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Abstract

This thesis presents the identification of continuous time linear multi-variable systems using

state-space models. A data-driven approach in realization by the subspace methods is carried out

in developing the models. In this thesis, the approach by subspace methods is considered for both

open-loop and closed-loop continuous time system identification. The Laguerre filter network,

the instrumental variables and the frequency sampling filters are adopted in the framework of

subspace model identification. More specifically, the Laguerre filters play a role in avoiding

problems with differentiation in the Laplace operator, which leads to a simple algebraic relation.

It also has the ability to cope with noise at high frequency region due to its orthogonality

functions. The instrumental variables help to eliminate the process and measurement noise

that may occur in the systems. The frequency sampling filters are used to compress the raw

data, eliminate measurement noise so to obtain a set of clean and unbiased step response data.

The combination of these techniques allows for the estimation of high quality models, in which,

it leads to successful performance of the continuous time system identification overall. The

application based on a magnetic bearing system apparatus is used to demonstrate the efficacy

of the proposed techniques.

ix
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Chapter 1

Introduction

1.1 Motivation

Merging towards modernization and rapid development era, the high technology of systems and

machine tools are very highly in demand. The need for exploration either for novel technology

or perhaps improvising the existence is always desired. Thus, this research will focus on another

perspective of system identification in which it involves the subspace methods in identifying

continuous time state-space models. Towards the end, the realization of the developed model

will be evaluated to identify a magnetic bearing systems.

The motivation of this thesis upstand behind these reasons:

1. Even though the discrete time models can be used to describe such systems, however,

in certain practical applications the use of continuous time models is preferable. When

investigating the underlying of physical systems, such as time constants, elasticity, mass,

etc., these parameters are directly interpreted by continuous time models whereas the

discrete time models do not. For instance, the second order continuous time transfer

function is given as

G(s) =
1

ms2 + bs + k

where the parameter m, b and k represent the mass, elasticity and friction accordingly.
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On the other hand, the discrete time model of the same process is given as

G(z) =
b0z + b1

a0z2 + a1z + a2

where the parameters do not have any physical meanings. Moreover, additional parameters

are introduced in the numerator part due to the effect of sampling and hold mechanisms.

Thus, in the areas where analysis of the physical system is in need, such as in biophysics

or rotor-dynamics, the continuous time models, which contain the interpretation of the

physical parameters are desirable.

The continuous time systems also allow for measurement of non-equidistant sampled data.

In the application areas like medicine, transport and traffic systems, the process measure-

ment is not under human control. Since the discrete time models are relying on constant

sampling period, therefore the identification of these particular systems is difficult in the

framework of uniformly sampling environment. The continuous time models, however,

represent the systems at every time instance. Thus, the equidistantly spaced of sampled

data is unnecessary. The measurements are only based on points on the continuous line.

In addition, the continuous time models also make the identification of stiff systems more

reliable. A stiff system contains both slow and fast dynamics. The areas of chemical

engineering, nonlinear mechanics, biochemistry and life science are sources of stiff systems.

For these particular systems, identifying slow dynamics requires a large amount of data and

leads to long calculation times. With continuous time models, the data can be justified and

analysed separately, allowing also for sampling rate and measurement time adjustment.

This will significantly reduce the amount of data and the computation time needed for

identification.

2. The subspace methods have proven to successfully identify a state space model especially

for an open-loop systems. However its consistency and successful rate in identifying a

closed-loop systems still open for a challenge. Even though, there are some successful

approaches reported in the literature, yet the contributions especially in developing a

continuous time model with noisy environment can be counted.

3. Even though the magnetic bearing apparatus has existed for a long time already, there are a

lot of issues governing the systems that need to be explored. The bearing stiffness issues,

rotor dynamics which lead to rotor unbalance and high frequency oscillations, control

system performance and many more, are demanding in terms of stability and robustness
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improvements. Thus, obtaining a good model that represents the system will lead to next

step of obtaining a good control towards the systems.

4. Combining together the continuous time system using subspace methods and implement-

ing it to magnetic bearing system will provide such an interesting, significant and novel

research perspective for each of the area.

1.2 Literature Review

In conjunction with the application towards magnetic bearing systems, this thesis has focussed

on several subjects. In broad terms the subjects are: system identification, state-space models,

subspace methods and continuous time identification. The following literature review reflects

the work completed in recent years in each of these respective areas.

1.2.1 System Identification

System identification is considered as a well known technique for developing mathematical mod-

els based on plant input and output data sequences. There are comprehensive literature in

the field of system identification which can be referred for instance in the books by Sinha

& Kuszta [144], Soderstrom & Stoica [150], Schoukens & Pintelon [137], Johansson [79], Van

den Bosch & Van der Klauw [34], Astrom & Wittenmark [13], Ljung [99], and Pintelon &

Schoukens [128]. This procedure has been successfully studied in many different areas, such as

control system engineering, civil, chemical and environmental engineering, economics, biology

and many more. In control engineering for example, system identification provides a useful

means to obtain mathematical models for optimization and controller design [54, 101, 180]. In

general, the system identification procedures are shown in sequence as follows [13,99].

1. Experiment design - Preparing the experiment or process plant in terms of what signals

to measure, choice of sampling time and choice of excitation signals.

2. Data acquisition - Recording the input and output data from the experiment or process

plant.

3. Model selection - Specifying type of models that is required for observation.
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Figure 1.1: Open-loop and closed-loop systems

4. Model estimation - Determining the best model criteria in minimizing the cost function.

5. Model validation - Evaluating the performance capability of the model in describing the

systems.

Within the above procedures, there are two types of identification experiment: the open-loop

experiment and the closed-loop experiment. Figure (1.1) shows the block diagram that represent

both systems. The open-loop identification considers the direct identification from output to

input signal. On the other hand, the closed-loop identification results when the identification

experiment is performed in closed-loop, in which, the output is fed back to the input using certain

feedback mechanism. This setup is unavoidable if the plant must be controlled for safety reason,

maintaining high quality production and/or if the open-loop will make the system unstable. The

open-loop identification is quite straightforward. However, that does not hold for closed-loop

identification.

The area of closed-loop identification can be classified into three groups [44,84,99].

1. Direct approach - Ignoring the existence of the feedback loop, the open-loop identification

methods are directly applied to the measurable input and output data for identifying the
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plant, Pm(s).

2. Indirect approach - Suppose that the reference input, r is available and the controller

transfer function, Cm(s) is known. First step involves identification of transfer function,

Tyr(s) from r to the output y. Second step computes the plant transfer function by using

the formula

Pm(s) =
Tyr(s)

1− Cm(s)Tyr(s)
(1.1)

3. Joint input-output approach - Suppose that the reference input, r is available. First

step involves identification of transfer function, Tur(s) and Tyr(s) from r to the joint

input-output (u, y). Second step computes the plant transfer function using the algebraic

relation

Pm(s) =
Tyr(s)
Tur(s)

(1.2)

The direct approach usually provides with biased estimates unless the noise effect is not so

significant and can be neglected. However this situation is not always true in practical applica-

tions. Therefore, to compensate the difficulty associated with the bias, modified methods like

two stage least squares methods and the projection method are developed [45,138,181,182]. The

basic idea is to identify the sensitivity function of the closed-loop system by using autoregressive

moving average (ARMA) or finite impulse response (FIR) models, in which the estimate û of

the input u is generated removing the noise effects. Then, the estimated input û and the output

y are employed to identify the plant transfer function using a standard open-loop identification

technique [84].

The indirect approach requires the information about the controller transfer function is known.

Examples of this approach can be referred in [35, 166, 177]. The advantage of the joint input-

output approach is that the knowledge of the controller is not required. However, the major

drawback is that the identified model has an order equal to the sum of the plant and controller

order. Therefore, the model reduction step is required in the procedure. Example of this joint

approach can be referred in [84,170].

System identification can be also classified into online identification and off-line identification.

The online identification (also known as recursive identification or real-time identification) deals

with problems of building mathematical models at the same time as data is being collected. The

identification is said to be online identification if it based on the following criteria [144].
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1. It does not require a special input.

2. No batch recorded data or safekeeping data is required.

3. The recursive algorithms, adaptive algorithms or sequential parameter estimation methods

are used. In this situation, the identification process is started without the need of large

amount of input data. The estimation process can be done with only few initial data and

the parameter optimization process is updated continuously for every enter of new data.

4. The total measurement for model optimization is calculated at each sampling period.

5. The identification process is run in short time.

On the other hand, the identification is an off-line procedure if it is based on the following

criteria [144].

1. By using appropriate algorithms, the most significant input can be used to develop the

model.

2. Large amount of input and output data are recorded and kept for later modelling.

3. During the model estimation process, the data is processed in a block sample and according

to the justified cost function.

4. Varieties of formulation procedures can be done as the measurement time is not a con-

straint.

5. The identification process usually takes longer time.

Next, after the system and identification are configured, the suitable candidate of model to

represent the system is desired. The model must provide a good prediction over the dynamical

properties of a given system under various operating conditions. Models that describe the

systems may be in various forms. The two most popular realization approaches for developing a

model in system identification are prediction error optimization approach developed by Astrom,

Bohlin and Eykoff (refer to [11, 12, 21, 39]), and the state-space realization approach developed

by Ho and Kalman [62]. The interest of this thesis goes to the state-space realization approach.
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1.2.2 State-space Model

In the state-space realization approach, the relationship between the input, noise, and output

signals is written as a system of first-order differential or difference equations using an auxiliary

state vector x(t). Since its first introduction in the 60’s by Ho and Kalman [62], and later in 1978

with improved algorithm proposed by Kung [91], this method has opened a clearer approach

in system identification perspective. Even though the approach by these three researchers had

only allowed for the determination of a state-space model from impulse responses, but it did

provide with clearer information about the system order (according to Singular Value Decom-

position, SVD), therefore less tuning parameters were necessary and multi-variable models can

be represented in a straightforward manner.

The use of a state-space model to describe the dynamical systems is getting more popular as

the insights into physical mechanisms of the system become more transparent. In addition,

the state-space mathematical modelling involves vectors and matrices in a unique geometrical

framework. It offers the key advantages on providing low parameter sensitivity with respect

to perturbations for high order systems. It also shows its ability to present multi-input and

multi-output systems with minimal state dimensions.

In this thesis, the state-space model formulation is chosen to complement with the subspace

methods in which the subspace-based state-space modelling techniques will be utilized. The

books by Van Overschee & De Moor [165], Ljung [99] and Katayama [84]; and the thesis by

McKelvey [106], Haverkamp [57], Shi [142] and Barry [14] provide excellent overview in this

particular area.

1.2.3 Subspace Methods

Subspace methods in a formulation of state-space models have given such a promising achieve-

ment in modelling and identification of multi-variable systems. In addition, subspace identifica-

tion algorithms also do not require an explicit parametrization. The only parameter needed for

user specification is the system order, in which it can be explicitly determined by inspection of a

singular value spectrum. The subspace identification algorithm also requires no nonlinear para-

metric optimization and no iterative procedures, thus abolishes the problems of local minima
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and model convergence.

The common and popular approaches in the Subspace Model Identification (SMI) family are

the CVA (Canonical Variate Analysis) method introduced by Larimore [92, 93], the MOESP

(Multi-variable Output Error State Space) algorithm introduced by Verhaegen and Dewilde [172,

173] and the N4SID (State Space Subspace System Identification) algorithm introduced by Van

Overschee & De Moor [167, 168]. The CVA [92, 93] method perform a Canonical Correlation

Analysis (CCA) on two data sets: A matrix of past input/output data and a matrix of future

output data. Based on the properties of a Markov process and the maximum likelihood function,

the dominant canonical variate of those two data sets are considered the approximates of the

state variables. The system matrices are estimated by fitting the estimated states to the state-

space model by least squares regression [142]. This method works with the assumption that the

process inputs are not auto-correlated.

The MOESP algorithm [172,173] employs the Quadratic Recursive (QR) decomposition to fac-

torize the joint input and output data matrices into a triangular coefficient matrix R and an

orthonormal signal matrix Q. The working matrix is estimated using the SVD, the matrices

A and C are obtained from the extended observability matrix, and the matrices B and D are

solved by least squares regression. On the other hand, the N4SID algorithm [167,168] performs

a projection of future outputs/inputs onto the past data. Then, the SVD is performed to the

projection results to determine the model order and estimate the state variables. The system

matrices are solved from least squares regression. This algorithm works with the assumption

that noises that appear in the systems are zero mean, random Gaussian distributions and are

independent of process inputs. The inputs are persistently exciting and the number of data

points is sufficiently large.

These realization methods have sparkled the development of many other SMI algorithms (for

examples in [32, 109, 174, 175] ). Subspace methods have also shown promising performance in

some applications such as modelling of flexible structure [55, 109], flexible aircraft [33], aircraft

dynamics [58], power transformer [6], antenna array system [95], chemical industry (distillation

column) [40] and semiconductor exposure apparatus [86].
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In addition to its numerical simplicity and requiring of no iterative procedures, the subspace

method is also convenient for optimal estimation and control. However, without special treat-

ment, the subspace method usually gives bias when implemented on a system that works under

closed-loop operation. This is due to the correlation between the input and the output noise in

closed-loop system in which it can’t be solved with only ordinary subspace methods [44,84,99].

However, with special treatment, now the subspace methods are also able to identify the closed

loop system. The idea of implementing the subspace methods for identification of a closed-loop

system has been studied in early 90s (see for examples in [30, 85, 100, 166, 170]). In some cases,

the assumption that the input is not correlated with the output noise is always made or if any,

it will be in at least in one sample delay.

Recent paper by Qin has given a good overview on subspace identification for open-loop and

closed-loop systems [132]. Improvising the subspace method to be applicable with consistent

estimates over closed-loop systems has shown some promising achievement (See recent exam-

ples in [29, 84, 96, 132, 133]). In state-space model identification however, most of the subspace

approaches usually proposed in discrete time model. Only few reported on dealing with contin-

uous time model [58,80,81,126,164]. The main difficulty in handling continuous time models is

probably due to the presence of the derivative operator associated with the input and output

signals [163].

1.2.4 Continuous Time System Identification

In general, the continuous time identification falls into two distinguish categories: The indirect

approach and direct approach [162, 163]. The indirect approach basically view the situation

at two points: First by using a non-parametric model like impulse response, step response or

frequency response function [52,134,186]. Second step is to estimate continuous time parameters

from the estimated discrete time model. This approach is possible as the continuous time Laplace

operator s and the discrete time z operator is in relation as s = ln(z)/∆, where ∆ is the sampling

period of the discrete time model. However this conversion may yields into complex arithmetics

especially when the system is unstable. Furthermore, problems are also encountered in the

choice of the sampling time ∆. A slow sampling time leads to loss of information, while a fast

sampling time tends to cluster the poles of the discrete time model near z = 1. This results in

numerical ill-conditioning [145]. Nevertheless, the use of frequency sampling filters approach has
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shown promising achievement in overcoming the problems with slow dynamics and fast sampling

rate (see some of the examples in [48,49,179–182]). The benefits from this approach will be one

of the subject that will be researched in this thesis.

In contrast, the direct approach often approximates the derivative operator that is associated

with input and output signal using a filter. The State Variable Filter (SVF) methods are one

of the examples [183]. In a paper by Johannson and his colleagues, a filter of f(s) = p
s+p is

used [82]. However, this process of filtering results in a strong attenuation of signals above the

cutoff frequency of f(s) [57]. In avoiding those problems, the Laguerre filter is introduced [31,

57,59]. The advantage of using the Laguerre filter avoids problem with differentiation in Laplace

operator, leads to simple algebraic and is its ability to cope with process and measurement noise

in an effective way due to its orthogonality functions. The research that will be carried out in

this thesis will also use the benefits of Laguerre filter. Other than using filter approach, there

are also reported direct approach using Poisson Moment Function (PMF) as can be referred

in [15, 16, 47], using the δ−operator model as can be referred in [66, 147] and using the random

distribution approach as in [126].

Along the lines of subspace model identification, this research will perform an investigation over

state-space model identification of near continuous time systems. A causal model is developed as

to preserve its stability and offer suitability for online implementation of continuous time system

identification. The scope will include research being performed from open-loop identification to

closed-loop identification using the subspace methods. In addition, this research will involve

both time domain data and frequency domain data. In all those, a verification over single input

single output systems and multi-variable systems are carried out. To build a concrete platform,

there are three important tools that contribute in developing the model: The Laguerre filters,

frequency sampling filters and the instrumental variables.

1.3 Research Contributions

This thesis will provide novel and significant contributions listed as follows.

• The significant development of continuous time state-space models using subspace methods

with application to multi-variable magnetic bearing systems.
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• A novel approach in identification of multi-variable magnetic bearing systems by using sub-

space methods with adoption of Laguerre filters and instrumental variables for continuous

time model.

• A novel approach in identification of continuous time systems by using future horizon for

instrumental variables.

• A novel approach in identification of continuous time model in closed-loop operation using

Laguerre filters and instrumental variables.

• The development of a novel continuous time model identification by combining the usage

of frequency sampling filters, subspace methods and Laguerre filters.

• Significant contributions on design analysis via frequency response and step response ob-

servations.

• Significant contributions on design analysis for optimal instrumental variable and tuning

parameters.

• Significant contributions on identification analysis over single-input-single-output and multi-

input-multi-output systems with and without disturbances.

1.4 Publications and Presentations Arising from this Research

Journal Publications

Rosmiwati Mohd-Mokhtar and Liuping Wang, Continuous Time System Identification using

Subspace Methods, ANZIAM J. Vol. 47, pp. 712-732, 2007.

Conference Publications

R. Mohd-Mokhtar, L. Wang, L. Qin and T. Barry, Continuous Time System Identification of

Magnetic Bearing Systems using Frequency Response Data, 5th. Asian Control Conf., Mel-

bourne, Australia, pp. 2066-2072, 2004.
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Rosmiwati Mohd-Mokhtar and Liuping Wang, System Identification of MIMO Magnetic Bear-

ing via Continuous Time and Frequency Response Data, In Proc. of IEEE Int. Conf. on

Mechatronics, Taipei, Taiwan, pp. 191-196, 2005.

Rosmiwati Mohd-Mokhtar and Liuping Wang, Continuous Time State Space Model Identifica-

tion using Closed-loop data, 2nd. Asia Int. Conf. on Modelling & Simulation, Kuala Lumpur,

Malaysia, pp. 812-817, 2008.

Rosmiwati Mohd-Mokhtar and Liuping Wang, 2-stage Approach for Continuous Time Identi-

fication using Step Response Estimates, IEEE Int. Conf. on Systems, Man & Cybernetics,

Singapore, 2008. Published.

Rosmiwati Mohd-Mokhtar and Liuping Wang, Continuous Time System Identification using

Subspace Methods, 7th. Annual EMAC Conf., Melbourne, Australia, 2005.

Rosmiwati Mohd-Mokhtar and Liuping Wang, A Review on Identification and Control Method-

ologies for Magnetic Bearing Systems, Int. Conf. on Robotics, Vision, Information and Signal

Processing, Penang, Malaysia, pp. 232-236, 2005.

1.5 Thesis Outline

The remainder of this thesis composed of six chapters and briefly outline as follows.

Chapter 2 overviews the magnetic bearing systems, which discusses hardware and software

configuration in a laboratory apparatus. The investigation is specifically for the test stand

magnetic bearing system available at Royal Melbourne Institute of Technology University.

Chapter 3 discusses the procedures for building a state space model to identify the continuous

time systems. A subspace method is used to develop the continuous time models with the

aid of Laguerre filter and the instrumental variable. The instrumental variable component

involves both of input and output components in which its purpose is to cope with process

and measurement noise. The innovation of constructing filtered data matrices using differential

equations provides better computation and easily maintainable parametrization. In addition, the

use of causal Laguerre filters and instrumental variables has improved the quality of the model

12



1.5 Thesis Outline

in the presence of process and measurement noise. This causality condition also guarantees the

filter stability. The performance of the proposed model is evaluated by identifying two systems:

the simulated noise-free systems and the simulated noise-added systems. The identification

procedure runs for both SISO and MIMO systems.

In Chapter 4 the thesis explores a subspace method that is used in identifying a state space

model for a system operating in closed-loop. As a continuous time closed-loop identification is

one of the prime subject, the Laguerre filter network is also used in the identification procedure.

The regression matrix is based on past horizon. To maintain the stability and causality of the

filter, the extended future horizon is used as instrumental variables and the matrix configurations

are manipulated in such a way to satisfy the closed-loop conditions. There are two approaches

that will be discussed in this chapter. First approach is based on Error in Variable (EIV)

system identification and second approach is based on Gaussian reference signal method. This

configuration will give consistent estimates for the deterministic part of the state space model.

