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Summary

In a nonparametric setting, the functional form of the relationship be-

tween the response variable and the associated predictor variables is un-

specified; however it is assumed to be a smooth function. The main aim of

nonparametric regression is to highlight an important structure in data with-

out any assumptions about the shape of an underlying regression function.

In regression, the random and fixed design models should be distinguished.

Among the variety of nonparametric regression estimators currently in use,

kernel type estimators are most popular. Kernel type estimators provide a

flexible class of nonparametric procedures by estimating unknown function

as a weighted average using a kernel function. The bandwidth which deter-

mines the spread of the kernel has to be adapted to any kernel type estimator.

Our focus is on Nadaraya–Watson estimator and local linear estimator which

belong to a class of kernel type regression estimators called local polynomial

kernel estimators.

A closely related problem is the determination of an appropriate sample

size that would be required to achieve a desired confidence level of accuracy

for the nonparametric regression estimators. Since sequential procedures

allow an experimenter to make decisions based on the smallest number of

observations without compromising accuracy, application of sequential pro-

cedures to a nonparametric regression model at a given point or series of

points is considered. The motivation for using such procedures is: in many

applications the quality of estimating an underlying regression function in

a controlled experiment is paramount; thus, it is reasonable to invoke a se-

quential procedure of estimation that chooses a sample size based on recorded

observations that guarantees a preassigned accuracy.

We have employed sequential techniques to develop a procedure for con-
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structing a fixed-width confidence interval for the predicted value at a specific

point of the independent variable. These fixed-width confidence intervals are

developed using asymptotic properties of both Nadaraya–Watson and local

linear kernel estimators of nonparametric kernel regression with data-driven

bandwidths and studied for both fixed and random design contexts. The

sample sizes for a preset confidence coefficient are optimized using sequential

procedures, namely two-stage procedure, modified two-stage procedure and

purely sequential procedure. The proposed methodology is first tested by

employing a large-scale simulation study. The performance of each kernel

estimation method is assessed by comparing their coverage accuracy with

corresponding preset confidence coefficients, proximity of computed sample

sizes match up to optimal sample sizes and contrasting the estimated values

obtained from the two nonparametric methods with actual value or values of

at a given design point or at given series of design points of interest etc.

We also employed the symmetric bootstrap method which is considered

as an alternative method of estimating properties of unknown distributions.

Resampling is done from a suitably estimated residual distribution and uti-

lizes the percentiles of the approximate distribution to construct confidence

intervals for the curve at a set of given design points. A methodology is

developed for determining whether it is advantageous to use the symmet-

ric bootstrap method to reduce the extent of oversampling that is normally

known to plague Stein’s two-stage sequential procedure. The procedure de-

veloped is validated using an extensive simulation study and we also explore

the asymptotic properties of the relevant estimators.

Finally, we apply our proposed sequential nonparametric kernel regression

methods to some problems in software reliability (estimating software relia-

bility growth models) and finance (estimating capital asset pricing model).

2



Chapter 1

Introduction

1.1 Background

When fitting a regression model to data, the choice of parametric model

depends very much on the situation being modelled. Sometimes, there are

scientific reasons for modeling response variable as a particular function of

explanatory variable, while at other times the model is based on experience

gained through analysis of previous data sets of the same type. The restric-

tion that a regression function belongs to a parametric family is often too

rigid as this often requires that the function be linear, parabolic, periodic

or monotone, each of which might be too restrictive for adequate estimation

of the true regression function. If the selected function is not appropriate,

then this will result in the likelihood of reaching incorrect conclusions during

the regression analysis. The removal of the restriction that regression func-

tion has to belong to a parametric family will overcome the rigidity inherent

in parametric regression. The approach whereby no parametric function is

prescribed is referred to as nonparametric regression. The nonparametric

approach to regression is desirable when a scatter plot shows no discernible
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simple functional form because one would want to let the data decide which

function fits them best without the restrictions imposed by a parametric

model. In some cases a nonparametric regression estimate will suggest a

simple parametric model, while in other cases it will be clear that the un-

derlying regression function is sufficiently complicated that no reasonable

parametric model would be adequate.

In a nonparametric setting, the functional form of the relationship be-

tween the response variable and the associated predictor variables are as-

sumed to be unknown when data is fitted to the model. The main aim of

nonparametric regression is to provide a simple way of highlighting important

features of the data sets without imposing any assumptions on the shape of

the underlying regression function. Hence, a nonparametric approach allows

the data to speak for itself. Nonparametric regression models can be used

for the same types of applications such as estimation, prediction, calibration

and optimization that parametric regression models are used for.

There are now several useful techniques for obtaining nonparametric re-

gression estimates. Some of these are based on fairly simple ideas while oth-

ers are more sophisticated. Among these, kernel methods (Rosenblatt, 1956;

Nadaraya, 1964; Watson, 1964; Gasser and Müller, 1979; Müller, 1988; Wand

and Jones, 1995), local polynomial methods (Stone, 1977; Cleveland, 1979;

Fan, 1993; Fan and Gijbels, 1996), spline methods (Wahba, 1977; Eubank,

1988; Nychka, 1988; Wahba, 1990; Green and Silverman, 1994), fourier meth-

ods (Efromovich and Pinsker, 1982; Efromovich, 1999) and wavelet methods

(Donoho and Johnstone, 1994; Vidakovic, 1999) are the most popular. There

are several different approaches within each of these broad classes of nonpara-

metric regression estimators. For example, the local linear estimator (Fan,

1992), is a special case of local polynomial kernel estimators discussed in

4



Cleveland (1979) since, it can be shown to correspond to fitting a first de-

gree polynomial to the data with kernel function as weight. Each of these

approaches has its own particular merits and weaknesses (Fan, 1996).

However, kernel type regression estimators have an advantage of mathe-

matical and intuitive simplicity. Also, a class of kernel type regression esti-

mates has an advantage over the other classes of regression estimators, since

it depends on only one positive parameter, namely, bandwidth which con-

trols the smoothness of the estimate. Besides specific weight sequences which

have been introduced for kernel regression, splines smoothing and orthogo-

nal series smoothing are related to each other, it is argued that one of the

simplest ways of computing a weight sequence is kernel regression though.

Of particular importance and simplicity, our focus is on two kernel type re-

gression estimators namely Nadaraya–Watson and local linear which belong

to a family of local polynomial kernel kernel estimators. Nadaraya (1964)

and Watson (1964) introduced this family of estimates by estimating the

regression function at a particular point by locally fitting a degree zero poly-

nomials, that is, local constants. Fan (1992) pioneered local linear smoother

which fits a first degree polynomial that is, local linear regression to the data

via weighted least squares.

In general, local polynomial estimators (Fan and Gijbels, 1996) are supe-

rior to Nadaraya–Watson estimator in some respects (Fan, 1993), but recent

contributions by Boularan et. al. (1995), Einmahl and Mason (2000) as well

as Quian and Mammitzsch (2000), among others, have given evidence of

continuing interest in the Nadaraya–Watson estimator. One of the strengths

of this estimator certainly consists in its automatic adaptation to designs

where the local polynomial estimator may not be performing reliably over

all. Also, the Nadaraya-Watson estimator retains some optimality properties

5



as demonstrated in Hardle and Marron (1985).

Let (X, Y ) be a bivariate random variable with joint probability density

function f(x, y) where we will assume 0 < x < 1 for simplicity. Consider a

sequence of observations (xi, yi); i = 1, . . . , n generated by the distribution

and described by the regression model

yi = m(xi) + εi; i = 1, . . . , n (1.1)

where ε1, . . . , εn are independent and identically distributed random error

terms with E(εi) = 0 and Var(εi) = σ2. Note that the conditional expec-

tation E(Y |X = x) = m(x) is commonly known as the regression function;

also, the conditional variance Var(Y |X = x) = σ2. Both m(x) and σ2 are

unknown and must be estimated from data. Two cases arise in practice:

• when the parametric form of m(x) is known;

• when the parametric form of m(x) is unknown.

In the first case, standard least squared method is used to estimate the

parameters of the models and σ2 is estimated from the residual terms. In

the second case, a nonparametric approach, which involves estimating the

regression function directly using the data without any parametric assump-

tions placed on the form of the function, is generally employed. A novel

approach must also be used to estimate the conditional variance σ2.

When using nonparametric regression methods, one question often arises:

what sample size do we need to achieve a level of accuracy within some

prespecified error bound. This question naturally falls into the domain of

sequential procedures which in general comes in handy if we want to control

the error of estimation at some preassigned level i.e. one of the key objectives

is to ensure that the fitted curve m̂(x), based on a sample of size n, achieves
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a reasonably good fit to the true but unknown regression function m(x).

Indeed for any d > 0, 0 < α < 1 and x0, we wish to claim

Pr(m̂(x0)− d < m(x0) < m̂(x0) + d) ≥ 1− α. (1.2)

Sequential analysis refers to the area of statistical theory and methods

where the sample size is random by nature and depends on the observed data.

The theoretical development of sequential procedure began with the Wald’s

discovery of Sequential Probability Ratio Test (SPRT) in the 1940’s. The se-

quential probability ratio test is well documented in Wald (1947). Sequential

analysis has made rapid advances and has undergone extensive development

and has enriched statistics in general with sophisticated probability and infer-

ential techniques. Its successes can be attributed to its various applications

in applied statistics where it is used in routine statistical investigation, clin-

ical trials, industrial process control, system reliability and life testing, time

sequential application and others.

The primary goal of sequential analysis is to achieve a given accuracy

specified in (1.2) above by using the smallest possible sample sizes and al-

lowing an experimenter to make decisions based on the smallest number of

observations without compromising this accuracy. The procedure is conve-

nient and inexpensive when there is a cost involved in each stages of sampling.

Decision to terminate the sampling procedure depends entirely, at each stage,

on the results of the observations previously made. Typically, sequential es-

timation is used when there is a price attached to each observation. For

an example, if we have to destroy or malfunction a product in order to get

observations for sampling procedures. Although all the observations which

are needed for conducting a particular experiment are freely available to the

statistician, there is a often price to be paid when using outdated information.

Sequential sampling procedure is a method of statistical inference in which
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the number of observations are not predetermined and is obtained by the spe-

cific criterion of achieving the goal of an experiment. The procedure deals

with observations which are random but not necessarily independent. One

of the key elements of a sequential procedure is a stopping rule that dictates

whether to stop or continue the experiment and a decision rule that tells what

terminal action is to be taken about the given problem after the experimen-

tation has stopped. When both fixed sampling procedures and sequential

procedures are applicable to a given problem, the most economical one in

terms of reduction of sample size, cost or duration of the experimentation is

often chosen.

1.2 General View of the Problem

A closely related problem is the determination of an appropriate sample

size that would be required to achieve a desired confidence level of accuracy

for the nonparametric regression estimators. Although much research has

been done in sequential analysis, sequential procedures are not commonly

employed in practice. But they are of great importance as we can find many

situations where we do not know in advance how many observations or sample

size will be required to reach a decision. There has been a great deal of

interest in applying sequential procedures to obtain optimal sample size, (refer

to Ghosh et. al. 1997 for a review). In estimation, a sequential approach

would involve repeated sampling with successive sample added to the samples

already selected, terminating when a desired level of error of estimation is

reached.

Whether one wants to estimate m(x) at one single point x = x0 or for all

x ∈ R, depending on the specific goal and error criterion, one would like to
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determine the sample size n in an optimal fashion. That is, in order to have

the error controlled at a preassigned level, the sample size has to be adaptively

estimated in the process by a positive integer valued random variable N where

the event [N = n] will depend only on (X1, Y1), . . . , (Xn, Yn) for all n ≥ 1.

Finally, regression function m(x) is estimated by nonparametric regression

estimator m̂N(x) i.e. nonparametric regression estimate m̂(x) based on the

sample (X1, Y1), . . . , (XN , YN).

We employ sequential procedures to estimate the sample size, N required

to obtain fixed-width 2d (d > 0) confidence interval for an unknown regression

function, m(x) at a point x = x0. A natural way of constructing a fixed-

width confidence band for m(x0) is as follows. Suppose that m̂(x0) is an

estimator of m(x0), then a 100(1 − α)% confidence band for m(x0) where

x0 ∈ [0, 1] is a stopping random variable N such that

Pr{|m̂N(x0)−m(x0)| ≤ d} ≥ 1− α (1.3)

for a given d.

Essentially, the problem of constructing an interval IN,d = (m̂N(x0) −
d, m̂N(x0) + d) is translated into a problem of determining the sample size.

Indeed if the sample size N is too small then the interval IN,d will not achieve

the preset coverage probability 1−α. The key difficulty in determining an N

or the stopping rule that would achieve (1.3), is in deriving the distribution

of |m̂(x0)−m(x0)|.
Usually, in principle, confidence intervals can be obtained using asymp-

totic or approximate normality results for m̂(x0). However, if the limiting

bias and variance are unknown then they have to be estimated consistently

in order to construct an asymptotic confidence interval. Hence, the construc-

tion of asymptotic confidence intervals for a value of the regression function

m(x) begins with obtaining asymptotic properties of nonparametric kernel
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regression estimators. We use kernel type regression estimators not because

it is necessarily the best method to use in all circumstances, but because of its

wide applicability, particularly in univariate case, and also its properties are

best understood. Note that, standard sequential procedures, namely Stein’s

two-stage sequential procedure, modified two-stage sequential procedure and

purely sequential procedure etc. rely on normal approximation. Thus, we

can not overlook the fact that accuracy of these procedures heavily depends

on how good this normal approximation is.

Confidence bands for the unknown regression function can also be derived

using bootstrapping by obtaining the percentiles of the approximate distri-

bution. It is a well known fact that for a wide class of statistical analysis,

a bootstrap approximation has a higher degree of accuracy and is therefore

a popular tool for approximating sampling distribution of an estimate of in-

terest. Hence, we suggest an approach which combines bootstrap ideas with

the sequential procedures where the distribution of m̂(x0)−m(x0) is not ap-

proximated by the estimated asymptotic distribution but by a distribution

obtained from resampling and whose quantiles can therefore be computed.

Approximate fixed-width confidence intervals are then be constructed by em-

ploying these quantiles.

This suggest a way in which the distribution of the nonparametric esti-

mate about the true curve at some point of interest may be approximated

by the distribution of suitable nonparametric estimates based on bootstrap

samples. The proposed bootstrap sequential procedures estimate unknown

regression function m(x) at a given point x = x0 using a smallest possible

sample size with pre-assigned level of accuracy. Our endeavor is to highlight

the advantage of using the bootstrap approximation especially when it is

difficult to obtain the theoretical distribution of estimates due to unknown
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terms.

The procedures developed in this study should find wide applicability

since many practical problems which arise in practice involve estimating an

unknown function.

1.3 Literature Review

Recall that we review the proposed study as an extension of ideas used in

sequential kernel density estimation to nonparametric kernel regression es-

timation. Research into sequential density estimation was first conducted

by Yamato (1971). Wagman and Davis (1975) presented a naive sequential

nonparametric density estimation procedure using kernel estimates proposed

by Parzen (1962). The asymptotic distribution of the stopping variable was

also examined. Stute (1983) constructed sequential fixed-width confidence

intervals for an unknown density function f(x) at a point x = x0. The ef-

ficiency of that procedure was measured in terms of the expected stopping

time.

Isogai (1987) considered procedure for construction of confidence inter-

val for a nonparametric density function at a given point based on recursive

estimation of the kernel function. He also investigated the asymptotic con-

sistency of the estimated density function. Kundu and Martinsek (1994) and

Kundu (1994) looked at the problem of estimating stopping variables N via

two-stage and purely sequential procedures and obtained results for E[N ],

JN/w and E[JN/w] as w → 0 where JN =
∫

x
|f̂N(x) − f(x)|dx and they

wished to have E[JN ] ≤ w for preassigned w > 0. Xu and Martinsk (1995)

presented sequential procedures for estimating f(x) on a bounded interval

and obtained the relevant asymptotic results.
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Stein (1945) proposed a sequential procedure which uses two steps to ob-

tain final sample size. However, Stein’s (1945) two-stage procedure oversam-

ples and fails to attain the asymptotic first order efficiency (Ghosh et. al.,

1997) even though it meets the property of consistency. Over the years a

number of authors applied various modifications to two-stage procedure to

overcome the oversampling problem. Stein’s procedure is initially modified

by Cox (1952) and further improvement was made by Mukhopadhyay (1980)

who introduced the modified two-stage sequential procedure. Consistency

and asymptotic first order efficiency (i.e. limd→0 E
[

N
nopt

]

= 1; nopt is referred

to as the optimal fixed sample size) properties of the modified two-stage pro-

cedure have been established by Ghosh and Mukhopadhyay (1981). Recent

research of Mukhopadhyay and Duggan (1997) proposed a revised version

of Stein’s two-stage procedure with a second order asymptotic efficient (i.e.

lim infd→0 E[N − nopt] = 0) and consistency properties.

Adding one extra stage to Stein’s sampling procedure gives a method

which combines simplicity with the efficiency of the fully sequential proce-

dure. The idea of three operations instead of two was introduced by Hall

(1981) for the estimation of the normal mean. His triple sampling procedure

was designed to combine the operational savings made possible by sampling

in three batches and the efficiency of purely sequential procedures. The basic

idea of the three-stage sampling was put forth in Mukhopahyay (1976) for

constructing a fixed-width confidence interval for the mean of a normal dis-

tribution when the variance was unknown, and thereby obtaining first-order

asymptotic results.

de Silva (2000) developed a fixed-width confidence interval procedure and

critically examined its consistency property for estimating unknown density

function at a point x = x0, f(x0) by extending ideas from Carrol (1976) and
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Isogai (1987). Subsequently, de Silva and Mukhopadhyay (2001) employed

sequential procedures namely purely sequential, accelerated sequential, two-

stage and three-stage to estimate the sample size N required to obtain a

fixed-width confidence intervals for f(x) at a point x = x0 and a comparison

was performed between them. One may refer to Mukhopadhyay and Solanky

(1994) or Ghosh et. al. (1997) for more details on sequential procedures.

1.4 Contributions

The major contributions met by this thesis are

• The introduction of a quick and simple method of bandwidth selector

which does not require estimating quantities such as derivatives of un-

known regression function, pilot bandwidths etc. as in other proposed

bandwidth selectors in nonparametric regression estimation. The pro-

posed bandwidth selector is also more attractive as we need to have

fast automatically generated kernel estimates for computer algorithms

that require many regression estimation steps.

• The investigation into whether a residual variance estimate use in a

particular situation is accurate because this is a crucial issue in assess-

ing performance of various sequential sampling stopping rules.

• The construction of a fixed-width confidence interval for the predicted

value at a specified point of the independent variable with preassigned

accuracy for fixed equidistant regression model using two-stage and

modified two-stage sequential procedures. This is achieved by employ-

ing some asymptotic properties of the Nadaraya–Watson and local lin-

ear estimators.
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• The determination of an appropriate sample size that would be required

to achieve a desired confidence level of accuracy for the nonparametric

regression estimators using two-stage, modified two-stage and purely

sequential procedures for random designed regression models.

• The construction of bootstrap symmetric fixed-width confidence inter-

val for the predicted value at a specified point of the independent vari-

able with preassigned accuracy for both fixed equidistant and random

design regression models.

• The development of a methodology for determining whether it is advan-

tageous to use the symmetric bootstrap method to reduce the extent

of oversampling that is normally known to plague Stein’s two-stage

sequential procedure for both fixed equidistant and random design re-

gression models.

• The investigation of potential benefits of using sequential nonparamet-

ric kernel regression curve estimation to fit software reliability growth

models. This approach is novel and is of great potential benefit since

it does with the need to estimate parameters of such models, a process

which is often impossible to accomplish.

• The development of a data-driven sequential nonparametric procedure

which allows the investor to analyse the relationship between the excess

rate of returns of an asset and the excess rate of returns by the mar-

ket using the shortest period of historical data. We develop a robust

sequential nonparametric version of the Capital asset pricing model

(CAPM) that can be used when the underlying parametric assump-

tions fail.
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1.5 Structure of the Thesis

Chapter 2: is devoted to brief introduction to nonparametric kernel regression

estimators and their asymptotic properties. We study elementary properties

of the nonparametric kernel regression estimators, namely Nadaraya–Watson

estimator and local linear estimator for univariate data in detail. We identify

two distinct types of design, i.e. fixed (equidistant or non-equidistant) de-

sign and conditioned random design. Asymptotic expressions for the bias and

variance for fixed design and conditional bias and variance for random design

are derived and we use these to investigate how the mean squared error and

integrated mean squared error behave. The choice of the kernel function is

one vital concern as it is desirable to base the choice of kernel function based

on computational effort involved. We restrict our attention to a reasonable

and more simpler data driven bandwidth selector which does not require the

estimation of quantities such as derivatives of unknown regression function,

pilot bandwidths etc. We also conduct a simulation study to examine relative

merits of two selected regression estimators i.e. Nadaraya–Watson and local

linear estimators for different regressions functions, kernel functions, sample

sizes, data designs etc. Simulation result has become an important tool to

assess the performance of proposed bandwidth selector.

Chapter 3: The properties of the variance estimators in nonparametric re-

gression based on quadratic form are investigated. In particular, two classes

of estimators are compared: difference-based estimators and curve fitting es-

timators. Our discussions are presented for residuals based on kernel type

regression estimators. An elementary account of bias and variance properties

and approximate and/or asymptotic distribution of each residual variance

estimator are examined. We address the problem of which of these is the
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better residual variance estimator. Besides we are more interested in being

confident that the residual variance estimate use in a particular situation is

accurate. Even though a considerable progress has been made in the devel-

opment of highly performing residual variance estimators, no estimate comes

with a guarantee that it will work well in all cases. In fact, more precise

residual variance estimate is necessary in constructing confidence interval for

unknown regression function. Hence, selected residual variance estimators

are compared using an extensive simulation study for different cases depend-

ing on the data design, distribution of residual variance, sample size and

underlying regression function.

Chapter 4: We develop a procedure for constructing a fixed-width confidence

interval for the predicted value at a specified point of the independent vari-

able. The optimal sample size for constructing this interval is obtained using

the purely, two-stage and modified two-stage sequential procedures together

with asymptotic properties of the Nadaraya–Watson and local linear estima-

tors. The methodology for constructing fixed-width confidence intervals with

a given coverage probabilities is studied in both fixed equidistant and random

design contexts. Finally, a large-scale simulation study is performed to com-

pare the performance of proposed confidence bands based on the local linear

estimator with those constructed by using Nadaraya–Watson estimator. We

also assess whether both estimators are shown to have asymptotically correct

coverage properties or not.

Chapter 5: We employ symmetric bootstrap method, which is considered as

an alternative method of estimating properties of unknown distributions, to

construct a fixed-width confidence interval in nonparametric kernel regres-
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sion estimation. The sample size for a preset confidence interval is optimised

using a two-stage sampling procedure. Resampling is done from a suitably

estimated residual distribution and utilizes the percentiles of the approxi-

mate distribution to construct confidence intervals for the curve at a set of

given design points. Both fixed equidistant and random designed nonpara-

metric regression models with one independent variable are considered and

the decision to terminate the sampling procedure depends, at each stage, on

the results of the observations previously made. A methodology is developed

for determining whether it is advantageous to use the symmetric bootstrap

method to reduce the extent of oversampling that is normally known to

plague Stein’s two stage sequential procedure. The procedure developed is

validated using an extensive simulation study.

Chapter 6: The problem of sequentially selecting bivariate data points for a

nonparametric regression curve estimation is considered. First two applica-

tions refer to data points of explanatory variable of interest are in the form of

fixed equally spaced design whereas the third application corresponds to ran-

dom design data. In all three applications, sample size consideration based

on using Nadaraya–Watson and local linear methods is also considered.

We use nonparametric kernel regression methods to predict the growth

of software reliability. The main advantage of using these methods is that

they place minimum requirement on the distributional form of the stochastic

process which gave rise to software failure data and hence dispense with

the need to estimate parameters from complex models. Numerical examples

involving four sets of real software data are presented.

Two-stage sequential kernel regression procedure to estimate row average

intensity of a digital photo of Leonardo da Vinci’s painting, “Mona Lisa” in
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each row of the image is employed.

We also develop a sequential nonparametric kernel regression approach

to estimate capital price asset pricing model (CAPM) when the underlying

assumption of existence of linear relationship fails, using the smallest possi-

ble sample with a given accuracy.

Chapter 7: Conclusions and suggestions for further work are presented.

1.6 Publications

• Materials from Chapter 4 have been accepted for publication in the

refereed journals: Australia and New Zealand Industrial Applied Math-

ematics ANZIAM Journal and International Association of Engineers

IAENG Journal. Further, material from this chapter has been pub-

lished in the refereed conference proceedings of: International Multi-

Conference of Engineers and Computer Scientists 2008 (IMECS 2008).

• Materials from Chapter 5 have been published in the refereed confer-

ence proceedings of: International Conference on Data Management

ICDM 2008.

• Materials from Chapter 6 have been published in the refereed confer-

ence proceedings of: 36th Australian Conference of Economists and 14th

ISSAT International Conference on Reliability and Quality in Design.

Detailed references of the above papers are given in the bibliography.
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Chapter 2

Nonparametric Kernel

Regression Estimation

2.1 Introduction

To estimate regression curves, their derivatives and other curves of relevance

without the restrictive assumptions of parametric model a number of differ-

ent methods have been devised. Nonparametric simple regression is often

called scatterplot smoothing because an important application is to tracing

a smooth curve through a scatterplot of y against x. Many useful techniques

have been proposed for univariate smoothing. Kernel regression estimators

are more popular as they have an advantage of mathematical and intuitive

simplicity. In the context of kernel regression traditional approaches have

involved the Nadaraya (1964) and Watson (1964) estimator, local polyno-

mial kernel estimators (Stone, 1977) and some alternative kernel estimators

(Gasser and Müller, 1979; Priestley and Chao, 1972).

The basic assumption in nonparametric regression is the existence of a

smooth function m(·) relating the response variable Y and explanatory vari-
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able or predictor X:

Y = m(X) + ε (2.1)

where ε is an error component.

Among several proposed kernel methods for estimating m(·) Nadaraya–Watson

and local linear estimators are more popular. Both estimators are linear

smoothers that is linear combination of the observed responses.

In regression, random and fixed design models should be distinguished.

Depending upon the probabilistic structure in the data (Xi, Yi) : 1 ≤ i ≤ n,

the regression is referred as random design or fixed design regression. The

first case occurs when the predictors, xi’s are ordered non-random numbers

either equidistant i.e. |xi+1 − xi| is a constant for all i or non-equidistant.

For the univariate fixed design case the response variable Y is assumed to

satisfy

Yi = m(xi) + εi, i = 1, . . . , n (2.2)

where ε1, . . . , εn are independent random variables for which E[εi] = 0,

Var[εi] = σ2 where σ2 is a constant. Note that throughout this thesis it

is assumed that ε1, . . . , εn have the same probability distribution. Since

E[Yi|X = x] = m(x), m(·) is called the mean regression function or sim-

ply regression function.

Random design occurs when the data come from a joint probability den-

sity function f(x, y) that is the point x itself is the observed value of a random

variable X. The discussion above leads to a random variable X is observed,

and if X = x0, then an observation is taken at the point x0. One of the most

important question might be posed in this framework is, given that X = x0,

construct a predictor of Y corresponding to x0. The proposed predictor is the

conditional expectation of Y , given X = x0. Hence, the value of the function

m(x) corresponding to a predictor value x0 is equivalent to the expectation
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of response variable Y under the condition that the value of the predictor

is fixed at x0. For random design data the regression model of interest is

defined to be:

Yi = m(Xi) + εi, i = 1, . . . , n (2.3)

where conditional on X1, . . . , Xn and {εi}n
i=1 are independent random vari-

ables with zero mean and constant variance σ2. Also in the random design

context,

m(x) = E[Y |X = x] and Var[Y |X = x] = σ2. (2.4)

From the definition of E[Y |X = x] :

m(x) = E[Y |X = x] =

∫

y

yf(y|x)dy. (2.5)

This conditional distribution can be expressed in several ways. In particular:

m(x) = E[Y |X = x] =

∫

y
yf(x, y)dy

f(x)
. (2.6)

The following multiplication rule

f(x, y) = f(y|x)f(x)

is used to derive (2.6).

There are many versions of kernel type regression estimators. Some of

them perform well for random design data such as in observational studies

and others act upon either fixed equidistant or fixed non-equidistant designs.

Besides, most nonparametric kernel regression estimators have boundary ef-

fects and modifications are necessary near boundary points.

For kernel regression curve fitting, we are interested in weighting the

response variable Y in a certain neighbourhood of x0 and weight the obser-

vations Yi depending on the distance of x0 to Xi scaled by a bandwidth hn.
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Thus kernel regression estimator takes the general form of

m̂(x0) = m̂hn(x0) = n−1

n
∑

i=1

whn,i(x0; X1, . . . , Xn)Yi (2.7)

where weight function whn depends on the bandwidth hn also called the

smoothing parameter or window width by some authors and the observations

x1, . . . , xn of explanatory variable X.

The kernel regression estimator m̂hn(·) of course depends on the bivari-

ate data (X1, Y1), . . . , (Xn, Yn) as well as on the kernel K(·) and bandwidth

hn will not be generally be expressed explicitly. The practical implementa-

tion of the kernel type regression estimator requires the specification of the

bandwidth hn. Bandwidth hn controls the amount by which the data are

smoothed to produce the estimate. Hence bandwidth hn plays the role of a

scaling factor which determines the spread of the kernel. There is as yet no

universally accepted approach to this problem. We can choose bandwidth hn

either subjectively or objectively using data on hand. In Section 2.7 various

methods for choosing the bandwidth are explained.

A kernel K(·) is a continuous, bounded and symmetric real function. For

simplicity we shall assume throughout this discussion that the kernel K(·)
satisfies

∫

t

K(t)dt = 1,

∫

t

tK(t)dt = 0 and

∫

t

t2K(t)dt = k1 6= 0.

Usually the kernel K(·) is chosen to be a probability density function which

is unimodal and symmetric about zero and the constant k1 will then be

the variance of the distribution. It should be stressed that the kernel K(·)
is under the user’s control and therefore it is only necessary for practical

purposes to consider results which hold for the particular kernel being used.

Hence, a discussion of using different kernel functions in nonparametric kernel

regression is done in Section 2.2.
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Order (O and o) and asymptotic notations given throughout this chapter

are defined as follows:

Let each an and bn be sequences of real numbers. Then we will say that an

is of order bn as n →∞ and write

an = O(bn) as n →∞ if and only if lim sup
n→∞

|an/bn| <∞

which is equivalent to saying an = O(bn) if |an/bn| remains bounded as

n →∞.

We say that an is of small order bn and write

an = o(bn) as n →∞ if and only if lim
n→∞

|an/bn| = 0.

In order to obtain asymptotic approximations in kernel regression esti-

mators, we incorporate the above with a Taylor’s series expansion.

Theorem 1 Taylor’s Theorem: Suppose that f(x) is a real valued function

defined on R and let x ∈ R. Assume that f(x) and p continuous derivatives

in an intervals (x − δ, x + δ) for some δ > 0. Then for any sequence an

converging to zero,

f(x + an) =

p
∑

j=0

aj
n

j!
f (j)(x) + o(ap

n).

We also consider bandwidth hn is a non-random sequence of positive

numbers and assume that hn satisfies:

lim
n→∞

hn = 0 and lim
n→∞

nhn = ∞.

In other words hn approaches to zero but at a rate slower than n−1.

As done in classical parametric statistics here we use mean squared error

(MSE) and mean integrated squared error (MISE) to measure the closeness
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of a nonparametric kernel regression estimator m̂hn(·) to its true value m(·)
which are defined by

MSE(m̂(x0)) = E [m̂(x0)−m(x0)]
2

= Var[m̂(x0)] + (E[m̂(x0)]−m(x0))
2

and

MISE =

∫

x0

MSE(m̂(x0))dx0

=

∫

x0

E [m̂(x0)−m(x0)]
2 dx0.

In this chapter, elementary properties of the nonparametric kernel regres-

sion estimators in the univariate case will be discussed in more detail. The

concentration on the kernel regression estimators is not intended to imply

that the method is the best to use in all circumstances but there are several

reasons for considering the regression estimators based on kernel method

first of all. The method is of wide applicability and it is certainly worth

understanding its behaviour before going on to consider other methods and

discussion of these properties raises issues which relate to other methods of

nonparametric regression estimation. Throughout this chapter except where

otherwise stated m̂hn(·) will be the nonparametric kernel estimator with ker-

nel K(·) and window width hn as explained in Section 2.7. In the later

section of this chapter we shall derive asymptotic expressions for the bias

and variance for fixed design and conditional bias and conditional variance

for random design and use these to investigate how the mean square error

and integrated mean square error will behave. An extensive simulation study

has been carried over in Section 2.8 to discuss the closeness of the estimator

m̂hn(·) to the true value m(·) in various senses.
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2.2 Kernel Function

Almost all kernel regression curve estimators are weighted averages of the

response variable Y . However, the methodology of defining weights wi; i =

1, . . . , n are different from technique to technique but all the weights are cal-

culated using a kernel function. A conceptually simple approach to represent

the sequence of weights w1, . . . , wn is to describe the shape of the weight

function by a density function with a scale parameter adjusting the size and

the form of the weights near x0. It is a reasonably frequent practice to refer

to this shape function as kernel K(·). In nonparametric regression, the size

of the weights is parameterized by a scale parameter hn which is known as

bandwidth.

The kernel weights K(·) are calculated under two distinct approaches:

(i) a fixed window width and (ii) a fixed fraction of the data. When the

generic kernel has compact support such as uniform on [−1, 1], triangular,

quadratic or biweight, the estimator depends only on those pairs whose xi are

in the interval (x0−hn, x0 +hn). The size of the neighbourhood is called the

bandwidth or window width, denoted by hn. In this formulation smoothing

parameter is a scale parameter. The second approach uses the n nearest

neighbors to x0. In both methods the pairs with xi close to x0 influence

the estimate purely based on how distant xi be from x0. These two distinct

methods yield either a random number of observations xi’s within a fixed

interval hn or a fixed number of observations n0 within an interval of random

width. For uniformly distributed x’s these two are equivalent. Whereas for

the case of random design the estimates and their properties differ. Here we

employ the first approach which gives higher weight to observations that are

close to the focal point x0 and lower weight to those which are remote.

The choice of the kernel function K(·) is one vital concern in kernel re-
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gression estimation. In general a variety of kernel functions are possible.

However, the choice is limited by both theoretical and practical considera-

tions. For example, we might restrict attention to kernel functions that are

zero outside some fixed interval because kernel functions that take on very

small values can result in numerical underflow on a computing programmes.

Apart from that some kernels are not differentiable at particular points and

cause ‘0/0’ cases which define m̂hn(x) as being 0. Further more some ker-

nels are not defined at all possible values (−∞,∞) for instance a commonly

used kernel function, Epanechnikov kernel developed by V.A. Epanechnikov

(1969) which is of parabolic shape define only in the range of (−
√

5,
√

5).

Since the regression estimates are based on the local regression no negative

weight K(·) should be used.

The frequently used kernel functions or weight functions are given in

Table 2.1. Figure 2.1 shows the shape of the different kernels given in the

Table 2.1 in a range of t ∈ (−3, 3).

Table 2.1: Functions of Various Kernels.

Kernel K(t)

Epanechnikov 3
4
(1− 1

5
t2)/

√
5 for |t| <

√
5

0 otherwise

Biweight 15
16

(1− t2)2 for | t |< 1

0 otherwise

Double Exponential 1
2
exp(−|t|) for | t |< 1

0 otherwise

Gaussian 1√
2π

exp(−(1/2)t2) −∞ < t < ∞

Uniform 1
2

for | t |< 1

0 otherwise
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Figure 2.1: Shapes of Different Kernel Functions.

2.3 Local Polynomial Kernel Regression

A class of kernel type regression estimators called local polynomial estimators

was systematically studied by Stone (1977), Cleveland (1979) and Müller

(1987). In this approach, regression function is estimated at a particular

point by locally fitting pth degree polynomial to the data via weighted least

squares. From a computational point of view local polynomial estimators are

attractive due to their simplicity.

In parametric regression we use higher-order polynomials to approximate

a large class of possible regression curves. The degree of the polynomial in

parametric regression plays a role analogous to the degree of smoothing in

nonparametric regression. However, the use of higher order polynomials for
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nonparametric regression can not be recommended as the order of polynomial

increases even parametric polynomial fits can exhibit rapid oscillations. Stone

(1977) has shown that a low-order polynomial fit should be adequate locally

if the true regression curve is smooth. Recent work on local polynomial

fitting includes Fan (1992, 1993), Fan and Gijbels (1996) and Ruppert and

Wand (1994) who gave a detailed discussion of the advantages in using this

method.

The weighted least square regression fits the equation

Yi = β0 +β1(Xi−x0) +β2(Xi−x0)
2 + . . .+ βp(Xi−x0)

p + εi; i = 1, . . . , n.

(2.8)

Local polynomial regression extends kernel estimation to a polynomial fit at

the focal point x0, using local weights, wi = h−1
n K[(Xi − x0)/hn]. The local

polynomial kernel estimator is a weighted regression on the data, centred

about x0. The goal is to estimate m(x0). Note that If we let p be the degree

of the polynomial being fit then at a point x0 the estimator m̂(x0; p, hn) is

obtained by fitting the polynomial

β0 + β1(Xi − x0) + . . . + βp(Xi − x0)
p

to the (Xi, Yi) using weighted least squares with kernel weights.

The constant regression fit which is the polynomial of degree 0 to a scatter

diagram is m̂hn(·) = ȳ which is the estimate that minimizes the least-squares

criterion:

ȳ = arg minβ0

n
∑

i=1

(Yi − β0)
2 (2.9)

where arg minβ0 indicates that the constant β0 = Ȳ is the argument that

minimizes the criterion. Now consider a local constant fit at x0 to the data.

Here local means including only those data (Xi, Yi) for which Xi ∈ (x0 −
hn, x0 + hn) in the sum in (2.9) or it may mean including only the q design

28



points of explanatory variable nearest to x0. Now we can introduce kernel

function K(Xi−x0

hn
) to facilitate as weighting function to indicate precisely

which terms are included and the weights of the selected design points. The

local constant fit m̂(x) is the estimate that minimizes

arg minβ0

n
∑

i=1

K

(

Xi − x0

hn

)

(Yi − β0)
2 (2.10)

with respect to β0. That is

d

dβ0

n
∑

i=1

K

(

Xi − x0

hn

)

(Yi − β0)
2 = 0,

which leads to

−2

n
∑

i=1

K

(

Xi − x0

hn

)

(Yi − β̂0) = 0

n
∑

i=1

K

(

Xi − x0

hn

)

Yi = β̂0

n
∑

i=1

K

(

Xi − x0

hn

)

β̂0 =

∑n
i=1 K

(

Xi−x0

hn

)

Yi

∑n
i=1 K

(

Xi−x0

hn

) .

Hence, m̂(x0; 0, hn) = β̂0 where m̂(x0; 0, hn) is the intercept coefficient of

p = 0 polynomial and

m̂(x0; 0, hn) =

∑n
i=1 K

(

Xi−x0

hn

)

Yi

∑n
i=1 K

(

Xi−x0

hn

) (2.11)

which is precisely the Nadaraya–Watson kernel estimator denoted by

m̂hn,NW (x0) = m̂(x0; 0, hn) in the later stage of this chapter as well as

other chapters. Note that m̂(x0; p, hn) is the kernel regression estimator of

m(x0) based on pth degree polynomial. This point-wise result can be ex-

tended to the entire regression function by defining as

m̂(x) = arg minβ(x)

∫

x

n
∑

i=1

K

(

Xi − x

hn

)

(Yi − β(x))2dx (2.12)
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where β(x) = β0 + β1(Xi − x) + . . . + βp(Xi − x)p.

The above integrand is minimized by β̂(x) = m̂(x) as in (2.11) for each x0.

Now define β(x0) = β0 + β1(Xi − x0) and then minimizing
n
∑

i=1

K

(

Xi − x0

hn

)

[β0 + β1(Xi − x0)− Yi]
2

with respect to β0

2

n
∑

i=1

K

(

Xi − x0

hn

)

[

β̂0 + β̂1(Xi − x0)− Yi

]

= 0 (2.13)

and with respect to β1

2

n
∑

i=1

K

(

Xi − x0

hn

)

[

β̂0 + β̂1(Xi − x0)− Yi

]

(Xi − x0) = 0, (2.14)

our aim is to find m̂(x0; 1, hn). From (2.13)

β̂1 =

∑n
i=1 K

(

Xi−x0

hn

)

Yi − β̂0

∑n
i=1 K

(

Xi−x0

hn

)

∑n
i=1 K

(

Xi−x0

hn

)

(Xi − x0)
. (2.15)

Now substituting (2.15) to (2.14)

β̂0

n
∑

i=1

K

(

Xi − x0

hn

)

(Xi − x0) +





∑n
i=1 K

(

Xi−x0

hn

)

Yi − β̂0

∑n
i=1 K

(

Xi−x0

hn

)

∑n
i=1 K

(

Xi−x0

hn

)

(Xi − x0)





n
∑

i=1

K

(

Xi − x0

hn

)

(Xi − x0)
2 −

n
∑

i=1

K

(

Xi − x0

hn

)

Yi(Xi − x0) = 0

β̂0





(

n
∑

i=1

K (·) (Xi − x0)

)2

−
n
∑

i=1

K (·)
n
∑

i=1

K (·) (Xi − x0)
2





=
n
∑

i=1

K (·)Yi(Xi − x0)
n
∑

i=1

K (·) (Xi − x0)−
n
∑

i=1

K (·)Yi

n
∑

i=1

K (·) (Xi − x0)
2

β̂0 = n−1

∑n
i=1 K

(

Xi−x0

hn

)

Yi [(Xi − x0)s1 − s2]

s2
1 − s0s2

= m̂(x0, 1, hn) (say) (2.16)
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where sj = n−1
∑n

i=1 K
(

Xi−x0

hn

)

(Xi − x0)
j and j = 0, 1, 2.

Note that m̂(x0, 1, hn) is called local linear estimator m̂hn,LL(x0) = m̂(x0; 1, hn).

Fan (1992) has showed that the local linear regression estimator is supe-

rior to other kernel type regression estimators in terms of ability to adapt to

both random and fixed designs, to both highly clustered and nearly uniform

designs and also both interior and boundary points. He also showed that the

local linear kernel regression estimators have high efficiency among all pos-

sible nonparametric regression estimators based on kernel, orthogonal series

and spine methods.

Let p be the degree of the polynomial being fit. At a point x0 the estimator

m̂(x0; p, hn) is obtained by fitting the polynomial
∑p

j=0 βj(X − x0)
j to the

(Xi, Yi) using weighted least squares with kernel weights h−1
n K

(

Xi−x0

hn

)

. The

estimator of m̂(x0; p, hn) is the intercept of the fit β̂0 where b̂ = (β̂0, . . . , β̂p)
T

is the minimizer of

n
∑

i=1

{

Yi −
p
∑

j=0

βj(Xi − x0)
j

}2

h−1
n K

(

Xi − x0

hn

)

.

