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Abstract

All practical text search systems use inverted indexes to quickly resolve user queries. Offline
index construction algorithms, where queries are not accepted during construction, have
been the subject of much prior research. As a result, current techniques can invert virtually
unlimited amounts of text in limited main memory, making efficient use of both time and
disk space. However, these algorithms assume that the collection does not change during the
use of the index.

This thesis examines the task of index maintenance, the problem of adapting an in-
verted index to reflect changes in the collection it describes. Existing approaches to index
maintenance are discussed, including proposed optimisations. We present analysis and em-
pirical evidence suggesting that existing maintenance algorithms either scale poorly to large
collections, or significantly degrade query resolution speed. In addition, we propose a new
strategy for index maintenance that trades a strictly controlled amount of querying efficiency
for greatly increased maintenance speed and scalability. Analysis and empirical results are
presented that show that this new algorithm is a useful trade-off between indexing and query-
ing efficiency. In scenarios described in Chapter 7, the use of the new maintenance algorithm
reduces the time required to construct an index to under one sixth of the time taken by
algorithms that maintain contiguous inverted lists.

In addition to work on index maintenance, we present a new technique for accumu-
lator pruning during ranked query evaluation, as well as providing evidence that existing
approaches are unsatisfactory for collections of large size. Accumulator pruning is a key
problem in both querying efficiency and overall text search system efficiency. Existing ap-
proaches either fail to bound the memory footprint required for query evaluation, or suffer
loss of retrieval accuracy. In contrast, the new pruning algorithm can be used to limit the
memory footprint of ranked query evaluation, and in our experiments gives retrieval accuracy

not worse than previous alternatives.



The results presented in this thesis are validated with robust experiments, which utilise
collections of significant size, containing real data, and tested using appropriate numbers
of real queries. The techniques presented in this thesis allow information retrieval applica-
tions to efficiently index and search changing collections, a task that has been historically

problematic.



