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Abstract

Genetic programming is an approach that utilises the power of evolution to allow computers to

evolve programs with little human involvement. It has demonstrated its usefulness in solving

many experimental problems as well as many real world problems. However, it suffers from

weaknesses in using repetitions effectively. While loops are natural components of most pro-

gramming languages and appear in every reasonably-sized application, they are rarely used in

genetic programming. Extending the power of genetic programming by encouraging more use of

loops will bridge the gap between the current state-of-the-art in programs evolved with genetic

programming and those written by humans, and improve this automatic programming method.

The goal of the work is to investigate a number of restricted looping constructs in which

infinite loops are not possible and to determine whether any significant benefits can be obtained

with these restricted loops. Possible benefits include: Solving problems which cannot be solved

without loops, evolving smaller sized solutions which can be more easily understood by human

programmers and solving existing problems quicker by using fewer evaluations.

In this thesis, a number of explicit restricted loop formats were formulated and tested on the

Santa Fe ant problem, a modified ant problem, a sorting problem, a visit-every-square problem

and a difficult object classification problem. A maximum number of iterations based on domain

knowledge was used to avoid the infinite iteration problem. The experimental results showed

that these explicit loops can be successfully used in genetic programming. The evolutionary

process can decide when, where and how to use them. Runs with these loops tended to generate

smaller sized solutions in fewer evaluations. Solutions with loops were found to some problems

that could not be solved without loops.

From these experimental problems, the modified ant problem and the visit-every-square

problem were selected to analyse differences between using and not using loops with respect to

the search spaces, the patterns captured by genetic programming and the sensitivity to changes
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in the maximum number of iterations on CPU time. The analysis of the search spaces found that

there were more fitter programs within a limited tree depth for programs with loops. To solve

the same problem without loops required a larger tree depth and this exponentially increases

the number of possible programs and may decrease the chance of finding a good solution. The

analysis of the patterns captured found that runs with loops captured repetitive patterns of the

problem domain and repeated them to improve the fitness. The analysis of the effect of different

values of maximum number of iterations showed that CPU time per evaluation increased as the

maximum number of iterations increased. However, solutions were found in fewer evaluations.

There was a large range of values for maximum number of iterations for which the overall CPU

time was lower. Good choices for maximum number of iterations could be found from domain

knowledge.

Overall, the results and analysis have established that there are significant benefits in us-

ing loops in genetic programming. Restricted loops can avoid the difficulties of evolving con-

sistent programs and the infinite iterations problem. Researchers and practioners of genetic

programming should not be afraid of loops.



Chapter 1

Introduction

1.1 Motivation

Loops are powerful constructs of programming languages. They provide a mechanism for re-

peated execution of a sequence of instructions. The task of most programs is usually to execute

a code segment a number of times by a loop. Variables within the loop body may be updated

sequentially during the execution.

There are many different ways of writing loop statements in programming languages, but

there are basically only two different types of loops. In one type of loop, it is not known how

many times the loop body will be executed when the loop body is entered, and a condition

needs to be specified to exit the loop. A loop that reads data until end of a file is a loop of this

kind. We call such loops unbounded loops. In these kinds of loops infinite loops are possible.

In the other type of loop, the number of times the body will be executed is known at entry. A

control variable is given start and end values and the loop will iterate from the start to the end,

thus infinite loops are not possible. We call this type bounded loops. In many programming

languages a for statement is used to code this type of loop, and in this thesis we refer to it as a

for-loop.

Recursion is another method to implement iteration. However, this thesis is concerned

primarily with bounded loops and recursion is not the focus.

There are various ways to specify bounded loops in different programming languages and

some of these are shown in Figures 1.1 to 1.4. In Pascal, the statement inside a bounded loop

is executed a number of times depending on the control condition (see Figure 1.1). The value of
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the control variable, control variables, cannot be changed inside the loop. In Fortran, a bounded

loop is specified by a DO statement as shown in Figure 1.2. The loop body is executed once

for each value of the control variable. In LISP, a bounded loop is specified by a loop statement

which iterates the body from a start value to an end value (see Figure 1.3). As shown in example

2, this form can also be used to step through the items in a list.

A full specification of a bounded loop consists of four components. They are the initialization

branch that is used to assign starting values to variables, the condition branch that specifies the

termination criteria, the updating branch that provides the way to change the control variable

and the loop body which contains the code that is repeatedly executed (see Figure 1.4).

Higher order iteration constructs are also available in LISP and Java. In LISP, loops can use

mapping functions such as mapcar (see Figure 1.5). Mapcar applies the function given in its

first argument successively to the list elements in the other arguments and generates the results

in a new list. In Java, a for statement can be used to iterate through each element in an array

or a collection (see Figure 1.6).

Genetic programming (GP) is a newly developing field in artificial intelligence and it allows

the computer to “learn how to solve problems without being explicitly programmed” [124, p35].

Darwinian principles of natural selection and recombination are used to evolve a population

of programs towards an effective solution to a specific problem. The genetic programming

technique has been successfully applied to a large number of tasks including robot control [34],

financial trend prediction [213], electronic circuit design [230], image classification [220] and

object detection [260].

Despite the success of genetic programming on different useful problems, loops have been

rarely utilised and the inclusion of loops in evolved programs has not been systematically studied.

There have been some attempts in using loops to solve a number of “toy” problems, but compared

to the versatility and flexibility of loop usage in other programming languages, as described

earlier, loops are hardly used in GP.

The reasons for this are:

• Firstly, loops are hard to evolve.

It is necessary to evolve the start point, the end point and the body and to make sure they

are consistent. For example, in some kinds of loops, an index variable must appear in the

body of the loop. In conventional programming languages as described earlier, this task is
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Format Example 1 Example 2

for control variable [to|downto] final value for i := 10 downto 1 for j:=1 to 5 do
do do begin

[begin write(i+1); s:=s+j;
program statements write(j)

end]; end;

Figure 1.1: A typical bounded loop in Pascal

Format Example 1 Example 2

DO control variable, final value, [increment] DO i=1, 5 DO i=2, 10, 2
instruction block PRINT *,i PRINT *,i

END DO END DO END DO

Figure 1.2: A typical bounded loop in Fortran

Format Example 1 Example 2

loop for variable [type spec] [expr] (loop for n from 1 (loop for i in (a b c d)
program statements to 100 (sum n)) do (print i))

Figure 1.3: A typical bounded loop in LISP

Format Example 1 Example 2

for(control variables; condition; increment) for(i=0; i<10; i++) for(i=3,y=0,total=0;
program-statements printf(”%d”, i); i<y-3;i++,y+=2)

total=y+i;

Figure 1.4: A typical bounded loop in C or Java

Format Example 1 Example 2

mapcar function car-lists (mapcar #’+ ’(1 2 3 4 5) (mapcar #’cons ’(a b c)
’(10 20 30 40 50)) ’(1 2 3))

Figure 1.5: A higher level bounded loop in LISP

Format Example 1 Example 2

for( element : elements) for( int i : int[] a) for( Book i: Books)
element-handle-statements result += i totalPrice += i.price()

Figure 1.6: A higher level bounded loop in Java
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the responsibility of the programmer, while the evolutionary process in GP can only take a

trial and error approach to generate consistent programs. This situation can be illustrated

in example 1 of Figure 1.1. In Pascal, the control variables cannot be changed inside the

loop but an evolutionary process could generate a statement like i := 50 in the loop body.

A mechanism needs to be formulated to avoid this kind of problem.

• Secondly, programs with loops generally take longer to evaluate and some mechanism must

be implemented for dealing with infinite loops.

Genetic programming uses population-based search methods. Initially, a group of possible

solutions are generated and they are evaluated and selected for mating or mutating based

on their fitness. Evaluating a group of programs with loops for a number of generations

is potentially high in computation cost. Furthermore, the evolution may generate some

combinations which contain infinite loops. The design of the GP process must take this

into consideration and restrict the number of iterations while still allowing the necessary

number of repetitions to solve the problem.

• Thirdly, there is a large class of useful problems which can be solved without loops.

At the web site by http://www.genetic-programming.com (visited on May 6th, 2006), there

are 36 instances in which genetic programming has produced human-competitive results

on a range of difficult problems. Only one of these uses loops. Many problems, for example

symbolic regression, have been solved without loops.

• Fourthly, it is often possible to put the looping behaviour in the environment or into a

terminal and execute the repetition implicitly.

Currently, loops in genetic programming are mostly implemented in an implicit way. There

are two ways of doing this. In the first way, loops are put into terminals. For example, in

the robo-soccer problem [45], the dash-towards-the-ball function moves the robot forward

until it reaches the ball. In the second way, loops are embedded in the environment. For

example, in the Santa-Fe Ant problem [123], the evolved program is executed again and

again until the task is finished or some maximum number of executions is reached.

Putting explicit loops into genetic programming could greatly enhance its power and could

lead to the solution of some significant experimental as well as real world problems which cannot
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be solved without loops. Moving looping behaviour from the environment or the terminals

into the evolved program could have a number of benefits including: (1) It could enhance the

understanding of the solution by explicitly showing the complete code. (2) It could improve the

efficiency of the program by pruning out the elements where repeated execution cannot make a

difference. (3) It could optimise the initialization, the condition and the updating branches in

addition to the loop body by using fitness-driven crossover and mutation in the genetic search.

There are further reasons for using loops in genetic programming. There is a large class of

problems with obvious looping characteristics that have not been tackled by GP. For example,

problems involving large vectors or arrays, like a generalised sorting algorithm, need loops to

access every element and reduce the length of the evolved code. Image detection and classification

tasks also involve looping behaviours because pixels of images are usually stored in arrays. The

classfiers evolved by GP are generally quick in decision making. However, evolving classifiers

using GP is slow. Improving the GP search process to find an acceptable classifier is in strong

demand. Furthermore, nearly every reasonable human written application has loops. Loops help

in the design of concise and comprehensible algorithms. In order to increase the applicability of

genetic programming, there is a need to narrow the gap between the wide use of loops in most

other programming languages and the very limited use of loops in genetic programming.

This thesis is based on the premise that it is possible to construct restricted loops in a way

that avoids the problems of infinite loops, but still leads to being able to solve problems that

cannot be solved without loops. The work will show how loops can be utilised to take advantage

of the repetitive patterns in problems without worrying about the infinite loop problem.

The recent decrease in the cost of computing cycles enables investigations of genetic pro-

gramming which require more computation resources, such as programs with loops. Studying

loops was not feasible in the past because generating large populations of programs with loops

and evaluating them require very long elapsed times if the CPU speed is slow. Also, to obtain

statistically significant results, experiments need to be repeated many times.

Today, with the increasing CPU speed, availability of large scale parallel computing as well as

many more real world applications adopting genetic programming as the solution methodology, it

is possible and necessary to systematically study the use of explicit loops. GP with explicit loops

has the potential to utilise the allocated memory more efficiently by minimising duplication of

code. For example, if the task is to direct a robot to enter into 10 locked rooms, the GP program
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needs to evolve a solution either with 10 identical sequences of actions which are opening the

door, entering the room and walking to another door, or to have a looping construct which

captures one sequence of these actions and repeats them 10 times. Furthermore, if the required

sequence of actions is difficult to discover, the probability of success will be higher with loops as

this sequence needs to be discovered only once. Without loops, this discovery needs to be made

ten times.

1.2 Terminology

The key terms used in this thesis are defined and described below:

• Bounded loop: refers to a type of loop in which the number of times the body will be

executed is known at entry. A control variable is given start and end values and the loop

will iterate from the start to the end, thus infinite loops are not possible.

• Unbounded loop: refers to a type of loop in which the number of times the body will

be executed is not known at entry and infinite loops are possible.

• Explicit loop: refers to a bounded loop function which is explicitly denoted by loop

or for-loop in the evolved program and the branches of the loop are evolved during the

evolution.

• Implicit loop: refers to a loop facility which exists outside the evolved program, either

the evolved program as a whole is executed a number of times or the looping is embedded

in one or more terminals.

• For-Loop: is a generic term for bounded loops in a variety of formats.

• For-Loop-?: refers to a specific explicit loop format developed for a specific task and used

in the experiments. The “?” is replaced by a number indicating different loop formats.

• Restricted loop: refers to an explicit loop that does not allow the branch which indi-

cates number of iterations to have mathematical functions and nested loops, for example,

(ForLoop numberOfIteration body).
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• Unrestricted loop: refers to an explicit loop that allows the branch which indicates num-

ber of iterations to have mathematical functions and nested loops, for example, (ForLoop

(5 + (ForLoop 4 body)) body).

• Run: refers to a completed evolutionary process which is either terminated by finding a

solution or by reaching a maximum number of generations.

• Successful run: refers to a completed evolutionary process that generates a satisfactory

solution.

• Unsuccessful run: refers to a completed evolutionary process that does not generate a

satisfactory solution when the maximum number of generations is reached.

• Mean best program fitness graph: refers to a graph in which the x-axis indicates

generations or evaluations and the y-axis indicates the fitness values. Multiple runs have

been conducted for each experiment. The fitness of the best program for each run at each

generation is recorded. The mean best fitness is the average fitness value of these best

programs.

1.3 Goals of the Thesis

The broad aim of the thesis is to study how bounded loops, that is, a limited form of loops in

which infinite loops are not possible, can be incorporated into tree-based genetic programming

and to determine whether incorporating such loops delivers any major benefits.

1.3.1 Research Questions

1. How can we restrict the syntax and semantics of for-loops in a way that avoids problems

of infinite loops and still provides useful benefits for genetic programming?

The benefits could be higher success ratios, fewer evaluations, reduced overall CPU time

for the evolutionary process and the evolution of smaller sized understandable solutions.

The expectations are that the incorporation of the loops would decrease the number of

evaluations for getting a solution for a range of problems and help GP to evolve smaller

sized solutions. An evolved program with loops could require more CPU time, but the
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chance of reusing repetitive patterns could accelerate the evolutionary process and the

problem could be solved in fewer evaluations thus minimising the overall time.

2. Can GP with for-loops solve some problems that cannot be solved or are very difficult to

solve without explicit loops?

The expectation is that there will be such problems.

3. Can for-loops be used in a difficult object classification problem with similar performance

gains to those achieved on relatively simple artificial problems?

Initial experimental work showed that for-loops were beneficial for a number of “toy”

problems. This question is a further exploration of a much harder problem in which

repetition is not necessary for a solution. We expect for-loops could be still used, but are

not sure whether they could deliver similar benefits to those in previous artificial problems.

4. How can the performance gains from using for-loops be explained?

Use of for-loops has resulted in major benefits for a number of different problems.

We expect that the performance gains can be explained through analysis of search spaces,

of the patterns captured by the loops and of the settings for the maximum number of

iterations.

1.4 Contributions

This is the first (PhD) thesis that presents a systematic analysis of the usage of explicit loops in

genetic programming and provides a methodology that users can apply to different problems.

The thesis makes the following major contributions:

1. A methodology for incorporating explicit loops into tree-based genetic programming.

The method shows how to formulate terminals and functions for looping constructs, how

to restrict syntax and semantics by domain knowledge so that there will be no infinite loop

problems and how to favour programs with fewer loops so that the evolved programs are

small and comprehensible.

This work was published in:
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Vic Ciesielski and Xiang Li. Experiments with explicit for-loops in genetic programming.

In Proceedings of the Congress on Evolutionary Computation (CEC-2004), pages 494-501.

IEEE Press, July 2004.

2. A first demonstration that explicit looping constructs can be used to solve image classifi-

cation problems.

The study has demonstrated that GP with loops is not just for “toy” problems. GP with

loops can be used to solve a more difficult image classification problem. On this more

difficult problem, GP with loops had success rate around 25/100, while GP without loops

had success rate around 5/100. Furthermore, the classifiers with loops were more robust

and general, because they used sequences or areas of pixels while the classifiers without

loops were more fragile because they used individual pixels scattered through the images.

This work was primary published in:

Xiang Li and Vic Ciesielski. Using loops in genetic programming for a two class binary im-

age classification problem. In Proceedings of the Australian Joint Conference on Artificial

Intelligence (AI-2004), pages 898-909. Springer-Verlag, December 2004.

Part of this work was published in:

Vic Ciesielski and Xiang Li. Pyramid search: Finding solutions for deceptive problems

quickly in genetic programming. In Proceedings of the Congress on Evolutionary Compu-

tation (CEC-2003), pages 936-943. IEEE Press, December 2003.

3. A systematic analysis of the search spaces and evolved patterns which reveals why evolving

programs with loops is beneficial.

The analysis compares the search spaces for programs with and without loops. The results

have shown that, with loops, there is a larger number of solutions and a larger number of

small and fit programs.

The analysis examines the patterns evolved during the evolution for programs with and

without loops. The results have shown that patterns captured in the bodies of the loops

are reflective of repetitive patterns in the problem domain, and repeated execution of the

patterns is clearly associated with improvement in fitness.

The analysis also looks into the relationship between the maximum number of iterations
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and the overall CPU time. The results have shown that the increase in CPU time for each

evalution for programs with loops can be offset by getting a solution in fewer evaluations

and this decreases the overall evalution CPU time.

This work was primary published in:

Xiang Li and Vic Ciesielski. An analysis of explicit loops in genetic programming. In

Proceedings of the Congress on Evolutionary Computation (CEC-2005), pages 2522-2539.

IEEE Press, September 2005.

Part of this work was published in:

Vic Ciesielski and Xiang Li. Analysis of genetic programming runs. In Proceedings of the

Asia-Pacific Workshop on Genetic Programming (ASPGP-2004), December 2004.

4. The results of the thesis encourage the use of loops in genetic programming.

Overall, GP users tend to avoid the use of loops. The results of the thesis have shown

that there is no need to be scared of loops. The kinds of loops described in this thesis are

easily formulated, avoid the problem of infinite loops, use domain knowledge to constrain

loop bounds and provide significant benefits in terms of success ratio and evolution times.

1.5 Structure of the Thesis

After the introduction, the thesis is organised as follows.

Chapter 2 presents a detailed review of the literature to date in the domain of evolution-

ary computation focusing on genetic programming, loops in genetic programming and image

classification that have been successfully solved by genetic programming.

Chapter 3 establishes that programs with explicit loops can be evolved successfully for a

number of GP problems.

Chapter 4 extends the work of chapter 3 and shows how loops can be utilised for solving two

problems which are significantly difficult - a centered and a shifted binary image classification

problem.

Chapter 5 presents an analysis of why explicit loops are helpful for evolution in terms of the

search spaces, sensible patterns captured by the loop constructs and the computation time.

Finally, chapter 6 summarises the findings, draws conclusions and suggests future work.



Chapter 2

Literature Review

This chapter reviews the background of the investigation presented in the thesis and the rel-

evant studies. Figure 2.1 shows the overall structure. The survey starts with an overview of

evolutionary computation, which provides the basis for genetic programming (GP). After a brief

overview, the review examines tree-based genetic programming — the experimental tool of this

work. The examination covers GP representation, refinements of GP methods, key evolutionary

processes, GP theory studies and current research trends. After this, the survey focuses on how

implicit or explicit repetitions have been formulated in GP. In this section, the weaknesses of

previous approaches are highlighted and the section presents the potential benefits of making

use of explicit loops. This section also describes the test problems used in this work. Because

the work has applied looping constructs to a difficult classification problem to show that explicit

loops are useful not just for “toy” problems, the required features of classifiers and previous

work on evolving GP classifiers are briefly reviewed.

2.1 Overview of Evolutionary Computation

Genetic programming is a sub-branch of evolutionary computation. This section reviews the

general concepts, major steps and some of the major algorithms in evolutionary computation.

The origin of evolutionary computation can be traced from the late 1950’s [15, 225]. Re-

searchers in the US and Europe mimicked mechanisms in biological evolution in order to develop

algorithms for problems of adaptation and optimization. At that time, most of the work was

theoretical and there was little experimental work. The reasons for this include the fact that the
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Figure 2.1: Overall structure of the literature review

computing power at that time was limited, there was incomplete knowledge on how to apply the

theory to real world problems, and many optimisation problems at that time could be solved by

tailored solutions developed within acceptable time.

Evolutionary computation is based on the biological principle of evolution (“survival of the

fittest” [169]) and is generally used to solve complex optimisation problems. Such problems

normally contain a huge search space, have complex parameter interactions and the potential

solutions cannot be enumerated in a reasonable time. ‘Smart’ search algorithms need to be

designed for these tasks. However evolutionary computation applications may not guarantee

finding the best solution - the global optimum. For most practical problems, a good solution is

acceptable without necessarily being the absolute optimum [172].

In this section, we present a high-level view of the evolutionary process and briefly describe

five major evolutionary approaches: evolutionary programming (EP), evolutionary strategies

(ES), genetic algorithms (GA), particle swarm optimisation (PSO), and genetic programming

(GP).

2.1.1 High-Level View of The Evolutionary Process

The search in evolutionary computation is population based and involves four major steps:

initialization, evaluation, selection and generation of descendants. The last three steps are

iterated until the problem is solved or some other conditions are satisfied.
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• Initialising the population

The evolutionary process starts by creating a population of potential solutions to the

problem. The initial population is normally randomly generated and the objective is to

distribute individuals broadly in the search space (see Section 2.2.7, page 46). However,

existing good solutions can also be used in the starting population.

• Evaluating individuals

Each individual is evaluated against a fitness function according to the environment and

a fitness value is assigned to describe how well an individual performs. The evaluated

individuals can either have numeric values to reflect their fitness or just be ranked based

on their performance.

• Selecting the fitter ones

In the selection process, the fitter individuals are favoured for producing descendants. This

is to simulate the biological evolution process in that the fitter individuals survive and have

a greater chance to provide descendants that are fitter than their parents.

• Generating the descendants

The selected individuals undergo a number of transformations, based on biological pro-

cesses, to form the new population. In the new population, some individuals are generated

by genetic recombination (crossover) in that parts of the parents are swapped and some

by mutation in that some parts of the parents are varied.

The last three steps are iterated. After the descendants are generated, the new population

is evaluated again and checked against the fitness function. Each iteration is called a generation

[172]. In evaluation, if the solution is found, the whole process stops; if not, the process will

continue until some maximum number of generations is reached or some other condition is

satisfied. Figure 2.2 shows the whole process.

An evolutionary technique is defined by the data structure used to represent an individ-

ual and the genetic operators. For example, a binary string representation, binary crossover

and mutation define the basic binary genetic algorithm, while a real-valued representation and

mutation operators based on normal distributions define evolutionary strategies.
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2.1.2 Types of Evolutionary Algorithms

There are five main kinds of evolutionary algorithms. They are evolutionary strategies (ES),

evolutionary programming (EP), particle swarm optimization (PSO), genetic algorithms (GA)

and genetic programming (GP). There are also a number of other evolutionary algorithms, such

as differential evolution [205] ant colony [60], etc. The first four are briefly described in this

section and GP is described in depth in the following section.

Evolutionary Strategies and Evolutionary Programming

Rechenberg introduced evolutionary strategies (ES) in the 1960s [172]. In his formulation, a

population consisted of two individuals - a parent and a child mutated from the parent. They

were represented by a set of real-valued parameters. To optimise the parameters, the fitter of the

two was selected to be the parent for the next generation. The fitter individual was mutated by

incrementing or decrementing a real value according to a given distribution. The distribution of

the parameters was also encoded as part of each individual and evolved with the parameters to

be optimised. Evolutionary strategies were further developed by Schwefel [215] and the theory

and application of evolutionary strategies have remained an active area of research [15].

Evolutionary programming (EP) was developed by Fogel [75] and extended by Burgin and

others [15, 73]. In evolutionary programming, the potential solutions are represented by finite

state machines. A finite state machine transforms a sequence of input symbols into a sequence of

output symbols based on a finite set of states and transition rules. Mutation was the only source

of variation in evolutionary programming. The fitness of a finite state machine is measured on the

basis of the machine’s prediction capability. A broader formulation of evolutionary programming
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remains an area of research [72].

Genetic Algorithm

The genetic algorithm (GA) was first introduced and investigated by Holland [96] in the early

1960s. It is a population-based model that performs a multi-directional search by using recom-

bination and mutation operators to exchange and update information encoded in an individual.

The search is directed by fitness selection [253].

In the classic genetic algorithm, individuals are represented by binary strings. A binary

string encodes all the genetic information needed to build an actual solution. However, this

representation limits the precision required to encode a real number in a finite set of bits, thus

it may not capture problem-specific knowledge. The real-valued genetic algorithm [106, 168]

avoids this problem and incorporates natural, real valued data structures.

Genetic algorithms have been widely used in many real-world applications such as software

design [233], pattern recognition and various engineering problems [168]. They remain an active

area of research.

Particle Swarm Optimization

Particle Swarm Optimisation (PSO) was inspired by the flocking behaviour of birds and was

proposed by Kennedy and Eberhart [114] in 1995. It is a stochastic optimization algorithm and is

population-based. The population is called a swarm. The individuals are referred to as particles.

The particles contain search space information and steps of the search. Each particle moves with

an adaptable velocity within the search space and retains the best position it encountered in

its memory. The whole population is able to respond to a good position found by individuals.

Through the exploitation of the particles and the swarm’s memory, particle swarm optimization

is able to find a global best solution. It is claimed to have fast convergence and not be influenced

by the number of peaks and dimensions. It delivers good results in static, noisy and continuously

changing environments [115].

In recent years, particle swarm optimization has gained increasing popularity because of its

effectiveness in performing difficult optimization tasks. It has been applied to multi-objective

problems [70, 146], minimax problems [129, 144], integer programming problems [143] and nu-

merous engineering applications [1, 62, 262]. It is an active area of research.
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Figure 2.3: Examples of genetic programming structure

2.1.3 Approaches of Genetic Programming

The goal of genetic programming is to evolve computer programs automatically to solve prob-

lems. People have achieved this in a lot of different ways and used different methods, languages

and formulations for representing programs. This section gives a brief description of these dif-

ferent genetic programming approaches.

Genetic programming (GP) is a type of genetic algorithm devised by Cramer [48] and popu-

larised by Koza [123]. It provides hierarchical structure and dynamic variability. The programs

evolved by GP can be executed directly and normally complete the whole task. In its origi-

nal formulation, individuals are represented as LISP S-expression lists [123] and evaluated by a

LISP interpreter. An S-expression can be visualised as a tree. In later work, different program

representations have been investigated. They are linear structure, graph structure and two hy-

brid structures, linear-graph and linear-tree structure. Grammatical evolution is another way

to generate programs by evolution and will be briefly discussed at the end of this section.
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Tree-based GP

Tree-based GP is a commonly used form and there are a number of tree-based GP implemen-

tations publicly available [39, 131, 264].

In tree-based genetic programming, individuals are built recursively from a set of functions

{f1, f2, f3, ..., fn} and a set of terminals {t1, t2, t3, ..., tn}. Each function can have a number of

arguments. Figure 2.3a shows an example of an individual in tree-based GP. It is composed of

functions {+, *} and terminals {A, B, C}. Functions are located at inner nodes and terminals

are at the leaves. “+” is the root node in this example. Terminals {A, B, C} will be assigned

values from the environment in evaluation. This thesis uses tree-based genetic programming

and this approach is described in detail in Section 2.2.

There is an approach in tree-based GP that uses a grammar as part of the process of evolution

programs and is called grammar guided genetic programming.

Grammar Guided Genetic Programming

Grammar guided genetic programming is a form of tree-based genetic programming developed

by Whigham in 1995 [248]. It is a way to guide the search process by utilising grammar rules.

In grammar guided genetic programming, a context-free grammar is used to define the struc-

ture of individual programs and to direct crossover and mutation operations. The derivation

trees [248, 256] are used to determine production rules during the evolution. Crossover be-

tween two programs can only be carried out by swapping sub-derivation trees that start with

inner nodes labeled by the same non-terminal symbol [94]. In mutation, a sub-derivation tree is

replaced by a randomly generated sub-derivation tree from the same non-terminal symbol.

The main advantages of grammar guided genetic programming are that it allows a clear

statement of inductive bias and controls over typing by the use of the grammar; it enables

incremental learning [186]. Grammar guided genetic programming has demonstrated positive

results on a 6-multiplexer problem [248] and a range of other problems [77, 94, 181].

The main disadvantages of grammar guided genetic programming are its bias and restrictions

in the search space. A good grammar rule may improve the search while a bad one may

significantly decrease the chance of finding good solutions.

Overall, the main advantages of tree-based genetic programming are that the generated individ-

uals are easy to interpret and it is easy to perform crossover operations in a tree representation.
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The individuals are interpreted as LISP programs and the crossover operations can be easily

achieved by swapping parts of the trees.

The main disadvantage of tree-based genetic programming is that extra memory is needed

to maintain the tree structure and a mechanism is needed to decide the points for crossover and

mutation for individuals in a tree representation [200].

Linear GP

Linear GP [27] was first introduced by Cramer [48] and further developed by Banzhaf [16, 28]. In

linear GP, programs are represented by bit strings which are lines of code for register machines.

It can be stack-based [195] in which the program instruction takes its arguments from a stack,

performs the calculation and returns the results back to the stack. There is a commercial

package, AIMGP [184], for linear GP.

Figure 2.3b shows an example of a program with linear structure. It contains four parts:

header, body, footer and return instruction. Header and footer do not participate in the evolution.

R0, A, B, C are registers. R0 is the output register. In evaluation, the instructions are executed

sequentially and the value of R0 is returned at the end of execution. The example in Figure

2.3b is performing the same calculation as the program represented by the tree structure shown

in Figure 2.3a.

Brameier [27] gave a detailed description of linear genetic programming in his thesis. He

claimed that programs with a linear representation are more suitable to be varied in small steps

than in a tree structure, that programs in the linear structure are generally more compact due

to multiple usage of register contents and an implicit parsimony pressure by the structurally

non-effective code. He suggested that introducing and analysing new genetic operators in linear

genetic programming environments, and testing programs that have a hybrid structure (like

linear-with-graph) would be future research directions for linear genetic programming.

The advantages of linear GP are that the evolved programs can be binary machine code

and are executed directly without interpretation during the fitness evaluation [183]. Also linear

GP is uniform in node selection for mutation and crossover due to its representation [27]. It is

claimed to be faster in evaluation than tree-based GP.

The disadvantages of linear GP are: the execution of linear GP programs is generally se-

quential, thus more work is needed in order to find a way to implement repetitions easily in this
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linear structure; programs represented by binary machine code cannot be understood as easily

as those in tree-based GP.

Graph-based GP

Graph-based GP was first used in the PADO system [237], a system developed by Teller and

Veloso for object recognition. In graph-based GP, a program is constructed as an arbitrary

directed graph of nodes.

In the PADO implementation, each node has two parts: an action and a branch-decision.

The action does the calculation and the branch-decision directs the the path for execution.

Each node possesses its own private stack-based memory and can also access a globally defined

indexed memory. Figure 2.3c shows a program in this system. The program contains 7 nodes

in a directed graph with arcs going out from each node. Start and end are special nodes in

the program. The start node is always the first node to be executed when a program begins

and the program halts when the stop node is executed. Inside an individual, some nodes may

be subprogram calling nodes which can call private protected subprograms; some nodes may be

library subprogram calling nodes which can call subprograms that are publicly accessible.

A later development of graph based GP is called Cartesian genetic programming (CGP) [171].

In Cartesian genetic programming, nodes are connected in a graph in a Cartesian coordinate

system. A program is defined as a set of inputs, input connections, outputs, output connections

and functions. Figure 2.3d shows a program in the Cartesian genetic programming system. In

Miller and Thomson’s implementation [171], the connectivity of the nodes is feed-forward but

can be extended to allow more complicated structure like loops. Their work found that the

Cartesian genetic programming representation has very large number of redundant nodes and

this improves the balance between crossover and mutation during evolution, thus improving the

search. Cartesian genetic programming is very effective for some boolean function learning [170]

and has been used for image processing tasks [175].

The main advantage of the graph-based GP is that the graph representation allows a single

individual to have multiple execution paths, and thus is easier to handle different situations.