Standard weighted least squares theory leads to the solution

b̂ = (XTWX)−1XTWY where Y = (Y1, . . . , Yn)
T is the vector of responses,

X =











1 X1 − x0 · · · (X1 − x0)
p

...
...

. . .
...

1 Xn − x0 · · · (Xn − x0)
n











is an n× (p + 1) design matrix and

W = diag

(

h−1
n

{

K

(

X1 − x0

hn

)

, . . . , K

(

Xn − x0

hn

)})

is an n× n diagonal matrix of weights.

The estimator b̂ of b is obtained as solution of the linear system

XTWXb̂ = XTWY. Given that m̂(x0; p, hn) is the estimator of m(x0)
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and is the intercept coefficient we obtain

m̂(x0; p, hn) = eT (XTWX)−1XTWY (2.17)

where e is the (p+1)×1 vector having 1 in the first entry and zero elsewhere.

Denote S = XTWX =











s0 · · · sp

...
...

sp · · · s2p











(p+1)×(p+1)

with elements

sj = h−1
n

n
∑

i=1

K

(

Xi − x0

hn

)

(Xi − x0)
j

for j = 0, 1, . . . , 2p.

Then the so called Nadaraya–Watson estimator m̂hn,NW (·) can be consid-

ered as a special case within this class because it can be shown as fitting a

zero degree polynomials (p = 0), that is, local constants;

m̂hn,NW (x0) = m̂(x0; 0, hn) =

∑n
i=1 K

(

Xi−x0

hn

)

Yi

∑n
j=1 K

(

Xj−x0

hn

) . (2.18)

Whereas local linear kernel estimator m̂hn,LL(·) corresponds to fitting first

degree polynomial (p = 1)

m̂(x0; 1, hn) =
n−1

∑n
i=1 {ŝ2(X; hn)− ŝ1(X; hn)(Xi − x0)}K

(

Xi−x0

hn

)

Yi

ŝ2(X; hn)ŝ0(X; hn)− ŝ1(X; hn)2

= m̂hn,LL(x0) (2.19)

where ŝj = n−1
∑n

i=1(Xi − x0)
jK
(

Xi−x0

hn

)

; j = 0, 1, 2.

Although this class of estimators have favourable asymptotic properties

and boundary behaviour compared to traditional kernel regression estima-

tors, both estimators also share some similarities.

When this local fitting process is performed at each point of X varying

in an appropriate estimation domain, a solid curve results. If Khn is a kernel
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function scaled by a bandwidth hn then, for estimation at a particular point

Xi, the weight assigned to a particular point Yi is Khn(Xi −X).

An issue in local polynomial fitting is the choice an order of the local

polynomial. Since the modelling bias is primarily controlled by the band-

width the issue is less crucial however. For a given bandwidth hn a large

value of p would expectedly reduce the modelling bias but on the other hand

also cause higher variance by introducing more parameters at a considerable

computational cost.

2.4 Nadaraya–Watson Kernel Regression

Estimator

One of the most popular nonparametric regression smoothers, Nadaraya–

Watson kernel regression estimator, was developed based on (2.6) indepen-

dently by Nadaraya (1964) and Watson (1964). As we mentioned in Sec-

tion 2.3 Nadaraya–Watson estimator can be obtained from local constant fit-

ting that is m̂hn,NW (·) = m̂(·, 0, hn) although this was not the original motiva-

tion for the method. Note that throughout this section m̂hn(·) = m̂hn,NW (·).
Let us adopt the kernel density estimators as one of the simplest methods

of estimating f(x, y) and f(x) in (2.6). This is the basic idea of Nadaraya–

Watson estimator. Corresponding kernel densities are f̂(x, y) and f̂(x),

f̂(x, y) =
1

nhx,nhy,n

n
∑

i=1

Kx

(

x−Xi

hx,n

)

Ky

(

y − Yi

hy,n

)

(2.20)

f̂(x) =
1

nhx,n

n
∑

i=1

Kx

(

x−Xi

hx,n

)

(2.21)

where Kx(·) and Ky(·) are kernel functions.
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The substitution of (2.20) and (2.21) into (2.6) results in

m̂(x) = m̂hn(x) =

∫

y
yf̂(y, x)dy

f̂(x)

=

∫

y
1

nhx,nhy,n

∑n
i=1 Kx

(

x−Xi

hx,n

)

Ky

(

y−Yi

hy,n

)

1
nhx,n

∑n
i=1 Kx

(

x−Xi

hx,n

) ydy

=
(hy,n)−1∑n

i=1 Kx

(

x−Xi

hx,n

)

∫

y
yKy

(

y−Yi

hy,n

)

dy

∑n
i=1 Kx

(

x−Xi

hx,n

) . (2.22)

If we set s = (y−Yi)/hy,n then Ky = Ks (previously we use y values now we

use s values instead) and

1

hn,y

∫

y

yKy

(

y − Yi

hy,n

)

dy =

∫

s

(shn,y + Yi)Ks(s)ds

= Yi (2.23)

because
∫

s
Ksds = 1 and

∫

s
sKsds = 0 from the properties of kernel function

as mentioned in Section 2.1.

Substitution of (2.23) in to (2.22) results in

m̂hn(x) =

∑n
i=1 Kx

(

x−Xi

hx,n

)

Yi

∑n
i=1 Kx

(

x−Xi

hx,n

) . (2.24)

Note that we used the notations Kx(·), Ky(·), hn,x and hn,y in the earlier

part of this section simply to show that the kernel function and bandwidth

for X and Y variables are not necessary to be the same. As we do not have

both of them anymore we simply use the notation K(·) instead of Kx(·) and

similarly hn to hx,n. Hence from (2.24), we have

m̂hn(x) =

∑n
i=1 YiK

(

x−Xi

hn

)

∑n
i=1 K

(

x−Xi

hn

)

=

n
∑

i=1

wi(x)Yi (2.25)
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where

wi(x) =
K
(

x−Xi

hn

)

∑n
j=1 K

(

x−Xj

hn

) . (2.26)

Thus, at a given point x0 the estimate of E[Y |X = x0] is a weighted average

of the Yi values near x0. m̂hn(x) defined by (2.24) is called the Nadaraya–

Watson estimator. Since the estimate is written as (2.25), the Nadaraya–

Watson estimator is a linear estimator and a weighted average of {Yi}n
i=1.

As for kernel density estimation, the bandwidth hn determines the level of

smoothness of the estimate. Decreasing the bandwidth leads to a less smooth

estimate. By re-writing (2.24) as follows:

m̂hn(x) =
(nhn)−1

∑n
i=1 K

(

x−Xi

hn

)

Yi

f̂(x)
(2.27)

and

wi(x) =
K
(

x−Xi

hn

)

f̂(x)
(2.28)

where

f̂(x) =
1

nhn

n
∑

i=1

K

(

x−Xi

hn

)

,

we can notice that

• Weights (2.28) depend on the observations from predictor variable {Xi}n
i=1

through f̂(x) estimated by the kernel density.

• At an observation Xi, m(Xi)→ Yi as hn → 0.

• From (2.26) the weighting function wi(x) → 1
n

for all x as hn → ∞
because wi(x) → K(0)

nK(0)
as hn →∞. Hence, m(x) → Ȳ .

2.4.1 Properties of Nadaraya–Watson Estimator

Since the numerator and denominator of Nadaraya–Watson estimator are

both random variables the analysis for the numerator and denominator is
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done separately as in Hardle (1991). Define

r(x) =

∫

y

yf(x, y)dy

and from (2.6)

r(x) = m(x)f(x). (2.29)

Now from (2.27)

r̂hn(x) = (nhn)−1
n
∑

i=1

K

(

x−Xi

hn

)

Yi

= n−1

n
∑

i=1

Khn(x−Xi)Yi (2.30)

where Khn(x−Xi) = (hn)−1K
(

x−Xi

hn

)

.

The regression curve estimate is thus given by

m̂hn(x) =
r̂hn(x)

f̂hn(x)
. (2.31)

Let us start with checking the asymptotic unbiasedness of f̂hn(x). Since Xis

are identically distributed

E[f̂hn(x0)] =
1

n

n
∑

i=1

E[Khn(x0 −Xi)]

= E[Khn(x0 −X)]

=

∫

x

Khn(x0 − x)f(x)dx

=

∫

s

K(s)f(x0 − shn)ds (2.32)

where s = (x0 − x)/hn.

If we let hn → 0, we can see that

E[f̂hn(x0)] → f(x0)

∫

s

K(s)ds = f(x0). (2.33)
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As bandwidth hn converges to 0, f̂hn(x) is asymptotically unbiased for

f(x). Unlike in parametric models there do not exist unbiased estimates

for nonparametric models. This property is summarized in the following

Theorem 2 (Collomb, 1976):

Theorem 2 Let D be the set of distributions that are absolutely continuous

with respect to the Lebesgue measure on R
2 with continuous density fX,Y (x, y)

and such that ∀x ∈ R,
∫

y
fX,Y (x, y)dy 6= 0, then there is no unbiased estimate

of the regression function m(x). (In the sense that there is no estimate

m̂hn(·) of m(·) such that, for almost all x in R and all fX,Y (x, y) in D,

E[m̂hn(x)] = m(x))

Later we show that the kernel estimate is asymptotically unbiased at some

fixed point x0. Taylor series expansion of f(x + shn) can be used to analyse

the bias of Nadaraya–Watson estimate at a fixed point x0 and might be able

to see how the bias depends on the regularity of the regression function m(x).

For the denominator f̂hn(x) we compute expectation and variance as follows

(complete proof is given in Prazen, 1962):

Bias[f̂hn(x)] =

∫

s

K(s)f(x− shn)ds− f(x)

=

∫

s

K(s)

[

f(x) + shnf ′(x) +
h2

ns2

2
f ′′(x) + o(h2

n)

]

ds− f(x)

= f(x)

∫

s

K(s)ds− hnf ′(x)

∫

s

sK(s)ds +
h2

n

2
f ′′(x)

∫

s

s2K(s)ds

+o(h2
n)− f(x). (2.34)

According to standard assumptions regarding the kernel density K(·) men-

tioned in Section 2.1,
∫

s
K(s)ds = 1 and

∫

s
sK(s)ds = 0. Hence, the bias

given in (2.34) reduces to

Bias[f̂hn(x)] =
h2

n

2
f ′′(x)µ2(K) + o(h2

n) (2.35)
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where µl(K) =
∫

u
ulK(u)du. Note that f̂hn(x) is asymptotically unbiased

because the bias of f̂hn(x) is of order h2
n.

Since Xi’s are independent and identically distributed (i.i.d.),

Var[f̂hn(x)] = n−2Var

[

n
∑

i=1

Khn(x−Xi)

]

= n−2

n
∑

i=1

Var[Khn(x−Xi)]

= n−1Var[Khn(x−X)]

= n−1{E[K2
hn

(x−X)]− (E[Khn(x−X)])2}

= n−1

{

h−2
n

∫

u

K2

(

x− u

hn

)

f(u)du− (f(x) + o(hn))2

}

= n−1

{

h−1
n

∫

s

K2(s)f(x− shn)ds− (f(x) + o(hn))2

}

= (nhn)−1 ‖ K ‖2
2 {f(x) + o(1)} − n−1

{

(f(x) + o(hn))2
}

,

(2.36)

where ‖ K ‖2
2=
∫

s
K2(s)ds. Here we use E[Khn(x−X)] = f(x) + o(hn) from

(2.35) and Taylor series expansion which leads to

∫

s

K2(s)f(x + shn)ds =

∫

s

K2(s)ds(f(x) + o(1)) =‖ K ‖2
2 (f(x) + o(1)).

The variance of f̂hn(x) is thus given by

Var[f̂hn(x)] = (nhn)−1 ‖ K ‖2
2 f(x) + o((nhn)−1), n →∞. (2.37)
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Now we analyse the same properties of the numerator r̂hn(x).

E[r̂hn(x)] = E[n−1

n
∑

i=1

Khn(x−Xi)Yi]

= E[Khn(x−X)Y ]

=

∫

u

∫

y

yKhn(x− u)f(y|u)f(u)dydu

=

∫

u

Khn(x− u)f(u)

(
∫

y

yf(y|u)dy

)

du

=

∫

u

Khn(x− u)f(u)(E[Y |X = u])du

=

∫

u

Khn(x− u)f(u)m(u)du

=

∫

u

Khn(x− u)r(u)du. (2.38)

Similar to f̂hn(x), by expanding the kernel, we note that

E[r̂hn(x)] = r(x) +
h2

n

2
r′′(x)µ2(K) + o(h2

n), hn → 0. (2.39)

Hence, r̂hn(x) is an asymptotically unbiased for r(x) as hn → 0. To compute

the variance of r̂hn(x), we let S2(x) = E[Y 2|X = x]. Thus,

Var[r̂hn(x)] = Var

[

n−1

n
∑

i=1

Khn(x−Xi)Yi

]

= n−1Var[Khn(x−X)Y ]

= n−1

{

∫

u

K2
hn

(x− u)S2(u)f(u)du−
(
∫

u

Khn(x− u)r(u)du

)2
}

= (nhn)−1

∫

u

K2(u)S2(x + uhn)f(x + uhn)du + o((nhn)−1)

= n−1h−1
n f(x)S2(x) ‖ K ‖2

2 +o((nhn)−1); nhn →∞. (2.40)

Details on these computations are rather long and tedious and can be found

in Collomb (1976). By combining (2.39) and (2.40) the formula for mean
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squared error (MSE) of r̂hn(x) is

MSE[r̂hn(x)] = Var[r̂hn(x)] + [E(r̂hn(x)− r(x))]2

=
1

nhn

f(x)s2(x)‖K‖2
2 +

h4
n

4
(r′′(x)µ2(K))

2
+ o(h4

n) + o((nhn)−1).

(2.41)

Theorem 3 Let K(·) satisfy
∫

t
|K(t)|dt ≤ ∞ and lim|t|→∞ tK(t) = 0. Sup-

pose also that m(x) and f(x) are continuous at x = x0 and f(x) > 0. Then

provided hn → 0 and nhn →∞ as n→∞ we have m̂hn(x)
p→ m(x).

If we let hn → 0 such that nhn → ∞ then MSE[r̂hn(x)] → 0 and r̂hn(x)
p→

r(x) by Chebychev’s inequality which is

∀ ε > 0, Pr [|r̂hn(x)− r(x)| ≥ ε] ≤ E [(r̂hn(x)− r(x))]2

ε2

=
MSE [r̂hn(x)]

ε2
.

Thus, if MSE[r̂hn(x)] → 0 then r̂hn(x)
p→ r(x). Hence, r̂hn(x) is consis-

tent. As the denominator of m̂hn(x), the kernel density estimate f̂hn(x), is

consistent, using Slutzky’s theorem,

m̂hn(x) =
r̂hn(x)

f̂hn(x)

p→ r(x)

f(x)
= m(x) as hn → 0, nhn →∞. (2.42)

As a consequence m̂hn(x) is a consistent estimate of the regression curve m(x)

if hn → 0, nhn → ∞. Conditions for consistency of m̂(x) have been proved

in Schuster (1972).

The bias of the Nadaraya–Watson estimator m̂hn,NW (x) depends not only

on m′′(x) but also on m′(x)f ′(x)
f(x)

due to the local constant fit. Hence, keeping

m′′(x) fixed it is observed that either when |m′(x)| is large or when the highly

clustered designed data where f ′(x)
f(x)

is large, so is the bias of m̂hn,NW (·). As

a result, it is worthwhile to remark that m̂hn,NW (·) can not adapt to highly
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clustered designs. Besides it is not good at testing linearity as the bias

of the estimator is large in the case of linear regression m(x) = a + bx

with a large coefficient b. It is not surprising therefore to note that the

performance of m̂hn,NW (·) estimator worsens for larger values of explanatory

variable X because |m′(x)| turn out to be larger. Also the situation becomes

worst for large |x| as then f ′(x)
f(x)

increases. However, m̂hn,NW (·) has the same

asymptotic properties as the local linear estimator m̂hn,LL(·) in the case of

fixed equidistant design. Because in the fixed design f(x) = 1 hence f ′(x) = 0

and the bias term m′(x)f ′(x)
f(x)

equal to zero. If more design points are in the

interval (x, x+hn) than in (x−hn, x) then the local average will be biased as

the average will include more responses over (x, x+hn) than over (x−hn, x).

The bias will be positive if m′(x) > 0 and negative otherwise.

2.5 Local Linear Kernel Regression

Local linear regression estimator m̂hn,LL(x) = m̂(x; 1, hn) has a very good

reputation as an estimator which overcomes the disadvantages of other kernel

type regression estimators. It is introduced as a design adaptive regression

estimator based on a weighted local linear regression. Suppose that m′′(x)

exists. In a small neighbourhood of a point x, m(y) ≈ m(x)+m′(x)(y−x) ≡
β0 + β1(y − x). Now the problem of estimating m(x) corresponds to a local

linear regression problem of estimating the intercept β0 which is equivalent

minimizing

n
∑

i=1

[

(Yi − β0 − β1(Xi − x))2 h−1
n K

(

Xi − x

hn

)]

. (2.43)

The solution of β̂0 to the weighted least squares problem (2.43) is defined as

the local linear regression smoother m̂hn,LL(x) as in (2.19). It is obvious that
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Taylor’s theorem is the foundation of the well known kernel type regression

estimators m̂hn,NW (·) and m̂hn,LL(·).

The following assumptions are made in the rest of analysis:

(i) The function m′′(x) is continuous on x ∈ [0, 1].

(ii) The kernel K(x) is symmetric about zero and is supported on x ∈ [−1, 1].

(iii) The bandwidth hn is a sequence satisfying hn → 0 and nhn → ∞ as

n →∞.

(iv) The point x0 at which the estimation is taking place satisfies hn < x0 <

1 − hn ⇒ hn < 1
2

for ∀ x0. In other words, the given point x0 is a point in

the interior of the design which is more than a bandwidth hn away from the

boundary for all sufficiently large n.

2.5.1 Asymptotic MSE Approximations for Fixed

Equidistant Design Regression Model

Here we consider equally spaced design points of the form xi = i
n
; i =

1, . . . , n hence f(x) = 1. From (2.17):

E [m̂(x; 1, hn)] = E
[

eT
1

(

XTWX
)−1

XTWY
]

(2.44)

where X =











1 X1 − x
...

...

1 Xn − x











n×2

as we consider local linear fitting which equiv-

alent to p = 1.

Since E[Y] = E[M(x) + ε] = M(x), (2.44) can be rewritten as

E [m̂(x; 1, hn)] = eT
1

(

XTWX
)−1

XTWM(x) (2.45)

where M(x) = [m(x1), . . . , m(xn)]T .
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From Taylor’s theorem for any x ∈ [0, 1],

m(xi) = m(x) + (xi − x)m′(x) +
1

2
(xi − x)2m′′(x) + . . .

which entail that M(x) = X





m(x)

m′(x)



+ 1
2
m′′(x)











(X1 − x)2

...

(Xn − x)2











+ . . . .

Hence, E [m̂(x; 1, hn)] given by (2.45) can be expanded as

E [m̂(x; 1, hn)] = eT
1 (XTWX)

−1
XTWX





m(x)

m′(x)



+

1

2
m′′(x)eT

1 (XTWX)
−1

XTW











(x1 − x)2

...

(xn − x)2











+ . . .

which leads to

E [m̂(x; 1, hn)] = m(x) + 1
2
m′′(x)eT

1 (XTWX)
−1

XTW











(x1 − x)2

...

(xn − x)2











+ . . . .

Note that if the unknown function m(x) is in linear form then rth deriva-

tive of m(x), is 0 that is m(r)(x) = 0 ∀ r ≥ 2. Therefore local linear

smoother has one of the desirable property, unbiasedness only for linear re-

gression functions.

The bias of m̂(x; 1, hn) is

E [m̂(x; 1, hn)]−m(x) =
1

2
m′′(x)eT

1 (XTWX)
−1

XTW











(x1 − x)2

...

(xn − x)2











+ . . . .

(2.46)
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Observe that

n−1XTWX = n−1





∑n
i=1 wi

∑n
i=1 wi(xi − x)

∑n
i=1 wi(xi − x)

∑n
i=1 wi(xi − x)2



 (2.47)

and

n−1XTW











(x1 − x)2

...

(xn − x)2











=





∑n
i=1 wi(xi − x)2

∑n
i=1 wi(xi − x)3



 (2.48)

where wi = 1
hn

K
(

xi−x
hn

)

.

To compute leading bias term in (2.46) for nonlinear m(x), we let

sj(x; hn) = n−1
∑n

i=1 wi(xi − x)j = (nhn)−1
∑n

i=1 K
(

xi−x
hn

)

(xi − x)j ;

j = 0, 1, 2, . . .. Hence,

n−1XTWX =





s0(x; hn) s1(x; hn)

s1(x; hn) s2(x; hn)



 (2.49)

and

n−1XTW











(x1 − x)2

...

(xn − x)2











=





s2(x; hn)

s3(x; hn)



 . (2.50)

Now using the property of bounded K ′(·) and the assumptions (ii)-(iv) for n

sufficiently large, sj(x; hn) can be approximated by integrals as given below.

sj(x; hn) = (nhn)−1

n
∑

i=1

K

(

xi − x

hn

)

(xi − x)j

=

∫ 1

0

(y − x)j 1

hn
K

(

y − x

hn

)

dy + O(n−1)

= hj
n

∫
(1−x)

hn

−x
hn

tjK(t)dt + O(n−1)

= hj
n

∫ 1

−1

tjK(t)dt + O(n−1). (2.51)
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Obviously when j is an odd number, sj(x; hn) = 0 due to the symmetry and

compact support of the kernel K(·). The bias terms in (2.49) and (2.50)

therefore turn out to be

n−1XTWX =





1 + O(n−1) O(n−1)

O(n−1) h2
nµ2(K) + O(n−1)



 (2.52)

and

n−1XTW











(x1 − x)2

...

(xn − x)2











=





h2
nµ2(K) + O(n−1)

O(n−1)



 (2.53)

where µj(K) =
∫

t
tjK(t)dt.

Substituting (2.52) and (2.53) to (2.46) and performing some simple matrix

algebra, the bias approximation of local linear smoother leads to

E [m̂hn,LL(x)] = E [m̂(x; 1, hn)] = m(x) +
1

2
h2

nm′′(x)µ2(K) + o(h2
n) + O(n−1).

(2.54)

The variance approximation of local linear smoother takes the form

Var [m̂(x; 1, hn)] = eT
1

(

XTWX
)−1

XTWVWX
(

XTWX
)−1

e1 (2.55)

where V = diag{σ2, . . . , σ2}.
Following the similar steps those used in bias calculation, Wand and Jones

(1995) have shown that,

n−1XTWVWX = n−1
n
∑

i=1

Khn(xi − x)2σ2





1 (xi − x)

(xi − x) (xi − x)2





=





(hn)−1R(K)σ2 + (h−1
n ) O(n−1)

O(n−1) hnµ2(K
2)σ2 + O(n−1)





(2.56)
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where R(K) =
∫

t
K(t)2dt.

Substituting the results given in (2.56) and (2.52) to (2.55):

Var [m̂hn,LL(x)] = Var [m̂(x; 1, hn)] = (nhn)−1R(K)σ2+o{(nhn)−1}. (2.57)

(Wand and Jones, 1995).

2.5.2 Asymptotic MSE Approximations for Random

Design Regression Model

Consider the random design regression model which is a bivariate sample

(X1, Y1), . . . , (Xn, Yn) of random pairs and m(x) = E(Y |X = x). Suppose

that the design is an independent sample, denoted by X1, . . . , Xn, having a

density function f(x). In addition to the previously mentioned assumptions

(i)-(iv) for simplicity, here we assume f(x) has support on [0, 1] and f ′(x) is

continuous. Provided we condition on the predictor variables, the bias and

variance calculations in the random design model can be done similar to the

fixed equidistant design case.

It follows directly from (2.45) that

E [m̂(x; 1, hn)|X1, . . . , Xn] = eT (XTWX)−1XWM.

As we refer to the case of local linear fitting, X =











1 X1 − x
...

...

1 Xn − x











n×2

and analogous to the fixed design setting

m(Xi) = m(x) + (Xi − x)m′(x) +
1

2
(Xi − x)2m′′(x) + . . . .

Using the same arguments as in Section 2.5.1 the conditional bias of
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m̂(x; 1, hn) is defined as

E [m̂(x; 1, hn)−m(x)|X1, . . . , Xn] =
1

2
m′′(x)eT

1 (XTWX)−1XTW










(X1 − x)2

...

(Xn − x)2











+ . . . . (2.58)

Yet again if m(x) is a linear function then m̂(x; 1, hn) is conditionally unbi-

ased given X1, . . . , Xn because mr(x) = 0; ∀ r ≥ 2. From (2.46), (2.47)

and (2.48) the conditional bias of m̂(x; 1, hn) is

E [m̂(x; 1, hn)−m(x)|X1, . . . , Xn] =
1

2
m′′(x)eT

1





s0(x; hn) s1(x; hn)

s1(x; hn) s2(x; hn)





−1





s2(x; hn)

s3(x; hn)



+ . . . (2.59)

Approximation of leading bias terms in (2.59) does not directly follow

from (2.51) as they were calculate for fixed equally spaced design data where

a strong condition was imposed that the probability density function of design

points is f(x) = 1.

Here we use expansion of f(x− ht) for t ∈ (0, 1) in a Taylor series about

x;

f(x− hnt) = f(x)− hntf ′(x) +
1

2
h2

nt
2f ′′(x) + o(h2

n) (2.60)

and for random variable X having density f(x)

E[f̂(x)] = E

[

1

hn
K

(

x−X

hn

)]

=
1

hn

∫

y

K

(

x− y

hn

)

f(y)dy (2.61)

to approximate leading bias terms in (2.59).

Now using (2.60), (2.61) plus the property of bounded K ′ and the assump-

tions (ii)-(iv) for n sufficiently large, sj(x; hn) can be expanded by integral
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as given below.

sj(x; hn) =

∫ 1

0

(y − x)j 1

hn
K

(

y − x

hn

)

f(y)dy

= hj
n

∫
(1−x)

hn

−x
hn

tjK(t)f(x + thn)dt

= hj
n

∫
(1−x)

hn

−x
hn

(

f(x) + hntf ′(x) +
1

2
h2

nt2f ′′(x) + o(h2
n)

)

tjK(t)dt.

(2.62)

From (2.62) follows that sj(x; hn) equivalent to

sj(x; hn) =











hj+1
n µj+1(K)f ′(x) + op(h

j+1
n ) j is odd

hj
nµj(K)f(x) + op(h

j
n) j is even.

(2.63)

Note that for two real-valued random sequences An and Bn, An = oP (Bn) if

for all ε > 0, limn→∞ Pr(|An/Bn| > ε) = 0.

When j is an odd number, j + 2 is also an odd number. Hence, from

the standard properties of kernel as mentioned in Section 2.1,
∫

t
tjK(t)dt

vanishes as
∫

t
tjK(t)dt = 0 and

∫

t
tj+2K(t)dt = 0. Similarly, even value of

j,
∫

t
tj+1K(t)dt = 0 as j + 1 becomes an odd number so the corresponding

term vanishes.

Above (2.63) leads to

n−1XTWX =





f(x) + op(1) h2
nf ′(x)µ2(K) + op(h

2
n)

h2
nf ′(x)µ2(K) + op(h

2
n) h2

nf(x)µ2(K) + op(h
2
n)



 (2.64)

and

n−1XTW











(X1 − x)2

...

(Xn − x)2











=





h2
nf(x)µ2(K) + op(h

2
n)

h4
nf ′(x)µ4(K) + op(h

4
n)



 . (2.65)
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Notice that

(

n−1XTWX
)−1

=





f(x)−1 + op(1) −f ′(x)/f(x)2 + op(1)

−f ′(x)/f(x)2 + op(1) {h2
nf(x)µ2(K)}−1 + op(h

−2
n )



 .

Some simple matrix algebra then leads to the expression of the conditional

bias

E [m̂(x; 1, hn)−m(x)|X1, . . . , Xn] =
1

2
h2

nm′′(x)µ2(K) + op(h
2
n). (2.66)

(Wand and Jones, 1995.)

Using approximations similar to those used above, the conditional variance

is obtained as

Var [m̂(x; 1, hn)−m(x)|X1, . . . , Xn] =
R(K)

nhnf(x)
σ2 + op{(nhn)}−1 (2.67)

where R(K) =
∫

u
K(u)2du.

(Fan, 1992a.)

The conditional MSE and weighted MISE of the local linear smoother as

given in Fan (1992) are as follows:

E[(m̂(x; 1, hn)−m(x))2|X1, . . . , Xn] =
1

4
(m′′(x)µ2(K))2h4

n +
R(K)σ2

nhnf(x)
+

op

(

h4
n +

1

nhn

)

(2.68)

and

E[(m̂(x; 1, hn)−m(x))2w(x)|X1, . . . , Xn] =
(µ2(K))2

4

∫

x

m′′(x)2w(x)dxh4
n+

R(K)

nhn

∫

x

σ2

f(x)
w(x)dx + op

(

h4
n +

1

nhn

)

. (2.69)

The mean squared error splits up into two parts, squared of the bias and

the variance. According to (2.68) and (2.69) the bias is a increasing function
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of hn conversely the variance is decreasing function of hn. Thus, smoothing

problem is about balancing the variance versus the squared bias.

Remarks

The leading bias term depends on x only through m′′(x) which reflects the

error of linear approximation. If m(·) is close to being linear at x then m′′(x)

is relatively small, results in less bias in this case. Whereas if m(·) has a high

amount of curvature at x then m′′(x) is higher and more biased estimates are

produced. The bias is increased with more smoothing since it also depends

on hn.

2.6 Other Kernel-Based Regression Estimates

Other versions of kernel type regression estimates have been introduced in

the literature. Here we just give definitions for those estimates that are of

primary importance. Priestley and Chao (1972) considered the problem of

estimating an unknown regression function m(x) given for observations at a

fixed set of points by

m̂PC(x) =
n
∑

i=2

(xi − xi−1)h
−1
n K

(

x− xi

hn

)

Yi. (2.70)

Gasser and Müller (1979) estimator is given for x restricted to some interval

[a, b], by

m̂GM(x) =
n
∑

i=1

∫ si

si−1

h−1
n K

(

x− xi

hn

)

dx Yi (2.71)

where si = (xi + xi+1)/2; i = 1, . . . , n− 1; s0 = a; sn = b.

There are several important issues which have to be discussed. First of all

there is a choice of the bandwidth parameter hn which plays a rather crucial
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role. A too large bandwidth over smooth nonparametric fit of unknown re-

gression function while too small bandwidth under smooth the nonparametric

fit of unknown function. Ideal theoretical choice is not always practically us-

able since it depends on unknown quantities. Finding a practical procedure

for selecting bandwidth parameter is one of the most important tasks.

2.7 Bandwidth Selection

As we have already pointed out in the earlier part of this chapter, the bias in

the estimation of m̂hn(·) does not depend directly on the sample size n but

does depend on the bandwidth hn. Of course if hn chosen as a function of

n then the bias will depend directly on n through its dependance on hn. In

the following sections some popular methods for choosing the bandwidth are

discussed. There is as yet no universally accepted approach to this problem.

The selection of appropriate values for bandwidth hn is the most challeng-

ing aspect of nonparametric regression. Each nonparametric kernel technique

involves selection of smoothing parameters. The accuracy of the estimator

is far more sensitive to the value of hn than it is to choice of kernel func-

tion K(·). Given the usual kernel function means observations close to xi

have more influence on the regression estimate at xi than those farther away.

Bandwidth controls the amount of relative influence. Small hn results in

local linear fitting process depending heavily on those observations that are

closet to xi and tends to yield a more wiggly estimate.

An effective approach is guided trial and error. If the fitted regression

looks too rough, then try increasing the bandwidth; if it looks too smooth,

then see if the bandwidth can be decreased without making the fit too rough.

The smallest value of hn that provides a smooth fit is required. A comple-
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mentary visual approach is to find the residuals from the fit, ei = yi− ŷi, and

to smooth the residuals against the predictor x. If the data have been over

smoothed, then there will be a systematic relationship between the average

residual and the predictor x. If the fit does not over smooth the data, then

the average residual will be approximately 0 regardless the value of x. The

largest value of hn that yields residuals that are unrelated to the value of x

which is the optimal bandwidth.

We can find many situations where the bandwidth is subjectively chosen

by eye produce satisfactory results. In this case, we would look at several

regression estimates for a given point over range of bandwidths and the esti-

mate that is the most agreeable in some sense is being selected. One feasible

approach is to begin with a large bandwidth and to shrink the amount of

smoothing until fluctuations that are more random than structural starts to

emerge. This approach is more viable when the estimates from the interpo-

lation are convincingly close enough to the actual vales.

On the other hand, it is very beneficial to have the bandwidth automati-

cally selected from the data. Mainly it can be very time consuming to select

the bandwidth by eye if there are many estimates required for a given re-

gression function. Besides, in extrapolation the user would not have any

knowledge of which bandwidth gives an estimate closest to the true value.

A method that uses the bivariate data (Xi, Yi) to produce bandwidth ĥn is

called a bandwidth selector. The problem of bandwidth selection exists in

all types of kernel regression estimation including the scatterplot smoothing.

Several data-driven methods have been developed. Cross-validation

(Stone, 1974; Rudemo, 1982) and generalized cross-validation (Wahba, 1977)

are generally applicable methods. Yet, their resulting bandwidths can vary

substantially (Hall and Johnstone, 1991). An alternative method is plug-in
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method (Hall, Sheather, Jones and Marron 1992). For more details of these

bandwidth selectors refer Wand and Jones (1995).

2.7.1 Plug-in Method

This approach addresses efficiency through the asymptotic mean squared

error (AMSE) but attempts a direct estimate of the optimal bandwidth. Fan

and Gijbles (1996) elaborated on the basic concept and elucidated the more

sophisticated applications of the plug-in principle.

Here we are looking at a version of the simple direct plug-in idea for

local linear regression m̂hn,LL(·) that has been shown to possess attractive

theoretical and practical properties (Ruppert, Sheather and Wand, 1995).

For simplicity assume that the errors εi are homoscedastic with common

variance σ2 and that the Xi’s are from a compactly supported density on

[0, 1]. An appropriate global error criterion is the weighted conditional mean

integrated square error (MISE):

MISE {m̂(x; 1, hn)|X1, . . . , Xn} =

E

[
∫

x

{m̂(x; 1, hn)−m(x)}2f(x) dx|X1, . . . , Xn

]

. (2.72)

This weighting by f(x) puts more emphasis on those regions where there

are more data as well as simplifying the plug-in methodology. With respect

to this criterion the asymptotically optimal bandwidth with respect to mean

integrated squared error criteria is

hAMISE = C1(K)

[

σ2

θ22n

]1/5

(2.73)

where AMISE: asymptotic mean integrated squared error,

C1(K) = {R(K)/µ2(K)2}1/5
and θ22 is a special case of the notation θrs =

∫

x
m(r)(x)m(s)(x)f(x) dx where m(j) is jth derivative of m(x).
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Plug-in bandwidth selectors are based on the simple idea of plug in es-

timates of unknown quantities that appear in formulae for the asymptotically

optimal bandwidth. A natural estimator for θ22 is θ̂22(gn) =

n−1
∑n

i=1 m̂(2)(Xi; 3, gn)
2 where m̂(2)(Xi; 3, gn) is the second derivative of the

regression estimator m̂(Xi; 3, gn) using third degree polynomial (p = 3) with

bandwidth gn. While a natural estimator for σ2 is

σ̂2 = ν−1

n
∑

i=1

{Yi − m̂(Xi; 1, λn)}2 (2.74)

where

ν = n− 2
∑n

i=1 wii +
∑n

i=1

∑n
j=1 w2

ij, wij = eT
1 (XWX)−1

XTWX and W is

based on bandwidth λn.

Hence, direct plug-in rule (DPI) for selection hn is of the form

ĥn,DPI = C1(K)

[

σ̂2(λn)

θ̂22(gn)n

]1/5

. (2.75)

Substituting estimates of unknown quantities in (2.75) produces a variety of

plug-in estimates which have worked well in local linear regression in some

settings.

However, ĥn,DPI depends on the choice of the pilot bandwidths gn and

λn as a result, this rule (2.75) is not fully automatic. Need to formulate

rules for selection of the auxiliary bandwidths gn and λn. In practice, these

quantities have to be estimated on the basis of some preliminary smoothing

process which raises a second-order bandwidth selection problem. There

is a considerable uncertainty about how to choose bandwidths gn and λn

in that first step. On the other hand from a theoretical point of view it is

always restricted to a certain smoothness class which is to twice differentiable

regression function.
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2.7.2 Cross-Validation Method

Cross-validation method (Stone, 1977) is a most commonly used bandwidth

selection technique. Under this method hn is chosen by minimizing

n
∑

i=1

(Yi − m̂−i,hn(Xi))
2

where m̂−i,hn(Xi) is the regression estimator without using the ith obser-

vation (Xi, Yi). The key idea is to omit the ith observation from the local

regression at the focal value xi. Omitting the ith observation makes the fitted

value m̂−i,hn(Xi) independent of the observed value Yi which is denoted by

m̂−i,hn(Xi) given Xi = xi.

Define

CV al(hn) =

∑n
i=1 (Yi − m̂−i,hn(Xi))

2

n
(2.76)

where m̂−i,hn(Xi) is m̂−i,hn(Xi) | xi for bandwidth hn. The object is to find

the value of hn that minimizes CV al(hn).

The cross-validation function is a kind of estimate of the mean average

squared error (MASE) at the observed x,

MASE(hn) = E

[

∑n
i=1 (m̂−i,hn(Xi)−m(Xi))

2

n

]

. (2.77)

Because of the independence of m̂−i,hn(Xi) and Yi, the expectation of

CV al(hn) is

E[CV al(hn)] =

∑n
i=1 E [Yi − m̂−i,hn(Xi)]

2

n

≃ MASE(hn) + σ2. (2.78)

The function CV al(hn) is commonly called a cross-validation function since

it validates the ability to predict {Yk}n
k=1 across the subsamples {(Xi, Yi)}i6=k
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(Stone, 1974). This CV al(hn) function for finding bandwidth hn in the

context of kernel regression was proposed by Clark (1975). Although cross-

validation is a useful method for selecting the bandwidth in kernel regression,

it is only an estimate and is therefore subject to sampling variation. Partic-

ularly in small samples, this variability can be substantial.

2.7.3 Our Bandwidth Selection Method

Available bandwidth selectors can be generally divided into two groups. The

first type of bandwidth selector consists of plain and straightforwardly as-

sessable formulae which aim to find a bandwidth that is sensible for a wide

range of situations but without any mathematical assurances of being close

to optimal bandwidth. This type of bandwidth selectors are known as quick

and simple. The quick and simple bandwidth selectors are more attractive

as we need to have fast automatically generated kernel estimates for com-

puter algorithms those require many regression estimation steps as well as

providing a practical preliminary point for subjective choice of the smoothing

parameter.

The second type of bandwidth selector is based on more mathematical

arguments and require considerably more computational effort to give good

answers for more general classes of underlying unknown regression functions.

Due to their sophisticated nature, they will be labeled as hi-tech bandwidth

selectors. Each of the hi-tech bandwidth selectors those we discussed pre-

viously are being motivated through aiming to minimize mean integrated

squared error MISE of m̂hn(·) or can be shown to attain this goal asymp-

totically. However these hi-tech bandwidth selectors are more complicated

in practical use as they require to estimate quantities such as derivatives of

unknown regression function, pilot bandwidths etc. Thus we will restrict our
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attention to a more simpler data driven bandwidth selector.

As used in sequential procedures (Isogai, 1987), a quick way of choosing

the bandwidth therefore would be to take hn as a function of sample size n

and r, n−r where r is a constant. Besides, Fan (1993) has chosen bandwidth

hn as function of n, d ∈ R and β ∈ (0, 1) i.e. hn = dn−β. According to

the assumptions listed in Section 2.5, bandwidth hn is a sequence satisfying

hn → 0 and nhn →∞ as n →∞. Hence n−r → 0 and n1−r →∞ as n →∞
which result in 0 < r < 1. In addition, it is required that the assumption

(iv) is satisfied, that is for any point x0, hn < x0 and x0 < 1− hn. Based on

these assumptions a range of values which r takes will now be decided.

Since hn = n−r,

hn < x0 ⇒ n−r < x0 and x0 < 1− hn ⇒ n−r < 1− x0 which implies

n−r < min (x0, 1− x0)

−r log n < log [min (x0, 1− x0)]

r >

{− log [min (x0, 1− x0)]

log n

}

. (2.79)

Now we let r0 =
{

− log[min(x0,1−x0)]
log n

}

. From (2.79) and because r ∈ (0, 1),

minimum value for r is rmin = max(0, r0) which revises the range of values

that r can take to r ∈ (rmin, 1). Furthermore,

hn < x < 1− hn =⇒ hn < 1− hn =⇒ 0 < hn < 1/2 ≡ nr > 2

which leads to r > ln 2
ln n

. By combining r < 1 and r > ln 2
lnn

it follows that

n > 2.

Let △0 = min(x0, 1− x0) then from (2.79) r > − ln△0

ln n
. Since r < 1

− ln△0

lnn
< 1 ⇒ n >

1

△0

result in

n >
1

min(x0, 1− x0)
= max

(

1

x0

,
1

1− x0

)

.
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These conditions will be very useful in Chapter 3 because sequential pro-

cedures determines final sample size with an aid of a pilot sample size. There-

fore when we are selecting a value for pilot sample size these conditions will

be in much use.

2.8 Simulation Results

Classical kernel based approaches still have much to offer for practitioners

in terms of familiarity, simplicity and accuracy. A simulation study was un-

dertaken to illustrate performance of different kernel functions in estimating

unknown regression function at a given point purely based on the bias and

standard error. The computational methods involved, firstly, selecting a data

design. Here we looked at both fixed design data which divided into two cases

equidistant and non-equidistant and random design data.

A sample of size 25 was chosen. Thus, for equidistant fixed design data

x’s were in the form of xi = i/25; i = 1, . . . , 25. For both non-equidistant

fixed design observations and random design data x’s were generated from

uniform distribution on [0, 1] i.e. X ∼ U(0, 1). Since we have to use paired

data (x, Y ), corresponding Y values were calculated first estimating y values

using a known function m(x) for selected sample of x values i.e. y = m(x)

and then error term ε was added to that y value in order to get observed

Y values i.e. Y = y + ε = m(x) + ε. Errors ε were generated from Normal

distribution ε ∼ N(0, 0.52).

Three different models were put to test to gain an understanding of the

performance of each kernel estimator. The models of choice were not only
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restricted to nonlinear functions but also a linear function.

• Model I: Y = m(x) + ε = 4x + 3 + ε

• Model II: Y = m(x) + ε = 2 exp(−x2/0.72)+ 3 exp(−(x− 1)2/0.98) + ε

• Model III: Y = m(x) + ε = sin2(0.75x) + 3 + ε

Once the bivariate data sets had been generated the relationships between

x and Y were assumed to be unknown functions. Nonparametric kernel es-

timation was then applied to these samples to estimate Y for a given point

of x, x0. The local linear and Nadaraya–Watson estimation procedures in-

volved using each data point in the sample of size 25 at a given point x0.