Next in Chapter 5 the indirect identification procedure is proposed. The 2-stage identification

procedure is performed. The first step is the identification of the system step response from

the experimental data using the Frequency Sampling Filter (FSF) approach. This first stage is

also referred as data compression stage in which the raw data will be analysed, the noise will be

eliminated and the data is finally compressed into an empirical model of the analysed data. The

second step is the identification of a continuous time state space model using subspace methods

from the identified step response. The subspace identification algorithm used to identify the

impulse response data now is used to identify the step response data. The key ingredients behind

the FSF model is justified and the used of Predicted REsidual Sums of Square (PRESS) statistic

and the orthogonal decomposition algorithm is also demonstrated. This approach provides with

“clean” data and unbiased estimation towards closed-loop identification. Next, the open-loop

identification using subspace methods leads to improved performance and better sensitivity and

stability condition.

Chapter 6 discusses on continuous time state space model identification using subspace approach

with respect to frequency response data. The strategy of implementing the subspace methods

with additional w−operator has improved system performance and stability, as well as provided

with better conditioning in regards with all the data matrices employed in the identification

algorithm. In addition, the instrumental variables are also adopted to the algorithm with the

13



1.5 Thesis Outline

goal to cope with measurement noise. The performance capability of the proposed identification

algorithm is justified with identifying model from sets of simulated noise-added data and a set

of real data from MB systems. As for the MB data, the raw input and output data are first

analysed using the FSF approach to obtain the frequency response estimates. This procedure

will avoid the biased measurement with respect to direct frequency response obtained using

FFT. The identification results show promising achievements for system identification overall.

Chapter 7 is a concluding chapter. The Chapter contains some remarks emphasizing the achieved

goal, narrowing down the difficulties and suggesting the future research are stated in this chap-

ter.
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Chapter 2

Magnetic Bearing Systems

2.1 Introduction

Magnetic bearing (MB) is an essential tool in modern life as it consumes no mechanical contact

and no lubrication, while providing high speed, high accuracy and high dynamic performance in

numerous applications. It also guarantees low rotating loss and low maintenance cost as well as

a longer life time. This technology rapidly grows and has been widely used in many applications

such as semiconductor manufacturing equipment, chemical, oil and gas plantation, cryogenic

equipment, machine tools and many more. In spite of all the advantages and useful contributions

towards advanced and high-tech machinery and equipment, magnetic bearing however, is a

mechanism with a high complexity therefore, to gain understanding of magnetic bearing systems

demands knowledge on mechanical, electrical, electronics and control throughout.

As a kick start for identification and control in which the focus will be partially on magnetic

bearing system application, it is better to have a brief overview about the magnetic bearing

system configurations, requirements and related problems. Part of this Chapter is taken from

author’s review paper on identification and control for magnetic bearing systems [114]. This

chapter will also discuss on magnetic bearing hardware and software configuration. This in-

vestigation specifically emphasizes the test stand magnetic bearing system available at Royal

Melbourne Institute of Technology University. However, it can be applied to other magnetic

bearing systems in general.
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2.2 Investigation on Test Stand Magnetic Bearing Apparatus

This chapter is organized as follows. In Section 2.3, the issues concerning magnetic bearing

dynamics, stabilities and uncertainties are justified. Problems such as synchronous disturbance,

eddy current effect, rotor unbalance, losses and many more may influence the performance of

magnetic bearing system operation. Section 2.4 discusses on developing mathematical model

and controller design of the magnetic bearing system. The magnetic bearing trade-off is also

addressed in which it attracts attention towards the importance of researching into system

identification and control of the magnetic bearing system. Section 2.5 gives some concluding

remarks.

2.2 Investigation on Test Stand Magnetic Bearing Apparatus

Magnetic bearing system specification and configuration can be better studied and researched

by installing the similar working apparatus in the laboratory. One in many examples is the

development of test stand magnetic bearing apparatus. In general, there are four distinctive

components that involved in the magnetic bearing system operation; the bearings which consist

of the rotor and the electromagnetic actuator, position sensor, power amplifier and controller

(see Figure 2.1). Its principle lies on the fact that the electromagnet (stator) will attract the

ferrous material (rotor) of magnetic bearing. By using a stationary electromagnet and rotating

ferrous material, a shaft is levitated in a magnetic field while maintaining accurate position of

the shaft under varying loads.

Overall, MB system incorporates three distinct technologies: Bearings and sensors, control sys-

tem and control algorithm. Bearings and sensors are electromechanical hardware in which the

supporting forces are applied and input signals are collected from the installed machine. The

control system provides the power and control electronics for signal conditioning, calculating

of correcting forces and sends the resultant commands to the power amplifiers for each axis of

control. On the other hand, control algorithms are software programs used in processing of the

input signals after conditioning, and calculating the command signals before sending action to

the power amplifiers [1]. Details on each of the component involved will be discussed in the

following section.
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2.2 Investigation on Test Stand Magnetic Bearing Apparatus

Figure 2.1: Magnetic bearing system

2.2.1 Two-sided Bearings

The two bearing actuators are employed to support a shaft on which a disk is fixed at the middle

point and two journals are fixed at the end of the shaft [Refer to Figure 2.2]. In some technical

applications, this prototype is more reliable as compared to single-sided bearings. By adding

another identical magnet, it exerts forces in the opposite direction of each other. This configu-

ration makes the bearing as gravity independent as well as improves the bearing dynamics since

forces on the rotor can be exerted in both directions of each axis. Furthermore, the geometry

condition of the rotor such as surface quality and the homogeneity of the material must be

properly identified as a bad surface will results in noise disturbances, and geometry errors may

cause disturbances on the rotational frequency [140].

The system has four coil currents which need to be manipulated, and four shaft displacement

which need to be measured and controlled. During the rotating mode, all four parameters are

involved and the model is gyroscopically coupled at a given running speed. Thus, it leads to

4 × 4 transfer function matrix and is dependent upon the running speed of the rotor. On the

other hand, during the levitating only mode (assuming zero shaft speed), the dynamics in the

x− z plane and y− z plane are assumed to be decoupled and identical. Since no cross coupling
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2.2 Investigation on Test Stand Magnetic Bearing Apparatus

Figure 2.2: Schematic drawing for test-stand magnetic bearing apparatus

effects present, it leads in two separate dynamics systems which can be modelled as a 2 × 2

transfer function matrix.

2.2.2 Displacement Sensors

The efficiency of a magnetic bearing is very much dependent on the efficiency of the displacement

sensors used. They measure the translational displacements of the rotor relative to the magnetic

bearing stator, convert them into electrical voltage signal and pass the signal to the bearing

control system component. Normally, the sensors are calibrated so that when the shaft is in the

desired position, the sensors produce a null voltage. When the shaft is moved above this desired

position, a positive voltage is produced and when it is moved below, a negative voltage results

(x−axis). Same configuration involves as the shaft moves to the left or right direction (y−axis).

Depending on the application of the magnetic bearing, different types of displacement sensors are

used, for examples inductive displacement sensors, eddy-current sensors, capacitive displacement

sensors, magnetic displacement sensors and optical displacement sensors [140]. For the test-stand

that is available at RMIT University, it is equipped with the inductive displacement sensors.
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2.2 Investigation on Test Stand Magnetic Bearing Apparatus

2.2.3 Controllers

From the displacement sensors, the controllers receive the voltage signals, process the informa-

tion and send current request to the amplifiers. First, the voltage signal is passed through the

anti-aliasing filters to eliminate high frequency noise from the signal. This noise can cause the

signal to inaccurately represent the position of the shaft. In addition, as the controller periodi-

cally samples the signal, some of the high-frequency information can “fold over” into false low

frequency information, thus aliasing the information received by the controller.

Decades ago, the magnetic bearing controller design is based on analog control where hard-

wires and circuits are the working domain for controlling the MB systems. Their tolerance

towards system changes is limited, and modifications or changes are difficult and expensive to

make. The analog controllers have less flexibility in terms of manipulating, monitoring, diagnos-

ing and treating the system easily. The introduction of digital controller into magnetic bearing

system has really advanced the magnetic bearing control system [7, 20]. With digital proces-

sor that equipped with Analog to Digital (A-D) and Digital to Analog (D-A) converters, more

advanced control algorithms and/or various additional control actions can be implemented as

the system operation can now be monitored and diagnosed through software version and all the

communications between human and apparatus are performed via the attached host computer.

Therefore, with the introduction of digital control, after the high frequency content is removed,

the position signal is sampled by the A-D converter. This converts the voltage signal to a form

that can be processed by the digital signal processor. The digital information is then passed

through a digital filter and the output proportional to the amount of current required to correct

the position error in the shaft is produced. The requested current is again compared, filtered

and sampled through D-A converter before is sent to the amplifiers.

The development of the controllers for the magnetic bearing apparatus available at RMIT has

been started off with analogue controller. At the early stage, the prototype of analog Proportional

Derivative (P-D) control was used. After the introduction of digital control, the Digital Signal

Processor (DSP) controller is used. This DSP controller was based on a fixed-point TMS320C25

produced by Texas Instrument Company [130]. However, the drawback of using this controller

was that the difficulty of implementing the high order control algorithms. This was due to the
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2.3 Arising Issues in Magnetic Bearing System Operation

limitation on precision measure for the fixed-point DSP. Later, the fixed-point DSP has been

replaced with TMS320C6701 floating point DSP [161]. This new controller configuration has

suppressed the drawback that occurred before and thus, has allowed the implementation of more

advanced control algorithms.

2.2.4 Power Amplifiers

From the controllers, the power amplifiers convert the control signals to control currents. Each

bearing axis has a pair of amplifiers to provide current to the bearing coils and provide an

attractive force to correct the position of the rotor along that particular axis [1]. There are

two types of power amplifiers: analog amplifiers and switching amplifiers (also known as pulse

width modulated amplifiers). The analog amplifiers have simple structure and are usually used

for sensitive applications as well as applications that require moderate power. For the high

power system requirement, the analog amplifiers will have limitation as high losses will influence

very much the magnetic bearing system operation. Therefore, in applications with power above

approximately 0.6kVA, switching amplifiers are exclusively used [140]. Apart from low losses

in comparison with analog power amplifiers, the switching amplifiers also have its drawback as

switching may cause electromagnetic disturbances due to oscillations in the current. However,

the shorter the switching period, T , the weaker the oscillations in the current [140]. As for the

magnetic bearing apparatus available in the laboratory, the analog power amplifiers are used.

2.3 Arising Issues in Magnetic Bearing System Operation

Apart from general information on how the magnetic bearing system is operated, one might

wonder as well what kind of issues that may arise during the operation. With all the advantages

of magnetic bearing as compared to conventional one, no doubt there are still technical issues

that occur in magnetic bearing system operation and therefore have opened opportunity in

researching, enhancing and upgrading its system performance. In this section, the issues are

divided into two categories: the characteristic issues and the dynamics issues.
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2.3 Arising Issues in Magnetic Bearing System Operation

2.3.1 Characteristic Issues

The characteristic issues visualized on material behaviour and properties of the suspended (ro-

tating) weight over the operating range (speed, acceleration, dynamic forces). The knowledge

regarding these issues are highly desired especially during the magnetic bearing prototype de-

sign. There are few other features related to characteristic issues such as bearing load, size,

temperature, carrying force and speed limit (circumferential and rotational), but four that will

be discussed are iron losses, precision, damping and stiffness.

Iron Losses

Iron loss (or core loss) is a form of energy loss (mostly released as heat) due to a variety of

mechanisms related to the fluctuating of magnetic field, such as hysteresis and eddy-currents.

The hysteresis loss occurs in the ferromagnetic bearing bushes of the rotor. This loss depends on

the structural shape, rotor speed, the material used for the bearing bushes, and the distribution

of flux density, B, over the circumference of the bushes [140]. The hysteresis losses are somehow

unavoidable, but a proper chosen material proportional to the speed requirement of the operating

devices may help to reduce the losses. The eddy-currents are generated when the flux density

within the iron core change. A compact core will generate large eddy-currents. To reduce the

eddy-current losses, the iron core is usually divided into insulated or laminated sheets, or in

particles (sinter cores).

Precision

Precision in magnetic bearing system operation means how precise can the position of the rotor

axis be guaranteed. Whether rotating or not, the magnetic bearing levitate an object over the

feedback control based on the position measurement from the displacement sensor. Precision

control relies on the quality of a sensor signal and the displacement sensors are very sensitive to

the surface quality. Therefore, for high precision, additional algorithms to detect and compensate

the unnecessary signal contents induced by the geometric errors of the rotor are required [139].
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2.3 Arising Issues in Magnetic Bearing System Operation

Damping and Stiffness

Damping and stiffness are two important characteristics require for the magnetic bearing system

and are determined by the controller. Without damping, the magnetic bearing systems will

oscillate and become unstable. The required damping can be introduced using derivative control.

The derivative component causes the gain to rise with frequency and causes the phase to rise

to 90 degrees phase lead. This phase lead is associated with damping. On the other hand,

the required stiffness can be introduced using integrative control. However the bearing stiffness

is frequency dependent. Within the control frequency range, the stiffness is still held. Above

the cut-off frequency of the controller, stiffness drops significantly before rising quadratically at

higher frequencies due to inertia of the rotor [1, 140].

2.3.2 Rotor Dynamics

Rotor dynamics are another challenging issue that need a serious attention while dealing with

magnetic bearing system apparatus. Two main contributors are the gyroscopic effects and rotor

imbalance. The gyroscopic effect can be described as a dynamical changes to the system due to

rotation while rotor imbalance is a dynamical changes to the system due to rotation over certain

speed and frequency. Here, two important terms involved: moment of inertia and critical speed.

In the field of rotor dynamics, moment of inertia (also called rotational inertia) refers to the

fact that a rotating rigid body maintains its state of uniform rotational motion. Its angular

momentum is unchanged, unless an external torque is applied [4]. However, due to inertia prop-

erties of the rotor, the bearing stiffness will drop significantly just after the cut-off frequency

before rising quadratically at higher frequencies [140]. On the other hand, the critical speed is

the theoretical angular velocity which excites the natural frequency of a screw or gear [2]. As

the critical speed approaches the objects’s natural frequency, its shaft begins to resonate which

leads to excessive systemic vibration.

The rotor dynamic instability which responses to rotor imbalance will initiate synchronous vibra-

tion phenomena, whirling phenomena, transient disturbance and many more [169]. In practical,

the rotor imbalance is never zero. It acts as a disturbance input on the rotor.
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2.4 Control Engineering Perspective

2.4 Control Engineering Perspective

In general, magnetic bearing is a mechatronic by-product that requires knowledge from mechan-

ical, electrical, electronics, computer and control. As to control engineer’s perspective, it may

come to an agreement that the field of interest will possibly on modelling the systems and at-

tempts to improve, upgrade and enhance the control system and control algorithm. Therefore,

this section will elaborate on literature view over developing a model and implementation of

control algorithms.

2.4.1 Building Mathematical Models

In block diagram, the magnetic bearing plant system can be illustrated as in Figure (2.3), where

r(t), u(t), uc(t), y(t), v(t) and h(t) are the reference input signal, input signal, output signal from

controller, output signal, measurement noise and process noise respectively. The set point is the

fixed command signal that will make correction (if any) with respect to the difference coming

from the output system (displacement sensor). Obviously seen that the magnetic bearing system

is a closed-loop system and the feedback mechanism is a must for the system to be in stable

operation. With respect to magnetic bearing system realization, the strong motivation for mod-

elling and identification lies behind two reasons. First, it gives clearer prediction over magnetic

bearing dynamic properties under various operating conditions. Second, a precise parametric

model of magnetic bearing plant is required for controller design [46]. The class of models can

be classified into two categories: analytical models and empirical models. The analytical model

or also known as physical modelling can be obtained for example by performing finite element

analysis of the rotor, modal analysis of the rotor or static force measurement of the bearings.

However this procedure has a few drawbacks as effects like eddy currents, hysteresis, and sen-

sor/amplifier dynamics can not be assessed easily. The related measurements also can not be

carried out with the assembled machine.

On the other hand, the empirical model is the model that obtained based on study and analysis

of the input and output data collected from the system. This is also known as system identifi-

cation. As compared to physical modelling, system identification gives more flexible approaches

into the insights of the systems. A common model representation is a direct transfer function
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2.4 Control Engineering Perspective

Figure 2.3: Magnetic bearing model

model which can be seen for example in [5,141]. Another quite popular mathematical model that

can describe the magnetic bearing system in the form of matrix representation is a state-space

model. Consider a continuous time model of a magnetic bearing system, which can be described

by the following sets of equations.

ẋ(t) = Ax(t) + Bu(t) + h(t) (2.1)

y(t) = Cx(t) + Du(t) + v(t) (2.2)

u(t) = r(t)− uc(t) (2.3)

where x(t) ∈ Rn is the state-vector, u(t) ∈ Rm is the measured input signals and y(t) ∈ Rl is

the measured output signals. The signals h(t) ∈ Rn and v(t) ∈ Rl represent the process and

measurement noise respectively. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m are the system

matrices. ẋ means the time derivative of x. The identification of magnetic bearing system using

this model formulation can be referred in [101,119,151,154]. Besides these two models, there are

also reported formulations using neural network in the form of Auto Regressive Moving Average

(ARMA) model as referred in [50] and Hamiltonian model as in [135].

With the same motivation and goal aiming as mentioned before, there are many approaches

and methods that have been developed for the purpose of modelling and system identification.
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For instance, the use of Finite Element Method (FEM) as in [9,22,36,75,185,190,191], State Space

Subspace System Identification (4SID) method as in [151], extended influence coefficient method

as in [88], eigenvalues move method as in [61], harmonic balance and curve fitting method as

in [26, 27], fringing range method as in [131], adaptive forced balancing method as in [37], out-

put inter-sampling scheme as in [154], Multi-variable Output Error State Space (MOESP) with

Instrumental Variable (IV) method as in [115, 116, 119], semi-analytic calculation as in [110],

modified least mean square (LMS) algorithm as in [89], using the linear wavelet parametrization

as in [157], Genetic Algorithm as in [23,25], Neural Network (NN) model as in [50,76] and fuzzy

model as in [63,65,187].

For this thesis, the author is studied on subspace methods. This topic becomes subject of

interest as the subspace identification algorithm requires no nonlinear parametric optimization

and no iterative procedures, which makes them convenient for optimal estimation and control.

Working together within state-space formulation, it offers the key advantages on providing low

parameter sensitivity with respect to perturbations for high order systems. It also shows its

ability to present multi-input and multi-output systems with minimal state dimensions.

2.4.2 Control System Design

As mentioned in previous section, rotor imbalance, rotor vibration, precision levitation, syn-

chronous disturbance, stiffness and damping are related to dynamics, stabilities and uncertain-

ties issues that always arise in magnetic bearing system especially when it has to be operated in

high speed and high frequency range. Those issues are very much relied on control system and

control algorithm. The magnetic bearing system is open loop unstable, therefore the feedback

is compulsory in guaranteeing its stability, and the control algorithm which can be regarded as

the “brain” and “heart” of overall MB functionality, plays an important role.

Proportional Derivative (P-D) control is the most common control method that is employed

to magnetic bearing system. Here, the proportional feedback works as mechanical stiffness and

the differential feedback coefficient as mechanical damping. The decentralized PD controllers

are sufficient enough to make the rotor levitated at zero spinning speed [130]. However, PD

controllers always have a steady state offset from the set point. This is due to the fact that

the PD controllers only deliver a non-zero output if there is a position error. If the shaft is at
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the requested set point the output of the controller would be zero because the error would be

zero [1]. To overcome the problem, the Integrator, I, is added and PID controllers are introduced

to the MB systems [74,136].

Either PD or PID controllers, their performances on rotor stability can be acknowledged only

when the system operates at low frequency range and is subjected to the bearing sensor, which

is located in the middle of the bearing (collocated). As frequency increases, the transfer function

gain will go to infinity. For the non-collocated bearing sensor, the shaft will start to oscillate

because the sensor fails to see the correct motion of the bearing at high frequency. To solve the

problem, higher ordered controller is necessary. Additional poles and zeros and notch filter are

also placed in the control system in order to improve the control loop stability [46,60].

To date, there are many control methods that have been proposed, for example H∞ con-

trol [43, 56, 105, 123, 153], µ− synthesis control [41, 42, 72, 122, 125], sliding mode control [28, 73,

155,156,158], Q-parameterization control [83,94,111–113], adaptive control [19,98,159,184,189],

fuzzy control [8,64,71,87,143], neural network control [38,77,78,124,194] and many more. Some

of these methods have shown good performances in addressing problems like rotor imbalance,

gyroscopic effect, disturbances rejections, noises and plant uncertainties as compared to PID

controller. However, while trying to solve the control problems, other issues such as, suffering

from high order controller (e.g. in H∞ control), mismatch between reference model and true

system, excessive gains etc. may arise.