The main disadvantage of graph-based GP is the extra complexity to maintain and manipu-

late the graph structure and to specify the possible arcs. It needs special crossover and mutation

mechanisms. These make the implementation of graph-based GP difficult [17, p266] [235].
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Hybrid Structures

In a recent GP structure development, Kantschik and Banzhaf proposed a linear graph struc-

ture for GP programs [109]. It was tested in two symbolic regression problems and gave good

results with small population sizes of 10 and 100. Kantschik and Banzhaf proposed a linear-tree

structure [108] which applied to an automatic quantum circuit design problem. They found it

was suitable and achieved more “degrees of freedom”. However, its scalability requires further

studies.

The main advantages of these hybrid structures are that they extend GP representations

and help to evolve solutions that are natural to the problems.

The disadvantages of these hybrid structures are that they are new GP representations and

their effects for general problem solving and their scalability for harder problems require further

research.

Grammatical Evolution

Grammatical evolution was developed by Ryan, Collins and O’Neill in 1998 [187, 211] and is a

system that utilises Backus Naur Form (BNF) grammar definition as a mapping tool to evolve

genetic programs. It can be used to automatically generate programs in any language.

Grammatical evolution can be viewed as a variation of genetic algorithms and linear genetic

programming utilising Backus Naur Form in code mapping. Backus Naur Form is a meta-syntax

to express context-free grammars and is widely used as a notation for computer programming

languages. In Backus Naur Form, a grammar is represented by a tuple N, T, P, S, where N is the

set of non-terminals, T the set of terminals, P a set of production rules that maps the elements

of N to T, and S is a start symbol which is a member of N. This grammar is utilised to map

the evolved linear code into programs. In the evolutionary process, a genetic algorithm is used

to control the choice of production rules that are expressed by numbers which can be encoded

as binary bits. A sample individual presented by Ryan et al. is 202|203| 17| 3|109|215|104| 30

[211] and it can be mapped to a concrete program based on the content of the mapping table

described by Backus Naur Form.

Grammatical evolution has the ability to evolve any higher level language in addition to

LISP, the widely used language in Koza’s methods. It has been used to solve symbolic regression

problems [212], generate classification rules [185] and evolve financial models [59].
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The main advantage of grammatical evolution is that it utilises Backus Naur Form for the

mapping, enabling the evolved individuals to be converted to a program of any language.

The disadvantages of grammatical evolution are: The evolved code is not understandable

and requires a mapping to convert it to an understandable program.

2.2 Tree-based Genetic Programming

Tree-based GP is used in this thesis. This section presents a survey of the current research, with

a focus on tree-based GP representation, handling closure, initialization, evaluation, selection,

main genetic operators and run dynamics. Current GP theory studies are discussed at the end

of the section, together with the research trends.

2.2.1 Representation

In general, an evolved program in tree-based GP is represented by a tree shaped program

consisting of functions and terminals.

Terminals

As described in Section 2.1.3, the terminals are located at the leaves of the program trees. A

single terminal can represent an individual.

Terminals can be input variables, such as A, B in Figure 2.4a. The value of the input

variables comes from the environment during evaluation.
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Terminals can be random constants, also called ephemeral random constants, such as 5, 4.5

and 2.1 in Figure 2.4a. The value of a random constant is generated during initialization or

mutation. In GP implementations, terminals of random constants may be implemented by a

randomInt or a randomDouble or a subroutine.

A terminal can also be any zero-argument node indicating some action to be performed on

the environment. For example, in a problem where a robot needs to move in a two dimensional

grid, the action can be moveforward or turnright, also shown in Figure 2.4b. As the program is

evaluated, the corresponding action is performed on the environment.

Functions

As indicated in Section 2.1.3, functions are located inside the program trees. A single function

itself cannot represent an individual.

Functions can be mathematical or arithmetic, such as +, -, /, sin in Figure 2.4a or boolean

operators such as and, or, not. They accept the values returned by the terminals or functions,

perform calculations accordingly and return the result.

Functions can be conditional operators, such as IfObjectAhead in Figure 2.4b. These con-

ditional operators check the current condition of the environment and execute different tree

branches based on the result.

Functions can be linking functions, such as Prog2, Prog3 in Figure 2.4b and they “glue”

the nodes together. Prog2, Prog3 take two and three arguments respectively and execute them

sequentially.

Functions can be domain specific, such as TurnRight, TurnLeft in Figure 2.4b. They are

specially designed for this problem.

2.2.2 Closure and Strongly Typed Genetic Programming

The ‘closure’ property requires that all functions can accept, as their arguments, any value and

data type that is returned by any function in the function set and any value and data type that

is assumed by any terminal in the terminal set [123].

There are three basic ways of achieving closure.

• Users can allow programs to have functions and terminals of different types and allow

invalid programs to be generated either in initialization or in the process of evolution.



CHAPTER 2. LITERATURE REVIEW 25

Checking is performed in evaluation and invalid programs are discarded or assigned a

bad fitness [123]. The advantage of this approach is that nothing needs to be done at

set-up time. The disadvantage is that generating and discarding invalid programs during

evaluation is very costly.

• Users can set all functions to accept arguments of a single type and return values of the

same type [91]. The advantage of this is that any element can be a child node in a program

tree for any other element without violating the data type constraints. The disadvantage

is that it causes a serious limitation to GP because individuals can only have one data

type.

• Users can implement a certain mechanism in functions so that they can accept any data

type in an argument and deal with it appropriately, performing any necessary type conver-

sion [123]. The advantage of this is that functions are free to accept any value returned by

functions or by any types of terminals. The disadvantage is that it adds to programming

complexity since all possible cases need to be anticipated inside every function.

None of the above methods are particularly satisfactory and there has been some work on

more sophisticated methods of achieving closure. These include strongly typed genetic pro-

gramming [174] and grammar guided genetic programming [248]. Grammar guided genetic

programming was described earlier (see page 19).

Strongly Typed Genetic Programming

Strongly typed genetic programming (STGP) was developed by Montana [174] and initially it

allowed only two levels of type hierarchy. Later on, it was updated by Haynes et al. [91] to allow

more than two levels of type hierarchy.

In strongly typed genetic programming, the data type of each argument of each function is

defined at set-up time, as is the data type returned by each function. In initialization, strongly

typed genetic programming only constructs individuals that satisfy type constraints. In genetic

operations like crossover and mutation, only functions and terminals of the same type can be

swapped or mutated, thus only valid descendants are generated.

The main advantages of strongly typed genetic programming are that it saves time in checking

for invalid programs at execution time by avoiding the generation of illegal programs and reduces
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the search space by only allowing explorations of valid programs.

However, the type restriction may also have some side effects. The restriction may eliminate

the possibility of some good solutions being evolved. For example, suppose numeric values have

been used in a robot control program to move the robot in a simulated play field. If the values

indicating degree of direction and force of movement have been set to be different data types,

there will be no chance to reuse the values evolved in degree of direction as force of movement, and

vice versa, while good solutions might be generated by swapping these values during evolution.

Strongly typed genetic programming has been used for solving many genetic programming

problems [13, 120, 151, 158, 204]. It is used for all the experiments in this thesis.

2.2.3 Initialisation

It is considered desirable for GP systems to generate programs that are distributed widely in

the search space in order to create diversity at initialization. This is because at the beginning

of the evolution, the search does not know where the good solutions are. A detailed discussion

of the search space will be presented in Section 2.2.7 (page 46).

A number of algorithms for initializing the population have been proposed. The main ones

are grow, full, ramped half-and-half [123], random-branch [36], uniform [25, 98], probabilistic tree-

creation 1 (PTC1) and probabilistic tree-creation 2 (PTC2) [155]. Among them, grow, full and

ramped half-and-half, introduced by Koza [123], are the most commonly used. A brief description

of the above tree generation algorithms follows:

Grow: Randomly selects a tree root from the full set of functions and terminals. If the root

is a function, the arguments are filled with random functions or terminals, then their

arguments with random functions or terminals, and so on, until all branches have ended

with terminals, as long as the maximum allowed tree depth has not been reached. The

objective of the grow method is to produce trees with a wide variety of shapes.

Full: Starts by randomly selecting a tree root from a full set of functions and keeps selecting

functions until one level before the specified maximum depth is reached. Then, the full

method randomly selects terminals to create the leaves. The objective of the full method

is to generate full trees of a specified depth.

Ramped half-and-half: Takes a tree depth range and for each depth in the range, with 50%
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probability uses the grow method and with 50% probability uses the full method to generate

individuals. The objective of the ramped half-and-half method is to have a balanced

distribution of individuals of irregular and full tree shapes.

RandomBranch: Takes a requested subtree size. The arguments of this subtree are filled

by requesting a tree of size ( RequestedSize
NumberofSelectedFunctionArguments

). The process recursively

continues until the requested size becomes zero and the leaves are filled with random

selected terminals. The objective of the RandomBranch method is to generate a tree with

a specified size.

Uniform: Computes a number of tree distribution tables with different functions and terminals,

including a table of numbers of trees for all sizes up to some maximum size requested offline

beforehand. During evolution an individual of a particular size is requested, the uniform

method picks a function selected from a distribution derived from the precomputed tables

and generates a tree accordingly. The objective of the uniform method is to create trees

with uniform distribution of nodes and shapes.

Probabilistic tree-creation 1: Is a modification of the grow and the uniform method. It

takes the probability of using each function and the requested tree size into consideration.

The objective of the probabilistic tree-creation 1 algorithm is to provide user control over

the generated tree size and generate trees around an expected size with given probabilities

of appearance of functions.

Probabilistic tree-creation 2: Is a variation of probabilistic tree-creation 1 which allows the

user to provide a probability distribution of requested tree sizes. It picks a random tree

size from the user provided distribution table and builds a tree of that size or slightly

greater. The objective of the algorithm is the same as the probabilistic tree-creation 1,

that is, to produce trees around an expected size with given probabilities of appearance

of functions. In addition, probabilistic tree-creation 2 allows control over the variance in

tree sizes.

The overall objective of different tree creation algorithms is to give the population an advan-

tage at the beginning of the evolution and to generate individuals which are evenly distributed

in the search space. The research found that the ramped half-and-half method is unable to
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generate a population with evenly distributed terminals and functions as the method is biased

towards the full method. This is because half of the trees created are full trees and there are

many more different tree shapes which are not full trees [32]. The uniform method proposed

by Bohm and Geyer-Schulz [25] addresses the bias towards full trees problem in the ramped

half-and-half method and eliminates it in tree creation by precomputing the distribution of tree

shapes with different functions and terminals. However, the uniform method requires off-line

calculation and this is an extra cost. In addition, some researchers found that uniformity in

initialization appears to have little consequence in improving fitness [159].

Luke and Panait [159] compared all of the above tree generation algorithms on a symbolic

regression problem, the artificial ant problem and an 11-boolean multiplexer problem. They

concluded that various tree creation algorithms do not have a significant impact on fitness.

They suggested that more attention be devoted to additional features, other than tree size,

which could give evolution an ‘extra push’ [159] during the initialization phase.

The experiments presented in this thesis use the ramped half-and-half method for initializa-

tion, because it is a commonly used method and this choice is not expected to make a significant

difference in evolution, based on Luke and Panait’s research [159].

2.2.4 Fitness and Selection

Fitness describes the quality of the solution while selection directs the evolutionary search. In

the GP process, every individual program is evaluated and assigned a fitness. The fitness of an

individual is used for deciding the individual’s participation in the selection process.

Fitness

Fitness describes how well each individual computer program in the population performs in its

problem environment [124, p36]. For example, in a robot navigation task, the fitness might be

the distance traveled by a robot before crashing, while in an image classification task the fitness

might be the number of correctly classified images. There are a number of ways to measure

the fitness [17, 123]. The main ones are raw fitness, standardized fitness, adjusted fitness and

normalised fitness. A brief description of these follows:

Raw fitness: is the measurement of fitness stated in the natural terminology of the problem

itself. For example, the number of correctly classified images in an image classification
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task is a raw fitness value.

Standardized fitness: is a transformed fitness function in which zero is the value assigned to

the fittest individual. For example, the number of incorrectly classified images in an image

classification task is a standardized fitness value.

Adjusted fitness: is given by 1

1+standardfitnessvalue
and has a value between 0 and 1. The fittest

individual is represented by 1, that is, when the standardized fitness equals 0.

Normalised fitness: is computed from adjusted fitness and ranges between 0 and 1. It is the

adjusted fitness value of an individual divided by the sum of adjusted fitnesses of the whole

population.

The objective of assigning fitness to individuals is to describe how good an individual is in

order to select the better ones for later genetic operations and to decide whether a solution has

been found.

There are a number of ways to assign fitness to an individual.

• The fitness can be assigned in a static environment, that is, fitness is computed by an

algorithm or formula base on a static fitness function. For example, in the Santa Fe ant

problem (see Page 63), the Santa Fe trail is unchanged (static) for every generation and

for every run. The fitness is computed by counting how many pieces of food are left in the

trail. This method is the most frequently used [17, 123, 124].

• The fitness can be assigned in a dynamic environment. For example in a robot soccer

game, two teams of robots are competing against each other to score more goals. The

fitness of a team is how good a team is compared with its rival. This fitness assignment

method is also called ‘co-evolution’ [52, 128] and GP needs evolve an algorithm that is

able to keep track of the changes of the opposing individuals and beat them in a changing

environment.

• Fitness can also be assigned in a multi-objective way [21]. For example, small program

size can be considered to be an objective in addition to how good the evolved program

is at solving the problem [20, 21]. The fitness value used during the evolution needs to

reflect both objectives.
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• The fitness can be assigned interactively during the evolution by the user. For example,

in [199] the user decides which individual is better for an image enhancement tasks. This

fitness assignment method is frequently used for applications in design [19], arts [163] and

other subjective optimisation problems [47].

The experiments in this thesis use standardized fitness, in that, the smaller the fitness value,

the better the programs and the fitness is measured in a static environment.

Selection

Fitness-based selection is used to determine the parents for generating descendants. Selection is

intended to find good individuals in order to pass on good genetic material to the descendants.

In the ideal case, selection is not purely based on how well an individual solves the problem, but

also on its evolvability [7, 61], that is, how well it can help to generate fitter offspring.

“Selection pressure” or “selection intensity” is often used to describe a key property of a

selection method. This property is related to the difference between the average population

fitness after and before selection [87]. The larger the difference, the higher the selection pressure

or intensity.

Major selection methods for generating offspring are fitness proportional selection [197], tour-

nament selection [35, 198], rank selection [252] and truncation selection [24].

Fitness proportional selection: is also known as “roulette-wheel” selection. In fitness pro-

portional selection, the probability of an individual being selected is in agreement with its

fitness value. The objective of fitness proportional selection is to choose fitter individuals

based on a fitness comparison with the whole population. The better the fitness of an

individual in the population, the higher the chance that it will be selected.

There are a number of variations of fitness proportional selection which involve scaling

of selection probability. This is because when the best and the worst individuals have

similar fitness values, the similar fitness values may cause selection probabilities to be the

same for either the best or the worst. Major scaling methods are linear static scaling and

exponential scaling [87].

Tournament selection: is achieved by randomly choosing a number of individuals from the

population to participate in a tournament. The winner is the fittest individual and is
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selected for subsequent genetic operations. In some cases, several winning individuals

are selected. This process is repeated until a new population is completely formed. The

objective of tournament selection is to control the “selection pressure” in order to maintain

some not-so-fit individuals with the expectation these not-so-fit individuals can help to

generate fitter descendants.

In tournament selection, if the tournament size is the whole population, then it is the

same as fitness proportion selection; if the tournament size is 1, it is equivalent to random

selection.

Linear ranking selection: is achieved by sorting individuals according to their fitness. Rank

n is assigned to the best individual and the rank 1 to the worst individual. The selection

probability is linearly assigned to the individuals according to their ranks in which the best

individual gets n
Σn

selection probability and the worst individual gets 1

Σn
selection proba-

bility. The objective of linear ranking selection is to prevent bias due to large differences

in fitness values.

Truncation selection: is achieved by ordering candidate solutions by fitness, then selecting a

fraction of the best individuals. These best individuals have the same selection probability

to produce descendants. Truncation selection is mainly used in genetic algorithms. The

objective is to bias the selection towards the fittest individuals.

The choice of selection algorithm is problem specific. There is no systematic comparison of

these selection schemes for genetic programming, but there has been work in genetic algorithms

[23] and evolutionary algorithms [24]. In [23, 24], it was shown that different selection mecha-

nisms could be used to set different selection intensity. A high selection intensity generally leads

to the loss of diversity and rapid convergence to a local optimum, while a low selection intensity

helps to maintain diversity, but may slow down the speed of getting a solution. As stated in

[23, 24], whether to have a high or low selection intensity depends on the problems.

Depending on when selection is performed, there are generation-based GP and steady state

GP [88, 117]. In generation-based GP, selection is made after a generation has been processed.

In steady state GP, there are no fixed generation intervals, because better offspring continuously

replace the less fit existing individuals.

The experiments in this thesis use generation-based fitness proportional selection.
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2.2.5 Main Genetic Operators

Genetic operators perform actions that simulate natural genetic operations and manipulate

structures of individuals during evolution. There are three principal genetic operators and they

are reproduction, crossover and mutation.

Reproduction

Reproduction is the process that selects individuals, usually the fittest, and copies them into the

next generation. When the reproduction process only selects the fittest individuals and copies

them to the next generation, it is called elitism. The objective of reproduction is to keep good

individuals and have good genetic material in the population. If elitism is used, the best fitness

of the whole population will not drop during evolution.

Crossover

The crossover operator exchanges genetic material between two individuals by swapping part

of one individual with part of the other. The objective of crossover is to exploit the existing

genetic material in a population.

There are a number of crossover methods for tree-based GP. The main ones are standard

crossover, one-point crossover, size fair crossover and homologous crossover [36, 57, 84, 133, 134,

161, 188, 234].

Standard crossover: is a frequently used crossover method. Two individuals are picked, one

crossover point in each of them is randomly chosen and the subtrees are swapped to obtain

two offspring. The objective of standard crossover is to generate two offspring by randomly

exchanging genetic material of two parent individuals.

One-point crossover: has three phases [200]. Firstly, two parent trees are traversed, starting

from the root nodes, to identify the parts with the same shape. Recursion is stopped when

an arity mismatch in trees is detected. All traversed nodes and links are stored. Secondly,

a crossover point is randomly chosen with a uniform probability from the stored links.

Thirdly, the two subtrees below the common crossover point are swapped in exactly the

same way as in standard crossover. The objective of one-point crossover is to encourage

global search. It has been found that standard crossover only performs local search and
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does not explore the search space effectively while one-point crossover can perform global

search early in a run [200]. This is easy to understand with an example. Nearly half

of the nodes of an individual represented by a binary tree are terminals, while the rest

are functions. Changing a terminal in an individual is likely to have less effect on the

performance than changing a function. One-point crossover gives a slight preference for

crossover at function nodes as traversal is stopped when an arity mismatch in the trees is

detected.

Size fair crossover: takes the size of sub-trees to be swapped into consideration. The method

picks two individuals from a population as parents and then selects the crossover point in

the first parent. The size of subtree to be deleted from the first parent is calculated. The

crossover point in the second individual is randomly chosen from subtrees of the same size.

If there are no such trees, a second crossover point is chosen from the first parent and the

process repeats until subtree of the same size is found. The objective of size fair crossover

is to control the size growth of descendants, so that the offspring will be no more than the

first parent in size.

Homologous crossover: is an extension of size fair crossover. Instead of randomly choosing

between all available subtrees of desired size in the second parent, distance is computed be-

tween the first subtree and all possible crossover points in the second parent tree. Crossover

points for subtrees which have similiar position and size are chosen. Research conducted by

Hansen [89] found that homologous crossover reduces the tendency of evolved programs to

grow larger without correlated fitness improvements, is consistently better in performance

in terms of accuracy, and finds solutions earlier than standard crossover. The objective of

homologous crossover is to exchange only subtrees that have similar size and location.

Crossover methods need to be modified for strongly typed genetic programming (see Section

2.2.2, page 25) because randomly choosing crossover points can lead to invalid individuals.

Only points of the same data type can be swapped during crossover in strongly typed genetic

programming.

The experiments in this thesis use standard crossover, because standard crossover is a fre-

quently used crossover method and the focus of our work is not on crossover.
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Mutation

The mutation operator randomly changes some functions or terminals in an individual. The

objective of mutation is to explore, that is, to introduce new genetic material to an existing

individual.

There are a number of mutation methods for tree-based GP. The main ones are standard

mutation [123, p106], point-based mutation [193] and uniform subtree mutation [242].

Standard mutation: is the most frequently used mutation method. A node is selected at

random and whatever is below is replaced by a randomly generated subtree. The objective

of standard mutation is to allow a random exploration of subtrees or terminals.

Point-based mutation: changes a single node in an individual. A node is selected at random.

If the node is a function, it is replaced by another function of equal arity. If the node is a

terminal, it is replaced by another terminal. The objective of point-based mutation is to

explore small changes in an individual.

Uniform subtree mutation: performs a number of standard mutations in one operation. The

nodes for mutation are chosen with uniform probability from the program tree. The

objective of uniform subtree mutation is to explore massive changes of an individual.

The experiments in this thesis use standard mutation, because this is a frequently used

method and the focus of our work is not on mutation.

Balance Between Crossover and Mutation

The traditional view of crossover and mutation is that crossover is primarily responsible for

improvements in fitness and is the main driving force of evolution, while mutation is a relatively

unimportant operation that helps to reintroduce random genetic material[123, p105] [223]. Mu-

tation is generally used in a small proportion, however, some work has found that mutation can

be more helpful than expected [93].

Luke and Spector [161] compared various combinations of crossover and mutation rates, from

90% crossover (c) to 90% mutation (m), with a fixed 10% reproduction (r) rate (c%+m%+r% =

100%) for a number of classic genetic programming problems. They found that a higher crossover

rate was more successful in a majority of the tests. In their refinement work [162], they found
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that the difference in fitness between different settings of mutation and crossover rates was small

in most of the tested problems. They claimed that in general mutation was more successful for

small populations, while crossover performed better for large populations.

Setting Reproduction, Crossover and Mutation Rates

Two ways to set reproduction, crossover and mutation rates are in use.

In method one, the sum of the assigned percentages of reproduction (r), crossover (c) and

mutation (m) is 100% (r% + c% + m% = 100%). The new population is created in three

steps. Firstly, r% of good individuals from the old population are copied to the new population.

Secondly, c% of the individuals in the new population are created by crossover. Thirdly, m% of

individuals in the new population are created by mutation. Individuals generated through these

three operations form the new population. This is the most commonly used method [123, 161].

In method two, the sum of assigned percentage of reproduction (r), crossover (c) and muta-

tion (m) is higher than 100% (r% + c% = 100%, r% + c% + m% > 100%). The new population

is also created in three steps. Firstly, r% of the individuals in the new population are created by

reproduction. Secondly, c% of the individuals in the new population are created by crossover. In

the created new population, m% of the individuals are mutated. For example, in [117], 10% of

the new population was generated by reproduction and 90% was generated by crossover. After

these two operations, 10% of the resulting new population was altered by the mutation.

The experiments in this thesis use the first method to set reproduction, crossover and mu-

tation rates. In this thesis, the default elitism rate is 2%, the default crossover rate is 70% and

the default mutation rate is 28%.

2.2.6 Run Management

Run management reviews all other parameters that control the genetic environment during

evolution but have not so far been addressed. Run management includes population size man-

agement, number of populations, program size/depth control, diversity control, premature con-

vergence control and self-adaptive parameters.
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Population Size Management

In the GP evolution process, evaluation generally consumes a large amount of computation

and comprises most of the evolution time. In a run, the overall computation cost (number of

evaluations) equals (population size x number of generations). The objective of population size

management is to find a good population size so that a run can find a good solution with the

least number of evaluations.

In order to decide population size, there are two main methods. One is to use a fixed popu-

lation and the other is to change population size during runs. Methods of changing population

size are further divided into three streams - self-adaptive population size based on the run per-

formance (reviewed in page 41), decreasing the population size and increasing the population

size.

In fixed size population methods, the early practice was to use a large population [79]. Later,

researchers found that small populations (e.g. 50 to 400) over longer generations were better

for some problems [82] and multiple shorter runs tend to find successful solutions earlier thus

lowering the overall computation cost [156]. Recent research by Ashlock [12] found that GP

with very small (4-7) population sizes gave more solutions faster for a 4-parity and a Tartarus

problem.

In methods of changing population size, decreasing the population size during a run can have

good effects. The main method in this approach is decimation. Decimation is used primarily

at the initialization. A large population (usually thousands of individuals) is generated and

evaluated. All individuals with bad fitness after one or two generations are removed. After deci-

mation, a fixed population size (usually only hundreds of individuals) is maintained. Decimation

has been found to be effective in reducing the number of evaluations to get a successful solution

[80]. Luke et al. [157] found that decimation never performed worse than various fixed-sized

population strategies. Nanduri [179] reported similiar findings.

There is also work showing that increasing the population size can help. An investigation

of three GP test problems showed that in order to ensure getting solutions within an error

tolerance, the population size had to be increased when evolutionary runs did not converge

[214].

There is no theoretical guide to decide which population size is appropriate for a given

problem [214]. The experiments in this thesis use fixed population sizes. Where appropriate,
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we have used the same population size as in previously published work to facilitate comparison.

Number of Populations

Number of populations relates to how individuals are organised - a single population or a number

of small sub-populations which can be evolved simultaneously. There are two main objectives

for deciding the number of populations. One is to maintain population diversity (see page 40),

the other is to fully utilise the power of parallel processing of networked computers.

There are two basic models: coarse-grained [105] and fine-grained [67, 240]. In the coarse-

grained model, populations of individuals are evolved separately and interact periodically to ex-

change good individuals. This model is also frequently referred as the multi-population model.

In the fine-grained model, a global population is laid out on a two dimensional array and individ-

uals are only allowed to interact with their neighbors. The overlap of the interactions between

neighboring individuals enables implicit communication through crossover and the global pop-

ulation is gradually improved.

There is also a varied model. Ciesielski, Loveard and Li implemented a variation of the

coarse-grained model together with population-based decimation [41, 150]. They evolved mul-

tiple populations simultaneously at the beginning and removed the slow or non-performing

populations during evolution. This was called the pyramid strategy. The model was tested for a

number of classification problems and some commonly used genetic programming problems like

symbolic regression and the Santa Fe ant problem. The results demonstrated great saving in

overall computation cost (see page 36).

It is hard to decide whether several populations are better than a single population. A

number of investigations found that the coarse-grained model is helpful to maintain diversity,

thus leads to better performance in finding solutions earlier [105, 240]. However, a published

paper on the royal tree problem [206] showed the opposite. In that work, a single large population

always outperformed a group of smaller populations using the coarse-grained model.

The experiments in this thesis use a single population because this is a frequently used

method and the focus of our work is not on deciding whether a single population or several

populations are better.
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Program Size Control and Reducing Bloat

Program size control has a close relationship with reducing ‘bloat’. Bloat refers to the phe-

nomenon in which the size of an individual grows, but performance does not improve [138]. The

objective of program size control is to minimise non-effective code. In some work [154], the

non-effective code is also called inviable code. The non-effective code appears and grows during

evolution in tree-based GP [123, 124] and slows down evolution in achieving an optimal solution.

An example of an individual that contains non-effective code is (A + C + 0 ∗ (X)). X in this

program can be a single terminal or a subtree, but whatever it is, it has no effects on the overall

fitness because it multiples 0. Any mutation or crossover point within X is regarded as neutral.

There are a number of common explanations of the cause of bloat [22, 154, 222]. Firstly,

bloat may be caused by protection from destructive effects [22]. Non-effective code makes it

difficult for the evolutionary process to effectively change an individual by increasing numbers

of neutral crossover or mutation points [22]. In our example (A + C + 0 ∗ (X)), all crossover or

mutation points in X are neutral points. However, there are controversial findings. Sean Luke

in his work [154] investigated three genetic programming problems - a symbolic regression, an

11-bit and a 6-bit multiplexer problem and found that even when crossover at neutral points

was not allowed, the bloat continued. He suggested more investigations in this area. Secondly,

bloat may be caused by removal of bias [221]. This assumes that non-effective code is more

densely concentrated near the leaves of program trees. The bias refers to the evolution in favor

of offspring created by removing a small subtree and against offspring created by removing a

large subtree. There is no bias for adding subtrees. So, in order to preserve an individual, there

is a penalty for removing large subtrees, but no penalty for inserting large subtrees. Thirdly,

bloat may be caused by genetic drift [29]. There are more larger-sized solutions and this is

obvious because adding non-effective code to smaller sized solutions will not change the fitness

of these solutions. The genetic drift effect moves a small sized population to a population of

large size.

In order to find small sized solutions, it is desirable to restrict the size or depth of the evolved

programs. A theory study has found that the number of different unlabeled binary tree shapes is

doubly exponential in depth [5]. After a depth of 5 the number of possible tree shapes becomes

massive (see Table 2.1). If a tree shape is not binary but ternary, quaternary etc., the number of

possible tree shapes will be much larger, and so will the search space. It is hard to find solutions
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Table 2.1: Number of Binary Trees to Height of 8

Height Number of Binary Trees

0 1
1 1
2 3
3 21
4 651
5 457653
6 210065930571
7 44127887745696109598901
8 1947270476915296449559659317606103024276803403

in a very large search space.

Researchers have proposed a number of size control methods in order to reduce the effect of

bloat, to search the space efficiently and to evolve small solutions. Firstly, program size can be

constrained by setting a maximum number of nodes or a fixed maximum depth. This is com-

monly used. An empirical study [49] showed that methods that restrict number of nodes and

methods that restrict tree depth were similar, except that methods that restrict number of nodes

provide finer control. Secondly, a penalty may be be added to bias the search towards small pro-

grams [22]. For example, the fitness of a program can equal to the size of the program multiplied

by a user specified rate (fitness = standardizedF itness + programSize ∗ userDefinedRate).

Thirdly, modifications to crossover methods can help to reduce the non-effective code growth

during evolution. For example, Langdon proposed the size-fair crossover method (see Section

2.2.5, page 33) that helped to reduce bloat for four GP benchmark problems [135]. Terrio and

Heywood biased the crossover selection mechanism. They evaluated the fitness of each individual

at each node and favored crossover between subtrees or nodes with better fitness. Their work

demonstrated that this biased crossover method could reduce non-effective code and improved

the speed of evaluation for a number of problems [238]. Fourthly, program size control may be

achieved in a multi-objective way. Some researchers have used multi-objective techniques with

small size as one of the objectives [20, 21, 54]. The results demonstrated clear reduction in size

while improving fitness. Fifthly, researchers have proposed a number of techniques to identify

non-effective code and remove it [219]. However, non-effective code detection is non-trivial.

In the experiments in this thesis, the size of the evolved program is constrained by setting

a maximum tree depth because it helps to restrict maximum program size and also gives the
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flexibility to compare the size differences for programs with and without loops. We expect that

the programs with loops will be smaller than those without loops.

Diversity Management and Avoiding Premature Convergence

Diversity management and avoiding premature convergence are related. They both deal with

how to avoid local optima and how to maintain differences between individuals during evolu-

tion. Diversity is a variety measurement and indicates the number of different individuals in

a population [123]. The differences between individuals could be in structure (representation

of a program) or in behaviour (fitness). Premature convergence occurs when all programs in a

population become similar (loss of diversity) but are not the optimal solution to the problem at

hand [44].