Next question arises of which kernel function to use for above mentioned ker-

nel regression estimators (2.18, 2.19). Standard normal, Epanechinkov and

double exponential kernels were employed. Each kernel function has its own

distinct formula K(u) as given in Table 2.1 where u = x0−xi

hn
. Bandwidth

hn was computed as in Section 2.7.3. The estimation has been done at the

points x0 = 0.2, 0.4, 0.5, 0.7, 0.9 and 15000 simulated samples were used for

each estimation. The actual value of y for given points x0 are given in tables

as m(x0) so that comparisons of kernel estimates can be made for different

given values of x.

The given point x0, theoretical value at x0 m(x0), averages of local lin-

ear estimator m̂hn,LL(x0) and Nadaraya–Watson estimator m̂hn,NW (x0) along

with their standard errors which are given underneath each average reported

for standard normal kernel (KSN), Epanechinkov kernel (KEP ) and double

exponential kernel (KDE) in Table 2.2, Table 2.3 and Table 2.4 for fixed

equidistant design data, fixed non-equidistant design data and random de-

sign data respectively.

The formulae for the estimated terms displayed on the tables are given
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below:

• m̂hn,LL(x0) = 1
nsim

∑nsim

j=1 (m̂hn,LL(x0))j

• SE
(

m̂hn,LL(x0)
)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(m̂hn,LL(x0))j − m̂hn,LL(x0)
)2
}1/2

where (m̂hn,LL(x0))j is the local linear estimate for jth replication, nsim (=

15000) is the number of simulation replications and SE(Ȳ ) is the standard

error of Ȳ . Note that standard error of a sample mean Ȳ , is calculated by

SE(Ȳ ) = Var(Y )/
√

n where Var(Y ) =
√

∑n
j=1(Yi − Ȳ )/n− 1, Var(Y ) is

variance of Y and n is sample size.

• m̂hn,NW (x0) = 1
nsim

∑nsim

j=1 (m̂hn,NW (x0))j

• SE
(

m̂hn,NW (x0)
)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(m̂hn,NW (x0))j − m̂hn,NW (x0)
)2
}1/2

where (m̂hn,NW (x0))j is the Nadaraya–Watson estimate for jth replication.

These tables contain simulation results for different combinations of ker-

nel functions and regression functions. In all these cases, Nadaraya–Watson

method performs marginally worse than the local linear method although dif-

ferences were not significant in the case of fixed design data. They also give

you an idea about the relative closeness of average values of local linear regres-

sion smoother m̂hn,LL(x0) to the theoretical value m(x0) in comparison with

the average values of Nadaraya–Watson regression smoother m̂hn,NW (x0).

Table 2.2 shows the simulation results of three different regression models

based on 15000 simulations for fixed equidistant design data. The estimated

averages of local linear regression estimator m̂hn,LL(x0) are very much close to

the given theoretical m(x0) values for all given different values of x0 for Model

I. In this case, the regression function is a linear and the Nadaraya–Watson

estimate does not perform well in detecting linearity. Hence, local linear

estimator m̂hn,LL(·) is suitable for detecting linearity. This is confirmed by the

discussion given in Section 2.5 that is when m(·) is in linear form then local

linear method has the appealing property that it is exactly unbiased for linear
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m(·). Furthermore Nadaraya–Watson estimator m̂hn,NW (·) has larger relative

bias in the case of underlying regression function is nonlinear as well i.e. in

Models II and III. Use of different kernel functions make neither significant

effect on estimation of local linear regression estimator nor on Nadaraya–

Watson estimator. However, averages of Nadraraya–Watson estimator based

on standard normal and double exponential kernels tend to produce values

more closer to corresponding theoretical values. This can be observed in all

three models. As for Model I, m̂hn,NW (x0) are overestimated at the points

x0 = 0.2, 0.4, 0.5 and underestimated at the points x0 = 0.7, 0.9. Whereas

in Model II, both averages m̂hn,LL(x0) and m̂hn,NW (x0) overestimated at the

interior points x0 = 0.4, 0.5, 0.7 and underestimated at the boundary points

x0 = 0.2, 0.9. Besides local linear method overestimated all the estimations

for Model III whereas Nadaraya–Watson method overestimated at the points

x0 = 0.2, 0.4, 0.5 and underestimated at the points x0 = 0.7, 0.9. In Models II

and III, local linear estimator overestimates the regression function a little

but is very close to the actual values everywhere else.

Table 2.3 result is very similar to those in Table 2.2. In these designs of

data, the local linear method performed well in estimation especially when

the underlying regression function is linear compared to Nadaraya–Watson

method. There is no significant difference between the estimates those based

on different kernel functions. For fixed design data, differences between local

linear and Nadaraya–Watson estimator turned out to be small with the lat-

ter being somewhat better in closing the gap between theoretical value and

estimated value.

Finally, Table 2.4 shows the Nadaraya–Watson method struggled in ran-

dom design data to produce more accurate estimate close to theoretical val-

ues. Whereas the local linear regression method performed well in estimating

61



the regression function for all the given points of explanatory variable regard-

less of the form of the model. This seems compatible with the claim that the

Nadaraya–Watson estimator can not be adaptive to different design of data

as local linear method does. Nadaraya–Watson estimator fits with either

standard normal or double exponential weights behave best but are more

sensitive to undersmoothing or oversmoothing as compared to local linear

kernel estimators.
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Table 2.2: Fixed Equidistant Design Data Using Different Kernels.

x0 m(x0) m̂hn,LL(x0) m̂hn,NW (x0)

KSN KEP KDE KSN KEP KDE

Model I : y = 3x0 + 4

0.20 3.8000 3.8019 3.8019 3.8020 4.0626 4.1017 4.1492
0.0013 0.0013 0.0013 0.0011 0.0011 0.0011

0.40 4.6000 4.5991 4.5990 4.5991 4.8733 4.9612 4.8392
0.0008 0.0008 0.0009 0.0008 0.0008 0.0009

0.50 5.0000 5.0005 5.0005 5.0004 5.0566 5.0687 5.0466
0.0008 0.0008 0.0010 0.0008 0.0008 0.0010

0.70 5.8000 5.7987 5.7988 5.7985 5.5316 5.4557 5.5159
0.0010 0.0010 0.0010 0.0009 0.0009 0.0009

0.90 6.6000 6.5999 6.6000 6.5999 6.5164 6.5099 6.4478
0.0016 0.0016 0.0017 0.0015 0.0015 0.0015

Model II : y = 2exp(−x2
0/.18) + 3exp(−(x0 − 1)2/.98)

0.20 3.1628 3.1153 3.1127 3.1165 3.0628 3.0469 3.0636
0.0013 0.0013 0.0013 0.0011 0.0111 0.0011

0.40 2.8999 2.9936 3.0008 2.9841 2.9712 2.9749 2.9645
0.0009 0.0009 0.0009 0.0008 0.0009 0.0008

0.50 2.8232 2.9700 2.9778 2.9161 2.9663 2.9735 2.9161
0.0008 0.0008 0.0009 0.0008 0.0008 0.0009

0.70 2.8682 2.9179 2.9243 2.9134 2.9216 2.9320 2.9211
0.0010 0.0010 0.0010 0.0009 0.0009 0.0009

0.90 2.9918 2.9821 2.9811 2.9816 2.9728 2.9715 2.9661
0.0016 0.0116 0.0017 0.0015 0.0015 0.0015

Model III : y = sin(0.75x0)2 + 3

0.20 3.0223 3.0314 3.0322 3.0292 3.0529 3.0556 3.0638
0.0013 0.0013 0.0013 0.0011 0.0111 0.0011

0.40 3.0873 3.1115 3.1139 3.1085 3.1447 3.1585 3.1378
0.0009 0.0009 0.0009 0.0008 0.0009 0.0008

0.50 3.1342 3.1632 3.1655 3.1596 3.1703 3.1741 3.1654
0.0008 0.0009 0.0008 0.0008 0.0009 0.0008

0.70 3.2512 3.2623 3.2636 3.2610 3.2253 3.2162 3.2231
0.0010 0.0010 0.0010 0.0009 0.0009 0.0009

0.90 3.3905 3.3911 3.3913 3.3907 3.3765 3.3754 3.3652
0.0016 0.0117 0.0016 0.0015 0.0015 0.0015
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Table 2.3: Fixed Non-equidistant Design Data Using Different Kernels.

x0 m(x0) m̂hn,LL(x0) m̂hn,NW (x0)

KSN KEP KDE KSN KEP KDE

Model I : y = 3x0 + 4

0.20 3.8000 3.8004 3.8002 3.8004 4.0581 4.0792 4.2639
0.0014 0.0014 0.0074 0.0012 0.0052 0.0013

0.40 4.6000 4.6007 4.6008 4.6006 5.2612 5.3960 5.1625
0.0011 0.0011 0.0012 0.0009 0.0008 0.0010

0.50 5.0000 5.0003 5.0005 5.0001 5.0976 5.1117 5.0854
0.0008 0.0008 0.0010 0.0008 0.0008 0.0010

0.70 5.8000 5.7995 5.7997 5.7993 5.6762 5.5999 5.6209
0.0010 0.0010 0.0015 0.0010 0.0009 0.0015

0.90 6.6000 6.6034 6.6032 6.6035 6.4200 6.4331 6.3448
0.0021 0.0128 0.0090 0.0017 0.0012 0.0013

Model II : y = 2exp(−x2
0/.18) + 3exp(−(x0 − 1)2/.98)

0.20 3.1628 3.0557 3.0478 3.0629 3.0199 3.0060 3.0163
0.0014 0.0013 0.0014 0.0012 0.0012 0.0012

0.40 2.8999 2.9710 2.9738 2.9656 2.9470 2.9499 2.9457
0.0011 0.0011 0.0011 0.0009 0.0008 0.0009

0.50 2.8232 2.9545 2.9630 2.9377 2.9485 2.9564 2.9324
0.0008 0.0008 0.0009 0.0008 0.0008 0.0009

0.70 2.8682 2.9454 2.9510 2.9398 2.9495 2.9582 2.9481
0.0010 0.0010 0.0010 0.0010 0.0009 0.0010

0.90 2.9918 2.9930 2.9916 2.9885 2.9682 2.9706 2.9585
0.0021 0.0022 0.0020 0.0017 0.0017 0.0016

Model III : y = sin(0.75x0)2 + 3

0.20 3.0223 3.0393 3.0402 3.0379 3.0591 3.0603 3.0830
0.0014 0.0013 0.0014 0.0012 0.0012 0.0012

0.40 3.0873 3.1035 3.1046 3.1016 3.1914 3.2113 3.1769
0.0011 0.0011 0.0011 0.0009 0.0008 0.0009

0.50 3.1342 3.1602 3.1626 3.1563 3.1724 3.1765 3.1670
0.0008 0.0008 0.0009 0.0008 0.0008 0.0009

0.70 3.2512 3.2677 3.2684 3.2667 3.2513 3.2415 3.2441
0.0010 0.0010 0.0010 0.0010 0.0009 0.0010

0.90 3.3905 3.3936 3.3938 3.3922 3.3611 3.3633 3.3484
0.0021 0.0022 0.0020 0.0017 0.0017 0.0016
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Table 2.4: Random Design Data Using Different Kernels.

x0 m(x0) m̂hn,LL(x0) m̂hn,NW (x0)

KSN KEP KDE KSN KEP KDE

Model I : y = 3.0x0 + 4

0.20 3.8000 3.8012 3.8014 3.8013 4.0410 4.0710 4.1375
0.0013 0.0013 0.0013 0.0016 0.0017 0.0016

0.40 4.6000 4.5987 4.5986 4.5987 4.8308 4.9039 4.8032
0.0009 0.0009 0.0011 0.0018 0.0019 0.0017

0.50 5.0000 4.9985 4.9985 4.9985 4.9950 4.9948 4.9953
0.0008 0.0008 0.0009 0.0019 0.0020 0.0017

0.70 5.8000 5.8000 5.8000 5.8000 5.4905 5.4147 5.4720
0.0010 0.0010 0.0011 0.0017 0.0018 0.0016

0.90 6.6000 6.5990 6.6153 6.5996 6.4757 6.4639 6.4016
0.0021 0.0158 0.0019 0.0019 0.0019 0.0018

Model II : y = 2exp(−x2
0/.18) + 3exp(−(x0 − 1)2/.98)

0.20 3.1628 3.1075 3.1043 3.1090 3.0603 3.0461 3.0599
0.0013 0.0013 0.0013 0.0011 0.0011 0.0011

0.40 2.8999 2.9900 2.9966 2.9815 2.9727 2.9762 2.9662
0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

0.50 2.8232 2.9628 2.9698 2.9487 2.9667 2.9739 2.9522
0.0009 0.0009 0.0009 0.0008 0.0008 0.0009

0.70 2.8682 2.9139 2.9185 2.9100 2.9225 2.9321 2.9231
0.0011 0.0010 0.0011 0.0009 0.0009 0.0009

0.90 2.9918 2.9844 3.0020 2.9815 2.9689 2.9673 2.9615
0.0021 0.0158 0.0019 0.0016 0.0016 0.0015

Model III : y = sin(0.75x0)2 + 3

0.20 3.0223 3.0316 3.0326 3.0299 3.0515 3.0536 3.0633
0.0013 0.0013 0.0013 0.0011 0.0011 0.0011

0.40 3.0873 3.1119 3.1144 3.1090 3.1399 3.1517 3.1338
0.0009 0.0009 0.0009 0.0009 0.0009 0.0009

0.50 3.1342 3.1609 3.1631 3.1575 3.1618 3.1641 3.1583
0.0008 0.0008 0.0009 0.0008 0.0008 0.0009

0.70 3.2512 3.2620 3.2630 3.2610 3.2203 3.2106 3.2182
0.0010 0.0010 0.0011 0.0009 0.0009 0.0010

0.90 3.3905 3.3898 3.4102 3.3894 3.3690 3.3670 3.3570
0.0021 0.0158 0.0019 0.0016 0.0016 0.0016

Figures 2.1, 2.2 and 2.3 allow a closer assessment of the sensitivity to choice

of kernel weights in estimators m̂hn,LL(·) and m̂hn,LL(·) for the three data de-

signs, fixed equidistant design, fixed non-equidistant design and random de-

sign. Also these figures show how fast averages of both estimators m̂hn,NW (x0)
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and m̂hn,LL(x0) are approached for theoretical value estimated at a given

point x0 = 0.375. To visualize the performance of the regression estima-

tors here we take into consideration five different kernel functions which are

standard normal, epanechinkov, biweight, uniform and double exponential

functions. The most striking result is that average estimates of local linear

method m̂hn,LL(x0) approaches to the theoretical value faster than those from

Nadaraya–Watson m̂hn,NW (x0) estimation for each different kernel.

Figures 2.1 and 2.2 correspond to the case where the underlying data de-

signs are fixed equidistant and fixed non-equidistant respectively. Figure 2.2

corresponds to the case of random design data. All three figures first showing

the relative performance of the two estimators based on five different kernels

for three different models and also showing how the accuracy of each estima-

tor changes for sample sizes ranging from small to large. In all these cases

local linear method performs marginally better than the Nadaraya–Watson

method although differences were not significant for fixed equidistant or non-

equidistant design data. All estimates behave well for large sample sizes as

expected from asymptotic theory. The behaviour of local linear method is

the same for fixed equidistant design or non-equidistant as for random de-

sign for three different models. By intuition and from the discussion given

in Section 2.4 one would expect regression estimates by Nadaraya–Watson

method to be equivalent to local linear regression estimates when the data

design is fixed for large sample sizes.

Both estimators start relatively high values for small sample sizes and

reach corresponding theoretical values as sample size increases. In general,

estimators based on biweight kernel starts with highly overestimated values

and those based on uniform kernel start with less overestimated values. The

local linear method with biweight kernel is best among others for small to
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large sample sizes for random design data. Although the effects of using be-

tween different kernels are not serious. The simulations have shown that the

local linear estimator beats its competitor from small sample sizes onward

for random design data. Similar conclusions can be obtained for other situ-

ations. The local linear smother thus leads to a much more valid in overall

cases.

Nevertheless the chosen different weighting schemes guarantee the correct

adaptation to the different design of data. This means the use of different

kernels is not such a big problem as we have least expected. When the sample

size is not too small, local linear estimator gives results that are good in the

sense of closeness to the theoretical value in all different cases. The accuracy

of both methods dropped off significantly for samples as small as 10 in all

the different combinations of data designs and kernel functions. Of course

this is simply of the fact that one can hardly expect to estimate an estimate

for unknown regression function accurately without sufficient data.

In the case of fixed design, the Nadaraya–Watson method performed well

in estimating the underlying regression function but performed poorly in

random design. Moreover, the accuracy of Nadaraya–Watson estimator im-

proved as sample size increased from moderate to large. This is the same for

fixed design as for random design. Another aspect that has been stressed out

is Nadaraya–Watson method fairly well for Model III compared to Model II

even both are nonlinear functions. This is due to the structural difference

between two models.
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Figure 2.2: Fixed Equidistant Design Data Using Different Sample Sizes and Kernels.
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Figure 2.4: Random Design Data Using Different Sample Sizes and Kernels.
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Remarks:

Asymptotically the performance of the local linear regression smoother is the

same as the Nadaraya–Watson estimator. However, figures indicate that the

former smoother performs better than the latter at even small to moderate

sample sizes. This suggests that the asymptotic theory takes in effect at a

larger sample size for the Nadaraya–Watson estimator. The closeness be-

tween theoretical value and the corresponding estimates from each method

decreases when sample size increases regardless of the design of data on the

hand. An advantage of local linear method to Nadaraya–Watson method is

that it can be adapted very easily to a variety of different data design con-

texts. According to theory the Nadaraya–Watson estimator is expected to

perform as good as local linear method for fixed design but this is not very

borne out by simulation results.

The simulation results suggest that at least moderate size of samples,

the choice of kernel is not critical. However, the properties of both estima-

tors tend to depend least critically on the choice of kernel function but on

bandwidth selector. The bandwidth selector which is discussed in detail in

Section 2.7.3 seems to be more appropriate as well as quick and simple. Also

it can be employed in practical situations as it provides estimate very close

to the theoretical values regardless of the value of the point estimation and

choice of various kernel functions. The results from this simulation study is

consistent with the properties of both estimators discussed in the previous

sections of this chapter.
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Chapter 3

Residual Variance Estimation

in Nonparametric Kernel

Regression

3.1 Introduction

Methods for nonparametric residual estimation is an important subject of

statistical research with practical relevance. This chapter gives an overview

of a variety of methods for nonparametric variance estimation. Therefore we

concentrate on the main ideas of, differences as well as similarities between

such methods. Consider the nonparametric regression model as defined in

Section 2.1

Yi = m(xi) + εi, i = 1, . . . , n (3.1)

where Y1, . . . , Yn are observable data variables with respect to the design

variables x1, . . . , xn and Var(εi) = σ2 and the regression function m(·) are

unknown. A great deal of research has been done in the estimation of the

unknown regression function m(·). Nevertheless estimation of σ2 is equally
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as important as the estimation of m(·) itself because knowledge of σ2 is

necessary in constructing confidence interval for m(·) as well as many other

applications such as prediction, calculation of smallest possible sample sizes

with an aid of sequential procedures etc. Most of the objectives and data-

dependent stopping rules for sample size selection need an explicit estimator

of the residual variance. Besides, inference about the regression function also

requires knowledge about the residual variance.

The class of estimators of σ2 which covers all the proposed estimators

have quadratic forms. If we use matrix and vector notation the variance

estimator can be written as

σ̂2 =
YTQY

tr(Q)
(3.2)

where Q is a suitable symmetric and positive semi-definite matrix, YT =

(Y1, Y2, . . . , Yn) and tr(Q) is a trace of the matrix Q. When m(x) = 0, the

divisor tr(Q) ensures σ̂2 is an unbiased estimator for σ2 that is E[σ̂2] = σ2

where m(x)T = [m(x1), m(x2), . . . , m(xn)]. Since Y = m(x) + ε where

εT = [ε1, ε2, . . . , εn] we can rewrite (3.2) as

σ̂2 =
(m(x) + ε)T Q (m(x) + ε)

tr(Q)

=

(

m(x)T + εT
)

Q (m(x) + ε)

tr(Q)

=
m(x)TQm(x) + 2m(x)TQε + εTQε

tr(Q)
. (3.3)

From (3.3) we can see that quadratic estimate of the residual variance consists

of three terms: a natural estimator of σ2, εTQε
tr(Q)

, a positive bias m(x)TQm(x)
tr(Q)

and 2m(x)TQε
tr(Q)

. The unbiasedness property of estimated residual variance es-

timator σ̂2 is only valid for m(x) = 0 which seems very strong condition.

However, from (3.3) we can see all that is required is that m(x)TQm(x) = 0

which may hold or nearly hold for m(x) 6= 0.
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If m(x) = 0 then

σ̂2 =
εTQε

tr(Q)
.

Hence

E[σ̂2] =
E
[

εTQε
]

tr(Q)

=
tr(Qσ2I) + E[ε]TQE[ε]

tr(Q)

=
tr(Q)σ2

tr(Q)

= σ2

where I is an identity matrix and E[ε] = 0.

During last three decades an assortment of proposals have been made

explaining as to how σ2 can be estimated nonparametrically. The available

estimators are broadly divided into two subclasses of estimators which are

variance estimators based on curve fitting and variance estimators based on

differencing. Silverman (1985) and Wahba (1983) proposed estimators for

σ2 using naive nonparametric residuals obtained by subtracting an appropri-

ate smoothed curve from the observations. Rice (1984) introduced a simple

difference-based estimator of σ2 for fixed design data. Several authors dis-

cussed improvements (Gasser et. al., 1986; Buckley and Eagleson, 1989; Hall

and Marron, 1990; Hall et. al., 1990).

Variance estimators based on curve fitting estimate the residual variance

σ2 with a sum of squared residuals ε̂T ε̂ from a nonparametric fit m̂(x). In

general, the residuals are estimated mostly by a linear function ε̂ = Y −
m̂(x). Curve fitting residual variance estimators proposed by Wahba (1978)

and Carter and Eagleson (1992) have employed spline smoothing methods

to estimate m̂(x) whereas Muller and Stadtmuller (1987), Hall and Carroll

(1989) and Hall and Marron (1990) used kernel-based smoothing estimators.
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From Section 2.2 it is obvious that the nonparametric curve fitting is a linear

fit of the form m̂(x) = WY where W = {wij}; i, j = 1, . . . , n. This lead

to the corresponding residual variance based on curve fitting estimator of

the form (3.2) with Q = (I −W)T (I −W) where I is an identity matrix.

Note that every residual variance estimator based on curve fitting depends

explicitly on the choice of bandwidth hn. In Section 3.2 we describe in detail

the residual variance estimator based on curve fitting suggested by Hall and

Marron (1990).

The second subclass of residual variance is difference-based estimators. In

this setting Q = [DTD]n×n is a symmetric non-negative definite matrix and

the elements of D(n−g)×n depend only on the values of predictor xi but not on

the observations {Yi}n
i=1 and the order of a difference based estimator g which

is the number of related observations (X,Y) involved to estimate a local

residual ε̂. The main advantage of this type of residual variance estimator

is, it does not require an estimator for unknown regression function m̂(x).

However, the order g of the difference based estimator has an impact which

may be comparable with the estimating unknown regression function in the

curve fitting based residual variance estimators. Rice (1984) and Gasser et al.

(1986) suggested difference-based residual variance estimators for the fixed

designed data based on first-order g = 1 and second-order g = 2 respectively.

Holger et al. (1998) showed that in practice difference-based estimators are

more attractive because they have a small bias for small sample size besides

large asymptotic variance. Hence, he explained that the difference-based

residual variance estimators proposed by Gasser et. al. (1986) and Rice

(1984) do not achieve the asymptotic optimal rate which is defined by

MSE[σ̂2] = n−1Var[ε2] + o(n−1) (3.4)

as for curve fitting based residual variance estimator suggested by Hall and
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Marron (1990). However, Müller et. al. (2003) proposed a difference-based

residual variance for random designed data using covariate-matched U-statistic

which achieves the asymptotic optimal rate. In Section 3.3, we discuss the

difference-based residual variance estimators which are proposed by Rice

(1984), Gasser et. al. (1986) and Müller et. al. (2003) in detail.

In the remaining part of this chapter, we follow the same standard as-

sumptions for nonparametric regression model and the kernel regression es-

timators which are introduced in Chapter 2. Here we consider the de-

sign points x1, . . . , xn are either from a fixed design setting (equidistant

xi = i/n; i = 1, . . . , n or non-equidistant xi 6= i/n) or a sample of ran-

dom variables with a common design density f(x). For random design, we

assume that (Xi, Yi)
n
i=1 is a bivariate sample of independent and identically

distributed random variables with the same distribution as a random vari-

able (X, Y ) that satisfies m(x) = E(Y |X = x) and σ2 = Var(Y |X = x). In

addition, we assume that the design density f(x) has support [a, b], where

a, b ∈ R and a < b. Variance and regression estimations are restricted to this

compact interval. The error variables εi are assumed to be independent and

identically distributed random variables such that E[εi] = 0 and variance is

constant Var[εi] = σ2. Unless otherwise stated, it is assumed that the design

density f(x) and the regression function m(·) have at least two continuous

derivatives on the interval [a, b].

In Section 3.4, we compare the estimation procedures discussed in Sec-

tions 3.2 and 3.3 using a simulation study for different cases depending on

the data design, distribution of residual variance and underlying regression

function. It is important to note that we do not address the problem of which

estimator might be the best estimator; rather we are more interested in be-

ing confident that the estimate use in a particular situation is an accurate.
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This is very vital as the accuracy of the residual variance is a very sensitive

issue especially in the performance of stopping rules which we will propose

in Chapter 4 and Chapter 5.

3.2 Variance Estimators Based on Curve

Fitting

Estimated residuals based on nonparametric regression model defined by

(3.1) are

ε̂i = Yi − m̂(xi); i = 1, . . . , n. (3.5)

The design points xi’s are confined to the interval [0, 1]. The analysis applies

equally to both types of design. In this approach a variance estimator σ̂2

is obtained as a weighted average of a sequence of squared residuals and is

defined by

σ̂2 =
1

c n

n
∑

i=1

(Yi − m̂(xi))
2 (3.6)

where the normalizing factor c may be defined such that the variance estima-

tor is unbiased when unknown regression function is zero; that is m(X) = 0.

Early references for such approaches are Breiman and Meisel (1976) who

used piecewise linear fits with an adaptive number of pieces for curve fitting

and Cleveland (1979) used a robust variant of local polynomial estimation

for regression estimation.

In this section it is assumed that kernel type regression estimator m̂(xi) =
∑n

j=1 wijYj; i = 1, . . . , n is used to estimate the residuals. Hence

ε̂i = Yi −
n

∑

j=1

wijYj; i = 1, . . . , n (3.7)
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wij =
K

{

(xi−xj)

hn

}

∑n
k=1 K

{

(xi−xk)
hn

}

where K(·) is a kernel function, hn is a bandwidth and wij be constants

satisfying
∑

j wij = 1 for each i. The obvious problem that occurs when

using such estimators is the choice of the bandwidth hn. Here we shall

stick to the method discussed in Section 2.7.3 as results were shown to be

promising.

The assumption (3.8) lead to variance estimator, defined as

σ̂2 =
1

c n

n
∑

i=1

(

Yi −
n

∑

j=1

wijYj

)2

. (3.8)

By letting wij ; i, j = 1, . . . , n be the entries of weight matrix W, Y = [Yi]n×1

and I be the identity matrix we can rewrite (3.7) and (3.8) in matrix form as

ε̂ = Y −WY

= (I−W)Y (3.9)

and

σ̂2 = ε̂Tε̂

= {(I−W)Y}T (I−W)Y

= YT(I−W)T(I−W)Y. (3.10)

3.2.1 Hall and Marron Estimator σ̂2
HM

Residual variance estimator proposed by Hall and Marron (1990) σ̂2
HM for

random design based on rth-order differences have the property that

E[σ̂HM − σ2]2 ∼ n−1crVar(ε2) (3.11)
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where 1 ≤ cr ≤ ∞ and cr is a constant depends only on the order r.

The aim is to show that there exist simple estimators which are applicable

whenever the error distribution has finite fourth moment and which achieve

cr = 1 in the above formula thus achieving the optimal rate (3.4). σ̂2
HM is

simply defined as the mean square of a sequence of residuals.

Let S =
∑n

i=1 ε̂i
2 then from (3.10)

S = YT(I−W)T(I−W)Y. (3.12)

When the mean function m(·) is zero then from (3.1), Yi = εi which leads

to E[Yi] = 0 and E[Y 2
i ] = σ2. Thus E[S] = νσ2 where ν = n − 2

∑

i wii +
∑∑

ij w2
ij . This is shown below:

E[S] = E





n
∑

i=1

(

Yi −
n

∑

j=1

wijYj

)2




= E





n
∑

i=1

Y 2
i − 2

n
∑

i=1

Yi

n
∑

j=1

wijYj +
n

∑

i=1

(

n
∑

i=1

wijYj

)2




= nσ2 − 2E

[

n
∑

i=1

n
∑

j=1

wijYiYj

]

+
n

∑

i=1

E





(

n
∑

j=1

wijYj

)2




= nσ2 − 2
n

∑

i=1

wiiE
[

Y 2
i

]

+
n

∑

i=1

E

[

n
∑

j=1

w2
ijY

2
j

]

= nσ2 − 2σ2

n
∑

i=1

wii +

n
∑

i=1

n
∑

j=1

w2
ijE

[

Y 2
j

]

= nσ2 − 2σ2
n

∑

i=1

wii + σ2
n

∑

i=1

n
∑

j=1

w2
ij
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E[S] = σ2

[

n− 2
n

∑

i=1

wii +
n

∑

i=1

n
∑

j=1

w2
ij

]

= σ2ν (3.13)

where ν = n− 2
∑n

i=1 wii +
∑n

i=1

∑n
j=1 w2

ij.

Note that ν is the trace of (I−W)T(I−W). Motivated from the fact

E[S]

ν
= σ2,

Hall and Marron (1990) proposed a residual estimator σ̂2
HM which is consis-

tent with (3.2)

σ̂2
HM =

1

ν
YT (I−W)T (I−W)Y (3.14)

where

ν = tr
{

(I−W)T (I−W)
}

= n− 2

n
∑

i=1

wii +

n
∑

i=1

n
∑

j=1

w2
ij

= n

(

1− 2

n

n
∑

i=1

wii +
1

n

n
∑

i=1

n
∑

j=1

w2
ij

)

= c n (3.15)

and the normalizing factor c is defined as follows:

c = 1− 2

n

n
∑

i=1

wii +
1

n

n
∑

i=1

n
∑

j=1

w2
ij.

Therefore when mean function m(·) is zero

1

c n
E[S] =

σ2ν

c n
= σ2 (3.16)
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and (3.16) says σ̂2
HM is an unbiased for σ2. Sarda and Vieu (2000) showed

that the normalizing factor c can be neglected asymptotically as c = 1 +

Op ({nhn}−1) for kernel regression estimators.

The above (3.16) is the motive behind the proposed residual estimator

σ̂2
HM (3.14) which can be written as

σ̂2
HM =

∑n
i=1(Yi −

∑n
j=1 wijYj)

2

n− 2
∑n

i=1 wii +
∑n

i=1

∑n
j=1 w2

ij

. (3.17)

However, proposed estimator σ̂2
HM is not an unbiased estimator of σ2 if

mean function m(·) not equal to zero. In this case, we will have

E[σ̂2
HM ] = σ2 + ν−1

∑

i

δ2
i (3.18)

where

δi = m(xi)−
∑

j

wijm(xj) = (I−W)T (I−W)m(x).

This is shown below:

E[σ̂2
HM ] = ν−1E[S]

= ν−1E





n
∑

i=1

(

Yi −
n

∑

j=1

wijYj

)2




= ν−1E







n
∑

i=1

[

(m(Xi) + εi)−
n

∑

j=1

wij (m(Xj)− εj)

]2






= ν−1E







n
∑

i=1

[

m(Xi)−
n

∑

j=1

wijm(Xj) + εi −
n

∑

j=1

wijεj

]2






= ν−1







nσ2 +

n
∑

i=1

δ2
i + E





n
∑

i=1

(

n
∑

j=1

wijεj

)2










− ν−1

{

2E

[

n
∑

i=1

εi

n
∑

j=1

wijεj

]}
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E[σ̂2
HM ] = ν−1

{

nσ2 +

n
∑

i=1

δ2
i +

n
∑

i=1

E

[

n
∑

j=1

w2
ijε

2
j

]

− 2

n
∑

i=1

wiiE[ε2
i ]

}

= ν−1

{

nσ2 − 2σ2
n

∑

i=1

wii + σ2
n

∑

i=1

n
∑

j=1

w2
ij +

n
∑

i=1

δ2
i

}

= ν−1σ2

[

n− 2
n

∑

i=1

wii +
n

∑

i=1

n
∑

j=1

w2
ij

]

+ ν−1
n

∑

i=1

δ2
i

= σ2 + ν−1

n
∑

i=1

δ2
i . (3.19)

Similarly it can be shown that

Var[σ̂2
HM ] = ν−2

{

∑

j

E(∆2
j ) + 2σ2

∑∑

j 6=k

t2jk

}

(3.20)

where

tjk =
∑

i

wijwik − 2wjk

and

∆j =

(

δj −
∑

i

δiwij

)

εj +

(

1− 2wij

∑

i

w2
ij

)

(ε2
j − σ).

It may be proved that if hn → 0 and nhn → ∞ then σ̂2
HM − E[σ̂2

HM ] is

asymptotically normally distributed with variance n−1Var(ε2
i ). Hall and

Marron (1990) showed that σ̂2
HM has optimal first and second order properties

(3.11). Müller et. al. (2004) showed that, more precisely, Hall and Marron’s

estimator σ̂2
HM is stochastically equivalent to 1

n

∑n
i=1 ε2

i .

3.3 Residual Variance Estimators Based on

Differences

The motivation of the variance estimators based on differencing is slightly

different from those based on curve fitting. Instead of aiming to estimate
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residuals, especially squared residuals, they first estimate a functional of the

variance and then normalize this estimator. Suppose that a constant variance

is to be estimated in our regression model, under the assumptions mentioned

in Section 3.1. The basic idea is using coefficients of some kind of differencing

scheme di,k based on observed data to estimate the ith residual ε̂i:

ε̂i =

g
∑

k=0

di,kYi+k; i = 1, . . . , n− g (3.21)

where g ≥ 1. Note that g only indicates how many and which data points are

to be used to form the residuals; it does not specify a further parameter of the

estimation procedure. The order of differencing scheme g restricts which of

the residuals εis are estimated by the differencing scheme as i = 1, . . . , n−g.

Assumptions on the differencing weights are

g
∑

k=0

di,k (xi+k − xi)
j = 0; j = 0, . . . , g − 1,

g
∑

k=0

d2
i,k = 1 and

n−g
∑

i=1

g
∑

k=0

d2
i,k = n− g. (3.22)

The assumptions lead to variance estimator defined as

σ̂2 =

n−g
∑

i=1

1

n− g

(

g
∑

k=0

di,kYi+k

)2

. (3.23)

Note that as mentioned in Section 3.1 the above defined residual variance

estimator (3.23) is unbiased when the unknown regression function is zero.

We show and discuss this fact for the residual variance estimators based on

the order g = 1 and g = 2 separately later in this section.

Let us introduce a matrix Dg, defined as

Dg =











d1,0 . . . d1,g 0

...
. . .

. . .
...

0 . . . dn−g,0 . . . dn−g,g











(n−g)×n
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Then the residuals defined in (3.21) can also be written in the vector form

ε̂ = DgY. Thus difference-based estimator of the residual variance defined

in (3.23) can also be written in quadratic form which is consistent with (3.2)

as

σ̂2 =
εT ε

(n− g)
=

YTQY

(n− g)

where Q = Dg
TDg and (n− g) is the trace of Q = Dg

TDg.

3.3.1 Rice Estimator σ̂2
R

Rice (1984) proposed a residual variance estimator based on differencing

scheme of order one that is g = 1 to be used in fixed design data. That is,

it satisfies (3.23) for g = 1. The crucial fact is here we estimate only n − 1

residuals by the differencing scheme. Because here i = 1, . . . , n − g ⇒
i = 1, . . . , n− 1. Under this circumstance, residuals are defined as follows:

ε̂i =

1
∑

k=0

di,kYi+k; i = 1, . . . , n− 1. (3.24)

Also variance estimator is defined as

σ̂2 =

n−1
∑

i=1

1

n− 1

(

1
∑

k=0

di,kYi+k

)2

. (3.25)

The coefficients di,k of differencing scheme follow the assumptions:

1
∑

k=0

di,k (xi+k − xi)
j =

1
∑

k=0

di,k = 0 as j = g − 1 = 0,

1
∑

k=0

d2
i,k = 1 and

n−1
∑

i=1

1
∑

k=0

d2
i,k = n− 1. (3.26)

The corresponding differencing scheme in a matrix form D1 of order (n −
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1)× n, defined as

D1 =

















d1,0 d1,1 0 . . . 0

0 d2,0 d2,1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 dn−1,0 dn−1,1

















(n−1)×n

and also the estimated residuals

ε̂ = D1Y =

















d1,0 d1,1 0 . . . 0

0 d2,0 d2,1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 dn−1,0 dn−1,1

































y1

y2

...

yn

















which leads to

ε̂ =

















d1,0y1 + d1,1y2

d2,0y2 + d2,1y3

...

dn−1,0yn−1 + dn−1,1yn

















(n−1)×1

and

σ̂2 = ε̂T ε̂ = YTQY

where Qn×n = D1
TD1.

We should not forget the fact that σ̂2
R is proposed for fixed design data

and hence coefficients of differencing scheme D1(n−1)×n which also satisfied

(3.26) take the values

di,k =











1√
2

k = 0

−1√
2

k = 1

(3.27)

where i = 1, 2, . . . , n− 1.
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Let m(x) = [m(x1), . . . , m(xn)]T then

E[ε̂T ε̂] = σ2tr[Q] + m(x)T
Qm(x). (3.28)

From (3.26)

tr[Q] =

n−1
∑

i=1

1
∑

k=0

d2
ik = n− 1.

This is shown below:

E[ε̂T ε̂] =
1

2

n−1
∑

i=1

E
[

(yi+1 − yi)
2]

=
1

2

n−1
∑

i=1

E
[

y2
i+1 − 2yiyi+1 + y2

i

]

=
1

2

n−1
∑

i=1

(

E
[

y2
i+1

]

+ E
[

y2
i

])

=
1

2

n−1
∑

i=1

{

E [m(xi+1) + εi+1]
2 + E [m(xi) + εi]

2}

=
1

2

n−1
∑

i=1

{

E [m(xi+1)]
2 + E [εi+1]

2 + E [m(xi)]
2 + E [εi]

2}

=
1

2

n−1
∑

i=1

{

2σ2 + E [m(xi+1)]
2 + E [m(xi)]

2}

=
1

2

{

2(n− 1)σ2 +

n−1
∑

i=1

(

m(xi+1)
2 + m(xi)

2
)

}

= (n− 1)σ2 +

{

1

2

n−1
∑

i=1

(

m(xi+1)
2 + m(xi)

2
)

}

. (3.29)

Note that σ̂2 is defined as an unbiased residual variance estimator when either

m(x)T
Qm(x) = 0 or m(x) = 0. Using (3.29), it follows that

σ̂2 =
E[

∑n−1
i=1 ε̂2

i ]

(n− 1)
= σ2 +

1

2(n− 1)

{

n−1
∑

i=1

(

m(xi+1)
2 + m(xi)

2
)

}

.
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Rice (1984) in an unpublished report, proposed the uniquely defined estima-

tor of residual variance as

σ̂2
R =

1

2(n− 1)

n−1
∑

i=1

(yi+1 − yi)
2 . (3.30)

The Gasser et. al. (1986) have shown that

E[σ̂2
R] = σ2 + O

(

n−2
)

, (3.31)

Var[σ̂2
R] =

σ4m4

(n− 1)
+ O

(

n−2
)

, (3.32)

where E[ε4
i ] = m4σ

4.

3.3.2 Gasser Sroka and Jennen-Steinmetz Estimator

σ̂2
GSJ

This approach is based on local fitting and has grown out of work on the

analysis of growth curves (Gasser et. al., 1986). This estimator relies on a

differencing scheme with g = 2. As in (3.21), k = 0, . . . , g ⇒ k = 0, 1, 2

which implies that three observations are being used to form each residual

εi in this case. As a result, only n− 2 residuals
∑n−2

i=1 ε̂i are being estimated

by this differencing scheme. Under this circumstance, residuals are defined

as follows:

ε̂i =

2
∑

k=0

di,kYi+k, i = 1, . . . , n− 2. (3.33)

Since g = 2, assumptions on the the coefficients of differencing scheme as

defined in (3.22) are now take the form of:

2
∑

k=0

di,k (xi+k − xi)
j = 0 where j = 0, 1 ⇒

2
∑

k=0

di,k = 0,

2
∑

k=0

di,k (xi+k − xi) = 0 and

2
∑

k=0

d2
i,k = 1, thus

n−2
∑

i=1

2
∑

k=0

d2
i,k = n− 2.

(3.34)
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The above mentioned assumptions lead to the residual variance estimator to

be defined as

σ̂2 =
1

n− 2

n−2
∑

i=1

(

2
∑

k=0

di,kYi+k

)2

. (3.35)

Here we define the above discussed differencing scheme with an aid of a

matrix D2 where

D2 =

















d1,0 d1,1 d1,2 0 . . . 0

0 d2,0 d2,1 d2,2
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 dn−2,0 dn−2,1 dn−2,2

















(n−2)×n

.

Now (3.33) is equivalent to

ε̂ = D2Y =

















d1,0 d1,1 d1,2 0 . . . 0

0 d2,0 d2,1 d2,2
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 dn−2,0 dn−2,1 dn−2,2

































y1

y2

...

yn

















.

Thus

ε̂ =

















d1,0y1 + d1,1y2 + d1,2y3

d2,0y2 + d2,1y3 + d2,2y4

...

dn−2,0yn−2 + dn−2,1yn−1 + dn−2,2yn

















(n−2)×1

.

Hence, the estimated residuals can be interpreted up to normalization

as differences between the data and the line that joins the two neighbouring

points. This method is equivalent, up to normalization, to estimating residu-

als from fitting a least squares line to successive triple of points, an approach

that has already been sketched by Rice (1984).

This similar to the pseudo-residuals ε̂ are obtained by taking continu-

ous triples of data points (Xi−1, Yi−1), (Xi, Yi), (Xi+1, Yi+1); i = 2, . . . , n−1,
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joining the two outer observations by a straight line and then computing the

difference between this straight line and the middle observation. Let us as-

sume that Y = mX + c is the equation of the straight line joining two outer

observations (Xi−1, Yi−1) and (Xi+1, Yi+1) where

m =
Yi+1 − Yi−1

Xi+1 −Xi−1
and c =

Yi−1Xi+1 − Yi+1Xi−1

Xi+1 −Xi−1
.

