set of design variables

are calculated through the following update scheme

xK+1 = xK + d̂
K

(4.33)

in which the superscripts K denotes the K-th iteration. Noting the condition

xi ∈ {0, 1} one can deduce that the only possible values for d̂i are -1, 0, and

1 corresponding to respectively weakening (removing), not changing, and

strengthening (adding) the i-th material. The algorithm for deriving the

move vector has been discussed in §4.8. If for example the move limit is

selected as m = 1 then the relationship between d̂ and d can be expressed

mathematically as

d̂i = sign [(1− xi)di −max{(1− xi)di}] +

sign [xidi −min{xidi}] , i = 1, 2, . . . , n (4.34)

where sign(t) is defined in (2.37).

For a higher order approximation and convergence, instead of the steepest

descent method, one can use Newton’s algorithm with the following equation

for d

∇2f d = −∇f (4.35)

This algorithm provides at least a quadratic convergence for an unconstrained

problem (Herskovits 1995). However solving (4.35) is complex and time

consuming as it involves calculating ∇2f and solving an n-order system of
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equations where n is the number of design variables.

4.11 Illustrative examples

In this section, we solve the short cantilever beam (SCB) problem with two

materials to illustrate the different aspects of the proposed algorithm in this

chapter. The design domain, loading conditions, supports and the initial

distribution of materials are depicted in Figure 4.3. The ratio of the elasticity

moduli of the two materials is assumed as E(2)

E(1) = 5. In all of the following

examples the volume of the stronger material is taken as 960 elements or

40% of the whole domain. The remaining parts of the design domain should

be filled by the weaker material.

Figure 4.3 Initial distribution for two materials in a short cantilever beam.

The proposed BESO algorithm has been coded using FORTRAN lan-

guage and linked with the well-known ABAQUS finite element package. The
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algorithm uses ABAQUS as an external finite element solver. In each itera-

tion the optimisation algorithm makes an input file and loads it to ABAQUS

engine. Upon completion of the finite element analysis the mechanical re-

sponses are read from result files that ABAQUS provides.

All the three material interpolation schemes have been included in the

optimisation code. The user should provide the optimisation program with

an initial ABAQUS input file which models the initial guess design. The op-

timisation parameters including filtering radius rf , and move limit m should

also be provided. The user can then select any of the three material inter-

polation schemes proposed. For the case of power-law method, the penalty

factor p and the small positive value xmin resembling weak material should

be provided. Likewise for the alternative interpolation scheme in (4.19), the

value of the parameter q is needed by the program.

4.11.1 Comparing material interpolation schemes

Different material interpolation schemes proposed in §4.4, §4.5, and §4.6 are

used to solve the SCB problem. For the power-law interpolation, the value

of xmin is taken as 0.001. The move limit and the filtering radius are chosen

as m = 20 and rf = 2h respectively with h denoting the size of the elements.

The results obtained by the power-law interpolation with different values

of p are shown in Figure 4.4. It can be seen in Figure 4.4a that using p = 1

(linear interpolation) will not result in a recognisable topology. Also the

solutions related to p = 1.1 and p = 1.2 which are illustrated in Figure 4.4b

and Figure 4.4c suggest that these values of p are not big enough. The value
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of p = 1.466 is equivalent to the modified linear interpolation for E(2)

E(1) = 5 and

it can be seen in Figure 4.4d that the obtained topology is well recognisable.

The topology shown in Figure 4.4e corresponds to p = 3.0. Although in this

case the topology is recognisable, the final value of the objective function is

217.9 which is 1.98% higher than 213.7 resulted from p = 1.466.

Apart from the differences, all examples show a smooth evolution of the

objective function. The objective function reduces steeply at the beginning

and monotonically converges at the end.

The next example involves implementing the alternative interpolation

scheme. The results obtained with different values of q are illustrated in

Figure 4.5. Like previous example, the move limit and the filtering radius

are chosen as m = 20 and rf = 2h respectively. Using the linear interpolation

(q = 0) will scatter the materials resulting in a non-recognisable topology.

Note that Figure 4.5a is slightly different from Figure 4.4a. The reason is

the non-zero value of xmin in the power-law interpolation. Using q = 4 is

equivalent to using the modified linear interpolation. One can verify that

Figure 4.5d is exactly similar to Figure 4.4d.

The result obtained by the modified linear interpolation is illustrated in

Figure 4.6. Again the values of m = 20 and rf = 2h are adopted for the move

limit and the filtering radius respectively. It can be seen that this result is

exactly similar to the cases of p = 1.466 (Fig. 4.4d) and q = 4.0 (Fig. 4.5d).
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(a) p = 1.0
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(b) p = 1.1
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(c) p = 1.2

Figure 4.4 The SCB results with power-law interpolation.
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(d) p = 1.466
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(e) p = 3.0

Figure 4.4 The SCB results with power-law interpolation (continued).
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(a) q = 0.0
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(b) q = 1.0
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(c) q = 2.0

Figure 4.5 The SCB results with alternative interpolation.
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(d) q = 4.0
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(e) q = 8.0

Figure 4.5 The SCB results with alternative interpolation (continued).
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Figure 4.6 The SCB results with modified linear interpolation.

4.11.2 Effect of filtering radius

Using the modified linear material interpolation scheme, the SCB problem

is solved using using different filtering radii of rf = 0, rf = 2h, rf = 4h, and

rf = 6h. The move limit is m = 20. The results are shown in Figure 4.7.

Note the formation of checkerboard patterns when no filtering is in use

(Fig. 4.7a). Using bigger filtering radii results in thicker members. It also

reduces the complexity of the final topology. The filtering scheme enforces an

additional restriction which prevents formation of members thinner than rf .

Hence one can conclude that implementing bigger filtering radii would restrict

the feasible space leading to higher values of objective function. This can

be confirmed by the obtained results where the final value of the objective

function is steadily increasing when the filtering radius is changing from

rf = 2h to rf = 6h (Table 4.1).

The first case where no filtering was employed resulted in an unexpectedly

larger objective function. This is due to using the modified linear material in-
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(a) rf = 0 (no filtering)
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(b) rf = 2h
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(c) rf = 4h

Figure 4.7 The SCB results for different filtering radii.
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(d) rf = 6h

Figure 4.7 The SCB results for different filtering radii (continued).

Table 4.1 Final values of objective function for different filtering radii.

rf 0 2h 4h 6h

c 251.272 213.699 218.489 219.279

terpolation which is made to be used with filtering. This interpolation scheme

forces the algorithm to terminate faster because of the weighted sensitivity

numbers. Using the simple linear interpolation scheme without filtering pro-

duces the result shown in Figure 4.8.

The final value of c = 214.299 for this case is now comparable to the

filtered results reported in Table 4.1. However, as expected, the checkerboard

patterns are observable in the final topology.

4.11.3 Effect of move limit

To illustrate the effect of the move limit, different move limits of m = 10,

m = 20, and m = 40 are used to solve the SCB problem. The filtering radius
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Figure 4.8 The SCB result with linear interpolation and no filtering (q =
0, rf = 0).

is chosen as rf = 2h. The results are illustrated in Figure 4.9.

It can be seen that lower move limits tend to converge slower but to

better topologies. The final values of the objective function are reported in

Table 4.2.

Table 4.2 Final values of objective function for different move limits.

m 10 20 40 60

c 213.608 213.699 213.491 224.716
Iterations 93 56 59 45

Despite the case of m = 40, the final value of the objective function

increases with higher move limits. Also, except for the case of m = 40,

the number of iterations required to solve the problem decreases with higher

move limits.
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(a) m = 10
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(b) m = 20
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(c) m = 40

Figure 4.9 The SCB results for different move limits.
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(d) m = 60

Figure 4.9 The SCB results for different move limits (continued).

4.12 Concluding remarks

In excavation design finding the shape of the opening and the distribution of

the rock reinforcement are two important steps. Both of these problems can

be viewed as material distribution problems. The state-of-the-art topology

optimisation techniques are known to be capable of handling these sort of

problems. However prior to using these optimisation techniques to excava-

tion problems one should tailor them accordingly to match the requirements

of these physical problems. This chapter has been devoted to this aim. As

the SIMP and the homogenisation methods are not suitable for shape opti-

misation this chapter has focused on the BESO method.

In reinforcement optimisation one deals with a bi- or multi-material dis-

tribution problem. In this case the choice of material interpolation scheme

is critically important. Three different material interpolation schemes have

been studied in this chapter. The procedure of deriving sensitivity numbers

has been discussed and the sensitivity numbers for compliance minimisation
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have been formulated. Then the procedure to switch the elements in the

proposed BESO has been described.

To optimise the shape of the opening, one needs to find the boundary of

the opening and limit the changes to the boundary line. In this chapter, this

issue has been covered and the necessary modifications have been discussed.

The mathematical background of the proposed BESO method has been

described. It has been demonstrated that the sensitivity numbers in the

proposed BESO algorithm are equivalent to the steepest descent vector.

Finally the effect of different material interpolation schemes and different

controlling parameters have been studied through some numerical examples.

The numerical results show the capability of the proposed method in dealing

with two-material problems. Based on the obtained results, the proper ma-

terial interpolation scheme and the appropriate controlling parameters for a

particular problem can be selected. In the next chapter the proposed BESO

algorithm will be used to solve both shape and reinforcement optimisation

of underground openings.



C H A P T E R 5

Optimising tunnels in linear
elastic media

5.1 Introduction

Design of support system and selecting an optimum shape for the opening

are two important steps in designing excavations in rock masses. Currently

selecting the shape and support design are mainly based on designers’ judge-

ment and experience. Both of these problems can be viewed as material

distribution problems where one needs to find the optimum distribution of

a material in a domain. In the previous chapter a new BESO algorithm has

been proposed that can be used to solve these kinds of problems.

As discussed in Chapter 3, the linear elastic material models often cannot

adequately predict the behaviour of usually non-homogeneous, anisotropic

geomaterials. However as a first step, implementing such material model

can be instructive. Further, noting that the linear elastic responses are the

first order approximation of more general non-linear behaviour, the linear

results are useful in verifying empirical designs. This framework can also

be useful in designing against time-dependent creep in rock mass where a

132
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quasi-elastic load is imposed on reinforcement (Yin et al. 2000). In this

chapter the linear elastic material model is used to model the rock masses

for shape optimisation of the opening and topology optimisation of the rock

reinforcement in excavation design.