There are a number of ways to measure diversity. Firstly, diversity can be measured by

differences in subtrees. Keijzer used the ratio of unique subtrees over total subtrees as the di-

versity indicator [111]. However, to obtain this indicator is computationally expensive as each

individual needs to be traversed to count number of unique subtrees and total subtrees. Tackett

measured structural diversity using the frequencies of subtrees or schemata [231]. Secondly,

diversity can be measured by the degree of graph isomorphism. Rosca found [209] that the

properties of functions used in genetic programming would require a special, complex imple-

mentation of isomorphism and an approximate measure of the number of isomorphic trees could

be found by using a {terminals, functions, depth} combination. Thirdly, diversity can be mea-

sured by the differences between two individuals based on string edit distance. Edit distance

indicates the number of changes needed to convert a string to another string. To perform an

edit distance calculation in tree-based GP, two trees are overlaid at the root node. Two different

overlaid nodes score a distance of 1 while identical nodes score a distance of 0. The sum of all

different nodes is the edit distance of two programs. O’Reilly used edit distance to understand

the underlying dynamics for the effects of crossover and mutation [190]. De Jong et al. used

edit distance to measure the diversity for one of the objectives in a multi-objective approach

[55]. Fourthly, entropy, calculated by fitness value together with the program size, can be used

to as a measure of diversity. Rosca found the population appeared to be stuck in local optima

when entropy did not change or decreased in successive generations [209]. Fifthly, frequency of

the terminals, functions and tree shapes in a population can be used as a measure of diversity
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[50].

There are a number of methods to promote diversity and to avoid premature convergence.

In the classic view, a diverse population will have more chances in evolution. Firstly, diversity

can be promoted by geographical distribution of individuals to limit their interactions. This

is described in population organisation management (see Section 2.2.6, page 37). Secondly,

diversity can be promoted by fitness sharing, which considers behaviour and structure similarities

and content management [6, 56, 166]. Thirdly, diversity can be promoted in a multi-objective

way. De Jong et al. promoted diversity by setting diversity as an objective in their multi-

objective optimisation to solve an n-Parity problem [55]. Fourthly, diversity can be promoted

by changing population size at run time. Fernandes and Rosa used varying population sizes

and non-random mating to maintain diversity for a Royal Road problem [69]. Fifthly, diversity

can be promoted by some replacement strategies. Ciesielski and Mawhinney inserted different

programs during evolution for a robot soccer problem in order to improve diversity and avoid

early convergence [44].

The experiments in this thesis do not use any mechanism to control diversity, because diver-

sity is not the focus of the work.

Self-adaptive Genetic Parameters

Self-adaptive genetic parameter management addresses the issue of adjusting generic operations

in the run time. The self-adaptive approach eliminates the task of GP practitioners to pre-set

the different genetic parameters like population size, crossover and mutation rates or even types

of crossover/mutation methods. These parameter settings tend to be problematic and it is hard

for new algorithm developers to decide whether it is the setting of these parameters or the newly

developed algorithm which makes a difference in results.

There are few papers on self-adaptation issues. Firstly, the number of individuals in a

population can be adjusted at the run time. Some approaches have already been described in

Section 2.2.6 (see page 36). Rochat, Tomassini and Vanneschi have experimented with changing

the size of the population in genetic programming on three classic genetic problems in order to

improve the search efficiency and decrease the amount of computing resources required [208]. In

their composition, they deleted individuals from a population while the best individual found so

far kept improving, and added individuals when there was no improvement. The results showed
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that they got higher success rates with less computing effort. Secondly, crossover and mutation

rates can be self-adaptive. The previous work related to this is mainly for genetic algorithms

[14, 83, 218, 227], but can apply to genetic programming. Thirdly, choosing crossover methods

can be decided dynamically at run time [90, 224]. Spears composed a method to choose between

two different forms of crossover at run time for an n-Peak problem in GA [224]. The composed

adaptive mechanism solved that n-Peak problem. However, Spears did not claim his work was

better than the non-adaptive method.

The experiments in this thesis do not use any self-adaptive mechanisms as we want to

compare the loops approach with non-loops in a relatively simple environment.

2.2.7 Theory and Search Space Studies

GP has been successfully applied to many real world problems, but there are people who are

still reluctant to accept GP as a workable approach and use it for their problems. These people

believe that any workable algorithm needs to be explained by mathematics and an algorithm

without mathematical proof is weak. Using mathematics to model GP algorithms is beneficial

for GP practitioners because it can improve the understanding of the evolutionary process and

help to refine the existing techniques.

Currently, there are only a few theories developed in the GP domain and most of them are

extensions from other evolutionary algorithms. They are the schema theorem, Price’s covariance

theorem, the no-free-lunch theorem and studies in fitness landscapes.

The Schema Theorem

The schema theorem was proposed by Holland [96] and has been heavily studied in GA [85, 228,

229].

In binary GA, a schema is determined by the defining bits (0 and 1) and by their position

[201]. For example, the schema *1*10 can match any bit strings like 11010 and 01010, etc. The

number of defined bits in a schema is referred as the order of a schema, while the number of bits

between the first and last defined bits is referred to as the length of the schema.

The schema theorem states that schemata with above-average fitness increase their frequency

in the population each generation at an exponential rate when only a few individuals in the pop-

ulation have these schemata [8]. The schema theorem helps to understand why evolutionary
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algorithms work because it is believed that evolutionary algorithms solve problems by hierar-

chically composing relatively fit, short schemas to form complete solutions [201].

Researchers have extended the schema theorem to genetic programming in order to explain

why genetic programming works [123, 192, 203, 249]. There are a number of issues relating to

these extensions.

Firstly, definitions of a schema in GA and GP are different. There are a number of definitions

of a schema in GP.

Koza defined a schema as the subspace of all trees which contain a pre-defined set of subtrees

and a schema H is represented as a set of S-expressions [123]. For example, {(+ A 5)} represents

all programs that have at least one occurrence of the expression (+ A 5).

O’Reilly refined the schema definition by Koza [192]. Her schema definition takes GP variable

length representation into consideration. In her definition, a schema is an unordered collection

of subtrees and tree fragments. The fragments are trees with at least one leaf that is a “don’t

care” symbol “#” which can be matched by any subtree including subtrees with only one node.

For example, {(+ A #)} represents all programs that have at least one occurrence of any tree

fragments like (+ A B) or (+ A 5), because “#” can be replaced by any node.

Whigham proposed a definition of a schema based on the concept of his context-free grammar

GP [249]. In his definition, a schema is a partial derivation tree rooted in some non-terminal

node. For example, a schema (NODE => FUNCTION NODE NODE) can represent a deriva-

tion tree (NODE (FUNCTION -) (NODE (TERMINAL 2)) (NODE (TERMINAL x))) for the

program tree (- 2 x).

Secondly, the extended schema theorem in GP is similar to the schema theorem in GA. It

takes the number of occurrences of a schema, the mean fitness of programs which have the

corresponding schemata and the consecutive generations into consideration and works out the

weighted sum of the fitness [192]. The schema theorem in GP describes the way in which

components of the representation of a schema propagate from one generation to the next, which

is the same as the schema theorem in GA.

Thirdly, the schema theory has been extended to analyse crossover operations. Poli, McPhee

and Langdon have composed two sub-schema theorems for crossover operations [196, 202, 203].

One is a microscopic schema theorem and is applicable to crossover operators which replace a

subtree in one parent with a subtree from the other parent to produce offspring. This theorem
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relates the total transmission probabiliy for a fixed-size-and-shape GP schema to the selec-

tion probability of the schema, the crossover probability and the probability of selection of the

crossover points. This result is a subtree-swapping crossover operator without mutation. The

other is a macroscopic schema theorem and is valid for a large class of crossover operators in

which the probability of selecting any two crossover points in the parents depends only on their

size and shape. This schema theorem is similiar to the microscopic schema theorem and relates

the total transmission probability for a fixed-size-and-shape GP schema to the selection proba-

bility of the schema, the crossover probability and the probability of selection of the crossover

points. The result of this theorem is for a node-invariant subtree-swapping crossover operator

without mutation.

Fourthly, variations of the schema theories should not be regarded as competitors. Poli and

Langdon reviewed the schema theorems and pointed out that all these schema theorems should

be regarded as mathematical tools to describe the search space and are different views of the

same subspace of the space of possible solutions [201].

Fifthly, there are doubts on the usefulness of the schema theorem for GA [38, 74]. This work

expressed concerns over the schema theorem ability to predict progression of multiple generations

rather than the just adjacent next generation. Compared with GA, the evolutionary process in

GP is similiar but the representation is more complicated. This may make prediction in GP

more difficult even for the adjacent generation as well as multiple generations in the future.

The schema theorem and its variations provide a nice idea that the process of the evolution

can be modeled and understood by some sort of mathematical formulas. However, the problems

investigated in these theory studies are artificial and furthermore, genetic operations for these

artificial problems are restricted to be crossover. It is hard for a GP practitioner to apply

these theories to understanding why the evolution process solves their real problems. The usual

practice is that GP practitioners have already solved their problems or solved their problems

to a certain degree and then try to use some techniques to find some traces of the schema or

repeated patterns by looking into log files after many runs are finished. They do this in order to

understand what is going on with their evolution systems with a hope to evolve better programs

faster. However, it is hard to say whether they really find schemata that help the evolution or

just repeated patterns that occur because of the settings or because of the natural of genetic

operations. Despite the impression of the powerful mathematical formulation, at the current
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stage, the schema theory can not really reveal what is going on for the whole evolutionary process

and there are no results that show that the schema theory has been really helpful in solving

hard real-world problems.

In our work, we applied the some techniques developed in the schema theorem research. In

Chapter 5, we used the methods similar to O’Reilly’s schema work and found repeated fragments

with some matching nodes and some “don’t-care #” nodes for runs with and without loops. The

difference between O’Reilly’s approach and ours (see Section 5.5.1, page 153) is that we count

all the code fragments larger than a certain length and repeated in individuals, while O’Reilly’s

work only checks complete statements in evolved individuals. We found these repeated patterns,

compared them for the runs with and without loops and interpreted them to decide whether

the repeated patterns that emerged in the runs with loops are especially helpful to solve the

problem.

Price’s Theorem and The No Free Lunch Theorem

Price’s covariance and selection theorem and the no-free-lunch theorem are other theorems that

help to understand the evolutionary process and analyse the strengths/weaknesses of evolution-

ary algorithms.

w △ z = cov(wi, zi) + E(wi △ zi) (2.1)

Price’s theorem is an equation which describes evolution and natural selection. Originally

it was used in the biological area. In this equation, w is the average fitness and △z is the

change of the population in a genetic character (property). Cov(wi, zi) is the covariance of

the characteristic with respect to the fitness (w) for the population or group (i). A group has

certain characteristic zi. E(wi △ zi) is the expectation of the fitness times the change in the

characteristic. Overall, the theorem illustrates the effects of selection on a population in terms

of covariances between fitness and the property of effects due to transmission [142]. It shows

that the covariance between parental fitness and offspring traits is the means by which selection

directs the evolution of the population. Altenberg found that Price’s theorem helped to reveal

how the fitness function, program representations, and genetic operators interact to produce

evolvability [8]. In his definition, evolvability means the ability of a population to produce

descendants that are fitter than the existing population. With the help of Price’s theorem,
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he conducted an investigation to analyse the change in population fitness and representations

and then proposed a number of new selection operators and other techniques [7]. These new

operators and techniques delivered better control over the evolution and improved evolutionary

performance.

To GP practitioners, Price’s theorem provides very limited help. In GP, it is understandable

that the change of the property (the representation of the program) may lead to the change

of fitness, but it is doubtful that this fact can really help the understanding of the evolution

and thus lead to better algorithms. Currently, there is no research dealing with hard practical

problems using Price’s theorem as an explanation of the results.

The no-free-lunch theorem for optimization was formulated by Wolpert and Macready [255].

The theorem shows that for both static and time dependent optimization problems, the average

performance of any pair of algorithms across all possible problems is identical. This means if some

algorithm performance is superior to that of another algorithm over some set of optimisation

problems, then the other algorithm performance must be superior to that algorithm over the set

of all other optimisation problems. The no free lunch theorem is relevant to genetic programming

because the evolutionary process can be considered as one of finding the best solution to a

problem.

For GP practitioners, the no-free-lunch theorem cannot really help to improve the evolution,

but by understanding this theorem, we know that there are limitations for different genetic

programming techniques and there does not exist a super optimisation algorithm which can

cater for all problems [26, 46]. For GP practitioners, it is worthwhile to analyse the problem

at hand and decide for which classes of problems the proposed setting or new algorithm works

and the classes of problems for which it does not. Generally speaking, we are not interested

in optimising all possible problems [142] and there are certain ways in which we can classify

problems and determine the corresponding optimisation methods.

Search Space and Fitness Landscape Studies

Search space and fitness landscape studies do not involve formulating mathematical formulas

as in theory studies. But as with theory studies, understanding the search space or the fitness

landscape facilitates the analysis of problem difficulty and helps to understand why some settings

work for some problems and some not.
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Search spaces and fitness landscapes are related but different. A search space indicates all

possible evolved programs. A fitness landscape is the idea that the processes of evolution can be

studied by visualizing the distribution of fitness values across the search space as a landscape.

The idea of a fitness landscape was first proposed by Wright in 1932 [258]. The concept of

the fitness landscape was first used to understand the difficulties of optimisation problems in

GA before genetic programming by Kinnear [119].

Conceptually, a fitness landscape is a mapping of individual programs to an x-y plane and

plotting their fitness on the z-axis (see the examples in Figure 2.5). Ideally, programs that are

close together on the x-y plane are those that are most likely to be created from one genetic

operation. When the fitness is measured by standardized fitness, this creates a surface where the

peaks are the locations of program with poor fitness and the basins show the locations of the

programs with good fitness [119]. Finding the best solution to the problem becomes searching

for the deepest basin.
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Figure 2.5: Examples of fitness landscapes for two numeric parameters optimisation problems

Fitness landscapes deliver an idea of how hard the problem is as well as how the search

alogorithm can handle the problems at hand. For example, Figure 2.5 (a) shows a fitness

landscape for two numeric parameters (x and y) optimisation problem. Individuals with different

x and y values are organised and put into the x-y plane. Standardized fitness is assigned to the

individuals and is showed in z-axis. There is only one optimum in the fitness landscape. On

the other hand Figure 2.5 (b) shows a different fitness landscape for a two numeric parameter

optimisation problem. In this fitness landscape, there are three optima and two of them are

local and one is global. The problem shown in (b) is harder than the problem illustrated in (a),

because a gradient search performed close to the local optima in (b) is easily attracted by the



CHAPTER 2. LITERATURE REVIEW 48

basin of the local optima. Once the search has fully moved to the local optima, it will be hard

to escape because all neighbourhood individals of the local optima are relatively less fit.

However, mapping the individuals to an x-y plane is a hard problem. Problems tend to

have more parameters (besides the simple x and y), and various operations. A “neighborhood”

definition is essential because it defines how individuals are arranged as immediate neighbors. In

his original diagram [258], Wright used a contour map with the contour lines representing levels

of adaptiveness of biological genes. But the original diagram included no labels for the axes and

no indication was given as to how the various genes should be arranged on the landscape.

Much work involving fitness landscapes avoids a rigorous definition of the landscape and

neighbourhood [103] and usually presents landscapes by arranging the individuals with single

bit or node mutation as neighbors. On such landscapes, crossover operations are assumed to

take multiple steps of mutation and this is a deficiency of the work.

For evolutionary algorithms in general, there have been a number of attempts to overcome

the deficiency of avoiding rigorous definition of the neighborhood and the deficiency of creating

a fitness landscape with only mutation operations. Kauffman presented an NK fitness landscape

model [110]. In this model, a fitness landscape is defined by a fitness function and the function

is defined by two parameters: the number of genes (N) and the number of links between genes

(K). The NK landscape model is widely used to generate landscapes for test functions for search

and optimisation techniques [92, 104, 216]. Weinberger [247], Jones [102] and Hordijk [97]

proposed a number of similar fitness landscape models in which the landscape is represented

as a graph on which the vertices correspond to individuals and have associated fitness values.

Traversing the edge of the graph corresponds to the genetic actions like mutation and crossover.

In Jones’s “one operator, one landscape” model [102, 103], genetic operations like selection,

mutation and crossover are mapped into three separate landscapes. The evolutionary algorithm

takes steps from mutation landscapes to crossover landscapes and then to selection landscapes.

The neighborhood in this model is defined by the genetic operation in each landscape. This

approach provided a totally new definition of the fitness landscape in 1995 and the work was not

accepted for publication at that time. With more and more research on genetic algorithms and

genetic programming, people have started to accept his idea and this work has been frequently

referenced in recent fitness landscape study papers.

For genetic programming, the variable sized program representations, various terminals and
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functions and type constraints make it harder to define neighborhood [119], thus it is harder to

map the actual programs into a fitness landscape. Researchers in the GP area have proposed a

number of ways to overcome the problem of defining neighborhood and handling different genetic

operations in addition to mutation. In parallel GP, Slavov and Nikolaev regarded subpopulations

as neighbors and plotted the fitness landscape accordingly [217]. They analysed the performance

of inductive learning algorithms on a set of artificial problems for constructing decision trees

and found this landscape model delivered hints for possible improvements of system components

and adjustments to their parameters. In linear GP, Langdon analysed programs with point

mutation [136]. This work describes fitness landscapes similar to genetic algorithm landscapes

because of the linear program representation. Recently, Moraglio and Poli [176] presented a new

topological framework and redefined the mutation and crossover operators to be more tightly

linked to the fitness landscape. In their model, the genetic operators were defined by the fitness

landscape upon which they operated and the genetic operators were a natural consequence of

the neighborhood and distance metric of the fitness landscape. Later, they also extended their

work to analyse the landscape of homologous crossover (see Section 2.2.5, page 33) together with

mutation operations [177].

In essence, the fitness landscape is a metaphor - a metaphor in which individuals are organised

and the difficulties of the problem can be viewed as a 3-dimensional terrain, where peaks and

valleys represents high and low fitness respectively when using standardized fitness as stated

earlier. So in a broader sense, any work relating to problem difficulty or fitness correlations

between different programs can be viewed as analysing the fitness landscape or a property of

the fitness landscape for the problem. For GP, Kinnear tried to use a fitness correlation between

parents and children to interpret the ruggedness of the fitness landscape [119]. In 2003, Vanneschi

et al. [244] used structural distance to calculate a fitness distance correlation coefficient to

express difficulty levels for a set of problems, i.e. unimodal trap functions, royal trees and the

MAX problem. Their structural distance is calculated by weighted sum differences between two

trees overlapped at the root node. The results showed this method was useful to measure the

difficulty levels. Later, Vanneschi et al. [243] extended their work and described the idea of a

fitness cloud. This is a way to show correlations between individuals and their neighbourhoods

and was used for binary landscapes [246] to predict the difficulty of tree shaped GP problems.

In the fitness cloud formulation, individuals and their neighborhoods were randomly sampled
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and they were all put into a scatter-plot where the x-axis represented fitness and the y-axis

represented the fitness of the neighborhood. The advantage of this approach is that it allows

GP practitioners to understand the distribution of fitness in a narrowed region and give direction

on where the search should be performed.

The approach used in this thesis for analysing the differences between solving a problem

with loops and without loops is similar to the method developed by Langdon and Poli [141] for

analysing difficulty of the Santa Fe ant problem (see Section 2.3.3, page 63). Langdon and Poli

enumerated all possible programs up to a length of 14 and then randomly sampled programs

to length of 500. All enumerated and sampled programs were evaluated, fitness was assigned

and number of programs with the same fitness and same length was counted. The result was

plotted in a 3 dimensional graph in which x indicated the length of the program, y the fitness

and z-axis showed the proportion of the individuals with the given fitness. They called this a

fitness distribution graph. In a way, this fitness distribution graph provides a simple but useful

way to show the search space. As we have described previously in Section 2.2.6 (page 38), the

number of possible programs exponentially increases with increase in tree depth or size. It is

intuitively understandable that it is better to have more good solutions in smaller sized search

spaces, and thus quicker to find a solution. In Section 5.4 (page 145), we use a similiar way to

measure the distribution of fitness of individuals in order to establish that for GP with loops,

there are more good solutions than for GP without loops with the same program depth setting.

Overall, in the area of fitness landscape studies, there is no generally accepted definition

of what constitutes a fitness landscape. There is no agreement on what a fitness landscape

is and what is the neighborhood of an individual. Due the representations used in GP, the

fitness landscape is difficult to define even for simple problems with basic genetic operations.

Researchers have proposed various ways to demonstrate the difficulty of their problems and

the fitness relationship between different individuals. These approaches can all be regarded as

studying features of fitness landscape or can be regarded as some sort of the fitness landscape.

For GP practitioners, understanding the difficulty of the problem is important. In addition, GP

practitioners should be aware that different genetic settings, different functions, terminals and

operations vary the difficulty of the problem, thus varying the fitness landscape. It is desirable to

find better operators, functions and settings in order to form a relatively simple fitness landscape

for the problem to facilitate the search for a solution.
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2.2.8 Current Research Trends

This section presents a survey of the current main research trends. The rapid development

and use of GP in many real applications has already proven that GP is a human-competitive

technique to solve some hard problems [127]. However, the GP techniques suffer from a number

of problems like bloat and diversity control, and there is a need to develop practical theories to

understand and utilise GP tools to their full advantage.

Weakness in Theory Studies

A review of theory studies has been presented in Section 2.2.7. All major theories developed have

limitations. The current results on the schema theorem studies are unable to predict the path

of evolution after several generations. Extending the power of the schema theorem or finding

new theorems to predict a longer process or the whole evolution are needed. Also, only artificial

problems with constrained restrictions were used for developing theories. Can these methods to

be applied to real world problems? How to define the ‘neighbourhood’ in GP is a problem in

the fitness landscape studies and needs more work. Overall, further research on theory is needed

to promote GP to be a theoretically sound, explainable, predictable and powerful optimisation

tool.

Improving the Speed of Evaluation

In GP evolution, evaluation tends to be the most costly process. To minimize the number of

evaluations is a key research area. Work in this area includes : 1. Converting evolved programs

to linear machine code to improve the overall execution speed (see Section 2.1.3, page 20); 2.

Using grammar guided evolution to restrict the search domain (see Section 2.1.3, page 19); 3.

Caching the already evaluated subtrees or programs to avoid reevaluating the evaluated parts

[42, 100, 112]. Also, minimising the number of evaluations thus improving speed of evolution is

an active research area.

Maintaining Diversity and Preventing Premature Convergence

When an evolutionary run does not produce desirable results, loss of diversity in a population

is often the cause. Without diversity a population of individuals cannot generate variation

and it is hard to move out from the local optima. This situation is often called premature
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convergence. There are two research areas relating to diversity. One is to measure diversity

and the other is to maintain and promote diversity. For diversity measurement, researchers in

[33, 55, 123, 140, 142, 167, 190] are investigating edit distances, entropy and other measures

to define the differences between individuals. For promoting or maintaining diversity, methods

include geographical distribution of individuals [67, 105, 240], pair-wise mating [68], a multi-

objective approach [55] in which improving diversity is one objective and using replacement

strategies to remove similar programs [44]. The research trend is to maintain diversity but not

at the cost of too much extra computation to find a solution.

Minimising Bloat

Bloat refers to the exponential growth of the code during evolution without fitness improvement.

The research on this has been discussed in Section 2.2.6 (page 37). Generally, bloat slows down

the search or decreases the efficiency. However, in some cases, bloat protects programs and leads

to areas of the search space which has fitter programs. Different methods have been proposed

for minimising bloat, such as size and depth limits [49, 173], code editing [173], hill climbing

[189], double and proportional tournament [160] and breeding influence by spatial structure

[251]. There is still room for improvement in this area.

Adaptive Parameter Setting

Automatically setting parameters can reduce reliance on the user’s experience and knowledge

as well as removing bias in performance due to the selection of the parameters. Research on

self-adaptive parameter setting has been reviewed in Section 2.2.6 (page 41). However, there is

not much work in this area for GP [10, 11, 182] but quite a lot of work in genetic algorithms

and this is a research direction for GP.

Multi-objective GP

It is natural to have different requirements for a problem and this brings the multi-objective

concept and implementation into evolution. Multi-objective GP has already helped to minimise

bloat [20, 21], to evolve group behaviour for agents [164] and to solve some classification tasks

[116]. There is more potential in this direction.
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Evolving Understandable Programs

Genetic programming has been used in a variety of fields to solve difficult problems and produce

human-competitive results, but the solutions evolved are often hard to understand. Evolving

understandable programs helps to promote the use of genetic programming by improving trust

in the evolved algorithms. There is some recent work addressing this issue, such as the work to

evolve understandable mathematical formulas [130] by picking the right function sets, correct

data structures, adding a parsimony pressure and utilising explicit loops to evolve solutions

for a number of classic or modified classic genetic programming problems [43]. These are the

beginning of exploration in this direction.

Applying GP to More Real World Applications

Genetic programming has demonstrated applicability to numerous real world problems in differ-

ent areas, like financial data prediction [99], robot control [63], designing electronic circuits [245]

antennae for NASA’s space mission [149], image classification [220], object detection [40, 260].

This has been and will continue to be an important area for future research.

2.3 Repetition in Genetic Programming

This section reviews how repetition has been achieved previously in GP history and what the

advantages and disadvantages are, as the task of the thesis is to promote the use of loops with

restricted formats in genetic programming.

Repetition is useful for many problems, and the for-loop, as mentioned in Chapter 1, is a

widely used structure in many programming languages [2, 18, 58, 113]. In contrast to consider-

able research on loops in other programming languages, there are few studies on loops in genetic

programming.

The review of repetition is organised into three sections. Previously used for-loop formats

in GP are reviewed in Section 2.3.1, how for-loops were restricted to avoid infinite iteration is

reviewed in Section 2.3.2 and previous experimental problems with loops or potential problems

with loops are described in Section 2.3.3.
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2.3.1 Loop Formats Used in GP

Broadly speaking, loops in GP have been achieved implicitly and explicitly.

Implicit Loops

Implicit loops in genetic programming have been briefly mentioned in Chapter 1 (Section 1.1,

6). Details of their implementations are described here.

Ciesielski, Mawhinney & Wilson 2002, Robot Soccer Problem

Looping can be achieved implicitly by putting it within a node. For example, in order to

evolve successful robot soccer players, Ciesielski et al. [45] provided moveTo as a function in

the evolution. The moveTo takes a position as an argument and moves the robot forward.

Internally, this function utilises a loop. (moveTo TheirGoalPos) uses a loop to move the robot

repetitively in steps from the current position to TheirGoalPos.

Koza 1992, Santa Fe Ant Problem

Looping can be achieved externally by the environment. In the Santa Fe ant problem [141], the

evolved program is executed repeatedly to direct the ant to eat all the food. Besides solving the

problem, the objective of the evolution is actually evolving the body of a loop instead of a single

program that is only executed once. The details of the Santa Fe Ant problem are described in

Section 2.3.3 (page 63).

Strengths and Weaknesses

The strengths of the implicit approach are: The implicit approach is easy to set up and there

is no need to explicitly specify initial values, updating processes, how to pass values, and how

to restrict the number of repetitions to avoid infinite iteration. The evolved programs are small

and easier to understand because there are no complex looping structures.

The weaknesses of the implicit approach are: The explicit steps in execution of the evolved

program may not be easily understood, because repetitions are hidden in the nodes or by the

environment. Formulating these nodes with loops and setting up the environments needs human

knowledge. The user needs to formulate them by their understanding of the problem. The

embedded loops are fixed in structure and this limits their flexibility.
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Explicit Loops

Explicit loops have been used in genetic programming but there have been only a few investiga-

tions which used them. The objective of most of this prior work was to solve a problem at hand

and not the study of the formulation and effects of loops.

Koza 1992, 9-Block Stack Problem

An iterative function DU (do until) was first used by Koza to solve a 9-block stack problem

[123, p461]. The goal of this 9-block stack problem is to produce a single stack of blocks that

spells “UNIVERSAL” from a variety of initial configurations. Every block is always either part

of the stack or on the table.

The terminal set consists of the following: CS, which dynamically specifies the top block of

the stack; TB, which specifies the highest block on the stack and whether all blocks below it are

in the correct order; and NN, which specifies the block that should be on top of TB in the final

stack.

The functions are: MS, which takes a block as its argument and, if it is on the table, moves it

to the stack and returns T (otherwise it returns NIL); MT, which takes a block as its argument

and, if it is anywhere in the stack, moves the top block of the stack to the table and returns T

(otherwise it returns NIL); NOT, which is the normal LISP boolean negation function; and EQ,

which is the normal LISP equality predicate.

As well as the above functions, there is a DU function and it takes two bodies of code, both

of which are evaluated repeatedly until the second returns non-NIL. The format is

(DU WORK PREDICATE)

Spector [226] extended the research done by Koza for the block stacking problem and pointed

out the limitations of Koza’s approach: 1. It can only solve a single stack problem. 2. It uses

an unusually powerful set of functions and terminals. Spector used a different macro that

implements a limited iteration control structure and the format is

(DO-ON-GOALS BODY)

in which the body is limited to accept certain values. However, this is also a higher level function

so that a major part of the implementation is buried in the function. Both loops are a kind of

unbounded loop in our definition (see page 8) in which the number of times the body will be

executed is not known at entry.

Both works were successful in terms of evolving programs to solve the problem, but neither
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of them provided any empirical results. Also, neither of them provided a comparison of results

and analysis of solutions with loops and without loops, because examining looping was not the

main objective and DU or DO-ON-GOALS are just functions that help to get the solution.

The strengths of the iteration formats are: They are simple in structure and are customised

for this problem. The weaknesses are: The DU function is carefully tailored to the specialized

nature of the domain; the refinement by Spector has not significantly advanced the use of

iteration by slightly modifying the format.

Koza 1999, Computing Average in A Vector Problem, Automatically Defined Func-

tions and Automatically Defined Loops

Automatically Defined Functions have been suggested by Koza [124] to allow genetic pro-

gramming to form more complex structures - sub-routines that can be reused at different points

in the program. In automatically defined functions, a number of function-defining branches

and a result-producing branch are specified for each individual and the result-producing branch

can call the function-defining branches multiple times. Automatically defined functions have

been tested in a number of problems [124, 241] and have been extended to address issues of

iteration, looping, recursion and storage [125]. These extensions of automatically defined func-

tions are called automatically defined iterations (ADIs), automatically defined loops (ADLs)

and automatically defined recursion (ADRs). They are ways to utilise iteration explicitly [125,

p122-p154].

In [125], Koza et al. used a compute-the-average problem as an example to demonstrate

the use of automatically defined loops. The problem is to compute the numerical average of all

elements in a vector. If such computation is performed by a C program with a for-loop, it will

involve the following steps. Firstly, the program initializes a total value holder to zero. Secondly,

the program utilises a for-loop and traverses every element in the vector and adds it to the total

value holder. Thirdly, the program divides the total value by the length of the vector and gets

the result.

For convenience, an individual with ADLs is used to explain how automatically defined loops

work (see Figure 2.6) The progn function has two branches, a loop definition branch and a result

branch. The loop definition branch has a set of defined sub branches which take different values

and performs the loop initialization, updating and condition checking tasks and specifies the

loop body. In the loop definition branch (defloop), SETV1 sets variable V1 to a value of 0.
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results

progn 

UPDATEV1values
+

ADL0 35

defloop

ADL0 SETV1 IFLTE

35 V1 0 1 +

V0 V1 V1 10

+

Figure 2.6: An example of automatically defined loops

IFLTE is an if-less-than function and compares the value 35 and the value in variable V1. If

the comparison value is true, it equals 0 and the loop exits, otherwise, it returns 1 and the loop

will continue. The loop body is the values branch and variable V0 is added to variable V1. The

value of V0 is taken from the environment while V1 is a local variable and is initialised in the

SETV1 branch. UPDATEV1 is the updating branch and increments the value of V1 at each

iteration. The result branch adds the value returned from the loop definition branch referenced

by ADL0 to 35 (a value returned by random value terminal).

The work was successful in terms of evolving programs to solve the compute-the-average

problem and a sorting network problem and in terms of clearly demonstrating that ADLs helped

to decrease the number of evaluations.