Model predictive control (MPC) or model-based predictive control (MBPC) is another inter-

esting topic in advanced control technique that has a significant and widespread impact on

industrial process control [103, 176]. The idea of implementing the MPC has added another

new methodology to a real application of MB plant system [67]. The research on this con-

trol method has drawn significant interest as MPC has shown ability to handle multi-variable

control problems naturally, to operate closer to hard and soft constraints, and to take account

of actuator limitations. These will facilitate advances on designing magnetic bearing control

system with improved stability, robustness, reliability while addressing all the limitations and

implementation issues that may occur in conventional control method.
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2.4.3 Magnetic Bearing Systems Trade-off

No doubt, when the requirement for magnetic bearing to be operated in high speed and high

frequency range as well as to cope with plant “elastic system”, the need for high performance and

robust model and control design is highly desired. Nevertheless, there are tradeoffs on control

theory that one has to consider. For high performance, very high accuracy of the model is

needed, while for high robustness, only low stiffness can be realized [140]. Searching for optimal

balancing between the tradeoff is really crucial in magnetic bearing control design. Thus, this

area is still open for research and exploration, and identification and control system design for

magnetic bearing system become subject of interest.

2.5 Summary

This chapter has given on overview of magnetic bearing system apparatus. All the components

involved with its functionality are briefly described. The issue that arises during magnetic bear-

ing system operation is also discussed. The importance of research in identification and control

of magnetic bearing system are addressed together with the literature review towards existing

methods on identification and control of magnetic bearing systems. With the current standing

technology of magnetic bearing system, the limitations still occur and advanced prototype ac-

cording to market demand are highly desired. It has opened chances and room of improvement

to researcher to deeply explore this challenging technology.
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Chapter 3

Continuous Time Identification using

Subspace Methods

3.1 Introduction

This chapter discusses on building a state-space model to identify the continuous time systems

via time-domain approach. A subspace method is used to develop the identification model with

the aid of Laguerre filter and the instrumental variable. This approach is partially influenced

by the ideas of Yang [188] in conjunction with the work by Van Overschee and De Moor [164],

and work by Haverkamp et al. [59], in which the subspace method with the aid of Laguerre

filters and instrumental variable is used to identify a frequency response data. In Yang [188],

the Laguerre filter is used to filter the data matrices and the instrumental variable matrix is

constructed based on the higher order of the Laguerre filters. In other similar work reported by

Haverkamp et al. [57, 58], the subspace method with the aid of the bilinear transformation of

w = s−p
s+p which also leads to the usage of Laguerre filters and instrumental variable is used in

time domain system identification.

In this chapter, the role of Laguerre filters and the instrumental variables is studied. The

use of Laguerre filter has overcome the problem with derivative operator that is associated

with the input and output signals in continuous time system identification. The innovation of

constructing filtered data matrices using differential equations provides better computation and

28
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easily maintainable parametrization. In addition, the use of the instrumental variables have

improved the quality of the model in the presence of process and measurement noise. The

causality condition also guarantees the filter stability.

The content for this chapter is partially taken from a published paper by the author as can be

referred in [116] with an addition where the identification is also performed to the multi-variable

systems. The content of this chapter goes as follows. In Section 3.2 the approach using the bi-

linear transformation is discussed. This transformation will lead to the introduction of Laguerre

filter. The role of this filter generates the sequence of filtered input and output signals. The

subspace method for continuous time system identification developed in a state space model for-

mulation will be discussed in Section 3.3. The framework of subspace state-space identification

algorithm is also outlined in this section. Up to this point, the subspace method is successful

in identifying the noise-free system. However, the estimation is biased when the noise is added

to the system. This has led to the introduction of the instrumental variables, which will be

discussed in Section 3.4. Also in this section, the experimental identification results are shown

to illustrate the performance of the subspace method on identifying the noise-added continuous

time systems for single input single output and multi-variable data systems. In addition, the

capability of the proposed model is also evaluated by comparing the performance with other

linear parametric models available in MATLAB system identification toolbox. Section 3.5 pro-

vides with some implementation issues that relate to developing accurate model and searching

for optimal condition as to guarantee a successful system identification. Finally, Section 3.6

concludes the chapter.

3.2 Bilinear Transformation of State-space Models

In mathematical formulation, the continuous time system is given by the following state-space

model equations

ẋ(t) = Ax(t) + Bu(t) (3.1)

y(t) = Cx(t) + Du(t) (3.2)

Here, x(t) ∈ Rn is the state-vector, u(t) ∈ Rm is the measured input signals and y(t) ∈ Rl is

the measured output signals. The ẋ means the time derivative of x. The x(t) ∈ Rn, u(t) ∈ Rm
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and y(t) ∈ Rl are the model vectors. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m are the

system matrices. Their definitions and roles are as follow [165].

• A ∈ Rn×n is called the (dynamical) system matrix. It describes the dynamics of the system

(as completely characterized by its eigenvalues).

• B ∈ Rn×m is the input matrix which represents the linear transformation by which the

deterministic inputs influence the next state.

• C ∈ Rl×n is the output matrix which describes how the internal state is transferred to the

outside world in the measurements of y(t).

• D ∈ Rl×m is called the direct feed-through term. In continuous time systems this term is

most often 0.

In the Laplace domain, these equations become

sX(s) = AX(s) + BU(s) (3.3)

Y (s) = CX(s) + DU(s) (3.4)

where

X(s) =
∫ ∞

0
x(t)e−stdt

U(s) =
∫ ∞

0
u(t)e−stdt

Y (s) =
∫ ∞

0
y(t)e−stdt

As seen in Equations (3.1-3.2), the state-space model involves derivatives of the state variables.

Thus, implementing this model like the discrete time counterpart will result in numerically

unstable solutions. For instance, the time domain solution involves the differential operator as

ẋ(t) =
x(t + ∆t)− x(t)

∆t

in which this will amplify the noise, especially in higher frequencies. Therefore, in the literature

of continuous time system identification, filters are used in the identification procedure (see for

examples in [31,59,82,183]).

The common approach to the estimation function model is to use a state variable filter which

applies to the input and output data. The advantage of this approach is that the continuous
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time parameters are found directly. However, it requires high order discrete time filters for

the approximation of the differentiation operator. Scaling is often needed to prevent numerical

problems with the filtered signals [57]. In addition, the use of discrete approximation somehow

may amplify the noise in higher frequency regions, therefore certain mechanism need to be

applied in order to achieve reliable estimation.

In the context of subspace continuous time system identification, a bilinear operator is used to

replace the differentiation represented by the Laplace operator, s. In Johansson et al., a filter

of f(s) = p
s+p is used [82]. However, as the model order increased, this process of filtering

results in a strong attenuation of signals above the cutoff frequency of f(s) [57]. Figure (3.1)

illustrates the problem. On the other hand, the use of bilinear operator in the form of w = s−p
s+p

will also lead to the filtering of the input and output data. The system can be identified based

on a state-space model in the w-operator. The obtained model can be transformed back to the

common continuous time state-space model using simple algebraic relations.

The w−operator is actually playing a role as an all-pass filter. At any frequency range, this

filter neither amplifies nor attenuates the signals. Figure (3.2) illustrates this condition. Since

the frequency content of the signals remains unchanged, the additional scaling of the filtered

signals is unnecessary. However, the condition of all-pass filter will not eliminate the high

frequency noise. Thus, problem with high frequency noise still remains. Interestingly, the use

of bilinear operator w leads to the use of Laguerre filters. The bode plot of frequency response

based on Lagurre filter is shown in Figure (3.3). The use of Laguerre filter avoids problem with

differentiation in Laplace operator, leads to simple algebraic relation and shows ability to cope

with process and measurement noise in an effective way due to its orthogonality functions. This

will be shown in more details in the following section.

3.2.1 w−operator and Laguerre Filter

The w−operator works in correlation between first order all-pass filter and Laguerre filter. This

relation can be exploited in the identification of continuous time systems. The i-th continuous

time Laguerre filter is given by
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Figure 3.1: Bode diagram of 1st- 3rd order Johansson filters [82]
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Figure 3.2: Bode diagram of 1st- 3rd order all-pass filters
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Figure 3.3: Bode diagram of 1st- 3rd order Laguerre filters
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3.2 Bilinear Transformation of State-space Models

Figure 3.4: Laguerre filter network

Lσ(s) =
√

2p
(s− p)σ

(s + p)σ+1
, (σ = 0, 1, . . . , i− 1) (3.5)

where p > 0 is the scaling factor to ensure that the filters are stable.

The structure of this filter bank is shown in Figure (3.4). The w-operator that corresponds to

the all-pass filter has the form

w(s) =
s− p

s + p
, s = p

1 + w

1− w
p > 0 (3.6)

where

w =
s− p

s + p

w(s + p) = s− p

ws + wp = s− p

ws− s = −p− wp

−s(1− w) = −p(1 + w)

s = p
1 + w

1− w

The notation of Laguerre filter in the form of w−operator is given by

Lσ(s) = w0(s)wσ(s), (σ = 1, . . . , i− 1) (3.7)

33



3.2 Bilinear Transformation of State-space Models

where

w0 =
√

2p

s + p
(3.8)

3.2.2 State-space Model Description

With w−operator been described as in Equation (3.6), now, substitute s with p1+w
1−w in the state

equation of (3.3) gives

p
1 + w

1− w
X(s) = AX(s) + BU(s)

p(1 + w)X(s) = A(1− w)X(s) + B(1− w)U(s)

pX(s) + pwX(s) = AX(s)−AwX(s) + B(1− w)U(s)

pwX(s) + AwX(s) = AX(s)− pX(s) + B(1− w)U(s)

w(A + pIn)X(s) = (A− pIn)X(s) + B(1− w)U(s)

wX(s) = (A + pIn)−1(A− pIn)X(s) + (A + pIn)−1B(1− w)U(s)

Solving for 1− w,

1− w = 1−
(

s− p

s + p

)

=
s + p− s + p

s + p

=
2p

s + p

(3.9)

Substitute Equation (3.8) into Equation (3.9) gives

1− w =
2p

s + p

=
2p
√

2p
w0

=
√

2pw0

Therefore now the state equation becomes

wX(s) = (A + pIn)−1(A− pIn)X(s) +
√

2p(A + pIn)−1Bw0U(s)

wX(s) = AwX(s) + Bww0U(s)

Thus, the Aw and Bw are obtained as

Aw = (A + pIn)−1(A− pIn)

Bw =
√

2p(A + pIn)−1B
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3.2 Bilinear Transformation of State-space Models

Then, solve the output of state equation (3.4) as

(1− w)Y (s) = C(1− w)X(s) + D(1− w)U(s)

= CX(s)− CwX(s) + D(1− w)U(s)

= CX(s)− C[AwX(s) + Bww0U(s)] + D(1− w)U(s)

= CX(s)− CAwX(s)− CBww0U(s) + D(1− w)U(s)
√

2pw0Y (s) = CX(s)− CAwX(s)− CBww0U(s) +
√

2pDw0U(s)

= (C − CAw)X(s) + (
√

2pD − CBw)w0U(s)

w0Y (s) =
1√
2p

(C − CAw)X(s) +
1√
2p

(
√

2pD − CBw)w0U(s)

= CwX(s) + Dww0U(s)

which results in

Cw =
1√
2p

(C − CAw)

=
1√
2p

(C − C(A + pIn)−1(A− pIn))

=
1√
2p

(C(A + pIn)−1(A + pIn)− C(A + pIn)−1(A− pIn))

=
1√
2p

(2pC(A + pIn)−1)

=
√

2pC(A + pIn)−1

and,

Dw =
1√
2p

(
√

2pD − CBw)

=
1√
2p

(
√

2pD − C
√

2p(A + pIn)−1B)

= D − C(A + pIn)−1B

Therefore, the model description in Equations (3.3-3.4) can be transformed into

wX(s) = AwX(s) + Bww0U(s) (3.10)

w0Y (s) = CwX(s) + Dww0U(s) (3.11)

with

Aw = (A + pIn)−1(A− pIn)

Bw =
√

2p(A + pIn)−1B

Cw =
√

2pC(A + pIn)−1

Dw = D − C(A + pIn)−1B (3.12)
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3.2 Bilinear Transformation of State-space Models

Explicitly,

wX(s) =
s− p

s + p
X(s)

w0Y (s) =
√

2p

s + p
Y (s)

w0U(s) =
√

2p

s + p
U(s)

Note that the input signal and output signal are filtered by the first order filter. Thus, the

state-space model equations can be rewritten as

[wx](t) = Awx(t) + Bw[w0u](t) (3.13)

[w0y](t) = Cwx(t) + Dw[w0u](t) (3.14)

The transformation from Aw matrix to A matrix is given as

Aw = (A + pIn)−1(A− pIn)

(A + pIn)Aw = A− pIn

AAw + pAw = A− pIn

pAw + pIn = A−AAw

p(In + Aw) = A(In −Aw)

A = p(In −Aw)−1(In + Aw)

Bw is transformed as

Bw =
√

2p(A + pIn)−1B

1√
2p

(A + pIn)Bw = B

B =
1√
2p

[p(In −Aw)−1(In + Aw) + pIn]Bw

=
1√
2p

[p(In −Aw)−1(In + Aw) + p(In −Aw)−1(In −Aw)]Bw

=
1√
2p

[p(In −Aw)−1[In + Aw + In −Aw]Bw]

=
1√
2p

[2p(In −Aw)−1Bw]

=
√

2p(In −Aw)−1Bw
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3.2 Bilinear Transformation of State-space Models

Cw is transformed as

Cw =
√

2pC(A + pIn)−1

Cw(A + pIn) =
√

2pC

√
2pC = Cw[p(In −Aw)−1(In + Aw) + pIn]

√
2pC = Cw[p(In −Aw)−1(In + Aw) + p(In −Aw)−1(In −Aw)]

√
2pC = Cwp(In −Aw)−1[In + Aw + In −Aw]

√
2pC = 2pCw(In −Aw)−1

C =
√

2pCw(In −Aw)−1

and Dw is transformed as

Dw = D − C(A + pIn)−1B

D = Dw + C(A + pIn)−1B

= Dw +
√

2pCw(In −Aw)−1[p(In −Aw)−1(In + Aw) + pIn]−1
√

2p(In −Aw)−1Bw

= Dw + 2pCw(In −Aw)−1[p(In −Aw)−1(In + Aw) + p(In −Aw)−1(In −Aw)]−1

× (In −Aw)−1Bw

= Dw + 2pCw(In −Aw)−1[p(In −Aw)−1(In + Aw + In −Aw)]−1(In −Aw)−1Bw

= Dw + 2pCw(In −Aw)−1[2p(In −Aw)−1]−1(In −Aw)−1Bw

= Dw + 2pCw(In −Aw)−1 (In −Aw)
2p

(In −Aw)−1Bw

= Dw + Cw(In −Aw)−1Bw

In summary,

A = p(In −Aw)−1(In + Aw)

B =
√

2p(In −Aw)−1Bw

C =
√

2pCw(In −Aw)−1

D = Dw + Cw(In −Aw)−1Bw (3.15)
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3.2 Bilinear Transformation of State-space Models

3.2.3 Constructing Data Matrices

Based on the model description given in Equations (3.13-3.14), data equations are constructed

as

w0y(t) = Cwx(t) + Dww0u(t)

w0wy(t) = Cwwx(t) + Dww0wu(t)

= Cw[Awx(t) + Bww0u(t)] + Dww0wu(t)

= CwAwx(t) + CwBww0u(t) + Dww0wu(t)

w0w
2y(t) = CwAwwx(t) + CwBww0wu(t) + Dww0w

2u(t)

= CwAw[Awx(t) + Bww0u(t)] + CwBww0wu(t) + Dww0w
2u(t)

= CwA2
wx(t) + CwAwBww0u(t) + CwBww0wu(t) + Dww0w

2u(t)

By repetitively multiplying with w, the data equations are rearranged as follows.




[w0y] (t)

[w1y] (t)
...

[wi−1y] (t)




=




Cw

CwAw

...

CwAi−1
w




x(t) +




Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0

CwAi−2
w Bw · · · CwBw Dw







[w0u] (t)

[w1u] (t)
...

[wi−1u] (t)




(3.16)

Introduce the following notations

Oj =




Cw

CwAw

...

CwAj−1
w




; Γj =




Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0

CwAj−2
w Bw · · · CwBw Dw




where Oj is the extended observability matrix and Γj is the Toeplitz matrix. Now to make the

problem more general, define the output as Y f
i,j(t) and the input as Uf

i,j(t) give

Y f
i,j(t) =




[wiy] (t)

[wi+1y] (t)
...

[wi+j−1y] (t)




; Uf
i,j(t) =




[wiu] (t)

[wi+1u] (t)
...

[wi+j−1u] (t)
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3.2 Bilinear Transformation of State-space Models

With these notations, the continuous time data equation can be rewritten in a compact form as

follows

Y f
i,j(t) = OjX̂(t) + ΓjU

f
i,j(t) (3.17)

Using the sampled data at sampling times t1, t2, . . . , tN , the block of Hankel matrices are ob-

tained as

Y f
i,j,N =




[wiy] (t1) [wiy] (t2) . . . [wiy] (tN )

[wi+1y] (t1) [wi+1y] (t2) . . . [wi+1y] (tN )
...

...
...

...

[wi+j−1y] (t1) [wi+j−1y] (t2) . . . [wi+j−1y] (tN )




(3.18)

Uf
i,j,N =




[wiu] (t1) [wiu] (t2) . . . [wiu] (tN )

[wi+1u] (t1) [wi+1u] (t2) . . . [wi+1u] (tN )
...

...
...

...

[wi+j−1u] (t1) [wi+j−1u] (t2) . . . [wi+j−1u] (tN )




(3.19)

Xi,N =
[

x(t1) x(t2) . . . x(tN )
]

(3.20)

With these matrices, the sampled data equation becomes

Y f
i,j,N (t) = OjX̂i,N (t) + ΓjU

f
i,j,N (t) (3.21)

3.2.4 Constructing Filtered Data Matrices

Now that the data matrices are obtained, next issue is how to generate the filtered data matrices.

With wi(t) denotes the time domain representation of the Laguerre filters, therefore [wiy](t) and

[wiu](t) denotes the convolution of y(t) and u(t) with wi(t) in which are represented as

[wiy](t) =
∫ t

0
wi(t− τ)y(τ)dτ

[wiu](t) =
∫ t

0
wi(t− τ)u(τ)dτ

There are few ways that could be implemented in order to generate the Laguerre functions (see

for details in [180]). Here, the numerical solution of the differential equations is used. Refer
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3.2 Bilinear Transformation of State-space Models

back to Figure (3.4), the zero-th order Laguerre filter is described in differential equations as

W0(s) =
√

2p

s + p

(s + p)W0(s) =
√

2p

sW0(s) + pW0(s) =
√

2p

L−1[sW0(s) + pW0(s)] = L−1[
√

2p]

ẇ0(t) + pw0(t) =
√

2p

ẇ0(t) = −pw0(t) +
√

2p

The first order Laguerre filter can be described as

W1(s)
W0(s)

=
s− p

s + p

(s + p)W1(s) = (s− p)W0(s)

sW1(s) + pW1(s) = sW0(s)− pW0(s)

L−1[sW1(s) + pW1(s)] = L−1[sW0(s)− pW0(s)]

ẇ1(t) + pw1(t) = ẇ0(t)− pw0(t)

ẇ1(t) = −pw1(t) + ẇ0(t)− pw0(t)

= −pw1(t)− pw0(t) +
√

2p− pw0(t)

= −pw1(t)− 2pw0(t) +
√

2p

By continuing generate the sequence for the i−th order, the equations are arranged in the

following form: 


ẇ0(t)

ẇ1(t)
...

ẇi−1(t)




=




−p 0 . . . 0

−2p −p . . . 0
...

. . . . . .
...

−2p . . . −2p −p







w0(t)

w1(t)
...

wi−1(t)




(3.22)

with the initial conditions 


w0(0)

w1(0)
...

wi−1(0)




=
√

2p




1

1
...

1




(3.23)
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3.2 Bilinear Transformation of State-space Models

Hence, a set of continuous time Laguerre functions can be found numerically by iteratively

solving the following difference equations



w0(ta+1)

w1(ta+1)
...

wi−1(ta+1)



≈




−p 0 . . . 0

−2p −p . . . 0
...