As already mentioned in §3.6, the reinforcement optimisation for tun-

nels in linear elastic media has been studied by Yin et al. (2000), Yin and

Yang (2000a,b), and Liu et al. (2008). Also the shape optimisation of under-

ground excavations has been investigated by Ren et al. (2005) using linear

elastic material model. Both of these problems are tackled here using the

algorithm proposed in Chapter 4. The obtained results can be verified with

these previous studies. To take one further step, both the problems of shape

and reinforcement optimisations are solved simultaneously at the end of this

chapter.

5.2 Modelling tunnels in linear elastic media

Consider a homogeneous and isotropic rock mass. The homogeneity assump-

tion is valid in case of intact rock and highly weathered rocks. The rock mass

behaviour is modelled using a linear elastic material with Young’s modulus

of EO and Poisson’s ratio of νO. It is assumed that the reinforced parts of the

rock mass are also homogeneous and isotropic. The homogenised mechanical

properties of reinforced rocks are then used for modelling. The reinforced

rock is also modelled as a linear elastic material with the elasticity constants

of ER and νR. Reinforcing the rock increases its stiffness and thus ER > EO.
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The ratio of ER

EO > 1 shows the local effectiveness of the reinforcement.

The reinforcement optimisation problem can be viewed as finding the

best distribution of the two materials defined by {EO, νO} and {ER, νR}.

The shape optimisation of the opening, on the other hand, deals with finding

the best shape of the boundary between these materials and voids. When the

voids are modelled as real voids (EV = 0), their mechanical responses and

thus their sensitivities cannot be calculated. In this case, a filtering scheme

can be used to extrapolate the sensitivity number of voids. Alternatively one

can use a very weak material (0 < EV

EO � 1) to model the void elements.

To be consistent with reinforcement optimisation, here the voids in shape

optimisation are modelled as a very soft material with elasticity constants of

EV and νV .

Now consider a simple design case depicted in Figure 5.1. In this figure,

Γ represents the boundary of the opening. The minimum dimensions, shown

in the figure, can be due to some design restrictions. In this figure the

reinforcement is through rock bolting. The placement, orientation and the

length of rock bolts are depicted by solid line segments. The dark shaded area

Ω with the outer boundary of ∂Ω and inner boundary of Γ is the reinforced

area of the design. Having found this reinforced area, one can choose the

proper location and length of the reinforcing bars and vice versa.

In shape optimisation of the opening one deals with finding Γ, while

in reinforcement optimisation, the shape and topology of ∂Ω and Ω are of

interest. The simultaneous shape and reinforcement optimisation can be

viewed as finding the optimal Ω when both its inner and outer boundaries, Γ

and ∂Ω, being modified. Generally, the economical considerations can dictate
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Figure 5.1 A simple design case of an underground tunnel with reinforcement.

an upper bound on the available reinforcement material. This limitation is

translated into a constraint on the volume of the reinforced area, Ω.

In what follows, the voids are modelled as a weak material with EV

EO =

0.001. For simplicity it is assumed that νO = νR = νV = ν = 0.3.

5.3 Shape optimisation of the opening

For the shape optimisation of the tunnel, the mean compliance c is considered

as the objective function. The tunnel is assumed with no reinforcement or

support. The shape optimisation problem can thus be stated as finding

the optimum boundary between the two materials {EO, ν} and {EV , ν} to

minimise c such that the volume occupied by each material is constant. This
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can be expressed as

min
x
c(x,u) = fTu

such thatKu = f ,

xi ∈ {0, 1},

VV =
n∑
i=1

(1− xi)Vi = V̄V

(5.1)

where V̄V is the predefined volume of the opening. The material interpo-

lation scheme formulated in (4.23) is used with E(2) = EO and E(1) = EV .

Consequently the sensitivity numbers are calculated from (4.23).

Shape optimisation of three different tunnel designs are considered here.

The first problem involves a tunnel under biaxial in-situ stresses. In the

second example the tunnel is restricted to have a flat floor with traffic load

applied on it. The third example involves the shape optimisation of two iden-

tical parallel tunnels. In these problems the infinite rock domain is replaced

by a large finite domain of 100× 100 equal square shaped 4-node elements.

5.3.1 Tunnel under biaxial stresses

The initial guess design is depicted in Figure 5.2. The size of the opening is

1.98% of the domain size. Because of symmetry only half of the domain is

used for analysis which is discretised into 50× 100 elements.

Because in shape optimisation only boundary elements are allowed to

change, the move limit is restricted to m = 1. The filtering radius is assumed

to be equal to 2.5 times the elements’ size. The vertical stress σ1 is assumed
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Figure 5.2 Initial guess design for tunnel under biaxial stresses.

to be equal to 0.1EO.

The optimal shapes are obtained for three different ratios of horizontal

to vertical stresses: σ3 = 0.4σ1, σ3 = 0.7σ1, and σ3 = σ1. The results are

depicted in Figure 5.3.

The resulted shapes are nearly elliptical with aspect ratios similar to the

ratio of the in-situ stresses. This conclusion is similar to the results obtained

by Ren et al. (2005). The slight differences from perfect ellipses in cases of

σ3
σ1

= 0.7 (Fig. 5.3b) and σ3
σ1

= 1.0 (Fig. 5.3c) are due to the volume constraint.

It can be seen that the evolution of the objective function is not very

smooth. This is due to the restrictions applied for shape optimisation. How-

ever the steady drops in the objective function values and the final shapes

verify this approach.
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(a) σ3 = 0.4σ1
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(b) σ3 = 0.7σ1
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(c) σ3 = σ1

Figure 5.3 Optimum shapes for tunnels under biaxial stress.
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5.3.2 Smoothing the shapes

To obtain smoother shapes one can use a finer mesh. However finite element

analysis of finer mesh will take longer time. Particularly, in the optimisation

process, several finite element analyses are required to solve a single problem

which can effectively prolongs the solution procedure.

Alternatively one can use the same coarse mesh and smoothen the final

results through a smoothing post-processor. A smoothing procedure based

on Bézier curves is applied in this thesis.

After obtaining the final shapes, the boundary of the opening is extracted.

This boundary is defined in (4.28) as Bh. The boundary is then smoothed

using Bézier curves. The Bézier curve for a set of control nodes always pass

the first and the last node and lies in the convex hull of the control nodes.

Some examples of Bézier curves are depicted in Figure 5.4.

Figure 5.4 Some examples of Bézier curves. The shaded areas represent the
convex hull formed by control points

The properties of Bézier curves make them suitable for smoothing jagged

boundary lines. However for many control points with varying coordinates,

the Bézier curve might be too distanced from the original boundary line.

In this case the area of the smoothed tunnel may become far smaller than

the predefined value. To prevent this, before smoothing, the boundary line
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Bh is divided into some segments, such that in each segment, the vertical

coordinates of the points change monotonically. Then the Bézier curve for

each segment is derived. The complete smoothed shape is achieved by joining

all the smoothed segments.

Suppose a boundary segment consists of n nodes P1,P2, . . . ,Pn where

P = (Px, Py, (Pz)). For this boundary segment, the Bézier curve of degree n

should be used which takes the following form

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−itiPi, t ∈ [0, 1], {P1,P2, . . . ,Pn} ⊂ Bh (5.2)

The coordinates of n smoothed nodes can be calculated by setting the pa-

rameter t equal to n values equally dividing the [0, 1] interval. Hence the

smoothed boundary segment can be expressed as

Bs =
{

B(t)
∣∣t = i−1

n−1
, i = 1, . . . , n

}
(5.3)

Finally the location of smoothed nodes are used to produce a new mesh.

This procedure is depicted in Figure 5.5.

Using this smoothing post-processor the optimum shapes reported in Fig-

ure 5.3 are smoothed. The results are illustrated in Figure 5.6.

The optimum shape of a hole under biaxial stress is known to be an

ellipse with an aspect ratio (the ratio of major and minor axes) matching

the stress ratio (Cherepanov 1974; Pedersen 2000; Hoek and Brown 1980).

Fixing the area of the hole to A, the semimajor and semiminor axes (a and
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Figure 5.5 Smoothing boundary lines with Bézier curves: a) The final op-
timum shape is loaded into the post-processor, b) The boundary line is ex-
tracted and divided into segments, c) The Bézier curves for these segments
is calculated, and d) The smoothed mesh is reported.

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = σ1

Figure 5.6 Smoothed shapes for tunnels under biaxial stress.
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b respectively) of the optimum ellipse can be found as

a =

√
A

λπ
, b =

√
λA

π
(5.4)

where λ = σ3
σ1

is the stress ratio. For the stress ratios used in the solved

example, the values of the major and minor axes of the optimum ellipse and

the obtained shapes are compared in Table 5.1. As reported in this table,

the numerical results are close to the analytical solutions.

Table 5.1 Comparing the size of major and minor axes of numerical and
analytical solutions for the example of tunnel under biaxial stresses.

Analytical results Numerical results
λ minor axis (2b) major axis (2a) minor axis major axis aspect ratio

0.4 2.008 5.021 1.957 5.191 0.377
0.7 2.657 3.795 2.641 3.794 0.696
1.0 3.176 3.176 3.075 3.195 0.963

The optimum ellipses are compared to the obtained results in Figure 5.7.

It can be seen that the numerical results match well with analytical solutions.

5.3.3 Obtaining a flat floor

In many cases it is required that tunnels have flat floors. The optimum

shape of such tunnels can be achieved by setting a group of non-designable

rock elements underneath the tunnel’s floor. Moreover, serviceability and

other design requirements may impose some restrictions on the dimensions

of the tunnel. These restrictions can also be included by setting some non-

designable elements. To illustrate these kind of problems, a tunnel under
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Figure 5.7 Comparing the numerical and the analytical results for tunnels
under biaxial stresses.

biaxial stresses is considered which needs to have a flat floor and a minimum

size. The initial design is illustrated in Figure 5.9

Figure 5.8 Initial design for a tunnel under biaxial stresses with a flat floor.
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The minimum size of the tunnel is restricted to 12×8 elements by setting

an area of non-designable voids. The optimum shapes for different values of

σ3
σ1

are found and smoothed by Bézier curves. The results are reported in

Figure 5.9.