The strengths of the ADF and ADL approach are: They allow a degree of freedom in

capturing useful patterns, and they create loops automatically by the power of evolution and

reuse them at any point in the result branch, thus saving the effort of evolving them again

if other parts of the program or their descendents need to use them. They clearly define the

branches of the program separating the main program with the sub-functions. However, there

are a number of weaknesses. Firstly, setting up environments for ADFs or ADLs needs major

adjustment of types for functions and terminals and adjustments to genetic operations. Apart

from specifying the result and loop definition branches and restricting crossover and mutation

from those branches, the user needs to specify the number of the ADLs allowed and a mechanism

to reference them in the result branch. Secondly, it is hard to control the program size. The

sub-branches and the arity of the possible functions used by the loop definition branch tend to

generate a very large bushy tree and it is hard to control the overall program size. Thirdly, [125]
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states that the ADLs allow nesting, but it is hard to find concrete examples of nested ADLs.

In addition, nesting significantly increases the evaluation cost for programs with ADLs. These

considerations explain why Koza et al. restricted the evolved programs to allow only a few ADLs

[125, p322] and Köppen and Nickolay [122] discarded the use of ADFs for their image processing

algorithms. There are very few publications on learning of automatically defined functions and

automatically defined loops. A recent report by Nanduri [179] gave an empirical comparison of

automatically defined functions with a population management method - decimation (see Section

2.2.6, page 36). The report shows that programs with automatically defined functions used

more time to evolve and evaluate than decimation for a number of classic genetic programming

problems. The results of the report also showed that there was no improvement in the success

rate for programs with ADFs.

Kinnear 1993, Sorting Algorithm Problem

The task of sorting is to reorder an array of elements so that elements will be in order by the

key. Details of the sorting problem will be explained in Section 2.3.3 (page 66).

Kinnear [117, 118] used an iterative operator with an index variable to evolve a sorting

algorithm. The format of the loop described in the work is

(dobl start end work)

Two special terminals, index and len are used to hold the sequence index and length of the

sequence. Each occurrence of dobl will not iterate more than 200 times and the sum of all dobl

iterations within a single test will not exceed 2000.

The experiment was successful in evolving sorting programs that can sort arrays correctly

up to a length of 40. In his experiments, 20 out of 60 runs achieved success.

The strengths of his approach are: The format is generic. The weaknesses of this approach

are: It needs hard coded limits to restrict each iteration as well as the overall number of iterations.

The focus of the paper is on evolving sorting algorithms, not generalising or experimenting with

iteration formats, so the format and specification of the loops used are domain specific and only

cater for that sorting problem. He did not comment on or provide an analysis of issues relating

to loop formats and comparisons without loops.

O’Reilly and Oppacher 1992, The Sorting Vector Problem

O’Reilly and Oppacher used GP for evolving a program to sort vectors [191]. They used two

specialised looping formats derived from the following functional notation:
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(do-until loopVar startValue endValue varDelta loop-test true-form)

loopVar is set to startValue and each time through the loop is changed using varDelta. StartValue

is compared to endValue using the relation loop-test. If the result is true, true-form is executed.

True-form can be a program.

The two derived loop functions for iteration are:

(do-until-Up-with-*j* startValue endValue true-form)

(do-until-Down-with-*i* startValue endValue true-form)

Variables ∗j∗ and ∗i∗ work as implicit loopVars. ∗j∗ is always incremented by 1 using an

implicit varDelta, while ∗i∗ is always decremented by 1. At each iteration, true-form is executed

if ∗j∗ <= endV alue or ∗i∗ >= endV alue. The details of the sorting problem will be explained

in Section 2.3.3 (page 66).

O’Reilly and Oppacher claimed that they got 3 correct programs that could sort arrays

ranging in size from 2 to 6, but they did not provide the evolved solution and did not provide

empirical results of the runs. Thus, we cannot determine how successful the experiment was.

The strengths of these formats are the same as Kinnear’s approach and they are suitable for

this vector sorting problem. The weaknesses are the same as before: lack of analysis on how these

functions affect the evolutionary process and lack of comparison with programs without loops.

The objective of the work is to demonstrate that hierarchically forming complex programs from

general functions in GP is feasible and worthwhile and the work does not specifically address or

promote the use of loops.

Langdon 1996, The List Structure Problem

Langdon used an explicit loop structure

(for-while s e l)

for evolving a list structure [132].

The s is the initial condition. The index of the loop i0 is assigned the value of s and l

is the list. When the for-while function returns zero, the loop exits. According to Langdon’s

specification, loops can only be contained in an ADF and an ADF must contain at least one

loop. Nested loops are not allowed. As the focus of his work was on evolving a list data structure

from basic primitives, the utilisation of loops was put to second place.

Langdon was successful in evolving list structures. Two out of 56 runs produced solutions

which passed all the tests.
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The strengths of this approach are: It allows the evolutions to develop different loop sub-

branches and it is optimised for this list problem. The weaknesses of this approach are similar to

those described in ADLs and the Kinnear’s loop format. It needs a hard coded limit to restrict

the overall number of iterations and nested loops are not allowed. The focus of the paper is on

evolving a list structure, not a generalised iteration format. The format used is domain specific

and caters only for this list structure problem.

Finkel 2003, The Integer Factoring Problem

The solution to the integer factoring problem factor(n) returns a list of the prime factors of

n [71]. For example, factor(24) returns {2, 2, 2, 3}.

Finkel [71] utilised a do-while structure to evolve an algorithm to correctly factor positive

integers. The format is

(do-while arg cond arg body)

The arg cond returns a value less than one or greater or equal to one to indicate whether the

arg body will be executed or not. In his setting, nested loops were allowed. His do-while loop

is a type of unbounded loop in our definition (see page 8). He restricted each do-while to a

maximum of 100 iterations and all do-while loops were collectively allowed a maximum of 200

iterations.

Finkel was successful in his final run to get a solution for integers up to 100. But he did not

state how many runs in total were used to find this solution and did not state the success rate.

The strengths of his approach are: The format is less restrictive than some of the others

and simplified for evolving the factoring problem. The weaknesses of this approach are: the

arg cond is hard to automatically evolve, so constraints are always needed to avoid infinite

loops. The objective of the paper is to show how to evolve a correct algorithm, so no analysis

of the performance of each function, including loops, is given. He stated that one of his future

goals would be to optimise the number of iterations to evolve faster algorithms. The format

used in the work is domain specific.

Chen and Zhang 2005, The Factorial and The Modified Ant Problem

Chen and Zhang defined two explicit while loop structures

(WhileLoop1 start end body)

(WhileLoop2 condition body)

for evolving solutions for the factorial problem and a modified ant problem [37].
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Their work was motivated by our early work [43] and extends our results to another problem

and a loop structure variation. Their WhileLoop1 is the same as our loop format 2 (see page

75) and their WhileLoop2 is an unbounded loop (see page 8). They simplified the ant problem

and applied WhileLoop2 to the modified problem.

Their experiments with WhileLoop2 were successful and 42 out of 50 runs found solutions.

They also noted that when they used the for-loops described in our work [43], they got the

same number of solutions in 50 runs. However, GP with their WhileLoop2 was more effective

in improving the fitness and used fewer evaluations to solve the problem.

The weakness of this work is that their results were empirical only and lack a serious analysis

of why GP with WhileLoop2 was better. Is it because of changing the problem or because of

using a highly customised while-loop condition? Our work explores the reasons why loops were

beneficial by analysing the search space and the evolved patterns for programs with loops (see

Chapter 5, page 144).

Overall, apart from the ADL approach, which takes the ‘general’ into consideration, the other

work by Kinnear [117, 118], Langdon [132] and Finkel [71] is limited. They focus on solving

specific problems and have not addressed the issues of whether the loop formats can be used

for other problems, whether efficiency could be improved by loops and whether more sensible

solutions could be evolved. In their reports, the benefits of loops have not been pointed out

and there are no comparisons for runs without loops. Although the ADLs take the ‘general’

into consideration, they suffer from high computation costs and high complexity. In a way, our

approach is not fully ‘general’. However, we attempt to make the loop formats ‘general’ while

keeping them simple and easy to use. We have proposed several formats and applied each of

them to a number of problems and provided analysis of each. By using our formats, we have

demonstrated that even with these simple loop structures, evolution can still find useful patterns

to repeat for success.

Recursion

Recursion can be regarded as another form of repetition. Brave [30], Wong and Leung [257],

Whigham [250], Yu and Clack [259], Agapitos and Lucas [3, 4] designed different methods to

evolve recursive functions or behaviours for genetic programming. In [3], they have successfully

used recursion together with higher-order functions to evolve a sorting algorithm with complexity
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O(n × log(n)). In this work, they also have designed a number of fitness functions to measure

the sequence order. However, their work did not relate to loops directly.

2.3.2 Prevention of Infinite Loops

Prevention of infinite loops is a major issue in evolving loops in GP. Numerous combinations

of terminals and functions are allowed in the evolutionary process and infinite loops are highly

likely. These infinite loops will keep executing without generating a result as they keep iterating

the same pieces of code. However, it is hard to design a method to avoid infinite loops while

not interfering with the evolutionary process because it is hard to know in advance how many

times it is necessary for the evolved pieces of the code to be repeated to get a solution.

For implicit loops, the environment settings by the user restrict the allowable

number of iterations. In the robo-soccer problem [45], the stop condition is that when the

location is reached by moveTo, the iteration will stop. Infinite loops are not possible.

Five methods have been proposed for explicit loops.

A maximum number of execution steps is set in advance to avoid infinite loops.

In the Santa Fe ant problem [123, p461], the evolved body will be repeatedly executed, but only

a maximum of 600 steps of movement are allowed. Once the maximum number is reached, the

evaluation will be stopped and a fitness will be assigned to the program based on the pieces of the

food left. This setting needs a counter for the evaluation process and the fitness of the problem

needs to have cumulative characteristics, that is it improves gradually and partial success is

possible.

A maximum number of iterations together with a maximum number of total

iterations are set to avoid infinite loops. For evolving the sorting algorithms [117], the

function dobl was set to allow a maximum of 200 iterations and the total number of iterations

for a single program was not to exceed 2000. Langdon [132] set a small number of iterations

(32) for the search for the list algorithm. Finkel [71] used the same strategies and allowed 100

maximum iterations for do-while and 200 iterations in total for an individual.

A maximum number of iterations can be set dynamically based on the tree-depth

of the individual. Brave [30] used GP to evolve programs with recursive ADFs to perform

a tree search. A recursive ADF may incur infinite repetition. He specified the depth of the

tree being searched as the limit of the number of recursive calls to avoid this problem. This is
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somewhat similiar to setting a hard limit on the number of iterations in a loop.

A CPU time limit can be set for each evaluation to avoid infinite loops. Wong and

Leung [257] used an execution time limit to halt the program in their grammar guided evolution

to generate a recursive generalised solution for the even-parity problem. This approach suffers

from the same problem as setting a maximum number of iterations for loops and may discard

some potentially good solutions because they cannot be evaluated within the specified time

frame.

A coroutine execution model can be set to avoid infinite loops. The model pro-

posed by Maxwell [165] tolerates individuals with infinite loops or recursion while still allowing

evolutionary progress and can be regarded as an extension and refinement of the first two ap-

proaches - setting a maximum number of execution steps or a maximum CPU time limit. In

this model, each individual is allowed to execute for some amount of time in a pseudo-parallel

manner and a fitness is given for the partially evaluated programs. Newly formed offspring are

executed until they reach the same age as the rest of population and then synchronised with

the population. For example, in the Santa Fe ant problem, every individual can be evaluated

for a fixed time, then fitness is assigned based on the current situation and the evolutionary

process will use this fitness for the selection and generation of descendents. The weakness of

this model is also the same as for setting a maximum steps, that is it needs the programs have

the cumulative characteristic so that a partial fitness can be accurately given to the partially

evaluated individuals.

Currently, the most frequent practice is to set a maximum number of iterations for each

loop or to set a maximum number of iterations for each individual or a combination of these

two methods, because the methods are generic, independent of problem domain and easy to

configure.

2.3.3 Experimental Problems

A number of problems which have been used in earlier work and have utilised loops implicitly

or explicitly, or have the potential to utilise loops, are used in this thesis. They are described in

this section. They are the Santa Fe Ant problem [141], a sorting problem [118] and a symbolic

regression problem [95].
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Figure 2.7: The Santa Fe trail for the artificial ant problem

The Santa Fe Ant Problem

The Santa Fe ant problem was introduced by Koza [123] and has been frequently used as a

benchmark problem in GP [101, 123, 138, 139, 171, 186].

The objective of the problem is to evolve a program that controls a robot ant to follow the

Santa Fe trail. The irregular Santa Fe trail is located in a 32x32 grid and consists of 89 pieces of

food. The trail is not straight and contains 21 turns. The food scattered is not continuous and

it has single gaps, double gaps and triple gaps. Some of these gaps are at corner positions which

increases the difficulty of the traversal. A map of the trail is presented in Figure 2.7. Food is

represented by black squares.

The goal is to evolve a program that can successfully direct a robot ant, which starts from

the top left square, to eat all the food along the trail within a limited number of steps. The

frequently allowed number is 600 [43, 141]. Some work has different counting strategies and

requires the ant to complete the task in 400 moves [101, 156]. The fitness is based primarily on

the number of pieces of food eaten.

There are three terminals in the ant problem which represent three primitive actions: {turnRight,

turnLeft, move}. TurnRight and turnLeft change the facing direction of the ant to the right or
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left by 90 degrees without moving the ant forward. Move pushes the ant forward in the direction

it is facing. If it moves into a square that has food, the ant consumes it. Every primitive action

costs one step.

There are three functions in the ant problem, which are {ifFoodAhead, Prog2, Prog3}. If-

FoodAhead is a sensor function for the ant with an arity of 2. It inspects the square in front of

the ant. If there is food in that square, the first argument is executed and if not, the second

argument is executed. Prog2 and Prog3 are linkage functions and they take 2 or 3 arguments

and execute them sequentially. These three functions do not count towards the steps used by

the ant.

The commonly used genetic parameters for this problem [123, p114] are population size 500

to 1000, crossover rate 90% to 70%, mutation rate 0% to 30%, reproduction rate 1% to 10%. The

maximum allowed tree size is usually small, ranging from 5 to 7. Researchers have developed

different strategies for finding solutions or finding better solutions in smaller size and increased

understandability [101, 139, 161, 162, 171, 242].

We consider that explicit loops can be used for this problem despite the usual practice that

iterations are conducted implicitly, that is, the evolved program is executed again and again

until the ant uses up the allowed number of steps or eats all the food on the trail. In this

approach the evolved programs are generally small. Executing the evolved code once cannot

complete the task. The restriction by maximum number of steps avoids infinite iterations. An

example solution and the traversal pattern can be viewed in Figure 2.9 and Figure 2.8.

Overall, the special characteristics of this problem make it an ideal problem to test the use

of loops and to benchmark situations where loops are not used. It can be used to understand

why explicit loops are useful and why solutions with loops can be evolved quicker than those

without.

The Sorting Problem

Sorting is one of the fundamental problems of computer science. The task of the sorting is to

reorder an array of elements so that elements will be in order by the key. In many current

applications, large arrays need to be sorted. Designing good algorithms is in high demand in

many areas. However, applying genetic programming to evolve a sorting algorithm is not an

easy task.
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Figure 2.8: The traversal path for the artificial ant problem achieved by a perfect solution, see
Figure 2.9

(Prog3 move (Prog3 (IfFoodAhead (Prog2 (IfFoodAhead move turnLeft) turnRight)
turnRight) (IfFoodAhead (IfFoodAhead (Prog2 (Prog2 move move) (IfFoodAhead
turnRight move)) (Prog2 (Prog2 turnRight turnLeft) move)) turnLeft) turnLeft)
(IfFoodAhead (Prog2 move move) turnRight))

Figure 2.9: A perfect solution for the Santa Fe ant problem

There are two kinds of sorting tasks for GP: evolve an algorithm that can sort a limited

number of elements efficiently [126, 153] or evolve a generalised sorting algorithm that can sort

arrays of any size [118, 191]. The second task is considerably harder for GP, because no amount

of testing can ever establish generality for an algorithm that operates on an infinite domain

of data [117]. The objective of the thesis focuses on promoting the use of the loops. So only

experiments that have used iteration are discussed.

The sorting process requires the two primitive functions, {swap, compare}. Swap is a function

of arity 2 and exchanges the array elements it takes. Compare is a function of arity 4. The first

two arguments are elements and the second two arguments are actions. It compares the first

two elements. Depending on the result, it does the action indicated by the third and fourth

arguments. Compare can be decomposed into two primitive functions: {wisBigger, wisSmaller},
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which-is-bigger and which-is-smaller respectively. They specify the return result and decide the

follow-on actions [117]. Swap and compare can be combined into a compare-exchange function.

There are two methods to evaluate the correctness of the sorting. One is by enumerating all

the possible orderings of the array. The other is by using the “zero-one principle” [125, p337],

that is, if a program correctly sorts n binary bits into non-decreasing order for all 2n possible

combinations of n bits, it will correctly sort any set of n distinct numbers into non-decreasing

order. The second method significantly decreases the number of the testing cases. For example,

to ensure an evolved algorithm correctly sorts an array of length seven, 5040 test cases are

needed to ensure every possible combination has been tried, but only 27 = 128 test cases are

needed utilising the “zero-one principle”.

Incorporating loops is natural for the sorting problem. Sorting uses positions in an array as

terminals and allows the above functions to manipulate the values in those positions. The loops

can take advantage of repetitive compare and swap actions and reuse them to solve the problem,

thus saving evolutionary effort to form these patterns again and again in a consecutive order.

The detail of three different loops formats by Kinnear, O’Reilly and Koza for the sorting

problem has been reviewed in Section 2.3.1. Kinnear’s work had significant success in evolving

generalised algorithms [117, 118]. He found that there is a possible connection between program

size and generality in evolution. The generality is inversely proportional to size. It is preferable to

include the program size in the fitness calculation and it helps to evolve a ‘general’ sort. O’Reilly

and Oppacher’s work pointed out that GP needs to construct its solutions in an explicitly

hierarchical manner in addition to their hierarchical representation [191]. Both investigations

found that incremental learning is important for finding generalised algorithms. ADLs have been

utilised by Koza et al. to solve a minimal sorting network problem. This work addresses the

problem of efficiently sorting a fixed length array. They have successfully found a 16-step seven

sorter and the algorithm employs the minimum number of comparison-exchange operations [125,

p335].

The work of this thesis does not focus on evolving generic or efficient sorting programs with

minimum comparison-exchange, but on how to use generalised formats for sorting and how the

loop format can make a difference compared to the non-loop approach in terms of the number

of evaluations, size and understandability of the evolved solutions. The sort experiment in this

work uses a similiar loop format to Kinnear’s, that is, the loop function takes three arguments
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start position, end position and body.

The Symbolic Regression Problem

The task of symbolic regression is to find a mathematical expression that can provide a perfect

fit between a given sampling of values and the associated values of the dependent variables [123].

Rarely have researchers used loops for symbolic regression problems. However, loops could still

be helpful for some symbolic problems like the quintic polynomial [124, page 118] in Equation

2.2 or the sextic polynomial [124, page 110] in Equation 2.3.

f(x) = x5 − 2x3 + x (2.2)

f(x) = x6 − 2x4 + x2 (2.3)

In [124], Koza used automatically defined functions to capture the regular patterns in these

two problems and found ADFs saved evaluation effort. This leads us to think of the use of loops

to take advantage of these repetitive calculations.

The set of problems proposed by Hoai et al. [95] provides a way to gradually increase the

potential repetitive patterns. The target functions used are:

F1(x) = x2 + x

F2(x) = x3 + x2 + x

F3(x) = x4 + x3 + x2 + x

F4(x) = x5 + x4 + x3 + x2 + x

There are four binary functions: {+, -, *, /} and four unary operators: {sin, cos, exp, log}.

x is the only terminal for these problems. The fitness is the aggregate differences between the

evolved function with the actual function at 20 random points in the interval [-1, 1]. The system

used a population of size 500 with a tournament size of 3 and the maximum allowed number of

generations was 30.

In their approach, they used tree adjunct grammar guided GP, a variation of Whigham’s

grammar guided GP system [248]. The work demonstrated a far better performance than the

original GP approach [123].

This thesis utilises these functions and extends them to higher powers of x to demonstrate

how, with incremental repetition potential, loops can be incrementally helpful.
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2.4 Classification by Genetic Programming

The work conducted in this thesis involves a difficult object classification task and this section

briefly reviews the classification tasks, how the tasks can be achieved in GP and what the

required features of classifiers are.

A classification task involves building models that are able to identify new instances as one

of a set of defined classes. Classification has been used in a wide range of applications, such

as face recognition [236] and diagnosing medical conditions from the output of medical tasks

[207, 254].

The following sections explain the process of training and testing, discuss generalisation and

over-training issues and list some of the accuracy measures in GP in evolving the classifiers.

2.4.1 Training and Testing

The process of evolving the classifier through evaluating a set of training cases is called training.

To evaluate whether the evolved classifiers are capable of correctly classifying a set of cases

which have not been involved in training is called testing.

The classification accuracy is measured by the percentage of correctly classified cases. Train-

ing accuracy and test accuracy refer to the number of correctly classified cases divided by the

total number of cases in the training data and test data respectively.

Deciding what the training and test data will be, and how much training data is needed for

a classification task is a hard problem. Methods such as cross-validation and bootstrap selection

address this issue [121].

2.4.2 Generalisation and Over-Training

Normally, a successful classifier is expected to correctly classify data which has not been used

in training. However, there can be a significant gap between the performance of a classifier on

training and testing data. This is because the learning becomes too specific to the training data

and causes poor performance for the testing set. This phenomenon is called over-training or

lack of generalisation.

Over-training occurs mainly in three circumstances: the size of data set is too small, the

data set is biased to one class, or the data set is not representative and classes are overlapping
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in characteristics [9, 239]. If the training data set is too small, then it may not contain enough

information or not be representative. A biased data set indicates that the training data set

is dominated by one or two classes and does not contain enough information about others,

therefore, cannot be successful in identifying some objects of unknown classes. If two classes of

data have too many common features, it will also be hard to differentiate them in the testing

even if the classifier is successful in the training.

2.4.3 Desirable Qualities of a Classifier

There are four desirable factors for a classifier. They are:

• High Accuracy. It is natural to demand a classifier with very few errors unless there are

some other considerations.

• Understandable. To have an understandable classifier is essential for some domains. For

example, in medical diagnosis, it is hard to convince a doctor to believe a classification

system unless the doctor can understand the reason. Also, evolving an understandable

classifier can help to contribute new knowledge to a domain.

• Fast in Execution. In many real world applications, there are time constraints. It is

preferable to have a classification task done in a short period of time. For example, to

automatically classify a human action to be dangerous in an image taken by airport video,

classification speed is crucial so that there is time to prevent a disaster.

• Fast in Training. In most situations, training time is less important than execution time.

A classifier can be trained off-line for several days or months and then applied to a system.

However, in some other extreme cases, the environments are continually changing and the

classifiers need to be updated to adapt to the new situations.

2.4.4 Forms of Classifiers by GP

GP has mainly been used to develop three types of classifiers. They are numeric expression

classifiers [81, 152], decision tree classifiers [107], and classification rules [107].
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Numeric Expression Classifiers

A numeric expression classifier is represented by a mathematical expression which returns nu-

meric value. The numeric output value will then be interpreted to a class value. For a two-class

problem, zero is generally selected as the boundary point to distinguish the two classes [147].

Any positive value returned by the mathematical expression is classified as one class and a neg-

ative value will be the other. For multi-class classification, the problem can be broken up into

multiple two-class problems or the range of real values can be divided into a number of chunks

to indicate different classes [261].

There are a number of investigations that successfully used the numeric expressions to handle

classification problems [66, 151, 220]. In [66], Eggermont et al. compared a numerical classi-

fication method with a method using Boolean functions and claimed that the method using

Boolean functions was transparent but lacked flexibility. In [151], Loveard and Ciesielski tested

five different numerical methods to classify a set of data chosen from the UCI machine learn-

ing repository [180] and found that the dynamic range selection method, in which a subset of

training examples are used to determine the class boundaries, are well suited to the task of

multi-class classification. In [220], Song et al. used dynamic range selection and static range

representations to evolve classifiers for a set of texture images. They found that the dynamic

range representation approach have good performance over a variety of texture data.

In this work, the classification task performed in Chapter 4 uses numeric expression classifiers.

Decision Tree Classifiers

A decision tree is a tree structure in which non-terminal nodes represent branches on one or

more attributes and terminals indicate the class. GP has successfully been used in training

decision tree classifiers for a number of problems, ranging from artificial [123] and UCI sample

data classification [64, 178] to real world medical data classification [76].

Classification Rules

Classification rules are rules represented by “if-then” structures. Several investigations in GP

have attempted to generate classification rules that are comprehensible to human interpretation

[53, 232, 263].
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2.4.5 Issues for GP in Evolving Classifiers

Genetic programming is a good method to evolve classifiers. It can perform classification by

numeric expressions; it allows search in a large search space and a different variety of solutions

can be found which may provide deeper information on the problem; the evolved classifiers

are normally quick in execution time and can perform very fast classification; and it allows

domain constraints to be built into the fitness function which is difficult to achieve with other

classification methodologies.

However, certain disadvantages accompany these good aspects in evolving classifiers in GP

and further research is needed.

• Long training times. GP is a population-based search algorithm. Normally it takes

many evaluations and a much longer training time to get a successful classifier than other

algorithms, such as C4.5 [107]. The performance of each run varies and normally many runs

are needed to get a successful solution, thus, it is not efficient. Cost sensitive classification

methods have been implemented with GP [145], but much more improvement is needed.

• Hard to understand. The classifiers found by GP are generally large in size and formed

by a random ordering of terminals and functions, thus are hard to interpret and will not

be accepted for some cases as explained in Section 2.4.3 (page 69).

GP has been applied for various classification tasks for some real world problems [51, 86, 137,

194, 210]. It is preferable to design some new techniques to overcome these disadvantages and

improves the techniques to make GP a more useful and more desirable choice in classification

tasks.

Surprisingly genetic programming has also been used for a knowledge discovery task involving

millions of records [65]. In [65], Eggermont found that genetic programming was able to perform

a global search for a model, in contrast to the local greedy search of most traditional machine

learning algorithms [78] and a user can easily choose, change or extend a representation which

is convenient and useful for the data classification task.

The thesis will utilise loops to solve a difficult classification problem and explore the advan-

tages of using loops for this kind of problem.
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2.5 Summary

This chapter has presented a literature survey of the major work to date in genetic programming,

loops in the genetic programming and a brief review of classification by GP. We have identified

the key areas of research that relate to the work in this thesis and described those problems or

techniques which will be used in the following chapters.



Chapter 3

Two Explicit For-Loop Formats

3.1 Introduction

In this chapter, we propose two explicit for-loop formats, test whether they can be used in

genetic programming and determine whether they can provide some benefits to the evolutionary

process. The reasons for the very low use of loops have been discussed in Section 1.1 (page 3).

This chapter establishes that there are some easily formulated for-loop formats that can be used

to advantage in GP.

Two formats of explicit for-loops with restricted syntax and semantics are presented to solve

five problems, which are (1) a modified Santa Fe ant problem [43] (2) a sorting problem for an

array of limited length (see Section 2.3.3, page 66), (3) the Santa Fe ant problem (see Section

2.3.3, page 63), (4) a symbolic regression problem (see Section 2.3.3, page 67) and (5) a visit-

every-square problem [148]. The reasons for selecting these problems and using the proposed for-

loop formats are: (1) we want to explore the use of the explicit for-loops for a range of problems of

different characteristics and complexities in order to establish that there are significant problems

which can be solved with loops; and (2) we want to try different for-loop formats with different

restrictions on these problems in order to demonstrate that loops can be easily incorporated

into genetic programs and are not hard to use (see Section 1.1, page 4). These problems have

natural looping constructs in their solutions. A solution without loops is not possible unless

the tree depth is large enough, while a large tree depth setting may dramatically decrease the

chance of success. Cumulative probability of success and mean best fitness graphs are used to

show that explicit loops are useful. With these two constrained explicit loop formats, GP finds
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solutions with fewer generations and evolved solutions are generally smaller in size, thus, more

easily understood than those without loops.

3.2 Chapter Goals

The main goal of this chapter is to answer the first two research questions of the thesis (see

Section 1.3.1, page 9), that are:

1. How can we restrict the syntax and semantics of for-loops in a way that avoids problems of

infinite loops and still provides useful benefits for genetic programming?

2. Can GP with for-loops solve some problems that cannot be solved or are very difficult to solve

without explicit loops?

These questions have been divided into the following sub-questions:

• How can explicit for-loops be used in GP? What modifications are needed to utilise loops

in a standard GP system?

• Will the use of loops improve the evolution, so that a solution can be found in fewer

generations? Is the average size of the solutions smaller?

• Are simple loops with semantic restrictions easier to evolve than more complex loops with

less restrictions?

• Will loops be more beneficial when the potential for loops in a problem is increased?

• What is the sensitivity of the evolution to different genetic parameter settings?

• Are there any problems that cannot be solved without loops?

Following the exploration of a number of problems, a sensitivity analysis is conducted to

decide what the key factors are for the evolutionary process improvement.

3.3 Syntax and Semantics of the For-Loops

Two variations of for-loop formats have been composed by investigating the characteristics of

problems and reviewing the loop structures used previously in GP and other programming

languages (see Section 1.1, page 3 and Section 2.3, page 53).
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3.3.1 Loop Format 1

The syntax of the first for-loop format is:

(for-loop1 num-iterations body)

and the semantics of for-loop1 are straightforward. Body is executed num-iterations times.

During evolution, both num-iterations and body undergo crossover and mutation.

The reason for composing this loop structure is that we want to examine whether the simplest

kind of loop can be evolved. The evolution just needs to find num-iterations and the components

of body.

Simple Loops

In the case of the simple loops, the value of num-iterations is restricted to a special integer

type. The value is set to a random number between 1 and a programmer supplied value of

max-iterations. During crossover and mutation, typing is preserved so num-iterations can only

be changed to another integer of the same type.

Unrestricted Loops

In the case of the unrestricted loops, the value of num-iterations can be set by any functions.

This could involve the mathematic functions {+, -} and nested loops are allowed.

3.3.2 Loop Format 2

The syntax of the second for-loop format is:

(for-loop2 start end body)

The semantics are also straight forward. Body is executed once for each value of a counter

between start and end. If start is greater than end, body will not be executed.

The reason for composing this loop structure is that for a considerable number of looping

problems, an index is needed in body, so that body can utilise the updated variable for traversal

of arrays or vectors. The increment value of the index is set to 1.

Simple Loops

As for for-loop2, start and end are restricted to an integer type. Mathematical computations

are not permitted.
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Figure 3.1: An example of impossible crossover in strongly typed genetic programming

Unrestricted Loops

As for for-loop2, start and end can be the result of any possible computation. Arithmetic func-

tions {+, -, *, /} can be applied and embedded loops are permitted.

The reason for composing the simple and the unrestricted forms is that we want to explore

loops with different levels of restrictions, from a very constrained approach in which nesting and

arithmetic calculation of num-iterations or start and end are not allowed, to a totally uncon-

strained approach in which any computation is permitted.

In the implementation of looping in loop formats 1 and 2, the maximum number of iterations

and the values of start and end are constrained by domain information, thus infinite loops are

not possible. Unlike some previous research (see Section 2.3.2, page 61), no special actions are

necessary in fitness evaluation in these formulations.

3.4 Evolution of the For-Loops

Strongly typed genetic programming (STGP) is used in the experiments (see Section 2.2.2, page

25). STGP simultaneously allows multiple data types and enforces closure by only generating

parse trees which satisfy the type constraints. In genetic operations like crossover and mutation,

only functions and terminals of the same type can be swapped or mutated.