Next we estimate the value of Y when X = Xi using the rule Y = mX + c.

That is Ŷi = mXi + c. Hence estimated ith residual at the point (Xi, Yi) is

ε̂i = Ŷi − Yi which leads to

ε̂i =
Yi+1 − Yi−1

Xi+1 −Xi−1

Xi +
Yi−1Xi+1 − Yi+1Xi−1

Xi+1 −Xi−1

− Yi

=
Xi+1 −Xi

Xi+1 −Xi−1

Yi−1 +
Xi −Xi−1

Xi+1 −Xi−1

Yi+1 − Yi

= aiYi−1 + biYi+1 − Yi, i = 2, . . . , n− 1 (3.36)

where ai = (Xi+1−Xi)
(Xi+1−Xi−1)

and bi = (Xi−Xi−1)
(Xi+1−Xi−1)

.

Analogous to previous estimator, next step is to find E[ε̂Tε̂].

E

[

n−2
∑

i=1

ε̂i
2

]

=
n−1
∑

i=2

E
[

(aiYi−1 + biYi+1 − Yi)
2]

=
n−1
∑

i=2

E
[

a2
i Y

2
i−1 + Y 2

i + b2
i Y

2
i+1 + 2aibiYi−1Yi+1

]

− E [2aiYi−1Yi]− E [2biYi+1Yi]

=

n−1
∑

i=2

(

a2
i E

[

Y 2
i−1

]

+ E
[

Y 2
i

]

+ b2
i E

[

Y 2
i+1

])

=

n−1
∑

i=2

a2
i E [m(Xi−1) + εi−1]

2 + E [m(Xi) + εi]
2

+ b2
i E [m(Xi+1) + εi+1]

2
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E

[

n−2
∑

i=1

ε̂i
2

]

=
n−1
∑

i=2

a2
i E [m(Xi−1)]

2 + a2
i E [εi−1]

2 + E [m(Xi)]
2 + E [εi]

2

+ b2
i E [m(Xi+1)]

2 + b2
i E [εi+1]

2

=

n−1
∑

i=2

{(

a2
i + b2

i + 1
)

σ2 + a2
i m(Xi−1)

2 + m(Xi)
2 + b2

i m(Xi+1)
2
}

= (n− 2)
(

a2
i + b2

i + 1
)

σ2 +

{

n−2
∑

i=1

a2
i m(Xi−1)

2 + m(Xi)
2

}

+

{

n−2
∑

i=1

b2
i m(Xi+1)

2

}

= (n− 2)c2
i σ

2 +

{

n−2
∑

i=1

a2
i m(Xi−1)

2 + m(Xi)
2 + b2

i m(Xi+1)
2

}

,

where c2
i = (a2

i + b2
i + 1) =

(

Xi+1−Xi

Xi+1−Xi−1

)2

+
(

Xi−Xi−1

Xi+1−Xi−1

)2

+ 1.

Gasser et. al. (1986) showed that

E
[

∑n−2
i=1

ε̂2
i

c2i

]

n− 2
= σ2 + O(n−2), (3.37)

for m(·) twice differentiable and proposed the following residual variance

estimator σ̂2
GSJ for fixed designed data

σ̂2
GSJ =

1

(n− 2)

n−2
∑

i=1

ε̂2
i

c2
i

=
1

(n− 2)

n−2
∑

i=1

[aiYi−1 + biYi+1 − Yi]
2

c2
i

. (3.38)

The estimated residuals can also be rewritten as divided differences:

ε̂i

ci
=

(xi+1 − xi)(xi − xi−1)

xi+1 − xi−1

(

Yi+1 − Yi

xi+1 − xi
− Yi − Yi−1

xi − xi−1

)

.
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The underlying idea can be extended in a straightforward manner to fit higher

order polynomials and use more neighboring points. The resulting differenc-

ing scheme again depends on the design points of explanatory variable X.

For equidistant xi design points, ai = bi = 1/2 and hence c2
i = (1

2
)2 +

(1
2
)2 + 1 = 6

4
. Now (3.38) becomes to

σ̂2
GSJ =

1

(n− 2)

n−1
∑

i=2

(

1
2
Yi−1 + 1

2
Yi+1 − Yi

)2

[

(1
2
)2 + (1

2
)2 + 1

]

=
1

(n− 2)

∑n−1
i=2 (Yi−1 + Yi+1 − 2Yi)

2

4× 6
4

=
1

6(n− 2)

n−1
∑

i=2

(Yi−1 + Yi+1 − 2Yi)
2 . (3.39)

The estimator given in (3.39) is equivalent to

σ̂2
GSJ =

1

(n− 2)

n−1
∑

i=2

(

1√
6
Yi−1 +

1√
6
Yi+1 −

2√
6
Yi

)2

=
1

(n− 2)

n−1
∑

i=2

(

1√
6
Yi−1 +

1√
6
Yi+1 −

√

2

3
Yi

)2

.

Hence second order difference sequence defined by D2,0 is of the form

di,k =











1√
6

k = 0, 2

−
√

2
3

k = 1.

(3.40)

Note that, in general, above di,k values (3.40) can be obtained solving the

conditions given in (3.34).

The following assumptions have been imposed to obtain asymptotic results

of σ̂2
GSJ :

1. There are no multiple measurements at any design point i.e. a = x1 <

x2 < . . . < xn = b; Without loss of generality we take a = 0, b = 1.

2. max |xi − xi−1| = O( 1
n
).
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3. εis are independent and identically distributed with E[εi] = 0, Var[εi] =

σ2 and E[ε4
i ] <∞.

4. The function m(·) is continuous.

Define C to be a (n− 2)× (n− 2) diagonal matrix with elements Cii = ci+1

and A to be (n − 2) × n tri-diagonal with elements Aii = ai+1, Ai,i+1 =

−1, Ai,i+2 = bi+1 and Q = AT C2A. Gasser et. al. (1986) have showed that

the estimator of σ2,

σ̂2
GSJ = (n− 2)−1‖C−1ε̂‖2

and

Var[σ̂2
GSJ ] =

2σ4

(n− 2)2
tr(Q2)+

σ4

(n− 2)2
(m4− 3)

n
∑

i=1

Q2
ii + m3O(

1

n3
) + O(

1

n5
)

(3.41)

where E[ε3
i ] = m3σ

3 and also proved the following theorem.

Theorem 4 Given Assumptions 1 − 4 above, σ̂2
GSJ is a strongly consistent

estimate of σ2. Assuming in addition that |m(t)−m(s)| ≤ const|t− s|γ, for

t, s ∈ [0, 1], γ > 1
4
, we obtain

U−1
n (σ̂2

GSJ − σ2) ∼ N(0, σ4),

where

Un =
1

(n− 2)

{

2tr(Q2) + (m4 − 3)

n
∑

i=1

Q2
ii

}

.

If the bias term of σ̂2
GSJ is disregarded, the finite sample distribution of σ̂2

GSJ

for normally distributed residuals is shown to be,

σ̂2
GSJ ∼ Y =

σ2

(n− 2)

n−2
∑

j=2

λjχ
2
j (3.42)
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where χ2
j are independent χ2 variables with one degree of freedom and the

λj are eignevalues of Q. As in Box (1954), by equating first two moments

one can show

σ̂2
GSJ ∼ qχ2

v (3.43)

where q = σ2tr(Q2)/(n− 2)2 and v = (n− 2)2/tr(Q2).

Alternatively, one might take log[σ̂2
GSJ ] as normally distributed with expec-

tation log[σ̂2] and variance 2tr(Q2)/(n− 2)2.

3.3.3 Estimator Based on a Covariate-Matched

U-Statistic σ̂2
MSW

For known regression function m(·) the errors εi = Yi−m(xi) are observable

and the residual variance σ2 could be estimated by the second sample moment

1

n

n
∑

i=1

ε2
i . (3.44)

Alternatively sample variance based on errors could be used. The motive

of proposed estimator is a sample variance S2 based on U-statistic. Let

X1, . . . , Xn be a sample of independent and identically distributed random

variables with a distribution function F (x) ∈ F where F be the set of all

distributions with second moment finite:

F =

{

F :

∫

x

|x|2dF (x) <∞
}

.

Then we can define the variance functional on F by

Var[F ] =

∫

x1

∫

x2

1

2
(x1 − x2)

2dF (x1)dF (x2),
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which is estimated by the sample variance S2

S2 =
1

n(n− 1)

∑

1≤i<j≤n

∑

i6=j

1

2
(Xi −Xj)

2. (3.45)

Using (3.45) sample variance of ε1, . . . , εn based on U-statistic can be written

as:

σ̂2 =
1

n(n− 1)

n
∑

i=1

n
∑

j=1

1

2
(εi − εj)

2 (3.46)

which is asymptotically equivalent to (3.44). Motivated by the U-statistic

representation in (3.46) Müller, Schick and Wefelmeyer (2003) have intro-

duced the covariate-matched U-statistic type variance estimator σ̂2
MSW based

on differencing weight scheme D:

σ̂2
MSW =

1

n(n− 1)

∑∑

i6=j

1

2
[Yi − Yj]

2Dij, (3.47)

where the random weights Dij base on the predictor variable X only and

will be small or zero if Xi and Xj are not close. Introduced residual vari-

ance estimator σ̂2
MSW is related to difference-based estimators for both fixed

design and random design data. However, there is no direct relationship to

(3.21) and (3.23) as in other two residual variance estimators σ̂2
R and σ̂2

GSJ

discussed in Sections 3.2.1 and 3.2.2 respectively. But the motive is same as

the previous two estimators which is estimation of regression function m(·)
is not required as for residual variance estimators based on curve fitting.

The random weights Dij are defined in a way to guarantee σ̂2
MSW behaves

asymptotically like the sample second moment based on errors i.e. it has i.i.d

representation

σ̂2
MSW =

1

n

n
∑

i=1

ε2
i + op(n

− 1
2 ).

Thus, unlike other residual estimators based on differencing (3.30 and

3.35) σ̂2
MSW has been shown efficient for σ2 (Müller et. al., 2003). Kernel
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functions have been used for the construction of explicit differencing weights

Dij .

The Asymptotic Behaviour of the Covariate-Matched U-Statistic

All the materials presented here are taken from Müller et. al. (2003). The

following assumptions are made on the error distribution and the weights.

1. ε is centered and possesses a finite fourth moment:

E[ε] = 0 and E[ε4] < ∞.

2. The differencing weights Dij depend on the covariates but not on the

errors and they are non-negative, symmetric and average to one:

Dij ≥ 0, Dij = Dji; i, j = 1, . . . , n, i 6= j

1

n(n− 1)

∑∑

i6=j

Dij = 1.

The following theorem gives conditions under which σ̂2
MSW behaves asymp-

totically like the average of the squared errors.

Theorem 5 Suppose that assumptions 1 and 2 hold, and that

1

n(n− 1)

∑∑

i6=j

D2
ij = op(n), (3.48)

1

n

n
∑

i=1

(D̄i − 1)2 = op(1), (3.49)

1

n

n
∑

i=1

∆2
i = op(1), (3.50)

1

n(n− 1)

∑∑

i6=j

(m(xi)−m(xj))
2Dij = op(n

−1/2). (3.51)
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Then

σ̂2
MSW =

1

n

n
∑

i=1

ε2
i + op(n

−1/2), (3.52)

where

D̄i =
1

n− 1

∑

j:j 6=i

Dij, i = 1, . . . , n

and

∆i =
1

n− 1

∑

j:j 6=i

(m(xi)−m(xj))dij.

Also they have showed that
√

n(σ̂2
MSW − σ2) converges in distribution to a

normal random variable with mean zero and variance
∫

x
x4dF (x) − σ4. To

satisfy above two properties (3.48) and (3.49), the bandwidth hn will need

to satisfy nhn →∞ as n −→∞.

The following additional assumptions have been imposed in order to con-

struct differencing weights.

3. The covariate X takes values in the interval [0, 1] and possesses a density

f(x) whose restriction to [0, 1] is continuous and positive.

4. The regression function m(·) satisfies the Hölder condition (Müller et. al.,

2003):

|m(s)−m(t)| ≤ H|s− t|β, s, t ∈ [0, 1]

for some positive constant H and some positive β with β ≤ 1.

Let K(·) be a bounded symmetric density with compact support [−1, 1].

Then

dij =
1

2

[

1

ĝi
+

1

ĝj

]

Khn(Xi −Xj), (3.53)

where

Khn(X) =
1

hn
K

(

x

hn

)

and ĝi =
1

n− 1

∑

j:j 6=i

Khn(xi − xj).
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The residual estimator σ̂2
MSW corresponding to the above weight scheme is:

σ̂2
MSW =

1

n(n− 1)

∑∑

i6=j

1

2
[Yi − Yj]

2 1

2

(

1

ĝi

+
1

ĝj

)

Khn(Xi −Xj) (3.54)

and asymptotic distribution of σ̂2
MSW can be formed by the following theorem

Theorem 6 Suppose assumptions 1, 3 and 4 hold and bandwidth hn satisfy

n
1
2 h2β

n → 0 and nhn/ log n →∞ then

σ̂2
MSW =

1

n

n
∑

i=1

ε2
i + op(n

−1
2 ). (3.55)

3.4 Comparison of the Different Approaches

We carried out a simulation study to assess bias and standard error (SE) of

residual variance estimators based on differences and those based on curve

fitting. The following three regression models were considered:

Model A: Y = m(x) + ε = 4x + 3 + ε,

Model B: Y = m(x) + ε = 2 exp(−x2/0.72) + 3 exp(−(x− 1)2/0.98) + ε,

Model C: Y = m(x) + ε = sin2(0.75x) + 3 + ε.

Results were compared for fairly small value of residual variance, σ2 = 0.05.

If these estimators perform better for small value, they will most likely do

for moderate to large values as well. The sample size was varied from very

small that is n = 10 to large, that is 500. Three types of data design on [0, 1]

were studied:

Design 1: Fixed equidistant design: xi = i/n,

Design 2: Fixed non-equidistant design: xi 6= i/n,

Design 3: Random design: xis are uniformly distributed on [0, 1].

Errors were generated from

(i) symmetric: Normal distribution ε ∼ N(0, 0.05),

97



(ii) skewed: Exponential distribution ε ∼ Expo(λ) and

(iii) robust symmetric: Laplace distribution ε ∼ Laplace(0, β).

Values for scale parameters λ (= σ =
√

0.05) and β (= σ/
√

2 =
√

0.05/2)

were selected to be consistent with Var[ε] = 0.05 regardless of distribution

function for comparison purpose. To obtain reasonably accurate estimates

15000 replications were considered to be sufficient.

3.4.1 Fixed Design

The data design, distribution used to generate errors, sample size n, average

of estimated values of Rice estimator (σ̂2
R), σ̂2

R and Gasser et. al. estimator

(σ̂2
GSJ), σ̂2

GSJ along with their standard errors are reported in Table 3.1,

Table 3.2 and Table 3.3 for Models A, B and C respectively. The statistics

that appear in the tables are defined below:

• σ̂2
R = 1

nsim

∑nsim

j=1 (σ̂2
R)j

• SE
(

σ̂2
R

)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(σ̂2
R)j − σ̂2

R

)2
}1/2

where (σ̂2
R)j is the Rice estimator for jth simulated sample.

• σ̂2
GSJ = 1

nsim

∑nsim

j=1 (σ̂2
GSJ)j

• SE
(

σ̂2
GSJ

)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(σ̂2
GSJ)j − σ̂2

GSJ

)2
}1/2

where (σ̂2
GSJ)j is the Gasser et. al. estimator for jth simulated sample.

In each table the first column lists the three different error distributions,

the second column lists the sample sizes n and average values along with

their standard errors of Rice estimator σ̂2
R and Gasser et. al. estimator σ̂2

GSJ

are given in the columns 3-6 and columns 7-10 for both equidistant and

non-equidistant designed data respectively.

Table 3.1 shows the performance of each residual estimator when un-

derline regression function is in the linear form. All three error distributions
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shows similar results in overall. Not only σ̂2
R shows significantly higher values

for non-equidistant designed data compared to equidistant data but also fails

to boost the accuracy of the estimate even for large sample sizes. Conversely,

σ̂2
R produces more precise estimates for large sample sizes n for equidistant

data. On the contrary Gasser et. al. estimator σ̂2
GSJ performed equally well

in both equidistant and non-equidistant designed data even for small sample

sizes. As expected, standard errors decrease with increasing sample sizes.

Both Tables 3.2 and 3.3 illustrate the performance of each residual estima-

tor when the underline regression function is in the nonlinear form. The two

models A and B are selected in such a way that the shape of the underlying

regression functions are completely different from each other to investigate

whether the performance of each residual variance estimator heavily depends

on the model structure or not. Unlike in Model A both residual estimates

σ̂2
R and σ̂2

GSJ shows similar behaviour despite the consequences of differences

in the data structures as well as shape of the underlying regression function.

The σ̂2
R estimator overestimates the residual variance in the case of non-

equidistant designed data. But overestimation effect reduces with increasing

sample size and hence produces more accurate results for large sample sizes

only. However, in the case of equidistant data σ̂2
R tends to produce better

results even for small sample size and excellent results for medium sample

sizes.

Observe that the performance of σ̂2
GSJ is slightly different from Model B

to Model C. The values of σ̂2
GSJ for equidistant data are just about those

for non-equidistant in the Model C. Nonetheless σ̂2
GSJ values corresponding

to Model B are higher for non-equidistant data compared to equidistant

data as in σ̂2
R estimation method. Besides the discrepancy becomes worse in

particular for small sample size as the σ̂2
GSJ values are even higher than those

99



of σ̂2
R values. However σ̂2

GSJ method produces more accurate estimates for

moderate sample sizes unlike in σ̂2
R estimation method. As typically expected

standard errors decrease with increasing sample sizes.

Table 3.1: Fixed Design Data Using Model A for σ2 = 0.05.

Equidistant Non-equidistant

ε n σ̂2
R SE

(

σ̂2
R

)

σ̂2
GSJ SE

(

σ̂2
GSJ

)

σ̂2
R SE

(

σ̂2
R

)

σ̂2
GSJ SE

(

σ̂2
GSJ

)

Normal 10 .1300 .0003 .0498 .0003 1.8733 .0019 .0499 .0003
30 .0588 .0001 .0499 .0001 1.8214 .0011 .0499 .0002
50 .0532 .0001 .0499 .0001 1.8986 .0009 .0501 .0001

100 .0508 .0001 .0499 .0001 1.4234 .0005 .0500 .0001
500 .0500 .0000 .0500 .0000 1.3959 .0002 .0500 .0000

Expo 10 .1294 .0004 .0498 .0004 1.8714 .0019 .0494 .0004
30 .0591 .0002 .0502 .0002 0.9507 .0008 .0504 .0003
50 .0532 .0002 .0501 .0002 1.5214 .0007 .0499 .0002

100 .0506 .0001 .0498 .0001 1.2826 .0005 .0498 .0001
500 .0501 .0001 .0500 .0001 1.4372 .0002 .0500 .0001

Laplace 10 .1300 .0003 .0502 .0004 1.8736 .0019 .0498 .0004
30 .0590 .0002 .0501 .0002 1.0392 .0008 .0503 .0002
50 .0529 .0001 .0497 .0002 1.2988 .0007 .0502 .0002

100 .0508 .0001 .0500 .0001 1.2725 .0005 .0499 .0001
500 .0500 .0000 .0500 .0000 1.3998 .0002 .0499 .0001
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Table 3.2: Fixed Design Data Using Model B for σ2 = 0.05.

Equidistant Non-equidistant

ε n σ̂2
R SE

(

σ̂2
R

)

σ̂2
GSJ SE

(

σ̂2
GSJ

)

σ̂2
R SE

(

σ̂2
R

)

σ̂2
GSJ SE

(

σ̂2
GSJ

)

Normal 10 .0528 .0002 .0503 .0003 .0723 .0003 .0767 .0004
30 .0503 .0001 .0499 .0001 .0640 .0002 .0552 .0002
50 .0501 .0001 .0499 .0001 .0746 .0001 .0559 .0001

100 .0500 .0001 .0499 .0001 .0681 .0001 .0580 .0001
500 .0500 .0000 .0500 .0000 .0666 .0000 .0568 .0000

Expo 10 .0526 .0004 .0502 .0004 .0716 .0004 .0761 .0005
30 .0506 .0002 .0503 .0002 .0681 .0003 .0534 .0003
50 .0502 .0002 .0501 .0002 .0659 .0002 .0580 .0002

100 .0499 .0001 .0498 .0001 .0704 .0001 .0557 .0001
500 .0500 .0001 .0500 .0001 .0661 .0001 .0574 .0001

Laplace 10 .0531 .0003 .0507 .0004 .0720 .0004 .0764 .0005
30 .0504 .0002 .0501 .0002 .0679 .0002 .0533 .0002
50 .0499 .0001 .0497 .0002 .0657 .0002 .0579 .0002

100 .0501 .0001 .0500 .0001 .0702 .0001 .0555 .0001
500 .0500 .0000 .0500 .0000 .0660 .0001 .0570 .0001

Table 3.3: Fixed Design Data Using Model C for σ2 = 0.05.

Equidistant Non-equidistant

ε n σ̂2
R SE

(

σ̂2
R

)

σ̂2
GSJ SE

(

σ̂2
GSJ

)

σ̂2
R SE

(

σ̂2
R

)

σ̂2
GSJ SE

(

σ̂2
GSJ

)

Normal 10 .0514 .0002 .0498 .0003 .0803 .0003 .0517 .0003
30 .0501 .0001 .0499 .0003 .0761 .0002 .0505 .0002
50 .0500 .0001 .0499 .0001 .0740 .0001 .0506 .0001

100 .0500 .0001 .0499 .0001 .0698 .0001 .0505 .0001
500 .0500 .0000 .0500 .0001 .0703 .0000 .0505 .0000

Expo 10 .0511 .0004 .0498 .0004 .0798 .0005 .0513 .0004
30 .0504 .0002 .0502 .0002 .0646 .0002 .0507 .0003
50 .0501 .0002 .0501 .0002 .0729 .0002 .0505 .0002

100 .0499 .0001 .0501 .0001 .0683 .0001 .0502 .0001
500 .0500 .0001 .0500 .0001 .0709 .0001 .0505 .0001

Laplace 10 .0516 .0003 .0503 .0004 .0802 .0004 .0516 .0004
30 .0502 .0002 .0501 .0002 .0654 .0002 .0505 .0002
50 .0498 .0001 .0497 .0002 .0684 .0002 .0508 .0002

100 .0501 .0001 .0500 .0001 .0660 .0001 .0503 .0001
500 .0500 .0000 .0500 .0000 .0706 .0001 .0504 .0001
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3.4.2 Random Design

For random design data, the distribution used to generate errors, sample size

n, value of r, averages of Hall and Marron estimator (σ̂2
HM), σ̂2

HM and estima-

tor based on a covariate-matched U-statistic (σ̂2
MSW ), σ̂2

MSW along with their

standard errors which are enclosed in brackets underneath each estimated av-

erage residual variance are shown in the tables given below. Table 3.4 gives

results for Model A while results for Model B and Model C are given in Tables

3.5 and 3.6 respectively. Standard normal kernel k(t) = (2
√

π)−1 exp(−0.5t2)

is used where necessary and several choices of bandwidth hn (= n−r) for differ-

ent values of r (= 0.21, 0.51, 0.76) were employed. The statistics that appear

in the tables are defined below:

• σ̂2
MSW = 1

nsim

∑nsim

j=1 (σ̂2
MSW )j

• SE
(

σ̂2
MSW

)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(σ̂2
MSW )j − σ̂2

MSW

)2
}1/2

where (σ̂2
MSW )j is the residual variance estimator based on covariate-matched

U-statistic for jth simulated sample.

• σ̂2
HM = 1

nsim

∑nsim

j=1 (σ̂2
HM)j

• SE
(

σ̂2
HM

)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(σ̂2
HM)j − σ̂2

HM

)2
}1/2

where (σ̂2
HM)j is the Hall and Marron residual estimator for jth simulated

sample.

In each table, the first column gives the sample size n, the second, value of

r ∈ (0, 1) and columns 3-4, columns 5-6 and the last two columns 7-8 show

average values of each estimator and its standard error for three different

error distributions. Similar to what we observed in fixed design, the effect of

using diverse error distributions on estimation of residual variance estimators

is less significant. Because the differences between average residual variance

estimates from the three different distributions are very close to each other.
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Table 3.4: Random Design Data Using Model A for σ2 = 0.05.

Normal Exponential Laplace

n r σ̂2
HM σ̂2

MSW σ̂2
HM σ̂2

MSW σ̂2
HM σ̂2

MSW

10 .21 1.112 .962 1.116 .965 1.113 .962
(.0025) (.0018) (.0026) (.0019) (.0026) (.0019)

.51 .618 .370 .617 .371 .618 .372
(.0009) (.0007) (.0009) (.0007) (.0009) (.0007)

.76 .284 .132 .284 .133 .284 .133
(.0005) (.0004) (.0006) (.0005) (.0006) (.0004)

30 .21 .965 .760 .965 .760 .965 .761
(.0010) (.0006) (.0010) (.0006) (.0010) (.0006)

.51 .265 .117 .264 .117 .264 .117
(.0002) (.0002) (.0003) (.0003) (.0002) (.0002)

.76 .096 .059 .097 .060 .097 .060
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

50 .21 .888 .663 .889 .663 .888 .663 3
(.0006) (.0003) (.0007) (.0004) (.0007) (.0003)

.51 .182 .081 .182 .081 .182 .081
(.0001) (.0001) (.0002) (.0002) (.0002) (.0001)

.76 .071 .054 .071 .053 .071 .053
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

100 .21 .777 .532 .778 .532 .778 .534
(.0003) (.0002) (.0004) (.0002) (.0003) (.0002)

.51 .118 .061 .117 .061 .117 .061
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

.76 .058 .051 .057 .051 .057 .051
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

500 .21 .522 .280 .522 .280 .522 .235
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

.51 .064 .051 .064 .051 .064 .034
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)

.76 .051 .050 .051 .050 .051 .032
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)

Overall averages of both estimators σ̂2
HM and σ̂2

MSW turn out to be more

precise for higher values of r and n. σ̂2
HM values are much higher compared

to those of σ̂2
MSW for small to moderate sample sizes in Model A which is a

linear model. Obviously it achieves high level of accuracy when sample sizes

are large and/or higher values of r. However, both averages σ̂2
HM and σ̂2

MSW

overestimate the residual variance especially for small sample sizes n and r

values. Table 3.5 and Table 3.6 demonstrate that the difference between the

results of σ̂2
HM and σ̂2

MSW for Model B and Model C is less significant.
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Table 3.5: Random Design Data Using Model B for σ2 = 0.05.

Normal Exponential Laplace

n r σ̂2
HM σ̂2

MSW σ̂2
HM σ̂2

MSW σ̂2
HM σ̂2

MSW

10 .21 .0655 .0647 .0658 .0650 .0660 .0652
(.0002) (.0002) (.0004) (.0004) (.0003) (.0003)

.51 .0622 .0600 .0620 .0598 .0619 .0597
(.0002) (.0002) (.0004) (.0004) (.0003) (.0003)

.76 .0571 .0541 .0569 .0540 .0572 .0542
(.0002) (.0002) (.0004) (.0004) (.0003) (.0003)

30 .21 .0647 .0634 .0645 .0632 .0646 .0634
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

.51 .0566 .0536 .0563 .0534 .0563 .0534
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

.76 .0517 .0505 .0523 .0510 .0521 .0509
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

50 .21 .0641 .0625 .0644 .0629 .0645 .0630
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

.51 .0545 .0519 .0548 .0522 .0547 .0521
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

.76 .0508 .0502 .0505 .0498 .0506 .0500
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

100 .21 .0636 .0617 .0635 .0616 .0635 .0616
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

.51 .0525 .0507 .0524 .0507 .0524 .0507
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

.76 .0503 .0501 .0502 .0499 .0502 .0499
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

500 .21 .0610 .0583 .0610 .0583 .0610 .0583
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)

.51 .0506 .0501 .0505 .0500 .0505 .0500
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)

.76 .0500 .0500 .0501 .0501 .0501 .0501
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)

Note that both Model B and Model C are nonlinear and σ̂2
MSW estimator

produces reasonable estimates even for small sample sizes and r values.
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Table 3.6: Random Design Data Using Model C for σ2 = 0.05.

Normal Exponential Laplace

n r σ̂2
HM σ̂2

MSW σ̂2
HM σ̂2

MSW σ̂2
HM σ̂2

MSW

10 .21 .0663 .0641 .0671 .0648 .0666 .0644
(.0002) (.0002) (.0004) (.0004) (.0003) (.0003)

.51 .0589 .0552 .0587 .0550 .0587 .0550
(.0002) (.0002) (.0004) (.0004) (.0003) (.0003)

.76 .0537 .0513 .0536 .0512 .0537 .0513
(.0002) (.0002) (.0004) (.0004) (.0003) (.0003)

30 .21 .0641 .0611 .0639 .0609 .0640 .0610
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

.51 .0534 .0511 .0532 .0509 .0532 .0509
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

.76 .0507 .0501 .0513 .0507 .0512 .0506
(.0001) (.0001) (.0002) (.0002) (.0002) (.0002)

50 .21 .0629 .0596 .0632 .0598 .0632 .0599
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

.51 .0522 .0506 .0525 .0509 .0524 .0508
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

.76 .0503 .0500 .0500 .0497 .0501 .0498
(.0001) (.0001) (.0002) (.0002) (.0001) (.0001)

100 .21 .0613 .0577 .0612 .0576 .0614 .0577
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

.51 .0511 .0502 .0511 .0502 .0511 .0501
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

.76 .0501 .0500 .0500 .0499 .0500 .0499
(.0001) (.0001) (.0001) (.0001) (.0001) (.0001)

500 .21 .0575 .0538 .0575 .0538 .0575 .0538
(.0001) (.0000) (.0000) (.0001) (.0000) (.0000)

.51 .0502 .0500 .0501 .0499 .0502 .0500
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)

.76 .0500 .0500 .0501 .0501 .0501 .0501
(.0000) (.0000) (.0001) (.0001) (.0000) (.0000)
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Final Remarks:

When the fixed non-equidistant designed data is being used to estimate resid-

ual variance, Gasser et. al. σ̂2
GSJ estimator behaves somewhat similar to the

Rice estimator σ̂2
R. However we should not overlook the fact that σ̂2

GSJ is

less amount of overestimated compared to σ̂2
R. Besides the precision of σ̂2

GSJ

estimator was to a great extent higher compared to σ̂2
R estimator as for the

fixed equidistant design.

The Hall and Marron estimator σ̂2
HM behaves well but may be somewhat

less accurate for small to moderate sample sizes, r values and when the

underline function is linear which is less important as we focus on nonlinear

functions. Consequently, the σ̂2
MSW estimator is a reasonable compromise.

Therefore the Gasser et. al. estimator σ̂2
GSJ is more suitable for fixed

designed data whereas σ̂2
MSW performs well in the case of random designed

data.
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Chapter 4

Fixed-width Confidence Bands

for Nonparametric Kernel

Regression

4.1 Introduction

Methods for obtaining confidence bands for m(x) at a given point x = x0 can

be found in Hall and Titterington (1988), Eubank and Speckman (1993) and

Diebolt (1995). The most widely used confidence band for m(x) is based on

the theorem of Bickel and Rosenblatt (1973) for kernel estimation of a density

function. Bias-corrected confidence bands for general nonparametric regres-

sion models are considered by Xia (1998). In principle, confidence intervals

can be obtained from asymptotic normality results for a kernel estimator of

m(x). However, the limiting bias and variance depend on unknown quanti-

ties which have to be estimated consistently in order to construct asymptotic

confidence intervals.

This chapter proposes new classes of sequential stopping rules for final
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sample size N in constructing fixed-width confidence intervals for the un-

known regression function m(x) at a point x = x0 with a preassigned level of

accuracy. We employ Stein’s two-stage sequential procedure, modified two-

stage sequential procedure and purely sequential procedure for fixed equidis-

tant design and random design data. These sequential procedures are exten-

sively applied to the problem of constructing fixed-width confidence interval

for an unknown density estimation f(x) at a known point x0 using non-

parametric kernel density estimation. Wagman and Davis (1975) presented

some sequential procedures which satisfy certain error control. Stute (1983)

considered similar type of problem and presented asymptotic results for the

stopping time. Isogai (1987) considered procedure for construction of confi-

dence interval for a nonparametric density function at a given point based on

recursive estimation of the kernel function. He also investigated the asymp-

totic consistency of the estimated density function. Kundu and Martinsek

(1994) and Kundu (1994) looked at the problem of estimating f(x) via Stein’s

two-stage and purely sequential procedures.

Motivated by existing research on sequential nonparametric kernel den-

sity estimation we extend the use of sequential procedures to nonparametric

kernel regression estimation. Fixed-width confidence intervals are developed

using both Nadaraya–Watson and local linear kernel estimators of nonpara-

metric regression with data-driven bandwidths. The sample size is optimized

using the purely, two-stage and modified two-stage sequential procedures to-

gether with asymptotic properties of the Nadaraya–Watson and local linear

estimators. In contrast to fixed sampling procedures, sequential procedures

draw observations one at a time or in batches to allow data analyst to look

at an appropriate stopping time along with an appropriate statistical deci-

sion or to continue sampling. Sequential analysis, in general, comes in handy
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when the experimenter’s objective is to control the error of estimation at

some preassigned level. Whether one wants to estimate m(x) at one single

point x0 or for all x ∈ R, depending on the specific goal and error crite-

rion, one would like to determine the sample size n in an optimal fashion.

That is, in order to have the error controlled at a preassigned level, sam-

ple size has to be adaptively estimated in the process by a positive integer

valued random variable N where the event [N = n] will depend only on

(X1, Y1), . . . , (Xn, Yn) for all n ≥ 1. Finally m(x0) is estimated by m̂hN
(x0)

constructed from (X1, Y1), . . . , (XN , YN).

As given in Section 2.2, the kernel estimate of unknown regression func-

tion m(x) at a given point x = x0 can be written as

m̂hn,q(x0) =

n
∑

i=1

n
∑

j=1

wijyi (4.1)

where q = NW for Nadaraya–Watson estimator as in (2.18), q = LL for

local linear estimator as in (2.19). We describe an estimation procedure of

nonparametric regression model at a given point m(x0) by some appropri-

ately constructed fixed-width (2d) confidence interval IN with the coverage

probability at least 1− α, such that

Pr (m(x0) ∈ IN = [m̂hn,q(x0)± d]) ≥ 1− α. (4.2)

Here, d(> 0) and α ∈ (0, 1) are two preassigned values. There are many

difficulties with finding a good solution for an optimal sample size nopt from

the inequality (4.2). Firstly, we must derive the distribution of |m̂hn,q(x0)−
m(x0)| ; secondly, the practical implementation of the kernel regression esti-

mator requires the specification of the bandwidth hn.

In this chapter we follow the sequential procedures in light of a optimal

sample size calculations given in Section 4.2. The construction of fixed-width
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confidence intervals for kernel regression estimators for different coverage

probabilities using fixed equidistant design data and random design data

are presented in Section 4.3 and Section 4.4 respectively. The asymptotic

properties and performance of proposed sequential stopping rules are assessed

and compared through their coverage accuracy using a large scale simulation

study and results are given in Section 4.5.

4.2 Fixed-Width Confidence Interval

Given d(> 0), α ∈ (0, 1) and N = n from (4.2), we wish to claim

Pr (m̂hn,q(x0)− d < m(x0) < m̂hn,q(x0) + d) ≥ 1− α, (4.3)

which can rewrite as

Pr

(

−d
√

Var [m̂q,hn(x0)]
<

m̂hn,q(x0)−m(x0)
√

Var [m̂hn,q(x0)]
<

d
√

Var [m̂hn,q(x0)]

)

≥ 1−α.

From Sections 2.3 and 2.4,

Biasq = E[m̂hn,q(x)]−m(x)

where

Biasq =







h2
n

2
m′′(x)

∫

u
u2K(u)du + h2

nµ2(K)m′(x)f ′(x)
f(x)

+ o(h2
n) if q=NW

h2
n

2
m′′(x)

∫

u
u2K(u)du + o(h2

n) if q=LL

and

Var[m̂hn,q(x)] =
Bσ2

nhnf(x)
+ o

{

(nhn)−1
}

where x is held fixed and B =
∫

u
K2(u)du.
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However, as discussed in Sections 2.3 and 2.4, since hn → 0 and nhn → ∞
as n →∞,

E [m̂hn,q(x)] → m(x)

and

Var [m̂hn,q(x)] → Bσ2

nhnf(x)

where x is held fixed.

In order to determine the optimal sample size nopt or the stopping rule

that would attain (4.3) we use the following theorem introduced by Schuster

(1972)

Theorem 7 Let kernel function K(·) satisfy
∫

u
uK(u)du = 0,

∫

u
u2K(u)du ≤

∞, K(u) and |uK(u)| are bounded, hn is such that lim nh3
n = ∞ and lim nh5

n =

0. Suppose x1, . . . , xk are distinct points and g(xi) > 0 for i = 1, 2, . . . , k.

If E[Y 3] is finite and if g′, w′, v′, g′′ and w′′ exist and bounded where g(x) =
∫

y
f(x, y)dy, w(x) =

∫

y
yf(x, y)dy and v(x) =

∫

y
y2f(x, y)dy respectively,

then
√

nhn (m̂hn(x1)−m(x1), . . . , m̂hn(xk)−m(xk))
d→ Z∗

where Z∗ is multivariate normal with mean vector 0 and diagonal covari-

ance matrix C = [Cii] where Cii = Var[Y |X = xi]
∫

u
K2(u)du/g(xi) (i =

1, . . . , k).

The complete proof of the above theorem is given in Schuster (1972). In the

univariate case we have

√

nhn [m̂hn,q(x0)−m(x0)] ∼ N

(

0,
Bσ2

f(x)

)

. (4.4)

Therefore
m̂hn,q(x0)−m(x0)

σ
√

B
f(x)nhn

∼ N(0, 1) as n →∞. (4.5)
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Since half width of the interval m̂hn,q(x0)−m(x0) is fixed for a given preas-

signed value d (> 0), we require

Pr

(
∣

∣

∣

∣

∣

m̂hn,q(x0)−m(x0)
√

Var(m̂hn,q(x0))

∣

∣

∣

∣

∣

<
d

√

Var(m̂hn,q(x0))

)

≥ 1− α. (4.6)

If Z is a standard normal random variable then

Pr
(

−zα/2 < Z < zα/2

)

= 1− α

where zα/2 is given by Φ(zα/2) = 1 − 1
2
α and Φ(·) is the standard normal

cumulative distribution function.

From (4.5), (4.6) can be achieved asymptotically by

∣

∣

∣

∣

∣

d
√

Var [m̂hn,q(x0)]

∣

∣

∣

∣

∣

≥ zα/2

or
d2

Var [m̂hn,q(x0)]
≥ z2

α
2
.

Since

Var [m̂hn,q(x0)] ≈
Bσ2

nhnf(x)
,

we have
d2

Bσ2/nhnf(x)
≥ z2

α
2

that is
nhnd2

Bσ2(f(x))−1
≥ z2

α/2. (4.7)

As explained in Section 2.6, we take bandwidth hn = n−r where 0 <

r < 1. However, to apply above theorem, hn is selected in such a way that

lim nh3
n → ∞ and lim nh5

n = 0 as n → ∞. This leads to n1−5r → 0 and

n1−3r → ∞ as n → ∞. Hence, 1 − 5r < 0 and 1 − 3r > 0. Thus we take

bandwidth hn = n−r where 1
5

< r < 1
3
.
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Therefore, from (4.7) we have

n1−r

Bσ2(d2f(x))−1
≥ z2

α/2

which leads to

n ≥
[

z2
α/2Bσ2

d2f(x)

]
1

1−r

= nopt(d) ≡ nopt, say. (4.8)

The optimal sample size nopt for the required fixed-width confidence interval

with confidence coefficient 1 − α given in (4.8) can be computed only if σ2

and f(x) are known. However, the optimal value obtained from (4.8) is still

an approximation since we are using asymptotic theory.

4.3 Fixed Equidistant Design Data

Let x1, . . . , xn0 be a sample of fixed equidistant design points of size n0. As

explained in Section 2.1 observations take the form of {xi = i
n0
}n0

i=1. We

know that most of the multistage sequential procedures start with an initial

sample size and then continue sampling until a certain condition is satisfied.

If we apply the concept of multi-stage sequential procedures to equidistant

fixed design points then initial sample size is n0 and final sample size is N .

However, the final sample consists of all the observations from pilot sample

and extra N − n0 observations taken at subsequent stages. To comply with

the structural conditions inherited in these equidistant design points, the

final sample size N has to be a multiple of pilot sample size n0, otherwise, we

can not continue using observations from initial sample. That is N = Tn0

where T is a positive integer.

For example, if initial sample size is n0 = 5 then xi = 1
5
, 2

5
, . . . , 5

5
; i =

1, . . . , 5 and if corresponding final sample size is N = 8 then observations of
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final sample xi = 1
8
, 2

8
, . . . , 8

8
; i = 1, . . . , 8. Except one x value which is x = 1

all other x values in the final sample is completely different from observations

which are already selected in pilot sample. On the other hand, if final sample

size is N = 10 which is a multiple of pilot sample size n0 = 5 then all the

x values from pilot sample are included in the final sample as 2
10

, 4
10

, . . . , 10
10

correspond to 1
5
, 2

5
, . . . , 5

5
.

In general, observations from independent variable X in the final sample

must be in the form of xi = i
n0T

; i = 1, . . . , n0T where already selected x

values {xi}n0
i=1 result when i = T, 2T, 3T, . . . , nT . This will limit the use

of most of the available sequential procedures to two-stage and modified

two-stage sequential procedures. This is because in these two sequential

procedures, in the first stage, we take an initial sample of size n0 and then

use this pilot sample to derive final sample size N . Hence, additional sample

of N − n0 is required in the second stage of sampling procedure. As a result

the only way we can exploit these two procedures is to ensure that the final

sample size is a multiple of pilot sample size. This is not a problem because

even final sample is not exactly divisible by pilot sample size we can rounded

up to the nearest integer and then multiply that number by pilot sample size

in order to obtain final sample size. However, this rounding up will result in

oversampling. Besides we can not overlook the fact of oversampling which

is inherent to two-stage sequential procedure. Consequently, even if we can

apply two-stage sequential procedure for fixed equidistant data, that will

worsen the oversampling problem due to the effects of proposed rounding up

sample size calculation procedure.

Modified two-stage sequential procedure was proposed as an alternative

to two-stage sequential procedure by Mukhopadhyay (1980) which has more

attractive properties, most importantly it minimizes oversampling problem to
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a great extent. Nevertheless the use of modified two-stage procedure in this

case will still result in oversampling to a certain extent due to the rounding

up effect. This will be discussed in detail later in this chapter.