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.9 Optimum shapes for flat-floored tunnels under biaxial stress.

The optimum shapes all satisfy the imposed restrictions. It is observable

that the aspect ratio of the optimal shape depends on the stress ratio. As

the ratio of the horizontal to the vertical stress increases, the optimum shape

becomes shorter and wider.

5.3.4 Adding traffic load

The previous flat-floored tunnel example is considered with a traffic load

acting on the tunnel’s floor. The intensity of this traffic load is assumed as

σtr = 0.25σ1. The obtained results are reported in Figure 5.10.

Note the differences between optimum shapes with and without traffic

load. Adding the (vertical) traffic load slightly decreases the height and

increases the width of the optimal tunnel shapes. Also in the tunnels reported

in Figure 5.10, the sides have higher curvatures and the crowns have lower
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(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.10 Optimum shapes for tunnels under biaxial stress and traffic load.

curvatures comparing to the shapes reported in Figure 5.9.

5.3.5 Two parallel tunnels

Shape optimisation of two parallel tunnels with flat floors, with and without

traffic load is solved here as the last example. The initial design is depicted

in Figure 5.11.

For a single tunnel, the area of the opening and its minimum size are

restricted to 100 elements and 6×7 elements respectively. The final topologies

without and with traffic load are illustrated in Figure 5.12 and Figure 5.13

respectively.

Like all previous examples the aspect ratio of the final optimal shapes

depends on the in-situ stress ratio. It is interesting to note that the closer

sides of the optimal tunnel pairs are less curved than their outer sides. The

differences in the optimal shapes with and without traffic load which were ob-

served between Figure 5.10 and Figure 5.9 can also be observed by comparing

Figure 5.12 and Figure 5.13.
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Figure 5.11 Initial design for two tunnels under biaxial stresses.

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.12 Optimum shapes for two tunnels under biaxial stress.

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.13 Optimum shapes for two tunnels under biaxial stress and traffic
load.
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5.4 Reinforcement optimisation for tunnels

Reinforcement optimisation of tunnels in linear elastic media was solved for

different objective functions by Yin et al. (2000), Yin and Yang (2000a,b),

and Liu et al. (2008). Here we implement the proposed BESO approach to

solve this problem for a number of objective functions. The BESO technique

to be used here is different from the one used by Liu et al. (2008) mainly

in that a filtering scheme is used instead of fixed grid finite element to over-

come the numerical instabilities. The proposed approach is much easier to

implement and faster to calculate.

A tunnel under biaxial stresses is considered here for reinforcement op-

timisation. The design domain and initial distribution of reinforcement are

depicted in Figure 5.14.

A layer of elements surrounding the opening are fixed to reinforced rock.

This represents a shotcrete layer with similar mechanical properties to rein-

forced rock. The volume of reinforced area is fixed to 3.7% of the domain

size. The ratio of moduli of elasticity of the reinforced and the original rock

is considered as ER

EO = 10
3

.

Because of symmetry only half of the domain is modelled for finite ele-

ment analysis. The filtering radius is chosen as rf = 2.5h with h denoting

the element size. The move limit is selected as m = 40 elements which is

equivalent to 0.8% of the domain size. The modified linear interpolation

(4.23) is used for material interpolation.
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Figure 5.14 Initial reinforcement distribution of a tunnel under biaxial
stresses.

5.4.1 Minimum compliance design

Using the mean compliance as the objective function the optimisation prob-

lem can be stated as

min
x1,x2,...,xn

c = fTu

such that Ku = f ,

VR =
n∑
i=1

xiVi = V̄R,

xi ∈ {0, 1}

(5.5)

where Vi is the volume of the i-th element and V̄R is the prescribed reinforce-

ment volume. The value of zero for design variables indicate original rock
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material and xi = 1 shows that the i-th element is reinforced. The number

of total designable elements is denoted by n.

The optimum reinforcement distribution corresponding to minimum com-

pliance for different stress ratios are shown in Figure 5.15.

The evolution of objective function shows a smooth and monotonic trend

specially for the first three cases (Fig. 5.15a-c). The reinforcement distribu-

tion changes from vertically aligned for the case of σ3
σ1

= 0.4 to horizontally

aligned shapes for σ3
σ1

= 1.3. It can be seen that the minimum compliance

reinforcement design highly depends on the in-site stress ratio.

5.4.2 Minimising floor heaves

One of common objectives in tunnel design is minimising floor heaves. To

obtain such designs we define the following objective function

h =
2uc − ur − ul

2
(5.6)

where uc, ul, and ur are the vertical displacement of the centre, the left

corner and the right corner of the tunnel floor. Unlike the mean compliance,

floor heave is a local objective.

In order to calculate the sensitivities of the floor heave a new load case

is introduced with an upward unit load at the centre of the floor and two

downward half unit loads at the right and the left floor corners. This load

case is illustrated in Figure 5.16.
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Figure 5.15 Optimum reinforcement for minimising compliance.
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Figure 5.15 Optimum reinforcement for minimising compliance (continued).

Figure 5.16 The new load case to evaluate floor heaves.
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The floor heave, h, can then be expressed as

h = f̃
T
u (5.7)

where f̃ and ũ are the nodal force and displacement vectors associated with

the new load case. The minimisation problem can then be expressed as

min
x1,x2,...,xn

h = f̃
T
u

such that Ku = f ,

Kũ = f̃ ,

VR =
n∑
i=1

xiVi = V̄R,

xi ∈ {0, 1}

(5.8)

As the system is linear elastic, the stiffness matrix K is constant and does

not depend on the load case.

Like the case of mean compliance, sensitivity analysis for floor heave

can be achieved through the adjoint method or direct differentiation. The

former approach has been used in §2.3.2 for sensitivity analysis of the mean

compliance. To illustrate the latter approach, here we derive the sensitivities

of floor heave by direct differentiation.

Differentiating (5.7) and noting that the force vector is constant, one can

write

∂h

∂xi
= f̃

T ∂u

∂xi
(5.9)

Now differentiating the original equilibrium equation Ku = f , and again
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noting the constant force vector, the following equation can be achieved

∂K

∂xi
u + K

∂u

∂xi
= 0 (5.10)

which can be solved for ∂u
∂xi

to yield

∂u

∂xi
= −K−1∂K

∂xi
u (5.11)

Substituting (5.11) in (5.9), the latter can be rewritten as

∂h

∂xi
= −f̃TK−1∂K

∂xi
u (5.12)

which can be simplified to yield the following sensitivities

∂h

∂xi
= −ũiT

∂Ki

∂xi
ui (5.13)

Here the subscript i indicates the element level values associated with the i-

th element. Note that unlike mean compliance sensitivities (2.14), the above

sensitivities are not necessarily always negative. However unlike what Liu

et al. (2008) have stated, this issue will not cause any problem for the BESO

algorithm.

Having the gradient vector calculated, the sensitivity numbers for BESO

can be easily evaluated by following the procedures introduced in Chapter 4.

Particularly, the sensitivity numbers for floor heave can be achieved by sub-

stituting uTi Kiui in compliance sensitivity numbers with ũi
TKiui.

Using the sensitivity analysis results, the problem (5.8) is solved to find
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the optimum distribution of reinforcement minimising the floor heave. The

results are reported in Figure 5.17.

A good consistency can be found between the results in Figure 5.17 and

the topologies reported by Liu et al. (2008). As expected, most of the rein-

forced materials are distributed underneath the tunnel. It can be seen that

the minimum floor heave designs are highly dependent on in-situ stress ratios.

5.4.3 Minimising tunnel convergence

As another objective, the decrement of the tunnel volume due to stress release

after excavation is considered. This objective can be formulated as

v =
∑
j∈Bh

nj · uj (5.14)

where nj denotes the normal (inward) vector of the opening boundary at

node j. Similar to floor heave, the tunnel convergence can also be eval-

uated using an auxiliary load case. This load case consists of an inward

distributed pressure load on the opening boundary. An illustration is given

in Figure 5.18.

Denoting the related nodal force vector by f̃ and the resulted nodal dis-

placements by ũ, the tunnel convergence can be rewritten as

v = f̃
T
u (5.15)
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(c) σ3 = σ1

Figure 5.17 Optimum reinforcement for minimising floor heave.
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Figure 5.17 Optimum reinforcement for minimising floor heave (continued).

Figure 5.18 The new load case to evaluate tunnel convergence.
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Similarly the sensitivities of v can be expressed as

∂v

∂xi
= −ũiT

∂Ki

∂xi
ui (5.16)

Implementing these results, the tunnel convergence minimisation problem

is solved to find the optimum distribution of reinforcement. The results are

reported in Figure 5.19.

Although the optimum designs are varying for different in-situ stress ra-

tios, unlike the other two objectives, the convergence minimisation results

are not very sensitive to the in-situ stress ratios. In all designs, the tunnel is

surrounded by a nearly uniform reinforcement distribution. The value of the

objective function is changing smoothly and monotonically in all cases and

a clear convergence can be observed.

In floor heave and convergence minimisation problems, in each iteration

two models should be analysed by the finite element solver. The solution

time is thus longer than compliance minimisation. This advantage of mean

compliance is due to its self-adjoint property. However, the stiffness matrix

for both models in each iteration remains the same. Hence, in floor heave

and tunnel convergence minimisations, one can store this stiffness matrix (or

even its inverse) to reduce the solution time.
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(c) σ3 = σ1

Figure 5.19 Optimum reinforcement for minimising tunnel convergence.
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Figure 5.19 Optimum reinforcement for minimising tunnel convergence (con-
tinued).

5.5 Simultaneous shape and reinforcement opti-

misation

In the previous sections the proposed BESO algorithm proved to be successful

in dealing with shape and reinforcement optimisation of tunnels. Noting that

both problems have been solved as material distribution problems, one may

try to solve them simultaneously.

In this case a three phase material can be assumed changing between

voids, original rock, and reinforced rock. The moduli of elasticity of these

material phases are respectively denoted by EV , EO, and ER with EV

EO = 0.001

and EO

ER = 0.3. The Poisson’s ratio is assumed to be similar for all the three

materials and equal to 0.3.