For crossover operations, Figure 3.1 shows an impossible crossover operation in strongly

typed genetic programming. The figure contains two individuals and both have a looping func-

tion at the root node. The looping function takes two arguments, the first argument is of type
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Figure 3.3: An example of the standard mutation in strongly typed genetic programming



CHAPTER 3. TWO EXPLICIT FOR-LOOP FORMATS 79

times and the second argument is of type integer. The reason for using the different type

settings is to constrain the times branch so that the number of iterations can be set easily and

separately. When the crossover operator randomly picks the two points, terminal “3 times”,

which is of type times and function “+” which is of type of integer and tries to swap them, the

operation is stopped because of the type mismatch.

Figure 3.2 demonstrates an example of a successful crossover in strongly typed genetic pro-

gramming. This time the crossover operator randomly selects terminals “5 times” and “3 times”

from two parents (see Figure 3.2a) and these two points are of the same type and can be swapped.

The operation swaps the two nodes and successfully updates the two individuals to two new chil-

dren (see Figure 3.2b).

Figure 3.3 shows an example of a mutation conducted in strongly typed genetic programming.

The program has a for-loop1 function as the root node. The left branch accepts type times and

the right branch accepts type integer. The node “5” is selected as the random mutation point.

In the figure, we can see that updating the node “5” to a node “5 times” is impossible because of

the type mismatch as the node “5 times” is of type times. Updating the node “5” to a variable

terminal “A” is correct, because they are of the same type.

During evolution, STGP takes care of type matching and ensures only that correct operations

can be done.

3.5 Problem One — The Modified Ant Problem

The reason for formulating this modified ant problem is to have a problem which has obvious

repetitive patterns that should be easily captured by the simple loops, since at this stage, we

are not sure whether loops can be easily evolved and whether they can provide any benefits.

In previous work on the Santa Fe ant problem (see Section 2.3.3, page 63), there has been

no explicit iteration in the evolved programs. Iteration is accomplished implicitly in the envi-

ronment by invoking the program as many times as necessary to eat all the food or until some

maximum number of steps (usually 600) has been expended.

In this work, the intention is to evolve programs in which there is no implicit looping. A

program will be invoked only once, any looping behaviour must be explicitly in the program.

The fitness of the program is the number of pieces of food remaining after 600 steps. In this

modified problem, the size of the grid is 20×20 and 108 pieces of food are placed on the grid in
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Figure 3.4: Food layout, the modified ant problem

3 blocks of 6×6 as shown in Figure 3.4. This regular placement of food is intended to encourage

the evolution of loops within the evolved programs.

It is important to note that a solution to this problem by a program that is invoked only

once and has no explicit loop constructs, will require a large tree. The optimal solution will

require around 160 steps if the ant starts at position [0,0]. A brute force solution without loops

which visits every square will need at least 400 moves and 80 turns. A binary tree of depth 9

has this capacity and this is the maximum tree depth setting for this experiment.

3.5.1 Genetic Environment Settings

Function Set and Terminal Set

The experiments for this problem replicate all functions and terminals from the Santa Fe ant

problem (see Table 3.1). In addition, the experiments use the format (for-loop1 num-iterations

body) (see Section 3.3). The terminal RandTimes and the function for-loop1 are added in the

loop approach (see Table 3.2).
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Table 3.1: Definition of terminals and functions, standard approach, the modified ant problem
Nodes Description

Move::Terminal The robot moves one square forward and it costs one step.
TurnLeft::Terminal The robot turns to its left and it costs one step.
TurnRight::Terminal The robot turns to its right and it costs one step.
IfFoodAhead::Function Takes 2 arguments and executes the first argument if there is a

piece of food ahead, else executes the second.
Prog2::Function Takes 2 arguments and executes them sequentially.
Prog3::Function Takes 3 arguments and executes them sequentially.

Table 3.2: Definition of extra terminals and functions, loop approach, the modified ant problem
Nodes Description

PlusInt::Function Takes two integers and returns the sum.
MinusInt::Function Takes two integers and returns the difference.
RandTimes::Terminal Generates a random integer between 0-6 or 0-20 or 0-50.
For-Loop1::Function Takes 2 arguments. The first argument indicates the number of

times the second argument is executed. It returns the number of
pieces of food left after the execution of the loop body.

Table 3.3: Variable settings, the modified ant problem
V
¯

ariable Name Value

Population Size 100
Mutation / Crossover / Elitism Rate 0.28 / 0.70 / 0.02
Maximum / Minimum Depth 9 / 1
Termination Criteria 2000 generations or all food (108 pieces) is eaten or

600 steps are reached.
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Other Genetic Environment Settings

The rules to decide other genetic variable settings are:

1. If the problem is the same or similar to previously published problems, the published

settings are used.

2. If the problem is new or there is no previous information, the default values are used (see

Section 2.2.5, page 35) unless specified.

For this problem, the other genetic variable settings are listed in Table 3.3.

3.5.2 Experiments and Experimental Results — The Modified Ant Problem

All experiments have been run 100 times each with the functions, terminals and the environment

settings shown in Tables 3.1, 3.2 and 3.3.

Experimental Results

Figure 3.5 shows the fitness of the best individual, averaged over 100 runs, for 2000 generations

of evolution with max-iterations set to 6. These results were somewhat surprising. Since a

large tree is necessary to solve the problem without loops, as described above, it was expected

that programs with loops might perform better, which is the case. However, it was expected

that simple loops would be easier to evolve than unrestricted ones. As Figure 3.5 reveals, the

opposite was the case. This could be because max-iterations was too small and programs had

to use more loops to capture the repeated behaviour, thus more nodes were required and this

decreased the chance of finding a successful solution in the simple loops approach.

Figure 3.6 shows the cumulative probability of getting a successful solution1, that is, the

evolved ant eats all of the food. None of the runs without loops gave a successful solution. This

is because it is hard to evolve the nodes without loops in an order that can solve this problem at

this depth. At 2000 generations, 12 of the 100 simple loops runs and 23 of the 100 unrestricted

loops runs gave a successful solution.

Figure 3.7 shows a comparison of the fitness of the best individual for different choices of

max-iterations for simple loops. The figure shows that higher values of max-iterations lead to

1Figures relating to cumulative probability of success use number of evaluations rather than number of gener-

ation since this helps to compare runs with different population size settings.
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Figure 3.6: Cumulative probability of success,
max-iterations=6, average of 100 runs, (the no
loops line is on the x axis), the modified ant
problem

better programs. A similar analysis for the unrestricted loops showed no difference for the same

values of max-iterations (see Figure 3.8, page 83). There is, however, an unfortunate side effect

that is not evident from the figure – the execution time rises dramatically. The 100 runs for

max-iterations of 6, 20 and 50 took 1 hour, 3 hours and 1 day, respectively on our hardware. A

detailed analysis of CPU time on the evaluation with variations of the setting of max-iterations

will be presented later (see Section 5.6, page 159).

Since programs with a small number of loops are usually more understandable, a number of

runs were performed in which the fitness function was modified to favour programs with fewer

occurrences of for-loop1. This was done by counting the number of occurrences of for-loop1

in the text of the program and adding it to the number of pieces of food left after program

execution. Thus, if two programs consume the same amount of food, the one with fewer loops

will be fitter. Figure 3.9 shows a comparison of best fitness for simple loops over the generations

while Figure 3.11 shows a comparison of program size. Minimising the number of loops used in

an evolved program has a dramatic effect on fitness for the simple loops but has no effect on

the unrestricted loops (see Figure 3.10). Figure 3.11 reveals quite a difference in program size

if fewer loops are favoured. All but one of the curves show an initial drop in program size. The
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explanation for this is the following: the programs in the initial population are generated by the

ramped half-and-half method. Larger programs are highly likely to have more occurrences of

loops. In fitness evaluation, programs are terminated after executing 600 steps. Large programs

will use up their allocation of steps before consuming much of the food and hence will not be

as fit as the smaller programs. These unfit programs are not selected for mating and hence are

removed from the next generation. Eventually these smaller programs increase in size as their

fitness improves.

3.5.3 Analysis of Solutions for The Modified Ant Problem

The benefits of using explicit loops are shown clearly in the evolved solutions.

When max-iterations was large (20,50) the evolved solutions traversed every square in the

grid. This is an intelligent solution to utilise the available resources to find answers quickly. A

typical pattern of this is shown in Figure 3.12. The ant moves down and up, then one square

to the right, then down and up again. This pattern is repeated until the ant reaches the right

hand edge of the grid.

Solutions favouring a smaller number of loops tended to have larger loop bodies, smaller depth

and size, and to be more understandable. An example of such a solution is shown in Figure

3.13. This solution, whose traversal pattern is shown in Figure 3.14, was found at generation

294 using the strategy of favouring programs with fewer loops. It uses 168 steps to eat the food

and is close to optimal. The ant moves in a zigzag manner, moving its head left or right to

detect food. If there is food ahead, it moves ahead and turns back by executing two TurnRight

actions. If not, it turns left. Depending on the result of sensing, the ant either does 2 forward

moves or just one move and then senses again. In our setting, if an ant is on the grid border and

continues moving forward, it will appear on the other side of the grid. This explains why there

are three short lines at row 20. In essence, this solution shows that the evolution generated a

piece of code starting from the first IfFoodAhead as the loop body and repeats this 5×5×5

times to solve the problem.

In contrast, Figure 3.15 shows the smallest successful solution evolved when there was no

favouring of programs containing fewer loops. This was generated with a value of 6 for max-

iterations. The program has more nodes and fragments and it is harder to understand what the

program is doing by analysing the code. Figure 3.16 shows the corresponding traversal pattern.
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Figure 3.12: Traversal pattern for a solution evolved with max-iterations=20, the modified ant
problem



CHAPTER 3. TWO EXPLICIT FOR-LOOP FORMATS 87

SIMPLIFIED :
(ForLoop1 times5

(ForLoop1 times5
(ForLoop1 times5

(IfFoodAhead
((Prog2 move turnRight) turnRight)
(Prog2 turnLeft (IfFoodAhead (Prog2 move move) move))))))

Figure 3.13: A solution evolved by favoring programs with fewer loops, the modified ant problem
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Figure 3.14: Traversal pattern of the program shown in Figure 3.13, the modified ant problem
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(ForLoop1 times5 (ForLoop1 times4 (Prog3 (ForLoop1 times4 move) (Prog3 (IfFoodAhead
(Prog3 move move move) move) (Prog3 (Prog2 turnRight move) turnRight (IfFoodAhead
(ForLoop1 times4 move) (Prog2 turnRight turnLeft))) (IfFoodAhead (Prog3 move move
move) move)) (Prog3 (IfFoodAhead (IfFoodAhead (Prog3 turnLeft turnRight move) move)
turnLeft) turnLeft (Prog2 move move)))))

Figure 3.15: A solution evolved without favouring programs with fewer loops, the modified ant
problem
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Figure 3.16: Traversal pattern of the program shown in Figure 3.15, the modified ant problem
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Figure 3.17: Traversal pattern of the only solution evolved by the no loops method, maximum
depth=10, the modified ant problem

It is very hard to get a solution with the no loops approach and no solution was found at a

maximum depth of 9. As we wanted to demonstrate a solution without loops, we increased the

maximum depth to 10 and finally we succeeded. Out of three hundred runs with the maximum

depth of 10, one run found an answer. The solution is enormous. It contains more than 5000

nodes and is impossible to understand. It takes four full A4 pages to print out. Figure 3.17

shows the traversal path of the solution. The ant uses 1704 steps to complete the task.

3.6 Problem Two — The Sorting Problem

The reasons for choosing sorting as the second problem are that the sorting task normally

involves an array or a vector and loops are used in most human designed algorithms. In a

sorting program, an index variable is used in the body of the loop. The variable used can index

any element in the array or the vector. The sorting problem is suitable for experimenting with

the second loop format, where there is a start and an end, and the body can use the index
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Table 3.4: Definition of terminals and functions, standard approach, the sorting problem

Nodes Name Description

Pos::Terminal Random number in range 0..6
IfLessThanSwap::Function Takes two arguments. If arg1 is less than arg2 the positions

are swapped and the position of the larger value is returned
Prog2::Function Takes 2 arguments and executes them sequentially.

Table 3.5: Definition of extra terminals and functions, loop approach, the sorting problem

Nodes Name Description

ForLoop2::Function Takes 3 arguments, start position, end position and body.
+,−,×, / Arithmetic functions with the usual meanings

variable.

There are two basic operations in sorting – comparing and swapping. Evolution of sorting

programs is not well suited to genetic programming because of difficulties with fitness evaluation.

It is very difficult to develop a tractable fitness function that guarantees any array of arbitrary

length will be sorted after the evolved program has been executed.

Previous research on how to evolve a sorting program by GP has been described in Section

2.3.3 (page 66). The objectives of previous work were to evolve generalised sorting algorithms

or to minimise the number of comparisons. Our focus is on the evolution of loops of different

complexities and on the comparison of the loops and no loops solutions. The issue of a generalised

sorting program is not addressed in this work.

3.6.1 Genetic Environment Settings

Function Set and Terminal Set

To minimise the number of functions and terminals used, this research follows the approach

described in [124, p335]. The definitions of the functions and terminals without loops are given

in Table 3.4. The extra functions for the loop approach are described in Table 3.5.

Fitness Function

The experiment only concerns arrays of length 7. Fitness is evaluated by applying an evolved

program to all 7! = 5040 permutations of the array elements, counting how far out of place each
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Table 3.6: Algorithm for fitness calculation, the sorting problem

int calculateFitness(int length, int * array)
{

int i, result = 0;
for( i=1; i <= length; i++)

result += abs( array[i-1] - i );
return result;

}

Table 3.7: Variable settings, the sorting problem

Variable Name Value

Population Size 100
Mutation / Crossover / Elitism Rate 0.28 / 0.70 / 0.02
Maximum / Minimum Depth 7 / 1
Termination Criteria 100 generations elapsed or the array is sorted.

element is and summing the values. The actual fitness calculation is shown in Table 3.6. Seven

was chosen as the upper limit of array size so that the runs could be done in reasonable time.

Other Genetic Environment settings

For this problem, the other genetic environment settings are listed in Table 3.7.

3.6.2 Experiments and Experimental Results — The Sorting Problem

As before, runs were carried out with no loops, with simple loops, where START and END are

restricted to an integer type, and with unrestricted loops, where START and END can be set

by any mathematical calculation including loops. All experiments were conducted using the

functions, terminals and other environment settings shown in Section 3.6.1.

Experimental Results

The fitness of the best individual for each method is shown in Figure 3.18. The corresponding

cumulative probability of success is shown in Figure 3.19. Programs with loops are clearly fitter.

In fact, for both kinds of loops nearly all runs found a solution within 40 generations, that is, a

program with zero fitness. (One run of simple-fewer-loops found a solution in 87 generations).

In contrast, at 100 generations, only 34 of the 50 runs without loops had found a solution.
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There seems to be an inconsistency between Figures 3.18 and 3.19. The runs of the simple

loops have the best possible mean fitness from the first generation and the unrestricted loops

take several generations to evolve solutions, yet the cumulative probability of success rises faster

for the unrestricted ones. This is because the y axis scale for the mean best program fitness is

huge. The best programs with simple loops result in superior mean best fitness, but none of

them actually reaches a solution in the first several generations. Because of the scale, the fitness

diagram looks like the simple-fewer-loops approach gets to the solutions quicker.

The size of the best individuals is shown in Figure 3.20. Surprisingly the programs with

loops are bigger than those without loops. This is because at an array size of 7, the programs

without loops are still relatively small and the benefits of loops are not yet apparent. As the

size of the array grows larger the no loops solution must also grow. Some preliminary work that

we have done on an array size of 11 has led to similar results to the ant problem. The results

show that the programs without loops were huge and the cumulative probability of success was

very small. In contrast, the programs with loops were smaller and the cumulative probability of

success was considerably higher.

The number of comparisons made by the best individual is shown in Figure 3.21. The

programs with loops are making more comparisons. This is because programs with loops can

easily have more comparisons than programs without loops at the similiar program size.

In Figure 3.20 and 3.21, the lines for the simple-fewer-loops and the unrestricted-fewer-loops

stop earlier than the no loops. This is because all runs of these two methods (Figure 3.19) have

achieved success before the maximum generation limit was attained.

Figure 3.22 shows one of the best evolved individuals without loops in terms of the number of

comparisons and the number of swaps. Figure 3.23 shows one of the best programs evolved with

the simple loops. Analysis of this program reveals a general strategy of moving large elements

to one end, while the no loops program is very difficult to understand.

The results on the sorting problem are not as good as those on the modified ant problem.

The main reason for this is that the sorting problem is considerably harder. It is known that

sorting can be done with two nested loops, however, the limits of the inner loop need to be

co-ordinated with the loop index of the outer loop. In our formulation of the problem this could

only happen by random chance. This did not occur in any of the evolved programs that were

analysed. The programs contained large numbers of uncoordinated loops.
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Figure 3.18: Mean best program fitness comparison, averages of 50 runs, the sorting problem
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Figure 3.19: Cumulative probability of success, the sorting problem
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Figure 3.20: Size of the best individuals, averages of 50 runs, the sorting problem
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Figure 3.21: Number of comparisons made by the best individuals, averages of 50 runs, the
sorting problem
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(Prog2 (Prog2 (Prog2 (Prog2 (ILETs pos-0 pos-2) (ILETs pos-5 pos-1)) (ILETs pos-4 pos-
6)) (Prog2 (Prog2 (ILETs pos-1 pos-6) (ILETs pos-0 pos-4)) (Prog2 (Prog2 (ILETs pos-4
pos-5) (ILETs pos-0 pos-4)) (ILETs pos-3 pos-4)))) (Prog2 (Prog2 (Prog2 (ILETs pos-1 pos-
3) (ILETs pos-2 pos-4)) (Prog2 (Prog2 (ILETs pos-4 pos-6) (ILETs pos-5 pos-4)) (Prog2
(ILETs pos-1 pos-2) (ILETs pos-2 pos-5)))) (Prog2 (Prog2 (ILETs pos-0 pos-1) (ILETs
pos-3 pos-5)) (Prog2 (Prog2 (Prog2 Dummy Dummy) (ILETs pos-2 pos-3)) (ILETs pos-4
pos-5)))))

Figure 3.22: One of the best programs evolved without loops, 18 comparisons and 8 swaps
(ILETs = IfLessThanSwap), the sorting problem

(Prog2 (Prog2 (Prog2 (ForLoop2 pos-3 pos-4 (ILETs i (i+1))) (ForLoop2 pos-2 pos-6
(ILETs i (i+1)))) (Prog2 (ForLoop2 pos-3 pos-4 (ILETs i (i+1))) (ForLoop2 pos-4 pos-5
(ILETs i (i+1))))) (Prog2 (ForLoop2 pos-1 pos-6 (ILETs i (i+1))) (Prog2 (Prog2 (ForLoop2
pos-3 pos-2 (ILETs i (i+1))) (ForLoop2 pos-1 pos-3 (ILETs i (i+1)))) (Prog2 (ForLoop2
pos-1 pos-3 (ILETs i (i+1))) (ForLoop2 pos-0 pos-6 (ILETs i (i+1)))))))

Figure 3.23: A good program with simple loops, 22 comparisons and 10 swaps, the sorting
problem

Table 3.8: Different sorting methods for 7 element arrays, 5040 test cases, the sorting problem
Methods Comparisons Swaps

Bubble Sort 21.00 10.50
Shell Sort 16.50 16.50
Insertion Sort 17.09 15.50
Selection Sort 21.00 6.00
Quick Sort 44.42 10.19

No loops 17.00 7.33
Simple loops 22.00 10.00
Unrestricted loops 21.00 9.00

Comparisons of the efficiency of the different approaches, as well as comparisons with stan-

dard sorting algorithms are shown in Table 3.8. For each row of the table the given algorithm

was applied to all of the 5040 test cases and the number of comparisons and the number of swaps

were counted. Quick sort has the highest number of comparisons for this problem and this is

because quick sort does not perform well for small sized arrays. The numbers in Table 3.8 refer

only to the average number of swaps and comparisons per test case. The evolved programs are

competitive with conventional algorithms.
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3.7 Problem Three — The Santa Fe Ant Problem

The reason for experimenting with the Santa Fe ant problem is to explore whether explicit loops

can work for this classic GP benchmark problem, since loops have been found to be beneficial

for the modified one.

The Santa Fe Ant problem has been described in Section 2.3.3 (page 63). In the original app-

roach, iterations are buried in the environment and the evolved program is repeatedly evaluated

until all the food is eaten or the maximum number of execution steps is reached.

The experiments conducted in this section compare the original approach (external loops)

with the explicit loops approach (simple loops) and the no loops approach. In the no loops app-

roach, the evolved program is invoked only once and no explicit loops and no implicit iterations

are allowed.

3.7.1 Genetic Environment Settings

Function Set and Terminal Set

The experiments use the format (for-loop1 num-iterations body) which has been described in

Section 3.3 (page 74). Only simple loops are examined, because previous modified ant prob-

lem experiments show that simple loops with reasonable max-iterations can deliver best results

similar to the unrestricted loops.

The functions and terminals are the same as for the modified ant problem and can be viewed

in Table 3.1 and Table 3.2.

Other Genetic Environment Settings

The tree depth setting is 10. The objective is to allow enough space for the no loops approach

to find a solution as 210 leaf nodes allow more than 600 steps. However, the chance of finding a

solution without loops is still unknown. The other parameters are the same as for the modified

ant problem. They are listed in Table 3.3.

3.7.2 Experiments and Experimental Results — The Santa Fe Ant Problem

The experiments were run 100 times each for the original approach (external loops), the simple

loops approach and the no loops approach. In the simple loops approach, programs with a smaller



CHAPTER 3. TWO EXPLICIT FOR-LOOP FORMATS 97

number of loops were favored with max-iterations set to 20 (simple-loops-max-it-20-fewer-loops).

Experimental Results

Figure 3.24 shows that the simple loops approach performed much better than the no loops

approach. The best performing method is the one where the iteration control is external. The

figure also reveals that without loops, it is hard to get fitness improvement for this problem.

Figure 3.25 shows the cumulative probability of success. It demonstrates the same pattern

shown in Figure 3.24, that is external loops performed best with 14 solutions in 100 runs, while

simple loops gave 2 solutions out of 100 runs. There were no successes for the no loops approach.

Figure 3.26 shows the average size of of the programs. The programs with simple loops or

external loops are much smaller in size than the programs with no loops.

These three figures demonstrate the same patterns for this classic GP problem as in the

previous two problems, that is, without loops, programs tend to be larger in size and the fitness

does not improve significantly during the evolution.

3.7.3 Analysis of Solutions for The Santa Fe Ant Problem

One perfect solution obtained with explicit loops and one best program obtained without loops

have been selected to demonstrate the differences.

Figure 3.27 shows the perfect solution evolved by favoring programs with fewer loops and

Figure 3.28 shows the traversal pattern of this program. The results show that when favoring

programs with fewer loops, the complete solutions obtained are similar to those obtained by the

external loop approach (see Figure 2.8) but are not quite as good. This is because in the external

loop approach, only the loop body needs to be evolved, while in the simple loops approach, the

task is considerably more complex as the evolution needs to determine whether loops will be

useful as well as the loop body and the number of iterations. These operations cost time and

add variability to the evolution. The program in Figure 3.27 shows that most of the for-loop

functions appear at the beginning of the program. Another finding which is worth pointing out,

is that for the complete program with explicit loops, the ant continues to move after all the food

has been eaten. This is because when all the food is eaten before a loop process is finished and

if there are still steps left, the ant will continue to move and stop only when the loop finishes

and the condition is then rechecked.
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Figure 3.24: Mean best program fitness, averages of 100 runs, the Santa Fe ant problem
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Figure 3.25: Cumulative probability of success, average of 100 runs, (the no loops line is on the
x axis), the Santa Fe ant problem
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Figure 3.26: Program size, average of 100 runs, the Santa Fe ant problem

Figure 3.29 shows the traversal pattern of the best program found in the no loops approach.

The ant ate 50 pieces of food on the trail and there were still 39 pieces left. The size of this

program is more than 5000 nodes. It is very hard for GP to achieve a complete solution of such

a large size.

The average size shown in Figure 3.26 together with the cumulative probability of success

shown in Figure 3.25 suggests that the depth limit of 10 for the no loops approach may be

too small. Our reason for setting a depth limit of 10 is that the original approach restricts a

solution to 600 steps and maximum depth of 10 allows 210 = 1024 steps, which seems enough for

a successful solution. However, in the experiments the programs quickly grew to the size limit.

When programs became a full tree shape with maximum depth, they were hard to improve in

this problem. A larger maximum depth may help to alleviate this, but it is clear that it will still

be hard to evolve a solution without loops.

3.8 Problem Four — The Visit Every Square Problem

In the visit-every-square problem, a robot is required to navigate through every square in a n×n

grid. The robot has four available actions – left, right, up, down. At the beginning, the robot is
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(ForLoop times18 (ForLoop times16 (Prog2 (IfFoodAhead (IfFoodAhead (ForLoop 2
move) (Prog3 turnLeft turnRight (IfFoodAhead move (IfFoodAhead turnLeft move))))
turnRight) (Prog2 move (IfFoodAhead turnLeft (IfFoodAhead (Prog3 (Prog3 (Prog3
turnRight move move) turnLeft turnRight) (IfFoodAhead move turnLeft) move) (Prog2
(IfFoodAhead (IfFoodAhead move turnRight) (IfFoodAhead turnRight turnRight)) (If-
FoodAhead (Prog2 turnRight turnLeft) (Prog2 turnLeft turnLeft)))))))))

Figure 3.27: A perfect solution evolved with favouring programs with fewer loops, max-
iterations=20, simple-loops-max-it-20-fewer-loops, the Santa Fe ant problem
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Figure 3.28: Traversal pattern for the perfect solution evolved with explicit loops shown in
Figure 3.27, simple-loops-max-it-20-fewer-loops, the Santa Fe ant problem
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Figure 3.29: Traversal pattern for the best program found in the no loops approach in 100 runs,
the Santa Fe ant problem

(a) 4    4 Problem (c) 8    8 Problem(b) 6    6 Problem

Figure 3.30: The visit-every-square problem
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placed at the top left square of the grid. Each square can be visited more than once, but each

square must be visited at least once in a solution. There is no penalty for visiting a square more

than once.

The construction of this problem is stimulated by the idea of the Santa Fe ant problem and

the modified ant problem where the search is performed in a two dimensional grid. The reasons

for proposing this problem are that we want to analyse why GP with loops performs well (see

Chapter 5) and to have a problem which cannot be solved without loops. It is difficult to adjust

the complexity of the problems we have used so far. The difficulty of the visit-every-square

problem can be adjusted with the size of the grid. The task can be made impossible for GP

without loops by limiting the tree depth.

The specific task in this section is to direct a robot to navigate through a 4×4 or 6×6 or

8×8 grid (see Figure 3.30).

3.8.1 Genetic Environment Settings

Functions and Terminals

The terminals in the visit-every-square problem are simple. There are four actions represented

by four terminals Left,Right, Up,Down. If a move through a border is required, for example,

Up or Left from the positions shown in Figure 3.30, the robot takes no action.

There is only one function for the no loops approach Prog2, which takes two arguments

and executes them sequentially. The loop approach uses the simple for-loop1 (for-loop1 num-

iterations body) as an extra function (see Section 3.3.1).

Fitness Function

The fitness is the number of the non-visited squares, see Equation 3.1.

fitness = Total Number of Squares − Squares V isited (3.1)
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Table 3.9: Parameter settings, the visit-every-square problem

PARAMETERS VALUES

Population Size 100
Max. Generation 50
Mutation / Crossover / Elitism Rate 28% / 70% / 2%
Termination Criteria Successfully visited every square or 50 generations

reached

Other Genetic Environment Settings

The maximum allowed depth for a program is 6, which allows 26=64 steps. 64 steps permit at

least one solution for the no loops approach for the largest grid of 8×8.

The maximum allowed value for num-iterations is 50, which is large enough for any reasonable

looping. The rest of genetic variable settings can be viewed in Table 3.9

3.8.2 Experiments and Experimental Results

The runs of the 4×4, 6×6 and 8×8 visit-every-square problem were conducted 100 times for GP

with loops and without.

Experimental Results

Figure 3.31 shows the mean best program fitness for the no loops and the simple loops ap-

proaches. The dotted lines indicate the simple loops and the solid lines are runs without loops.

The thicker the line the larger the grid size. It is clear from this figure that the larger the grid

size the more difficult the program. Also, the larger the difference between the best fitness for

programs with loops and without, the larger the benefit from using loops.

Figure 3.32 shows the cumulative probability of success for the six experiments. A solution

means that the robot has visited every square of the grid. The plot shows the same pattern

as the best fitness in Figure 3.31. For the 4×4 visit-every-square problem experiments, simple

loops and no loops are similar in performance with simple loops just slightly better than the

no loops. For the 4×4 problem, both approaches gave 100 solutions in 100 runs. The lines

for the 6×6 and 8×8 problem for the simple loops and the no loops are contrasting. For both

problems, the no loops approach did not get a single success in 100 runs, even though a tree

depth 6 gives enough capacity for a solution. The simple loops approach performed well on both
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problems, giving about 42 solutions for the 6×6 problem and 21 for the 8×8 problem. Figure

3.32 illustrates that with increase in grid size, the visit-every-square problem becomes harder

and the no loops methods cannot adapt to the increase in the grid size.

3.8.3 Analysis of Solutions for The Visit Every Square Problem

We analysed a number of random solutions evolved for the 6×6 visit-every-square problem.

Figure 3.33 shows a solution evolved by the simple loops approach and Figure 3.35a is the

traversal pattern of this program. The robot traverses in a zigzag fashion with some unnecessary

steps to re-visit some squares, but achieves the objective. The size of the program is 21.

Figure 3.34 shows the best solution evolved by the no loops approach and Figure 3.35b is

the traversal pattern of this program. The figure shows that the best solution for the no loops

approach does not finish the task and 5 squares are unvisited. The program size is 63.

Overall, the experiments for this visit-every-square problem demonstrate that loops are ben-

eficial. Loops help GP to get more successful solutions quicker and solutions tend to be smaller

in size. Also, we have established that there are some problems that can only be solved with

loops.

3.9 Problem Five — Symbolic Regression

The reason for experimenting with these three symbolic problems is to determine whether GP

with loops can take advantage of increasing potential for loops and perform increasingly better

than the no loops approach.

As described in Section 2.3.3, the task of symbolic regression is to find a function in symbolic

form that fits a given finite sample of data. In the current GP literature, we cannot find any

previous work which solves this problem with loops. In general, it is likely that the chance of

repetitive patterns appearing in a symbolic function is small.

The kinds of symbolic problems used in this section are described in Section 2.3.3. They

have been modified to a set of three problems with incremental potential for loops. The target

functions are F1 = x3+x2+x, F2 = x5+x4+x3+x2+x, F3 = x8+x7+x6+x5+x4+x3+x2+x.

Functions (F1, F2) are exactly the same as those described earlier (see Section 2.3.3, page 67).

F3 is an extension of the problem. It increases the highest power of x to 8. We expect that the
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Figure 3.31: Mean best program fitness, averages of 100 runs, the visit-every-square problem
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(ForLoop t42 (Prog2 (Prog2 (Prog2 (ForLoop t6 right) down) (ForLoop t49 left)) (Prog2
(Prog2 right (ForLoop t48 left)) (ForLoop t50 right))))

Figure 3.33: A solution evolved by the simple loops method, max-iterations=50, size=21, the
visit-every-square problem

program (prog2 (prog2 (prog2 (prog2 (prog2 down right) (prog2 right up)) (prog2 (prog2
left down) (prog2 down right))) (prog2 (prog2 (prog2 down left) (prog2 left down)) (prog2
(prog2 right right) (prog2 down down)))) (prog2 (prog2 (prog2 (prog2 right right) (prog2
up right)) (prog2 (prog2 up left) (prog2 up right))) (prog2 (prog2 (prog2 up up) (prog2
left down)) (prog2 (prog2 left down) (prog2 down down)))))

Figure 3.34: The best solution evolved by the no loops method, size=63, the visit-every-square
problem

(a) (b)

Figure 3.35: (a) shows the traversal pattern for Figure 3.33, (b) shows the traversal pattern for
Figure 3.34, the 6×6 visit-every-square problem
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Table 3.10: Variable settings, symbolic regression

Variable Name Value

Population Size 100
Mutation / Crossover / Elitism Rate 0.28 / 0.70 / 0.02
Maximum / Minimum Depth 9 / 1
Termination Criteria 100 generations or the values of evolved program

correctly match the target function in 50 points.

benefits of loops will increase with increasing value of the largest power.