4.3.1 Two-Stage Sequential Procedure

Two-stage sampling procedure was first developed by Stein (1945). The goal

of a two-stage sequential procedure is to determine an optimum sample size

under a specified stopping rule and an optimum decision rule that would meet

certain desirable criterion which is prompted by the nature of problem. Here

we relate the concept of two-stage procedure given in Ghosh et. al. (1997)

to develop stopping rules for sampling which is convenient when making an

estimation of nonparametric kernel regression function using a fixed-width

confidence intervals with preassigned coverage probability. Note that the fol-

lowing results are valid for both Nadaraya–Watson and local linear estimators

and we take m̂(x0) = m̂hn,q(x0) for simplicity.

Let {(x1, Y1), . . . , (xn0 , Yn0)} be the initial sample where Yi is the observed

value of m(xi) at xi = i/n0 for i = 1, . . . , n0. Note that for fixed equidistant

design data f(x) = 1.0. Hence optimal sample size nopt given in (4.8) reduces

to

nopt =

[

z2
α/2Bσ2

d2

]
1

1−r

. (4.9)

In general residual variance σ2 is unknown and hence an estimator is

required. Since we consider fixed equidistant design data points, we will use

the Gasser et. al. estimator σ̂2
GSJ as discussed in Section 3.3.2:

σ̂2 = σ̂2
GSJ

=
1

(n− 2)

n−1
∑

i=2

[aiYi−1 + biYi+1 − Yi]
2

(a2
i + b2

i + 1)
.

115



From Section 3.3.2, we know that

V =
1

η
σ̂2

GSJ ∼ χ2
ν

where

ν = (n− 2)2/tr(Q2) and η = σ2tr(Q2)/(n− 2)2

as in (3.43). Also from (4.5),

Z =
m̂(x0)−m(x0)

√

Bσ2

nhn

,

where Z is a standard normal random variable. Since V is a χ2
ν random

variable and also Z and V are independent,

T =
Z

√

V
ν

=

m̂(x0)−m(x0)
√

Bσ2

nhn
√

1
η
σ̂2

GSJ

ν

∼ tν . (4.10)

According to (3.43) given in Section 3.3.2

1

ην
=

1

σ2
.

This simplifies T in (4.10) to

T =

m̂(x0)−m(x0)
√

Bσ2

nhn
√

σ̂2
GSJ

σ2

∼ tν

which leads to

T =
m̂(x0)−m(x0)

√

Bσ2

nhn

×
√

σ2

σ̂2
GSJ

∼ tν .

That is,
m̂(x0)−m(x0)

√

Bσ̂2
GSJ

nhn

∼ tν . (4.11)
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From (4.2),

Pr[|m(x0)− m̂(x0)| < d] = 1− α.

Therefore using (4.11)

Pr





∣

∣

∣

∣

∣

∣

m̂(x0)−m(x0)
√

Bσ̂2
GSJ

nhn

∣

∣

∣

∣

∣

∣

< tν,α/2



 = 1− α.

Following the same steps as in Section 4.2

d ≥ tν,α/2

√

Bσ̂2
GSJ

nhn

n ≥
[

t2ν,α/2Bσ̂2
GSJ

d2

]
1

1−r

. (4.12)

From (4.12), we propose the following rule for N1:

N1 = max







n0,









(

Bt2α/2,ν σ̂
2
GSJ

d2

)
1

1−r







+ 1







(4.13)

where tα/2,ν is the upper α/2 of the t-distribution with ν degrees of freedom

from (3.43), ⌊n⌋ refers to the floor function i.e. rounded up integer value of

n and r ∈ (1
5
, 1

3
). In order to comply with the fixed equidistant data design

and to continually use the observed data in the initial sample, we take the

final sample size as

N = n0T (4.14)

where T is a positive integer given by

T =

⌊

N1

n0

⌋

= max

{

1,

⌊

1

n0

{

Bt2α/2,ν σ̂
2
GSJd−2

}
1

1−r

⌋}

(4.15)

and N ≥ N1. Clearly if T = 1 , no additional observations are required in

the second stage and N = n0 . However, if T > 1 we take extra sample of

size N − n0 = n0(T − 1) in the second stage with

xi =
i

n0T
for i = 1, . . . , (n0T − 1) and i 6= T, 2T, . . . , n0T.
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Note that the initial sample data corresponds to (xi, Yi) for i = T, 2T, . . . , n0T .

In the application of above stopping rule (4.14), it is important to select the

best available values for the design constants r and n0 ≥ 2 for fixed pre-

designed values of d and α. The value for r is selected as explained in Sec-

tion 4.2 and pilot sample size is a subjective choice. We start experiment with

a sensible sample size or possibly try different sample sizes and pick the one

which gives best results. Finally we use the sample {(x1, Y1), . . . , (xN , YN)}
with xi = i/N to compute Nadaraya–Watson (2.18) and local linear (2.19)

estimates for m(x0) and construct the confidence band given by (4.2).

4.3.2 Modified Two-Stage Sequential Procedure

It is well known fact that Stein’s procedure oversamples. However, a signif-

icant reduction of this oversampling problem can be achieved by using the

modified two-stage procedure introduced in Mukhopadhyay (1980). Accord-

ing to (4.8), for very small values of d, large sample sizes result at the second

stage of the two-stage procedure regardless of the fixed sample size n0. Fur-

thermore, large sample sizes result at the second stage when n0 is small since

σ̂GSJ,n0 may be large compared to σ2. However, we can afford to start with

a larger sample size when d is preassigned a smaller value. This procedure

allows initial sample size n0 to be large when d is small. Mukhopadhyay

(1980) gave a specific choice for the initial sample size in the case of density

estimation. Our modified two-stage procedure is proposed as follows:

Step 1 : Compute an initial sample of size n0 by

n0 = max

{

2,

⌊

(

Zα/2

d

)2η
⌋

+ 1

}

(4.16)

where 0 < η < 1 and simulations have been used to find suitable value for η.

Next select {(x1, y1), . . . , (xn0 , yn0)} where yi is the observed value of m(xi)
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at xi = i/n0 for i = 1, . . . , n0.

Step 2 : Calculate

T =

⌊

N1

n0

⌋

= max

{

1,

⌊

1

n0

{

Bt2α/2,ν σ̂
2
GSJd−2

}
1

1−r

⌋}

. (4.17)

Notice that (4.17) is merely (4.13) divided by n0.

Step 3 : If T = 1, no observations are required in the second stage and the

process terminates. Final sample size N is equivalent to initial sample size

n0 i.e. N = n0. Go to step 5.

Step 4 : If T > 1, then final sample size N equals to n0T i.e. N = n0T .

Hence, take an extra sample of size N − n0 = n0T − n0 = n0(T − 1) in the

second stage with design points

xi =
i

n0T

for i = 1, . . . , (n0T − 1) and i 6= T, 2T, . . . , n0T . Go to step 5.

Step 5 : Use the final sample of size N i.e. {(x1, y1), . . . , (xN , yN)} with

xi = i
N

; i = 1, . . . , N to compute Nadaraya–Watson estimate m̂hN ,NW (x0)

and local linear estimate m̂hN ,LL(x0) for m(x0) and construct the confidence

band given by (4.2).

4.4 Random Design Data

Suppose that (X1, Y1), . . . , (Xn, Yn) is a sequence of independent and iden-

tically distributed (i.i.d.) bivariate random variables having an unknown
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continuous probability distribution function (pdf) fXY (x, y) and for simplic-

ity we assume that Xi ∈ (0, 1) with an known/unknown pdf f(x). In the case

of unknown f(x) Kernel density estimation is employed to estimate f(x).

4.4.1 Purely Sequential Procedure

In general σ2 in (4.8) is unknown and purely sequential procedure suggests

to substitute the variance parameter σ2 by a estimator σ̂2
n based on a sample

(X1, Y1), . . . , (Xn, Yn) of size n. Since a regression model with random de-

sign data points is considered, as explained in Section 3.3 we use the σ̂2
MSW

residual variance estimator:

σ̂2
MSW =

∑∑

i6=j
1
2
(Yi − Yj)

2 1
2

(

1
ĝi−ĝj

)

K
(

Xi−Xj

hn

)

n(n− 1)
.

Hence from the optimal sample size nopt given in (4.8) we continue sam-

pling until

n ≥
{

z2
α/2Bσ̂2

MSW,n

d2f(x)

}
1

1−r

(4.18)

where σ̂2
MSW,n is a residual variance estimator σ̂2

MSW based on sample size

n. Thus by taking n = n0 we propose the following stopping rule for purely

sequential procedure which is given by

N = max







n,









{

z2
α/2Bσ̂2

MSW,n

d2f(x)

}
1

1−r







+ 1







(4.19)

where ⌊n⌋ refers to the floor function and r ∈ (1
5
, 1

3
).

In purely sequential procedure we take one observation at a time until

the condition given in (4.19) is satisfied and steps involved in this procedure

are as follows:

Step 1 : Take an initial sample of size n0, that is select {(X1, Y1), . . . ,
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(Xn0 , Yn0)}; n0 ≥ 2 where Yi is the observed value of m(Xi) at Xi for

i = 1, . . . , n0.

Step 2 : Now let n = n0 and calculate

{

Z2
α/2Bσ̂2

MSW,n

d2f(x)

}
1

1−r

.

Step 3 : Compare n with

{

z2
α/2

Bσ̂2
MSW,n

d2f(x)

}
1

1−r

. If

n ≥
{

z2
α/2Bσ̂2

MSW,n

d2f(x)

}
1

1−r

then final sample size N equals to n i.e. N = n and no more observations are

required furthermore and the process terminates. Go to step 5. Otherwise

go to step 4.

Step 4 : Increase sample size by one that is, new sample size is n + 1 and set

n = n + 1. Go to step 3.

Step 5 : Use the sample {(X1, Y1), . . . , (XN , YN)} to compute m̂hN ,NW (x0)

and m̂hN ,LL(x0) estimates for m(x0) and hence construct the confidence band

given by (4.2).

4.4.2 Two-stage Sequential Procedure

The above purely sequential procedure involves a lot of computational ef-

fort. Stein (1945) two-stage sequential sampling procedure explained in Sec-

tion 4.3.1 requires only two sampling operations. However, it turned out that
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this two-stage procedure is less efficient than the purely sequential procedure.

Note that it is not possible to use the stopping rule developed in Section 4.3

here as it was uniquely defined for fixed equidistant design points and more

importantly it completely based on distribution of particular residual vari-

ance estimator σ̂2. Nevertheless, we can develop a new stopping rule using

two-stage sequential procedure for random design data points by following

the similar steps as in Section 4.3.1.

Using the asymptotic normality results in Theorem 7 for univariate ran-

dom design case we can write
√

nhn {m̂hn,q(x0)−m(x0)}
σ
√

B(f(x))−1
→ N(0, 1). (4.20)

From (3.55) for a random sample of normally distributed residuals {εi}n
i=1

with mean 0 and variance σ2

nσ̂2
MSW

σ2
∼ χ2

n (4.21)

where χ2
n is the chi-squared distribution with n degrees of freedom. Hence,

we combine (4.20) and (4.21) to claim that
√

nhn{m̂hn,q(x0)−m(x0)}
σ
√

B(f(x))−1

√

σ̂2
MSW

σ2

∼ tn. (4.22)

The following statement (4.23) is obviously equivalent to (4.2)

Pr {m(x) ∈ In} ≈ t

( √
nhnd

√

B(f(x))−1σ̂MSW

)

− t

(

−
√

nhnd
√

B(f(x))−1σ̂MSW

)

= 2t

( √
nhnd

√

B(f(x))σ̂MSW

)

− 1 (4.23)

where t(·) is the cumulative student-t distribution and an approximate so-

lution to the problem is provided by taking the smallest integer n ≥ 1 such

that

2t

( √
nhnd

√

B(f(x))−1σ̂MSW

)

− 1 ≥ 1− α (4.24)
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and since hn = n−r

n ≥
(

t2α/2,nBσ̂2
MSW

d2f(x)

)
1

1−r

(4.25)

where tα/2,n = t−1(1 − α/2) is the (1 − α/2)th quantile of the student-t

distribution.

Two-stage sampling procedure is started by taking a pilot bivariate sam-

ple {Xi, Yi}n0

i=1 and then estimate the required final sample size by N . Now

using (4.25), we propose the following stopping rule using the two-stage se-

quential procedure:

N ≡ N(d) = max







n0,









(

t2α/2,n0
Bσ̂2

MSW,n0

d2f(x)

)
1

1−r







+ 1







. (4.26)

If N = n0 then we need no more observations in the second stage. But if

N > n0 then we take additional bivariate sample {Xi, Yi}N
i=n0+1 of size N−n0

in the second stage. Finally, we use the sample {(X1, Y1), . . . , (XN , YN)} to

compute Nadaraya–Watson (2.18) and local linear (2.19) estimates for m(x0)

and construct the confidence band given in (4.2). In an application of the

stopping rule (4.26), it is important to select the best available values for

the design constants r and n0 for fixed predesigned values of d and α. The

value for r is selected as explained in Section 4.2 and pilot sample size is a

subjective choice.

4.4.3 Modified Two-Stage Sequential Procedure

The two stages of the proposed modified two-stage sequential procedure are

defined as follows:

Stage 1: The initial sample size n0 is determined using
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n0 = max

{

2,

⌊

(

Zα/2

d

)2η
⌋

+ 1

}

(4.27)

where 0 < η < 1 and note that an appropriate value for η is obtained by

means of simulations.

Stage 2: Compute N given by

N = max







n0,









(

Bt2n0,α/2σ̂
2
MSW,n0

f(x)d2

)
1

1−r







+ 1







. (4.28)

If N > n0 then we take further N − n0 observations; otherwise no more

observations are required in the second stage. Finally, we use the sample

{Xj , Yj}N
j=1 to construct the fixed-width confidence 2d interval for m(x0):

[m̂hN ,q(x0)− d, m̂hN ,q(x0) + d].

Mukhopadhyay and Solanky (1994) used minimum sample size 2 in (4.27)

for the theoretical computations and asymptotic analysis of the modified two-

stage procedure.

4.5 Simulation Results

4.5.1 Equidistant Fixed Design

We use the following two models to assess the performance of the confidence

bands developed in Section 4.3:

Model I : Y = sin2(0.75x) + 3 + ε

Model II: Y = 2 exp{−x2/0.18}+ 3 exp{−(x− 1)2/0.98}+ ε.

Errors εi were generated from

(i) normal distribution ε ∼ N(0, .52) and

(ii) double exponential (Laplace) distribution ε ∼ DoubleExpo(0, β).
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Value for scale parameter β, which is 0.5/
√

2, was calculated to make Var(ε) =

σ2 = 0.25. Half widths of the interval d = 0.05, 0.07, 0.09, 0.12, 0.14 were

used. The initial sample size n0 was chosen to be 25. The confidence bands

were investigated for α = 0.1 and α = 0.05. For all simulations, we used

standard normal kernel K(u) = (2π)−1/2 exp(−u2/2); −∞ < u < ∞. For

standard normal kernel,

B =

∫

t

K2(t)dt =

∫

t

1

2π
e−t2dt =

1

2π

∫

t

exp







−1

2

(

t
1√
2

)2






dt

=
1

2π

∫

t

exp

{

−1

2

(

t− µ

σ

)2
}

dt with (µ = 0) and

(

σ =
1√
2

)

=
1

2π

√
2πσ

= (2
√

π)−1. (4.29)

In both models 15000 replicate samples for each experimental setting were

carried out to obtain the final sample sizes required to estimate m(x) at

x0 = 0.306 for a given fixed-width, 2d. The statistics appear in Table 4.1

and Table 4.2 are defined below:

• n̄ =
∑nsim

j=1 (N)j

nsim

where (N)j is the final sample size given in (4.14) calculated from jth simu-

lated sample and nsim (= 15000) is number of simulated samples.

• SE (n̄) =

√

∑nsim
j=1 ((N)j−n̄)2

(nsim−1)nsim

• %Over = ((n̄− nopt)/nopt) 100%

• n̄1 =
∑nsim

j=1 (N1)j

nsim

where (N1)j is sample size given in (4.13) calculated from jth simulated sam-

ple.

• SE
(

N̄1

)

=

√

∑nsim
j=1 ((N1)j−n̄1)

2

(nsim−1)nsim

• T̄ =
∑nsim

j=1 (T )j

nsim

125



where (T )j as given in (4.15) calculated from jth simulated sample.

• SE
(

T̄
)

=

√

∑nsim
j=1 ((T )j−T̄)

2

(nsim−1)nsim

• m̂hN ,LL(x0) = 1
nsim

∑nsim

j=1 (m̂hN ,LL(x0))j

• SE
(

m̂hN ,LL(x0)
)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(m̂hN ,LL(x0))j − m̂hN ,LL(x0)
)2
}1/2

where (m̂hN ,LL(x0))j is the local linear estimator for jth simulated sample.

• m̂hN ,NW (x0) = 1
nsim

∑nsim

j=1 (m̂hN ,NW (x0))j

• SE
(

m̂hN ,NW (x0)
)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(m̂hN ,NW (x0))j − m̂hN ,NW (x0)
)2
}1/2

where (m̂hN ,NW (x0))j is the Nadaraya–Watson estimator for jth simulated

sample.

• σ̂2
GSJ = 1

nsim

∑nsim

j=1 (σ̂2
GSJ)j

• SE
(

σ̂2
GSJ

)

=

{

1
(nsim−1)nsim

∑nsim

j=1

(

(σ̂2
GSJ)j − σ̂2

GSJ

)2
}1/2

where (σ̂2
GSJ)j is the residual variance estimator for jth simulated sample.

• p̃LL =
nm̂hN ,LL(x0)

nsim

where nm̂LL(x0) is the number of local linear fixed-width confidence intervals

that contain m(x0) among nsim confidence intervals in other words number

of confidence intervals which satisfied |(m̂hN ,LL(x0))Nj
− m(x0)| < d where

j = 1, . . . , nsim.

• SEp̃LL
=
√

p̃LL(1−p̃LL)
nsim

where SEp is the standard error of the proportion p. Note that SEp is cal-

culated as SEp =
√

p(1− p)/n where n is the number of trials.

• p̃NW =
nm̂NW (x0)

nsim

where nm̂NW (x0) is the number of Nadaraya–Watson fixed-width confidence

intervals that contain m(x0) among nsim confidence intervals in other words

number of confidence intervals which satisfied |(m̂hN ,NW (x0))Nj
−m(x0)| < d

where j = 1, . . . , nsim.

• SEp̃NW
=
√

p̃NW (1−p̃NW )
nsim
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First we consider the two-stage sequential procedure with a fixed design

data for α = 0.05, 0.10. The average final sample size (n̄), average sample

size which is not rounding up to get a multiple of n0 (n̄1), average resid-

ual variance estimate (σ̂2) averages of local linear (m̂hN ,LL), and Nadaraya–

Watson (m̂hN ,NW ) estimates. Finally, coverage probabilities of both estima-

tors (p̃LL), (p̃NW ) are reported in Tables 4.1 and 4.2 for α = 0.05 and α = 0.10

respectively. Figures enclosed in brackets (.) under estimated values in the

tables refer to their standard errors of the estimated values.

The average amount of oversampling (%Over) in the two-stage proce-

dure is increasing with increasing d. The average percentage difference be-

tween n̄ and n̄1 decreases with decreasing d. Coverage probabilities of both

Nadaraya–Watson (p̃NW ) and local linear estimators (p̃LL) have achieved pre-

set confidence coefficients 95% and 90% at x0 = 0.306 in Model II. But the

coverage probabilities for Model I shows a different picture as Nadaraya–

Watson estimator fails to achieve required coverage probabilities whereas

local linear method does. This noticeable difference is mainly due to the fact

that Model I is harmonic. And the bias term of Nadaraya–Watson estimator

is heavily depend on derivatives of the unknown function m(·). However,

(4.8) shows that as d decreases required final sample size N increases and

hence improve coverage probabilities. Both tables depict this result. Accord-

ing to Table 4.1, p̃NW for Model I when α = 0.05 started decreasing with

decreasing d from 0.14 to 0.09 and then improved due to fairly large sample

sizes for small d.

Similar pattern appears in Table 4.2 but p̃NW improves after d = 0.07

as calculated sample sizes are small when α = 0.10 and larger sample size

occurred for much smaller values of d compared to those in α = 0.05. How-
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Table 4.1: Empirical Coverage of LL and NW Estimators for Model I and

Model II for α = 0.05 and x0 = 0.306.

εi ∼ N(0, 0.52) εi ∼ DoubleExp(0,0.5/
√

2)

d .14 .12 .09 .07 .05 .14 .12 .09 .07 .05

nopt 64.6 105.4 262.8 583.6 1698.2 64.6 105.4 262.8 583.6 1698.2

Model I : m(x0) = 3.052

n̄ 109.7 171.7 403.0 890.8 2535.0 114.7 180.6 422.6 942.2 2663.6

(.53) (.86) (2.10) (4.78) (13.5) (.80) (1.29) (3.06) (7.07) (19.3)

%Over 69.7% 62.8% 53.4% 52.7% 49.3% 77% 71.3% 60.8% 59.5% 56.9%

n̄1 97.2 158.8 393.8 878.3 2521.1 102.2 168.2 410.1 929.7 2651.0

(.53) (.85) (2.12) (4.75) (14.0) (.80) (1.28) (3.06) (7.07) (19.3)

T̄ 4.39 6.87 16.12 35.63 101.4 4.59 7.23 16.91 37.69 106.5

(.02) (.03) (.08) (.19) (.54) (.03) (.05) (.12) (.28) (.77)

m̂LL 3.070 3.070 3.070 3.068 3.066 3.071 3.070 3.070 3.069 3.066

(.001) (.001) (.000) (.000) (.000) (.001) (.001) (.000) (.000) (.000)

m̂NW 3.103 3.103 3.099 3.089 3.076 3.104 3.103 3.098 3.090 3.078

(.001) (.000) (.000) (.000) (.000) (.001) (.000) (.000) (.000) (.000)

p̃LL .9484 .9521 .9649 .9737 .9819 .9421 .9466 .9519 .9628 .9738

(.001) (.000) (.000) (.000) (.001) (.002) (.002) (.002) (.002) (.001)

p̃NW .9290 .9174 .9037 .9277 .9277 .9219 .9145 .9097 .9222 .9258

(.002) (.002) (.002) (.002) (.002) (.002) (.002) (.003) (.003) (.003)

σ̂2 .2502 .2512 .2486 .2503 .249 .2504 .2518 .2488 .2518 .249

(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.000) (.000) (.000)

Model II : m(x0) = 3.024

n̄ 109.6 171.9 400.7 880.5 2561.4 114.7 180.6 422.6 942.2 2692.7

(.53) (.86) (2.10) (4.78) (13.8) (.53) (.86) (2.10) (4.65) (20.7)

%Over 69.6% 63.0% 52.5% 50.9% 50.8% 77.4% 71.0% 60.9% 59.2% 58.6%

n̄1 97.2 158.8 393.8 878.4 2521.5 102.2 167.9 410.2 916.2 2680.2

(.53) (.85) (2.12) (4.75) (14.0) (.80) (1.27) (3.01) (7.00) (20.7)

T̄ 4.38 6.88 16.03 35.22 102.5 4.59 7.21 16.91 37.15 107.7

(.02) (.03) (.08) (.19) (.55) (.03) (.05) (.12) (.28) (.83)

m̂LL 3.031 3.031 3.030 3.028 3.025 3.032 3.031 3.030 3.029 3.026

(.001) (.001) (.000) (.000) (.000) (.001) (.001) (.000) (.000) (.000)

m̂NW 2.993 2.994 2.996 2.991 3.006 2.994 2.994 2.996 2.999 3.006

(.001) (.000) (.000) (.000) (.000) (.001) (.000) (.000) (.000) (.000)

p̃LL .9522 .9565 .9721 .9840 .9936 .9469 .9508 .9611 .9736 .9855

(.002) (.002) (.001) (.001) (.001) (.002) (.002) (.002) (.001) (.001)

p̃NW .9508 .9564 .9597 .9638 .9703 .9519 .9519 .9490 .9513 .9545

(.002) (.002) (.002) (.002) (.001) (.002) (.002) (.002) (.002) (.002)

σ̂2 .2502 .2515 .2476 .2488 .2500 .2504 .2517 .2492 .2494 .2501

(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
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Table 4.2: Empirical Coverage of LL and NW Estimators for Model I and

Model II for α = 0.10 and x0 = 0.306.

εi ∼ N(0, 0.52) εi ∼ DoubleExp(0, 0.5/
√

2)

d .14 .12 .09 .07 .05 .14 .12 .09 .07 .05

nopt 64.6 105.4 262.8 583.6 1698.2 64.6 105.4 262.8 583.6 1698.2

Model I : m(x0) = 3.052

n̄ 63.3 96.8 221.9 477.7 1366.0 66.4 100.9 233.3 497.5 1448.0

(.28) (.46) (1.13) (2.52) (7.29) (.43) (.67) (1.66) (3.68) (10.9)

%Over 70.8% 60.1% 47.3% 42.8% 40.3% 49.3% 79.1% 66.9% 54.9% 48.7%

n̄1 51.7 84.2 208.5 464.7 1360.0 53.9 88.5 220.8 485.0 1435.5

(.28) (.45) (1.12) (2.51) (7.38) (.42) (.67) (1.66) (3.68) (10.9)

T̄ 2.53 3.87 8.88 19.11 54.64 2.65 4.04 9.33 19.9 57.9

(.01) (.02) (.05) (.10) .29 (.02) (.03) (.07) (.15) (.44)

m̂LL 3.069 3.069 3.070 3.070 3.069 3.067 3.068 3.070 3.070 3.067

(.001) (.001) (.000) (.000) (.001) (.000) (.001) (.000) (.000) (.000)

m̂NW 3.104 3.102 3.102 3.070 3.104 3.084 3.103 3.102 3.097 3.085

(.001) (.001) (.000) (.000) (.000) (.001) (.001) (.000) (.000) (.000)

p̃LL .8814 .89117 .9132 .9289 .9497 .8857 .8917 .9030 .9137 .9357

(.003) (.003) (.002) (.002) .002 (.003) (.003) (.002) (.002) (.002)

p̃NW .8646 .8560 .8264 .8000 .8243 .8697 .8564 .8217 .7993 .8224

(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)

σ̂2 .2493 .2513 .2507 .2507 .2509 .2499 .2516 .2516 .2497 .2521

(.008) (.008) (.008) (.008) (.001) (.001) (.001) (.001) (.001) (.001)

Model II : m(x0) = 3.024

n̄ 63.3 96.9 222.0 477.1 1349.1 66.5 101.1 232.7 496.8 1433.3

(.28) (.46) (1.13) (2.51) (7.05) (.43) (.67) (1.66) (3.64) (10.76)

%Over 70.8% 60.3% 47.4% 42.6% 38.6% 79.4% 67.2% 54.5% 48.5% 47.2%

n̄1 51.7 84.2 208.5 464.8 1360.0 54.0 88.7 220.2 484.3 1435.5

(.28) (.45) (1.12) (2.51) (7.4) (.42) (.67) (1.66) (3.64) (10.8)

T̄ 2.53 3.87 8.88 19.11 54.64 2.65 4.04 9.31 19.87 57.3

(.01) (.02) (.05) (.10) (.28) (.02) (.03) (.07) (.15) (.43)

m̂LL 3.031 3.030 3.031 3.030 3.027 3.032 3.030 3.031 3.029 3.027

(.001) (.001) (.000) (.000) (.000) (.001) (.001) (.000) (.000) (.000)

m̂NW 2.992 2.992 2.994 2.996 3.002 2.993 2.992 2.994 2.996 3.002

(.001) (.000) (.000) (.000) (.000) (.001) (.000) (.000) (.000) (.000)

p̃LL .8875 .9009 .9274 .9455 .9727 .8904 .8989 .9161 .9339 .9601

(.001) (.001) (.000) (.000) (.001) (.003) (.003) (.002) (.002) (.002)

p̃NW .8966 .9009 .9151 .9081 .9186 .9041 .8991 .9029 .8989 .9027

(.001) (.001) (.000) (.000) (.002) (.002) (.003) (.002) (.003) (.002)

σ̂2 .2494 .2515 .2508 .2506 .2491 .2501 .2518 .2511 .2496 .2507

(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
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ever, according to (4.8) very small d results in larger sample sizes which is

not desirable in practice and also very high d value result in small sample

size which is not enough to achieve a given coverage probability. Note that

decreasing d means m̂(·) ≈ m(·) and this happens when n is fairly large and

how large a sample we have to take depends again on individual bias terms

and rate of convergence. This is very likely the reason why the average sam-

ple size n̄ is fairly large compared to corresponding optimal sample size nopt

for both Models I and II.

Secondly, we look at how well modified two-stage sequential procedure

performs in the case of fixed equidistant design over two-stage sequential

procedure. Here errors are generated only from normal distribution (εi ∼
N(0, 0.52)) as we could not observe any significant differences on the perfor-

mances of two-stage procedure due to the specific selection of error distri-

bution. Table 4.3 and Table 4.4 display the simulation results for α = 0.05

and α = 0.10 respectively. The figures under estimated values refer to their

standard errors.

As expected, use of modified two-stage procedure result in less oversam-

pling compared to two-stage procedure. This procedure is very desirable in

particular for small d values as resulting final sample sizes are very close to

respective optimal value. Furthermore, as we mentioned in Section 4.3, n̄1

values are very close to optimal sample sizes nopt regardless of the value of

d. However, average final sample sizes n̄ do not show the same consequences

as rounding effects are more dominant. Hence, we can say that structural

constraints inherit to fixed equidistant design data has more control over the

performance of sequential procedures no matter how desirable they are in

general or how well they perform elsewhere.
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Table 4.3: Empirical Coverage of LL and NW Estimators for Model I and

Model II for α = 0.05 and x0 = 0.306.

d nopt n̄1 n̄ % T̄ p̃LL p̃NW m̂LL m̂NW σ̂2

over

Model I : m(x0) = 3.052

.14 64.6 83.2 102.7 58.9 2.7 3.070 3.103 .953 .931 .250
0.36 0.37 .01 .0005 .0005 .002 .002 .001

.12 105.4 128.3 153.7 45.8 3.1 3.070 3.103 .963 .925 .251
0.48 0.49 .01 .0004 .0004 .002 .002 .001

.09 262.8 292.4 334.6 27.3 4.0 3.070 3.100 .974 .904 .249
0.84 0.86 .01 .0003 .0003 .001 .002 .000

.07 583.6 626.2 692.3 18.6 5.3 3.069 3.09 .984 .909 .250
1.41 1.44 .01 .0002 .0002 .001 .002 .000

.05 1698.2 1767.6 1889.5 11.3 7.8 3.066 3.077 .990 .952 .250
2.93 2.98 .01 .0001 .0001 .001 .002 .000

Model II : m(x0) = 3.024

.14 64.6 83.2 102.7 58.9 2.7 3.031 2.994 .957 .959 .250
0.36 0.37 .01 .0005 .0005 .002 .002 .001

.12 105.4 126.9 152.6 44.7 3.1 3.031 2.994 .968 .966 .249
0.47 0.48 .01 .0004 .0004 .001 .002 .001

.09 262.8 292.2 334.5 27.3 4.0 3.030 2.995 .987 .968 .249
0.84 0.86 .01 .0003 .0003 .001 .001 .000

.07 583.6 625.8 692.9 18.7 5.3 3.029 2.999 .994 .972 .250
1.42 1.45 .01 .0002 .0002 .001 .001 .000

.05 1698.2 1771.7 1893.3 11.5 7.8 3.026 3.006 .999 .985 .251
2.92 2.98 .01 .0001 .0001 .000 .001 .000
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Table 4.4: Empirical Coverage of LL and NW Estimators for Model I and

Model II for α = 0.10 and x0 = 0.306.

d nopt n̄ n̄ % T̄ p̃LL p̃NW m̂LL m̂NW σ̂2

over

Model I : m(x0) = 3.052

.14 37.0 48.7 62.9 69.8 2.3 3.070 3.105 .884 .864 .249
0.25 0.26 .01 0.001 0.001 .003 .003 .001

.12 60.4 75.2 94.1 55.7 2.5 3.069 3.102 .905 .866 .252
0.33 0.34 .01 0.001 0.001 .002 .003 .001

.09 150.6 170.6 201.7 33.9 3.3 3.071 3.104 .929 .829 .250
0.57 0.59 .01 0.000 0.000 .002 .003 .001

.07 334.5 362.9 411.7 23.1 4.2 3.070 3.099 .945 .787 .251
0.95 0.98 .01 0.000 0.000 .002 .003 .000

.05 973.5 1014.9 1103.9 13.4 6.2 3.068 3.084 .961 .835 .250
1.97 2.02 .01 0.000 0.000 .002 .003 .000

Model II : m(x0) = 3.024

.14 37.0 48.7 62.9 69.8 2.3 3.033 2.993 .891 .9018 .249
0.25 0.26 .01 0.001 0.001 .003 .0024 .001

.12 60.4 75.2 94.1 55.7 2.5 3.031 2.992 .919 .9135 .252
0.33 0.34 .01 0.001 0.001 .002 .0023 .001

.09 150.6 170.2 201.3 33.7 3.3 3.031 2.994 .944 .9238 .250
0.57 0.58 .01 0.000 0.000 .002 .0022 .001

.07 334.5 362.6 411.7 23.1 4.2 3.030 2.995 .966 .9227 .250
0.97 1.00 .01 0.000 0.000 .002 .0022 .000

.05 973.5 1019 1107.8 13.8 6.3 3.027 3.002 .988 .9325 .251
1.97 2.01 .01 0.000 0.000 .001 .0020 .000
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4.5.2 Random Design

We use the following two models to assess the performance of the confidence

bands developed in Section 4.4:

Model I : Y =
√

4x + 3 + ε

Model II: Y = 2 exp{−x2

0.18
}+ 3 exp{− (x−1)2

0.98
}+ ε

where ε ∼ N(0, σ2) .

Half-widths of the interval d = 0.05, 0.07, 0.09, 0.11, 0.13 were used. The

initial sample size n0 and σ were chosen to be 25 and 0.5 respectively. The

confidence bands were investigated for α = 0.05 . For all the data analysed,

we used standard normal kernel K(u) = (2π)−1/2 exp(−u2/2) and hence B =

2
√

π. In both models 15000 replicate samples for each experimental setting

were carried out to obtain the final sample sizes required to estimate m(x)

at x0 = 0.306 for a given fixed-width, 2d.

We obtained 15000 random samples of {Xi}25
i=1 from uniform distribution

and then calculate corresponding yi for each stated relation (Models I and

II). Random errors ε were generated from N(0, 0.52) distribution and added

to the above yi to obtained Yi. First we considered two-stage sequential

procedure for α = 0.05 and then modified two-stage sequential procedure

and purely sequential procedure. The average final sample size n̄, average

residual variance estimate σ̂2, average local linear m̂LL, average Nadaraya–

Watson m̂NW estimates and coverage probability p̃ which is the proportion of

the confidence intervals that contains the theoretical value, m(x0) estimated

at the point x0 = 0.306 are reported in Tables 4.5 and 4.6 for α = 0.05.

Coverage probabilities of both Nadaraya–Watson (p̃NW ) and local linear

estimators (p̃LL) have achieved preset confidence coefficient 95% at x0 =

0.306 in Model II except when d = 0.13. But the coverage probabilities

for Model I shows a different picture as Nadaraya–Watson estimator fails to
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achieve required coverage probabilities except when d = 0.05 whereas local

linear method does. This noticeable difference is mainly due to the struc-

tural differences in the selected models and also the bias terms which heavily

depend on derivatives of the unknown function m(·) associated with each esti-

mator. However, Nadaraya–Watson coverage probabilities (p̃NW ) for Model I

increases with decreasing d due to large sample sizes. This is consistent with

all the sequential procedures. The performance of Nadaraya–Watson estima-

tor worsens as x increases as its bias highly depends on derivatives of m(·).
For the interior point x0 = 0.306, the Nadaraya–Watson estimator assigns

symmetric weights to both sides of x0 = 0.306. For a random design this

will overweigh the points on right hand side and hence create large bias. In

other words Nadaraya–Watson estimator is not design-adaptive. However,

local linear method assigns asymmetrical weighting scheme while maintaining

the same type of smooth weighting scheme as Nadaraya–Watson estimator.

Hence, local linear method adapts automatically to this random design.

This simulation analysis clearly shows that the average sample sizes in

two-stage procedure is much larger than corresponding values in both purely

sequential and modified two-stage procedures for both models. This evidence

clearly implies that the two-stage procedure is less efficient compared to

purely and modified two-stage sequential procedures but at the same time

one should note that it is also associated with the highest coverage probability

which exceeds the target confidence coefficient 95%. Nevertheless modified

two-stage procedure has reduced the amount of oversampling significantly

and has achieved target confidence coefficient simultaneously. Further note

that the advantage of using a modified two-stage procedure is reflected in

computational time. The purely sequential procedure needs substantially

more computations and hence during simulations it needs significantly more
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computational times than the two-stage procedure, particularly for small d.

However purely sequential procedure at times fall somewhat short of the

optimal sample size. Hence, the coverage probability falls short of the target

especially when half-width of the interval d becomes larger as it result in

small sample sizes. Nevertheless, it achieves values closer to target coverage

probability for smaller d due to larger sample sizes.
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Table 4.5: Empirical Coverage of LL and NW for Model I for α = 0.05, x0 =

0.306 and m(x0) = 2.055.

d nopt n̄ p̃LL p̃NW m̂LL m̂NW σ̂2

Two− Stage Procedure

0.13 81.77 109.33 0.9473 0.9019 2.0462 2.1080 0.2649
(0.40) (0.0018) (0.0024) (0.0012) (0.0009) (0.0012)

0.11 138.97 185.94 0.9653 0.9123 2.0477 2.0961 0.2617
(0.69) (0.0015) (0.0030) (0.0009) (0.0011) (0.0011)

0.09 262.78 348.93 0.9779 0.9214 2.0479 2.0912 0.2644
(1.28) (0.0012) (0.0033) (0.0007) (0.0008) (0.0010)

0.07 583.56 776.72 0.9894 0.9324 2.0469 2.0842 0.2650
(2.83) (0.0008) (0.0024) (0.0003) (0.0004) (0.0009)

0.05 1698.19 2259.69 0.9962 0.9582 2.0480 2.0763 0.2649
(8.34) (0.0005) (0.0016) (0.0001) (0.0003) (0.0008)

Modified Two− Stage Procedure

0.13 81.77 97.5 0.9493 0.8655 2.0459 2.1196 0.2598
(.26) (0.0018) (0.0028) (0.0005) (0.0005) (0.0004)

0.11 138.97 157.5 0.9633 0.8763 2.0463 2.1201 0.2565
(.38) (0.0015) (0.0030) (0.0004) (0.0004) (0.0004)

0.09 262.78 285.0 0.9800 0.8903 2.0464 2.1036 0.2535
(.57) (0.0011) (0.0026) (0.0003) (0.0003) (0.0003)

0.07 583.56 615.4 0.9901 0.9026 2.0475 2.1089 0.2526
(.97) (0.0008) (0.0035) (0.0002) (0.0002) (0.0002)

0.05 1698.19 1746.5 0.9973 0.9639 2.0480 2.0784 0.2513
(2.06) (0.0004) (.0015) (0.0001) (0.0001) (0.0002)

Purely Sequential Procedure

0.13 81.78 80.1 0.9184 0.8693 2.0463 2.2193 0.2425
(0.00) (0.0001) (0.0001) (0.001) (0.0001) (0.0001)

0.11 138.97 137.6 0.9348 0.9014 2.0462 2.1895 0.2468
(0.00) (0.0001) (0.0001) (0.001) (0.0001) (0.0001)

0.09 262.78 261.1 0.9409 0.9142 2.0474 2.1094 0.2489
(0.00) (0.0001) (0.0001) (0.000) (0.0001) (0.0001)

0.07 583.56 581.7 0.9417 0.9265 2.0476 2.0975 0.24975
(0.00) (0.0001) (0.0001) (0.000) (0.0001) (0.0001)

0.05 1698.19 1695.6 0.9489 0.9471 2.0517 2.0818 0.2503
(0.00) (0.0000) (0.0001) (0.000) (0.0001) (0.0001)
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Table 4.6: Empirical Coverage of LL and NW for Model II for α = 0.05, x0 =

0.306 and m(x0) = 3.024.

d nopt n̄ p̃LL p̃NW m̂LL m̂NW σ̂2

Two− Stage Procedure

0.13 81.77 105.06 0.9464 0.9559 3.0375 3.0108 0.2580
(0.40) (0.0018) (0.0017) (0.0010) (0.0010) (0.0010)

0.11 138.97 180.46 0.9591 0.9667 3.0368 3.0044 0.2602
(0.68) (0.0016) (0.0015) (0.0009) (0.0008) (0.0009)

0.09 262.78 337.03 0.9731 0.9537 3.0306 2.9925 0.2583
(1.27) (0.0013) (0.0017) (0.0008) (0.0003) (0.0007)

0.07 583.56 759.76 0.9891 0.9761 3.0319 3.0029 0.2608
(2.91) (0.0008) (0.0012) (.0003) (0.0004) (0.0003)

0.05 1698.19 2149.35 0.9943 0.9540 3.0274 3.0012 0.2563
(8.25) (0.0006) (0.0017) (0.0001) (0.0002) (0.0002)

Modified Two− Stage Procedure

0.13 81.77 95.8 0.9506 0.9471 3.0276 2.9926 0.2568
(0.26) (0.0018) (0.0018) (0.0005) (0.0005) (0.0004)

0.11 138.97 157.8 0.9634 0.9274 3.0237 2.9806 0.2568
(0.38) (0.0015) (0.0021) (0.0004) (0.0004) (0.0004)

0.09 262.78 284.5 0.9784 0.9323 3.0280 2.9859 0.2532
(0.57) (0.0012) (0.0021) (0.0003) (0.0003) (0.0003)

0.07 583.56 616.7 0.9928 0.9429 3.0213 2.9951 0.2529
(0.99) (0.0007) (0.0024) (0.0002) (0.0002) (0.0003)

0.05 1698.19 1754.8 0 .9983 0.9803 3.0277 3.0041 0.2520
(2.09) (0.0003) (0.0011) (0.0001) (0.0001) (0.0002)

Purely Sequential Procedure

0.13 81.77 79.56 0.9362 0.9011 3.0211 2.9834 0.2410
(0.40) (0.0028) (0.0030) (0.0007) (0.0008) (0.0005)

0.11 138.97 137.85 0.9386 0.9162 3.0305 2.9946 0.2462
(0.68) (0.0020) (0.0023) (0.0005) (0.0005) (0.0013)

0.09 262.78 261.66 0.9468 0.9240 3.0332 2.9989 0.2481
(1.27) (0.0015) (0.0019) (0.0004) (0.0004) (0.0002)

0.07 583.56 581.47 0.9480 0.9257 3.0291 2.9970 0.2489
(2.91) (0.0009) (0.0021) (0.0002) (0.0003) (0.0001)

0.05 1698.19 1695.62 0.9470 0.9380 3.0252 3.0041 0.2496
(8.25) (0.0010) (0.0036) (0.0003) (0.0003) (0.0002)
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Chapter 5

Symmetric Bootstrap

Fixed-width confidence Interval

for Nonparametric Kernel

Regression

5.1 Introduction

An application of bootstrapping to the construction of fixed-width confidence

bands is considered in the context of nonparametric regression estimation.