The mean compliance is assumed as the objective function. Note that the

tunnel convergence can not be used as the objective for shape optimisation
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as the shape of the tunnel is going to change. Considering the floor heave

as the objective function is also not possible for shape optimisation. Even if

one fixes the tunnel’s floor, because the floor heave function takes only a few

points into account, the final shape of the tunnel will be an impractical flat

shape.

Considering the mean compliance as the objective function, the optimi-

sation problem can be stated as

min
x,y

c = fTu

such that Ku = f ,

VR =
n∑
i=1

xiVi = V̄R,

VV =
n∑
i=1

(1− yi)Vi = V̄V ,

xi, yi ∈ {0, 1}

(5.17)

where x and y are vectors of the two sets of design variables for reinforcement

and shape optimisation respectively. For the i-th element, xi = 0 denotes

original rock and xi = 1 denotes reinforced rock properties. For the same

element, yi = 0 represents void and yi = 1 represents solid (either reinforced

or original rock).

Like reinforcement optimisation, a layer of shotcrete is assumed around

the tunnel. The shotcrete mechanical properties are taken similar to rein-

forced rock. The shotcrete layer is added to the model by changing the

boundary elements of the tunnel to reinforced elements at each iteration.

The active set for the shape optimisation thus merely consists of voids and
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reinforced elements. Hence the material phases for the shape optimisation

procedure reduce to voids and reinforced rock only.

The shape optimisation follows by reinforcement optimisation in each

iteration. At this level some inefficient reinforced elements loose their re-

inforcement and some efficient rock elements are reinforced. In order to

maintain the shotcrete layer after shape optimisation, the reinforced bound-

ary elements are freezed and are not allowed to change in the reinforcement

optimisation in that iteration. As the shape changes, the number of bound-

ary elements might change. This can modify the reinforcement volume after

shape optimisation violating reinforcement volume constraint. To maintain

the volume constraint, the number of strengthening and weakening elements

are then adjusted in the reinforcement optimisation procedure.

Mixing the two optimisation problems and solving them together theoret-

ically results in better designs than solving one after the other. Furthermore,

noting the formulation of sensitivity numbers for the two optimisation prob-

lems one can see that they are only different in their coefficients. Precisely

speaking, the term uTi Kiui is the same in sensitivity number of the i-th ele-

ment in both shape and reinforcement optimisation. The remaining part of

the sensitivity numbers is merely a function of Young’s moduli and penalisa-

tion factors and thus can be readily calculated. Hence, using this approach,

the two optimisation problems are being solved for the price of one.

To illustrate the capabilities of the proposed BESO algorithm, the prob-

lem (5.17) is solved for different load cases and initial designs. The modified

linear interpolation scheme is used for both shape and reinforcement opti-

misations. Using (4.24), this material interpolation is equivalent to using
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the alternative interpolation (4.19) with q = 10000
3
− 1 = 3332.3 for shape

optimisation and with q = 10
3
−1 = 2.33 for reinforcement optimisation. The

filtering technique is employed to prevent numerical anomalies and provide

smoother boundaries. The filtering radius is assumed to be rf = 2h for both

shape and reinforcement optimisation. The move limit is selected as m = 10

for shape optimisation and m = 100 for reinforcement optimisation.

5.5.1 Tunnel under biaxial stresses

Figure 5.20 shows the initial design as well as the applied loads and supports.

Figure 5.20 Initial design of a reinforced tunnel under biaxial stresses.

The obtained results are reported in Figure 5.21.

The smoothing procedure described in §5.3.2 can be employed here to

smooth the cavity shapes. The smoothed version of the results reported in
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(c) σ3 = σ1

Figure 5.21 Optimum shape and reinforcement of tunnels under biaxial
stresses.
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(d) σ3 = 1.3σ1

Figure 5.21 Optimum shape and reinforcement of tunnels under biaxial
stresses (continued).

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.22 Smoothed shape for the results reported Figure 5.21.

Figure 5.21 are given in Figure 5.22.

The relatively smooth and monotonic decrease of the objective function

values shows that the procedure works well. Note the similarities between

the shape of the cavities in Figure 5.22 and the optimum shapes reported in

Figure 5.9. However, the obtained reinforcement designs are not very similar

to the designs reported in Figure 5.15. This suggests that the shape of

the opening is more critical than the reinforcement distribution in minimum

compliance design.

The similar problem is considered with a traffic load applying on the
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(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.23 Optimum shape and reinforcement of tunnels with traffic load.

tunnel’s floor. The intensity of the traffic load is assumed as σtr = 0.25σ1.

The opening shapes are smoothed using Bézier curves after optimisation.

The optimum designs are shown in Figure 5.23.

Like the previous examples, applying the traffic load makes the shapes

shorter and wider.

5.5.2 Two parallel tunnels

The shape and reinforcement design of two parallel tunnels are considered

here as another example. The design domain and the initial distribution of

materials are depicted in Figure 5.24.

The problem is first considered without traffic load (σtf = 0.0). The

optimum results are reported in Figure 5.25 after smoothing the opening

shapes.

The last example involves applying a traffic load of σtr = 0.25σ1 on the

tunnels’ floor. The final results are reported in Figure 5.26.

It is interesting to note that the reinforcement of the two tunnels tend to

join as the horizontal stress increases.
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Figure 5.24 Initial design of two reinforced parallel tunnels.

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.25 Optimum shape and reinforcement of two parallel tunnels.

(a) σ3 = 0.4σ1 (b) σ3 = 0.7σ1 (c) σ3 = 1.0σ1 (d) σ3 = 1.3σ1

Figure 5.26 Optimum shape and reinforcement of two parallel tunnels with
traffic load.
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5.6 Concluding remarks

The optimisation technique previously proposed in Chapter 4 has been used

to find the optimum shape of underground excavations and the optimum

reinforcement around them in linear elastic media. Although linear elastic

models in many cases can not model the behaviour of ground materials with

appropriate accuracy, as a first step, implementing such material model can

be instructive. Also the linear results can be found useful in verifying em-

pirical designs and in considering the effects of time-dependent creep in rock

mass.

Shape optimisation of excavations has been demonstrated through a series

of examples. A smoothing post-processor has been proposed using the Bézier

curves. A simple example has been used to verify the obtained results by

comparing them to analytical solutions. More examples have been presented

to show the capability of the proposed method to deal with different types

of problems.

The next part of the chapter has focused on reinforcement optimisation

of tunnels. Three different objective functions have been introduced and

used including the mean compliance, floor heave, and tunnel convergence. In

the case of floor heave minimisation, a good correlation has been observed

between the obtained results and the results published in the literature.

The proposed optimisation method has been found to be capable of deal-

ing with both shape and reinforcement optimisation of tunnels. As the next

step these two optimisation problems have been solved simultaneously using

this method. Some examples have been solved to show the capability of the
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proposed method in solving this new mixed optimisation problem.

Although all the examples solved here are in plane strain situation, it

should be noted that theoretically there is no limitation in applying the

proposed method to three dimensional cases.

The main limitation of the current approach is its linear elastic behaviour

assumption. In next chapters we will focus on dealing with this limitation

mainly. Apart from this research path, further studies can be conducted on

using other objective functions and solving more detailed examples.



C H A P T E R 6

Introducing discontinuities

6.1 Introduction

In the previous chapter the rock mass has been modelled as a homogeneous,

isotropic, linear elastic material. This assumption limits the applicability

of the proposed approach to the intact rocks or heavily jointed rock masses

where the isotropic and homogeneous behaviour can be justified. In many

cases, however, the mechanical behaviour of rock mass is highly affected by

few major discontinuities. In these kind of rock masses the separation and

slippage of major discontinuities should be explicitly considered in numerical

modelling. The reinforcement optimisation for underground openings in such

rock masses is the subject of this chapter. The discontinuities are assumed

to have no tensile strength and slip according to Coulomb’s friction criterion.

6.2 Modelling excavation in massive rock

In massive rocks the overall behaviour of the rock mass is influenced by one or

two major discontinuities. These discontinuities create some weakness planes

169
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along which the shear strength is effectively reduced. The tensile strength

normal to discontinuities generally vanishes, but the compressive strength

does not alter from intact rock. The following linear Coulomb’s friction

criterion can be used to predict the shear strength along discontinuities.

|τ | = σn tanφd (6.1)

with compressive stresses being defined as positive values. Here τ and σn are

the shear and normal stresses tangent and normal to the discontinuity line

respectively. The friction angle φd depends on the roughness of discontinuity

surfaces and mineralogy of the rock material.

The overall behaviour of massive rocks is not homogeneous or isotropic

due to possible slippage and separation of discontinuities. However, if one

prevents any sort of separation or slippage on discontinuity lines, the cracked

parts of the rock mass can transfer loads just same as intact rock and hence

these simplifying assumptions can still be validated. In this case a linear

elastic solution can give a first order approximation of actual responses. To

ensure that no slippage or separation may occur, the slipping or separating

spots should be located along discontinuities and properly reinforced. In

this manner the overall rock mass can be viewed as a continuum. Using the

linear analysis considerably reduces the convergence time of the topology op-

timisation which usually requires tens of finite element analyses. Moreover

the loading sequence is not important in linear analysis which simplifies the

numerical modelling. Finally, as the linear analysis results are an approxima-

tion of the more realistic elasto-plastic models, optimisations based on linear
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elastic analysis can considerably improve the empirical designs, although to

find the actual global optimum, more sophisticated models are required.

6.3 Analysing discontinuity lines

In the algorithm proposed here, any discontinuity line segment is introduced

with the coordinates of its two end points. Having these coordinates, the

pre-processor routine can recognise the elements through which this crack

segment passes. We refer to these elements as cracked elements. The cracked

elements are defined as the elements having at least one common point with

the discontinuity line. The discontinuity line intersects with the boundary of

the cracked elements in one or two points. One node intersection can happen

in two cases. One of these cases is when the crack line is started from within

an element. The other is the case where the discontinuity line passes through

one of the element’s nodes. In this case all elements sharing that node will

be considered as cracked elements. Some examples of cracked elements are

illustrated in Figure 6.1.