3.9.1 Genetic Environment Settings

Function Set and Terminal Set

The experiments use x as the independent terminal. In the no loops approach, binary operators

{+, *} are used as functions.

In the loops approach, the loop function (for-loop1 num-iterations body) is used. The syntax

has been described in Section 3.3. Only simple loops are used and the semantics of for-loop1

are revised, body will be multiplied num-iterations times. The maximum number of iterations

is set to 12.

Fitness

The GP samples 50 points in the interval [0, 200] as the testing cases. The fitness is the sum

of the absolute differences between the values returned by the evolved program at the different

sampling points and the value from the known formula.

Other Genetic Environment Settings

Other genetic variable settings are shown in Table 3.10. These variable values are similar to

values in previous experiments and the maximum depth is set to 9 to allow perfect solutions in

the no loops approach.

3.9.2 Experiments and Experimental Results — Symbolic Regression

Experiments without loops and with loops have been run 100 times with the functions, terminals

and other environment settings shown in Section 3.9.1.
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Experimental Results

The increasing largest power value of x is regarded as an indicator of increasing potential for

loops. F3 with x8, which has the highest power value of x among the three functions, has the

highest potential for loops.

Figure 3.36 shows a comparison of total number of solutions for these three target symbolic

functions out of 100 runs. The total number of evolved solutions for each problem is decreasing,

indicating that F1 to F3 are increasingly difficult. The results show the same pattern as found

in previous experiments with other problems, that is GP with loops achieved more successes

than GP without.

Figure 3.37 shows the same data as figure 3.36, but showing successes with loops as a ratio

of successes without loops. In the diagram, the success ratio for F1 with loops is around 1.06,

the success ratio for F2 is increased to 1.82. F3 has the highest success ratio of 3.5. This ratio

is increasing with increasing power value of x and this indicates that, for this problem, GP with

loops is more beneficial as the potential for loops increases.

3.10 Parameter Sensitivity Analysis

In this section, we analyse the effect of the settings of genetic parameters for the runs with and

without loops in order to demonstrate that it is the explicit looping constructs that are the

dominant factor in the evolution process, not the choice of the genetic parameters of crossover

or mutation rates and population size.

The modified ant problem (see Section 3.5, page 78) and one of the symbolic regression

problems F2 (see Section 3.9, page 103) have been selected for analysis.

Two sets of experiments have been conducted in this sensitivity analysis. The first set varies

the crossover and mutation rates. The elitism rate (2%) and the population size (100) are

constant in these runs. The crossover rates are 10%, 20%, 55%, 70%, 95%. Because in our

setting, the sum of the crossover, mutation and elitism rates is 100%, the mutation rates are

88%, 78%, 43%, 28%, 3% respectively. The second set of experiments varies the population size.

The population size is set to 10, 50, 100, 200, 500 and the crossover, mutation and elitism rates

are 70%/28%/2%.
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Figure 3.36: Total number of success for different target functions, 100 runs, symbolic regression
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Figure 3.37: Success ratio for different target functions, 100 runs, symbolic regression
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3.10.1 Experimental Results — The Parameter Sensitivity Analysis

One hundred runs with no loops and simple loops with the above parameter values have been

carried out.

Figure 3.38 shows the mean best fitness for the experiments with loops and without at

different crossover and mutation rates. The solid lines represent the runs without loops and the

dotted lines represent the runs with simple loops. The thicker the line, the higher the crossover

rate, thus the lower the mutation rate. The graph shows that all solid lines have worse fitness

than the dotted lines and there is a distinct gap between them. The simple loops approach

performed much better than no loops for all comparisons.

Figure 3.39 demonstrates the cumulative probability of success for the experiments on varying

the crossover and mutation rates. All solid lines are on the x axis and the no loops approach

does not get a single perfect solution in 500 runs.

Figure 3.40 shows the mean best fitness for the runs at different population sizes for the no

loops and simple loops approaches. The solid lines represent the no loops runs and the dotted

lines represent the simple loops runs. The thicker the line, the larger the population. Except

for the no-loops-pop500 method outperforming the simple-loops-pop10 method, all other loop

methods beat the no loops methods.

The cumulative probability of success shown in Figure 3.41 demonstrates the same pattern

as in Figure 3.39. The no loops method does not get a single success while simple loops method

has many successes. The graph also shows that there is an increasing number of successes.

The experiments conducted with increasing population size for the F2 symbolic regression

problem showed the similar patterns as in the modified ant problem (Figures not shown).

Overall, the sensitivity analysis experiments show that the use of looping constructs is the

key factor in the improvement of the fitness and in getting more solutions. Although there

were variations in the performance of the simple loops and the no loops methods with different

settings, simple loops always outperformed no loops in cumulative probability of success.

3.11 Summary and Discussion

This chapter of the thesis describes and discusses two formats of explicit loops and gives empirical

results for solving five artificial problems by GP with and without loops. By restricting the
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semantic complexity of the for-loops, the experiments were successful in evolving small, efficient

and reasonably understandable solutions to these problems. In relation to the research questions

asked by this chapter the outcomes are as follows:

1. How can we restrict the syntax and semantics of for-loops in a way that avoids problems

of infinite loops and still provides useful benefits for genetic programming?

Explicit for-loops can be used in GP by introducing looping nodes and domain dependent

limits on the maximum number of iterations. In our experiments, we have composed two

formats of explicit for-loops to solve five artificial problems. The function node for-loop

and the terminal nodes number-of-iterations or start and end need to be introduced. In

addition, a maximum number of iterations needs to be specified or the value of the start

and the end variables needs to be constrained by the domain information.

Explicit for-loops provide useful benefits for genetic programming. The empirical results

demonstrate that with loops, GP gets to a solution quicker in fewer generations thus fewer

evaluations are needed. The major findings are:

• Using a fitness function which favours programs with fewer loops was very benefi-

cial. The programs evolved in this way were smaller and more understandable and

generally fitter than programs evolved without this bias.

• It is not clear whether simple loops with semantic restrictions are easier to evolve

than more complex loops with less restrictions. Our initial experiments showed that

programs tend to get better fitness when calculation in the branch of num-of-iterations

is allowed. Further analysis found that this is because the value of max-iterations was

too small. Set a big value for max-iterations improved evolution for the simple loops,

but not for the unrestricted loops.

• Loops are more helpful when there is more potential for loops. In the symbolic

regression experiments, the loops approach performed better by getting a higher ratio

of success than the no loops approach as the potential for loops increased.

2. Can GP with for-loops solve some problems that cannot be solved or are very difficult to

solve without explicit loops?



CHAPTER 3. TWO EXPLICIT FOR-LOOP FORMATS 113

Yes. GP with for-loops can solve some problems that cannot be solved or are very difficult

to solve without explicit loops.

In the visit-every-square problem, we found that with the increasing grid size, the number

of solutions for the no loops approach decreased dramatically, that is, the problem becomes

more difficult. We did not get any solutions without loops for the 6×6 and 8×8 visit-every-

square problem in 100 runs, while with simple loops, there were 20 to 40 solutions.

The modified ant problem is very difficult to solve without loops (in GP). The one solution

from 300 runs contained over 5,000 nodes. In contrast, there were 10 to 20 solutions evolved

by GP with loops and many of the solutions had fewer than 30 nodes.

The sensitivity analysis conducted at the end of these experiments shows that there are

minor differences in performance for different genetic parameter settings. However, the looping

constructs give major differences in performance and are the key factor for the good performance.

In most runs, irrespective of the different parameter settings, the runs with loops performed much

better than those without.

The results in this chapter suggest that looping constructs are worth considering when the

problem domain has some repetitive characteristics. While evolution of generalised loops is

currently not possible, looping constructs with carefully designed syntax and semantics can be

used to great advantage.



Chapter 4

Solving A Binary Image

Classification Problem

4.1 Introduction

In this chapter, the use of the for-loops with restricted semantics will be investigated for a

problem in which there are natural repetitive elements, that of distinguishing two classes of

images. The outcome of this experiment will answer the thesis’s main research question 3, that

is, whether restricted loops can be used in solving a difficult object classification problem and

provide benefits as on other artificial problems (see Section 3, page 10). While we do not claim

that this is a difficult computer vision problem, the problem presented in this chapter is more

difficult than the previous artificial problems because the repetitive patterns are not obvious and

capturing the repetitive patterns is not necessary for solving small instances of the problem. In

this object classification problem, using our proposed formulations, classifiers with loops have

been successfully evolved. They can capture the repetitions in pictures and perform much better

than those without loops. The results suggest that loops with problem dependent formats can

be successfully used in GP in the situations where domain knowledge is available to provide

some restrictions on loop semantics.

The task of object classification has been described in Section 2.4. As stated, an image

contains a large number of pixels and these pixels or features extracted from them need be input

into the classifier for decision making. The evolution of a classifier takes time and the process

of evolving a classifier may suffer from over-training (see Section 2.4.2, page 69).
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This chapter presents three explicit for-loop formats. They are formulated through analysing

the domain information of the problem and taking simplicity, generality and efficiency into

consideration.

4.2 Chapter Goals

The aim of this chapter is to answer the main research question 3 in Chapter 1 (see Section 3,

page 10), that is:

3. Can for-loops be used in a difficult object classification problem with similar performance

gains to those achieved on relatively simple artificial problems?

This question explores a difficult image classification problem - an artificially constructed two

class binary image classification problem in which the repetitive patterns are not obvious. The

question has been divided into the following sub-questions:

1. How can for-loops be incorporated into evolved programs for image classification?

2. Does GP with for-loops perform better, that is, do classifiers with for-loops need fewer

generations to evolve and are smaller, more accurate and more understandable than those

without loops?

3. What variations of for-loops can be used?

4. What are the differences between decision strategies in the evolved loop and non-loop

programs?

The expectations are that loops can be applied to the classification problem and classifiers

with for-loops will be smaller in size and easier to analyse and thus more understandable.

4.3 The Binary Image Classification Problem

This image classification problem involves distinguishing two objects of interest, circles and

squares. The objects are of similar sizes.

In the first classification task, the objects are centered in a 16×16 grid. The pictures were

generated by firstly constructing full squares and circles and then manually removing groups of

pixels or individual pixels to leave objects that a human would recognize as circles or squares.
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This makes the classification task non-trivial. Examples of these images are shown in Figure 4.1

and Figure 4.2.

The second classification task involves shifted images. The centered objects have been ran-

domly moved in the horizontal or vertical direction. This increases the difficulty of the task.

Examples of the shifted images are shown in Figure 4.3 and Figure 4.4.

The task of the experiments is to let GP evolve a classifier by learning from training images

and then use it on the test images to determine whether they are squares or circles. A successful

classifier should correctly classify the training (see Figure 4.1 and Figure 4.3) and testing images

(see Figure 4.2 and Figure 4.4). In our formulation, classifiers indicate a square when they

return a value greater than or equal to 0; classifiers indicate a circle when they return a value

less than 0. Small classifiers evolved with a small computation cost are desirable.

For simplicity, in the first set of experiments, the 16×16 grid is represented by a one-

dimensional array of length 256. Pixel values are either 1 or 0. In the second set of experiments,

a 16×16 array is used to represent an image in order to better use the spatial information in im-

ages. For each problem, we will evolve classifiers with and without loops and compare accuracy,

size, computation cost and convergence behaviour.

4.4 Syntax and Semantics of the For-loops

Three loop formats have been composed for this problem. The logic behind these compositions

is: For loop format 1, we wanted to solve the problem by utilising loop formats that we had

successfully used earlier (see Chapter 3) and this requires the image to be represented as a one-

dimensional array. Since a two-dimensional array is a more natural representation of an image,

we then investigate loop formats for a two-dimensional representation.

4.4.1 Loop Format 1 — Traversing Lines in a One-Dimensional Representa-

tion

In loop format 1, the syntax is the same as for-loop2 in Chapter 3 for solving the sorting problem

(see Section 3.3.2, page 74), but the semantics are different. The syntax is:

(for-loop-1d start end method)

In this formulation, start or end are of type position. Terminals of this type are denoted by
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Figure 4.1: Centered binary images for training

Figure 4.2: Centered binary images for testing
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Figure 4.3: Shifted binary images for training

Figure 4.4: Shifted binary images for testing
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pos-i and i is a value between 0 and 255. This allows loops to utilise positions to traverse the

array and get pixel values in those positions. Method is a function selected from {plus,minus}.

If end is greater than start, for-loop-1d will traverse the image from the start position to the

end position, get the pixel values in these positions and perform the calculation indicated by

method.

In evolved programs, terminals that return pixel values directly are also available. A terminal

denoted by pixel-value-i returns the value of the pixel at position [i] and is of type double. We

set different types for pixel-value-i and pos-i. This avoids potential crossover between these two

terminals, so that start and end can only be valid positions and not pixel values. A summary of

the terminals and functions used in this loop approach can be viewed in Tables 4.1. and 4.2.

An example of this loop format in an evolved program is:

(for-loop-1d pos-3 pos-26 plus) .

The program will add up pixel values, which are either 0 or 1, from array position 3 to 26 and

return the sum.

If start is greater than end, for-loop-1d will calculate the result in the reverse order. The

program (for-loop-1d pos-26 pos-3 plus) is equivalent to (for-loop-1d pos-3 pos-26 plus) while (for-

loop-1d pos-26 pos-3 minus) may return a different value to (for-loop-1d pos-3 pos-26 minus)

because of the order in computing.

In this implementation, infinite loops are not possible and no special actions are necessary

in fitness calculation. In this chapter, methods using this loop format will be identified by 1d-

?-loops in graphs of results with ? replaced by centered or shifted to indicate whether objects

in the images are centered or shifted.

4.4.2 Loop Format 2 — Traversing Rectangles in a Two-Dimensional Repre-

sentation

Loop format 2 has the same basic format as loop format 1 but been proposed for images in a

two-dimensional representation. Instead of lines, loop format 2 traverses rectangles. The syntax

is:

(for-loop-2d-rect start end method)

In this format, start and end are of type position. Terminals of this type for two-dimensional

representations are denoted by pos-i-j where i,j are values between 0 and 15. These two positions
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are regarded as the opposite corners of a rectangle. The program uses these two positions to

traverse the rectangle. Method has the same meaning as loop format 1 and is a function indicator

selected from {plus,minus}.

As before, terminals which return pixel values directly are also available. Pixel-value-i-j

returns the value of the pixel at position [i,j]. As before, we set different types for pixel-value-i-j

and pos-i-j. This avoids potential crossover between these two terminals, so that start and end

can only be valid positions and not pixel values. A summary of the terminals and functions can

be viewed in Table 4.3.

An example of this loop format in an evolved program is:

(for-loop-2d-rect pos-3-0 pos-4-2 plus) .

In this example, the method is plus. During evaluation, the loop will traverse a rectangle starting

from point [3,0] with opposite corner at [4,2] and return the sum of pixel values in [3,0], [3,1],

[3,2], [4,0], [4,1], [4,2].

Runs allowing this format of loops will be referenced by 2d-?-loops-rectangles with ? replaced

by centered or shifted.

4.4.3 Loop Format 3 - Traversing Lines in a Two-Dimensional Representation

In loop format 3, the spatial information in images in a two-dimensional representation is utilised

to allow loops to traverse straight lines at different angles. The proposed loop syntax is:

(for-loop-2d-line start direction length method) .

In this formulation, start is of type position and is denoted by pos-i-j as in loop format 2. Pos-

i-j indicates the first pixel position [i,j] of the line. Direction represents the angle. There are 8

possible directions for a straight line. They are {up, down, left, right, upLeft, upRight, downLeft,

downRight}. Length indicates the number of squares that a loop traverses. Depending on the

location of the first pixel, the maximum length of a line is validated during the evolution, so that

in any genetic operations, length will not be a value that makes a line across a border. Method

is the same as in for-loop-2d-rect and is selected from {plus, minus}. A summary explanation

of the terminals and functions can be viewed in Table 4.4 (page 122).

An example of this loop format in an evolved program is:

(for-loop-2d-line pos-5-0 upRight length-3 plus) .

In this example, the method is plus. During evaluation, the loop will traverse a line of length
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4 (3 is the line length excluding the starting point), starting from position [5,0] in the upRight

direction and return the sum of the pixel values in positions [5,0], [4,1], [3,2], [2,3]. The different

types for position, pixel value and length ensure that only correct programs can be generated in

initialization and only valid genetic operations can be performed during the evolution.

Runs with this format are referenced by 2d-?-loops-lines with ? replaced by centered or

shifted.

4.5 Programs Without Loops

Runs without loops have been conducted for images in one and two dimensional representations

and the results were compared with loop approaches.

4.5.1 No Loops in a One-Dimensional Representation

In evolved programs, a pixel is referenced by a terminal denoted by pixel-value-i. Pixel-value-i

is of type double and i is a value between 0 and 255. Pixel-value-i returns the pixel value stored

in the array position i. In addition, a random value terminal denoted by drand-x is used and

generates random double values between 0.0 and 100.0. Plus and minus represented by {d+,

d-} are the only functions used and both take two double value arguments.

A summary of terminals and functions can be viewed in Table 4.1.

4.5.2 No Loops in a Two-Dimensional Representation

In evolved programs, a pixel is referenced by pixel-value-i-j. Pixel-value-i-j is a terminal of type

double and i, j are values between 0 and 15. Pixel-value-x-y returns the pixel value in the

array position [i,j]. The other terminals and functions are the same as in the one dimensional

representation.

4.6 Loops for Images in a One-Dimensional Representation

The images in a one-dimensional representation are examined first, because we want to see if we

can be successful with the simpler situation first before going to more complex situations.



CHAPTER 4. SOLVING A BINARY IMAGE CLASSIFICATION PROBLEM 122

Table 4.1: Definition of terminals and functions, the no loop approach, images in a one-
dimensional representation

Nodes Type Description

Drand::Terminal double Generates a double value between 0.0-100.0 denoted by
‘drand-x’.

Pixel-Value::Terminal double Generates a random position between 0-255, denoted by
‘pixel-value-i’. It returns the pixel value at position [i]
and the pixel value is cast to a double.

d+::Function double Takes two double values and returns the sum.
(d+ double double)

d-::Function
(d- double double)

double Takes two double values, subtracts the second from the
first and returns the result.

Table 4.2: Definition of extra terminals and functions, the loop approach, images in a one-
dimensional representation

Nodes Type Description

Pos::Terminal position Generates a random position between 0-255 de-
noted by ‘pos-i’.

Minus::Terminal method An indicator of the minus operation, denoted by
‘minus’.

Plus::Terminal method An indicator of the plus operation denoted by
‘plus’.

For-Loop-1d::Function
(for-loop-1d
position position method)

double Takes 3 arguments. The first two are positions and
the third argument is a method. The loop will tra-
verse the array segment between the positions and
perform the calculation indicated by the method.



CHAPTER 4. SOLVING A BINARY IMAGE CLASSIFICATION PROBLEM 123

Table 4.3: Definition of extra terminals and functions, 2d-loops-rectangles, images in a two-
dimensional representation

Nodes Type Description

Pos::Terminal position Generates a random position in a two-
dimensional array denoted by pos-i-j. The val-
ues of i, j are constrained between 0-15.

Minus::Terminal method An indicator of the minus operation and is
denoted by ‘minus’.

Plus::Terminal method An indicator of the plus operation and is de-
noted by ‘plus’.

For-Loop-2d-Rect::Function
(for-loop-2d-rect
position position method)

double Takes 3 arguments. The first two are of type
position. They indicate two corner points of
the rectangle. The third is of type method.
The loop traverses the pixels in the rectangle
and performs the calculation indicated by the
third argument.

Table 4.4: Definition of extra terminals and functions, 2d-loops-lines, images in a two-
dimensional representation

Nodes Type Description

Pos::Terminal position Generates a random position denoted by ‘pos-
i-j’. The values of i, j are constrained between
0-15.

Direction::Terminal direction Generates a value selected from up, down, left,
right, upLeft, upRight, downRight, downLeft.

Length::Terminal length Generates a value denoted by ‘length-x’ to in-
dicate the line length and the length will not
exceed the border of the 16×16 grid

Minus::Terminal method An indicator of the minus operation and is
denoted by ‘minus’.

Plus::Terminal method An indicator of the plus operation and is de-
noted by ‘plus’.

For-Loop-2d-Line::Function
(for-loop-2d-line
position direction length method)

double Takes 4 arguments. The first three arguments
indicate a straight line at a certain angle. The
loop traverses the line and performs calcula-
tion indicated by the fourth argument.
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Figure 4.5: Parameter settings

PARAMETER NAME VALUES
Population Size 100

Generation Number 2000
Mutation/Crossover/Elitism Rate 28 % / 70 % / 2 %

Tree Depth min : 1 max : 7
Initialisation Method Ramped half-and-half, where grow and full meth-

ods each deliver half of the initial population
Selection Method Proportional fitness

Termination Criteria 100 % accuracy on training set or 2000 genera-
tions reached

Number of Runs 100 runs each
The Training Set 32 pictures (16 squares/16 circles)
The Testing Set 18 pictures (9 squares/9 circles)

4.6.1 Genetic Environment Settings

Function Set and Terminal Set

In the normal (ie. no loops) approach, functions and terminals are similar to previous work in

GP for object classification (see Section 2.4) and can be viewed in Table 4.1.

In the loops approach, GP will have all the functions and terminals in the normal approach

and the extra terminals and functions for loops listed in Table 4.2 which have been explained in

Section 4.4.1.

Fitness Function

In evaluation, each individual will return a value either less than, equal to or greater than 0.

In our formulation, a value less than 0 indicates a circle, while a value equal to or greater than

0 indicates a square. The number of wrongly classified training images divided by the total

number of training images (error rate) is used as the fitness, see Equation 4.1.

fitness =
Number of Errors

Total
(4.1)

Other Genetic Variable Settings

The other genetic environment settings are illustrated in Table 4.5.
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4.6.2 Experiments and Experimental Results

Experiments with the normal and loop methods have been run 100 times each.

Experimental Results

Figures 4.6 - 4.12 show data gathered during the experiments. In the figures, centered-normal

indicates the experiments were done on centered images without loops. Centered-loops indicates

the experiments used the extra loop functions and terminals on centered images (see Table 4.2).

Shifted indicates the experiments were on shifted images.

Figures 4.6 and 4.7 show the overall convergence behaviour of the population. Figure 4.6

shows the cumulative probability of success for getting a perfect classifier. A perfect classifier

means that the evolved program classifies all the training and test images correctly. If a classifier

passes the training set, but fails to identify all the testing images, it is considered a failure. If a

classifier correctly classifies only a portion of the training and/or test images, it is also considered

a failure. The graph shows that for the centered images the loop method is much more likely to

generate a successful classifier. At 600 generations (60×1000 evaluations) 82 of the 100 loop runs

had succeeded while only 52 of the normal runs without loops were successful. The difference is

even more pronounced on the more difficult shifted image problem. After 2,000 generations, 36

of the 100 loop runs had succeeded while only 2 of runs without loops were successful. Figure

4.7 shows the mean average training fitness. These curves are consistent with the success rates

shown in Figure 4.6.

Figures 4.8 and 4.9 show the mean average fitness with one standard deviation on centered

images for the no loops and loops approaches. The reason for showing these two graphs is that

during the experiments a large variability was found in the loops approach. This was not so

obvious in the previous experiments (see Chapter 3).

Figure 4.10 shows the mean best program fitness. The best program refers to the best

evolved classifier in the training process. This may not be a successful classifier. There is

not much difference in the mean best program fitness for the centered images between both

approaches, even though Figure 4.6 shows that there are more successes by the loop method.

This is because classifiers using loops have a larger variation in fitness (see Figures 4.8 and

4.9). The fitness in bad runs offsets the fitness in the good runs. For shifted images, there is

a significant difference. Classifiers evolved without loops do not perform well. This trend is
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Figure 4.6: Cumulative probability of suc-
cess, average of 100 runs, images in a one-
dimensional representation
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Figure 4.7: Mean average training program
fitness, average of 100 runs, images in a one-
dimensional representation
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Figure 4.8: Mean average fitness with one
standard deviation, centered objects, no
loops approach, images in a one-dimensional
representation
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Figure 4.10: Mean best training program fit-
ness, average of 100 runs, images in a one-
dimensional representation
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Figure 4.11: Mean best program testing fit-
ness, average of 100 runs, images in a one-
dimensional representation
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further shown by the fitness of the best runs on the testing set as shown in Figure 4.11.

Figure 4.11 follows the same pattern as Figure 4.10. The loop method performs much better

for shifted images and programs with loops have a wider variation in fitness. For the centered

problem in Figure 4.11, none of the approaches actually get perfect solutions in all runs, but,

because of the scale of the Y axis, it appears that zero fitness is reached.

Figure 4.12 shows the average size of the programs. Initially, we expected that programs

with loops would be much smaller in size, but the results revealed that this was not the case.

There are no wide differences for classifiers on the centered images or on the shifted images.

The reason for this is that the training data is not hard enough and GP quickly found smaller

sized solutions in both approaches and evolution stopped. However, many successful training

classifiers evolved by the no loops method do not perform well on the test set. This suggests that

the training set may be too small, but the classifiers with loops are more robust, that is they

generalize better to unseen images. Figure 4.12 also shows that, for the centered images, both

approaches resulted in perfect classification of the training data after about 800 generations and

training stopped. Shifted image classification is a harder problem and the programs took longer

to evolve. We observed that as fitness improved (see Figure 4.10), there was a decrease in size

for the loop method and a slight bloating (see Section 2.2.6) in the normal method.

4.6.3 Analysis of Solutions

In this section, the solutions found by both methods are analysed and the decision strategies

are compared.

Figure 4.13 shows one of the smallest classifiers evolved by the normal method and Figure

4.14 shows the points examined to distinguish the objects. The solution is small and elegant. It

uses only two positions and took 4,797 evaluations to find. However, this solution has found an

idiosyncrasy in the data and is clearly not general.

Typical solutions evolved by the normal approach are not so neat. Figure 4.15 lists a typical

program evolved by the no loops approach and Figure 4.16 shows the points examined by the

classifier. The program is large and the points examined are scattered all over the image. It

took 13,030 evaluations to find this solution. This is much higher than the average number of

evaluations (approx. 6,000) for finding a solution with loops.

Figure 4.17 shows one of the smallest classifiers evolved by the loop method and Figure 4.18
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(d+ (d- pixel-value-37 drand-
0.441534) pixel-value-203)

Figure 4.13: One of the smallest classifiers
evolved by the normal method, centered ob-
jects, images in a one-dimensional represen-
tation
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Figure 4.14: Points examined for the program
shown in Figure 4.13, centered objects, images
in a one dimensional representation

shows the points examined. The line goes from position 188 to position 288 and the program

adds up all of the pixel values. By traversing this line, the program obtains enough information

to distinguish the objects. This is in contrast to the random positions used by the no loop

approach.

Figure 4.19 shows a typical solution evolved by the loop approach and Figure 4.20 shows the

points examined. One of the main differences between the solutions with loops and those without

is that a run using 1d-loops examines more pixels in a linear manner, therefore, covers more areas

of the image than really necessary for correct decision making. Apart from experimenting with

more complicated formats of loops, this is another reason for composing the 2nd and 3rd loop

formats of which are trying to minimise this effect.

Figure 4.21 displays one of the two solutions evolved by the normal (ie. no loop) method for

shifted images and Figure 4.22 shows the points examined. They are scattered at the top and

bottom to catch the information from the shifted objects. In contrast, the loop method (Figure

4.24) uses two lines to distinguish all of the shifted images.

In summary, the classifiers using loops examine a sequence of points to distinguish the

objects. The no loop classifiers examine a seemingly random set of points in the image.
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(d+ (d- (d+ (d+ (d+ (d+ drand-70.929252 pixel-value-188) drand-70.929252) (d- (d-
drand-22.060454 drand-70.917456) (d+ drand-29.415353 drand-89.236116))) (d+(d- (d-
pixel-value-2 pixel-value-155) (d- pixel-value-11 pixel-value-26)) (d+ (d+ pixel-value-
150 pixel-value-37) (d- drand-52.450194 drand-38.299516)))) (d+ (d- (d+ (d+ pixel-
value-133 drand-72.779942) (d+ pixel-value-139 pixel-value-130)) (d- (d+ drand-
72.943129 drand-86.640064) pixel-value-114)) (d+ (d- (d- pixel-value-170 pixel-value-
83) (d- pixel-value-194 pixel-value-133)) (d+ (d- pixel-value-225 pixel-value-172) (d- drand-
29.415353 pixel-value-205))))) (d+ (d+ (d+ (d- (d- pixel-value-18 pixel-value-194) (d-
drand-85.580583 pixel-value-209)) (d+ (d+ drand-61.098601 pixel-value-60) (d+ pixel-
value-93 drand-59.032376))) (d+ (d+ (d+ pixel-value-224 drand-2.089882) (d- pixel-value-
229 drand-82.981664)) (d- (d- pixel-value-135 pixel-value-209) (d- pixel-value-187 pixel-
value-14)))) pixel-value-56))

Figure 4.15: A typical classifier evolved by the normal method, centered objects, images in a
one-dimensional representation
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Figure 4.16: Points examined for the program shown in Figure 4.15, centered objects, images in
a one-dimensional representation
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(d- (for-loop-1d pos-228 pos-188
plus) drand-9.260122)

Figure 4.17: One of the smallest classifiers
evolved by the loop method, centered ob-
jects, images in a one-dimensional represen-
tation
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Figure 4.18: Points examined for the program
shown in Figure 4.17, centered objects, images
in a one-dimensional representation

(d- (for-loop-1d pos-161 pos-
228 plus) (d- (d+ (d+ drand-
76.701336 (for-loop-1d pos-144 pos-172
plus)) (d- (d- pixel-value-152 drand-
54.382222) pixel-value-157))
drand-14.021874))

Figure 4.19: A typical classifier evolved by
the loop method, centered objects, images
in a one-dimensional representation
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Figure 4.20: Points examined for the program
shown in Figure 4.19, centered objects, images
in a one-dimensional representation
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(d+ (d+ (d- (d- (d+ drand-
34.087990 pixel-value-236) (d- pixel-
value-225 pixel-value-221)) (d- drand-
34.087990 (d- drand-96.220403 (d-
drand-72.832995 pixel-value-34)))) (d-
(d- (d+ (d+ drand-38.457827 drand-
2.639772)
drand-2.639772) (d- drand-96.220403
(d+ pixel-value-5 pixel-value-210))) (d-
drand-72.832995 drand-93.951264)))
drand-7.458120)

Figure 4.21: One of the two successful
classifiers evolved by the normal method,
shifted objects, images in a one-dimensional
representation
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Figure 4.22: Points examined for the program
shown in Figure 4.21, shifted objects, images in
a one-dimensional representation

(d- (d- drand-87.318493 (d- (d+ (d-
(for-loop-1d pos-87 pos-45 minus) pixel-
value-165) drand-40.885102) (d- (for-
loop-1d pos-247 pos-199 plus) drand-
87.318493))) (d- pixel-value-198 drand-
17.579794))

Figure 4.23: One of the smallest classifiers
evolved by the loops method, shifted ob-
jects, images in a one-dimensional represen-
tation
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Figure 4.24: Points examined for the program
shown in Figure 4.23, shifted objects, images in
a one-dimensional representation
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4.7 Loops for Images in a Two-Dimensional Representation

It is simpler in implementation to represent the images in one-dimensional arrays and use loops

to evolve classifiers. However, it is more general and understandable to represent images in two

dimensional arrays. In addition, runs with loops in the one-dimensional representation gave

many solutions in previous experiments, but they used more pixels than the no loops approach.