The developed bootstrap confidence bands are then compared with those

constructed in Sections 4.3 and 4.4 by the direct method based on asymptotic

mean, variance and distribution of regression estimators. In general, the

development of confidence intervals in nonparametric regression falls into

two parts, the first being construction of a confidence interval for m(x0) and

the second involving bias E[m̂hn(x0)−m(x0)] correction. The effect of bias

depends very much on how bias is corrected and there are different views as
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to how this should be done.

Bootstrapping is a resampling technique which has an appealing non-

parametric approach for approximating sampling distribution of a statistic

for small and also for moderate sample sizes. It will generate the frequency

distribution of the statistic by resampling the given sample. There are many

ways in which this sort of information could be of considerable assistance in

nonparametric kernel regression. One application of interest is the construc-

tion of confidence interval for a given point of interest. However, special care

must be taken to account for the bias terms encountered in nonparametric

kernel estimation.

Several authors have developed bootstrap methods for constructing con-

fidence intervals in nonparametric regression. Both pivotal and non-pivotal

approaches have been employed. Recall that a distribution function F of

both data and unknown parameter is said to be pivotal if it has the same

distribution for all values of the unknowns. Hardle and Bowman (1988)

used non-pivotal technique for constructing confidence intervals for in non-

parametric regression whereas Hall (1992) drew attention to some of the

theoretical advantages of a pivotal approach in the context of nonparametric

regression.

McDonald (1982) has suggested the use of bootstrap methods for assess-

ing variability bands in nonparametric regression and the used method was

based on resampling from the empirical distribution of the pairs of observa-

tions. Dikta (1988) investigated McDonald’s approach and showed that up

to a bias term, a type of pointwise bootstrap confidence interval is asymp-

totically correct. Bickel and Freedman (1981) have argued that resampling

should be done from estimated residuals when the predictor variables are

fixed and non-random in the setting of linear regression. Hardle and Bow-
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man (1988) applied this estimated residual resampling scheme in the case

of random predictor to the problems of local adaptive choice of bandwidth

by approximating the mean squared error of the nonparametric estimate at

some point of interest and then to the construction of confidence bands.

Most of the published work on bootstrap confidence intervals is based on

equal-tailed two-sided intervals (Efron, 1981; 1982; 1987). An equal-tailed

(1 − α) level of confidence interval for an unknown regression function at a

given point x0, m(x0) would be of the form

[m̂hn,q(x0)− d1, m̂hn,q(x0) + d2]

where m̂hn,q(x0) is a point estimate of m(x0) and d1, d2 are chosen so that

Pr [m(x0) < m̂hn,q(x0)− d1] = Pr [m(x0) > m̂hn,q(x0) + d2] =
α

2
.

However, symmetric two-sided percentile bootstrap interval has a form of

[m̂hn,q(x0)− d, m̂hn,q(x0) + d]

where d is chosen so that

Pr(|m̂hn,q(x0)−m(x0)| > d) = α.

Let (Xi, Yi); i = 1, . . . , n be identical and independently distributed pairs

of observations with unknown bivariate distribution. Note that Xi design

points could be either from fixed equidistant or random designed data. Here

we consider the case of symmetric two-sided bootstrap type confidence in-

tervals. Motivation behind using symmetrized version is Hall (1988) who

showed that symmetric intervals have better coverage accuracy than equal

tailed intervals. A fixed-width confidence interval procedure for m(x0) based

on m̂hn,q(x0) having length 2d and coverage probability (1−α) is a stopping

random variable N such that

Pr [m̂hN ,q(x0)− d ≤ m(x0) ≤ m̂hN ,q(x0) + d] ≥ 1− α. (5.1)
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Essentially, the problem of constructing an interval IN,d = (m̂hN ,q(x0) − d,

m̂hN ,q(x0) + d) is translated into a problem of determining the sample size.

Indeed, if the sample size N is too small then the interval IN,d will not achieve

preset coverage probability 1− α.

In principle, confidence intervals can be obtained from asymptotic distri-

bution results for m̂hn,q(x0)

(m̂hn,q(x0)− E[m̂hn,q(x0)])
√

Var[m̂hn,q(x0)]
→ ζ (5.2)

that is √
nhn (m̂hn,q(x0)− E[m̂hn,q(x0)])

σ
√

B(f(x0))−1
→ ζ.

In Chapter 4 we discussed how to determine sample size N such that the

coverage probability (1 − α) attains the preset confidence coefficient using

the asymptotic normal approximation i.e, ζ ≡ N(0, 1). However, in prac-

tice residual variance σ2 is unknown and replaced by a suitable estimator

σ̂2. Thus, the construction of these asymptotic confidence intervals involves

assessing the distribution of
m̂hn,q(x0)

σ̂
which is not always possible to derive

as it depends not only on the individual distributions of m̂hn,q(x0) and σ̂2

but also the distributional effects when they are considered together in case

f(x0) is known. On the other hand, when f(x0) is unknown this problem

becomes more critical since then we have to look at joint effect of three terms

f̂(x0), m̂hn,q(x0) and σ̂. Also it is difficult to come across the distribution

of residual variance estimator σ̂2 in nonparametric regression regardless of

whether f(x0) is known or unknown. Even if it is possible, we have only

approximation or asymptotic distribution. To resolve this we could employ

bootstrap method which is considered as an alternative method of estimat-

ing properties of unknown distributions. Resampling could be done from a

suitably estimated residual distribution and then utilizes the percentiles of
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the approximate distribution to construct confidence intervals for the curve

at a given design point.

Here we suggests a novel approach using bootstrap ideas which is first

introduced by Swanepoel et. al. (1984) for the case of sample mean. Here,

the distribution of m̂hn,q(x0) is not approximated by the estimated asymp-

totic distribution but by an unknown distribution obtained from resampling

and whose quantiles can therefore be computed. Approximate fixed-width

confidence intervals can then be constructed by employing these quantiles.

Define

ζn(c) = Pr {|m̂hn,q(x0)−m(x0)| ≤ c} (5.3)

where ζn(·) is the distribution function of the symmetrised estimator of

m̂hn,q(x0).

Now the optimal sample size nopt which assures the interval Inopt,d producing

at least coverage probability (1− α) satisfies

Pr
{∣

∣

∣
m̂hnopt ,q(x0)−m(x0)

∣

∣

∣
≤ d

}

≥ 1− α (5.4)

where

nopt = min {n : Pr [|m̂hn,q(x0)−m(x0)| ≤ d] ≥ 1− α}

and any sample size n ≥ nopt will satisfy inequality in (5.4).

Since

Pr
{√

nopthnopt

∣

∣

∣
m̂hnopt ,q

(x0)−m(x0)
∣

∣

∣
≤

√

nopthnoptd
}

≥ 1− α,

ζnopt

(

d
√

nopthnopt

)

= Pr
{√

nopthnopt

∣

∣

∣
m̂hnopt ,q(x0)−m(x0)

∣

∣

∣
≤ d

√

nopthnopt

}

≥ 1− α
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which implies

d
√

nopthnopt ≥ ξnopt(α)

where ξn(α) is the (1− α)th quantile of the ζn(·) distribution.

Since we take bandwidth hn = n−r, nopthnopt = n1−r
opt

d
√

n1−r
opt ≥ ξnopt(α)

which implies

nopt ≥
[

ξnopt(α)

d

]
2

1−r

. (5.5)

In order to estimate nopt, we use

n̂opt ≥
[

ξ̂n0(α)

d

]
2

1−r

(5.6)

where we suggest using bootstrap critical point ξ̂n0(α) based on smaller avail-

able sample (X1, Y1), . . . , (Xn0, Yn0) of size n0 as a estimator of ξnopt which

is the only unknown quantity in (5.6). Note that in practice n0 is the pilot

sample size which is a subjective choice.

Even though much research has been done in sequential analysis, sequen-

tial procedures are not commonly employed in practice. But they are of

great importance as we can find many situations where we do not know in

advance how many observations or sample size will be required to reach a

decision. We consider the Stein two-stage sequential procedure as given in

Sections 4.3.1 and 4.4.1 which requires only two sampling operations. How-

ever, it turned out that this two-stage procedure lacks efficiency (Section 4.5).

Methodology is developed for determining whether it is advantageous to use

the bootstrap method to reduce the extent of oversampling that is normally

known to plague Stein’s two-stage sequential procedure. It is a well known

fact that for a wide class of statistics, the bootstrap approximation has a
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high degree of accuracy. Therefore, we would expect the proposed procedure

will perform better than the classical two-stage sequential procedure based

on student-t approximation given in Chapter 4.

In this chapter we propose a method which combines bootstrap ideas with

the two-stage sequential procedure to estimate unknown regression function

at any given point using the smallest possible sample size to achieved pre-

assigned level of accuracy. The outline of this chapter is as follows: Sec-

tion 5.2 introduces bootstrapping in nonparametric kernel regression. Sec-

tion 5.3 explains the implementation of bootstrap methodology to two-stage

procedure. An extensive simulation study is conducted to illustrate the ap-

plication of the developed procedure. The simulation results on confidence

intervals and their coverage probabilities are discussed in Section 5.4. We

show that the amount of oversampling cause by two-stage procedure can be

reduced significantly by employing a bootstrap technique.

5.2 Bootstrapping in Nonparametric Kernel

Regression Estimation

Efron (1979,1982) explained and explored the bootstrap method in detail.

Let θ̂ is an estimate of a parameter θ based on a sample X1, . . . , Xn drawn

from unknown distribution F . The standard bootstrap technique is to esti-

mate θ by sampling method but with the samples being drawn not from F

itself but from the empirical distribution function Fn of the observed data

X1, . . . , Xn. A sample from Fn is generated by successively selecting uni-

formly with replacement from X1, . . . , Xn to construct a bootstrap sample

X∗
1 , . . . , X∗

n. For each bootstrap sample an estimator of θ is calculated. Since
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arbitrarily large numbers of bootstrap samples can be constructed θ can eas-

ily be estimated to any reasonable required accuracy from the simulated

samples. The estimator θ̂ is then used as an estimate of θ. All the members

of drawn bootstrap samples consist of the observations from original sam-

ple and nearly every sample will contain repeated values. Samples drawn

from empirical distribution Fn in the bootstrap simulations will have some

rather odd properties as empirical distribution Fn is a discrete distribution.

However Efron (1979) came up with the idea of smoothed bootstrap as a

modification to the bootstrap procedure to avoid bootstrap samples with

these odd properties. In a smoothed bootstrap, the resampling is conducted

not from the empirical distribution Fn but from a smoothed version F̂ of

Fn. Some properties of the smoothed bootstrap and also some insights into

circumstances when the smoothed bootstrap will give better results than the

standard bootstrap is described comprehensively by Silverman and Young

(1987).

In general, bootstrap technique used in nonparametric regression replace

any occurrence of the unknown distribution F in the definition of the sta-

tistical function of interest by the empirical distribution function Fn of the

observed errors {εi}n
i=1. We can not observe Fn because these residuals are

not directly observed in a context of regression analysis although they can be

estimated from the respective fitted model ε̂i = Yi − m̂hn,q(xi). Here we em-

ploy nonparametric kernel regression estimators, Nadaraya–Watson estima-

tor m̂hn,NW (x0) and local linear estimator m̂hn,LL(x0) which are respectively

defined by (2.18) and (2.19) in Section 2.3 as the fitted values of m̂hn,q(x0).

It is important however to note that m̂hn,q(x0) is a biased estimator of m(x0)

and that if its bandwidth hn is chosen to balance this bias against the stan-

dard deviation of m̂hn,q(x0), then the variance and squared bias will have the
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same speed of convergence to 0 (Wand and Jones, 1995).

There are several ways of bootstrapping in the context of nonparametric

regression. Hardle and Marron (1991) did not resample from the entire set

of residuals as in Hardle and Bowman (1988). They used the idea of wild

bootstrapping which is developed based on literature by Rosenblueth (1975).

In wild bootstrapping, each bootstrap residual ε∗i is drawn from the two-point

distribution which has mean zero E[ε∗i ] = 0, variance equal to the square of

the residual Var[ε∗i ] = ε̂i
2 and third moment equal to the cube of the residual

E[ε∗
3

i ] = ε̂i
3 where ε̂i = Yi − m̂hn,q(Xi).

The standard bootstrap approach of resampling from the pairs

{(Xi, Yi)}n
i=1 is not recommended because the bootstrap bias will be 0. For

more details on bootstrapping regression models we refer to Hardle and Bow-

man (1988) and Hall (1992). We consider the regression model (2.1) as de-

fined in Section 2.1. Depending on the structure of the design points of

explanatory variable X, considered regression model takes the form of (2.2)

or (2.3) as explained in Section 2.1 with density function f(x) where f(x) = 1

in the case of fixed equidistant design. Without loss of generality, we assume

that Xi ∈ (0, 1) as we can make any type of data set to be in (0, 1) by tak-

ing t = x−a
b−a

where a and b are minimum and maximum values of the data

set respectively and reverting back to original scale by x = (b − a)t + a.

In the regression model given in (2.1), ε s are independent and identically

distributed (iid) random variable with zero mean E(ε) = 0 and constant

variance Var[ε] = σ2. Also there is one-to-one correspondence between εi

and the data pair (Xi, Yi). Therefore our approach to the bootstrapping in

the nonparametric regression is to first use the estimated residual ε̂i

ε̂i = Yi − m̂gn,q(xi); i = 1, . . . , n (5.7)

where gn is a bandwidth (different from hn to be introduced later). The
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idea is to resample from the estimated residuals which are the differences

between the observed values of response variable and the kernel type esti-

mators and then use this data to construct an estimator whose distribution

will approximate the distribution of the original estimator. The estimated

residuals need not necessarily have mean 0, so to let the resampled residuals

reflect the behaviour of the true observed errors they should first be centred

as

ε̃i = ε̂i −
∑n

j=1 ε̂j

n
; i = 1, . . . , n. (5.8)

This form of bootstrapping preserves the error distribution in the data and

guarantees that the bootstrap observations have errors with zero mean. One

of the main advantages of this approach is, it correctly accounts for the bias

of the estimator.

Since Var[ε̃i] < σ2 it is desirable to adjust the centred residuals to incorporate

Var[ε̃i] = σ2. The adjusted residuals are defined as

ε̃i →
ε̃i

√

1− 1/n
i = 1, . . . , n. (5.9)

The bootstrap samples are then constructed by adding to the observed esti-

mate errors which are randomly chosen with replacement from the collection

of centered residuals from the original data. Let ε∗i , . . . , ε
∗
n be a sample of

bootstrap residuals drawn randomly with replacement from the set ε̃1, . . . , ε̃n.

Resampled Y ∗ are then constructed by

Y ∗
i = m̂gn,q(xi) + ε∗i ; i = 1, . . . , n (5.10)

where m̂gn,q(xi) is a kernel type estimator with bandwidth gn chosen to be

larger than hn. The reason why we take gn > hn is based on asymptotic

analysis of mean of [m̂hn,q(x0)−m(x0)] under the conditional distribution of

Y1, . . . , Yn|X1, . . . , Xn and mean of [m̂∗
hn,q(x0) − m̂gn,q(x0)] under the condi-

tional distribution of Y ∗
1 , . . . , Y ∗

n |(X1, Y1), . . . , (Xn, Yn) in the simple situation
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when the marginal density f(x) is constant in a neighbourhood of x0. Rosen-

blatt (1969) showed that

EY |X [m̂hn,q(x0)−m(x0)] ≈
h2

n

2

(
∫

t

t2K(t)dt

)

m′′(x0) (5.11)

EY ∗|(X,Y )

[

m̂∗
hn,q(x0)− m̂gn,q(x0)

]

≈ h2
n

2

(
∫

t

t2K(t)dt

)

m′′
gn,q(x0). (5.12)

From (5.11) and (5.12) for the two distributions, which are [m̂hn,q(x0)−m(x0)]

and [m̂∗
hn,q(x0)−m̂gn,q(x0)], to have the same bias, m′′

gn,q(x0) → m′′(x0). This

requires choosing gn tending to 0 at a rate slower than the hn for estimating

m(x) (Hardle, 1990).

Recall that our ultimate objective is to estimate distribution of m̂q(x0)−
m(x0) by m̂∗

q(x0)− m̂q(x0). However, m̂q(x0) is a biased estimator of m(x0)

and hence according to (5.11) and (5.12) not only different bandwidths re-

quired for m̂q(x0) and m̂∗
q(x0) estimators but also they need to be chosen

such that m̂q(x0)−m(x0) and m̂∗
q(x0)− m̂q(x0) have the same speed of con-

vergence to zero. This condition is satisfied by selecting different bandwidths

gn and hn such that gn > hn. To be precise, distribution of m̂hn,q(x0)−m(x0)

is estimated by distribution of m̂∗
hn,q(x0)− m̂gn,q(x0). Moreover, rationale for

selecting different bandwidths for m̂q(x0) and m̂∗
q(x0) is also elucidated by

Theorem 8.

Finally, we use bootstrap sample (X1, Y
∗
1 ), . . . , (Xn, Y ∗

n ) to estimate

m̂∗
hn,q(x0). Corresponding bootstrap estimates for Nadaraya–Watson and

local linear methods are

m̂∗
hn,NW (x0) =

∑n
i=1 K

(

x0−Xi

hn

)

Y ∗
i

∑n
i=1 K

(

x0−Xi

hn

)

=

∑n
i=1 K

(

x0−Xi

hn

)

(m̂gn,NW (Xi) + ε∗i )

∑n
i=1 K

(

x−Xi

hn

) (5.13)
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and

m̂∗
hn,LL(x0) =

∑n
i=1 wiY

∗
i

∑n
i=1 wi

=

∑n
i=1 wi (m̂gn,LL(Xi) + ε∗i )

∑n
i=1 wi

. (5.14)

The choice of bandwidths hn and gn are crucial to the performance of the

bootstrap nonparametric estimators (5.13) and (5.14). Here we estimate

bandwidths as discussed in Section 2.5. In order to conform with the con-

dition gn > hn which leads to n−r1 > n−r we select values r1 and r in

such a way r1 < r and r1 ∈
(

− ln[min(x0,1−x0)]
ln n

, 1
)

where x0 is the point that

estimation is taking place.

Hardle (1990) came up with the following theorem suggesting the distri-

bution of m̂hn,q(x)−m(x) is approximated by the distribution of m̂∗
hn,q(x)−

m̂gn,q(x).

Theorem 8 Suppose that
∫

u
|K(u)|2+ηdu < ∞ for some η > 0, m(x) and

f(x) twice differentiable and E[|Y |2+η |X = x], gn > hn and f(xi) > 0 for

i = 1, . . . , n. Then for almost all sample sequences and for all c ∈ R

∣

∣

∣
PrY |X {△x,n} − PrY ∗|X

{

√

nhn

[

m̂∗
hn

(x)− m̂gn(x)
]

< c
}
∣

∣

∣
→ 0

where △x,n =
√

nhn [m̂hn(x)−m(x)] < c.

Here we use the symbol Y |X to denote the conditional distribution of

Y1, . . . , Yn|X1, . . . , Xn and Y ∗|X to denote the bootstrap distribution of

Y ∗
1 , . . . , Y ∗

n |(X1, Y1), . . . , (Xn, Yn). Hence, m̂∗
hn,q(x0) can be used as the basis

for constructing a confidence interval for m(x0).

149



5.3 Bootstrap Sequential Confidence Bands

in Nonparametric Kernel Regression

Estimation

One of main objective of bootstrapping is to gain information on the distri-

bution of an estimator. Thus fixed-width confidence bands for the unknown

regression function at specific design point or points can also be derived

from using the percentiles of the bootstrap distribution. Faraway (1990) de-

veloped a bootstrap method to estimate average squared error of a kernel

based nonparametric regression estimator for a given bandwidth and also

proposed simultaneous 100(1− α)% bootstrap confidence bands for m(x) to

be constructed as [m̂hn(x) − c̄(α), m̂hn(x) + c(α)] where c̄(α) and c(α) are the

appropriate α level sample percentile of

c̄j = max
1≤i≤n

[

(m̂∗
hn

(xi))j − m̂gn(xi)
]

and

cj = max
1≤i≤n

[

m̂gn(xi)− (m̂∗
hn

(xi))j

]

; j = 1, . . . , nb

respectively, where
(

m̂∗
hn

(x)
)

j
is the jth bootstrap estimate based on boot-

strap sample {(Xi, Y
∗
i ) , . . . , (Xn, Y ∗

n )} where Y ∗
i = m̂gn(xi) + ε∗i and nb is

number of bootstrap samples. This method is an extension of work on boot-

strap bandwidth selection for density estimates in Faraway (1988).

Given (Xi, Yi), . . . , (Xn, Yn), (Xi, Y
∗
i ), . . . , (Xn, Y

∗
n ) be a bootstrap sam-

ple of size n drawn with replacement and Pr∗n denotes its corresponding

distribution which is the empirical distribution based on the original sample.
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Define

Pr∗n

{

√

nhn

∣

∣m̂∗
hn,q(x0)− m̂gn,q(x0)

∣

∣ ≤ c
}

where c is positive constant and

m̂gn,q(x0) =











m̂gn,LL(x0) if q=LL;

m̂gn,NW (x0) if q=NW.

Here we advocate a particular bootstrap distribution which uses centered but

not standardised estimator. Since

∣

∣

∣
Pr∗n {·} − Pr

{

√

nhn [m(x0)− m̂hn,q(x0)] ≤ c
}∣

∣

∣
→ 0 (5.15)

where

Pr∗n {·} = Pr∗n

{

√

nhn

[

m̂∗
hn,q(x0)− m̂gn,q(x0)

]

≤ c
}

as n →∞.

From the theory of bootstrapping, this suggests the way in which the dis-

tribution of the nonparametric estimate about the true curve at some point

of interest may be approximated by suitable centering of the nonparametric

estimates based on bootstrap samples.

The proposed stopping rules in Chapter 4 were involved with an asymp-

totic approximation of residual variance, bias and variance of kernel estima-

tors, estimation of density function of explanatory variable X for random

design data, the normal approximation and chi-square distribution. This

section investigates the use of the bootstrap in providing approximations to

a suitably centered distribution of kernel estimators of nonparametric regres-

sion estimation. On the other hand, we expect the application of bootstrap-

ping to two-stage sequential procedure will reduce the amount of oversam-

pling for some extent. Here we replace all the unknown quantities by the

corresponding bootstrap critical value. In this method, one first draws a
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bootstrap sample {(Xj, Y
∗
j )}n0

j=1 with replacement from a set of initial obser-

vations of size n0 and Y ∗
j s are calculated as explained in Section 5.2. Define

U∗i =
∣

∣

∣

√

n0hn0

[

(m̂∗
hn0 ,q(x0))i − m̂gn0 ,q(x0)

]∣

∣

∣
; i = 1, . . . , nb (5.16)

where m̂∗
hn0 ,q(x0) is the ith bootstrap nonparametric regression estimate based

on ith bootstrap sample
{

(X1, Y
∗
1 ) , . . . ,

(

Xn0, Y
∗
n0

)}

and nb is the number of

bootstrap replications. Using bootstrap approximation:

Pr∗n0

{∣

∣

∣
m̂∗

hn0 ,q(x0)− m̂gn0 ,q(x0)
∣

∣

∣
≤ d

}

≥ 1− α

the equivalent bootstrap optimal sample size n∗opt is given by

n∗opt ≥
{

ξ∗α,n0

d

}
2

1−r

(5.17)

where ξ∗α,n0
is the [⌊nb(1−α)⌋]th largest value of {U∗(1), . . . , U∗(nb)

} and U∗(i)s are

the ordered values of U∗i for i = 1, . . . , nb. Then ξ∗α,n0
is the estimated boot-

strap critical value. Hence, two-stage sampling procedure based on bootstrap

critical point is given by

N∗
q ≡ N∗

q (d) = max

{

n0,

⌊

(

[ξ∗α,n0
]q

d

)

2
1−r

⌋

+ 1

}

(5.18)

where
[

ξ∗α,n0

]

q
= [⌊nb(1− α)⌋]th value of {U∗q(i)}nb

i=1

and

U∗q(i) =











U∗NW (i) =
∣

∣

∣

√

n0hn0

[

m̂∗
hn0 ,NW (x0)i − m̂gn0 ,NW (x0)

]
∣

∣

∣
if q=NW

U∗LL(i) =
∣

∣

∣

√

n0hn0

[

m̂∗
hn0 ,LL(x0)i − m̂gn0 ,LL(x0)

]
∣

∣

∣
if q=LL.

If N∗
q > n0 then we take further (N∗

q −n0) observations, otherwise no more

observations are required in the second stage. Note that this approach does

not require an estimators for σ or/and f(x) regardless of the data design since
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this estimation part is already included in the estimator ξ∗α,n0
. The accuracy

of those approximations can be improved by increasing number of bootstrap

samples nb. Increasing the number of bootstrap replicates is limited by the

computational time though.

According to Section 5.2, it is obvious that unlike the stopping rules

developed in Chapter 4 here we have two stopping rules N∗
LL and N∗

NW

depending on which nonparametric kernel estimator has been used in at-

taining bootstrap distribution of U =
√

nhn[m̂∗
hn,q(x0) − m̂gn,q(x0)]. Fi-

nally, we use both N∗
LL and N∗

NW final sample sizes to estimate Nadaraya–

Watson estimator and local linear estimator. Hence we have two estimates

m̂hN∗
NW

,NW (·) and m̂hN∗
LL

,NW (·) for Nadaraya–Watson method based on the

samples (X1, Y1), . . . , (XN∗NW
, YN∗NW

) and (X1, Y1), . . . , (XN∗LL
, YN∗LL

) respec-

tively. Same with the local linear method and the two estimates are m̂hN∗
NW

,LL(·)
and m̂hN∗

LL
,LL(·).

It is important to note that if the initial sample size n0 is too small the

approximated bootstrap critical point ξ∗α,n0
may differ too much from the

optimal value ξα,nopt. There is a certain region of small sample sizes n0 in

which the approximated bootstrap critical points ξ∗α,n0
are subject to a lot of

variation (with extreme large values). This instability and overestimation is

carried over (in a quadratic way) to the final sample size N∗
q as

(

ξ∗α,n0

)
2

1−r is

used in calculating (5.18). It is clear that this region should be avoided and

that the choice of the initial sample size n0 is more sensitive when using the

bootstrap critical values.

Thus, in an application of above stopping rule (5.18), it is important to

select suitable values for the design constants r and n0 for fixed predesigned

values of d and α. Note that value for r is chosen as described in Section 2.7

and pilot sample size n0 is an arbitrary sensible number to start up the
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sequential procedures.

5.3.1 Fixed Equidistant Designed data

From equation (5.18) we propose the following rule for N∗
1,q:

N∗
1,q = max

{

n0,

⌊

(

[ξ∗α,n0
]q

d

)

2
1−r

⌋

+ 1

}

(5.19)

where r ∈
(

− ln[min(x0,1−x0)]
lnn0

, 1
)

. Therefore from (5.19), ξ∗α,n0
bootstrap criti-

cal value replaces tν,α/2σ
√

B in the stopping rule given in (4.13).

In order to comply with the fixed equidistant design data and to contin-

ually use the observed data in the initial sample, take the final sample size

N∗
q = n0T

∗
q where T ∗q is a positive integer given by

T ∗q =

⌊

N∗
1,q

n0

⌋

= max











1,











(

[ξ∗α,n0
]q

d

)
2

1−r

n0





















(5.20)

and N∗
q ≥ N∗

1,q. As discussed in Section 4.3 the constraint inherent in the

structure of fixed equidistant design data leads to an overestimated final

sample size N∗
q regardless of which nonparametric estimator has been used

to attain bootstrap critical point from distribution of U . Clearly if T ∗q = 1,

no additional observations are required in the second stage and N∗
q = n0.

However, if T ∗q > 1 we take extra sample of size N∗
q − n0 = n0(T

∗
q − 1) in the

second stage with

xi =
i

n0T ∗q
for i = n0 + 1, . . . , (n0T

∗
q − 1) and i 6= T ∗q , 2T ∗q , . . . , n0T

∗
q .

(5.21)

Note that the initial sample data corresponds to (xi, Yi) for i = T ∗q , 2T ∗q , . . . ,

n0T
∗
q . Finally, we use the sample {(x1, Y1), . . . , (xN∗q , YN∗q )} with xi = i/N∗

q to
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compute Nadaraya–Watson (2.18) and local linear (2.19) estimates for m(x0)

and construct the confidence band given in (5.1).

5.3.2 Random Designed data

Two-stage sampling procedure is started by taking a pilot bivariate sam-

ple {Xi, Yi}n0

i=1 and then estimate the required final sample size N∗
q . From

(4.26), bootstrap critical value ξ∗α,n0
replaces tn,α/2σ

√

B
f(x)

. Hence, two-stage

sampling procedure based on bootstrap critical point is given by

N∗
q ≡ N∗

q (d) = max

{

n0,

⌊

(

[ξ∗n0,α]q

d

)

2
1−r

⌋

+ 1

}

. (5.22)

If N∗
q = n0 then we need no more observations in the second stage. But if

N∗
q > n0 then we take additional bivariate sample {Xi, Yi}

N∗q
i=n0+1 of size N∗

q −
n0 in the second stage. Finally, we use the sample {(X1, Y1), . . . , (XN∗q , YN∗q )}
to compute Nadaraya–Watson (2.18) and local linear (2.19) estimates for

m(x0) and construct the confidence band given in (5.1).

5.4 Simulation Results

A simulation study was conducted to compare 95% (α = 0.05) fixed-width

confidence intervals using Nadaraya–Watson and local linear estimators with

and without bootstrapping. The performance of the bootstrap confidence

interval for the unknown regression function at a specific point x0 is compared

with confidence interval based on asymptotic distribution. Bootstrap requires

more computational effort in an attempt to reflect features of underlying

distribution whereas the direct method is simpler but based on asymptotic

distribution. Fortran programs were used to carry through all computations.
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The initial sample size n0 was chosen to be 25. For all simulations, we

used standard normal kernel, K(u) = (2π)−1/2 exp(−u2/2); −∞ < u < ∞.

The parameter r of the bandwidth was computed as previously discussed in

Section 2.7. The bootstrap resampling procedure given in Sections 5.2 and 5.3

is carried out for nb = 500. Given a sample (X1, Y1), . . . , (Xn0, Yn0) we take

nb bootstrap samples (X1, Y
∗
1 ), . . . , (Xn0, Y

∗
n0

) of size n0 = 25. For each boot-

strap sample we calculate the appropriate bootstrap statistic for ith bootstrap

sample i.e., U∗i =
∣

∣

∣

√

n0hn0

(

m̂∗
hn0 ,q(x0)− m̂gn0 ,q(x0)

)
∣

∣

∣
; i = 1, . . . , nb. The

sampling distribution of the resulting nb = 500 values of statistic U∗i is taken

as an approximation to the actual bootstrap distribution. The (1−α)th100%

percentile of this sampling distribution ξ∗α,n0
provides an appropriate approx-

imation to the actual bootstrap critical value ξα,n0.

During the simulation, first the sample size required to achieve the preset

confidence coefficient is estimated. The final sample sizes i.e. without boot-

strap N and with bootstrap N∗
q , are respectively obtained from the stopping

rules given in Section 4.3 and Section 5.3. Tables 5.1 and 5.2 give the sum-

mary results obtained from the simulation study with and without bootstrap.

Here p̃ is the coverage probability, n̄ is the average final sample size and the

standard errors of these quantities are calculated in the same way as defined

in Section 4.5. To quantify the accuracy of each estimate, the associated

standard error is included in the tables underneath the corresponding value.

Estimate of nonparametric regression function at a given point from each

method and their coverage probabilities are calculated using final sample

sizes based on with and without bootstrapping and given in columns 6-17.

For each selected value of half-width of the interval d, the performance of

procedures (with and without bootstrapping) can be evaluated by looking at

the average sample sizes n̄, n∗LL and n∗NW and coverage proportion of the con-
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fidence intervals [IN − d, IN + d] resulting form 15000 simulations of original

data followed in each case by 500 bootstrap simulations.

Sections 5.4.1 and 5.4.2, respectively, present the results of the simulation

study for the case of fixed equidistant designed data discussed in Section 5.3.1

and the case of random designed data discussed in Section 5.3.2. The results

present in both Tables 5.1 and 5.2 are the average of those 15000 iterations.

In the following sections we consider three main points. The first is investi-

gation of how much difference there is between average sample sizes based

on pointwise bootstrap and direct confidence intervals. Second, we compute

and compare the coverage probabilities of the bootstrap confidence intervals

with those of without bootstrapping. Third, we compare average values of

Nadaraya–Watson estimator and local linear estimator with m̂hN∗q
,q(x0) and

without bootstrapping m̂hN ,q(x0) with the theoretical value m(x0) for a given

point x0.

The simulation results show the benefit in using confidence bands based

on centered bootstrap approximation instead of those based on asymptotic

distribution.

5.4.1 Fixed Equidistant Design

We use the following two models to assess the performance of the confidence

bands developed in Section 5.3.1:

Model I : Y = sin2(0.75x) + 3 + εi

Model II: Y = 2 exp{−x2/0.18}+ 3 exp{−(x− 1)2/0.98}+ εi

where εi ∼ N(0, σ2) with σ2 = 0.25.

Half-widths of the interval are chosen to be d = 0.05, 0.07, 0.09, 0.12, 0.14.

In both models 15000 replicate samples for each experimental setting are

carried out to obtain the final sample sizes required to estimate m(x0) at
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x0 = 0.306 for a given fixed-width, 2d. We take an initial sample of size 25.

Hence, design points of explanatory variable X take the form
{

xi = i
25

}25

i=1
.

Then corresponding yi values are calculated for each stated relation (Models I

and II). Random errors εi are generated from Normal distribution N (0, 0.52)

and added to the above yi to obtain Yi.

Results of Table 5.1 looks impressive since the observed coverage probabil-

ities are all close to or well above desired value of 95% for most of the d values.

Also bootstrap average sample sizes n∗NW and n∗LL are lower than n for every

d value. However average sample sizes based on Nadaraya–Watson estimator

show somewhat disappointing results since the n∗NW values are all signifi-

cantly below than the optimal sample size nopt and the difference nopt−n∗NW

is becoming large for decreasing half-width of the interval d. Whereas sample

sizes based on local linear method n∗LL show better result as every single aver-

age sample size is less than n̄ and close to the corresponding optimal sample

size nopt. The difference between n∗LL and n∗NW show clearly the bias that

is inherent to nonparametric regression estimation as both values depend on

the distribution of U∗i =
∣

∣

∣

√

n0hn0

[

(m̂∗
hn0 ,q(x0))i − m̂gn0 ,q(x0)

]
∣

∣

∣
.

Observe that most of the coverage probabilities based on the local lin-

ear estimator p̃LL have achieved 95% compared with those are based on

Nadaraya–Watson estimator p̃NW which are slightly lower. Careful investi-

gation reveals that this was due to problems with the estimated bias. Of

course this bias effect goes away asymptotically but in the models considered

here shows that it is not negligible especially in the Model I (Column 17) and

we believe this problem will occur quite often. Note that because m̂NW has

larger bias term than m̂LL the estimated bias will typically be bigger than

the bias of m̂LL. The effect does not look very large in the average estimates

m̂NW but simultaneous coverage turns out to be a very sensitive quantity. As
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expected from the previous analysis, the local linear coverage probabilities

p̃LL based on n̄ are slightly bigger (due to the large sample sizes) than those

based on n∗LL (not a significant difference in most d values though). How-

ever, average local linear estimators m̂LL based on n∗LL are quite close to the

theoretical value m(x0). The difference of local linear coverage probabilities

p̃LL between those based on n̄ and n∗LL is really quite small while those based

on n∗NW are quite distant.

Of course coverage probabilities of these confidence intervals, with and

without bootstrap all fall below the preset confidence coefficient 95% for

large d values due to the fact that when there are less data available, the

estimates are less accurate. The one surprising feature is that the average

Nadaraya–Watson estimator m̂NW estimated using n∗NW are close to the the-

oretical value m(x0) compare to other estimates based on n and n∗LL in the

case of Model I. Also as the sample size is much larger, it seems reasonable to

hope that the asymptotic negligibility of the bias problem is closer to being

realized.

• n∗LL =
∑nsim

j=1 (N∗LL)j

nsim

where (N∗
LL)j is final sample size given in (5.18) calculated from jth simulated

sample and nsim (= 15000) is number of simulated samples.

• SE
(

n∗LL

)

=

√

∑nsim
j=1 ((N∗LL)j−n∗LL)

2

(nsim−1)nsim

• n∗NW =
∑nsim

j=1 (N∗NW )j

nsim

where (N∗
NW )j is final sample size given in (5.18) calculated from jth simu-

lated sample and nsim (= 15000) is number of simulated samples.

• SE
(

n∗NW

)

=

√

∑nsim
j=1 ((N∗NW )j−n∗NW )

2

(nsim−1)nsim
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Figure 5.1: Over % Vs Half-Width of the Interval, d:

Fixed Equidistant Data.

(Legend : ‘+’ = ( n̄−nopt

nopt
)100%, ‘x’ = (nLL

∗−nopt

nopt
)100%, ‘o’ =(nNW

∗−nopt

nopt
)100%).

Figure 5.1 reflects the amount of over sampling (%Over) which is calcu-

lated by either
(

n∗q−nopt

nopt

)

100% where q = NW, LL or
(

n̄−nopt

nopt

)

100%. Even

both n̄ and n∗LL are over sampling, average sample sizes based on local linear

method n∗LL show less amount of over sampling. Whereas, average sample

sizes based on Nadaraya-Watson estimation method n∗NW are undersampling.

5.4.2 Random Design

Simulations are performed using the

• Model I: y = m(x) + ε =
√

4x + 3 + ε

• Model II: y = m(x) + ε = 2 exp{−x2

.18
}+ 3 exp{−(x− 1)2/.98}+ ε
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where ε ∼ N(0, σ2) with σ2 = 0.25.

In both cases, 15000 simulation replications are carried out to obtain

the final sample sizes required to estimate m(x) at x0 = 0.756 for a given

fixed-width, 2d. Values for half-width of the interval are chosen to be d =

0.07, 0.09, 0.11, 0.13, 0.15. We obtain random samples of {Xi}25
i=1 from uni-

form distribution Xi ∼ U(0, 1) and then calculate corresponding yi for each

stated relation (Models I and II). Random errors εi are generated from Nor-

mal distribution N (0, 0.52) and added to the above yi to get Yi.

It is clear from the simulation results that the average sample size esti-

mated using two-stage sequential procedure with the application of bootstrap

are very close to the optimum values whereas, the average sample sizes n̄

calculated using two-stage procedure are very high in comparison to the op-

timal sample size nopt. Although both local linear n∗LL and Nadaraya–Watson

methods n∗NW record smaller average sample sizes compared to n̄, average

sample sizes based on local linear method n∗LL are very close to the optimal

sample sizes nopt in both models.

Local linear method has near or above nominal coverage probabilities in

most of the d values. Coverage probabilities of Nadaraya–Watson estimator

p̃NW for Model I decrease with decreasing d whereas model II is not. This is

consistent with both procedures i.e. with and without bootstrapping.

The performance of Nadaraya–Watson estimator worsens m̂NW as x in-

creases as its bias highly depends on derivatives of m(x). For the interior

point x0 = 0.756, the Nadaraya–Watson estimator assigns symmetric weights

to both sides of x0 = 0.756. For a random design this will overweigh the

points on left hand side and hence creates a large bias. In other words,

Nadaraya–Watson estimator is not design-adaptive. However, local linear

method assigns asymmetrical weighting scheme while maintaining the same
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type of smooth weighting scheme as Nadaraya–Watson estimator. Hence

local linear method adapts automatically to this random design.

Using the theoretical and simulation results presented here, we conclude

that the bootstrapping will reduce the oversampling of the two-stage sequen-

tial procedure significantly while constructing the fixed-width confidence in-

terval for unknown regression function at a given point using local linear

method.

Figure 5.2 reflects the over sampling percentage (%Over) of average sam-

ple sizes compared to optimum sample sizes for each half-width of the interval

d. Bootstrap average sample sizes n∗LL and n∗NW from both methods (local

linear and Nadaraya–Watson) are oversampling. However, n∗LL shows less

amount compared to other two average sample sizes n̄ and n∗NW .
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Figure 5.2: Over % Vs Half-Width of the Interval, d:

Random Data.

(Legend : ‘+’ = ( n̄−nopt

nopt
)100%, ‘x’ = (nLL

∗−nopt

nopt
)100%, ‘o’ =(nNW

∗−nopt

nopt
)100%).

From the practical point of view, the focus is mostly on final sample sizes

as close as possible to optimal sample size nopt with a reasonable coverage

probability. Therefore, we conclude that bootstrap confidence bands based

on local linear method is more desirable and satisfy the required goal of this

study.
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Chapter 6

Application of Sequential

Nonparametric Curve

Estimation

It is desirable to estimate unknown regression function over some known

range of values of explanatory variable. The construction of confidence in-

tervals extends the use of nonparametric smoothing beyond its role as a

point estimator often constructed with the sole purpose of giving visual in-

formation on the shape of the underlying regression curve. It would be very

helpful to obtain through confidence intervals an impression of the variability

of the estimator providing a useful scale against which unusual features of

the estimated curve may be assessed. The nonparametric kernel regression

estimation method developed has a wide application in the estimation of

curves or surfaces where no parametric regression models are known.

Here we consider the problem of sequentially selecting bivariate data

points (Xi, Yi); i = 1, . . . , n for a nonparametric regression curve estima-

tion. Required number of observations or measurements to estimate the
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underlying regression curve are chosen on the basis of past observations or

observations from a pilot sample. Hence, fewer observations or measurements

may be required to obtain some specific accuracy compared to those of fixed

sampling procedures. The value of using these sequential procedures to non-

parametric curve fitting should be obvious. Observations of interest are not

always easy to collect. In addition, there is a high risk and cost involved

in using outdated data in forecasting and prediction, and most importantly

is the time taken for collecting data. As a result, any procedure that will

assist data analysts to estimate the sample size required to achieve a good

prediction of their nonparametric regression curves will be a useful tool to

have.

In this chapter, a sequential procedure, which is adapted from Stein’s

two-stage procedure (Section 4.3.1 and Section 4.4.1), will be employed to

obtain fixed-width confidence interval of unknown regression function. Two-

stage sequential procedure is a simple and attractive procedure: select a

sample size that one can afford to begin with n0, and then compute final

sample size N . If final sample size equals to size of pilot sample size i.e. N =

n0, stop sampling; otherwise, add more samples to make up the difference

N − n0. We take n0 = 25 as this choice seems to work well in the simulation

study given in Section 4.6. By construction, the value N guarantees that the

confidence level (4.7) is satisfied with the estimators achieving their desired

accuracy. Also we use standard normal kernel K(·), for all computations.

This sequential nonparametric kernel curve estimation method also requires

a selection of bandwidth for the kernel regression estimates as well as sample

size consideration. We proceed in a similar manner as explained in Chapter 4

by selecting a value for r which suits for all the points of interest in making

an estimation. As it is essential to be consistent with the model assumptions
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stated in Chapter 4 i.e. values of explanatory variable is within 0 and 1

(X ∈ [0, 1]), we pre-processed design points to be within (0, 1). That is,

for a sample of size n, we define xi = (ui − a)/(b − a) where u1, . . . , un are

sample values, a = min(u1, . . . , un) and b = max(u1, . . . , un) which leads

to xi ∈ [0, 1]. Also where necessary, we can revert xi into ui by taking

ui = xi(b− a) + a.