Any discontinuity line is divided by its associated cracked elements into

some crack segments. Any of the cracked elements contain one crack segment

which can be a line segment or a single node (Fig. 6.1a). If any slippage or

separation occurs along a crack segment, the containing cracked element

should be stabilised. To analyse a crack segment, its mid-point is considered

as the representative point. That is, a crack segment is considered unstable

if and only if its mid-point is unstable. These mid-points are termed as crack
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Figure 6.1 Cracked elements, crack segments and crack points.



Chapter 6 Introducing discontinuities 173

points (Fig. 6.1b). In this manner, any discontinuity line passing through nc

cracked elements is represented by nc crack points each lying in one cracked

element. Figure 6.2 shows some possible configuration of crack points.

Figure 6.2 Some possible configurations of crack segments and crack points
within elements.

For each discontinuity line, the list of cracked elements and their crack

points are stored along with the direction angle of the discontinuity line. The

stability checks will be performed on the crack points after the finite element

analysis in each iteration. The principal stresses at the crack points will be

derived from the finite element analysis results. The values of the normal

and shear stresses along the crack direction will then be calculated from

the principal stresses. For separation, as no tensile strength is assumed for

discontinuities, the value of the normal tensile stress is taken as the separation

indicator. This relationship is expressed as

Ispr = max{0,−σn} (6.2)

The crack points with higher separation indicator are assumed to be more

critical against separation. For slipping, based on (6.1), the slippage indicator

is defined as

Islp = max{0, |τ | − σn tanφ} (6.3)
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The crack points with higher slipping indicator are assumed to be more

prone to slippage. The elements containing crack points with higher value of

Ispr + Islp are reinforced first. If for a crack point Ispr + Islp = 0 that point is

considered safe without reinforcement.

The stabilisation procedure stabilises the crack elements by reinforcing

them. This reinforcement alters the initial problem. Consequently the state

of stability of the system might change after this reinforcement and the sys-

tem might become unstable. To bypass this problem one should stabilise the

system gradually and iteratively. In this way the stabilisation algorithm is

permitted to only stabilise a limited number of unstable elements in each iter-

ation. This limits the alteration of the system. Then the model is re-analysed

and stabilised again. This process continues until all unstable elements are

treated. The maximum number of stabilising elements in an iteration is

denoted by ms henceforth and referred to as stabilisation move limit.

To stabilise a location on a discontinuity plane, the two surfaces should be

fixed together. In practise this can be achieved by using anchored rock bolts

acting perpendicular to the discontinuity plane. However, it is not always

possible to install the rock bolts normal to the discontinuity plane. In such

cases one should try to install them as perpendicular as possible so that their

performance would be maximised.

In the reinforcement distribution design considered in topology optimi-

sation, the reinforced rocks are modelled using a homogenised material and

the orientation of rock bolts is assumed to have no effects. However in case

of discontinuity stabilisation one should note that which parts of the dis-

continuity need to be stabilised and what the best orientation of rock bolts
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is. Figure 6.3 illustrates this issue. The algorithm thus needs to clearly

distinguish between the normal and stabilising reinforcement although the

material used to model them might be similar.

Figure 6.3 Orientation of stabilising rock bolts. Unstable cracked elements
are filled with darker grey.

6.4 Verification

Brady and Brown (2006) have studied the effect of discontinuities on elastic

stress distribution around circular excavations. This problem is considered

here to verify the proposed stabilisation approach.

Consider a circular opening in elastic rock with initial vertical and hori-

zontal stresses of p and Kp as shown in Figure 6.4. Stress distribution around
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Figure 6.4 A circular excavation in homogeneous rock.

this cavity can be calculated as (Yu 2000)

σrr =
p

2

[
(1 +K)

(
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r2

)
− (1−K)

(
1− 4a

2

r2
+ 3a

4

r4

)
cos 2θ

]
(6.4a)
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r2
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4

r4

)
sin 2θ

]
(6.4c)

where positive values denote compression stress in (6.4a) and (6.4b), and a

is the radius of the cavity.

Three different cases with a single discontinuity line are considered here

for verification. These cases are depicted in Figure 6.5.

To verify the proposed stabilisation procedure, these three cases are solved

with this procedure and the results obtained after few iterations are compared

with analytical solutions. It should be noted that the proposed stabilisation

algorithm uses a stiffer material to stabilise the unstable crack elements. This

alters the initial model and hence the numerical results might not completely
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Figure 6.5 Geometry of the three verification cases: a) a vertical radial joint;
b) a horizontal joint passing through the opening; c) a non-intersecting hor-
izontal joint.

match the analytical solutions. Moreover, the finite element discretisation

error in numerical models affects the numerical results.

Case 1

For the vertical discontinuity, θ = 90◦ and thus according to (6.4c) shear

stress vanishes along the discontinuity line. So this discontinuity is not prone

to slippage. However separation can occur due to tensile stress normal to the

crack line. From (6.4b) one can deduce that a tension can develop on the

discontinuity line in the crown of the opening (r = a) when

σθθ = p [(1 +K)− 2(1−K)] = p(3K − 1) ≤ 0 (6.5)

which simplifies to K ≤ 1
3
. Therefore, in this case the discontinuity line is

safe when lateral stress is bigger than a third of vertical stress. For smaller

values of K rock separation may occur in the crown of the opening.

To check the proposed stabilisation algorithm for this case, a linear elastic
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media with a circular hole is discretised to form a finite element mesh. The

friction angle of the discontinuity is set to φd = 10◦ although this value

does not affect the possible separation. To produce comparable results with

analytical solutions, no reinforcement is added. The model is solved for

different values of K being 1
6
, 1

3
, and 1

2
. The obtained results can be found

in Figure 6.6

(a) K = 1
6 (b) K = 1

3 (c) K = 1
2

Figure 6.6 Numerical results for case 1.

The obtained results show a good consistency with the analytical solu-

tions. It can be seen that the separation zone enlarges as K decreases and

no separation occurs when K > 1
3
.

Case 2

For the case shown in Figure 6.5b, the normal and the shear stress acting on

the plane of weakness can be found from the following equations.

σn = σθθ cos2 θ (6.6a)

τ = σθθ sin θ cos θ (6.6b)
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Substituting these values into (6.1), the limiting condition for slipping can be

found as tan θ = tanφd. Hence slipping happens if θ ≥ φd. The slipping zone

would develop at the intersection of the opening and the plane of weakness.

For verification, a circular hole with the radius of unity is considered. A

horizontal discontinuity line is added which cuts the opening at half of the

radius above the opening’s centre. Hence θ = sin−1 1
2

= 30◦ in this case.

Using (6.6a) the values of τ/σn are calculable for different distances from the

cavity centre along the discontinuity line. The variation of this parameter is

depicted in Figure 6.7.

Figure 6.7 Values of τ/σn along the discontinuity line for case 2.

Using (6.1), slippage takes place along the discontinuity line wherever

τ/σn ≥ φd. It can be seen that τ/σn reaches its maximum value at the

horizontal distance of d = cos(30◦) = 0.866 from the opening’s centre which

is at the boundary of the opening. As we move farther from the opening,

this value decreases. It can be concluded from Figure 6.7 that slipping zone
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develops at the intersection of the opening and the plane of weakness as φd

falls below 30◦. The slipping zone enlarges as φd decreases. For the case

of φd > 30◦ no slipping is spotted and the discontinuity does not need any

stabilisation.

To verify the algorithm in this case, the model is tested with three differ-

ent values of φd. Figure 6.8 illustrates the results.

(a) φd = 10◦ (b) φd = 20◦ (c) φd = 30◦

Figure 6.8 Numerical results for case 2.

It can be seen that numerical results match reasonably with the graph

in Figure 6.7. Note that in Figure 6.8b the numerical result does not show

any slippage. This is due to the error caused by finite element discretisation.

Precisely speaking, the reason is that the crack point in the first cracked

element is not exactly at the boundary of the hole.

Case 3

The geometry of the third case is illustrated in Figure 6.5c. Implementing

the notation used in Figure 6.5c, the normal and the shear stress acting on
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the plane of weakness can be formulated as

σn = 1
2
(σrr + σθθ) + 1

2
(σrr − σθθ) cos 2α (6.7a)

τ = σrθ cos 2α− 1
2
(σrr − σθθ) sin 2α (6.7b)

For simplicity a hydrostatic stress field is assumed (K = 1.0). The above

equations thus reduce to

σn = p
(

1− a2

r2
cos 2α

)
(6.8a)

τ = pa
2

r2
sin 2α (6.8b)

Like case 2, one can evaluate the ratio of τ/σn for different values of d =

r sinα and compare it with tanφd. The values of τ/σn ≥ tanφd would

indicate slippage. The graph depicted in Figure 6.9 shows the variation of

this ratio along the discontinuity line for h = 1.5 and a = 1.0.

According to this graph the shear stress is zero just above the opening’s

centre and then reaches its maximum value at a horizontal distance less than

the opening radius. It can be seen that the discontinuity line is totally stable

for φd being slightly greater than 20◦ ∗.

The proposed stabilising approach is tested on case 3 for values of φd =

10◦, φd = 15◦, and φd = 20◦. The numerical results are shown in Figure 6.10

Again the slight difference between numerical and analytical results is

due to the finite element discretisation error. Apart from that the numerical

results in Figure 6.10 are consistent with the graph in Figure 6.10.

∗Using (6.8) the exact position of the maximum is calculable as d = 0.645 and τ/σn =
tan 20.149◦.
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Figure 6.9 Values of τ/σn along the discontinuity line for case 3.

(a) φd = 10◦ (b) φd = 15◦ (c) φd = 20◦

Figure 6.10 Numerical results for case 3.
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Although in these verification cases the analytical solutions were fairly

easily achievable, this is not the case in most of situations. Notably the

slipping or separation zone might considerably change when reinforcement is

added. To illustrate this the resulted design in Figure 6.10b is reinforced by

swapping some rock elements to reinforced rock. Figure 6.11 compares the

stabled results obtained before and after adding additional reinforcement.

(a) no additional reinforce-
ment (10 reinforced ele-
ments)

(b) with 50 reinforced ele-
ments

(c) with 80 reinforced ele-
ments

Figure 6.11 Unstable zone before and after adding additional reinforcement.