. . . . . .
...

−2p . . . −2p −p







w0(ta)

w1(ta)
...

wi−1(ta)




∆t +




w0(ta)

w1(ta)
...

wi−1(ta)




(3.24)

with 


w0(t0)

w1(t0)
...

wi−1(t0)




=
√

2p




1

1
...

1




(3.25)

and ∆t = ta+1 − ta being the integration step size (sampling rate).

As to generate the filtered input, and instead of performing a convolution, the data matrices

can be developed via implementation of the solution of the differential equations




u̇w0(t)

u̇w1(t)
...

u̇wi−1(t)




=




−p 0 . . . 0

−2p −p . . . 0
...

. . . . . .
...

−2p . . . −2p −p







uw0(t)

uw1(t)
...

uwi−1(t)




+
√

2p




1

1
...

1




u(t) (3.26)

Therefore, a set of filtered input can be generated numerically by iteratively solving the difference

equations



uf
0(ta+1)

uf
1(ta+1)

...

uf
i−1(ta+1)




≈




uf
0(ta)

uf
1(ta)
...

uf
i−1(ta)




+




−p 0 . . . 0

−2p −p . . . 0
...

. . . . . .
...

−2p . . . −2p −p







uf
0(ta)

uf
1(ta)
...

uf
i−1(ta)




∆t

+
√

2p




1

1
...

1




u(ta)∆t (3.27)
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with zero initial condition of uf
i (t). The filtered output is also constructed in a similar way and

is expressed as



yf
0 (ta+1)

yf
1 (ta+1)

...

yf
i−1(ta+1)




≈




yf
0 (ta)

yf
1 (ta)

...

yf
i−1(ta)




+




−p 0 . . . 0

−2p −p . . . 0
...

. . . . . .
...

−2p . . . −2p −p







yf
0 (ta)

yf
1 (ta)

...

yf
i−1(ta)




∆t

+
√

2p




1

1
...

1




y(ta)∆t (3.28)

with zero initial condition of yf
i (t).

3.3 Subspace Methods for Estimating State-space Models

Consider now a problem to estimate the system matrices A, B, C and D in the state-space

model. With the assumption that the state-space representation is a minimal realization, the

input and output relationship expressed in Equations (3.1-3.2) can also be described by

x̂(t + 1) = T−1ATx̂(t) + T−1Bu(t) (3.29)

y(t) = CT t̂ + Du(t) (3.30)

where T ∈ Rn is any invertible matrix that correspond as x̂ = T−1x(t). To simplify the notation,

define Â as matrix A accurate to within similarity transform. Thus,

x̂(t + 1) = Âx̂(t) + B̂u(t) (3.31)

y(t) = Ĉx̂(t) + D̂u(t) (3.32)

The identification algorithm is developed based on the following information:

• The extended observability matrix can be estimated based on the availability of input

signal u(t) and output signal y(t).
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3.3 Subspace Methods for Estimating State-space Models

• The Â and Ĉ matrices can be determined from the extended observability matrix

Oj =




Cw

CwAw

...

CwAj−1
w




• With the knowledge of Â and Ĉ, the matrices B̂ and D̂ can be estimated using a least

squares solution from

ŷ( t B, D ) = Ĉ(qIn − Â)−1B̂u(t) + D̂u(t)

3.3.1 Estimating Extended Observability Matrix

Refer back to the Equation (3.21)

Y f
i,j,N (t) = OjX̂i,N (t) + ΓjU

f
i,j,N (t)

The next step is to isolate the Oj term using known data structures. Thus, the second term

on the right-hand side need to be eliminated. Before doing so, the data equation notation is

simplified for easier recognition and is defined as

Y = OjX + ΓjU (3.33)

This second term on the right-hand side can be removed by introducing a projection on the null

space of U which is defined as

Π⊥
U> = I −U>(UU>)−1U (3.34)

where I is the identity matrix. If UU> is singular, then the Moore-Penrose pseudo-inverse of

U> (denotes as (U>)†) can be taken. Mathematically, it is equivalent to

Υ† = (Υ>Υ)−1Υ>

The pseudo-inverse is computed recursively using singular value decomposition (SVD) describes

as [53]

Υ = USV >

Υ† = V S†U>
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3.3 Subspace Methods for Estimating State-space Models

Therefore equation (3.34) can be written as

Π⊥
U> = I −U>(U>)†

Multiply this projection on U gives

UΠ⊥
U> = U− (UU>(UU>)−1)U

= U− IU

= 0

Thus, by multiplying Equation (3.34) to both side of Equation (3.33), the term Γj will be

removed as UΠ⊥
U> = 0. Therefore, the data equation reduces to

YΠ⊥
U> = OjXΠ⊥

U> (3.35)

Since X is unknown, an approximation of Oj must be determined. There are few ways on how

to estimate the Oj matrix. Suppose that Equation (3.35) has n× n∗ dimension, an estimate of

Oj can be made using a singular value decomposition (SVD). Thus,

YΠ⊥
U> = USV > = U




s1 0 . . . 0

0 s2 . . . 0
...

...
. . .

...

0 0 . . . sn∗

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0




V >

where U and V are orthogonal matrices of dimension n× n and n∗ × n∗ respectively such that

UU> = I and V V > = I. S is a n×n∗ matrix with the singular values located along the diagonal

and zeros elsewhere. Define the following matrices using MATLAB notation

U1 = U(:, 1 : n∗) (3.36)

S1 = S(1 : n∗, :) (3.37)

V >
1 = V (:, 1 : n∗) (3.38)

Therefore, without loss of information, the YΠ⊥
U> can be reconstructed from

YΠ⊥
U> = U1S1V

>
1
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3.3 Subspace Methods for Estimating State-space Models

For some invertible matrix T of rank n∗,

YΠ⊥
U> = OjT

Therefore, the following equalities is obtained as

Ôj ≡ U1Λ

T̂ ≡ Λ−1V
>
1 (3.39)

where Λ could be S1, S
1
2
1 or I, and

Λ−1 =





I if Λ = S1

S
1
2
1 if Λ = S

1
2
1

S1 if Λ = I

The extended observability matrix Oj can be also estimated by performing the linear quadratic

(LQ) factorization and SVD to the working matrices. In this thesis, the recursive quadratic

(RQ) factorization using the modified Gram-Schmidt algorithm is used.

Let Li(s) be a bank of causal Laguerre filters (p > 0). Let u(t) and y(t) be the input and output

plant data described in Equation (3.1) and Equation (3.2). Let Uf
0,i,N and Y f

0,i,N be constructed

from u(t) and y(t), according to Equation (3.18) and Equation (3.19).

Consider the RQ factorization


 Uf

0,i,N

Y f
0,i,N


 =


 R11 0

R21 R22





 Q1

Q2



>

(3.40)

Then the following holds

R22 = OiX̂0,NQ>
2

Proof:

From the first row of RQ factorization

Uf
0,i,N = R11Q

>
1
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From the second row,

Y f
0,i,N = R21Q

>
1 + R22Q

>
2

Y f
0,i,NQ>

2 = R21Q1Q
>
2 + R22Q2Q

>
2

= R22

as Q1Q
>
2 = 0 and Q2Q

>
2 = I. From the data Equation (3.21)

Y f
0,i,NQ>

2 = OiX̂0,NQ>
2 + ΓiU

f
0,i,NQ>

2

= OiX̂0,NQ>
2 + ΓiR11Q1Q

>
2

= OiX̂0,NQ>
2

This completes the proof.

Now, perform the SVD to the working matrix R22

R22 =
[

Un U0

]

 Sn 0

0 S0





 V >

n

V >
0




For n−th model order, the observability matrix is obtained based on

Ô = Un(1 : i, 1 : n)

3.3.2 Estimating A and C Matrix

The next step now is to extract the state-space matrices Aw and Cw from the extended observ-

ability matrix Oj , and transform it back to get the Â and Ĉ matrices. The issue on estimating

the Â and Ĉ matrix for the state space model is not difficult and many possible solutions have

been discussed in literature [84, 99, 102, 165]. First, recall back the continuous time subspace

identification where the estimated extended observability matrix for the system is defined as

Ôj =




Cw

CwAw

CwA2
w

...

CwAj−1
w
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The value of Cw can be directly extracted from the first row of Ôj . To compute the Aw, the

shift property can be implemented by manipulating

Ōj =




CwAw

CwA2
w

CwA3
w

...

CwAj−1
w




In which

Aw = (Ôj)†Ōj

where (·)† denotes the Moore-Penrose pseudo-inverse [102].

On the other hand, this information can be obtained over the following notation

Aw = (J1Un)†J2Un

Cw = J3Un

J1 =
[

I(i−1)l 0(i−1)l×l

]

J2 =
[

0(i−1)l×l I(i−1)l

]

J3 =
[

Il×l 0l×(i−1)l

]

Υ† = (Υ>Υ)−1Υ>

where Un is the first n-th column of U after performing the SVD [108,109]. Next, the Â and Ĉ

can be obtained using the relations:

Â = p(In + Aw)(In −Aw)−1

Ĉ =
√

2pCw(In −Aw)−1

3.3.3 Estimating B and D Matrix

If Â and Ĉ are known, solving the linear least squares problem is the answer in order to estimate

B̂ and D̂ using the following predictor [99]

ŷ( t B, D ) = Ĉ(qIn − Â)−1B̂u(t) + D̂u(t)
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where 


y(t1)

y(t2)
...

y(tN )




=




Ĉ(qIn − Â)−1u(t1) Ilu(t1)

Ĉ(qIn − Â)−1u(t2) Ilu(t2)
...

...

Ĉ(qIn − Â)−1u(tN ) Ilu(tN )





 B̂

D̂




Define,

ϕ(t) =




Ĉ(qIn − Â)−1u(t1) Ilu(t1)

Ĉ(qIn − Â)−1u(t2) Ilu(t2)
...

...

Ĉ(qIn − Â)−1u(tN ) Ilu(tN )




Therefore,

ŷ(t) = ϕ(t)θ

ŷ(t) = ϕ(t)


 Vec(B)

Vec(D)




And,

θ = (ϕ(t)>ϕ(t))−1ϕ(t)>ŷ(t)

3.3.4 Identification Procedure

In summary, the subspace system identification is presented as follows. Given N data samples

of a system with m inputs and l outputs,

1. Construct the filtered data matrices of Uf
0,i,N and Y f

0,i,N according to Equation (3.18) and

Equation (3.19).

2. Perform the RQ decomposition

 Uf

0,i,N

Y f
0,i,N


 =


 R11 0

R21 R22





 Q1

Q2




3. Perform the singular value decomposition to the working matrix R22:

R22 = USV >

4. Determine the model order n from the singular value in S.
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5. Determine the system matrices (Aw, Cw).

Aw = (J1Un)†J2Un

Cw = J3Un

J1 =
[

I(i−1)l 0(i−1)l×l

]

J2 =
[

0(i−1)l×l I(i−1)l

]

J3 =
[

Il×l 0l×(i−1)l

]

Υ† = (Υ>Υ)−1Υ>

The Â and Ĉ can be obtained using the relations:

Â = p(In + Aw)(In −Aw)−1

Ĉ =
√

2pCw(In −Aw)−1

6. Solve least squares problem from model structure:

y( t B, D ) = Ĉ(qIn − Â)−1B̂u(t) + D̂u(t)

7. Reconstruct B and D from


 B̂

D̂




8. Generate the estimated output, ŷ(t).

3.3.5 Simulation Results

Consider the sixth order plant model example presented in [164,188]. The state space model is

developed based on the following set up.

Am =




0 1 0 0 0 0

−1 −0.2 0 0 0 0

0 0 0 1 0 0

0 0 −25 −0.5 0 0

0 0 0 0 0 1

0 0 0 0 −9 −0.12




; Bm =




0

1

0

1

0

1




; Cm =




1

0

1

0

1

0




>

; Dm = [0];

The system and model specification can be referred in Table 3.1. The input signal, u(t) is

generated using a Generalized Random Binary Signal (GRBS) sequences. The plot of input and

output data can be seen as in Figure (3.5). This data set is further divided into estimation

data set and validation data set. The performance of the estimated model is assessed based on
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Table 3.1: System and model configuration - SISO noise-free system

Symbol Description Value

Gm System response [Am, Bm, Cm, Dm]

p Laguerre parameter 1

i Expanding observability matrix 10

n Model order 6

∆t Sampling time 0.001

N Number of sampled data 4000

Nest Estimation data 2000

Nval Validation data 2000

V Noise disturbance NA

the fit between the measured output (grey) and the estimated (black) output. The results are

illustrated in Figure (3.6). The Bode plot of the estimated frequency response (dashed line) is

compared with the measured frequency response (solid line). The result is illustrated in Figure

(3.7). From this figure, it shows that the subspace method can identify the noise-free system

successfully. The estimated of (A,B, C, D) system matrices are given as

Â =




−0.7390 5.9937 1.7313 −1.2829 −0.3322 0.7731

−4.2122 0.1328 −0.0621 3.2247 0.6086 −1.2844

0.0024 0.1063 −0.0732 4.8284 0.5739 −1.2186

0.0014 0.0003 −1.8391 0.0293 −0.1229 0.4250

0.0000 0.0000 −0.0001 −0.0203 −0.0284 1.0745

0.0000 0.0000 −0.0000 0.0000 −0.9311 −0.1765




;
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Figure 3.5: Plot of input & output - SISO noise-free system. (Note: The input data is re-scaled

to only display 400 data points)
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Figure 3.6: Superimposed of output data - SISO noise-free system. True system (dashed grey)

& estimated model (solid black)
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Figure 3.7: Superimposed of frequency response - SISO noise-free system

B̂ =




0.0449

−0.0957

0.3490

−0.8788

3.9007

−0.4493




; Ĉ =




0.0335

−1.5944

−1.4136

−1.0530

−0.1265

0.2095




>

; D̂ = [0];

The transfer function of the system and the one generated from the estimated model is repre-

sented as

Gm(s) =
3s4 + 1.64s3 + 70.184s2 + 14.92s + 259

s6 + 0.82s5 + 35.184s4 + 14.932s3 + 260.56s2 + 52.5s + 225

Ĝ(s) =
2.9983s4 + 1.6784s3 + 70.1526s2 + 15.3497s + 258.8453

s6 + 0.8549s5 + 35.1921s4 + 15.4484s3 + 260.5844s2 + 53.1531s + 224.9071

and the eigenvalues of Am and Â are:

eig(Am) = [−0.1000± 0.9950j;−0.2500± 4.9937j;−0.0600± 2.9994j]

eig(Â) = [−0.1005± 0.9948j;−0.2624± 4.9925j;−0.0645± 2.9992j]

As seen, eigenvalues of Â are very similar to eigenvalues of Am.
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Figure 3.8: Plot of input & output - SISO noise-added system. (Note: The input data is

re-scaled to only display 500 data points)

Now consider that the system is disturbed by the zero mean, white Gaussian process noise, h(t)

and zero mean, white Gaussian measurement noise, v(t). The state-space model describes the

system as

ẋ(t) = Ax(t) + Bu(t) + h(t) (3.41)

y(t) = Cx(t) + Du(t) + v(t) (3.42)

At the same sampling time of ∆t = 0.001s, the model is unable to identify the system at all even

for a very low noise disturbance. Thus, the sampling time is slower to ∆t = 0.01s. For instance,

the process noise, h(t) and the measurement noise, v(t) of about 20dB SNR is generated based

on the following notation

h(t) = v(t) = 0.07× e(t);

where e(t) are unit variance, zero-mean, white Gaussian noise. The “seed” value to generate

the process noise, h(t) is set to 1, whereas the “seed” value to generate the measurement noise,

v(t) is set to 2. Therefore, at sampling time ∆t = 0.01s, about N = 4000 data is measured.

The plot of the input and output is displayed in Figure (3.8). The data is further divided

into two set, the estimation data, Nest = 2000 and the validation data, Nval = 2000. For this

system identification, the Laguerre parameter, p is set equal to 6, the parameter to expand
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Figure 3.9: Superimposed of frequency response - SISO noise-added system

the row of the observability matrix, i is set equal to 10 and the model order, n is equal to 6.

The subspace method to identify the noise-added system is shown in Figure (3.9). From this

illustration, it shows that, for the noise-added system, the model can not identify the system

closely anymore. We observed that Equation (3.35) will only produce a state space model with

reasonable quality if the noise level in the system is sufficiently small. The model is still able

to estimate the system at low frequency region but provide bias in the high frequency region.

Therefore, another mechanism is needed in order to improve the model performance.

3.4 System Identification using Noisy Data

Consider again the state-space model represented by the following equations

ẋ(t) = Ax(t) + Bu(t) + h(t) (3.43)

y(t) = Cx(t) + Du(t) + v(t) (3.44)

where x(t) ∈ Rn is the state-vector, u(t) ∈ Rm is the measured input signals and y(t) ∈ Rl is

the measured output signals. The signals h(t) ∈ Rn and v(t) ∈ Rl represent the process and

measurement noise respectively. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m are the system
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matrices. ẋ means the time derivative of x. Notice now that, there are two terms added to the

system model which represent the noise disturbance. Using Laplace transform, these state-space

equations are defined as:

sX(s) = AX(s) + BU(s) + H(s) (3.45)

Y (s) = CX(s) + DU(s) + V (s) (3.46)

Now to adopt the w−oprator, substitute s with p1+w
1−w in the state equation of (3.45) gives

p
1 + w

1− w
X(s) = AX(s) + BU(s) + H(s)

p(1 + w)X(s) = A(1− w)X(s) + B(1− w)U(s) + (1− w)H(s)

pX(s) + pwX(s) = AX(s)−AwX(s) + B(1− w)U(s) + (1− w)H(s)

pwX(s) + AwX(s) = AX(s)− pX(s) + B(1− w)U(s) + (1− w)H(s)

w(A + pIn)X(s) = (A− pIn)X(s) + B(1− w)U(s) + (1− w)H(s)

wX(s) = (A + pIn)−1(A− pIn)X(s) + (A + pIn)−1B(1− w)U(s)

+ (A + pIn)−1(1− w)H(s)

= (A + pIn)−1(A− pIn)X(s) +
√

2p(A + pIn)−1Bw0U(s)

+
√

2p(A + pIn)−1w0H(s)

= AwX(s) + Bww0U(s) + w0Hw(s)

where

Hw(s) =
√

2p(A + pIn)−1H(s)

Then, solve the output of state equation (3.46) as

(1− w)Y (s) = C(1− w)X(s) + D(1− w)U(s) + (1− w)V (s)

= CX(s)− CwX(s) + D(1− w)U(s) + (1− w)V (s)

= CX(s)− C[AwX(s) + Bww0U(s) + w0Hw(s)] + D(1− w)U(s) + (1− w)V (s)

= CX(s)− CAwX(s)− CBww0U(s)− Cw0Hw(s) + D(1− w)U(s) + (1− w)V (s)
√

2pw0Y (s) = CX(s)− CAwX(s)− CBww0U(s)− Cw0Hw(s) +
√

2pDw0U(s) +
√

2pw0V (s)

= (C − CAw)X(s) + (
√

2pD − CBw)w0U(s)− Cw0Hw(s) +
√

2pw0V (s)

w0Y (s) =
1√
2p

(C − CAw)X(s) +
1√
2p

(
√

2pD − CBw)w0U(s)− 1√
2p

Cw0Hw(s) + w0V (s)

= CwX(s) + Dww0U(s) + w0Vw(s)
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where

Vw(s) =
1√
2p

CHw(s) + V (s)

Equation (3.43-3.44) is rewritten as

[wx](t) = Awx(t) + Bw[w0u](t) + [w0hw](t) (3.47)

[w0y](t) = Cwx(t) + Dw[w0u](t) + [w0vw](t) (3.48)

Observing Equation (3.47-3.48) data equations are constructed as

w0y(t) = Cwx(t) + Dww0u(t) + w0vw(t)

w0wy(t) = Cwwx(t) + Dww0wu(t) + w0wvw(t)

= Cw[Awx(t) + Bww0u(t) + w0hw(t)] + Dww0wu(t) + w0wvw(t)

= CwAwx(t) + CwBww0u(t) + Cww0hw(t) + Dww0wu(t) + w0wvw(t)

w0w
2y(t) = CwAwwx(t) + CwBww0wu(t) + Cww0whw(t) + Dww0w

2u(t) + w0w
2vw(t)

= CwAw[Awx(t) + Bww0u(t) + w0hw(t)] + CwBww0wu(t) + Cww0whw(t)

+ Dww0w
2u(t) + w0w

2vw(t)

= CwA2
wx(t) + CwAwBww0u(t) + CwAww0hw(t) + CwBww0wu(t) + Cww0whw(t)

+ Dww0w
2u(t) + w0w

2vw(t)

By repetitively multiplying with w, the data equations are rearranged as follows.