In Section 6.1, we apply nonparametric kernel curve fitting to four real

software data taken from four major releases of a software product (Wood,

1996) and compare the estimated values obtained from the local linear and

Nadaraya–Watson methods. From the results obtained, it is suggested that

a much more accurate prediction of software reliability growth curve values

will be obtained if one used either Nadaraya–Watson or local linear predicted

values as predictor. As expected, it can be seen that the fixed evenly spaced

design requires a substantially larger sample sizes to attain the given degree

of accuracy.

In Section 6.2, we use kernel regression procedure to estimate row average

intensity of a digital photo of Leonardo da Vinci’s painting, “Mona Lisa” for

a given row of the image. We also employ two-stage sequential procedure

to compute final sample size required in estimation which guarantees a pre-

assigned accuracy.

In Section 6.3, we develop a nonparametric kernel regression approach

using the smallest possible sample in estimating capital asset pricing model

(CAPM) when the underlying assumptions (most importantly assumption

of existence of linear relationship) fails, within a given level of accuracy.

The CAPM can be useful for applications requiring a measure of expected

returns. Some applications include cost of capital estimation, portfolio per-

formance evaluation and even-study analysis. The observed results appear to
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be promising as the period of the statistical analysis should be more desirable

to be as short as possible.

Note that in the first two applications given in Sections 6.1 and 6.2, data

points of explanatory variable of interest are in the form of fixed equally

spaced design whereas application given in Section 6.3 corresponds to random

design data.

6.1 Fixed Equidistant Design

6.1.1 Application 1

In software reliability analysis, a standard approach of assessing the reliabil-

ity of a piece of software is to plot the cumulative number of failures observed

during testing, N(t), against execution or calendar time t. It is anticipated

that with prolong testing, there will be a growth in the number of faults un-

covered. Starting about three decades ago with the seminal work by Jelinski

and Moranda (1972), there have been many models, aptly named Software

Reliability Growth Models (SRGMs), which have been proposed to fit soft-

ware failure data to the growth curve m(t) = E[N(t)]. For a review of some

of these models, we refer the reader to Pham (2000). Unfortunately, many

of these SRGMs are very complex and standard estimation techniques, such

as Maximum Likelihood (ML) or least squares methods, fail to estimate the

parameters of these models accurately if at all. In this section, we investi-

gate the potential benefits of using nonparametric kernel regression methods

to fit SRGMs i.e. Nadaraya–Watson estimator m̂hn,NW and the local linear

estimator m̂hn,LL.

Wald A. based his work on the philosophy that when testing for prod-
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uct defect, the decision on when to stop sampling should depend on the

evidence accumulated by the experimenter. In estimation, a sequential ap-

proach would involve repeated sampling, usually twice, with successive sam-

ple added to the samples already selected, terminating when a desired level

of error of estimation is reached. This approach can be used to great ad-

vantage in software reliability analysis, where it is often expensive and time

consuming to obtain test cases; therefore a rule of determining the optimal

sample size to achieve a fixed level of accuracy in estimating SRGMs would

be of value.

Numerical Examples

In this section, we will apply nonparametric kernel regression estimators to

four sets of software failure data taken from Wood (1996). These data sets

arise from tests performed on four major releases at Tandem Computers.

To avoid confidentiality issues, these data have been transformed from the

original data (refer to details of this transformation in Wood, (1996). Ta-

ble 6.1 below displays the data where the numbers under the column headed

by Release i, i = 1, 2, 3, 4 are the cumulative number of failures detected

at the end of each Test Week. The graphs obtained using the Nadaraya–

Watson and local linear estimators to fit the four sets of data are displayed

in Figure 6.1. It is apparent from the figures that local linear estimator pro-

vides much better fit to the cumulative failure data than Nadaraya–Watson

estimator. This observation is confirmed by the Mean-Squared Error (MSE)

value table below.

We next compare the predicted values made by the m̂hn,NW and

m̂hn,LL estimators at some point x = x0. Our approach is to use the de-

fect data records of the first n0 weeks to predict the value for week n0 + 1,
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Table 6.1: Cumulative Defect Data Based on Four Software Releases.

Test Week Release 1 Release 2 Release 3 Release 4

1 16 13 6 1

2 24 18 9 3

3 27 26 13 8

4 33 34 20 9

5 41 40 28 11

6 49 48 40 16

7 54 61 48 19

8 58 75 54 25

9 69 84 57 27

10 75 89 59 29

11 81 95 60 32

12 86 100 61 32

13 90 104 36

14 93 110 38

15 96 112 39

16 98 114 39

17 99 117 41

18 100 118 42

19 100 120 42

20 100
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Figure 6.1: SRGM Curve Fitting Using Nadaraya–Watson (NW) and Local

Linear (LL) Estimators.
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Table 6.2: Mean-Squared Error (MSE) Values.

NW = m̂hn,NW and LL = m̂hn,LL

Release 1 Release 2 Release 3 Release 4

NW LL NW LL NW LL NW LL

MSE 85.93 14.62 149.60 26.53 81.83 19.92 21.00 3.60

then add this prediction to the original set of records to predict the value for

week n0 +2 and so on. Table 6.3 to Table 6.6 display these predicted values,

based on Nadaraya–Watson and local linear estimators, when n0 = 13, 14, 9

and 14 for Release 1, 2, 3 and 4 data respectively. We also compare between

the predictions using MSE values and it appears that Nadaraya–Watson es-

timator tend to produce more accurate predicted values than local linear

estimator. In conjunction with the results in Table 6.2 therefore, it seems

that m̂hn,LL estimator does a better job at interpolating data whereas m̂hn,NW

does better at extrapolating them. Whether this is true in general remains

to be investigated.

Another interesting observation from Table 6.3 to Table 6.4 is that

m̂hn,NW estimator always under-estimate the observed values whereas

m̂hn,LL estimator always over-estimate them. Therefore, if we predict us-

ing the average of the two predictors, i.e.

m̂AV (t) =
m̂hn,NW (t) + m̂hn,LL(t)

2
, (6.1)

we would expect the resulting predictions to be very close to the true values.

This is confirmed by the results in the two tables. Therefore, it is highly

recommended that m̂AV (t) be used to predict SRGM values.

In the next example, we illustrate our two-stage sequential procedure

discussed in Section 4.3 by applying it to an exponential SRGM (cf. Goel
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Table 6.3: Predicted Values - Release 1.

Release 1 (n0 = 13)

Test week True value m̂hn,NW (t) m̂hn,LL(t) m̂AV (t)

t

14 93 89.07 94.19 91.63

15 96 89.19 98.36 93.78

16 98 89.18 102.53 95.86

17 99 89.18 106.69 97.94

18 100 89.18 110.86 100.02

19 100 89.18 115.03 102.11

20 100 89.18 119.20 104.19

MSE 83.89 114.16 4.94

Table 6.4: Predicted Values - Release 2.

Release 1 (n0 = 13)

Test week True value m̂hn,NW (t) m̂hn,LL(t) m̂AV (t)

t

15 112 104.07 114.99 109.53

16 114 104.80 120.15 112.48

17 117 105.03 125.32 115.18

18 118 105.07 130.49 117.78

19 120 105.07 135.66 120.37

MSE 136.18 103.44 2.39
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Table 6.5: Predicted Values - Release 3.

Release 3 (n0 = 13)

Test week True value m̂hn,NW (t) m̂hn,LL(t) m̂AV (t)

t

10 59 56.27 60.55 58.41

11 60 56.36 64.04 60.20

12 61 56.35 67.53 61.94

MSE 14.11 20.46 0.42

Table 6.6: Predicted Values - Release 4.

Release 4 (n0 = 14)

Test week True value m̂hn,NW (t) m̂hn,LL(t) m̂AV (t)

t

15 39 37.51 40.32 38.92

16 39 37.57 42.61 40.09

17 41 37.57 44.90 41.24

18 42 37.57 47.18 42.38

19 42 37.57 49.47 43.52

MSE 11.06 22.52 0.74
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and Okumoto, 1979) defined by

Y = 20(1− e−.2t) + ε

where ε ∼ N(0, 0.25). Note that in this case, explanatory variable takes

equally spaced design points. We will evaluate the performance of the proce-

dure based on an initial sample size n0 = 25 to test the accuracy of estimat-

ing m(t0) = 2.0115 at t0 = 0.53. Fixed-width confidence intervals defined

by (4.3) at level α = 0.05 are obtained for d = 0.10, 0.11, 0.12, 0.15 and 0.17

using the steps of the procedure. Altogether, 15000 simulations were per-

formed to obtained some of the following statistics which are displayed in

Table 6.7:

• Optimal sample size nopt given by equation (4.8);

• average final sample size n̄ where N is given by equation (4.14);

• average T̄ value where T is given by equation (4.15);

• average Nadaraya–Watson estimated value m̂hn,NW (t0) at t0 = 0.53

using equation (2.18);

• average local linear estimated value m̂hn,LL(t0) at t0 = 0.53 using equa-

tion (2.19);

• coverage probabilities p̃NW and p̃LL, i.e. proportion of intervals defined

in (4.3) which contain m(t0).

(In Table 6.7, figures enclosed in brackets under estimated values refer to

their standard errors.)

As would be expected, the optimal sample size that is required to produce

a 95% confidence interval increases as d decreases. Comparing the values
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Table 6.7: Summary of Results for Two-Stage Sequential Procedure at t0 =

0.53 and n0 = 25.

Statistics Values

d 0.17 0.15 0.12 0.11 0.10

nopt 73.98 119.72 282.42 394.68 569.44

n̄ 130.75 202.93 455.69 624.14 895.76

(0.7062) (1.1316) (2.6775) (3.6971) (5.4058)

T̄ 4.36 6.76 15.19 20.80 29.86

(0.0235) (0.0377) (0.0892) (0.1232) (0.1802)

m̂hn,LL(t0) 1.9828 1.9822 1.9828 1.9823 1.9825

(0.0004) (0.0004) (0.0002) (0.0002) (0.0002)

m̂hn,NW (t0) 1.9016 1.8949 1.8888 1.8867 1.8857

(0.0004) (0.0004) (0.0002) (0.0002) (0.0002)

p̃LL 0.9905 0.9917 0.9947 0.9955 0.9972

(0.0008) (0.0007) (0.0006) (0.0005) (0.0004)

p̃NW 0.8920 0.8035 0.4447 0.2413 0.0997

(0.0025) (0.0032) (0.0041) (0.0035) (0.0024)
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of n̄ with nopt indicates the phenomenon of oversampling, where n̄ > nopt,

which is common with two-stage procedure. Both Nadaraya–Watson and

local linear methods underestimate the true value of m(t0) with local linear

producing more accurate values. Finally, it is significant that local linear

method produces far superior coverage probabilities, i.e. closer to 0.95 than

Nadaraya–Watson.

6.1.2 Application 2

The aim of this application is to explain how we can employ nonparametric

kernel regression estimation to estimate row average intensity of a digital

photo of Leonardo da Vinci’s painting, “Mona Lisa” for a given row number of

the image using the smallest possible sample size for a pre-assigned accuracy.

The data were measured as arithmetic average of the values in each row

of the image. These row averages can be used to correct for lighting effect

especially when there is a top-to-bottom lighting variation. In that case,

robust smoothing of row averages may be a good way to estimate the lighting

effect.

Initial data set consists of average intensities measured at each of 425

rows. Thus, the response variable is row average intensity and the explana-

tory variable is the row number. The given row numbers are ordered non-

random numbers of the form |xi+1 − xi| = 1 for all i where i = 1, . . . , 424.

Hence, we consider an fixed equally spaced design points and two-stage stop-

ping rule developed in Section 4.3 is employed. The explanatory variable,

row number was rescaled to be within (0, 1) to comply with our data design

using a relation
{

xi−a
b−a

}

; i = 1, . . . , 425 where a = 1 and b = 425.

Since two-stage sequential procedure initiates with taking an initial sam-

ple of size n0, we take 25 bivariate data points as our pilot sample i.e. n0 = 25.
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Half width of the interval d, is chosen to be 2.5 as a range of row average in-

tensities is ∈ (72, 225). The performance of two-stage procedure is examined

for two confidence coefficients {1 − αi}2
i=1 where α1 = 0.1 and α2 = 0.05.

Then using sampling stopping rule given in (4.14), we determine final sam-

ple size N for both α = 0.05, 0.10. Finally, m̂hN ,LL(xi) and m̂hN ,NW (xi) are

estimated at each design point xi using {xi, Yi}N
i=1.

Figure 6.2 shows the Nadaraya–Watson and local linear kernel regression

estimates of row average intensity of a digital photo of Leonardo da Vinci’s

painting, “Mona Lisa” for a given row of the image. The local linear re-

gression estimation shown by the solid line and the nonparametric regression

estimate of Nadaraya–Watson shown by the dotted line. In both graphs,

there is no noticeable difference between local linear and Nadaraya–Watson

estimators as both final sample sizes Nα=.05 = 250 and Nα=.10 = 150 are fairly

large. Both final sample sizes are able to highlight an important structure in

the original data hence, produce a better estimate of average intensity for a

given row number.
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Fig 6.2A: Final sample size N = 250 for d = 2.5, α = 0.05

Fig 6.2B: Final sample size N = 150 for d = 2.5, α = 0.10

Figure 6.2: Nonparametric Kernel Regression Estimation of Row Averages

of a Digital Photo of “Mona Lisa”.
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6.2 Random Design

6.2.1 Application 3

The capital asset pricing model (CAPM) implies that the expected return

of an asset must be linearly related to the covariance of its return with the

return of the market portfolio. The development of CAPM helps economists

to quantify risk and reward for bearing risky investments. Markowitz’s (1959)

mean-variance portfolio theory laid the groundwork for the CAPM. Sharpe

(1964) and Lintner (1965b) extend Markowitz’s work to develop economy-

wide implications. The usual CAPM equation is a direct implication of

the mean-variance efficiency of market portfolio. The CAPM assumes the

existence of lending and borrowing at a risk free rate of interest. Under this

assumption the CAPM we have for the expected return of asset i,

E[Ri] = Rf + β (E[Rm]−Rf ) ; β =
Cov[Ri, Rm]

Var[Rm]
(6.2)

where Ri is the return of asset i, Rm is the return on the market portfolio,

Rf is the return on the risk free asset. β is defined as the gradient of the

least squares linear regression where the excess return on the market over the

risk-free rate is the predictor and the excess return on the asset over the risk-

free rate is the response variable. However, the possibility that there exist a

nonlinear relationship between the excess returns of an asset and a market

is justified in the discussions in Long (1990), Luenberger (1993, 1998) and

Efromovich (2004). This section explores a statistical analysis of historical

data and develops a nonparametric kernel regression estimation of the CAPM

that can be used when the underlying assumptions given in Campbell (1997)

fail.

Generally a fixed sample size is used to calculate the β ’s. The sample

size may be too large for some periods of time and too small for others. The
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larger the period the more outdated is the information that is being used.

The current situation in the Australian market is different from what it was

in the early 1990’s. The period of the statistical analysis should be as short

as possible to minimize the effect of factors such as size of the institution,

dividend per share, business environment, union actions etc. This is why

sequential analysis appears to be promising as its primary goal is to achieve

a given accuracy by using the smallest possible sample size. Efromovich

(2004) proposed a method of finding the optimal stopping time based on

the empirical risk approximation procedure suggested in Chaudhuri et. al.

(1997) and Efromovich (1989, 1994, 1995). Here we proposed the use of

two-stage sequential procedure along with nonparametric kernel regression

estimation which is explained in Section 4.4. The suggested procedure allows

an investor to analyse the relationship between the excess rate of returns on

an asset i (Ri−Rf ) and the excess rate of returns on the market (RM −Rf)

using the shortest period of historical data without any assumption on the

underlying distribution.

Let us examine now why (6.2) is called a pricing model. Suppose that an

asset is purchased at price P0 and later sold at price P1. The rate of return

is then R = (P1−P0)
P0

. Here P1 is random so the CAPM implies

P0 =
E[P1]

1 + E[R]

=
E[P1]

1 + Rf + β(Rm − Rf)
, (6.3)

where E[R] is given by (6.2).

Suppose that we observe n0 pairs {(rM1, rA1), . . . , (rMn0
, rAn0

)} where

rMi
= RMi

− Rfi
is the excess rate of return from the market during the

ith period and rAi
= RAi

− Rfi
is the excess rate of return from an asset

during the ith period. Then, the regression model we consider here is of the
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form:

rAi
= m(rMi

) + εi; i = 1, . . . , n0 (6.4)

where m(·) is a regression function and errors εi are independent and identi-

cally distributed with zero mean E[εi] = 0 and constant variance Var[εi] =

σ2.

The methodology developed in Section 4.3.2 has been applied to estimate

CAPM using the excess rate of monthly returns of the Microsoft stock (rAi
)

and the excess rate of monthly returns of the market (rMi
) whose proxy is

Standard and Poor’s 500 index which is a capital-weighted portfolio of most

of the United State’s largest stocks. The 13-weeks Treasury bill serves as the

proxy for the risk-free asset Rf .

We begin the analysis of data with visualization of a scatter diagram of

the original data. Figure 6.3 exhibits a scatter diagram for the excess rate

of monthly returns of the Microsoft stock versus the excess rate of monthly

returns of the market during a 55-month period that ended on May 1, 2007.

If the CAPM is correct, then a linear relationship between these two rates

with zero y-intercept should be observed. If the model is incorrect or its

assumptions are invalid then a more complicated relationship may be visible.

Here we examine whether a classical parametric regression analysis helps

in our understanding of this data set. A most commonly used parametric

regression model is rAi
= α + βrMi

+ εi. The least squares regression line is

shown next in Figure 6.4. The fitted line shows the fact that larger returns

from the market imply larger returns from the stock and vice a versa. The

parameters of the fitted regression model are as follows: the slope, β̂ = 1.4133

and α̂ = −1.5845. Standard error of α̂, SE(α̂) = 1.13804 and corresponding

p − value = 0.016954 confirms non-zero y-intercept. This result contradicts

CAPM since CAPM implies that the intercept α is equal to 0 i.e. α = 0.
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The nonparametric kernel curve estimation using Nadaraya–Watson and

local linear methods are shown in Figure 6.5. As it is essential to be consistent

with the model assumptions stated in Chapter 4 which is range of explanatory

variable is within 0 and 1 (Xi ∈ [0, 1]), we transformed market excess rate to

be within (0, 1).

Next we examined the two-stage sequential nonparametric approach. As

in the case of our simulation study given in Section 4.5.2 we start the sampling

procedure with an initial sample of size n0 = 30 with α = 0.05 and values

being selected for half-width of the interval d, are d = 0.75, 1.0. Finally,

we determine the final sample size N , using the proposed two-stage stopping

rule (4.26). Figure 6.6 and Figure 6.7 display nonparametric kernel estimates

i.e. local linear and Nadaraya–Watson estimates for the data of Microsoft

stock. The solid lines are either local linear (LL) or Nadaraya–Watson (NW )

estimates and dotted lines are least squares linear regression estimates with

α̂ = −1.3480, β̂ = 1.2917 and α̂ = −0.8686, β̂ = 1.3057 when d = 0.75 and

d = 1.0 respectively.

Nadaraya–Watson curve estimation shows larger absolute values of the

market returns imply smaller absolute values of the asset returns compared to

those predicted by local linear method. Local linear curve estimation shows

smaller values of the market returns imply smaller values of the asset returns

and vice a versa. From this, it appears that nonparametric kernel regression

estimation can be used in assessing return on risky assets. Rather than

relying on beta’s disclosed by companies this could be used as an additional

analytical tool for investors to know more about assets in their portfolio.
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Fig 1.A: Scatter diagram for Microsoft-SP500 Monthly Data,n=55
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Fig 1.B: Linear Regression,beta=1.1672, y-intercept=-1.6110,n=55
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Figure 6.3: Scatter Diagram for Microsoft-SP500 Monthly Data, n =55. 

 

 

 

Figure 6.5: Nonparametric Kernel Regression, n =55. 

Figure 6.4: Linear Regression, β =1.1672, α = -1.6110, n =55. 
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Fig 2.A:Sequntial Nonparametric Regression, d=1.0, N=59
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Figure 6.6: Two-Stage Sequential Nonparametric Kernel Regression, d =1.0, n =59. 
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   Figure 6.7: Two-Stage Sequential Nonparametric Kernel Regression, d =0.75, n =55. 
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Chapter 7

Conclusions and Further Work

Nonparametric regression models can be used for the same types of applica-

tions such as estimation, prediction, calibration and optimization that tradi-

tional regression models are used for. Nonparametric regression techniques

have become increasingly popular with practitioners due to the fact that they

don’t make many assumptions on the distributional form of the underlying

distributions, except that they should be reasonably smooth functions, and

are also very easy to use. In a nonparametric setting the aim is to produce

a reasonable approximation to the unknown function m(x) when we have

no precise information about the form of the true regression function, m(x).

When using nonparametric regression methods, one of the key objectives is

to ensure that the fitted value m̂(x), based on a sample of size n, achieves a

reasonably good fit to the true but unknown regression function m(x) at a

given point. The main objective of this thesis is to apply data driven sequen-

tial approach to analyse nonlinear relationship between two variables using

the smallest possible sample size. This is primary goal of sequential analysis

which is to achieve a given accuracy by using the smallest possible sample

sizes.
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Chapter 2 is devoted to a brief introduction of nonparametric regres-

sion estimation. Special interest was on investigating the potential benefits

of using kernel type nonparametric regression methods namely, Nadaraya–

Watson method and local linear method due to their popularity among avail-

able kernel type estimators. Both methods estimate regression function as

the weighted average using kernel function as a weighting function. Even

though a variety of kernel functions are possible in general, practical and

theoretical considerations restrict the selection. The weights of the estima-

tors are determined by the bandwidth. Quick and simple bandwidth selector

was employed. Properties of these nonparametric regression methods have

been explored under both fixed design and random design contexts. It was

shown that specification of bandwidth is very important on the performance

of each estimator. There is very little to choose between the different kernels

on the basis of simulation results. The analysis also showed that local linear

method is superior over Nadaraya–Watson method especially in its ability of

design adaption which adapted to both random and fixed designs and even to

both interior and boundary points. Performance of proposed bandwidth se-

lection method and effect on selecting various kernel functions for local linear

and Nadaraya–Watson methods were illustrated via an extensive simulation

study.

It is natural to ask what the residual variance estimator σ2 is when fit-

ting a nonparametric regression function to a data set. Residual variance

estimators are broadly divided into difference-based estimators and curve

fitting estimators depending on how these estimators are formulated. This

task was addressed in Chapter 3 by comparing several estimators of resid-

ual variance for different circumstances in terms of different types of error

distributions, diverse data design types, different sample sizes and finally,
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for various type of regression functions. Under difference-based residual vari-

ance estimators, estimators proposed by Rice (1984) σ̂2
R, Gasser et. al. (1986)

σ̂2
GSJ and Müller et. al. (2002) σ̂2

MSW were considered. Whereas in the case

of curve fitting type of residual variance estimator, estimator proposed by

Hall and Marron (1990) σ̂2
HM was considered. Performances of these esti-

mators were investigated in a simulation study, including a comparison with

different cases as previously mentioned. For fixed design points, σ̂2
GSJ was

the proper choice as σ̂2
R should not be used because it did not always behave

well. In particular, if design points are expected to be random, difference-

based estimator σ̂2
MSW over curve fitting estimator σ̂2

HM was preferable as it

achieves asymptotic optimal efficiency.

The analytical work in this thesis starts from Chapter 4. We studied

data-driven fixed-width confidence bands for nonparametric regression func-

tion estimation using local linear and Nadaraya–Watson estimators in both

fixed and random design contexts. We considered a nonparametric regres-

sion model based on independent and identically distributed pairs of obser-

vations (Xi, Yi); i = 1, . . . , n, where the regression function m(x) is given

by m(x) = E(Yi | Xi = x) with one independent variable. We described

an estimation procedure of nonparametric regression model at a specified

point of the independent variable by some appropriately constructed fixed-

width (2d) confidence interval with the confidence coefficient of at least 1−α.

Here, d(> 0) and α ∈ (0, 1) were two preassigned values. In the case of fixed

designed data we employed two-stage and modified two-stage sequential pro-

cedures. Whereas for random design regression model, the sample sizes for

a preset confidence coefficient were optimized using sequential procedures

namely two-stage, modified two-stage and purely sequential procedures. As

would be expected, the optimal sample size that was required to produce a
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given level of confidence interval increased as half width of the interval d de-

creases. Comparing the values of average sample sizes n̄ with optimal sample

sizes nopt indicated the phenomenon of oversampling, i.e. n̄ > nopt, which is

common with two-stage procedure. As anticipated almost all average sample

sizes n̄ under modified two-stage procedure were lower than those of two-

stage procedure. However, slightly higher than their corresponding optimum

sample sizes nopt. Coverage probabilities of both two-stage and modified two-

stage procedures were close or above the preset confidence coefficients 95%

and 90%. The performance of the purely sequential procedure was better

than that of the two-stage procedure. However operationally, two-stage pro-

cedure reduces computational costs associated with the corresponding purely

sequential schemes by a substantial margin. It was significant that local linear

method produces far superior coverage probabilities, i.e. closer to preset con-

fidence coefficient than Nadaraya–Watson. However, both estimators were

shown to have asymptotically correct coverage properties.

In Chapter 5, a bootstrap method was developed to estimate average

sample sizes for kernel based nonparametric regression estimation for a given

accuracy. The proposed bootstrap technique uses the percentiles of approx-

imate distribution of unknown regression function to construct confidence

intervals for the curve at specific design points. Particular attention was

devoted to the problem of minimising the amount of oversampling in the

two-stage sequential procedure. The numerical results indicated that the

confidence bands based on the local linear estimator had the best perfor-

mance than those constructed by using Nadaraya–Watson estimator. The

coverage probability of Nadaraya–Watson method was found to be gener-

ally below the preset confidence coefficients. On the other hand, local linear

method had near-nominal coverage probabilities in most of the cases. Using
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the theoretical and simulation results presented, we showed that the boot-

strapping reduces the oversampling of the two-stage procedure significantly

while constructing the fixed-width confidence interval for unknown regression

function at a given point using local linear method. From a practical point of

view, mostly the focus was on final sample size as close as possible to optimal

sample size with a reasonable coverage probability. Therefore, we concluded

that results obtained from local linear method satisfied the required goal of

this study.

Finally, in Chapter 6, we employed proposed sequential stopping rules to-

gether with nonparametric kernel regression methods to predict the software

reliability growth model (SRGM) and to estimate the regression curve of cap-

ital asset pricing model (CAPM). A sequential procedure, which is adapted

from Stein’s two-stage procedure was employed to obtain fixed-width con-

fidence interval. The main advantage of using Nadaraya–Watson method

and local linear method in predicting growth of software reliability is that

they place minimum requirement on the distributional form of the stochas-

tic process which gave rise to software failure data and hence dispense with

the need to estimate parameters from complex models. Numerical examples

involving four sets of real software data were presented to illustrate the devel-

oped techniques and compared the estimated values obtained from the two

nonparametric regression methods. From the results obtained, it is suggested

that a much more accurate prediction of SRGM values will be obtained if one

used the average of the Nadaraya–Watson and local linear predicted values

as predictor. The key advantage of using sequential procedures in CAPM ap-

proach was the use of the shortest period of historical data to deduce correct

price of a risky asset. This is because there is a price to be paid for the use

of outdated information, especially in analysing prices of risky assets due to
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dynamic nature of financial markets. Parametric estimation of CAPM can

only be applied for an analysis of markets in equilibrium. This assumption

underlying the CAPM approach holds in a highly volatile security market is

very difficult to expect though. Nonparametric regression allows investor to

accepted any shape of estimated capital asset pricing model.

Further Work

Optimal estimation of the bandwidth is an interesting and practically impor-

tant problem. Because the choice of a bandwidth can lead to better results

for nonparametric kernel type regression estimators. Besides the quality of

estimation of the bandwidth is important for the quality of the fitted regres-

sion function even though the bandwidth is an auxiliary quantity. In general

practice, the bandwidths of regression estimators are chosen to minimize their

asymptotic mean integrated squared error. However, as in sequential frame-

work we employed bandwidth as hn = n−r for a < r < b where 0 < a, b < 1.

de Silva and Mukhopadhyay (2002) employed bootstrap bandwidth selection

method to find optimal value for r in nonparametric kernel density curve es-

timation. Hence it is appealing to scrutinize relevance of bootstrap method

to compute optimal bandwidth such that hn,opt = n−ropt where ropt is optimal

value of r in nonparametric regression estimation.

Hall (1981) explored asymptotic theory of three-stage sequential proce-

dure in the case of estimation of sample mean and claimed that the proposed

procedure is more efficient than Stein’s two-stage procedure as it uses a sig-

nificantly smaller sample size to achieve a confidence interval with nearly the

same coverage probability. Hence it is worthwhile to examine applicability of

triple sampling sequential procedure in the context of nonparametric kernel

regression estimation.

Even though this study has been confined to the case of univariate design
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points there are many practical applications where we seek to identify how a

response variable Yi is related to b fixed design variables xi = (xi1, . . . , xib)
T

or random design variables Xi = (Xi1, . . . , Xib)
T . This is the multivariate

regression analogue of the univariate kernel type regression estimation prob-

lem treated in this study. Hence implementation of sequential procedures

for constructing a simultaneous fixed-size spherical confidence region R for

regression function m(x) is a worthwhile field deserving further studies.
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Appendices

Appendix A

Fortran programme to estimate nonparametric kernel regression

function using different kernel functions for fixed equidistant

data.

program DiffKSSFDEq

use rnset_int

use rnnoa_int

implicit none

include ’link_f90_dll.h’

include ’link_f90_static.h’

integer, parameter :: mdata=10,Nsim=15000,iseed=123479,x0data=1

real, parameter :: sigma=0.5

real, dimension(x0data)::x00

integer, dimension(mdata)::m0

real, dimension(5000):: x,y

real,dimension(nsim)::yksim1,ynwsim1,yksim2,ynwsim2,yksim3,ynwsim3

real,dimension(nsim)::yksim4,ynwsim4,yksim5,ynwsim5

real :: yk1,NNsim,r0,yk_bar1,ynw_bar1,SE_ykbar1,SE_ynwbar1,mx0,x0

real :: ynw1,Z0(1),m00,yk_bar4,ynw_bar4,SE_ykbar4,SE_ynwbar4,yk2

real :: SE_ynwbar5,yk_bar5,ynw_bar5,yk3,yk4,yk5,ynw4,ynw5,SE_ykbar5

real :: yk_bar2,ynw_bar2,SE_ykbar2,SE_ynwbar2,yk_bar3,ynw_bar3,ynw3

real :: yk3,yk4,yk5,ynw4,ynw5,SE_ykbar5,SE_ykbar3,SE_ynwbar3,ynw2

integer:: im,m9,isim,ix,ix0

open (2, file=’FDEqM3LL1.dat’, status = ’unknown’)

open (3, file=’FDEqM3NW1.dat’, status = ’unknown’)

open (4, file=’FDEqM3Se1.dat’, status = ’unknown’)
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m0=(/10,20,30,50,100,200,300,400,500,1000/)

x00=(/.375/)

call rnset(iseed)

write (4,5) nsim,sigma

write (4,6)

write (3,5) nsim,sigma

write (3,6)

write (2,5) nsim,sigma

write (2,6)

do ix0=1, x0data

x0=x00(ix0)

mx0=4.0*x0+3.0

mx0=2.*exp(-(x0*x0)/(.3*.3*2.))+3.*exp(-((x0-1.)**2/(.7*.7*2.))

mx0=sin(.75*x0)*sin(.75*x0)+3.

write (4,8) x0,mx0

write (3,8) x0,mx0

write (2,8) x0,mx0

write (3,40)

write (2,35)

write (4,45)

do im = 1, mdata

m9=m0(im)

m00=float(m9)

call rcal(m9,x0,r0)

do isim = 1, Nsim

do ix = 1, m9

call rnnoa(z0)

x(ix) = float(ix)/float(m9)

y(ix)=4.0*x(ix)+3.0+ sigma*z0(1)
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y(ix)=2.*exp(-(x(ix)*x(ix))/(.3*.3*2.))+3.*exp(-((x(ix)-1.)**2)

/(.7*.7*2.) + sigma*z0(1)

y(ix)=sin(0.75*x(ix))*sin(0.75*x(ix))+3.0+ sigma*z0(1)

end do

call Ker_Est1(x,y,m9,r0,x0,yk1,ynw1)

yksim1(isim)= yk1

ynwsim1(isim)= ynw1

call Ker_Est2(x,y,m9,r0,x0,yk2,ynw2)

yksim2(isim)= yk2

ynwsim2(isim)= ynw2

call Ker_Est3(x,y,m9,r0,x0,yk3,ynw3)

yksim3(isim)= yk3

ynwsim3(isim)= ynw3

call Ker_Est4(x,y,m9,r0,x0,yk4,ynw4)

yksim4(isim)= yk4

ynwsim4(isim)= ynw4

call Ker_Est5(x,y,m9,r0,x0,yk5,ynw5)

yksim5(isim)= yk5

ynwsim5(isim)= ynw5

end do

NNsim=real(nsim)

yk_bar1=sum(yksim1)/NNsim

ynw_bar1=sum(ynwsim1)/NNsim

SE_ykbar1=sqrt(sum((yksim1-yk_bar1)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ynwbar1=sqrt(sum((ynwsim1-ynw_bar1)**2)/(NNsim-1.0))/sqrt(NNsim)

yk_bar2=sum(yksim2)/NNsim

ynw_bar2=sum(ynwsim2)/NNsim

SE_ykbar2=sqrt(sum((yksim2-yk_bar2)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ynwbar2=sqrt(sum((ynwsim2-ynw_bar2)**2)/(NNsim-1.0))/sqrt(NNsim)
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yk_bar3=sum(yksim3)/NNsim

ynw_bar3=sum(ynwsim3)/NNsim

SE_ykbar3=sqrt(sum((yksim3-yk_bar3)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ynwbar3=sqrt(sum((ynwsim3-ynw_bar3)**2)/(NNsim-1.0))/sqrt(NNsim)

yk_bar4=sum(yksim4)/NNsim

ynw_bar4=sum(ynwsim4)/NNsim

SE_ykbar4=sqrt(sum((yksim4-yk_bar4)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ynwbar4=sqrt(sum((ynwsim4-ynw_bar4)**2)/(NNsim-1.0))/sqrt(NNsim)

yk_bar5=sum(yksim5)/NNsim

ynw_bar5=sum(ynwsim5)/NNsim

SE_ykbar5=sqrt(sum((yksim5-yk_bar5)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ynwbar5=sqrt(sum((ynwsim5-ynw_bar5)**2)/(NNsim-1.0))/sqrt(NNsim)

end do

end do

contains

!-----------------------------------------------------------------

subroutine rcal(ndata,x0,r0)

integer, intent(in) :: ndata

real, intent(in) :: x0

real, intent(out)::r0

integer::D

real::r00,A,B,C,r

A= min(x0,(1-x0))

C=float(ndata)

B=((-100.0)*log(A))/log(C)

D= ceiling(B)

r00=0.01*float(min(D,99))

r=0.0
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r0=max(r,r00)

end subroutine rcal

!_________________________________________________________________

subroutine Ker_Est1(X,Y,m,r,x0,yk1,ynw1)

implicit none

integer, intent(in) :: m

real, intent(in) :: r, x0

real, dimension(m), intent(in) :: X,Y

real, intent(out) :: yk1,ynw1

integer :: j

real :: s0, s1, s2, t0, t1,an, xx0, hn, xhn, khn

an = real(m)

hn = an**(-r)

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,m

xx0 = x(j) - x0

xhn = xx0/hn

khn = nk01(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)

t1 = t1 + xx0*khn*y(j)

end do

yk1 = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)
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ynw1=t0/s0

end subroutine Ker_Est1

!________________________________________________________________

subroutine Ker_Est2(X,Y,m,r,x0,yk2,ynw2)

implicit none

integer, intent(in) :: m

real, intent(in) :: r, x0

real, dimension(m), intent(in) :: X,Y

real, intent(out) :: yk2,ynw2

integer :: j

real :: s0, s1, s2, t0, t1,an, xx0, hn, xhn, khn

an = real(m)

hn = an**(-r)

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,m

xx0 = x(j) - x0

xhn = xx0/hn

khn = nk02(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)

t1 = t1 + xx0*khn*y(j)

end do

yk2 = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)
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ynw2=t0/s0

end subroutine Ker_Est2

!______________________________________________________________

subroutine Ker_Est4(X,Y,m,r,x0,yk4,ynw4)

implicit none

integer, intent(in) :: m

real, intent(in) :: r, x0

real, dimension(m), intent(in) :: X,Y

real, intent(out) :: yk4,ynw4

integer :: j

real :: s0, s1, s2, t0, t1,an, xx0, hn, xhn, khn

an = real(m)

hn = an**(-r)

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,m

xx0 = x(j) - x0

xhn = xx0/hn

khn = nk04(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)

t1 = t1 + xx0*khn*y(j)

end do

yk4 = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)
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ynw4=t0/s0

end subroutine Ker_Est4

!_______________________________________________________________

subroutine Ker_Est5(X,Y,m,r,x0,yk5,ynw5)

implicit none

integer, intent(in) :: m

real, intent(in) :: r, x0

real, dimension(m), intent(in) :: X,Y

real, intent(out) :: yk5,ynw5

integer :: j

real :: s0, s1, s2, t0, t1,an, xx0, hn, xhn, khn

an = real(m)

hn = an**(-r)

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,m

xx0 = x(j) - x0

xhn = xx0/hn

khn = nk05(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)

t1 = t1 + xx0*khn*y(j)

end do

yk5 = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)
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ynw5=t0/s0

end subroutine Ker_Est5

! Std normal Kernel

real function nk01(xk)

real, intent(in) :: xk

real:: pi, d00, up

pi = 2.0*asin(1.0)

d00 = sqrt(2.0*pi)

up=exp(-0.5*xk*xk)

nk01=up/d00

end function nk01

! Epanechnikov Kernel

real function nk02(xk)

real, intent(in) :: xk

real:: d00

if (abs(xk) .lt. sqrt(5.0))then

d00=3.0/(4.0*sqrt(5.0))

nk02=d00*(1.0-0.2*xk*xk)

else

nk02=0.0

endif

end function nk02

! Double Expo Kernel

real function nk04(xk)

real, intent(in) :: xk

nk04=0.5*exp(-abs(xk))

end function nk04

! Uniform Kernel

real function nk05(xk)
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real, intent(in) :: xk

if (abs(xk) .lt. 1.0)then

nk05=0.5

else

nk05=0.0

endif

end function nk05

end program DiffKSSFDEq
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Appendix B

Fortran programme to estimate nonparametric residual variance

for different residual distributions for fixed equidistant design

data.

program RSS

use rnset_int

use rnun_int

use rnexp_int

use rnund_int

implicit none

include ’link_f90_dll.h’

include ’link_f90_static.h’

integer, parameter :: mdata=6, rdata=3, iseed=123479,nsim=15000

,vdata=3

real, dimension(500):: x,y,e

real, parameter :: a=3.0, b=4.0

real, dimension(vdata)::v0

integer, dimension(mdata)::m0

real, dimension(NSIM):: VUsim,VPHsim

integer :: ir,isim,nmiss,ix,m9,im,ie(500),NR,iv

real :: sigma,pi,k0,z0(1),z1(1)

real :: r0(rdata),m00,an,hn,theta ,max_U, min_PH,max_PH

real:: NNsim,V_U,V_PH,VU_bar,VPH_bar,SE_Ubar,SE_PHbar,min_U

r0=(/.201,0.51,.76 /)

m0=(/10,30,50,100,200,500 /)

v0=(/0.05,0.25,0.90 /)

call rnset(iseed)

write(2,45)
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write(2,10)

pi = 2.0*asin(1.0)

K0=1.0/SQRT(2.0*pi)

write (2,5) nsim

write (2,6)

do iv=1, vdata

sigma= sqrt(v0(iv))

!EXPONENTIAL

theta=sigma

!LAPLACE

theta=sigma/sqrt(2.0)

write (2,8) v0(iv)

write (2,30)

do im = 1, mdata

m9=m0(im)

m00=float(m9)

write (2,2) m9

do ir=1, rdata

do isim=1,nsim

call rnund (2,ie)

do ix = 1, m9

call rnun(z1)

x(ix)=z1(1)

! call rnnoa(z0)

call rnexp(z0)

IF (ie(ix).eq.1) then

e(ix)=-1.0*z0(1)

else

e(ix)=z0(1)
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endif

!!!!!!!!! Fixed Equidistant !!!!!!!!!!!!!!!!!!!!!