It can be seen that the slipping zone becomes smaller after using 50 rein-

forced elements. Adding more reinforcement, this area completely disappears

with 80 reinforced elements.

6.5 Optimisation procedure

After stabilising possible unstable zones on weakness planes, linear elastic

behaviour can be assumed for the rock media. In this case, the optimisation

procedure proposed in previous chapter (§5.4) can be employed to optimise

the reinforcement around the opening. To ensure that the system is stable in
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all iterations, the proposed stabilisation algorithm is called in each iteration

before calculating the sensitivity numbers.

In order to prevent the optimisation engine from removing the reinforce-

ment of critical crack points, the reinforcement of the elements containing

these points should be frozen for one iteration. In the following iterations,

however, these reinforced elements will be again considered designable if their

crack points are found to be safe.

This process is in accordance to the procedure proposed by Brady and

Brown (2006) for excavation design in elastic massive rocks.

After stabilising the system, the sensitivity numbers of all designable el-

ements are calculated. Based on these sensitivity numbers some inefficient

reinforced elements lose their reinforcement and a number of efficient rock

elements are reinforced. The maximum number of elements that can be

changed in an iteration is limited to the predefined move limit. After updat-

ing the design, the system goes through the stabilisation process again. This

process continues until the results converge to a final solution.

6.6 Examples

In this section the capability of the proposed method is demonstrated through

numerical examples. A tunnel is considered under biaxial stresses and plane

strain condition. The design domain and initial distribution of reinforcement

are depicted in Figure 6.12.

A shotcrete layer surrounds the opening with similar mechanical proper-
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Figure 6.12 Initial reinforcement distribution of a tunnel in a rock mass with
few discontinuities.

ties to reinforced rock. This layer is fixed to reinforced rock. The volume of

reinforced area is fixed to 3.7% of the domain size. The ratio of moduli of

elasticity of the reinforced and the original rock is considered as ER

EO = 10
3

.

Because of discontinuities the domain is not symmetric and the full model

should be used for finite element analysis. The filtering radius is chosen as

rf = 2.5h with h denoting the element size. The move limit and the stabili-

sation move limit are selected as m = 40 and ms = 2 elements respectively.

Like previous chapter, the modified linear interpolation is used for material

interpolation. The applied stress ratio is assumed as σ3
σ1

= 1
2
.
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6.6.1 Minimum compliance design

In the first example the initial design in Figure 6.12 is optimised to yield the

minimum compliance. The minimum compliance design problem is defined

in (5.5). The friction angle for discontinuities is assumed as φd = 15◦. The

final solution is depicted in Figure 6.13.

0 2 4 6 8 10 12 14 16 18
96.6

96.8

97.0

97.2

97.4

97.6

97.8

98.0

98.2

98.4

Iteration           

Obj. Function       

Figure 6.13 Optimum reinforcement for minimising compliance in tunnel with
discontinuities, φd = 15◦.

Comparing Figure 6.13 with Figure 5.15, it can be seen that the evolution

of the value of the objective function is not as monotonic as it was without

discontinuities. This is due to stabilisation process that unavoidably disturbs

the optimisation path.

To show the effect of discontinuities on the final topology, the problem

is solved with φd = 20◦, φd = 30◦, and without discontinuities as well. Fig-

ure 6.14 compares the final topologies obtained. It can be seen that the final

topology might change considerably if one involves the effect of discontinu-

ities in the model.
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(a) φd = 15◦ (b) φd = 20◦ (c) φd = 30◦ (d) no crack

Figure 6.14 The effect of discontinuities in the final topology after compliance
minimisation.
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Figure 6.15 Optimum reinforcement for minimising floor heave in tunnel with
discontinuities, φd = 15◦.

6.6.2 Minimising the floor heave

The floor heave minimisation problem has been defined in (5.8) with f̃ defined

in Figure 5.16. The initial design depicted in Figure 6.12 is optimised for

minimising the floor heave. Figure 6.15 illustrates the results with φd = 15◦.

The effect of the friction angle of discontinuities is demonstrated in Fig-

ure 6.16 where the final topologies with φd = 15◦, φd = 20◦, φd = 30◦ and

without discontinuities are compared to each other.
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(a) φd = 15◦ (b) φd = 20◦ (c) φd = 30◦ (d) no crack

Figure 6.16 The effect of discontinuities in the final topology after minimising
the floor heave.

6.6.3 Minimising the tunnel convergence

The third example deals with tunnel convergence as the objective function.

The tunnel convergence minimisation problem is defined as

min
x1,x2,...,xn

v = f̃
T
u

such that Ku = f ,

Kũ = f̃ ,

VR =
n∑
i=1

xiVi = V̄R,

xi ∈ {0, 1}

(6.9)

with f̃ defined in Figure 5.18.

The initial design depicted in Figure 6.12 is optimised for minimising the

tunnel convergence and the results are reported in Figure 6.17. Again the

value of φd = 15◦ is adopted for friction angle of discontinuities.

Figure 6.18 illustrates the effect of discontinuities’ friction angle on the

final topology.
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Figure 6.17 Optimum reinforcement for minimising tunnel convergence in
tunnel with discontinuities, φd = 15◦.

(a) φd = 15◦ (b) φd = 20◦ (c) φd = 30◦ (d) no crack

Figure 6.18 The effect of discontinuities in the final topology after minimising
the tunnel convergence.
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6.6.4 Considering multiple objective functions

In order to minimise two or more objective functions together one should de-

fine a multi-objective optimisation problem. Suppose two objective functions

f and g must be minimised together. To do so, one can define the following

multiple objective function

r(x) = wf · f(x) + wg · g(x) (6.10)

where x indicates the vector of design variables. The two scalar weighting

factors wf and wg can be used to apply different weights to f and g.

Two examples are solved using this kind of multiple objective definition.

The friction angle of discontinuities is taken as φ = 15◦ in these examples.

The initial reinforcement distribution in Figure 6.12 is used in these examples

as well. In the first example the objective function is defined as f = 0.0001c+

0.9999h where c and h are mean compliance and floor heave respectively. The

relatively large weight factor chosen for floor heave is due to the fact that the

values of floor heave are much smaller than values of mean compliance. The

final topology and the evolution of c and h are illustrated in Figure 6.19.

It can be seen that the two objective functions have both reduced and con-

verged. However, the evolution of the objective functions is not very smooth

and not monotonic which is expected in multi-objective problems. The final

topology differs from results of any of these functions alone (Fig. 6.13 and

Fig. 6.15).

Next example deals with minimising f = 0.001c + 0.999v where v is

tunnel convergence. A large weight factor is used for tunnel convergence to
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Figure 6.19 Optimum reinforcement for minimising f = 0.0001c + 0.9999h,
φd = 15◦.

balance its smaller values when mixed with larger values of mean compliance.

Figure 6.20 shows the final topology and the evolution of the two objective

functions.
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Figure 6.20 Optimum reinforcement for minimising f = 0.001c + 0.999v,
φd = 15◦.

The reduction in the two objective functions is relatively monotonic. The

final solution is different from the results of either of these functions alone
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(Fig. 6.13 and Fig. 6.17), but is more close to the minimum compliance design

(Fig. 6.13).

If the two objective functions are always positive, one can also use a

simpler multiple objective function definition as follows

r(x) = f(x)g(x) (6.11)

This definition does not need weighting factors. As in our case all the objec-

tive functions are always positive, it is possible to use this definition. The

sensitivities of this multiple objective function can be then calculated as

∂r

∂xi
= f(x)

∂g

∂xi
+ g(x)

∂f

∂xi
(6.12)

After finding the sensitivities with respect to design variables, the sensitivity

numbers can be easily calculated based on the assumed material interpolation

scheme (see Chapter 4).

Two examples are solved here to illustrate the use of this multiple ob-

jective definition. The initial reinforcement distribution in Figure 6.12 is

used for these examples and the friction angle of discontinuities is assumed

as φ = 15◦. The first example minimises the floor heave and the mean

compliance together. The final topology and the evolution of the objective

functions are depicted in Figure 6.21. The second example involves minimis-

ing the tunnel convergence and the mean compliance together. The results

are shown in Figure 6.22.

The final topology in Figure 6.21 is more close to the floor heave min-
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Figure 6.21 Optimum reinforcement for minimising f = c · h, φd = 15◦.
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Figure 6.22 Optimum reinforcement for minimising f = c · v, φd = 15◦.
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imisation result (Fig. 6.15). Also the final topology in Figure 6.22 is more

close to the tunnel convergence minimisation solution (Fig. 6.17). However

in both cases it can be seen that both of the objective functions ultimately

decrease.

6.7 Concluding remarks

This chapter has been devoted to reinforcement optimisation of tunnels in

rocks with discontinuities. The rock material has been assumed linear elas-

tic. However because of the discontinuities the homogeneity and isotropy

assumptions are not valid in this case. To overcome this one can reinforce

the discontinuities accordingly to prevent any sort of slippage and separation.

After this stabilisation, the rock mass can be viewed as a continuum media.

A stabilisation algorithm has been introduced in this chapter to ensure

that no slippage or separation occurs along discontinuities. This algorithm

stabilises the rock mass iteratively. The results of this algorithm have been

verified by comparing its results with analytical solutions in some simple

cases.

The stabilising algorithm has been embedded inside the optimisation al-

gorithm. The capabilities of the new algorithm has been demonstrated via

some numerical examples. The optimum design of tunnels to achieve the

minimum compliance, the minimum floor heave, and the minimum tunnel

convergence have been obtained.

Finally two formulations for multi-objective optimisation problems have
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been introduced. Two numerical examples have been solved to demonstrate

the concept.

The next chapter deals with shape optimisation of tunnels in elasto-plastic

media.



C H A P T E R 7

Optimising tunnels in
elasto-plastic media

7.1 Introduction

In this section the shape optimisation of excavations in elasto-plastic soils is

addressed. Ren et al. (2005) considered this problem in linear elastic media.

We first review this work and then extend it to non-linear material models.

The ESO method has been used by Ren et al. (2005) to optimise the

shape of the openings. This method suits this sorts of problem as its material

removal can model the actual excavation process. Here the same method will

be used to find the optimum shape of the openings.