[w0y] (t)

[w1y] (t)
...

[wi−1y] (t)




=




Cw

CwAw

...

CwAi−1
w




x(t) +




Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0

CwAi−2
w Bw · · · CwBw Dw







[w0u] (t)

[w1u] (t)
...

[wi−1u] (t)




+




0 0 · · · 0

Cw 0
. . .

...
...

. . . . . . 0

CwAi−2
w · · · Cw 0







[w0hw] (t)

[w1hw] (t)
...

[wi−1hw] (t)




+




[w0vw] (t)

[w1vw] (t)
...

[wi−1vw] (t)




(3.49)
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Introduce the new terms as

Ψj =




0 0 · · · 0

Cw 0
. . .

...
...

. . . . . . 0

CwAj−2
w · · · Cw 0




; Hf
i,j(t) =




[wihw] (t)

[wi+1hw] (t)
...

[wi+j−1hw] (t)




; V f
i,j(t) =




[wivw] (t)

[wi+1vw] (t)
...

[wi+j−1vw] (t)




In compact form, Equation (3.49) can be rewritten as

Y f
i,j(t) = OjX̂(t) + ΓjU

f
i,j(t) + ΨjH

f
i,j(t) + V f

i,j(t) (3.50)

Expanding the column matrices for N data samples, the equation becomes

Y f
i,j,N (t) = OjX̂i,N (t) + ΓjU

f
i,j,N (t) + ΨjH

f
i,j,N (t) + V f

i,j,N (t) (3.51)

where the data matrices of the two last terms in the equation are constructed as

Hf
i,j,N =




[wih] (t1) [wih] (t2) . . . [wih] (tN )

[wi+1h] (t1) [wi+1h] (t2) . . . [wi+1h] (tN )
...

...
...

...

[wi+j−1h] (t1) [wi+j−1h] (t2) . . . [wi+j−1h] (tN )




(3.52)

V f
i,j,N =




[wiv] (t1) [wiv] (t2) . . . [wiv] (tN )

[wi+1v] (t1) [wi+1v] (t2) . . . [wi+1v] (tN )
...

...
...

...

[wi+j−1v] (t1) [wi+j−1v] (t2) . . . [wi+j−1v] (tN )




(3.53)

In simplified notation, it becomes

Y = OjX + ΓjU + ΨjH + V

Now the second term of the right-hand side is removed by multiplying both side with Π⊥
U> as

defined by Equation (3.34). Therefore the equation reduces to

YΠ⊥
U> = OjXΠ⊥

U> + ΨjHΠ⊥
U> + VΠ⊥

U> (3.54)

The next task is to remove two noise terms on the right-hand side. This problem is solved by

introducing the instrumental variables.

57



3.4 System Identification using Noisy Data

3.4.1 Instrumental Variable Method

The idea of using the instrumental variable (IV) in the subspace system identification has been

proposed in more than a decade ago (see for examples in [10,93,168,174,175]). The instrumental

variables are used as an instrument to remove the effect of the noise term, since the geometrical

properties of the ordinary subspace equation was lost in the presence of noise term. Ideally,

the instrumental variable approach lies on searching for one vector sequence that is correlated

with the state/regression variable but uncorrelated with the noise term. Consider to multiply

Equation (3.54) from the right by the instrumental variable define as P , and normalize by N

such that
1
N

YΠ⊥
U>P> = Oj

1
N

XΠ⊥
U>P> + Ψj

1
N

HΠ⊥
U>P> +

1
N

VΠ⊥
U>P> (3.55)

The instrumental variable works to satisfy the following condition:

lim
N→∞

1
N

HΠ⊥
U>P> = 0 (3.56)

lim
N→∞

1
N

VΠ⊥
U>P> = 0 (3.57)

rank
(

lim
N→∞

1
N

XΠ⊥
U>P>

)
= n (3.58)

In open-loop applications, the standard candidate of instrumental variable is the input signal,

since it is uncorrelated with the noise and correlated with the state variable. Therefore, the

three criteria for IV are met. However, in order to perform a direct estimate of the observability

matrix Oj , the instrumental variable should also be orthogonal to the input in Equation (3.51).

Nevertheless, this requirement will mislead the compatibility of Equation (3.58).

A common approach to solve this problem is by dividing the data into two parts named as past

and future terms. Past output horizon is obtained by constructing the data matrices from 0-th

to (i − 1)-th order and is represented by Y0,i,N , while the future output horizon is obtained by

constructing the data matrices from i-th to (j − 1)-th order and is represented by Yi,j,N . For

instance, consider an output data matrices of discrete time systems. The block of Hankel matrix

constructed for past and future output is defined as in Figure (3.10). Similar construction of

data matrices is applied to past and future input and noise horizon, and will be represented as

U0,i,N , Ui,j,N , H0,i,N , Hi,j,N , V0,i,N and Vi,j,N , respectively.
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Figure 3.10: Data arrangement for past & future output [165]

There are three choices of instrumental variables defined as follows:

1. past/future input only

2. past/future output only

3. past/future input and output

The first choice is usually chosen for identification of a deterministic system. In broad definition,

deterministic system is a system where both process or measurement noise is equal to zero. In

circumstances where the noise-free real application sounds so impossible, this choice is still used

if one is just interested to obtain the information regarding the transfer function and neglected

the disturbance part.

The second choice is normally chosen for identification of a purely stochastic system, in which

the system with only the output data is available (u(t) = 0). On the other hand, the third

choice is chosen for the identification of a combined deterministic-stochastic system. This term

represents most of the real application systems. In this system, the input and output data are

available and the disturbance that may interrupt in the system is also acknowledged.
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Discrete Time Subspace System Identification

In discrete time subspace system identification, the choice of instrumental variable is usually

based on past data and the model is estimated over future outputs. This is due to the point that

the discrete time subspace approach in z−operator is actually an anti-causal model, in which

the output and the states is depended solely on future values. In the work by Verhaegen [171],

the past inputs multi-variable output-error state space (PI-MOESP) was introduced. The first

step of Verhaegen’s PI-MOESP algorithm computes the following RQ factorization



Ui,j,N

U0,i,N

Yi,j,N


 =




R11 0 0

R21 R22 0

R31 R32 R33







Q1

Q2

Q3




where the instrumental variable is defined as

P =
[

U0,i,N

]

and the SVD is performed to the working matrix R32.

[R32] = USV >

However, this approach will only identify a purely deterministic system [175]. Any additional

dynamics due to coloured disturbances are lost in the IV correlation.

In some applications, incorporating both deterministic and stochastic states is desired in order

to form a complete state-space model. To fulfill the requirement of Equation (3.56) with n

equals to the dimension of a complete state, the combination of past inputs and past outputs

as instruments is proposed. This approach is proposed in [168, 174]. For instance, Verhaegen’s

PO (past outputs) MOESP algorithm computes the following RQ factorization



Ui,j,N

U0,i,N

Y0,i,N

Yi,j,N




=




R11 0 0 0

R21 R22 0 0

R31 R32 R33 0

R41 R42 R43 R44







Q1

Q2

Q3

Q4




where the instrumental variable is defined as

P =


 U0,i,N

Y0,i,N
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and the SVD is performed to the working matrix [ R42 R43 ].

[ R42 R43 ] = USV >

Continuous Time Subspace System Identification

In continuous time system identification where the Laguerre filters are adopted to overcome the

derivatives problem in continuous time state-space model, the choice of instrumental variables

requires some modifications. In here, two definition terms are involved, the causality and the

stability. The system is said to be a causal system if the output at a certain time depends on

the input up to that time only. In other words, the output and the states are depended only on

the current and/or previous input values. Stability of the system is achieved when all poles are

strictly on the left side of the s−plane.

The Laguerre filter is a causal model and the causality condition (p > 0) must be kept in order

to remain its stability. As previously mentioned, the IVs that are based on past data are anti-

causal. The problem now is how to solve the conflict between these two approaches. As discussed

in [57, 58], the problem is solved by inverting the sequence of the samples data, therefore the

anti-causal filter (p < 0) can be used. This work is possible for the off-line identification since

the samples data are already recorded. From now on, the continuous time identification using

anti-causal operator (both Laguerre and IVs) will be in close relation with the discrete time

PO-MOESP algorithm in [174], where the z−operator is used, which is also an anti-causal

operator.

In the extension of the approach in continuous time system, in which, if we want to keep the

causal condition of the Laguerre filters, and without inverting the data sequence, the choice of

output model and the IVs can be changed vice-versa. For instance, the regression matrix is

developed based on the past input/output horizon and the instrumental variables are based on

the future input/output horizon. This configuration will maintain the stability of a continuous

time model which has been developed in parallel with the causality of the Laguerre filter.
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3.4 System Identification using Noisy Data

Define the data matrices for the past and future filtered output as

Y f
0,i,N (t) =




w0y(t1) w0y(t2) · · · w0y(tN )

w1y(t1) w1y(t2) · · · w1y(tN )
...

... · · · ...

wi−1y(t1) wi−1y(t2) · · · wi−1y(tN )




Y f
i,j,N (t) =




wiy(t1) wiy(t2) · · · wiy(tN )

wi+1y(t1) wi+1y(t2) · · · wi+1y(tN )
...

... · · · ...

wi+j−1y(t1) wi+j−1y(t2) · · · wi+j−1y(tN )




(3.59)

And the past and future filtered input as

Uf
0,i,N (t) =




w0u(t1) w0u(t2) · · · w0u(tN )

w1u(t1) w1u(t2) · · · w1u(tN )
...

... · · · ...

wi−1u(t1) wi−1u(t2) · · · wi−1u(tN )




Uf
i,j,N (t) =




wiu(t1) wiu(t2) · · · wiu(tN )

wi+1u(t1) wi+1u(t2) · · · wi+1u(tN )
...

... · · · ...

wi+j−1u(t1) wi+j−1u(t2) · · · wi+j−1u(tN )




(3.60)

The instrumental variables constructed using future input and future output data are defined

as

P =


 Uf

i,j,N

Y f
i,j,N


 (3.61)

Now multiply again Equation (3.54) with the IV matrix, P will obtain

YΠ⊥
U>P> = OjXΠ⊥

U>P> (3.62)

since the IV term is independent of the noise terms, H and V, therefore these noise terms

disappeared.

ΨjHΠ⊥
U>P> = 0

VΠ⊥
U>P> = 0

From this point, the direct estimation of observability matrix can be obtained using SVD and

the A, B, C and D matrices can be estimated after that.
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3.4 System Identification using Noisy Data

3.4.2 Initial Condition, x(0)

In many cases, the initial condition of state variable of the state-space model is assumed not

to influent much to the whole model development, therefore it is usually set to zero. In this

chapter, the subspace methods have been developed with another additional term named as

Φ0,i,N in which the purpose is to filter the initial states condition. Consider again the state-

space equations in Laplace domain

sX(s) = AX(s) + BU(s) + H(s) + x(0) (3.63)

Y (s) = CX(s) + DU(s) + V (s) (3.64)

Substitute s = p1+w
1−w in the state equation gives

wX(s) = AwX(s) + Bww0U(s) + w0Hw(s) + K1w0x(0)

where

K1 =
√

2p(A + pIn)−1

The output equation gives

w0Y (s) = CwX(s) + Dww0U(s) + w0Vw(s) + K2w0x(0)

where

K2 =
√

2pC(A + pIn)−1

Translating back the result into time domain form gives

wx(t) = Awx(t) + Bww0u(t) + w0hw(t) + K1x(0)w0(t) (3.65)

w0y(t) = Cwx(t) + Dww0u(t) + w0vw(t) + K2x(0)w0(t) (3.66)

Expanding the row by multiplying with w−operator results in the following continuous time
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3.4 System Identification using Noisy Data

data equation




[w0y] (t)

[w1y] (t)
...

[wi−1y] (t)




=




Cw

CwAw

...

CwAi−1
w




x(t) +




Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0

CwAi−2
w Bw · · · CwBw Dw







[w0u] (t)

[w1u] (t)
...

[wi−1u] (t)




+




0 0 · · · 0

Cw 0
. . .

...
...

. . . . . . 0

CwAi−2
w · · · Cw 0







[w0hw] (t)

[w1hw] (t)
...

[wi−1hw] (t)




+




[w0vw] (t)

[w1vw] (t)
...

[wi−1vw] (t)




+




K2x0 0 · · · 0

CwK1x0 K2x0
. . .

...
...

. . . . . . 0

CwAi−2
w K1x0 · · · CwK1x0 K2x0







w0(t)

w1(t)
...

wi−1(t)




(3.67)

Introduce the two new terms as

Zj =




K2x0 0 · · · 0

CwK1x0 K2x0
. . .

...
...

. . . . . . 0

CwAj−2
w K1x0 · · · CwK1x0 K2x0




Φi,j(t) =




wi(t)

wi+1(t)
...

wi+j−1(t)




In compact form, Equation (3.67) can be rewritten as

Y f
i,j(t) = OjX̂(t) + ΓjU

f
i,j(t) + ΨjH

f
i,j(t) + V f

i,j(t) + ZjΦi,j(t) (3.68)

Expanding the column matrices of Equation (3.67) for N data samples, the equation becomes

Y f
i,j,N (t) = OjX̂i,N (t) + ΓjU

f
i,j,N (t) + ΨjH

f
i,j,N (t) + V f

i,j,N (t) + ZjΦi,j,N (t) (3.69)

where the Laguerre filter data equation is represented as

Φi,j,N =




wi(t1) wi(t2) . . . wi(tN )

wi+1(t1) wi+1(t2) . . . wi+1(tN )
...

... . . .
...

wi+j−1(t1) wi+j−1(t2) . . . wi+j−1(tN )




(3.70)
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3.4 System Identification using Noisy Data

The past Laguerre filter bank is used for causal case and is denoted by Φ0,i,N . For the system

where the initial condition is relatively small, the process of filtering the initial condition probably

has no effect. However, the existence of this term in developing the model is good enough, just

in case to reduce the influence of initial condition for certain state-space system.

3.4.3 Identification using A Causal IV

Let Li(s) be a bank of causal Laguerre filters (p > 0). Let u(t) and y(t) be the input and

output plant data described in Equation (3.63) and Equation (3.64), respectively. Let Uf
0,i,N ,

Y f
0,i,N , Uf

i,j,N and Y f
i,j,N be constructed from u(t) and y(t), according to Equations (3.59-3.60)

and Φ0,i,N as in Equation (3.70).

Consider the RQ factorization



Φ0,i,N

Uf
0,i,N

Uf
i,j,N

Y f
i,j,N

Y f
0,i,N




=




R11 0 0 0 0

R21 R22 0 0 0

R31 R32 R33 0 0

R41 R42 R43 R44 0

R51 R52 R53 R54 R55







Q1

Q2

Q3

Q4

Q5




(3.71)

Then the following holds

lim
N→∞

1√
N

[
R53 R54

]
= lim

N→∞
1√
N
OiX̂0,N


 Q3

Q4



>

(3.72)

Proof:

From the RQ factorization of Equation (3.71) we have

lim
N→∞

1√
N

[
R53 R54

]
= lim

N→∞
1√
N

Y f
0,i,N


 Q3

Q4



>

(3.73)
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From Equation (3.69) we have

lim
N→∞

1√
N

Y f
0,i,N


 Q3

Q4



>

= lim
N→∞

1√
N
OiX̂0,N


 Q3

Q4



>

+ lim
N→∞

1√
N

ΓiU
f
0,i,N


 Q3

Q4



>

+ lim
N→∞

1√
N

ΨiH
f
0,i,N


 Q3

Q4



>

+ lim
N→∞

1√
N

V f
0,i,N


 Q3

Q4



>

+ lim
N→∞

1√
N

ZiΦ0,i,N


 Q3

Q4



>

(3.74)

As Φ0,i,N = R11Q1 and Uf
0,i,N = R21Q1 +R22Q2, the second term and the fifth term on the right

hand side goes to zero because of the orthogonality between


 Q1

Q2


 and


 Q3

Q4


.

lim
N→∞

1√
N

ΓiU
f
0,i,N


 Q3

Q4



>

= 0 (3.75)

lim
N→∞

1√
N

ZiΦ0,i,N


 Q3

Q4



>

= 0 (3.76)

Next is to prove that the third and fourth term on the right hand side also goes to zero as N

goes to infinity.

lim
N→∞

1√
N

ΨiH
f
0,i,NQ>

3 + lim
N→∞

1√
N

V f
0,i,NQ>

3 = 0 (3.77)

lim
N→∞

1√
N

ΨiH
f
0,i,NQ>

4 + lim
N→∞

1√
N

V f
0,i,NQ>

4 = 0 (3.78)

Since h(t) and v(t) are independent from u(t), therefore

lim
N→∞

1√
N

Q1(ΨiH
f
0,i,N )> = 0; lim

N→∞
1√
N

Q1(V
f
0,i,N )> = 0

lim
N→∞

1√
N

Q2(ΨiH
f
0,i,N )> = 0; lim

N→∞
1√
N

Q2(V
f
0,i,N )> = 0

lim
N→∞

1√
N

Q3(ΨiH
f
0,i,N )> = 0; lim

N→∞
1√
N

Q3(V
f
0,i,N )> = 0
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which proves Equation (3.77). Observe the fourth row of the RQ factorization leads to

lim
N→∞

1
N

Y f
i,j,N (ΨiH

f
0,i,n)> + lim

N→∞
1
N

Y f
i,j,N (V f

0,i,n)> = 0

lim
N→∞

1
N

(R41Q1 + R42Q2 + R43Q3 + R44Q4)(ΨiH
f
0,i,n)> = 0

lim
N→∞

1
N

R44Q4(ΨiH
f
0,i,n)> = 0

lim
N→∞

1√
N

Q4(ΨiH
f
0,i,n)> = 0

lim
N→∞

1
N

(R41Q1 + R42Q2 + R43Q3 + R44Q4)(V
f
0,i,n)> = 0

lim
N→∞

1
N

R44Q4(V
f
0,i,n)> = 0

lim
N→∞

1√
N

Q4(V
f
0,i,n)> = 0

which is the transpose of Equation (3.78). Therefore now Equation (3.74) reduces to

lim
N→∞

1√
N

Y f
0,i,N


 Q3

Q4



>

= lim
N→∞

1√
N
OiX̂0,N


 Q3

Q4



>

The subspace algorithm in identifying the continuous time system can be described as below

1. Construct the filtered data matrices of Uf
0,i,N , Uf

i,j,N , Y f
0,i,N and Y f

i,j,N according to Equa-

tions (3.59-3.60), and Φ0,i,N according to Equation (3.70).

2. Perform the RQ decomposition



Φ0,i,N

Uf
0,i,N

Uf
i,j,N

Y f
i,j,N

Y f
0,i,N




=




R11 0 0 0 0

R21 R22 0 0 0

R31 R32 R33 0 0

R41 R42 R43 R44 0

R51 R52 R53 R54 R55







Q1

Q2

Q3

Q4

Q5




3. Perform the singular value decomposition (SVD) to the working matrix
[

R53 R54

]
:

[
R53 R54

]
= USV >

4. Determine the model order n from the singular value in S.
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5. Determine the system matrices (Aw, Cw).

Aw = (J1Un)†J2Un

Cw = J3Un

J1 =
[

I(i−1)l 0(i−1)l×l

]

J2 =
[

0(i−1)l×l I(i−1)l

]

J3 =
[

Il×l 0l×(i−1)l

]

Υ† = (Υ>Υ)−1Υ>

The A and C can be obtained using the relations:

A = p(In + Aw)(In −Aw)−1

C =
√

2pCw(In −Aw)−1

6. Solve least squares problem from model structure:

y( t B, D ) = C(qIn −A)−1Bu(t) + Du(t)

7. Reconstruct B and D from


 B

D




8. Generate the estimated output, ŷ(t).

3.4.4 Simulation Results

In this section, the simulation results will be shown as to demonstrate the performance of the

proposed approach in identifying a continuous time system. The results are categorized into

SISO systems and MIMO systems, whereby the estimated output is compared with measured

output. As a measure of accuracy of the proposed model, the Variance Accounted For (VAF),

which is given by the following formula

VAF =
(

1− VAR(y(t)− ŷ(t))
VAR(y(t))

)
× 100

and the Mean Square Errors (MSE), which is given by the following formula

MSE =
1
N

N∑

a=1

| y(ta)− ŷ(ta) |2

are also calculated.
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Table 3.2: System and model configuration - SISO noise-added system

Symbol Description Value

Gm System response [Am, Bm, Cm, Dm]

p Laguarre parameter 6

i Expanding observability matrix 10

n Model order 6

∆t Sampling time 0.01

N Number of sampled data 4000

Nest Estimation data 2000

Nval Validation data 2000

V & H Noise disturbance 20dB SNR

Single Input Single Output Data System

The first data set is a simulated data based from the sixth order plant model example presented

in [164,188]. The state space model is developed based on the following set up.