In some applications the number of pixels used can be an issue. If an image is small, using

many pixels is not a problem. If an image contains millions of pixels, using too many pixels for

classification costs a lot of computation power in evaluating each solution. A solution using a

few pixels as in the no loop approach may just examine some ideal points in the training images

and is not likely to generalize well to new images. We expect that the spatial information in

images can be better utilised in the two dimensional representation to find a balance between

the number of pixels used and the generality of the solution.

The experiments in this section utilise loop formats for-loop-2d-rect and for-loop-2d-line

described in Section 4.4.3 for images in a two-dimensional representation. In these experiments,

the same images are represented by two-dimensional arrays (16×16). The task is the same and

is to distinguish centered or shifted squares and circles in the pictures (see Section 4.3).

4.7.1 Genetic Environment Settings

Function Set and Terminal Set

The normal approach uses the functions and terminals listed in Table 4.1 except that a pixel is

referenced by pixel-value-i-j. The functions and terminals have been described in Section 4.5.

The 2d-loops-rectangles approach utilises loop format for-loop-2d-rect which is described in

detail in Section 4.4.2. The extra functions and terminals are listed in Table 4.3.

The 2d-loops-lines approach utilises loop format for-loop-2d-line which is described in detail

in Section 4.4.3. The extra functions and terminals are listed in Table 4.4.

Other Genetic Variable Settings and The Fitness Function

Other genetic variable settings and the fitness function are the same as those in the one-

dimensional images. They can be viewed in Table 4.5. The fitness function is the same as

before (see Section 4.6.1).
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4.7.2 Experiments

Experiments with the normal approach were conducted again, but on this two-dimensional

representation. One hundred runs each of the 2d-centered-loops-lines, 2d-shifted-loops-lines, 2d-

centered-loops-rectangles, 2d-shifted-loops-rectangles methods were performed.

4.7.3 Experimental Results

Figure 4.25 shows the cumulative probability of success for the new runs for centered objects

in a two-dimensional representation. Runs using loops (1d-centered-loops) and without (1d-

centered-normal) in a one-dimensional representation were kept in the graph as the bench-

mark. The graph shows that runs without loops for centered objects represented either by

a one-dimensional representation (1d-centered-normal) or by a two-dimensional representation

(2d-centered-normal) are similar in the cumulative probability of success. The changes in rep-

resentation do not affect the performance for the runs without loops. Runs with loops on a

two-dimensional representation, 2d-centered-loops-lines and 2d-centered-loops-rectangles, have

similar rates for cumulative probability of success. Their performance in the cumulative success

is not as good as the runs with loops on a one-dimensional representation (1d-centered-loops).

However, they still demonstrate an obvious superior cumulative success rate after 10,000 evalu-

ations than those without loops.

Figure 4.26 compares the average number of the pixels used for centered objects on a one-

dimensional and a two-dimensional representation using the different methods. In solutions

with loops in a one-dimensional representation, a large number of pixels are used for decision

making (see Figures 4.18, Figure 4.20). Figure 4.26 shows that the 1d-centered-loops method

consumed the highest number of pixels for decision making. The 2d-centered-loops-rectangles

method is the second highest, but is significantly less than the 1d-centered-loops method. The

2d-centered-normal method used smallest number of pixels among these five methods. Apart

from 1d-centered-loops, 2d-centered-loops-rectangles, the other methods, 2d-centered-loops-lines,

2d-centered-normal, 1d-centered-normal use approximately the same number of pixels for de-

cision making. The plot-lines for 1d-centered-normal, 1d-centered-loops and 2d-centered-loops-

rectangles terminate before the end because all runs for these configurations had terminated

successfully by then.

Figure 4.27 shows the cumulative probability of success for shifted objects. 1d-shifted-normal
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and 1d-shifted-loops are kept in the graph as benchmarks. The graph shows the same trend as

the runs on centered images (see Figure 4.25), that is, the loop approaches perform better than

the normal ones in either one-dimensional or two-dimensional representations. Neither of the

runs with loops on two-dimensional images (2d-shifted-loops-lines, 2d-shifted-loops-rectangles)

performed as well as the loop approach on one-dimensional representations (1d-shifted-loops).

This is because they used fewer pixels than the loop approach in a one-dimensional representation

and solutions became less general and failed in the testing.

Figure 4.28 shows the average number of pixels used for decision making for shifted objects.

A clear boundary of number of pixels used can be seen in this figure. The 1d-shifted-loops

method used the highest number of pixels, the same as the trend for loops for centered objects

(see Figure 4.26). The 1d-shifted-normal and 2d-shifted-normal methods used the least number

of pixels.

4.7.4 Analysis of Solutions

Analysis of solutions helps to understand how these classifiers with loops make decisions in

two-dimensional representations.

Figure 4.29 shows the smallest classifier which uses loops to traverse rectangles in a two-

dimensional representation for centered objects (2d-centered-loops-rectangles) and Figure 4.30

shows its traversal pattern. The program with loops uses 20 pixels to traverse a 4×5 square in

the bottom right corner to decide whether it is a circle or a square. This classifier is similar

to the 2-pixel classifier evolved in the no loop approach (see Figure 4.13) and finds an ideal

rectangle in a location where it can just differentiate circles and squares for the set of images.

Thus, it is not general since it only focuses on an narrow area in the grid.

Figure 4.31 shows the smallest classifier for shifted object classification by using loops to

draw rectangles and Figure 4.32 shows the traversal pattern. Two rectangles are positioned in

the upper and lower halves of the image to sense the shifted objects. This classifier is more

robust compared to the previous smallest classifier. More pixels are used and different locations

of the rectangles help to detect the shifted objects.

Figure 4.33 shows one of the smallest successful classifiers which uses loops to traverse lines

in a two-dimensional representation for centered object detection (2d-centered-loops-lines) and

Figure 4.34 shows its traversal pattern. It uses 6 pixels along a downLeft direction line to make
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Figure 4.25: Cumulative probability of success, centered objects, average of 100 runs
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Figure 4.26: Mean average number of pixels used, centered objects, average of 100 runs



CHAPTER 4. SOLVING A BINARY IMAGE CLASSIFICATION PROBLEM 137

0 50 100 150 200

Evaluations x 1000

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

of
 S

uc
ce

ss
 (%

)
1d-shifted-normal
2d-shifted-normal
1d-shifted-loops
2d-shifted-loops-rectangles
2d-shifted-loops-lines

Figure 4.27: Cumulative probability of success, shifted objects, average of 100 runs
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Figure 4.28: Mean average number of pixels used, shifted objects, average of 100 runs
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(d- (d- (d- drand-75.060721 drand-
76.515305) (for-loop-2d-rect pos-14-15
pos-10-12 minus)) pixel-value-12-13)

Figure 4.29: One of the smallest clas-
sifiers evolved by 2d-loops-rectangles
method, centered objects, images in a
two-dimensional representation
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Figure 4.30: Points examined for the pro-
gram shown in Figure 4.29, 2d-loops-rectangles
method centered objects, images in a two-
dimensional representation

the correct decision. By checking other solutions, we found most solutions had the same flavour

and used pixel values along one line to make the decision.

Figure 4.35 shows the smallest classifier for shifted object detection using loops to traverse

lines in two-dimensional representations and Figure 4.36 shows the traversal pattern. Four lines

in four corner positions are used to detect the shifted objects.

The experiments showed that there is a trade-off in using a small number of pixels and

using a large number of pixels. In our experiments, runs without loops gave few successes but

the solutions generally used a small number of pixels. Runs with loops in one-dimensional

representations gave the highest number of successes but the solutions generally used a large

number of pixels. Runs with loops in two-dimensional representations were in the middle in

terms of number of successes and number of pixels used.

While the last two image representations were two-dimensional, the loops are essentially ‘one-

dimensional’ in that there is one index per loop. The kinds of nested loops that a programmer

would write in C or java for this problem would use two indices. Future research in this problem

will focus on allowing two indices to freely participate in the evolution to form ‘two-dimensional’

loops.
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(d- drand-61.523841 (d- (d- (d- (d+
drand-85.844287 drand-60.960710) (for-
loop-2d-rect pos-6-15 pos-2-8 plus)) drand-
61.523841) (for-loop-2d-rect pos-13-14 pos-
14-2 plus)))

Figure 4.31: One of the smallest clas-
sifiers evolved by 2d-loops-rectangles
method, shifted objects, images in a
two-dimensional representation
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Figure 4.32: Points examined for the program
shown in Figure 4.31, 2d-loops-line method,
shifted objects, images in a two-dimensional rep-
resentation

4.7.5 Computation Time

We have conducted an investigation on CPU times for experiments with and without loops,

because we expect that programs with the loop functions may significantly consume more com-

putation in evaluation.

However, there are issues in comparing algorithms based on CPU time. Computers do not

simply execute one program at a time and they use priority-based scheduling schemes to con-

tinually switch from one process to another [31, p631]. These scheduling schemes are influenced

by the network traffic and the timing of disk operations. The access patterns to the caches also

depend on those concurrent processes. In addition, programming skills, different compilers and

compiler settings affect execution times. The same algorithm written by different programmers

with different levels of skill may be different in CPU time. Compilers with different optimisation

settings may affect performance of the resulting binary code. Evan identical programs executing

on the same computer may result in different execution times [31, p631].

Because we want to have more precise information on execution times for programs with

and without loops, we have taken the following steps to minimise the problems in CPU time

comparision. Runs have been conducted sequentially on a stand-alone linux computer. During
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(d- (for-loop-2d-line pos-10-13 down-
Left length-5 plus) drand-0.176959)

Figure 4.33: The smallest classifiers evolved
by 2d-loops-lines method, centered objects,
images in a two-dimensional representation
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Figure 4.34: Points examined for the program
shown in Figure 4.33, 2d-loops-line method, cen-
tered objects, images in a two-dimensional rep-
resentation

a run, except for the operating system, there is no other user processes. The only difference

between these runs is that some runs include the for-loop functions and others do not.

We have used three measurements. One is the average time for evaluating an individual, one

is the average time for getting a successful classifier and the last is the ratio of average times for

getting a successful classifier for programs with and without loops.

Table 4.5 shows a comparison of CPU times for the different methods. For easy visualization,

problems are grouped by centered and shifted problems and comparisons are conducted for

programs with and without loops. The last column shows the average time ratio. A value of

1.00 in ratio means there are no CPU time differences in getting a successful solution between the

runs with loops and without loops; a value less than 1.00 means the no loops method is better; a

value higher than 1.00 means the loops method is better. For centered image classification tasks,

there are small differences in the average evaluation time for an individual with and without

loops and differences in average CPU time in getting a successful solution. This is reflected

by ratio values of 0.79, 2.74 and 1.16 separately. There are distinct CPU time differences in

shifted image classification. The ratios are 16.44, 3.37 and 2.51 and they are much higher than

1 which means the loop methods are much better. Overall, the trend in this experiment is that
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(d- (d+ (d- (d+ (d- pixel-value-3-8 (for-
loop-2d-line pos-14-15 left length-3 mi-
nus)) (for-loop-2d-line pos-5-0 upRight
length-5 plus)) (for-loop-2d-line pos-14-
14 right length-1 minus)) pixel-value-1-12)
(d+ (d- drand-5.458352 (for-loop-2d-line
pos-13-4 left length-3 plus)) (for-loop-2d-
line pos-9-9 upRight length-6 minus)))

Figure 4.35: One of the smallest classifiers
evolved by 2d-loops-lines method, shifted
objects, images in a two-dimensional repre-
sentation
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Figure 4.36: Points examined for the program
shown in Figure 4.35, 2d-loops-line method,
shifted objects, images in a two-dimensional rep-
resentation

the loop methods are generally faster in CPU time in getting a solution than the runs without

loops especially when the problems become harder and the no loop methods do not get many

successes.

Table 4.5: Computation time in seconds, 100 runs each, the binary image classification problem
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4.8 Summary and Conclusion

The goal of this chapter was to investigate the evolution of programs with loops for an image

classification problem with implicit repeating patterns, that of distinguishing noisy circles and

squares, and to check whether there are performance gains in utilising these loops. The ex-

periments were successful. We have developed a set of loop formats, which lead to successful

evolution of programs for the non-trivial image classification task and these loop formats have

demonstrated their superiority in helping evolution in getting solutions more quickly and in

evolving robust classifiers.

In relation to the research questions, the outcomes are as follows:

1. How can for-loops be incorporated into evolved programs for image classification?

For-loops can be incorporated into evolved program for image classification by representing

the images as one- or two-dimensional arrays, so that, the positions of the pixels can be

referenced through the arrays. GP with for-loops can find the relevant parts of the image

and utilise loops to traverse them to make the decision.

2. Does GP with for-loops perform better, that is, the classifiers with for-loops need fewer

generations to evolve and are smaller, more accurate and more understandable than those

without loops?

GP with loops performs better than without. The classifiers with loops need fewer genera-

tions to evolve thus a saving in number of the evaluations. The difference was particularly

evident in the more difficult shifted problem where GP without loops only gave 2 and

7 successes for one or two-dimension representation images, while GP with loops gave

36 and 18 successes respectively. The classifiers with loops were generally better than

those without in that they were more accurate and easier to understand. However, in our

experiments, there was little difference in size.

3. What variations of for-loops can be used?

Loops in a simple format can be easily used for this task when the images are in a one-

dimensional representation. Specified domain dependant formats of loops can be con-

structed for GP when these images are represented by two-dimensional arrays. In the
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experiments, the proposed loop constructs draw lines or rectangles and use the visited

pixels for classification.

There is a trade-off between the number of successes and the number of pixels used with

these loop variations. Loops in one-dimensional representations used many pixels and gave

many successes. Loops in a two-dimensional representation used fewer numbers of pixels

but also gave fewer numbers of successes.

4. What are the differences between decision strategies in the evolved loop and no loop

programs?

The classifiers with loops were more robust in that they examined a sequence of pixels

covering the areas in an image in which the circles and squares are different. In contrast,

the classifiers without loops examined points randomly scattered throughout the images.

In our work, we have also demonstrated that evolution with loops is faster in CPU time in

getting a solution than without loops. It may be noted that none of the loops here actually have

an explicit loop index in the body. We have identified that other works utilise loops implicitly

in a terminal. It may appear that we have done something similar. We have put the loop in a

function in which start, end and methods of calculation in the loop body are randomly chosen.

However, our approach is an advance in the evolution of programs with loops. Despite the loop

index which is still implicit, our approach allows all parts of loops to be evolved easily instead of

requiring a large amount of human intelligence to define a terminal that captures all components

of loops with little flexibility.

In future work, more complex grey level object classification problems can be investigated

and different arbitrary shapes can be traversed by the use of loops. Also, loops with explicit

indices and nested loops in which an inner variable depends on an outer variable have not been

explored and they will be in future work.



Chapter 5

An Analysis of Restricted Explicit

For-Loops

5.1 Introduction

The objective of this chapter is to answer the last main research question, that is, whether the

performance gain from using explicit for-loops can be explained (see Section 4, page 10). In the

previous two chapters, several formats of explicit loops have been composed and successfully

utilised by GP for solving five simple artificial problems and a more difficult object classification

problem. The performance gain in getting faster, smaller and/or understandable solutions in

all these problems leads us to investigate why this happens, what the roles of loops are in

the evolution and whether these results are purely luck. GP theory studies are still weak (see

Section 2.2.7, page 42). With complex terminals, functions and variable structures in our GP

representations, it is not possible to use current GP theory results. However, the search space

analysis for the Santa Fe ant problem by Langdon and Poli (see Section 2.2.7, page 46) stimulates

us to use the same approach for some of our problems. The techniques of the pattern analysis

in the schemata theorem studies (see Section 2.2.7, page 42) can also be utilised to check what

has been captured by the loops during the evolution. Also, it is known that the setting of the

maximum number of iterations affects the performance of evaluation, but in the literature (see

Section 2.3, page 53) there are no experiments on how this number influences the evolutionary

runs. Experiments on different settings of the maximum number of iterations will be conducted

at the end of the chapter.
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We have selected two problems for analysis - the visit-every-square problem (see Section 3.8)

and the modified Santa Fe ant problem (see Section 3.5). For the visit every square problem,

we analyse the search space. For both problems, we analyse the captured repetitive patterns.

The reasons for selecting these two problems are: They are representative of a certain class

of grid-based problems and their search spaces can be easily adjusted by the size of the grid.

Also, the terminals and functions are straightforward, thus it is easy to interpret the patterns

captured.

The visit-every-square problem is used again in the end to analyse the evaluation time of

different maximum iteration settings.

The results show that there is a larger number of solutions in smaller tree sizes when explicit

loops are introduced and the patterns captured by the bodies of the loops are helpful in solving

the problems. Also the potential increased computational cost of evaluating an individual can be

minimised by utilising domain knowledge to restrict the maximum number of iterations. These

results are consistent with the other experiments presented in Chapter 3 and Chapter 4.

5.2 Chapter Goals

The main goal of this chapter is to find out why explicit for-loops are good for some GP problems

and able to find smaller solutions with fewer evaluations. This main research question has been

divided into the following sub-questions:

1. Why is it easier to evolve good small-sized solutions with explicit for-loops? Can a com-

parison of the search spaces with and without loops reveal the reasons?

2. Do looping constructs in programs capture useful patterns that help to improve the fitness

and does repetition of these patterns lead to success?

3. Since the evolved programs contain looping constructs, parts of the tree could be evaluated

many times, thus increasing the evaluation time of an individual. How significant is this

increase? Can it be minimised?

The first experiments are on a simple visit-every-square problem. This problem has been

described in Section 3.8. In this chapter, a variation has been made in the grid size. Only 3×3

and 4×4 grids are investigated to facilitate comparison of the search spaces with and without
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loops. The reason for this adjustment is to get a relatively smaller search space so that the

programs can be enumerated for analysis. The second experiments are on the modified Santa

Fe ant problem and a 10×10 visit-every-square problem. The modified Santa Fe ant problem

is more complex and provides many opportunities for useful repetitive behaviours and has been

described in Section 3.5. This chapter will examine some of the patterns evolved in the loop

bodies and determine whether they are the kind of good building blocks, which, if executed a

number of times, would facilitate solution of the problem.

Our expectations are that explicit for-loops can capture the good patterns and repeat them

for a success, but we are not sure how the search space has changed with the introduction of

these explicit loops and how significantly the change of the maximum number of iteration will

affect the performance of the evolution.

5.3 Syntax and Semantics of the For-loops

In Chapter 3 and Chapter 4, a number of different variations of loops were explored. The focus

of this chapter is on how explicit loops affect the performance of GP. So rather than investigating

the complex formats of loops which are more domain biased, the experiments in this chapter

only look into the simplest form to facilitate analysis. The loop syntax is

(for-loop num-iterations body)

and the semantics are as expected, body is executed num-iterations times. Num-iterations takes

a value between 1 and a globally defined parameter, max-iterations.

Strongly typed genetic programming (STGP) is used to take care of multiple data types and

enforce closure by only allowing parse trees which satisfy the type constraints. In this chapter,

both num-iterations and max-iterations are of integer type. The for-loop function and the whole

program return a dummy type. Nested loops are allowed.

5.4 Search Space Analysis — The Visit Every Square Problem

Experiments with the visit-every-square problem have been described in detail in Section 3.8. In

that section, the task was to direct a robot to navigate through a 4×4 or 6×6 or 8×8 grid (see

Figure 3.30). The robot begins in the top left square and needs to pass through every square.

Each square can be visited more than once, but each square must be visited at least once in a
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(a) 3     3 problem (b) 4    4 problem

Figure 5.1: The visit-every-square problem

solution.

In order to facilitate the search space analysis and make the enumeration of the candidate

solutions possible, only 3×3 and 4×4 grids are used (see Figure 5.1).

5.4.1 Genetic Environment Settings

Functions and Terminals

Functions and terminals are the same as before. There are four terminals {Left, Right, Up,

Down} for this problem. If a move through a border is required, for example, Up or Left from

the positions shown in Figure 5.1, the robot takes no action. There is only one function Prog2

for the no-loops approach and it takes two arguments and executes them sequentially. The loops

approach uses the for-loop function described in Section 5.3.

The Fitness Function and Other Genetic Environment Settings

The fitness is the number of the non-visited squares. To simplify analysis of the search spaces,

the maximum tree depth is set to 4. This allows at least one possible solution for the no-loops

method in a 3×3 grid. Using domain knowledge max-iterations is assigned to 3 for the 3×3 and

4 for the 4×4 problem. The rest of genetic variable settings can be viewed in Table 5.1.

5.4.2 Experiments and Experimental Results

The GP program was run 100 times with and without loops for the 3×3, 4×4 visit-every-square

problem with variable settings shown in Table 5.1.
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Table 5.1: Parameter settings, the visit-every-square problem
PARAMETERS VALUES

Population Size 100
Max. Generation 50
Mutation / Crossover / Elitism Rate 28% / 70% / 2%
Initialization Method Ramped half-and-half
Selection Method Proportional fitness
Termination Criteria Successfully visited every square or 50 generations

reached

Experimental Results

Figure 5.4 shows the cumulative probability of getting a successful solution for the 3×3 visit-

every-square problem. All runs with loops found solutions within 40,000 evaluations, while only

65 solutions were obtained with the no-loops method by 50,000 evaluations. This difference is

in good agreement with the previous work, that is, GP with looping constructs results in more

successful solutions with fewer evaluations.

There are only 8 possible solutions for programs without loops with a maximum tree depth

of 4 and it is not possible to get a solution that visits a square more than once within this tree

depth. These solutions are shown in Figure 5.2. However, with looping constructs, there are 108

solutions, nearly 14 times as many. The numbers of possible solutions for both approaches were

obtained by enumerating all of the possible programs and evaluating them. Figure 5.3 shows

some solutions with loops.

(a)

(e)

(b) (c) (d)

(f) (g) (h)

Figure 5.2: All possible solutions for no-loop programs, the 3×3 visit-every-square problem
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.3: Some solutions for programs with loops, the 3×3 visit-every-square problem

Figure 5.5 shows the fitness of the best individual, averaged over 100 runs, for the loops and

no-loops approaches for the 3×3 and 4×4 grids. The 4×4 problem with loops also showed a

quicker improvement in fitness, using the same settings. Due to the tree depth limit, programs

without loops cannot have fitness better than 7, because the maximum number of actions for a

tree structure of depth 4 is 8.

5.4.3 Analysis of the Fitness Landscape

As noted above, all possible programs for the visit-every-square problem up to a tree depth

of 4 were enumerated and the fitness evaluated. For the no-loops approach there are 163,220

possible programs in contrast to 1.2 million possibilities with the looping constructs. These two

numbers were obtained by enumerating all tree shapes and then all labellings of each shape

by functions and terminals. The number of possible programs with loops is considerably higher

because there are more ways of labeling the nodes in the trees due to the range of possible values

for the additional terminal num-iterations and function for-loop.

Figures 5.6 and 5.7 show the fitness distribution based on program length for the no-loops
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Figure 5.5: Mean best program fitness, aver-
age of 100 runs, the 3×3 and 4×4 visit-every-
square problem

and loops approaches for the 3×3 visit-every-square problem. The x-axis reflects the fitness.

The more squares visited, the better the program. The y-axis shows program length, that is, the

number of nodes in the program. The number of programs is indicated by z-axis. To facilitate

comparison, the scale of the z-axis is the same in both Figures 5.6 and 5.7. It can be seen that

with the same depth constraint, there are many more programs with high fitness with loops than

without. The 8 solutions for the no-loops approach and the 108 solutions for the loops approach

are located in the square where the program-length is 14 and squares-visited is 9. However, they

are not visible in these two graphs due to the scale of z-axis.

Figures 5.6 and 5.7 correlate with the higher fitness values for loop programs in Figure 5.5.

However, they do not necessarily explain Figure 5.4. The proportion of solutions in the search

spaces is roughly the same: 8/.16M is approx 80/1.6M which is the same order of magnitude as

108/1.2M. So why are the solutions with loops significantly easier to find? It would appear that

solutions with loops are located in regions of high fitness and once the genetic search finds such

a region, finding the actual solution is not difficult.

A solution from the no-loops approach (Figure 5.8) and one from the loops approach (Figure

5.9) are compared. In Figure 5.9 the left hand side symbol of the for-loop function indicates

the number of iterations. For example, t2 in Figure 5.9 means repeat any operations in the
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Figure 5.6: Fitness distribution based on pro-
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Figure 5.7: Fitness distribution based on pro-
gram length, maximum depth constraint 4,
the loops approach, the 3×3 visit-every-square
problem

right hand branch two times. To visit all nine squares in a 3×3 problem requires at least 8

movements. A successful no-loops program needs to be a full tree with terminals in the correct

order. In programs with loops, the consecutive identical actions are represented by (for-loop

num-iterations action), which is not only a potential saving in length, but also makes repetition

of good movement sequences more likely. For larger sized grids without loops a bigger tree with

the terminals in the correct order needs to be discovered. For larger sized grids with loops,

the same sized tree, but with different terminals, will be adequate. As we show in the next

paragraph, requiring larger trees causes a massive explosion of the search space.

Consider the problem of traversing a row or column of the grid. This would be a useful partial

solution of the visit-every-square problem. Suppose that the row/column lengths are 8, 16, 32,

64, 128 respectively. To visit to each square a no-loops solution needs to be a full tree of depth

4, 5, 6, 7, 8. The total numbers of different unlabeled binary trees for depths d = 4, 5, 6, 7, 8

are 21, 651, 457653, 2.10E + 11, 4.4E22 respectively. This is a ‘double exponential’ sequence and

after a depth of 5 the number of possible trees becomes massive (see Section 2.2.6, page 38).

The probability of finding a no-loops program with the right shape by random search for the

maximum tree depth setting of 4, 5, 6, 7, 8 is 1/21, 1/651, 1/457653, 1/2.10E + 11, 1/4.4E22

respectively. The probability of finding the right shape with the right labels is even smaller.

When using loops, a very short program: (for-loop num-iterations right) will complete the task

if num-iterations is equal to or larger than the row/column length. This only needs a tree depth
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of 2. The number of different tree shapes for a depth of 2 is 1. A search only needs to find the

correct labeling of one tree.

By extending the above analysis from rows/columns to the entire grid, it is clear that as the

size of the grid increases the chances of finding a no-loops solution are very greatly diminished

because of the need to search through the massive number of possible tree shapes, while the

chances of finding a loop solution decrease somewhat because of the need to search through

alternate labellings of smaller trees.

Another possible reason that the loops approach works better is that when a good building

block is found, there is a mechanism available to repeat it. If there are no loops, the building

block needs to be discovered independently a number of times and correctly aligned with the

other occurrences. In effect, an unrolled loop needs to be discovered.

A generic solution for all sizes of the visit-every-square problem is shown in Figure 5.10.

This solution was evolved by accident and not by design. It was evolved with a larger tree depth

(depth 5) constraint and {+, -} were added to the function set. The value of max-iterations

was changed to reflect the size of the grid and was also available as a terminal. In this evolved

solution the robot first moves down the first column and then back up to the starting square

before moving one square to the left and repeating the down and up motion as shown in Figure

5.8. This action is repeated until every square is visited. The solution is of tree depth 5 and

size 14. It repeats the pattern {for-loop max-iterations - 1 down or up} to complete the task.

A program without loops to solve a 10×10 visit-every-square problem needs a tree with 100

leaves, which will require tree depth of at least 7. There are 2.10E + 11 unlabeled binary trees

of depth 7 and even more programs. This is somewhat like looking for a few needles in a very

large haystack. With loops, crossover will help to pass good subtrees like (max-iterations - 1 )

to the descendants.

In this section, by comparing characteristics of the search spaces, we have shown why so-

lutions with loops are much more likely to be found for problems like the visit-every-square

problem and that programs with loops will scale better to larger instances of the problems.
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down right rightdown up up left down

Figure 5.8: A solution from the no-loops app-
roach, traversal pattern of the program shown
in Figure 5.2 (a), the 3×3 visit-every-square
problem

Prog2 Prog2

Prog2
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Prog2FORLOOP FORLOOP FORLOOP

upt2rightt2downt2

Figure 5.9: A solution from the loops app-
roach, traversal pattern of the program shown
in Figure 5.3 (a), the 3×3 visit-every-square
problem

Prog2

Prog2 left

FORLOOP
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max.iteration − 1

max.iteration − 1 max.iteration − 1

Figure 5.10: A generic solution of depth 5, the
visit-every-square problem
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Figure 5.11: Traversal pattern of the generic
solution shown in Figure 5.10, the visit-every-
square problem
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5.5 Pattern Analysis

5.5.1 The Modified Ant Problem

The modified ant problem was introduced in Section 3.5 and the intention was to investigate

how explicit looping could be applied and be of benefit. The original ant problem (see Section

2.3.3) was modified to make it more amenable to programs with loops. The size of the grid was

changed to 20×20 and 108 pieces of food were placed on the grid in three 6×6 blocks (see Figure

3.4). A small penalty was applied for the number of loops in an individual in order to encourage

the evolution of programs with the smallest possible number of loops. At that time, the results

showed that without loops (implicit or explicit), it was so hard to find a solution that out of 300

runs only one solution was found with a tree depth of 10. This solution is huge and contains

5,000 nodes. With explicit loops, many solutions were found. This is consistent with the results

for the visit-every-square problem described above and the other problems investigated.

In this section, we investigate the kinds of patterns that frequently occur in the loop bodies

of highly fit programs. Are there the kinds of patterns that, when repeated, will improve fitness?

Genetic Environment Settings

The same function and terminals are used (see Tables 3.1, 3.2). The population size is reset

to 2,000 because we want as many solutions as possible for analysis. Other genetic parameter

settings are the same (see Table 3.3).

Pattern Mapping Setting

To facilitate the analysis, the tree structures are converted to strings. Node names have been

replaced by one character symbols (see Table 5.2). For example, the function IfFoodAhead is

represented by “f”. “Don’t care” functions (e.g. Prog2 and Prog3) or terminals (e.g. RandNum-

ber) are replaced by “#”, because they are not important in this analysis. The brackets between

functions have been removed with an intention to make the patterns more readable. The pro-

gram “(Prog2 (Prog3 (IfFoodAhead Move Move) TurnLeft Move) Move)” will be converted to

“##f11211”. The objective of the conversion is to enable quick string matching, sorting and

counting.

A pattern analysis program has been written to count the number of patterns of different
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string lengths. For instance, an evolved tree represented by “##f11211” has “1” as the most

frequently occurring pattern (MFP) of length of 1, since it occurs four times and has “11” as

the most frequently occurring pattern of length 2, since it occurs twice.

Experiments

The for-loop format described in Section 5.3 is used. 200 runs were executed and 97 successful

solutions were obtained. A successful solution means that the evolved program can direct the

ant to eat all 108 pieces of food within 600 steps.

Table 5.2: Mapping table for functions and terminals, the modified ant problem
Nodes Converted Symbol

Prog2 #
Prog3 #
IfFoodAhead f
ForLoop L
Move 1
TurnLeft 2
TurnRight 3
RandNumber #

Table 5.3: Frequent pattern occurrences in the 97 evolved solutions and the corresponding
program segments, the modified ant problem

Pattern Number Percent Translation

L# 97 100% ForLoop Num-Iterations
L#f1 65 67.01% ForLoop Num-Iterations (IfFoodAhead Move
L#f13 33 34.02% ForLoop Num-Iterations (IfFoodAhead Move TurnRight)
L#f12 27 27.84% ForLoop Num-Iterations (IfFoodAhead Move TurnLeft)

L#L##f 22 22.68% ForLoop Num-Iterations (ForLoop Num-Iterations
(Prog2 (IfFoodAhead

Experimental Results

Table 5.3 displays the frequent patterns found in those 97 solutions. These patterns all have

for-loop at the beginning and the actions within the loop body have been repeatedly executed.
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Analysis of Results

The data in Table 5.3 reveals that every successful solution found contains looping constructs

“L#” indicating that at least one loop is important in the solution. Actions captured in the loop

include “L#f12” and “L#f13”, that is, “(IfFoodAhead Move Left)” and “(IfFoodAhead Move

Right)”. This results in iteration of the basic behaviour: If there is food in the square you are

facing, move into the square and eat the food, or else turn left/right. This is clearly the kind

of behaviour that will follow a line of squares containing food. In addition, these patterns may

occur a number of times in a solution and tend to have positive effects in solving the problem.