7.1.1 Difficulties when considering inelastic behaviour

The behaviour of geomaterials is usually non-linear. However using such

material models in topology optimisation may lead to several limitations

and difficulties. The extremely high computational effort required to solve

such examples is one of the barriers. This becomes more significant if one

recalls that topology optimisation techniques normally require tens of finite

196
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element runs.

But there are more important difficulties in considering inelastic be-

haviours. Including inelastic behaviour, geomechanical responses will depend

on the loading path. In this case if one wants to consider the sequences of

excavating a tunnel, sensitivity analysis will become extremely difficult if not

impossible. Furthermore, as the inelastic responses depend on the loading

path, the final topologies may not be comparable to each other.

To bypass the sensitivity analysis difficulty, here we use the ESO method

with an intuitively defined efficiency measure.

7.2 Previous works

The ESO method has been described in §2.6. A key concept in this method

is the definition of the rejection criterion. The rejection criterion assigns

a scalar value to elements which will be compared with a threshold value

to determine whether the element should be removed or not. One of the

flexibilities of this method is that the rejection criterion in the method can

be either defined intuitively or calculated rigorously. In their paper, Ren

et al. (2005) used an intuitive stress-based ESO and defined the following

rejection criterion.

σ̄ =
σ1 + σ2 + σ3

3
(7.1)

where σ1, σ2, and σ3 are principal stresses. The mean stress value σ̄ is used

to evaluate the efficiency of the elements.

The threshold stress level is then defined based on two controlling param-
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eters. The first one is the rejection ratio, denoted as RR. This parameter

has been described in §2.6. In order to limit the number of removing ele-

ments, Ren et al. (2005) defined another parameter named as volume removal

rate, V R. This is defined as the ratio of the maximum allowable number of

removing elements to the total number of elements in each iteration.

Two threshold values are defined based on these two parameters as

σth1 = σ̄max ·RR (7.2)

and

σth2 = σ̄(n(1− V R)) (7.3)

where n is the number of elements in each iteration; σ̄(n(1− V R)) denotes

the value of the (n(1 − V R))-th highest mean stress among all designable

elements. Ren et al. (2005) then defined the threshold stress level as the

minimum of these two values

σth = min{σth1, σth2} (7.4)

After finding the threshold stress level the elements are removed wherever

the mean stress value is found to be less than the threshold stress level.

Ren et al. (2005) solved some numerical examples in two and three dimen-

sions and verified their results with analytical solutions. Moreover, through

a 3D example of two intersecting tunnels, they showed that the solution can

be considerably different if one uses the von Mises stress as the rejection

criterion.
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7.3 A rejection criterion for Mohr-Coulomb ma-

terial model

The Mohr-Coulomb model is one of the most common material models used

to model the behaviour of soils. It is reasonable to define the rejection cri-

terion based on the material model in use. Here we define a new rejection

criterion based on the Mohr-Coulomb material model.

As mentioned before in §3.2, the Mohr-Coulomb yield function can be

expressed in terms of principal stresses σ1 ≥ σ2 ≥ σ3 as

f = (σ1 − σ3)− (σ1 + σ3) sinφ− 2c cosφ [3.3]

where φ and c are the friction angle and the cohesion of soil material re-

spectively and compressive stresses are considered positive. In this model

the stress-strain relationship is linear elastic wherever the yield function is

negative. The value of zero for the yield function indicates yielding and the

strains induced after this level are no more reversible.

Figure 7.1 shows the Mohr-Coulomb yield function in the σ − τ space

together with a possible stress state (σ1, σ2, σ3) which is illustrated using the

Mohr’s circles. If the largest circle touches the Mohr-Coulomb envelope the

soil element will yield. Clearly, as the confining stress (σ1 + σ3)/2 increases,

the centre of the largest circle shifts to the right side and the soil element

can endure higher stresses before yielding. The ‘distance’ between the largest

circle and the Mohr-Coulomb envelope is denoted by x in Figure 7.1. This
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distance can be calculated as (Ghabraie et al. 2008)

x = c cosφ+

(
σ1 + σ3

2

)
sinφ−

(
σ1 − σ3

2

)
(7.5)

The radius of the largest Mohr circle can be expressed as

r =
σ1 − σ3

2
(7.6)

Now we define an efficiency measure, or sensitivity number, as

α =
r

r + x
=

σ1 − σ3

2c cosφ+ (σ1 + σ3) sinφ
(7.7)

This value shows the ratio of the maximum possible radius of the Mohr’s

circle to the current largest radius for a stress state.

Figure 7.1 The distance between the largest Mohr’s circle and the Mohr-
Coulomb envelope.

This definition provides a dimensionless parameter varying between zero
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(the least efficient case) and one (the most efficient case).

7.4 The ESO procedure for excavation problem

In excavation problem due to the nature of the problem, the classical ESO

process should be amended to well fit the problem.

7.4.1 Defining the front layer

Since the shape optimisation of the opening is of concern, at each step we

can only remove elements from the boundary of the opening, the front layer.

This is also in consistency with the real procedure of excavating a hole in the

ground. In 2D problems, an existing element is regarded as a member of the

front layer if and only if it has at least two common nodes with at least one

of the previously removed elements. This concept is similar to the active set

(A) described in detail in §4.9. However, unlike the active set, the front layer

only contains solid elements. If we denote the set of removed and existing

elements by V and M respectively, then the front layer can be defined as

F = {e ∈M|∃ev ∈ V : e ∩ ev = {i, j}} (7.8)

The front layer (active set) at each iteration is defined using the hole gen-

erated in the previous iterations. Hence, for the first step we need an initial

hole to start with which should be removed manually.
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7.4.2 Removing elements

In the ESO method, the rejection ratio (RR) is traditionally used to define a

threshold stress level as a ratio of the maximum stress level in the form (Xie

and Steven 1993; Ren et al. 2005)

σth = σmax ·RR (7.9)

In our case, however, because of the definition of sensitivity number as a

dimensionless value, instead of using a ratio, an explicit rejection level (RL)

is used. Elements with sensitivity number lower than this rejection level

(α ≤ RL) will be nominated for removal. Obviously rejection level should

be greater than zero and smaller than one. Similar to Ren et al. (2005) a

second control parameter, volume removal rate (V R), is defined here as the

ratio of the maximum allowable amount of deletion over the design domain

volume.

The optimisation algorithm controls the number of removing elements by

means of RL and V R. To find the removing elements, first all the elements in

the front layer are sorted based on their sensitivity number calculated from

(7.7). Then the number of elements with the sensitivity lower than rejection

level are found and stored in N1. The maximum allowed number of removing

elements is then determined as

N2 = bV R ·Nfc (7.10)

in which Nf stands for the number of elements in front layer. The number
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of removing elements (Nr) is calculated as follows

Nr = max{min{N1, N2}, 1} (7.11)

This guarantees that at least one element is removed at each iteration.

In case of symmetry, if the relative error between sensitivity numbers of

the last removing element and the next (remaining) one becomes less than

a predefined tolerance (0.05% throughout this chapter) then both of them

should be deleted.

As a general rule, using lower control parameters, may lead to a better

result but requires more iterations. For all examples presented in this chapter

the values of RL = 0.3 and V R = 10% are adopted.

7.4.3 Termination criteria

To evaluate the performance of the hole generated after each iteration, the

following performance index (PI) is defined based on the definition of the

sensitivity number in (7.7)

PI =

∑
i∈F αi

Nf

(7.12)

The limited number of removing elements in each step results in different

shapes after each optimisation loop. Thus performance index will fluctuate

during optimisation process making several peaks. These peaks resemble

relatively similar shapes but in different sizes (Fig. 7.2).

The ESO algorithm utilised here terminates the procedure when the pre-



Chapter 7 Optimising tunnels in elasto-plastic media 204

Figure 7.2 Fluctuations of the PI value with several peaks related to similar
shapes in different sizes.
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defined size of the hole is achieved and the performance index reaches one of

its peaks. Thus after reaching the desired hole size, the procedure continues

removing elements, but at the first iteration where PI drops after a raise, the

procedure is terminated and the last hole obtained is reported as the final

result.

The complete algorithm is described in Figure 7.3

1: Discretise the problem’s domain.
2: Initialise RL and V R
3: repeat
4: Find the front layer
5: Perform FE analysis and calculate the sensitivity numbers for the front

layer elements using (7.7).
6: N1 ← number of elements with α ≤ RL
7: N2 ← bV R ·Nfc
8: Nr ← max{min{N1, N2}, 1}
9: Remove Nr elements with lowest values of α

10: until Desired volume has been achieved and PI has reached one of its
peaks

11: print the results
12: end

Figure 7.3 Algorithm for shape optimisation of tunnels using ESO.

7.5 Examples

Two examples are solved using the proposed method. The first example is

a simple example used here to compare the obtained results and the elastic

linear results. The second one is a tunnel in soil where the only load is the

weight of the soil mass.
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7.5.1 Comparing the linear and non-linear results

The problem’s geometry is shown in Figure 7.4. For linear elastic weightless

materials, the optimal shape is elliptical with its aspect ratio matching the

in-situ stress ratio (Hoek and Brown 1980; Cherkaev et al. 1998; Pedersen

2000). This shape provides the stiffest design. Also the tangential stress and

the energy density along the boundary of this shape are uniform (Pedersen

2000).

Figure 7.4 The sketch of the 2D problem used in the first example.

For this example four load cases are considered as described in Table 7.1.

The first and the third cases correspond to a hydrostatical stress field, while

the second and the fourth cases are biaxial stress cases with the applied stress
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ratio of 2. As a result the linear elastic optimum solutions include a circular

hole for the first and the third cases and an elliptical hole with aspect ratio

of 2 for the second and the fourth cases. Figure 7.5 shows these optimum

shapes.

Table 7.1 Load cases for the first example.

Case σx (kPa) σy (kPa)

1 20 20
2 10 20
3 40 40
4 20 40

(a) Quarter circle (b) Quarter ellipse with aspect ratio
of 2

Figure 7.5 The optimum results with linear elastic material: a) for Cases 1
and 3; b) for Cases 2 and 4.