!$$$$$$$$$ e~N(0,0.5^2) $$$$$$$$$$$$$$$$$

y(ix) = a + b*x(ix) + sigma*z0(1)

y(ix)= 2.0*exp(-(x(ix)*x(ix))/(0.3*0.3*2.0))+3.0*exp(-((x(ix)-1.0)

*(x(ix)-1.0))/(0.7*0.7*2.0))+ sigma*z0(1)

y(ix) = sin(0.75*x(ix))*sin(0.75*x(ix)) + 3.0 + sigma*z0(1)

!$$$$$$$$$ e~Expo(lamda=sigma) $$$$$$$$$$$$$$$$$

y(ix) = sin(0.75*x(ix))*sin(0.75*x(ix)) + 3.0 + theta*z0(1)

y(ix) = a + b*x(ix) + theta*z0(1)

y(ix)= 2.0*exp(-(x(ix)*x(ix))/(0.3*0.3*2.0))+3.0*exp(-((x(ix)-1.0)

*(x(ix)-1.0))/(0.7*0.7*2.0))+ theta*z0(1)

! $$$$$$$$$ e~Laplace(lamda=sigma/sqrt(2)) $$$$$$$$$$$$$$$$$

y(ix) = sin(0.75*x(ix))*sin(0.75*x(ix)) + 3.0 + theta*e(ix)

y(ix) = a + b*x(ix) + theta*e(ix)

y(ix)= 2.0*exp(-(x(ix)*x(ix))/(0.3*0.3*2.0))+3.0*exp(-((x(ix)-1.0)

*(x(ix)-1.0))/(0.7*0.7*2.0))+ theta*e(ix)

end do

call RSU(x,y,m9,r0(ir),V_U)

VUsim(isim)=V_U

call RSS_PH(x,y,m9,pi,r0(ir),V_PH )

VPHsim(isim)=V_PH

end do

NNsim=real(nsim)

VU_bar=sum(VUsim)/NNsim

VPH_bar=sum(VPHsim)/NNsim

SE_Ubar=sqrt(sum((VUsim-VU_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_PHbar=sqrt(sum((VPHsim-VPH_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

min_U = VUsim(1)
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max_U = VUsim(1)

min_PH = VPHsim(1)

max_PH = VPHsim(1)

do isim = 1,Nsim

if(min_U .gt. VUsim(isim)) min_U=VUsim(isim)

if(max_U .lt. VUsim(isim)) max_U=VUsim(isim)

if(min_PH .gt. VPHsim(isim)) min_PH=VPHsim(isim)

if(max_PH .lt. VPHsim(isim)) max_PH=VPHsim(isim)

end do

end do

end do

end do

contains

___________________________________________________________________

Subroutine RSU(x,y,n,r,V_U)

implicit none

integer, intent(in)::n

real, intent(in)::r

real, dimension(n):: x,y

real, intent(out):: V_U

integer:: i,j,k

real :: an0,hn,xx0,xhn,khn,s0,s2,g(n),w

an0 =real(2*n*(n - 1))

hn= real(n)**(-r)

s2 = 0.0

do i = 1, n

s0 = 0.0
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do k = 1, n

if (i .ne. k) then

xx0 = x(k) - x(i)

xhn = xx0/hn

khn = nk0(xhn)/hn

s0 = s0 + khn

endif

enddo

g(i)=s0/real(n-1)

enddo

do i = 1, n

do j = 1, n

if (i .ne. j) then

xx0 = x(j) - x(i)

xhn = xx0/hn

khn = nk0(xhn)/hn

w = 0.5*(1.0/g(i)+1.0/g(j))*khn

s2= s2+(y(i)-y(j))*(y(i)-y(j))*w

endif

end do

end do

V_U = s2/an0

end Subroutine RSU

___________________________________________________________________

Subroutine RSS_PH(x,y,ndata,pi,r,V_PH)

integer, intent(in)::ndata

real, dimension(ndata):: x,y

real, intent(in)::r,pi

real, intent(out):: V_PH
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integer:: i,j,k

real :: s0, s1, s2, t0, t1,t2,k0

real :: an, xx0, hn, xhn, khn,x0,y0

real::xij,xijh,kij,wij

K0=1.0/SQRT(2.0*pi)

an = real(ndata)

hn = an**(-r)

s2 = 0.0

t1 = 0.0

t2 = 0.0

do i=1,ndata

s0 = 0.0

t0 = 0.0

s1 = 0.0

x0=x(i)

y0=y(i)

do k=1,ndata

xx0 = x0-x(k)

xhn = xx0/hn

khn = nk0(xhn)

s0 = s0 + khn

end do

do j=1,ndata

xij = x0 - x(j)

xijh=xij/hn

kij = nk0(xijh)

wij= kij/s0

t0 = t0 + wij*y(j)

s1 = s1 + wij*wij
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end do

s2= s2+ k0/s0

t1 = t1 + s1

t2 = t2+ (y0-t0)*(y0-t0)

end do

V_PH = t2/(an-2.0*s2 + t1)

end Subroutine RSS_PH

end program RSS
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Appendix C.1

Fortran programme to compute final sample size N using two-

stage procedure for fixed equidistant design data.

program TWOSTAGE

use rnset_int

use rnnof_int

use anorin_int

use rnnoa_int

use tin_int

implicit none

include ’link_f90_dll.h’

include ’link_f90_static.h’

! Variables

integer, parameter: mdata=1,ddata=5,Nsim=15000 iseed=123479,x0data=1

real, parameter :: sigma=0.5, a=3.0, b=4.0, alpha =0.10

real, dimension(ddata)::d0

real, dimension(x0data)::x00

integer, dimension(mdata)::m0

real, dimension(90000):: x,y,xx,yy

common /xy/ x,y,xx,yy

integer, dimension(nsim)::N_sim, Tsim

real,dimension(nsim)::NN_sim, TTsim,yksim,ynwsim,vsim

real,dimension(1)::z0

integer:: n_opt, m2,min_N,max_N,min_T,max_T

real :: f_x,N_bar,T_bar,SE_Tbar,n4,SE_Nbar,cp,SE_cp,mx,yk,m1,SE_cpnw

real:: ZBS,ADF,u0,u1,u2,diff,oversam,T_hat,NNsim,r0,r2,yk_bar,ynw_bar

real:: v_bar,SE_vbar,SE_ykbar,SE_ynwbar,Var_gsj,t_h,BT2,BTD,Tc0,x0,ynw

real :: z,z2,pi,pi_root,mx0,Bn,BB,Z2B,S2,r1,d2,n_star,m00, T_star,cpnw
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integer:: id,im,m9,isim,ix,n3,Tc,ic,ix0,icnw,dn

open (2, file=’2Rel.out’, status = ’unknown’)

open (3, file=’2Rel.dat’, status = ’unknown’)

open (4, file=’sin.dat’, status = ’unknown’)

d0=(/ 0.14,0.12,0.09,.07,0.05/)

m0=(/15/)

x00=(/.533/)

call rnset(iseed)

write(2,45)

write(3,45)

z= anorin(1.0-0.5*alpha)

z2=z*z

pi = 2.0*asin(1.0)

pi_root = sqrt(pi)

BB = 2.0*pi_root

Bn = 1.0/BB

Z2B=Z2*Bn

S2 = sigma*sigma

do ix0=1, x0data

x0=x00(ix0)

mx0=2.*exp(-(x0*x0)/(.3*.3*2.))+3.*exp(-((x0-1.)*(x0-1.))

/(.7*.7*2.))

mx0=sin(0.75*x0)*sin(0.75*x0)+3.0

do im = 1, mdata

m9=m0(im)

m00=float(m9)

call rcal(m9,x0,r0)

r1=1.0/(1.0-r0)

do id = 1, ddata
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write (3,15) d0(id)

d2 = d0(id)*d0(id)

n_star= (Z2B*S2/d2)**r1

T_star= n_star/m00

ic=0

icnw=0

call TCal(m9,alpha,t_h)

do isim = 1, Nsim

do ix = 1, m9

call rnnoa(z0)

x(ix) = float(ix)/float(m9)

y(ix)=2.*exp(-(x(ix)*x(ix))/(.3*.3*2.))+3.*exp(-((x(ix)-1.)**2)/

.7*.7*2.))+ sigma*z0(1)

y(ix)=sin(0.75*x(ix))*sin(0.75*x(ix))+3.0+ sigma*z0(1)

y(ix)= 10*(1.0-exp(-0.2*x(ix)))+ sigma*z0(1)

xx(ix)=x(ix)

yy(ix)=y(ix)

end do

call RSS(m9,Var_gsj)

vsim(isim)=Var_gsj

BT2 = t_h*t_h*Bn

BTD = BT2/d2

Tc0 = (BTD*Var_gsj)**r1

Tc = ceiling(Tc0/m00)

Tsim(isim) = max(1,Tc)

n3 = Tsim(isim)*m9

N_sim(isim)=n3

dn=n3-m9

call rcal(n3,x0,r2)
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call Ker_Est(m9,n3,dn,Tsim(isim),r2,x0,a,b,sigma,yk,ynw)

yksim(isim)= yk

ynwsim(isim)= ynw

if (abs(mx0-yk).LT. d0(id)) ic=ic+1

if (abs(mx0-ynw).LT. d0(id)) icnw=icnw+1

end do

NNsim = real(nsim)

NN_sim = real(N_sim)

N_bar = sum(NN_sim)/NNsim

yk_bar = sum(yksim)/NNsim

v_bar=sum(vsim)/NNsim

ynw_bar = sum(ynwsim)/NNsim

SE_Nbar = sqrt(sum((NN_sim-N_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_vbar = sqrt(sum((vsim-v_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ykbar = sqrt(sum((yksim-yk_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

SE_ynwbar = sqrt(sum((ynwsim-ynw_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

min_N = N_sim(1)

max_N = N_sim(1)

min_T = Tsim(1)

max_T = Tsim(1)

do isim = 1,Nsim

if(min_N .gt. N_sim(isim)) min_N=N_sim(isim)

if(max_N .lt. N_sim(isim)) max_N=N_sim(isim)

if(min_T .gt. Tsim(isim)) min_T=Tsim(isim)

if(max_T .lt. Tsim(isim)) max_T=Tsim(isim)

end do

diff = n_bar-n_star

oversam = diff/n_star*100.0

TTsim = real(Tsim)
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T_bar = sum(TTsim)/NNsim

SE_Tbar = sqrt(sum((TTsim-T_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

cp = float(ic)/float(Nsim)

cpnw =float(icnw)/float(Nsim)

SE_cp = sqrt((cp*(1.0-cp))/NNsim)

SE_cpNW = sqrt((cpNW*(1.0-cpNW))/NNsim)

end do

end do

end do

contain

!______________________________________________________________________

subroutine Ker_Est(m,n3,dn,t,r,x0,A0,B0,sigma,yk,ynw)

implicit none

integer, intent(in) :: m,n3,dn,t

real, intent(in) :: r, x0,A0,B0,sigma

real, dimension(90000):: x,y,xx,yy

common /xy/ x,y,xx,yy

real, intent(out) :: yk,ynw

integer :: i,j, ir,j0,j1

real ::an,xx0,hn,xhn,khn,stdn(dn),s0,s1,s2,t0,t1,pi,zt(1)

an = real(n3)

hn = an**(-r)

pi = 2.0*asin(1.0)

If (n3 .gt. m) then

call rnnoa(stdn)

j=0

j1=0

do i=1,n3
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if (mod(i,t) .gt. 0) then

x(i)=real(i)/an

j=j+1

if (j .gt. dn) then

print *, ’Error1’

stop

endif

y(i)=2.0*exp(-(x(i)*x(i))/(0.3*0.3*2.0))+3.0*exp(-(x(i)-1.0)

*(x(i)-1.0)/(2.0*0.7*0.7))+ sigma*stdn(j)

y(i)=sin(0.75*x(i))*sin(0.75*x(i))+3.0+sigma*stdn(j)

y(i)= 10*(1.0-exp(-0.2*x(i)))+ sigma*stdn(j)

else

j1=j1+1

if (j1 .gt. m) then

print *, ’Error2’

stop

endif

x(i)=xx(j1)

y(i)=yy(j1)

endif

end do

endif

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,n3

xx0 = x(j) - x0
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xhn = xx0/hn

khn = nk0(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)

t1 = t1 + xx0*khn*y(j)

end do

yk = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)

ynw=t0/s0

end subroutine Ker_Est

end program TWOSTAGE
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Appendix C.2

Fortran programme to compute final sample size N using two-

stage procedure for random design data.

program RD_2Stage

use rnset_int

use rnnof_int

use anorin_int

use rnnoa_int

use TIN_INT

use rnun_INT

use ordst_int

implicit none

include ’link_f90_dll.h’

include ’link_f90_static.h’

! Variables

integer, parameter::mdata=1, ddata=1,Nsim=15000,iseed=12347,x0data=1

real, parameter ::sigma=0.5, a=3.0, b=4.0, alpha =0.05

real, dimension(ddata)::d0

real, dimension(x0data)::x00

integer, dimension(mdata)::m0

real, dimension(90000):: x,y

common /xy/ x,y

integer, dimension(nsim)::N_sim

real,dimension(nsim)::NN_sim,var,yllsim,ynwsim

integer:: min_N,max_N,nmiss,nx,m9,id,im,isim,ix,n3,ic, dnsim, icnw,ix0

real :: N_bar,SE_Nbar,cp,SE_cp,SE_cpNW,yk,diff,oversam,NNsim,r0,fx,p,df

real :: z,z2,pi,pi_root,mx0,Bn,BB,Z2B,S2,r1,d2,n_star,m00,t_h,BT2,BTD

real::fxhat,Var_PH,r2,ynw,cpnw,x0,yll_bar,ynw_bar,z0(1),z1(1),n4,V_bar
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open (2, file=’RD2S_NL6.out’, status = ’unknown’)

open (3, file=’RD2S_NL6.dat’, status = ’unknown’)

d0=(/ 0.15,0.13,.11,.09,0.07,0.05/)

m0=(/25 /)

x00=(/.306/)

call rnset(iseed)

write(2,45)

write(3,45)

z= anorin(1.0-0.5*alpha)

z2=z*z

pi = 2.0*asin(1.0)

pi_root = sqrt(pi)

BB = 2.0*pi_root

Bn = 1.0/BB

fx=1.0

Z2B=Z2*Bn

p = (1.0 - 0.5*alpha)

S2 = sigma*sigma

write (2,5) nsim

write (3,5) nsim

write (2,6)

write (3,6)

write (2,7) alpha, sigma

write (3,7) alpha, sigma

do ix0=1, x0data

x0=x00(ix0)

mx0= sqrt(a + b*x0)

mx0=2.0*exp(-(x0*x0)/(0.3*0.3*2.0))+3.0*exp(-((x0-1.0)**2)

/(0.7*0.7*2.0))
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mx0=sin(2.0*pi*(x0-0.5))*sin(2.0*pi*(x0-0.5))

mx0=5.0*sqrt(x0*x0-0.02)

write (2,8) x0,mx0

write (3,8) x0,mx0

write (3,35)

write (2,30)

do im = 1, mdata

m9=m0(im)

m00=float(m9)

call rcal(m9,x0,r0)

r1=1.0/(1.0-r0)

df = m00

t_h = TIN(p,df)

do id = 1, ddata

d2 = d0(id)*d0(id)

n_star= (Z2B*S2/(d2*fx))**r1

ic=0

icnw=0

nx=m9

do ix=1,nx

call rnun(z1)

x(ix)=z1(1)

end do

do isim = 1, Nsim

do ix = 1, m9

call rnnoa(z0)

y(ix) = sqrt(a + b*x(ix)) + sigma*z0(1)

y(ix)=2.0*exp(-(x(ix)*x(ix))/(0.3*0.3*2.0))+3.0*exp(-((x(ix)-1.0)**2)

/(0.7*0.7*2.0))+ sigma*z0(1)
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y(ix)=sin(2.0*pi*(x(ix)-0.5))*sin(2.0*pi*(x(ix)-0.5))+sigma*z0(1)

y(ix)=5.0*sqrt(x(ix)*x(ix)-0.02)+sigma*z0(1)

end do

call RSS_PH(m9,pi,r0,Var_PH)

var(isim)=Var_PH

!Estimate the sample size N using two-stage procedure

BT2 = t_h* t_h*Bn

BTD = BT2/d2

fxhat=1.0

n4 = (BTD*Var_PH/fxhat)**r1

n3=ceiling(n4)

N_sim(isim)=max(m9,n3)

n3=N_sim(isim)

if (n3 .gt. nx) then

do ix=nx+1,n3

call rnun(z1)

x(ix)=z1(1)

end do

nx=n3

end if

call rcal(n3,x0,r2)

call Ker_Est(m9,n3,r2,x0,a,b,sigma,yk,ynw)

yllsim(isim)=yk

ynwsim(isim)=ynw

if (abs(mx0-yk).LT. d0(id)) ic=ic+1

if (abs(mx0-ynw).LT. d0(id)) icnw=icnw+1

end do

NNsim = real(nsim)

NN_sim = real(N_sim)
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V_bar=sum(var)/NNsim

yll_bar=sum(yllsim)/NNsim

ynw_bar=sum(ynwsim)/NNsim

N_bar=sum(NN_sim)/NNsim

SE_Nbar=sqrt(sum((NN_sim-N_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

min_N = N_sim(1)

max_N = N_sim(1)

do isim = 1,Nsim

if(min_N .gt. N_sim(isim)) min_N=N_sim(isim)

if(max_N .lt. N_sim(isim)) max_N=N_sim(isim)

end do

diff = n_bar-n_star

oversam = diff/n_star*100.0

cp = float(ic)/float(Nsim)

cpnw=float(icnw)/float(Nsim)

SE_cp = sqrt((cp*(1.0-cp))/NNsim)

SE_cpNW = sqrt((cpNW*(1.0-cpNW))/NNsim)

end do

end do

end do

contains

!________________________________________________________________

Subroutine RSS_PH(ndata,pi,r,Var_PH)

integer, intent(in)::ndata

real, dimension(90000):: x,y

common /xy/ x,y

real, intent(in)::r,pi

real, intent(out):: Var_PH
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integer:: i,j,k

real :: s0,s1,s2,t0,t1,t2,k0,an,xx0,hn,xhn,khn,x0,y0,xij,xijh

real :: kij,wij

K0=1.0/SQRT(2.0*pi)

an = real(ndata)

hn = an**(-r)

s2 = 0.0

t1 = 0.0

t2 = 0.0

do i=1,ndata

s0 = 0.0

t0 = 0.0

s1 = 0.0

x0=x(i)

y0=y(i)

do k=1,ndata

xx0 = x0-x(k)

xhn = xx0/hn

khn = nk0(xhn)

s0 = s0 + khn

end do

do j=1,ndata

xij = x0 - x(j)

xijh=xij/hn

kij = nk0(xijh)

wij= kij/s0

t0 = t0 + wij*y(j)

s1 = s1 + wij*wij

end do
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s2= s2+ k0/s0

t1 = t1 + s1

t2 = t2+ (y0-t0)*(y0-t0)

end do

Var_PH = t2/(an-2.0*s2 + t1)

end Subroutine RSS_PH

!________________________________________________________________

Subroutine Kernelfx(ndata,x0,r,fxhat)

real, dimension(90000):: x,y

common /xy/ x,y

integer, intent(in)::ndata

real, intent(in)::x0,r

real, intent(out)::fxhat

real:: an,hn,nhn,s0,xx0,kx0

integer:: i

an = real(ndata)

hn = an**(-r)

nhn=an*hn

s0=0.0

do i=1,ndata

xx0=(x0-x(i))/hn

kx0=nk0(xx0)

s0=s0+ kx0

end do

fxhat=s0/nhn

End Subroutine Kernelfx

!_________________________________________________________________

subroutine Ker_Est(m,n3,r,x0,A0,B0,sigma,yk,ynw)

integer, intent(in) :: m,n3
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real, intent(in) :: r, x0,A0,B0,sigma

real, dimension(90000):: x,y

common /xy/ x,y

real, intent(out) :: yk,ynw

integer :: i,j,k

real :: s0, s1, s2, t0, t1,zt(1)

real :: an, xx0, hn, xhn, khn

an = real(n3)

hn = an**(-r)

j=m+1

do i=j,n3

call rnnoa(zt)

y(i)=sin(2.0*pi*(x(i)-0.5))*sin(2.0*pi*(x(i)-0.5))+sigma*zt(1)

y(i)=2.0*exp(-(x(i)*x(i))/(0.3*0.3*2.0))+3.0*exp(-((x(i)-1.0)**2)

/(0.7*0.7*2.0))+ sigma*zt(1)

end do

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,n3

xx0 = x(j) - x0

xhn = xx0/hn

khn = nk0(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)
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t1 = t1 + xx0*khn*y(j)

end do

yk = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)

ynw=t0/s0

end subroutine Ker_Est

end program RD_2Stage

243



Appendix D.1

Fortran programme to compute final sample size N using boot-

strap two-stage procedure for fixed equidistant design data.

program FD_boot

use rnund_int

use rnset_int

use rnnof_int

use anorin_int

use TIN_INT

use rnnoa_int

use rnun_INT

use ordst_int

implicit none

include ’link_f90_dll.h’

include ’link_f90_static.h’

integer, parameter::x0data=1,mdata=1,ddata=5,Nsim=15000,iseed=12349

,bs=500,mn=25

real, parameter :: sigma=0.5, a=3.0, b=4.0, alpha =0.05

real, dimension(x0data)::x00

real, dimension(ddata)::d0

integer, dimension(mdata)::m0

real, dimension(90000):: x,y,xx,yy

common /xy/ x,y,xx,yy

real,dimension(bs)::zll,znw,OZ_ll,OZ_nw

integer, dimension(nsim)::N_sim,N_ll,N_nw,Tsim

real,dimension(nsim)::NN_sim,ynw_b,yksim,ynwsim,yk_b,yk_b1,ynw_b1

real,dimension(mn)::ek_d,enw_d,ek,enw,ykstar,ynwstar,ekstar,enwstar

real,dimension(mn)::ykbhat,ynwbhat,ynwhat,ykhat
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real :: N_bar,mx,yk,ynw,p,st_ll,st_nw,nhn,nopt_ll,nopt_nw,z0(1),x0

real:: ek_bar,enw_bar,sum_e,r0,r2,ll_h,nw_h ,ll_s,nw_s,SE_ybnw,z1(1)

real:: SE_nbar,cp_k,SE_k,cp_nw,SE_n,y_k,SE_yk,y_nw,SE_ynw,Nll_bar,r3

integer::ib,i,NR,ie(mn),m9,nll,nnw,icnw_b,AB,nmiss,ic_b1,icnw_b1,dn

real:: ZBS,ADF,u0,u1,u2,diff,oversam,NNsim,r2_ll,r2_nw,b_yk,b_ynw

real:: k_bar,nw_bar,k_b,BD,r0b,cp_bk,SE_bk,SE_bn,yb_nw,cp_bn,t_h

real :: z,z2,pi,pi_root,mx0,Bn,BB,Z2B,S2,r1,d2,n_opt,m00,V_u

real :: SE_bn1,SE_nk,b_k,b_nw,BT2,BTD,hn,cp_bk1,SE_cbk1

integer:: id,im,isim,ix,n3,ic,icnw,ix0,ic_b,min_N,max_N

real::yb_nw1,SE_ybnw1,k_b1,SE_bk1,cp_bn1,z5(1),Nnw_bar,SE_nnw

open (2, file=’M1WoB1.out’, status = ’unknown’)

open (5, file=’M1WB3.out’, status = ’unknown’)

open (6, file=’MWB4.out’, status = ’unknown’)

d0=(/ 0.14,0.12,.09,0.07,.05/)

m0=(/25/)

x00=(/.306/)

call rnset(iseed)

z= anorin(1.0-0.5*alpha)

z2=z*z

p = (1.0 - 0.5*alpha)

pi = 2.0*asin(1.0)

pi_root = sqrt(pi)

BB = 2.0*pi_root

Bn = 1.0/BB

Z2B=Z2*Bn

S2 = sigma*sigma

do ix0=1, x0data

x0=x00(ix0)

mx0= a + b*x0
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mx0=2.0*exp(-(x0*x0)/(0.3*0.3*2.0))+3.0*exp(-((x0-1.0)*(x0-1.0))

/(0.7*0.7*2.0))

mx0=sin(0.75*x0)*sin(0.75*x0)+3.0

mx0=sin(2.0*pi*(x0-0.5))*sin(2.0*pi*(x0-0.5))

mx0=sqrt(4.0*x0+3.0)

write (2,6) nsim, bs,x0, mx0,alpha

write (5,6) nsim, bs,x0, mx0,alpha

do im = 1, mdata

m9=m0(im)

m00=real(m9)

call TCal(m9,alpha,t_h)

BT2 = t_h*t_h*Bn

call rcal(m9,x0,r0)

hn=m00**(-r0)

nhn=m00**(1.0-r0)

write (2,8) m9,r0

write (5,8) m9,r0

r1=1.0/(1.0-r0)

write (2,40)

write (5,50)

write (6,60)

do id = 1, ddata

call rnset(iseed)

d2 = d0(id)*d0(id)

BD = Bn/d2

BTD = BT2/d2

n_opt= (Z2B*S2/d2)**r1

ic_b=0

icnw_b=0
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ic_b1=0

icnw_b1=0

ic=0

icnw=0

do isim = 1, Nsim

do ix = 1, m9

x(ix)=real(ix)/m00

call rnnoa(z0)

y(ix) = a + b*x(ix) + sigma*z0(1)

y(ix)=2.0*exp(-(x(ix)*x(ix))/(0.3*0.3*2.0))+3.0*exp(-((x(ix)-1.0)**2)

(0.7*0.7*2.0))+ sigma*z0(1)

y(ix)=sin(2.0*pi*(x(ix)+0.2))*sin(2.0*pi*(x(ix)+0.2))+3.0+ sigma*z0(1)

y(ix)=sin(0.75*x(ix))+3.0+ sigma*z0(1)

y(ix)=sin(0.75*x(ix))*sin(0.75*x(ix))+3.0+ sigma*z0(1)

y(ix)=sin(2.0*pi*(x(ix)-0.5))*sin(2.0*pi*(x(ix)-0.5))+sigma*z0(1)

y(ix)=sqrt(4.0*x(ix)+3.0)+sigma*z0(1)

yy(ix)=y(ix)

xx(ix)=x(ix)

end do

!#### Without Bootstapping #######

call RSS(m9,V_u)

Tsim(isim)=max(1,ceiling(((BTD*V_u)**r1)/m00))

N_sim(isim)=m9*Tsim(isim)

n3=N_sim(isim)

!#### Bootstapping #######

do ix = 1, m9

call rcal(m9,x(ix),r3)

call Ker_Yhat(m9,r3,x(ix),ykhat(ix),ynwhat(ix))

ek_d(ix) = y(ix)-ykhat(ix)
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enw_d(ix) = y(ix)-ynwhat(ix)

end do

ek_bar = sum(ek_d)/m00

enw_bar = sum(enw_d)/m00

do ix = 1, m9

ek(ix) = (ek_d(ix)- ek_bar )/(1.0-1.0/m00)

enw(ix) = (enw_d(ix)- enw_bar)/(1.0-1.0/m00)

end do

do ib=1,bs

NR=m9

call rnund (m9,ie)

do i=1, m9

ekstar(i)=ek(ie(i))

enwstar(i)=enw(ie(i))

end do

do ix = 1, m9

ykstar(ix) = ykhat(ix) +ekstar(ix)

ynwstar(ix) = ynwhat(ix)+enwstar(ix)

end do

call Ker_Ystar(m9,ykstar,ynwstar,r0,x0,ll_s,nw_s)

call Ker_Yhat(m9,r0,x0,ll_h,nw_h)

zll(ib) = abs((ll_s-ll_h)* sqrt(nhn))

znw(ib) = abs((nw_s-nw_h)* sqrt(nhn))

end do

call ordst (zll,bs,OZ_ll,NMISS)

call ordst (znw,bs,OZ_nw,NMISS)

AB=int(float(bs)*(1.0-alpha))

st_ll=OZ_ll(AB)

st_nw=OZ_nw(AB)
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nll =max( 1,ceiling(((st_ll/d0(id))**(2.0/(1.0-r0)))/m00) )

nnw = max(1,ceiling(((st_nw/d0(id))**(2.0/(1.0-r0)))/m00) )

N_ll(isim)=nll*m9

N_nw(isim)=nnw*m9

call rcal(n3,x0,r2)

dn=n3-m9

call Ker_Est(m9,n3,dn,Tsim(isim),r2,x0,a,b,sigma,yk,ynw)

yksim(isim)= yk

ynwsim(isim)= ynw

if (abs(mx0-yk).LT. d0(id)) ic=ic+1

if (abs(mx0-ynw).LT. d0(id)) icnw=icnw+1

call rcal(N_ll(isim),x0,r2_ll)

call rcal(N_nw(isim),x0,r2_nw)

call Ker_Yhat(N_ll(isim),r2_ll,x0,b_yk,b_nw)

call Ker_Yhat(N_nw(isim),r2_nw,x0,b_k,b_ynw)

yk_b(isim)= b_yk

ynw_b(isim)= b_ynw

yk_b1(isim)= b_k

ynw_b1(isim)= b_nw

if (abs(mx0-b_yk).LT. d0(id)) ic_b=ic_b+1

if (abs(mx0-b_ynw).LT. d0(id)) icnw_b=icnw_b+1

if (abs(mx0-b_k).LT. d0(id)) ic_b1=ic_b1+1

if (abs(mx0-b_nw).LT. d0(id)) icnw_b1=icnw_b1+1

end do

NNsim = real(nsim)

!!!!!!!!!!!!!!!!!!!!!!! Without Boot^^^^^^^^^^^^^^^^^^^^^^^^^^^

NN_sim = real(N_sim)

N_bar = sum(NN_sim)/NNsim

SE_nbar = sqrt(sum((NN_sim-N_bar)**2)/(NNsim-1.0))/sqrt(NNsim)
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cp_k = real(ic)/NNsim

SE_k=sqrt((cp_k*(1.0-cp_k))/NNsim)

cp_nw = real(icnw)/NNsim

SE_n=sqrt((cp_nw*(1.0-cp_nw))/NNsim)

y_k=sum(yksim)/NNsim

SE_yk= sqrt(sum((yksim-yk)**2)/(NNsim-1.0))/sqrt(NNsim)

y_nw=sum(ynwsim)/NNsim

SE_ynw= sqrt(sum((ynwsim-ynw)**2)/(NNsim-1.0))/sqrt(NNsim)

write(2,45) d0(id),n_opt,N_bar,SE_nbar,cp_k,SE_k,cp_nw,SE_n,

y_k,SE_yk,y_nw,SE_ynw

!! !!!!!!!!!!!!!!!!!!!!!!!! With Boot^^^^^^^^^^^^^^^^^^^^^^^^^

Nll_bar =sum(real(N_ll))/NNsim

SE_nk= sqrt(sum((N_ll-Nll_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

Nnw_bar =sum(real(N_nw))/NNsim

SE_nnw= sqrt(sum((N_nw-Nnw_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

k_b=sum(yk_b)/NNsim

SE_bk= sqrt(sum((yk_b-k_b)**2)/(NNsim-1.0))/sqrt(NNsim)

yb_nw=sum(ynw_b)/NNsim

SE_ybnw= sqrt(sum((ynw_b-yb_nw)**2)/(NNsim-1.0))/sqrt(NNsim)

k_b1=sum(yk_b1)/NNsim

SE_bk1= sqrt(sum((yk_b1-k_b1)**2)/(NNsim-1.0))/sqrt(NNsim)

yb_nw1=sum(ynw_b1)/NNsim

SE_ybnw1= sqrt(sum((ynw_b1-yb_nw1)**2)/(NNsim-1.0))/sqrt(NNsim)

cp_bk = real(ic_b)/NNsim

SE_bk=sqrt((cp_bk*(1.0-cp_bk))/NNsim)

cp_bn = real(icnw_b)/NNsim

SE_bn = sqrt((cp_bn*(1.0-cp_bn))/NNsim)

cp_bk1 = real(ic_b1)/NNsim

SE_cbk1=sqrt((cp_bk1*(1.0-cp_bk1))/NNsim)
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cp_bn1 = real(icnw_b1)/NNsim

SE_bn1 = sqrt((cp_bn1*(1.0-cp_bn1))/NNsim)

end do

end do

end do

contains

!_________________________________________________________________

subroutine Ker_Ystar(ndata,ykstar,ynwstar,r,x0,yk_s,ynw_s)

implicit none

integer, intent(in) :: ndata

real, intent(in) :: r,x0,ykstar(ndata),ynwstar(ndata)

real, dimension(90000):: x,y,xx,yy

common /xy/ x,y,xx,yy

integer :: i, j, k

real :: s0, s1, s2, t0, t1,t2,an, xx0, hn, xhn, khn,yk_s,ynw_s

an = real(ndata)

hn = an**(-r)

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

t2 = 0.0

do j=1,ndata

xx0 = x(j) - x0

xhn = xx0/hn

khn = nk0(xhn)

s0 = s0 + khn
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s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*ykstar(j)

t1 = t1 + xx0*khn*ykstar(j)

t2 = t2 + khn*ynwstar(j)

end do

yk_s = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)

ynw_s= t2/s0

end subroutine Ker_Ystar

!_________________________________________________________________

subroutine Ker_Yhat(ndata,r,x0,yk_h,ynw_h)

implicit none

integer, intent(in) :: ndata

real, intent(in) :: r,x0

real, dimension(90000):: x,y,xx,yy

common /xy/ x,y,xx,yy

real, intent(out):: yk_h,ynw_h

integer :: i, j, k

real :: s0, s1, s2, t0, t1,an, xx0, hn, xhn, khn

an = real(ndata)

hn = an**(-r)

s0 = 0.0

s1 = 0.0

s2 = 0.0

t0 = 0.0

t1 = 0.0

do j=1,ndata

xx0 = x(j) - x0

xhn = xx0/hn
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khn = nk0(xhn)

s0 = s0 + khn

s1 = s1 + xx0*khn

s2 = s2 + xx0*xx0*khn

t0 = t0 + khn*y(j)

t1 = t1 + xx0*khn*y(j)

end do

yk_h = (s2*t0 - s1*t1)/(s0*s2 - s1*s1)

ynw_h= t0/s0

end subroutine Ker_Yhat

end program FD_boot
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Appendix D.2

Fortran programme to compute final sample size N using boot-

strap two-stage procedure for random design data.

program RD_boot

use rnund_int

use rnset_int

use rnnof_int

use anorin_int

use TIN_INT

use rnnoa_int

use rnun_INT

use ordst_int

implicit none

include ’link_f90_dll.h’

include ’link_f90_static.h’

integer,parameter::x0data=1,mdata=1,ddata=5,Nsim=15000,iseed=12349

,bs=500,mn=25

real, parameter :: sigma=0.5, a=3.0, b=4.0,alpha =0.05

real, dimension(x0data)::x00

real, dimension(ddata)::d0

integer, dimension(mdata)::m0

real, dimension(90000):: x,y

common /xy/ x,y

real,dimension(bs)::zll,znw,OZ_ll,OZ_nw

integer, dimension(nsim)::N_sim,N_ll,N_nw

real,dimension(nsim)::NN_sim,ynw_b,yksim,ynwsim,yk_b,yk_b1,ynw_b1

real,dimension(mn)::ek_d,enw_d,ek,enw,ykstar,ynwstar,ekstar

real,dimension(mn)::ykbhat,ynwbhat,ynwhat,ykhat,enwstar
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real :: N_bar,mx,yk,ynw,p,st_ll,st_nw,nhn,nopt_ll,nopt_nw,z0(1)

real:: ek_bar,enw_bar,sum_e,r0,r2,ll_h,nw_h ,ll_s,nw_s,z1(1),z5(1)

real:: SE_nbar,cp_k,SE_k,cp_nw,SE_n,y_k,SE_yk,y_nw,SE_ynw,Nll_bar

real::SE_nnw,cp_bn,SE_bn,yb_nw,SE_ybnw,k_bar,nw_bar,k_b,Nnw_bar

integer::ib,i,NR,ie(mn),m9,nx,nll,nnw,hn,BD,r0b,cp_bk,SE_bk min_N

real:: ZBS,ADF,u0,u1,u2,diff,oversam,NNsim,r2_ll,r2_nw,b_yk,b_ynw

real :: z,z2,pi,pi_root,mx0,Bn,BB,Z2B,S2,r1,d2,n_opt,m00,V_u,t_h

integer:: id,im,isim,ix,n3,ic,icnw,ix0,ic_b,icnw_b,AB,nmiss

real::yb_nw1,SE_ybnw1,k_b1,SE_bk1,cp_bk1,SE_cbk1,cp_bn1,SE_bn1

real::SE_nk,ic_b1,icnw_b1,b_k,b_nw,r3,max_N,BT2,BTD,x0

open (2, file=’outWoB1.out’, status = ’unknown’)

open (5, file=’outWB3.out’, status = ’unknown’)

open (6, file=’outWB4.out’, status = ’unknown’)

d0=(/ 0.15,0.13,.11,.09,0.07/)

m0=(/25/)

x00=(/.756/)

call rnset(iseed)

WRITE (2,4)

write (2,5)

WRITE (5,4)

write (5,5)

z= anorin(1.0-0.5*alpha)

z2=z*z

p = (1.0 - 0.5*alpha)

pi = 2.0*asin(1.0)

pi_root = sqrt(pi)

BB = 2.0*pi_root

Bn = 1.0/BB

Z2B=Z2*Bn
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S2 = sigma*sigma

do ix0=1, x0data

x0=x00(ix0)

mx0= a + b*x0

mx0=2.0*exp(-(x0*x0)/(0.3*0.3*2.0))+3.0*exp(-((x0-1.0)*(x0-1.0))/

(0.7*0.7*2.0))

mx0=sin(0.75*x0)*sin(0.75*x0)+3.0

mx0=sin(2.0*pi*(x0-0.5))*sin(2.0*pi*(x0-0.5))

mx0=sqrt(4.0*x0+3.0)

do im = 1, mdata

m9=m0(im)

m00=real(m9)

t_h = TIN(p,(m00-1.0))

BT2 = t_h*t_h*Bn

call rcal(m9,x0,r0)

hn=m00**(-r0)

nhn=m00**(1.0-r0)

write (2,8) m9,r0

write (5,8) m9,r0

r1=1.0/(1.0-r0)

write (2,40)

write (5,50)

write (6,60)

do id = 1, ddata

call rnset(iseed)

d2 = d0(id)*d0(id)

BD = Bn/d2

BTD = BT2/d2

n_opt= (Z2B*S2/d2)**r1
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ic_b=0

icnw_b=0

ic_b1=0

icnw_b1=0

ic=0

icnw=0

nx=m9

do ix=1,nx

call rnun(z1)

x(ix)=z1(1)

end do

do isim = 1, Nsim

do ix = 1, m9

call rnnoa(z0)

y(ix) = a + b*x(ix) + sigma*z0(1)

y(ix)=2.0*exp(-(x(ix)*x(ix))/(0.3*0.3*2.0))+3.0*exp(-((x(ix)

-1.0)**2)/(0.7*0.7*2.0))+ sigma*z0(1)

y(ix)=sin(2.0*pi*(x(ix)+0.2))*sin(2.0*pi*(x(ix)+0.2))+3.0+

sigma*z0(1)

y(ix)=sin(0.75*x(ix))+3.0+ sigma*z0(1)

end do

!#### Without Bootstapping #########

call RSS(m9,r0,V_U)

N_sim(isim)=max(m9,ceiling((BTD*V_u)**r1))

n3=N_sim(isim)

if (n3 .gt. nx) then

do ix=nx+1,n3

call rnun(z1)

x(ix)=z1(1)
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end do

nx=n3

end if

call rcal(n3,x0,r2)

call Ker_Est(m9,n3,r2,x0,a,b,sigma,yk,ynw)

yksim(isim)= yk

ynwsim(isim)= ynw

if (abs(mx0-yk).LT. d0(id)) ic=ic+1

if (abs(mx0-ynw).LT. d0(id)) icnw=icnw+1

!#### Bootstapping #########

do ix = 1, m9

!call rcal(m9,x(ix),r3)

r3=0.84

call Ker_Yhat(m9,r3,x(ix),ykhat(ix),ynwhat(ix))

ek_d(ix) = y(ix)-ykhat(ix)

enw_d(ix) = y(ix)-ynwhat(ix)

end do

ek_bar = sum(ek_d)/m00

enw_bar = sum(enw_d)/m00

do ix = 1, m9

ek(ix) = (ek_d(ix)- ek_bar )/(1.0-1.0/m00)

enw(ix) = (enw_d(ix)- enw_bar)/(1.0-1.0/m00)

end do

do ib=1,bs

NR=m9

call rnund (m9,ie)

do i=1, m9

ekstar(i)=ek(ie(i))

enwstar(i)=enw(ie(i))
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end do

do ix = 1, m9

ykstar(ix) = ykhat(ix) +ekstar(ix)

ynwstar(ix) = ynwhat(ix)+enwstar(ix)

end do

call Ker_Ystar(m9,ykstar,ynwstar,r0,x0,ll_s,nw_s)

call Ker_Yhat(m9,r0,x0,ll_h,nw_h)

zll(ib) = abs((ll_s-ll_h)* sqrt(nhn))

znw(ib) = abs((nw_s-nw_h)* sqrt(nhn))

end do

call ordst (zll,bs,OZ_ll,NMISS)

call ordst (znw,bs,OZ_nw,NMISS)

AB=int(float(bs)*(1.0-alpha))

st_ll=OZ_ll(AB)

st_nw=OZ_nw(AB)

nll = ceiling((st_ll/d0(id))**(2.0/(1.0-r0)))

nnw = ceiling((st_nw/d0(id))**(2.0/(1.0-r0)))

N_ll(isim)=max(m9,nll)

N_nw(isim)=max(m9,nnw)

call rcal(N_ll(isim),x0,r2_ll)

call rcal(N_nw(isim),x0,r2_nw)

call Ker_Yhat(N_ll(isim),r2_ll,x0,b_yk,b_nw)

call Ker_Yhat(N_nw(isim),r2_nw,x0,b_k,b_ynw)

yk_b(isim)= b_yk

ynw_b(isim)= b_ynw

yk_b1(isim)= b_k

ynw_b1(isim)= b_nw

if (abs(mx0-b_yk).LT. d0(id)) ic_b=ic_b+1

if (abs(mx0-b_ynw).LT. d0(id)) icnw_b=icnw_b+1
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if (abs(mx0-b_k).LT. d0(id)) ic_b1=ic_b1+1

if (abs(mx0-b_nw).LT. d0(id)) icnw_b1=icnw_b1+1

end do

NNsim = real(nsim)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Without Boot^^^^^^^^^^^^^^^^

NN_sim = real(N_sim)

N_bar = sum(NN_sim)/NNsim

SE_nbar=sqrt(sum((NN_sim-N_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

cp_k = real(ic)/NNsim

SE_k=sqrt((cp_k*(1.0-cp_k))/NNsim)

cp_nw = real(icnw)/NNsim

SE_n=sqrt((cp_nw*(1.0-cp_nw))/NNsim)

y_k=sum(yksim)/NNsim

SE_yk= sqrt(sum((yksim-yk)**2)/(NNsim-1.0))/sqrt(NNsim)

y_nw=sum(ynwsim)/NNsim

SE_ynw= sqrt(sum((ynwsim-ynw)**2)/(NNsim-1.0))/sqrt(NNsim)

write(2,45) d0(id),n_opt,N_bar,SE_nbar,cp_k,SE_k,cp_nw,SE_n

,y_k,SE_yk,y_nw,SE_ynw

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! With Boot^^^^^^^^^^^^^^^^^^^

Nll_bar =sum(real(N_ll))/NNsim

SE_nk= sqrt(sum((N_ll-Nll_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

Nnw_bar =sum(real(N_nw))/NNsim

SE_nnw= sqrt(sum((N_nw-Nnw_bar)**2)/(NNsim-1.0))/sqrt(NNsim)

k_b=sum(yk_b)/NNsim

SE_bk= sqrt(sum((yk_b-k_b)**2)/(NNsim-1.0))/sqrt(NNsim)

yb_nw=sum(ynw_b)/NNsim

SE_ybnw= sqrt(sum((ynw_b-yb_nw)**2)/(NNsim-1.0))/sqrt(NNsim)

k_b1=sum(yk_b1)/NNsim

SE_bk1= sqrt(sum((yk_b1-k_b1)**2)/(NNsim-1.0))/sqrt(NNsim)
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yb_nw1=sum(ynw_b1)/NNsim

SE_ybnw1=sqrt(sum((ynw_b1-yb_nw1)**2)/(NNsim-1.0))/sqrt(NNsim)

cp_bk = real(ic_b)/NNsim

SE_bk=sqrt((cp_bk*(1.0-cp_bk))/NNsim)

cp_bn = real(icnw_b)/NNsim

SE_bn = sqrt((cp_bn*(1.0-cp_bn))/NNsim)

cp_bk1 = real(ic_b1)/NNsim

SE_cbk1=sqrt((cp_bk1*(1.0-cp_bk1))/NNsim)

cp_bn1 = real(icnw_b1)/NNsim

SE_bn1 = sqrt((cp_bn1*(1.0-cp_bn1))/NNsim)

end do

end do

end do

end program RD_boot
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