Figure 5.12 shows a solution using loops and Figure 5.14 shows the traversal pattern gener-

ated by executing this program. The traversal pattern for Figure 5.14 is shown in more detail

in Figure 5.13 which shows the order in which the squares are visited. The pattern “f1” in the

looping construct “L##f1” is executed 6 times at the position indicated by arrow (a) in Fig-

ure 5.14 and this definitely improves the fitness. Arrows (b) and (c) show the points at which

the pattern “f13” or “f12” redirects the ant to traverse in a circle fashion by either turning

left or turning right when there is no food ahead. These two patterns are within the looping

construct “L#”, so the ant need only make a turn when all of the pieces of food in a line are

consumed. The root of the program is a for-loop function “L#” followed by another frequent

pattern “L#L##f”, see Table 5.3.

Table 5.4 shows the most frequent patterns from the last generations of 100 runs without

loops at a maximum tree depth of 9. No solutions were found. In contrast to the loop patterns,

there are no domain regularities here, just program control structure.

5.5.2 The Visit-Every-Square Problem

The visit-every-square problem was used for the search space analysis (see Section 5.4). It was

found that GP with loops can generate more good solutions than without loops and many good

solutions are evolved at a small tree depth setting. In this section, this problem is analysed

by the same pattern analysis tools as the modified ant problem to find frequently occurring

combinations. The size of the grid has been adjusted to 10×10 instead of 3×3 or 4×4 and the

maximum number of iterations has been updated to 10.
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(ForLoop times4 (ForLoop times6
(ForLoop times6 (Prog3 (IfFoodA-
head Move (Prog3 Move TurnRight
move)) (ForLoop times2 (IfFoodA-
head Move TurnRight)) (ForLoop
times3 (IfFoodAhead Move Turn-
Left))))))
CONVERTED FORMAT:
L#L#L##f1#131L#f13L#f12

Figure 5.12: The smallest solution
evolved with loops, the modified ant
problem

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7
1 14 13 12 11 10 9 8
2 15 30 29 28 27 26
3 16 31 38 37,39 36 25
4 17 32 33 34,40 35,41 24
5 18 19 20 21 22,42 23,43
6 44 45 46

Figure 5.13: Detail of traversal pattern of Figure 5.14,
numbers show order in which grid positions are visited,
the modified ant problem
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Figure 5.14: Traversal pattern of the program shown in Table 5.12, the modified ant problem
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Table 5.4: Top 10 frequent patterns found in the no-loops program logs, the modified ant problem

Pattern Translation

# (Prog2|3
f (IfFoodAhead
## (Prog2|3 (Prog2|3
f# (IfFoodAhead (Prog2|3
### (Prog2|3 (Prog2|3 (Prog2|3
f## (IfFoodAhead (Prog2|3 (Prog2|3
#### (Prog2|3 (Prog2|3 (Prog2|3 (Prog2|3
f##1 (IfFoodAhead (Prog2|3 (Prog2|3 Move
##### (Prog2|3 (Prog2|3 (Prog2|3 (Prog2|3 (Prog2|3
f##13 (IfFoodAhead (Prog2|3 (Prog2|3 Move TurnRight

Table 5.5: Mapping table for functions and terminals, the visit-every-square problem

Nodes Converted Symbol

Prog2 #
ForLoop L
UP/RIGHT/DOWN/LEFT 1/2/3/4
RandNumber #

Genetic Environment Settings

The maximum tree depth has been reset to 7 and the maximum allowed generations is reset to

100 instead of 50. Terminals and functions are the same as before (see Section 5.4.1). Other

variables remain unchanged (see Table 5.1).

Pattern Mapping

The functions and terminals are converted to a symbol to feed into the analysing tool. The

mapping is listed in Table 5.5. The terminals, {up, right, down, left}, have been assigned

to “1, 2, 3, 4” respectively. The for-loop function has been assigned to “L”. Others, {Prog2,

RandNumber}, have been assigned to “#”, because they are not important in this analysis.

Experiments

GP with the above settings has been run 200 times each for the programs with loops and without

loops. The converted solutions have been put into the analysis tool to find the frequent patterns.
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Table 5.6: Frequent pattern occurrences in the 134 evolved solutions and the corresponding
program segments, the visit-every-square problem

Pattern Number Percent Translation

L# 134 100% ForLoop Num-Iterations
L#1 81 60.4% ForLoop Num-Iterations UP
L#2 51 38.1% ForLoop Num-Iterations RIGHT
L#3 96 71.6% ForLoop Num-Iterations DOWN
L#4 45 33.6% ForLoop Num-Iterations LEFT

L## L# 38 28.5% ForLoop Num-Iterations (Prog2 (ForLoop Num-Iterations
L### L# 78 58.2% ForLoop Num-Iterations (Prog2 (Prog2 (ForLoop Num-

Iterations

PROGRAM :
(ForLoop t10 (Prog2 (ForLoop t7

(ForLoop t7 down))
(Prog2 (ForLoop t10 up)

(ForLoop t1 right))))

CONVERTED FORMAT:
L##L#L#3#L#1L#2

Figure 5.15: A typical solution evolved using loops, the visit-every-square problem

Experimental Results

Table 5.6 shows the frequent patterns found in 134 solutions for GP with loops. The looping

constructs exist in every solution and have captured all direction terminals {up, right, down,

left}. These combinations allow the programs to traverse a line in any direction to complete the

task. Every solution has “L” as the root node and has nested loops. This is because there are

no restrictions for number of visits to a square, and programs with loops re-visit the squares

freely to complete the task.

Figure 5.15 demonstrates a typical solution with loops. It follows the same pattern as the

generic solution described in Section 5.4.3 (see Figure 5.11). The program moves down and up

and then left and these actions are repeated until every square is visited.

None of the programs without loops got a successful solution in 200 runs even though it is

possible to have solutions without loops at the depth setting of 7. The fittest program only

visited 58 squares and left 42 squares unvisited.

In this section we have shown that good building blocks have been captured in the loop bodies



CHAPTER 5. AN ANALYSIS OF RESTRICTED EXPLICIT FOR-LOOPS 160

Table 5.7: Computation time in seconds, 100 runs each (50 for last row), the 6×6 visit-every-
square problem

MAX- Total CPU Total Average Number of success- Average Time
ITERATIONS Time(Sec) Evaluations per Eval ful runs per solution

No-loops 92.35 389166 0.00023 92 1.004
1 214.04 872833 0.00024 37 5.785
2 145.26 590782 0.00024 80 1.816
3 59.74 250143 0.00023 98 0.610
4 35.84 157355 0.00022 100 0.358
5 22.71 100788 0.00022 100 0.227
6 20.76 92485 0.00022 100 0.208

10 33.01 144154 0.00022 100 0.197
20 40.62 174761 0.00023 100 0.406
50 16.08 58636 0.00027 100 0.161

100 36.24 80275 0.00045 100 0.362
200 1546.75 78237 0.01977 100 15.460
400 335882.65 49611 6.77000 50 6717.653

and they lead to improvement in fitness when repeated.

5.6 Computation Time Analysis — The Visit Every Square

Problem

As stated in Section 5.3, the implementation of loops requires the value of max-iterations to

be set at the beginning of the run. The value of max-iterations will clearly affect the CPU

time required for an evaluation. In this section, we examine the effect of increasing values of

max-iterations.

The computational complexity is O(pnk), where p is the population size, n represents in-

creasing values of max-iterations and k is the maximum number of levels of nested loops.

For an empirical investigation, we use the visit-every-square problem described in Section 5.4

with some slight changes. A 6×6 grid is used and the maximum tree depth is 7. The maximum

number of generations is 100 instead of 50. Other genetic parameter values are the same as in

Table 5.1.
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5.6.1 Experiments and Experimental Results

Experiments

There are known issues associated with the use of CPU time to compare the speed of algorithms

as mentioned in Section 4.7.5. We have taken the same methods to minimise these effects as the

CPU time measurements described in Section 4.7.5.

Experimental Results

Table 5.7 shows the computation times for the 1250 runs. The first column gives the value

of max-iterations, the second gives the total CPU time for all of the runs, the third gives the

total number of evaluations, the fourth gives the average time in seconds per evaluation (Total

CPU/Total Evaluations), the fifth gives the total number of successful runs and the last gives

the average time in seconds per solution (Total CPU/Total no of successful runs).

5.6.2 Analysis of the Results

Inspection of the fourth column of Table 5.7 shows that the average CPU time per evaluation

does not increase noticeably until max-iterations reaches 100. The last three rows in the table

are consistent with an O(pnk) complexity.

Perhaps more interesting are the last 2 columns. If we take the no-loops results as a base-

line for comparison we find that the average time per solution increases for max-iterations=1,2.

This is not surprising. A max-iterations value of 1 does not permit any repetitive behaviour,

but additional terminals and functions have been introduced and the space of possible programs

is increased without any benefit to the nature of a solution. In effect the for-loop function will

act as noise and waste evolution time and space. A max-iterations value of 2 permits some

repetition, but, based on domain knowledge, we know that this is not really significant. Once

max-iterations reaches 5, a significant value from the point of view of domain knowledge, all runs

are successful and the average times to a solution are considerably smaller than for no-loops.

The wasted effort from having max-iterations too big becomes significant from 200.
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5.7 Summary and Conclusion

The aim of this chapter was to find explanations for why using loops in genetic programs for

problems with repetitive characteristics is superior to genetic programming without loops. To

do this we asked and answered three questions:

1. Why is it easier to evolve good small-sized solutions with explicit for-loops? Can a com-

parison of the search spaces with and without for-loops reveal the reasons?

For the visit-every-square problem we found that there are more higher-quality individuals

in a search space with loops than without loops and the chance of finding a solution is

higher. We found that as the problem size increases, a no-loops solution requires search

through tree structures of greater depth and the number of possible tree shapes increases

at a “double exponential” rate with depth. This drastically lowers the chance of finding

a solution. However, for programs with loops, the search can be restricted to different

labellings of smaller trees, which is only exponential.

2. Do looping constructs in programs capture useful patterns that help to improve the fitness

and does repetition of these patterns lead to success?

For the modified Santa Fe ant problem and the visit-every-square problem, we found the

most frequently occurring patterns within loop bodies of solutions and other highly fit

individuals. Analysis of these patterns showed that they are the kinds of basic building

blocks which, if executed repeatedly, do improve fitness.

3. Since the evolved programs contain looping constructs, parts of the tree could be evaluated

many times, thus increasing the evaluation time of an individual. How significant is this

increase? Can it be minimised?

In our runs, we have used a global parameter max-iterations to give an upper limit on the

number of iterations of a loop. In the two problems used in our experiments, choices of this

value based on domain knowledge led to good performance without significant increase in

the evaluation time of an individual. However, the computational complexity is O(pnk),

thus, our approach does not scale well to larger values. However, while the average cost

of evaluating an individual is higher, the programs are fitter and solutions are found in a

much smaller number of generations.
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The major drawback of the use of loops is that the maximum number of iterations needs

to be decided beforehand. This is in keeping with other work on loops in genetic programming

where some kind of bound on the maximum computational effort in a loop is used (see Section

2.3.2).



Chapter 6

Conclusions

In this chapter we present the findings and the conclusions and provide suggestions for future

work.

The broad aim of the thesis was to study how bounded loops, that is, a limited form of loops

in which infinite loops are not possible, can be incorporated into tree-based genetic programming

and to determine whether incorporating such loops delivers any major benefits. For this, we

have developed a number of restricted for-loop formats. These restricted loops use domain

information to restrict the possible number of iterations and can easily be utilised. We have

demonstrated their advantages on a range of problems, from simple toy problems to more difficult

image classification problems. We found the major benefits for runs with loops were that: (1)

While the CPU time for evaluating an individual increased when loops were used, the CPU

time for finding a solution was lower if relevant domain knowledge was used. (2) The evolved

solutions with loops were more understandable because they were small in size and captured the

repetitive patterns of the problem.

6.1 Conclusions Relating to Research Questions

The thesis addressed four main research questions (see Section 1.3.1, page 9):

1. How can we restrict the syntax and semantics of for-loops in a way that avoids problems of

infinite loops and still provides useful benefits for genetic programming?
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Format 1: (for-loop1 num-iterations body)

Format 2: (for-loop2 start end method)

We have composed two formats of for-loops in which infinite loops are not possible. In

loop format 1, body is executed num-iterations times. Num-iterations is restricted by a user-

supplied domain dependent max-iterations parameter. The body is a combination of terminals

and functions. During evolution, both num-iterations and body undergo crossover and mutation.

In loop format 2, body is executed once for each value of a counter between start and end. The

body utilises an index variable for traversal of arrays or vectors. The increment value of the

index is set to 1.

Infinite loops are avoided by setting a maximum number of iterations for loop format 1 and

by setting the start and end values for loop format 2. These values are user supplied based on

analysis of the problem domain. For example, when traversing a grid, the grid width or depth

are good values for the maximum number of iterations; when sorting an array, the start and

end values must be within the range of the array positions. These constraints together with the

maximum tree depth settings naturally restrict the total number of iterations and make infinite

iteration impossible.

Major benefits provided by loops are: Solutions can be obtained in fewer evaluations and

these solutions are more understandable than without loops. The results of five experimental

problems demonstrate that GP with these restricted explicit loops requires a much smaller

number of evaluations to get fitter programs or solutions. Solutions evolved with loops were

generally smaller than without loops and the loop bodies captured the repetitive patterns of the

problem thus solutions were more easily understood.

It could be argued that, while we claim to be doing loops, we have created a number of

complex functions. On the one hand, we did create a number of complex functions which

performed iterations. On the other hand, iterations were rarely used in genetic programming

and we have created relative simple loop formats and rules for the loops and provided an analysis

to demonstrate that they are helpful in decreasing number of evaluations. This has not been

achieved by others.

2. Can GP with for-loops solve some problems that cannot be solved or are very difficult to solve

without explicit loops?

Yes, GP with for-loops restricted by domain information has solved the Santa Fe ant problem,
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a modified Santa Fe ant problem, a visit-every-square problem and a sorting problem. In all of

these problems, GP without loops always, or almost always fails.

In Chapter 3, we investigated for-loop1 by using the Santa Fe ant problem and a variant,

the modified Santa Fe ant problem. We required generated individuals to be called once, unlike

the typical solution in which an individual is called repeatedly until a maximum number of

steps is reached. The results showed that ants could not eat all the food without utilising loops,

even though the tree depth was set large enough to allow no-loops solutions. The large tree

depth setting exponentially increases the search space and dramatically decreases the chance of

finding a successful solution. The same outcome occurred for for-loop2 when it was applied to

the sorting problem. In this problem, the no-loops approach did not get a successful solution in

100 runs of 4,000 evaluations. In contrast, with loops, solutions were consistently evolved within

4,000 evaluations. This is because with loops, the compare-and-swap pattern was captured in

the loop bodies and was repeated to achieve the goal.

3. Can for-loops be used in a difficult object classification problem with similar performance

gains to those achieved on relatively simple artificial problems?

Yes, for-loops can be used in a difficult object classification problem to distinguish noisy

circles and squares. On this problem, the use of loops delivered the same performance gains as

those achieved on relatively simple artificial problems.

The task of this object classification problem is to distinguish noisy circles and squares in

binary images. The problem is reasonably difficult because pixels in objects have been randomly

removed. In an extended version, these random-pixel-removed objects have been shifted in

random directions to increase the difficulty. It is hard to find a classifier that has 100% accuracy

on training and testing data to differentiate these two classes of objects in such images.

Our results demonstrate that with loop format 2 and its refinements, GP gave more successful

classifiers with fewer evaluations than GP without loops.

However, this loop format can only be used for images in a one dimensional representation.

Because of the layout of the pixels in the one dimensional representation, many pixels were used

by classifiers with loops. Refinements of loop format 2 were used for images in a two dimensional

representation. These refinements decrease the number of pixels used by the successful classifiers.

The consequences of the refinements are: (1) The evolved classifiers utilise fewer pixels, thus like

classifiers without loops, use less information from the images. When applied to other unseen
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images, the classifiers containing less information are more likely to fail. (2) To construct loops

for images in the two-dimensional representation, users need to decide in advance what traversal

patterns will be permitted - lines, squares, rectangles etc. and then design appropriate formats

to put looping in a function.

4. How can the performance gains from using for-loops be explained?

The performance gains can be explained by examination of fitness distributions, by analysing

patterns captured in loop bodies and by analysing the relationships between the maximum

number of iterations and the CPU time.

Two methods have been used to analyse why evolving programs with restricted forms of

loops are superior to those without for the visit-every-square problem and the modified ant

problem in Chapter 5.

The first method analysed the search space for a number of instances of the visit-every-

square problem. Programs with and without loops up to a fixed maximum tree depth were

enumerated and fitness distributions were plotted with the x-axis showing the fitness, y-axis

program length and z-axis the number of programs. The results showed that there were many

more good programs as well as solutions for GP with loops. The graph revealed that programs

of good fitness were at the same region in the fitness distribution graph.

The second method was to analyse patterns captured by the loop bodies. The analysis found

that every solution had looping constructs and that patterns captured by loops were useful. The

experimental results show that both the visit-every-square problem and the modified ant problem

have repetitive characteristics and GP with loops can always use them to improve the fitness

and get solutions in fewer evaluations.

To find out the relationship between the maximum number of iterations and the cost of

CPU time, we have experimented with the visit-every-square problem with different values of

max-iterations and measured the overall CPU time for getting a successful solution. The results

showed that: (1) There is a range of values for max-iterations in which GP with loops almost

always finds a solution in fewer evaluations and shorter CPU time than GP without loops. (2)

A too-small value for max-iterations does not help GP with loops in getting a solution quickly.

(3) A too-large value for max-iterations still allows the evolutionary process to find a solution

in fewer evaluations but greatly increases the CPU time.

While we have analysed two problems to this level of detail, we believe that the findings
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would be similar for other problems with repetitive characteristics.

6.2 Interesting Findings

During the course of the investigation, there were a number of results that were not directly

related to the research questions, but are worth stating.

1. Favouring a smaller number of loops is better than just providing looping constructs in most

problems.

Loops are helpful for solving problems where repetitiveness exists. Although the cost of

evaluating an individual increases, fewer evaluations are needed to get a solution than when

loops are not used. This effect is even more evident when using the fitness function to favour

programs with small numbers of looping constructs. With this setting, GP used even fewer

evaluations to get a solution than without it. The loops tend to be positioned at the root of the

program tree and each loop has a large body.

2. A good choice for the maximum allowed number of iterations is a value between one and two

times a domain parameter.

The study in Chapter 5 found that increasing the maximum allowed number of iterations

for loops will increase the evaluation time of an individual. For the visit-every-square problem,

the average evaluation CPU time for a solution varied from 1 second to 6,717 seconds when GP

allows 1 to 400 maximum iterations for a looping construct. There is a clear diminishing return

between increasing the allowed number of iterations and the improvement because the slowness

in evaluation outweighs the saving in finding solutions in fewer generations with the help of

loops. The experiments found that the approximate maximum allowed number of iterations can

be set at twice the known potential looping times. For example, the maximum allowed number

of iterations for each loop can be between 6 and 12 for a 6×6 visit-every-square problem in order

to get good solutions in fewer evaluations. While there were a few exceptions, in general, we

found that setting the maximum number of iterations to one or two times a domain parameter

was the best choice.

3. Setting an appropriate maximum tree depth is important for GP with loops in order to get

successful solutions in lower CPU time.

The computational complexity of evolving programs with loops is O(pnk), where p is the

population size, n represents values of max-iterations and k is the maximum number of levels
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of nested loops. The value of k is closely related to the tree depth. If the maximum tree depth

setting is too small, there will not be enough capacity to represent a successful solution. On the

other hand, if the tree depth is too large, the computational complexity increases exponentially as

does the corresponding CPU time. It is necessary to analyse the problem and set an appropriate

maximum tree depth.

4. For image classification using raw pixels, classifiers with loops for images represented by a

two dimensional array are more economical in using the pixels, while for images represented by

a one dimensional array classifiers use many more pixels, thus, use more information from the

images.

It is easier to find a classifier that can solve the problem and use many pixels in a one

dimensional representation than to find a solution that utilises few pixels. Classifiers on images in

a two dimensional representation can focus on interesting areas only. Due to the smaller number

of pixels used, classifiers evolved in a two dimensional representation use less information and

do not generalize as well to unseen objects. For image classification tasks using pixel statistics

or high level features, further exploration is needed on how loops can be used.

6.3 Comparison to Previous Work on Loops

At the beginning of the thesis, we noted that others have used iterations implicitly and set a

hard limit for the total number of iterations. Our work has tried to improve GP by allowing

loops to be explicitly used and naturally incorporated into the evolved programs as in other

programming languages. We have proposed a number of loop formats and created a heuristic

to set the maximum number of iterations for each loop, or set a range by start and end instead

of a global maximum number. In this section we compare our loops with other work in which

there is a significant focus on loops.

Koza 1992, Santa Fe Ant Problem

Implicit loops were used in the Santa Fe ant problem described on page 54 of this thesis. We

have composed explicit looping format 1 to solve this problem and successfully moved iterations

from the environment into programs. In our implementation, the evolved solutions need only be

called once instead of multiple times as in the original approach. Our looping format successfully

captured the repetitive patterns and decreased the overall evolution time to get a successful

solution.
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Koza 1992, 9-Block Stack Problem

Explicit loops were used in the 9-block stack problem described on page 55 of this thesis. Our

loop format 1 is similar in structure to this format. However, there are two major differences

between Koza’s loop format and our loop format 1. Firstly, Koza’s loop format is highly cus-

tomised. The DU and DO-ON-GOALS functions contain considerable domain information. To

apply the same format to a different problem requires a major redefinition of the associated

terminals and functions. Our loop format 1 only requires a small degree of customisation speci-

fying the value of max-iterations. Secondly, the DU and DO-ON-GOALS conditions are not easy

to evolve, thus, infinite loops frequently arise without an external restriction on the maximum

number of iterations. We have called these kinds of loops unbounded loops (see page 8) and

have stated at the beginning of the thesis that the study of unbounded loops is not our focus.

Our looping format 1 is a kind of bounded loop (see page 8). Our loop format 1 avoids the

infinite iterations problem by specifying the number of iterations explicitly, based on domain

parameters.

Kinnear 1993, Sorting Problem

Explicit loops were used in the sorting problem described on page 58 of this thesis. We composed

loop format 2 to solve a limited version of this problem. The major difference between Kinnear’s

approach and ours is in the method of restricting max-iterations. In his approach, the total

number of iterations is restricted as well as the maximum number of iterations for each loop.

We used the length of the array to restrict the possible values of start and end. Because we only

tried to sort an array of limited length, setting the maximum number for start and end based on

the array length was possible. Kinnear wanted to evolve a generalized sorting algorithm which

is a much harder problem and is not our goal.

Finkel 2003, The Integer Factoring Problem

Explicit loops were used in the integer factoring problem described on page 60 of this thesis.

As in Koza’s 9-block stack problem, there are two major differences between Finkel’s loops and

ours. Firstly, Finkel used a do-while loop to solve this problem and this do-while loop is a kind

of unbounded loop. To avoid infinite loops, he set a hard-coded maximum number of iterations.

Because the condition was not easily satisfied, every loop in his approach reached the maximum

limit and evaluation was very expensive, as he stated in his paper. Our loop format is a type of

bounded loop and infinite loops are not possible. We have restricted the number of iterations
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for each loop based on domain parameters and this decreased the overall evolutionary time to

get a successful solution. Secondly, the do-while loop requires a condition as argument. The

condition needs to be highly customised and is hard to evolve. Our loop only requires a small

degree of customisation.

Chen and Zhang 2005, The Factorial and The Modified Ant Problem

Explicit loops were used by Chen and Zhang as described on page 60 of this thesis. They have

used two loop formats - WhileLoop1 and WhileLoop2. Their WhileLoop1 is not really a “while”

loop and is the same as our loop format 2 which was originally published in [43] in 2004. The

WhileLoop1 function takes three arguments (start, end and body) and is a bounded loop. Their

WhileLoop2 requires a condition as one of the arguments and is an unbounded loop. There are

no major differences between this WhileLoop2 and the DU loop composed by Koza in 1992 or

the do-while loop by Finkel in 2003. The condition of this WhileLoop2 was set to be foodAhead

only and this is highly customised to the ant problem. The standard Santa Fe ant problem has

gaps in the food trail. They modified the standard food trail and made the problem easier by

placing the food continuously without gaps, while using our loop approach, it was possible to

solve the original Santa Fe ant problem.

Koza 1999, Computing Average in A Vector Problem, Automatically Defined Func-

tions and Automatically Defined Loops

Automatically defined functions (ADFs) and automatically defined loops (ADLs) were described

on page 56 of this thesis. Koza has demonstrated their usage in a computing average problem

and a number of other problems. Langdon has used them for his list structure problem. Our

looping constructs are different to ADLs. Ours require no changes to the interpretation of a

program tree while ADFs and ADLs requires different types of branches for the functions, loops

and the main program. In ADFs and ADLs, the genetic operations need to take the different

types of branches into consideration, so that crossover and mutation can correctly handle dif-

ferent situations to avoid nesting, and ensure that the main program can correctly reference the

functions and loops. These operations are costly and increase search time.

Overall, the work described above, except ADLs, lacks a comparison with solving the prob-

lems without loops. The focus is on solving the problem at hand and it was taken for granted

that loops were essential. Except for Koza, Chen and Zhang, they did not attempt to apply

the same loop format to other problems. Our work provides comparisons for solving different
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problems with and without loops and clearly demonstrates that iterations deliver major benefits

to solve a number of problems.

6.4 Future Work

The investigation showed several directions which can be pursued further.

1. Extend loop format 2 to have an increment value.

In our loop format 2 (see Section 3.3.2), we do not have an explicit increment and we used 1

as the default value of the increment for the index in our experiments. Some problems need to

use different values of the increment. For example, for a program with loops to sum up values

of even numbered elements in an array, the value of the increment needs to be 2 instead of 1.

Extending our loop format to include an increment terminal may improve our loop suitability

to these problems.

2. Extend the sorting problem to arrays of arbitrary size and extend the visit every square problem

to grids of arbitrary size.

It is known that a program without loops cannot sort an array of arbitrary size and cannot

visit every square of a grid with arbitrary size. Extending the research on the sorting problem

(see Section 3.6) and the visit every square problem (see Section 3.8) may help to determine

whether such general solutions incorporating loops can be evolved. A number of the solutions

for the 4times4 visit-every-square problem would have been solutions for any n if the 4 was

replaced by n in the text of the program, so there is some reason for optimism here. If such

solutions can be evolved, the question arises as to whether there are some procedures that are

common to both problems, which one can follow for producing such generalised solutions in

other problem domains.

3. Extend the object classification problem to larger images and examine the effects of increasing

image size.

GP with loops has demonstrated its efficiency in terms of using fewer evaluations to get a

solution than GP without loops in the object classification problem in this work (see Section

4.3). However, the images used were small in size and they are represented by a 16×16 grid. It

will be useful to know what the effects are when we extend this problem to larger images. Will

we get similiar or increased performance gain in larger images?

4. Extend the object classification problem to classify grey level, real world objects instead of
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binary artificial objects.

The object classification problem is artificial (see Section 4.3). Furthermore, the problem

was simplified by choosing binary pixel values to form the images. In real world images, pixel

values are not binary and there are also many repeated patterns. An example of a repeating

pattern in a real world image could be bricks in a wall. Intuitively, one may expect that repeated

patterns in these images image may provide opportunities for the use of loops, because loops

are useful functions for handling repetition efficiently.

5. Extend the use of loops to other problems involving images.

A characteristic of real world images is that pixel values tend to change gradually in a

localised area. For example, an image of the ocean in a localised region would have variations

of blue in that region. In a program that is building a model of the ocean, loops could be useful

because they could change pixel values gradually. Changing pixel values in this manner would

mirror the gradual continuity of pixel values in a localised region of a real world image.

6. Explore GP with different genetic parameters for the tested problems.

We have conducted a brief parameter sensitivity analysis (see Section 3.10). However the

analysis has only been conducted for the modified ant problem. Even though the results con-

vinced us that loops were the key factor that decreased the number of evaluations to get successful

solutions, it would be more rigorous to extend these experiments to every problem in this thesis.

7. Develop some mechanisms to allow an explicit index to be used in a loop.

The loop index in this work is implicit, in that it does not appear in the loop body. Having

an explicit index in the loop body, as those in programs written by a human, is desirable because

the evolved programs with loops would be closer to many programming paradigms that people

are familiar with today, such as loops in C and Java (see page 5). Many problems can be

formulated by using loop indices implicitly; however, some problems will be hard to solve or

need highly customised loop functions with the implicit use of indices. For example, to solve

a matrix multiplication problem, multiple indices are needed to refer to different elements in

different matrices. For GP with loops to allow explicit indices, mechanisms need to be developed

to ensure that genetic operations follow the rule that each loop will have at least one index and to

identify which loop an index belongs to, so that indices can be updated correctly in evaluation.

8. Find better ways to visualize the search space with and without loops.

It is difficult to analyse the search space in GP without understanding the relationship
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between parents and descendants. It may be helpful to develop a new method, or investigate

other methods from existing fitness landscape techniques (see page 42), in order to visualise the

changes in the evolutionary process when loops are present or absent. To this end, we have

conducted some experiments by using the fitness distribution method in Chapter 5. However,

this work is limited in scope and further analysis methods should be investigated.

9. Find new methods to avoid infinite iteration while not restricting the search for possible good

programs.

Most current work avoids infinite iteration by setting a maximum number of iterations for

the whole program. We have used a maximum number of iterations for each loop or a maximum

number for the value of start and end, together with the maximum program depth, in order to

restrict the number of iterations for a program. However, these methods have limitations. They

can result in a value for the maximum number of iterations which is too large, or too small. This

can restrict the search because, if the maximum number of iterations is too large, the program

takes too long to evolve. Similarly, if the maximum number of iterations is too small, a solution

can never be found. It would be useful to have a method in which the maximum number of

iterations is not set by the user, but is discovered by the evolutionary process.

10. Apply loops to many more problems.

Although the object classification problem in this thesis has been solved without loops (see

Chapter 4), GP with loops has demonstrated that solutions with higher success rate can be

evolved with less computational cost (see Chapter 3, 4). This raises the question about the

performance of loop-based GP approaches to problems which have not been solved by GP, as

well as to problems that have been solved by GP, but without loops. It is expected that loop

based GP approaches will yield tangible benefits, as suggested by the work presented in this

thesis.

This thesis explored the use of explicit loops with restricted syntax and semantics in genetic

programming for a range of classic experimental problems and some variations as well as a

difficult object classification problem. It showed that explicit loops with these restrictions can

be beneficial to the evolutionary process by finding the repeating patterns which make the

programs fitter and lead to solutions. The looping structures developed in this work are not

as general as the ones written by a human. The loop index is not explicit and indices of two

or more loops cannot be nested naturally. A maximum number of iterations still needs to be



CHAPTER 6. CONCLUSIONS 175

used to restrict each loop to avoid infinite iterations. Researchers and practitioners of genetic

programming have generally avoided loops, because of the difficulties of evolving consistent

programs and the infinite loop problem. However, this work has shown that there is no need to

fear loops. Restricted loops can avoid the above problems and deliver benefits. We hope that

our work will encourage further research into loops in genetic programming.
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