Mechanical properties of the soil material are reported in Table 7.2. Note

that the optimum results with linear elastic material do not depend on the

mechanical properties of the media.

Because of symmetry only one quarter of the square is modelled (the

shaded area in Figure 7.4). A 3m × 3m square area at the corner of the
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Table 7.2 Mechanical properties of the soil material used in the first example.

Property Value

Modulus of elasticity E = 10MPa
Poisson’s ratio ν = 0.3
Cohesion c = 10kPa
Friction angle φ = 35◦

quarter model is chosen as design domain (Fig. 7.4) and discretised using

150 × 150 equally sized 4-node elements. The first initial hole is created

by removing one element at the corner Figure 7.6. Minimum hole area for

termination of the process is set at 400 elements.

Figure 7.6 The initial shape for the first example.

Figure 7.7 illustrates the final shapes of the hole obtained by ESO for

each load case. It can be seen that unlike the linear elastic case, the final

shape also depends on the magnitude of the applied force. It is also notable

that for lower amounts of force (Cases 1 and 2) the final shape is made of

some straight lines while for greater forces (Cases 3 and 4) the shapes take

arched and curved forms. It should be noted that the hole size of the obtained

results, due to termination conditions, are bigger than 400 elements which
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is the size of the two linear elastic optimal shapes (Fig. 7.5). The size of

the hole for ESO results in Cases 1, 2, 3, and 4 are 401, 407, 409, and 404

elements respectively.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 7.7 The optimum results for non-linear material obtained by the ESO
method.

To compare the results, two non-linear models are made with circular and

elliptical holes as shown in Figure 7.5. The inelastic responses depend on the

loading path and thus the responses of the linear elastic solutions can not

be compared with obtained shapes directly. In order to have a reasonable
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Table 7.3 Performance index values for the first example.

Case Linear result ESO result Difference

1 0.8677 0.8098 (Circle) 6.68%
2 0.7980 0.7649 (Ellipse) 4.14%
3 0.9229 0.8435 (Circle) 8.60%
4 0.9565 0.8746 (Ellipse) 8.56%

comparison all of these shapes are modelled using same elasto-plastic material

and then after applying the boundary loads the complete shape is excavated

all at once. Then for any of these shapes the value of the performance index

is calculated. Table 7.3 reports these values.

It can be seen in Table 7.3 that the obtained results give better perfor-

mance indices compared to linear optimum shapes in all cases. This can be

seen as a direct verification because PI is the average of the defined efficiency

in the proposed method and thus higher PI means more efficient design in

this method.

7.5.2 Considering the weight of soil

The second example is a very simple and common problem: finding the best

shape of an underground opening in a semi infinite media. Problem definition

is sketched in Figure 7.8. Unlike the first example, the weight of materials

is not neglected here. Apart from materials’ self weight, there is no other

load applied. The properties of the material used in this example are listed

in Table 7.4. The minimum hole size for termination of the process is set at

400 elements, like the first example.
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Figure 7.8 The sketch of the 2D problem used in the second example.

Table 7.4 Mechanical properties of the soil material used in the second ex-
ample.

Property Value

Modulus of elasticity E = 20MPa
Poisson’s ratio ν = 0.4
Cohesion c = 100kPa
Friction angle φ = 25◦

Dry unit weight γd = 16kN/m3
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Because of symmetry, only half of the area is modelled (the shaded area

in Figure 7.8). The design domain is defined as a square around the initial

hole of size 12m × 12m. A mesh of 100 × 100 similar sized square elements

is used to discretise this domain. The initial hole consists of four elements

(Fig. 7.9a).

(a) Initial hole (4 elements) (b) hole size = 104 elements

(c) hole size = 254 elements (d) hole size = 400 elements

Figure 7.9 The initial hole and the obtained results for the second example.

Some of the shapes produced during the optimisation process are illus-

trated in Figure 7.9b-d. It can be seen from these illustrations that the

majority of the elements were removed from the upper side of the initial
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hole. This is because of the self weight loading.

7.6 Concluding remarks

The ESO procedure has been used to optimise the shape of underground

openings in excavation problems. An elastic-perfectly plastic model has been

used for modelling soil (and rock) behaviour based on Mohr-Coulomb yield

function. A new sensitivity number formula relevant to Mohr-Coulomb yield

function has been derived and has been used as the rejection criterion.

The proposed procedure has been used to solve some simple 2D problems.

The obtained results have been compared with the optimum shapes of the

problem in linear elastic media. Results showed that, in terms of fully stressed

design (which the ESO method is based on), the proposed procedure gives

better results.

It has been demonstrated that the magnitudes of applied forces affect the

final design which is due to non-linear nature of the problem. Under small

forces the final shapes show more of straight lines. Raising the magnitude of

forces, however, makes the opening shapes smoother and more curved.

The proposed method can be easily extended to solve 3D problems. It

is also possible to redefine the rejection criterion for other material models

using a similar concept.
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Conclusions

In this thesis it has been tried to open a pathway on applying the state-of-the-

art topology and shape optimisation techniques in shape and reinforcement

design of underground excavations. These optimisation techniques have been

proved useful in structural and material design. Also they have been suc-

cessfully applied in a range of physical problems from heat transfer to stokes

flows. However despite a great potential in underground excavation design,

only few studies have been conducted to use these new optimisation tech-

niques in this field. This thesis have taken a further step by introducing

complexities like discontinuities in the ground media and using elasto-plastic

material model.

The thesis involves literature review on topology optimisation techniques.

Four more commonly used techniques have been presented in details. Their

algorithms have been described and their applications have been illustrated

by means of numerical examples.

An introduction on the rock and soil mechanics has been added. The

differences between structural and excavation design have been pointed out.

The potential applications of the topology optimisation techniques in exca-

vation design have been discussed. A brief review of previous works in this

214
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field has been also presented to complete the literature review.

A whole chapter has been devoted to tailoring a suitable topology opti-

misation technique to be used in excavation shape and reinforcement design.

Different material interpolation schemes have been introduced and tested.

The procedure to extract the sensitivity numbers from sensitivity analysis

results has been discussed. The filtering scheme has been described and ap-

plied to overcome the numerical instabilities and to smoothen the results.

The considerations in shape optimisation have been addressed. The steps

to switch the elements to update the material distribution have been de-

scribed. The mathematical background of the proposed optimisation method

has been discussed. Finally, at the end of this chapter, the effects of using

different material interpolations and different controlling parameters have

been demonstrated through numerical examples.

The shape and reinforcement optimisation of excavations have been ad-

dressed in the following chapters starting with excavation optimisation in lin-

ear elastic homogeneous media. These assumptions limit the application of

the results to intact rock or highly weathered rock massess where linear elas-

tic model can sufficiently simulate the rock mass behaviour. The optimum

shapes of tunnels have been found for some numerical examples. A post-

processor algorithm has been presented based on Bézier curves to smoothen

the final shapes. The results have been verified by analytical solutions in sim-

ple cases. The reinforcement optimisation has been introduced next. Three

objective functions have been considered, namely the mean compliance, the

floor heave, and the tunnel convergence. Some numerical examples have been

solved to illustrate the optimum designs achieved by minimising each of these
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objective functions. A combined shape-reinforcement optimisation problem

has been formulated next. The capability of the proposed method has been

tested against this mixed optimisation problem as well. Numerical examples

have been solved and the results have been presented. It has been shown that

the computational effort needed to solve this mixed optimisation problem is

nearly the same as each of the single optimisation problems alone.

In the next step, a more complicated problem has been considered by

considering discontinuities in the host rock. The presence of discontinuities

falsifies the homogeneity and isotropy assumptions. However, it has been

demonstrated that these simplifying assumptions can be still validated if one

ensures that any possible separation and slippage is prevented along discon-

tinuities. Based on this fact, a stabilising algorithm has been presented to

stabilise the design before optimising it. The behaviour of this algorithm has

been tested and verified by analytical solutions. Through some more numer-

ical examples, the application and capabilities of the proposed method have

been demonstrated. Also an introduction to multi-objective optimisation

problems has been presented with illustrative examples.

Finally shape optimisation of openings in elasto-plastic soil has been con-

sidered. To simulate the excavation procedure, the ESO method has been

used to tackle this problem. To bypass the difficulties of sensitivity analy-

sis in this complex case, an intuitive efficiency measure has been formulated

for Mohr-Coulomb material based on stress values. The algorithm has been

described in detail. Numerical examples have been solved to demonstrate

the application of the proposed method. The results have been found to be

dependent on the magnitude of the in-situ stresses. A performance index has
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been defined based on the definition of the rejection criterion. It has been

shown that the obtained solutions result in better performance index values

compared to linear elastic solutions. An example considering the soil weight

has been also solved.

The problems considered in this thesis are mostly simplified cases. In

practise there are many considerations and limitations which vary case to

case and there are many uncertainties which limit the application and the

validity of the excavation designs. However the solved examples in this thesis

demonstrate that the state-of-the-art topology optimisation techniques can

actually improve the shape and reinforcement design of excavations in most

of the cases.

Apparently there are many details in excavation designs that were not

and could not be considered in this thesis. The application of topology

optimisation techniques in excavation design is still at its preliminary stages.

There are many limitations to be overcome. These limitations and further

improvements can be addressed in further studies.

Considering more practical material models for both ground material and

reinforcement material is a possible improvement. The reinforcement opti-

misation in elasto-plastic media can be considered for further studies. This

can be achieved by defining an intuitive sensitivity number, like the ap-

proach used in Chapter 7. For example Hoek-Brown material model can be

considered to simulate the elasto-plastic rock mass media and a sensitivity

number based on this material model can be extracted. Alternatively one can

simplify such non-linear problems by ignoring the excavation sequence and

assuming that the whole opening is excavated at once. This study can also
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be extended by considering other support systems rather than grouted bolts.

Further studies can concentrate on optimising the external support systems,

for example the shape optimisation of the supporting steel frames. Consid-

ering a practical case study and applying topology optimisation techniques

to improve the design can be the next step. Implementing other topology

optimisation techniques can also be considered for further studies.

At the end the author wishes that his results can open a new field of re-

search and ultimately the topology optimisation techniques become valuable

practical tools in hand of tunnel designers.
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