Am =




0 1 0 0 0 0

−1 −0.2 0 0 0 0

0 0 0 1 0 0

0 0 −25 −0.5 0 0

0 0 0 0 0 1

0 0 0 0 −9 −0.12




; Bm =




0

1

0

1

0

1




; Cm =




1

0

1

0

1

0




>

; Dm = [0];

The process noise, h(t) and the measurement noise, v(t) of about 20dB SNR are generated using

random “seed” value according to the following condition

h(t) = v(t) = 0.07× e(t)

where e(t) are unit variance, zero mean white Gaussian noise. The “seed” value to generate the

process noise, h(t) is set to 1, whereas the “seed” value to generate the measurement noise, v(t)
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Figure 3.11: Plot of input & output - SISO noise-added system. (Note: The input data is

re-scaled to only display 400 data points )

is set to 2. The identification process is run with system and model configuration details shown

in Table 3.2. Again, the input signal, u(t) is generated using GRBS sequences.

The plot of input and output data can be seen as in Figure (3.11). The comparison of estimation

and validation data sets with the estimated outputs from the model obtained using subspace

method is shown in Figure (3.12). The result shows that the model could describe the system

closely. Further verification tests on MSE and VAF give a value of

MSEest = 0.0051 VAFest = 82.13%

MSEval = 0.0092 VAFval = 85.37%

This shows that the model is still able to identify the system with low MSE and good percentage

of accuracy for both estimation and validation data set.
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Figure 3.12: Superimposed of output data - SISO noise-added system. True system (solid grey)

& estimated model (thick black)

The estimated of (A,B, C, D) matrices are obtained as

Â =




−0.0562 1.0318 −0.1990 0.4309 1.0012 −0.2540

−0.8637 −0.0954 0.6541 −0.1592 −0.7232 0.2955

0.0041 −0.4777 −0.0598 3.0430 0.5820 −0.6709

−0.2832 −0.1073 −2.7003 −0.0797 −1.6749 0.0747

−0.0673 −0.0349 −0.1723 −0.0299 −0.5201 6.3291

0.0751 0.0560 0.2012 0.0960 −3.9643 −0.0817




;

B̂ =




−0.8891

−1.0507

−0.2053

−0.2169

0.2374

−0.0923




; Ĉ =




−0.4967

0.3026

−0.0261

0.9841

−0.5010

−1.4015




>

; D̂ = [0];
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Figure 3.13: Frequency response over 100 runs - SISO simulated noise-added system

The transfer function of the system and the one generated from the estimated model is repre-

sented as

Gm(s) =
3s4 + 1.64s3 + 70.184s2 + 14.92s + 259

s6 + 0.82s5 + 35.184s4 + 14.932s3 + 260.56s2 + 52.5s + 225

Ĝ(s) =
2.8951s4 + 0.8457s3 + 67.9062s2 + 11.5326s + 255.7296

s6 + 0.8929s5 + 35.0886s4 + 14.2043s3 + 257.5110s2 + 46.7775s + 227.0661

and the eigenvalues of A matrix give a result of

eig(Am) = [−0.1000± 0.9950j;−0.2500± 4.9937j;−0.0600± 2.9994j]

eig(Â) = [−0.0883± 1.0089j;−0.3228± 4.9951j;−0.0353± 2.9723j]

which still gives a reasonable match to actual value. The Monte Carlo simulation for 100 runs is

also performed in order to inspect the model capability in identifying with different noise level.

The “seed” value is set in a range count of 1 to 100. Result from this simulation can be seen in

Figure (3.13). The comparison is also made for a model with instrumental variable and model

without instrumental variable. Result is shown in Figure (3.14). From this figure, it shows that

the model with IV gives a better performance in estimating the noise-added systems.
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Figure 3.14: Frequency response with & without IV - SISO simulated noise-added system

Multi Input Multi Output Data Systems

Next in this section, the model is expanded to demonstrate its performance capability onto

MIMO systems. The systems are represented as two inputs two outputs in this following form


 y1(t)

y2(t)


 =


 G11 G12

G21 G22





 u1(t)

u2(t)




The input signal, u1(t) and u2(t) are generated using a GRBS sequences. The measurement

noise of about 30dB SNR is generated based on the following equation

v(t) = 0.02× e(t)
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Table 3.3: System and model configuration - MIMO systems

Symbol Description Value

G System response




1
s2+2s+1

1
s2+4s+3

1
s2+3s+2

1
s2+2s+1




p Laguarre parameter 15

i Expanding observability matrix 10

n Model order 4

∆t Sampling time 0.01

N Number of sampled data 2000

Nest Estimation data 1000

Nval Validation data 1000

V Noise disturbance 30dB SNR

where e(t) is unit variance, zero mean white Gaussian noise. The “seed” value is set equal to

1. The identification process is run with system and model configuration details shown in Table

3.3. The plot of output data, y1(t) and y2(t) can be seen as in Figure (3.15). This data set

is further divided into estimation data set and validation data set. The performance of the

estimated model is assessed based on the fit between the measured output and the estimated

one.

The comparison of estimation and validation data sets with the estimated outputs from the

model obtained using subspace method are shown in Figure (3.16) and Figure (3.17). Both re-

sults show that the model could describe the system closely. The verification test based on MSE

and VAF calculation can be referred in Table 3.4. From the calculation, it shows that the model

is still able to identify the MIMO noise-added systems with low MSE and good percentage of

accuracy to both estimation and validation data set.
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Figure 3.15: Plot of input & output - MIMO systems. (Note: The input data is re-scaled to

only display 200 data points )

The estimated (A,B, C, D) matrices are obtained as

Â =




−0.1212 3.1885 −1.6029 −7.3190

−0.3503 −3.1587 2.6036 21.4320

0.0242 −0.6420 −30.8828 29.0223

0.0519 1.8033 −14.1142 −37.9538




;

B̂ =




2.7782 2.7782

−2.1165 −2.1165

0.2455 0.2455

−0.3770 −0.3770




; Ĉ =




−0.4425 −0.5899

0.1957 0.0835

−0.5200 −0.6449

0.3780 −0.1148




>

; D̂ =


 0 0

0 0


 ;

and the eigenvalues is given as

eig(Â) = −0.7822;−1.5478;−34.8933± 19.7766j;

75



3.4 System Identification using Noisy Data

0 5 10
−0.2

−0.1

0

0.1

0.2
y1

time, t
0 5 10

−0.2

−0.1

0

0.1

0.2
y2

time, t

0 5 10
−0.2

−0.1

0

0.1

0.2
residual

time, t
0 5 10

−0.2

−0.1

0

0.1

0.2
residual

time, t

Figure 3.16: Measured (solid grey) & estimated (thick black) MIMO estimation data
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Figure 3.17: Measured (solid grey) & estimated (thick black) MIMO validation data
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Table 3.4: MSE and VAF calculation - MIMO systems

Description y1 y2

MSE - estimation data 4.1474× 10−4 4.0501× 10−4

MSE - validation data 4.2845× 10−4 4.1774× 10−4

VAF - estimation data 85.98% 88.75%

VAF - validation data 84.78% 87.93%

3.4.5 Case Study: Comparison with MATLAB Toolbox Model

As to further investigate the performance of the proposed model in identifying the systems, a

comparative study is done with other linear parametric models available in MATLAB system

identification toolbox. Those models are the ARX model, IV model, ARMAX model, OE model,

BJ model, N4SID (CVA) model, N4SID (MOESP) model and the PEM model. The fit of the

model as compared to the measured system can be calculated as

BF =
(

1− |y − ŷ|
|y − ȳ|

)
× 100%

where y is a measured output, ŷ is an estimated output from the model and ȳ is a mean of

y. The single input single output data systems discussed in previous section is used again for

comparison. At sampling time of, ∆t = 0.01s and number of measured data, N = 2000, the

first comparison are based on the noise-free data systems. Result based on the validation data

systems can be seen as in Figure (3.18-3.20). The best fit calculation for each model can be seen

in Table 3.5. From the plot and the fit calculation all models give excellent results in identifying

the noise free systems.

Next, the comparison is done with the noise-added systems. The process and measurement noise

of about 50dB SNR are added to the systems and is defined as

h(t) = v(t) = 0.01× e(t)

where e(t) is unit variance, zero mean white Gaussian noise. The “seed” value for process noise,

h(t) is equal to 1 and the “seed” value for measurement noise, v(t) is equal to 2. Again at
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Figure 3.18: Comparison over noise-free SISO validation data systems (cont.) - 1: Our model

sampling time, ∆t = 0.01s, about N = 2000 is sampled and those data is further divided into

estimation data and validation data.

Table 3.5: Best fit calculation - Noise-free systems

Model Model Order Iteration Estimation Validation

ARX [na=8; nb=5; nk=1] - 100% 100%

IV [na=8; nb=5; nk=1] - 100% 100%

ARMAX [na=8; nb=5; nc=1; nk=1] 60 100% 100%

OE [nb=5; nf=8; nk=1] 60 100% 100%

BJ [nb=5; nc=0; nd=0; nf=8; nk=1] 60 100% 100%

N4SID (CVA) n=6 - 100% 100%

N4SID (MOESP) n=6 - 100% 100%

PEM n=6 1 100% 100%

Our Model n=6 - 100% 100%

The plot for all models in identifying the noise-added simulated systems can be seen in Figure

(3.21-3.23) for the estimation data and in Figure (3.24-3.26) for the validation data. From

Figure (3.21-3.23), it shows that our model is able to identify the estimation data set closely.

The ARMAX model, OE model and BJ model also show good performance. The rest of the
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Figure 3.19: Comparison over noise-free SISO validation data systems (cont.) - 2: ARX model;

3: IV model; 4: ARMAX model; 5: OE model
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Figure 3.20: Comparison over noise-free SISO validation data systems - 6: BJ model; 7:

N4SID(CVA) model; 8: N4SID(MOESP) model; 9: PEM model
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Table 3.6: Best fit calculation - Noise-added systems

Model Model Order Iteration Estimation Validation

ARX [na=10; nb=10; nk=1] - 56.35% 29.33%

IV [na=10; nb=10; nk=1] - 56.35% 29.33%

ARMAX [na=12; nb=8; nc=0; nk=1] 60 92.15% 91.30%

OE [nb=12; nf=8; nk=1] 60 92.14% 91.70%

BJ [nb=8; nc=0; nd=0; nf=8; nk=1] 40 92.17% 91.54%

N4SID (CVA) n=8 - 30.38% 12.54%

N4SID (MOESP) n=8 - 30.76% 11.07%

PEM n=8 20 65.02% 26.26%

Our Model n=8 - 90.78% 89.17%

model try to identify the systems with adequate performance. Next, refer to Figure (3.24-

3.26) where the model is used to identify the validation data. Again, our model still shows an

acceptable performance in identifying the validation data. The ARMAX model, OE model and

BJ model give good performance. The rest of the models are poorly identify the system. Further

verification test based on fit calculation can be referred in Table 3.6.

From this study, we found that all models are able to identify the systems successfully if the

system is not perturbed by noise disturbances. When noise interferes the system, some of

the models are unable to estimate the system closely especially when it comes to a test using

validation data (data that are not used for modelling at all). Among 8 models that have been

tested, the ARMAX model, the OE model and the BJ model have shown good performance

in identifying the system closely. Our model also shows good competence in comparison with

those models. This is due to the presence of Laguerre filter and the instrumental variables in

our model that have shown ability to cope with process and measurement noise successfully.
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Figure 3.21: Comparison over noise-added SISO estimation data systems (cont.)
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(a) -4. OE model
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(b) -5. BJ model
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Figure 3.22: Comparison over noise-added SISO estimation data systems (cont.)
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Figure 3.23: Comparison over noise-added SISO estimation data systems
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Figure 3.24: Comparison over noise-added SISO validation data systems (cont.)
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(b) - 5. BJ model
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Figure 3.25: Comparison over noise-added SISO validation data systems (cont.)
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(a) - 7. N4SID (MOESP) model

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time

Measured and simulated model output

 

 
True system
PEM model

(b) - 8. PEM model
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Figure 3.26: Comparison over noise-added SISO validation data systems
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3.5 Implementation Issues

In this section, the focus is aimed on performing an analysis and research on some of the imple-

mentation and performance issues that relate to the previously discussed system identification.

The issues will be divided into two categories: First the issues that relate to subspace model

identification and second the issues that relate to optimal selection of design parameters.
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Figure 3.27: Comparison of different amount of data samples (∆t = 0.001s)

3.5.1 Subspace Model Identification

In the system identification using a subspace methods, there are few factors that have to be

considered in order to guarantee a successful model development and the consistency and ro-

bustness of the identification process. In here, the focus is to only study and analyse some

implementation issues that relates to the state-space model development and continuous time

system identification that have been discussed in this chapter.
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Sampling Time, ∆t and Number of Data, N

In time domain system identification the sampling time plays a role in the continuous time

subspace identification. It can be seen that a proper choice of sampling time will lead to a more

accurate model development. The sampling time also depends on the models and the number

of measured data, N . Precisely, the model performance depends on how much data that is

available to describe the system and whether the sampling time is good enough to capture the

information about the system.

Consider for example the simulation data for SISO system describes in state-space matrices as

Am =




0 1 0 0 0 0

−1 −0.2 0 0 0 0

0 0 0 1 0 0

0 0 −25 −0.5 0 0

0 0 0 0 0 1

0 0 0 0 −9 −0.12




; Bm =




0

1

0

1

0

1




; Cm =




1

0

1

0

1

0




>

; Dm = [0];

For the noise-free system, we found that by setting the sampling time, ∆t = 0.001s gives good

performance for the estimation data with Nest larger than 2000. For the modelling data below

2000, the estimation will be biased. Result from this analysis is shown in Figure (3.27). In that

figure, it displays the total number of samples, N . These samples are further divided into two

parts; estimation data set (Nest) and validation data set (Nval).

The eigenvalues obtained after running the identification with different number of sample data

are given as

eig(Am) = [−0.1000± 0.9950j;−0.2500± 4.9937j;−0.0600± 2.9994j]

eig(A500) = [1.1668;−3.9167;−0.3099± 4.9593j;−0.2819± 2.2390j]

eig(A1000) = [−0.1114± 0.8451j;−0.2625± 4.9927;−0.0735± 3.0011j]

eig(A1500) = [−0.0831± 0.9575j;−0.2624± 4.9925;−0.0651± 2.9986j]

eig(A2000) = [−0.1005± 0.9948j;−0.2624± 4.9925;−0.0645± 2.9992j]

For the eigenvalue of A500, it contains two wrong poles. When the data is not enough, the model

is unable to identify the correct poles that represent the system. Therefore, it tends to capture
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Figure 3.28: Comparison of different amount of data samples (∆t = 0.01s)

dummy poles (the first two poles) in order to fulfil the requirement of n = 6 (actual order of the

system). This will also make the system looks unstable since there is one pole that is located

on the right-hand plane. Analysis shows that for N greater than 1500 (Nest ≥ 750), then only

the model is able to capture the correct poles.

The analysis is also performed by decreasing the sampling time to ∆t = 0.01s. The result from

this analysis is shown in Figure (3.28). The result gives similar performance even though the

data samples are increased. This also results in similar eigenvalues for all tested data samples

which is given as

eig(Am) = [−0.1000± 0.9950j;−0.2500± 4.9937j;−0.0600± 2.9994j]

eig(A200) = [−0.1049± 0.9940j;−0.3740± 4.9792j;−0.1049± 2.9972j]

eig(A500) = [−0.1049± 0.9940j;−0.3740± 4.9792j;−0.1049± 2.9972j]

eig(A1000) = [−0.1049± 0.9940j;−0.3740± 4.9792j;−0.1049± 2.9972j]

eig(A1500) = [−0.1049± 0.9940j;−0.3740± 4.9792j;−0.1049± 2.9972j]

In contrast, the analysis is also performed by increasing the sampling rate to ∆t = 0.0001s. As

the sampling process getting faster, therefore small data samples are not enough to describe the

system. For ∆t = 0.0001s, about Nest = 20000 is needed for the model to describe the system
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successfully. In summary, the data samples needed based on different sampling time is given as

in Table 3.7.

Table 3.7: Requirement for data samples of noise-free system

Sampling time, ∆t Estimation data, Nest Sampling period, T

0.1 sec 20 2 sec

0.01 sec 200 2 sec

0.001 sec 2000 2 sec

0.0001 sec 20000 2 sec

0.00001 sec 200000 2 sec

Based on the information obtained from Table 3.7, by setting the sampling time ∆t = 0.0001s

or lower, very large amount of data is needed, in which will require a very long computational

time. On the other hand, by setting the sampling time ∆t = 0.01s, less data is needed and also

reduced the computational time. However, the accuracy of the model in identifying the system is

decreased. Therefore, to find the optimal balance between the accuracy and the computational

time, the sampling time ∆t = 0.001s is chosen.

Next, the analysis is run when the system is added with noise. As for ∆t = 0.001s, with noise is

added in the system, by using Nest = 2000 is no longer hold the good performance. Therefore,

longer sampling period is required. For instance, as the amount of sample data are increased

and up to Nest = 5000, then only the model shows reasonable performance but to a low level

of noise only. In summary, the analysis run over a system with 20dB SNR disturbance provides

with the result as in Table 3.8. At this time, in order to reduce the computational load and

at the same time to maintain the model accuracy within reasonable performance, the sampling

time of ∆t = 0.01s is chosen.
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Table 3.8: Requirement for data samples of noise-added system

Sampling time, ∆t Estimation data, Nest Sampling period, T

0.1 sec 200 20 sec

0.01 sec 2000 20 sec

0.001 sec 20000 20 sec

0.0001 sec 200000 20 sec

In conclusion, the chances for successful identification are very much relied on the system,

amount of data available and the proper time sampling setup. Therefore, proper judgement and

preliminary analysis before running the identification may provide better understanding of the

system behaviour.

3.5.2 Optimal Selection for Design Parameters

In the subspace identification algorithm, there are three main adjustable parameters that play

an important role in developing the state space model. First parameter is the p parameter, which

plays a role in tuning the Laguerre filter network. Second is the i parameter, which determines

the length of row for the extended observability matrix and the Hankel matrix. Third is the n

parameter, which determines the model order.

The optimal search for these parameters are necessary in order to obtain a reliable and correct

model to represent the systems. However, there is no significant way to determine the absolutely

correct value for these parameters since most of the system dynamic is unknown. As for the p

parameter, the only information that can be put under consideration is that p must be greater

than zero in order to maintain the stability of the Laguerre filter. Therefore, one possible way

to choose the value for parameter p is by calculating its mean square error with the assumption

that, a good model will provide a better prediction of the system behaviour with minimum mean

square error. The MSE formula is given as

MSE =
1
N

N∑

a=1

| y(ta)− ŷ(ta) |2
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Figure 3.29: MSE run for optimal p

Consider analysing the identification over SISO simulated data systems discussed in previous

section. With N = 4000, ∆t = 0.01s, i = 10 and n = 6, the MSE test for this analysis is

shown in Figure (3.29). From this figure, it shows that the model has low MSE when the value

of (p < 8). Based on the analysis, we observed that tuning the parameter p of Laguerre filter

plays an important role in improving the subspace model. However, the model is quite sensitive

towards the change of parameter p especially when is applied to the noisy data systems. By

manipulating the parameter p of the Laguerre network, the model is able to identify the system

if moderate noise is perturbed with the system.

Next parameter on test is the i-parameter. This variable determines the number of terms for the

observability matrix as well as represents how many block of rows constructed after filtering the

data with Laguerre filter network. The number of block of rows is basically a user-defined index

which is sufficiently large, at least larger than the maximum order of the system to be identified.

Theoretically, the number of block rows should only be larger than the largest observability

index, but since this index is unknown, so an assumption is made that i > n [99, 165]. The

result from this analysis of the system with a model order, n = 6 can be seen as in Figure (3.30).

This figure shows that the model has low MSE for i < 11.
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Figure 3.31: Diagonal plot of S matrix - simulated time domain data
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3.6 Summary

The third parameter is the n−parameter. It represents the model order of the estimated system.

For the subspace methods, a common approach to determine the model order is based on the

diagonal plot of S matrix after performing the SVD. The diagonal plot obtained from the model

identification can be seen as in Figure (3.31).

3.6 Summary

This chapter has presented a subspace method to identify a continuous time state space model

using Laguerre filter network and the instrumental variables. The first part of this chapter has

introduced the bilinear transformation in which finally leads to the use of Laguerre filter network.

The innovation of constructing filtered data matrices using differential equations provides better

computation and easily maintainable parametrization. The second part of this chapter has

explained the role of instrumental variable in coping with process and measurement noise. The

simulation results are demonstrated to identify both SISO and MIMO systems. Results have

shown a good performance of the subspace method to estimate the continuous time system

closely. In addition, the performance comparison with other available models in MATLAB

system identification toolbox is also carried out. The implementation issues that relate to the

subspace state-space model identification are also justified. This will become a useful guideline

for the usage of the subspace identification approach in the later chapters.
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Chapter 4

Continuous Time Closed-loop

System Identification

4.1 Introduction

In closed-loop system, the correlation between the input signal and the output noise may occur

since the output and the noise output are fed back to the system. Thus, the subspace identifi-

cation methods presented in open-loop approach will give bias in closed-loop operating system.

Fortunately, with special modifications, the subspace methods are able to perform the task as

well. The idea of implementing the subspace method for identification of a closed-loop system

has been studied in early 90s (see for examples in [30,85,100,166,170]). Recent examples can be

referred in [29,84,96,132,133]. In some cases, an assumption that the input is not correlated with

the output noise is always made or if any, it will be in at least in one sample delay. However, in

state-space model identification, most of the subspace approaches are proposed in discrete time

model and the choice of either the regression or prediction matrix is based on future horizon

variables.

In contrast, this chapter will study the subspace methods in estimating a state-space model for

a continuous time closed-loop systems. The research into identification of a closed-loop system

starts with the problem of identifying a system in a noisy input and noisy output condition.

This phenomena is known as the error in variables (EIV) problem. There are two approaches
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4.2 Error in Variable Problem Formulation

that will be studied in this chapter.

The first approach adopting the idea of using subspace method to identify a closed-loop system

for EIV models by Chou and Verhaegen [30]. However, the approach in this chapter handles

the closed-loop systems in a different way. As a continuous time closed-loop identification is the

prime subject, the Laguerre filter network is used in the identification procedure. The regression

matrix is based on past horizon. Furthermore, to maintain the stability and causality of the

filter, the extended future horizon is used as instrumental variables and the matrix configurations

are manipulated in such a way to satisfy the closed-loop conditions. This configuration will give

consistent estimates for the deterministic part of the state space model (i.e. (A,B,C) matrices).

Second approach considers the idea by Zhao and Westwick in which the subspace methods

were used to identify a closed-loop system of Wiener models [192]. The similarity with their

approach is on setting the choice of instrumental variables in which the reference signal is used

as an instrument. However, in this chapter, the future reference is used instead of the past

reference signal. This approach is also used to identify a continuous time closed-loop systems.

The use of Laguerre filter network in the identification will definitely give different viewpoint

from them.

The content for this chapter is partially taken from a paper by author as can be referred in [118].

This chapter starts with the formulation of error in variable problem discussed in Section 4.2.

The step by step approach in solving this identification problem leads to the development of

closed-loop system identification. With the idea gathered from the discrete time problem formu-

lation, the new continuous time subspace identification approach is developed. The simulation

results of SISO and MIMO system identification are shown as to demonstrate the performance

of the proposed model. In Section 4.3, another approach based on a reference signal as a choice

of instrumental variable is studied. The experimental results are also shown as to demonstrate

the performance of the proposed model in identifying systems, from simulated data to real data

taken from the magnetic bearing apparatus. Finally, Section 4.4 concludes the chapter.
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Figure 4.1: Schematic representation of the EIV identification problem

4.2 Error in Variable Problem Formulation

In broad definition, the error in variable (EIV) problem actually refers to the problem of iden-

tifying a model in a noisy input-output environment. In this case, an assumption is made that

every variable can have error or noise. In system modelling perspective, this means that both the

input and output variables are perturbed by noise. The scenario of this problem is illustrated

in Figure (4.1). The system can be modelled by the following state-space equations

ẋ(t) = Ax(t) + Bû(t) + h(t) (4.1)

y(t) = Cx(t) + Dû(t) + v(t) (4.2)

u(t) = û(t) + ξ(t) (4.3)

In general, the problem is to determine the system characteristics, such as the transfer func-

tion. In doing so, there are three different categories of reported estimation algorithms for EIV

problem.

1. Using the covariance matrix. This category includes the instrumental variable (IV) method

[30, 149, 152], total least squares (TLS) method [68–70], bias eliminating least squares

(BELS) method [51,104,193] and the Frisch scheme [18,24,148].

98



4.2 Error in Variable Problem Formulation

2. Using the input-output spectrum and the frequency domain data [17,127,128].

3. Using the original time series data. This category includes the prediction error method

(PEM) and the maximum likelihood (ML) techniques [128,129].

A survey paper by Soderstrom gives an excellent explanation regarding all the method described

above [146]. In judging the phenomena of EIV problem, there are two classifications that have

normally been made by the researchers. The first class assumes that the input and the output

systems are both disturbed by the white noise. On the other hand, the second class defines the

input measurement noise is to be either white or moving average (MA) process while the output

measurement noise is assumed to be coloured.

In this thesis, the research interest is emphasized on the subspace identification algorithm with

the adoption of instrumental variable estimators to solve the EIV problem proposed by Chou

and Verhaegen [30]. In their work, they employed instrumental variables and subspace model

identification [165,172] to identify a discrete time linear time-invariant state-space models under

the EIV formulation. Two estimation methods are given. One is to solve the EIV problem for

open loop case in which the assumption is made that the input and output noise are white noise

disturbance. The other one is on estimation when the input noise is not a white noise. The

second estimation also leads to the estimation of closed-loop problem, which will become our

interest in this chapter.

4.2.1 EIV in the Closed-loop System

Consider a discrete time model describing the open-loop system of EIV problem. In mathemat-

ical formulation, the model can be described by the following state-space equations

x(k + 1) = Ax(k) + Bû(k) + h(k) (4.4)

y(k) = Cx(k) + Dû(k) + v(k) (4.5)

u(k) = û(k) + ξ(k) (4.6)

where x(k) ∈ Rn is the state-vector, u(k) ∈ Rm is the measured input signals, û(k) ∈ Rm is the

noise-free input and y(k) ∈ Rl is the measured output signals. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n

and D ∈ Rl×m are the system matrices. The input is added with measurement noise, ξ(t) while
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4.2 Error in Variable Problem Formulation

the output is added with process noise, h(t) and measurement noise, v(t). Let the input and

output data set be declared as u(k), y(k), k ∈ [1, N ].

The EIV identification problem works with an assumption that,

1. The ξ(k), h(k) and v(k) are assumed to be discrete time, zero mean, white noise.

2. These disturbances are assumed to be statistically independent of the past noise-free input,

û(k).

E[û(k)h(j)>] = E[û(k)v(j)>] = E[û(k)ξ(j)>] = 0 for all j ≥ k

where E denotes the expectation operator.

3. ξ(k) and v(k) are independent of the state sequence, x(k) and the process noise h(k) (with

k ≥ 1) is independent of the initial state x(1).

4. The three disturbances are assumed to be correlated and their covariance is given by the

following unknown matrix

E







h(k)

ξ(k)

v(k)




(
h(j)> ξ(j)> v(j)>

)

 =




∑
(h)

∑
(hξ)

∑
(hv)

∑
(hξ)>

∑
(ξ)

∑
(ξv)

∑
(hv)>

∑
(ξv)>

∑
(v)


 δ(kj) ≥ 0

where δ(kj) denotes the Kronecker delta.

5. The signals in the identification problem to be the realizations of ergodic stochastic pro-

cesses such that, for N → ∞, [u(1), . . . , u(N)] and [v(1), . . . , v(N)] are realizations of u

and v respectively.

Then, the identification problem is to consistently estimate:

1. The system order, n.

2. The extended observability matrix, Oj based on the availability of input signal u(k) and

output signal y(k).

3. The (A,B, C, D) matrices.
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The data equation is constructed as

Yi,j,N = OjXi,N + ΓjUi,j,N − ΓjFi,j,N + ΨjHi,j,N + Vi,j,N (4.7)

where Oj is the extended observability matrix and both Γj and Ψj are Toeplitz matrices. Define

Ui,j,N and Yi,j,N as the future input and future output, and U0,i,N and Y0,i,N as the past input

and past output. The instrumental variable is based on the past input and past output. Post-

multiply the data equation (4.7) with the IV is expressed as

1
N

Yi,j,N

[
U>

0,i,N Y >
0,i,N

]
= Oj

1
N

Xi,N

[
U>

0,i,N Y >
0,i,N

]
+ Γj

1
N

Ui,j,N

[
U>

0,i,N Y >
0,i,N

]

− Γj
1
N

Fi,j,N

[
U>

0,i,N Y >
0,i,N

]
+ Ψj

1
N

Hi,j,N

[
U>

0,i,N Y >
0,i,N

]

+
1
N

Vi,j,N

[
U>

0,i,N Y >
0,i,N

]
(4.8)

For the case where the noise-free input û(k) is a white noise sequence, post-multiplying the data

Equation (4.7) with the instrumental variable will eliminate the second, third, fourth and fifth

term on the right-hand side as N → ∞ (Third, fourth and fifth term tend to zero as N → ∞
since Fi,j,N , Hi,j,N and Vi,j,N are uncorrelated with the instruments, whereas the second term

tend to zero as N →∞ due to white noise property of û(k)). However, if the noise-free input û(k)

is not a white noise sequence, the third, fourth and fifth terms tend to zero due to uncorrelated

condition with the instruments but, the second term remains non-zero.

To solve this problem, the following solution is introduced. Let the following RQ factorization

be given as

 Ui,j,N

Yi,j,N




[
U>

0,i,N Y >
0,i,N

]
=


 R11 0

R21 R22





 Q1

Q2





 Ui,j,NU>

0,i,N Ui,j,NY >
0,i,N

Yi,j,NU>
0,i,N Yi,j,NY >

0,i,N


 =


 R11 0

R21 R22





 Q1

Q2


 (4.9)

By using the RQ factorization given in Equation (4.9), Equation (4.8) can be rewritten as

R21Q1 + R22Q2 = OjXi,N

[
U>

0,i,N Y >
0,i,N

]
+ ΓjR11Q1 + ζ (4.10)

where ζ contains the three terms in Equation (4.8) which will be disappeared as N →∞.
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4.2 Error in Variable Problem Formulation

Post-multiply both sides of Equation (4.10) by 1√
N

Q>
1 and taking the limit, then

lim
N→∞

1√
N

R21 = lim
N→∞

1√
N
×

(
OjXi,N

[
U>

0,i,N Y >
0,i,N

]
Q>

1 + ΓjR11

)
(4.11)

And post-multiply both sides of Equation (4.10) by 1√
N

Q>
2 and taking the limit, then

lim
N→∞

1√
N

R22 = lim
N→∞

1√
N
OjXi,N ×

[
U>

0,i,N Y >
0,i,N

]
Q>

2 (4.12)

Let ρ(M) denotes the rank of the matrix M , then under the condition that

ρ

(
lim

N→∞
1√
N

Xi,N

[
U>

0,i,N Y >
0,i,N

]
Q>

2

)
= n

Therefore, Equation (4.12) gives a consistent estimate of the extended observability matrix, Oj ,

and is represented by the matrix R22 in Equation (4.9).

This algorithm is also applicable to identify the closed-loop system since the only requirement

is to have û(k) that is uncorrelated with the future h(k), v(k) and ξ(k). Thus, the significant

advantage of this algorithm will be extended to identify the continuous time closed-loop system.

4.2.2 Continuous Time Closed-loop Identification

The continuous time closed-loop identification system is described with the help of Figure (4.2).

In mathematical formulation, the continuous time closed-loop system is given by the following

state-space model equations

ẋ(t) = Ax(t) + Bû(t) + h(t) (4.13)

y(t) = Cx(t) + Dû(t) + v(t) (4.14)

û(t) = r(t)− uc(t) (4.15)

u(t) = û(t) + ξ(t) (4.16)

The controller model is defined as

ẋc(t) = Acxc(t) + Bcy(t) (4.17)

uc(t) = Ccxc(t) (4.18)

Here, x(t) ∈ Rn is the state-vector, u(t) ∈ Rm is the measured input signals, y(t) ∈ Rl is the

measured output signals and r(t) is the reference signal. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and

102



4.2 Error in Variable Problem Formulation

Figure 4.2: Schematic representation of the closed-loop model

D ∈ Rl×m are the system matrices. uc(t) is the control signal from the feedback controller. The

input is added with measurement noise, ξ(t) while the output is added with process noise, h(t)

and measurement noise, v(t).

Let the input and output data set declared as u(tk), y(tk), k ∈ [1, N ] and its sampling time is

tk. The noise term h(t), v(t) and ξ(t) are denoted as zero mean white noise. There are few

assumptions need to be made in order to solve this identification problem.

1. The reference input, r(t), the input, û(t) and the initial states are assumed to be uncorre-

lated with future value of noise.

2. The controller is assumed to be stabilizing and causal.

3. The system is assumed to be minimal and to have at least one delay.

Since the closed-loop system is stable, therefore û(t) is a stationary signal. And if, there is at

least a delay in the controller, the requirement for û(t) to be uncorrelated with future noise is

hold since û(t) depends only on the past values of y(t) and also past value of noise. Then, the

problem is to consistently estimate:

1. The system order, n.
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2. The extended observability matrix, Oj based on the availability of input signal u(t) and

output signal y(t).

3. The Â and Ĉ matrices obtained from the extended observability matrix

Oj =




Cw

CwAw

...

CwAj−1
w




4. The B̂ and D̂ matrices by using a least squares solution of

ŷ( t B, D ) = Ĉ(qIn − Â)−1B̂u(t) + D̂u(t)

The state-space equations in Laplace domain are defined as

sX(s) = AX(s) + BU(s)−BF (s) + H(s) (4.19)

Y (s) = CX(s) + DU(s)−DF (s) + V (s) (4.20)

where F (s) denotes the matrices represent the input noise, ξ(t). The filtering process of input

and output data system using the Laguerre filter are similar to the one that has been discussed

in Chapter 3. Therefore, the model description in Equations (4.19-4.20) is transformed into:

[wx](t) = Awx(t) + Bw[w0u](t)−Bw[w0ξ](t) + [w0hw](t) (4.21)

[w0y](t) = Cwx(t) + Dw[w0u](t)−Dw[w0ξ](t) + [w0vw](t) (4.22)

where

hw(t) =
√

2p(A + pIn)−1h(t)

vw(t) =
1√
2p

Chw(t) + v(t) (4.23)
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Observing Equations (4.21-4.22), data equations are constructed as

w0y(t) = Cwx(t) + Dww0u(t)−Dww0ξ(t) + w0vw(t)

w0wy(t) = Cwwx(t) + Dww0wu(t)−Dww0wξ(t) + w0wvw(t)

= Cw[Awx(t) + Bww0u(t)−Bww0ξ(t) + w0hw(t)] + Dww0wu(t)

−Dww0wξ(t) + w0wvw(t)

= CwAwx(t) + CwBww0u(t)− CwBww0ξ(t) + Cww0hw(t) + Dww0wu(t)

−Dww0wξ(t) + w0wvw(t)

w0w
2y(t) = CwAwwx(t) + CwBww0wu(t)− CwBww0wξ(t) + Cww0whw(t) + Dww0w

2u(t)

−Dww0w
2ξ(t) + w0w

2vw(t)

= CwAw[Awx(t) + Bww0u(t)−Bww0ξ(t) + w0hw(t)] + CwBww0wu(t)

− CwBww0wξ(t) + Cww0whw(t) + Dww0w
2u(t)−Dww0w

2ξ(t) + w0w
2vw(t)

= CwA2
wx(t) + CwAwBww0u(t)− CwAwBww0ξ(t) + CwAww0hw(t) + CwBww0wu(t)

− CwBww0wξ(t) + Cww0whw(t) + Dww0w
2u(t)−Dww0w

2ξ(t) + w0w
2vw(t)

By repetitively multiplying with w, the continuous time data equations are rearranged as




[w0y] (t)

[w1y] (t)
...

[wi−1y] (t)




=




Cw

CwAw

...

CwAi−1
w




x(t) +




Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0

CwAi−2
w Bw · · · CwBw Dw







[w0u] (t)

[w1u] (t)
...

[wi−1u] (t)




−




Dw 0 · · · 0

CwBw Dw
. . .

...
...

. . . . . . 0

CwAi−2
w Bw · · · CwBw Dw







[w0ξ] (t)

[w1ξ] (t)
...

[wi−1ξ] (t)




+




0 0 · · · 0

Cw 0
. . .

...
...

. . . . . . 0

CwAi−2
w · · · Cw 0







[w0hw] (t)

[w1hw] (t)
...

[wi−1hw] (t)




+




[w0vw] (t)

[w1vw] (t)
...

[wi−1vw] (t)




(4.24)
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Introduce the new noise disturbance as

F f
i,j(t) =




[wiξ] (t)

[wi+1ξ] (t)
...

[wi+j−1ξ] (t)




Therefore, the continuous time data equation can be written in a compact form as follows

Y f
i,j(t) = OjX̂(t) + ΓjU

f
i,j(t)− ΓjF

f
i,j(t) + ΨjH

f
i,j(t) + V f

i,j(t) (4.25)

Expanding the column matrices for N data samples, the equation becomes

Y f
i,j,N (t) = OjX̂i,N (t) + ΓjU

f
i,j,N (t)− ΓjF

f
i,j,N (t) + ΨjH

f
i,j,N (t) + V f

i,j,N (t) (4.26)

where the data matrices for a new term in the equation is constructed as

F f
i,j,N =




[wiξ] (t1) [wiξ] (t2) . . . [wiξ] (tN )

[wi+1ξ] (t1) [wi+1ξ] (t2) . . . [wi+1ξ] (tN )
...

...
...

...

[wi+j−1ξ] (t1) [wi+j−1ξ] (t2) . . . [wi+j−1ξ] (tN )




(4.27)

In this situation, the input is added with measurement noise, just like the output is added with

process and measurement noise. For this case, the subspace method discussed in Chapter 3 will

not give consistent estimate anymore, since the disturbance is correlated with the input. This

scenario is very common for a system that is operated in closed-loop, as the noise that enters

the system at any point in the loop tends to influence the input or the output signal.

Thus, in the continuous time closed-loop system identification, the identification solution similar

to the discrete time EIV problem defined in Equation (4.9) is considered. The differences are

on the adoption of Laguerre filter and the instrumental variables, in which are based on future

input and output horizon.

4.2.3 Identification Procedure

Let u(t) and y(t) be the input and output plant data described in Equations (4.13-4.16). Let

Uf
0,i,N , Y f

0,i,N , Uf
i,j,N and Y f

i,j,N be the filtered data matrices constructed from u(t) and y(t). The
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continuous time closed-loop identification considers the following RQ factorization.

 Uf

0,i,N

Y f
0,i,N


P> =


 R11 0

R21 R22





 Q1

Q2


 (4.28)

where

P =


 Uf

i,j,N

Y f
i,j,N




Then the following holds

lim
N→∞

1√
N

R22 = lim
N→∞

OiX̂
f
0,NP>Q>

2 (4.29)

Proof:

From the RQ factorization of Equation (4.28) we have

lim
N→∞

1√
N

R22 = lim
N→∞

1√
N

Y f
0,i,NP>Q>

2 (4.30)

From Equation (4.25) we have

lim
N→∞

1√
N

Y f
0,i,NP>Q>

2 = lim
N→∞

1√
N
OiX̂

f
0,NP>Q>

2 + lim
N→∞

1√
N

ΓiU
f
0,i,NP>Q>

2

− lim
N→∞

1√
N

ΓiF
f
0,i,NP>Q>

2 + lim
N→∞

1√
N

ΨiH
f
0,i,NP>Q>

2

+ lim
N→∞

1√
N

V f
0,i,NP>Q>

2 (4.31)

As Uf
0,i,NP> = R11Q1, the second term on the right hand side goes to zero because of the post-

multiplication between Q1 and Q2.

lim
N→∞

1√
N

ΓiU
f
0,i,NP>Q>

2 = 0 (4.32)

Next is to prove that the third, fourth and fifth term on the right hand side also goes to zero as

N goes to infinity

lim
N→∞

1√
N

ΓiF
f
0,i,NP>Q>

2 + lim
N→∞

1√
N

ΨiH
f
0,i,NP>Q>

2 + lim
N→∞

1√
N

V f
0,i,NP>Q>

2 = 0 (4.33)

With the assumption that there is at least a delay in the controller, therefore the future input

and output are independent of the noise sources ξ(t), h(t) and v(t), therefore

lim
N→∞

1
N

F f
0,i,NP> = 0

lim
N→∞

1
N

Hf
0,i,NP> = 0
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lim
N→∞

1
N

V f
0,i,NP> = 0

Equation (4.31) reduces to

lim
N→∞

1√
N

Y f
0,i,NP>Q>

2 = lim
N→∞

1√
N
OiX̂

f
0,NP>Q>

2

From computation point of view, the straightforward implementation of Equation (4.28) that

involves multiplication of data matrices will normally lead to a loss of precision [30]. The required

matrix that has the same column space as of R22 can be computed without explicitly forming

the matrix product given in Equation (4.28). This can be done by stacking the instrumental

variable in the middle of the past input and the past output.



Uf
0,i,N

 Uf
i,j,N

Y f
i,j,N




Y f
0,i,N




=




R̂11 0 0

R̂21 R̂22 0

R̂31 R̂32 R̂33







Q̂1

Q̂2

Q̂3


 (4.34)

Then rearrange the matrix as


 Uf

0,i,N

Y f
0,i,N




[
(P f

i,j,N )>
]

=


 R̂11 0 0

R̂31 R̂32 R̂33







Q̂1

Q̂2

Q̂3




[
Q̂>

1 Q̂>
2 Q̂>

3

]



R̂>
21

R̂>
22

0




=


 R̂11 0

R̂31 R̂32





 R̂>

21

R̂>
22




Perform another RQ factorization to the second matrix on the right-hand side will give

=


 R̂11 0

R̂31 R̂32





 R̃11 0

R̃21 R̃22





 Q̃>

1

Q̃>
2




By comparing the final result of these transformations with (4.28), thus

R22 = R̂32R̃22

For easy recognition in this chapter, the model that has been developed based on the idea of

system identification for EIV problem will be defined as the CEIV where the capital “C” stands

for the continuous time. In summary, the subspace method in identifying the continuous time

state space model for a closed-loop system can be described as follow.
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1. Construct the filtered data matrices of Uf
0,i,N , Uf

i,j,N , Y f
0,i,N and Y f

i,j,N .

2. Perform the RQ decomposition


 Uf

0,i,N

Y f
0,i,N


P> =


 R11 0

R21 R22





 Q1

Q2





 Uf

0,i,N

Y f
0,i,N


P> =


 R̂11 0

R̂31 R̂32





 R̃11 0

R̃21 R̃22





 Q̃>

1

Q̃>
2




where P = [(Uf
i,j,N )>(Y f

i,j,N )>] for the CEIV method.

3. Perform the SVD to the working matrix R̂32R̃22:

R̂32R̃22 = USV >

4. Determine the model order n from the singular value in S.

5. Determine the system matrices (Aw, Cw).

Aw = (J1Un)†J2Un

Cw = J3Un

J1 =
[

I(i−1)l 0(i−1)l×l

]

J2 =
[

0(i−1)l×l I(i−1)l

]

J3 =
[

Il×l 0l×(i−1)l

]

Υ† = (Υ>Υ)−1Υ>

The A and C matrices can be obtained using the relations:

A = p(In + Aw)(In −Aw)−1

C =
√

2pCw(In −Aw)−1

6. Solve least squares problem from model structure:

y( t B, D ) = C(qIn −A)−1Bu(t) + Du(t)

7. Reconstruct B and D from


 B

D




8. Generate the estimated output, ŷ(t).

109



4.2 Error in Variable Problem Formulation

4.2.4 Simulation Results

In this section, the simulation results will be shown in which the estimated output will be

compared with the measured output. As a measure of accuracy of the proposed model, the

VAF and MSE test is also calculated. There are two data sets provided for observation. One is

the simulated data set and the other is the real data set taken from magnetic bearing system

apparatus. To verify model capability, the data set is divided into two parts: First is the

estimation data in which the data that is used to develop the model and second is the validation

data that has not been used during the modelling process. The proposed model is used to

identify the SISO systems and the MIMO systems.

Single Input Single Output Data System

The SISO system under investigation has provided with two different examples. The first ex-

ample is the simulation data and the second example is an experimental data from magnetic

bearing system apparatus.

Example 1: Simulated Data System

The first data set is a simple mass, spring and damper simulated system presented in [3], and is

given by the following transfer function

G(s) =
1

Ms2 + bs + k

where M = 1kg, b = 10N.s/m and k = 20N/m. The Proportional-Integral (PI) controller is

used as to reduce the rise time, increase the overshoot and eliminate the steady-state error.

The proportional and integral gains are respectively set to Kp=30 and Ki=70. The reference

signal, r(t) is generated using a GRBS sequences. The output measurement noise and input

measurement noise of about 25dB SNR are added while we obtained the closed-loop input and

output data. The reference signal, input signal and output signal of the system can be seen in

Figure (4.3). The identification process for CEIV model is run under the configuration as can

be referred in Table 4.1. The superimposed of the estimated output over the measured output

can be seen in Figure (4.4).
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Table 4.1: System and model configuration - SISO simulated data

Symbol Description Value

p Laguarre parameter 10

i Expanding observability matrix 10

n Model order 2

∆t Sampling time 0.01

N Number of sampled data 4000

Nest Estimation data 2000

Nval Validation data 2000

F, V, H Input & output noise 25 dB SNR

Further verification test by MSE and VAF calculation is given a value of

CEIV : MSEest = 9.9474× 10−7 VAFest = 92.56%

MSEval = 1.0279× 10−6 VAFval = 90.91%

Performance measures based on the plots show that both models are able to identify the systems

closely. The MSE values are also small and the VAF indicates an acceptable accuracy. The

estimated (A,B, C, D) system matrices are given as

Â =


 −0.3242 6.3192

−2.7471 −9.8113


 ; B̂ =


 −76.7437

67.9789


 ; Ĉ =


 −0.0175

−0.0199



>

; D̂ = [0];

and the eigenvalues are given as

eig(Â) = −2.8003; −7.3352

The transfer function of the estimated CEIV model is

ĜCEIV (s) =
1.0215

s2 + 10.1355s + 20.5407

which still shows a close match in comparison with the actual transfer function.
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Figure 4.3: Plot of reference, input & output signal - SISO simulated data. (Note: The reference

& input data are re-scaled to only display 400 data points)
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Figure 4.4: Measured (solid) & estimated (dashed) - SISO simulated data (CEIV)
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Figure 4.5: Frequency response over 100 runs - SISO simulated data (CEIV)

In order to see the difference when different types of noise are added to the system, the Monte

Carlo simulation is performed based on 100 runs. The choice of different random “seed” specifies

the noise added to the input and output signal. The result from this analysis can be seen in

Figure (4.5). From this figure, it shows that with different types of noise, the proposed identifi-

cation technique is still able to identify the system closely.

Example 2: Real Data of MB systems

The second data set is a real data set taken from magnetic bearing apparatus. Since the

magnetic bearing system is an open-loop unstable system, therefore the Proportional-Derivative

(PD) controllers are embedded to the bearing system in order to suspend the shaft and to facil-

itate a closed-loop data collection. The experiment setup for data acquisition can be referred in

Appendix B. There are two sets of data available. The first set is measured from the x−z plane,

left and right bearing and will be labelled as (xL&xR). Second set is measured from the y − z

plane, left and right bearing and will be labelled as (yL&yR). For the SISO system identification,

only the data taken from the xR plane is demonstrated in this section. The illustration results

for the SISO system identification using the data of xL, yL and yR are omitted. However, the

MSE and VAF test for all sets of data are calculated.
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Table 4.2: System and model configuration - SISO real data

Symbol Description CEIV model CEIV model

(xL&xR) (yL&yR)

p Laguarre parameter 100 260

i Expanding observability matrix 10 10

n Model order 6 6

∆t Sampling time 0.002 0.002

N Number of sampled data 1000 1000

Nest Estimation data 500 500

Nval Validation data 500 500

Table 4.3: MSE and VAF calculation - SISO MB systems

Description MSEest MSEval VAFest VAFval

EIV model: xL 0.0087 0.0077 83.57% 88.55%

EIV model: xR 0.0114 0.0063 90.16% 92.54%

EIV model: yL 0.0114 0.0082 85.12% 87.11%

EIV model: yR 0.0152 0.0146 81.12% 73.59%

The configuration of the model can be referred in Table 4.2. The plot of input and output data

for xR can been seen as in Figure (4.6). The comparison results of estimation and validation

data sets with the estimated output from the proposed model can be seen in Figure (4.7). The

VAF and MSE calculation over the model can be seen in Table 4.3. From observation, it shows

that the model can identify the system closely for both estimation and validation data set.

Calculations on VAF show that the model has provided with acceptable level of quality. The

model also gives low value of MSE.
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Figure 4.7: Measured (solid-line) & estimated (thick-line) output - SISO MB xR (CEIV)
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The estimated (A,B, C, D) system matrices are obtained as

Â =




−8.5633 44.1788 −105.9845 −69.8583 −57.8388 37.0082

−12.0474 −28.5021 93.1495 39.4584 123.8526 −79.7434

16.9914 72.3601 −230.5504 −299.5824 −382.4434 204.2352

15.7272 61.3710 19.1457 −85.2620 −222.9352 112.0583

0.9856 −20.8887 88.4328 43.6879 −86.7905 135.2260

0.2685 7.9745 −4.3819 10.4485 −21.5309 −14.1040




;

B̂ =




−1.2913

−0.0955

0.2644

0.2320

−0.1007

−0.1040




× 103; Ĉ =




−0.1631

−1.4554

−0.0898

−0.1243

0.6956

1.9022




>

; D̂ = [0];

and the eigenvalues is given as

eig(Â) =




−2.0123± 2.2722j

−0.1535± 0.1499j

−0.1031± 0.6271j


× 102

Multi Input Multi Output Data Systems

In this section, the two input two output systems of MB systems are given by the following

equation


 y1(t)

y2(t)


 =


 G11 G12

G21 G22





 u1(t)

u2(t)
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Table 4.4: System and model configuration - MIMO real data

Symbol Description CEIV model CEIV model

(xL&xR) (yL&yR)

p Laguarre parameter 190 260

i Expanding observability matrix 10 10

n Model order 8 8

∆t Sampling time 0.002 0.002

N Number of sampled data 1000 1000

Nest Estimation data 500 500

Nval Validation data 500 500

Table 4.5: MSE and VAF calculation - MIMO MB systems

Description MSEest MSEval VAFest VAFval

EIV model: xL 0.0140 0.0124 74.07% 79.26%

EIV model: xR 0.0148 0.0106 86.64% 87.35%

EIV model: yL 0.0188 0.0241 75.53% 62.12%

EIV model: yR 0.0133 0.0135 83.45% 75.26%

For the MIMO systems, the same data sets that were used in SISO identification are used again,

however, it is implemented together to build the MIMO systems. So in this case, there are two

sets of two-input-two-output data available. First case is the data for x − z plane and second

case is the y − z plane of the MB systems. The identification results for the x − z plane are

shown in this section. The illustration results for y − z plane are omitted, however, the MSE

and VAF are calculated and mentioned.

The identification is run under the configuration as it can be referred in Table 4.4. The data is

also divided into estimation data and validation data. The performance is compared based on

the fit between the measured output and the estimated output. The measured and estimated

output are superimposed which can be seen in Figure (4.8). The VAF and MSE calculations
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can be referred as in Table 4.5. Based on the fit between the measured and estimated, it can

be said that the CEIV model is able to identify the multi-variable MB systems with reasonable

performance. The MSE and VAF calculations also show that the model gives a reasonable level

of accuracy.

The estimated (A,B, C, D) system matrices are obtained as

Â =




−62.3673 −161.3267 128.9896 45.7793 170.1881 180.3723 61.2045 −14.2145

10.4701 −218.3041 −57.6564 225.0433 338.4266 −11.4315 238.2461 63.1461

26.6006 −10.0305 −224.1275 161.8549 −51.5358 −449.0338 97.4713 97.7111

−7.4738 −49.1065 −79.3349 −38.2803 −93.6023 20.1898 −88.4323 −27.8315

−38.5862 −68.2114 −1.1466 0.5722 −79.4305 −31.2021 −105.1535 16.9795

−40.1581 −6.2026 85.3495 30.3985 −40.8994 −137.2292 48.1287 99.4318

−7.7679 −20.7251 −10.0528 −3.0828 1.6215 −4.5332 −49.9029 −13.3173

−1.6943 −4.2189 −0.3700 −4.5311 −14.0608 −27.3381 −13.1566 −5.4132




B̂ =




−40.1936 132.0502

74.8633 58.4370

73.7068 −76.2532

−63.9399 −32.3884

1.7233 6.1884

−14.6589 14.7230

3.8460 2.6565

−12.6273 −31.9061




; Ĉ =




0.1300 −0.2706

0.4564 0.5508

0.3558 −0.5793

0.5751 −0.0620

−0.4664 0.6534

0.2385 0.5040

−0.5360 −0.0363

−0.5158 0.6843




>

; D̂ =


 0 0

0 0


 ;

The eigenvalues is given as

eig(Â) =




−1.9658± 2.3756j

−1.8138± 2.3259j

−0.0959± 0.1152j

−0.1997± 0.2289j



× 102
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Figure 4.8: Measured (solid-line) & estimated (thick-line) MIMO MB x−plane (CEIV)
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4.3 Reference Signal As IV Formulation

The idea of using reference signal as a choice of instrumental variable was influenced by Zhao and

Westwick to identify the Wiener system [192]. This approach is inherited since certain nonlinear

systems will not have the input signal, û(t) to be Gaussian distributed due to feedback in the

system. Thus, by collecting only the input signal will not provide enough information about

the systems. Therefore in order to perform the algorithm to closed-loop data, the two Gaussian

signals must be obtained. The Gaussian output and the Gaussian reference signal.

The classical choice to determine the Gaussianity of the output data is by measuring its Gaus-

sianity according to the Kurtosis calculation defines as

Kurt(x) = E
(
x4

)− 3
(
E

(
x2

))2 (4.35)

For a sample data defines as x = [x1, x2, . . . , xN ], the calculation goes as

K1 = E
(
x4

)
=

1
N

N∑

a=1

(xa − x̄)4

K2 = E
(
x2

)
=

1
N

N∑

a=1

(xa − x̄)2

Kurt(x) = K1− 3(K2)2

where x̄ is a mean value of the sample x.

If the random sequence is Gaussian, its Kurtosis should be equal to zero. The signal with

smaller value of Kurtosis is more Gaussian than with larger value of Kurtosis. The Kurtosis can

be positive or negative. Random variables that have a negative kurtosis are called subgaussian,

and those with positive kurtosis are called supergaussian. Now that the Gaussianity condition is

satisfied, the same algorithm and assumption for the continuous time closed-loop identification

that have been discussed in previous section can be used again in this section, however, the

instrumental variable is constructed from the reference signal, r(t).

P =
[
Rf

i,j,N

]

where

Rf
i,j,N (t) =




[wir] (t1) [wir] (t2) . . . [wir] (tN )

[wi+1r] (t1) [wi+1r] (t2) . . . [wi+1r] (tN )
...

...
...

...

[wi+j−1r] (t1) [wi+j−1r] (t2) . . . [wi+j−1r] (tN )
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For easy recognition of this model, it will be named as “CREF” in which capital “C” represents

the continuous time and “REF” for reference signal.

4.3.1 Identification Procedure

Let u(t) and y(t) be the input and output plant data described in Equations (4.13-4.16). Let

Uf
0,i,N and Y f

0,i,N be the filtered data matrices constructed from u(t) and y(t), and Rf
i,j,N be the

filtered data matrices constructed from r(t), this method consider the following RQ factorization.

 Uf

0,i,N

Y f
0,i,N


P> =


 R11 0

R21 R22





 Q1

Q2


 (4.36)

where

P =
[
Rf

i,j,N

]

1. Perform the RQ decomposition


 Uf

0,i,N

Y f
0,i,N


P> =


 R11 0

R21 R22





 Q1

Q2





 Uf

0,i,N

Y f
0,i,N


P> =


 R̂11 0

R̂31 R̂32





 R̃11 0

R̃21 R̃22





 Q̃>

1

Q̃>
2




where P = [Rf
i,j,N ]> for the CREF method.

2. Perform the SVD to the working matrix R̂32R̃22:

R̂32R̃22 = USV >

3. Determine the model order n from the singular value in S.

4. Determine the system matrices (Aw, Cw).

Aw = (J1Un)†J2Un

Cw = J3Un

J1 =
[

I(i−1)l 0(i−1)l×l

]

J2 =
[

0(i−1)l×l I(i−1)l

]

J3 =
[

Il×l 0l×(i−1)l

]

Υ† = (Υ>Υ)−1Υ>
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The A and C matrices can be obtained using the relations:

A = p(In + Aw)(In −Aw)−1

C =
√

2pCw(In −Aw)−1

5. Solve least squares problem from model structure:

y( t B, D ) = C(qIn −A)−1Bu(t) + Du(t)

6. Reconstruct B and D from


 B

D




7. Generate the estimated output, ŷ(t).

4.3.2 Simulation Results

In this section, the simulation results will be shown and the estimated output will be compared

with the measured output. As a measure of accuracy of the proposed model, the VAF and MSE

tests are also calculated. There are two data sets provided for the study. One is the simulated

data set and the other is the real data set taken from magnetic bearing system apparatus. To

verify the model capability, the data set is divided into two parts: First is the estimation data

in which the data that is used to develop the model and second is the validation data that has

not been used during the modelling process. The proposed model is used to identify the SISO

systems and the MIMO systems.

Single Input Single Output Data System

The SISO system under investigation has provided two examples. First example is based on a

set of simulation data and second example is based on a set of experimental data taken from

magnetic bearing system apparatus.
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Example 1: Simulated Data System

The first data set is a simple mass, spring and damper simulated system given by the following

transfer function [3]

G(s) =
1

Ms2 + bs + k

where M = 1kg, b = 10N.s/m and k = 20N/m. The Proportional-Integral (PI) controller is

used as to reduce the rise time, increase the overshoot and eliminate the steady-state error. The

proportional and integral gains are respectively set to Kp=30 and Ki=70. The reference signal,

r(t) is generated using a Gaussian random generator. The output measurement noise and input

measurement noise of about 25dB SNR are added while we obtained the closed-loop input and

output data. Plot for reference signal, input signal and output signal of the system can be seen

in Figure (4.9).
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Figure 4.9: Plot of reference, input & output signal - SISO simulated data
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The Kurtosis calculated for reference signal, input signal and output signal are given as

Kurt(r) = −0.0658

Kurt(u) = −0.0760

Kurt(y) = −3.2351× 10−11

The identification process for CREF model is run under the configuration as can be referred in

Table 4.6. The superimposed of the estimated output over the measured output can be seen in

Figure (4.10). Further verification test by MSE and VAF calculation have given a value of

CREF : MSEest = 1.0364× 10−6 VAFest = 92.59%

MSEval = 1.0532× 10−6 VAFval = 92.56%

Performance measure based on the plot shows that the model is able to identify the systems

closely. The MSE value is also small and the VAFs indicate an acceptable accuracy. The

estimated (A,B, C, D) system matrices are given as

Â =


 −0.1655 5.7803

−3.2148 −9.9343


 ; B̂ =


 37.9829

−1.6615


 ; Ĉ =


 −0.0007

−0.0104



>

; D̂ = [0];

The eigenvalue is obtained as

eig(Â) = −2.7532; −7.3465;

The transfer function of the estimated CREF model is obtained as

ĜCREF (s) =
1.0127

s2 + 10.0998s + 20.2265

which still shows a close match in comparison with the actual transfer function.

In order to see the differences when different types of noise are added to the system, Monte Carlo

simulation is performed based on 100 runs. The choice of different random “seed” specifies the

noise adding to the input and output signal. The result from this analysis can be seen in Figure

(4.11). From this figure, it shows that with different types of noise, both models are still able

to identify the system closely.
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Table 4.6: System and model configuration - SISO simulated data

Symbol Description Value

p Laguarre parameter 10

i Expanding observability matrix 10

n Model order 2

∆t Sampling time 0.01

N Number of sampled data 4000

Nest Estimation data 2000

Nval Validation data 2000

F, H, V Input & output noise 25 dB SNR
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Figure 4.10: Measured (solid) & estimated (dashed) - SISO simulated data (CREF)
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Figure 4.11: Frequency response over 100 runs - SISO simulated data (CREF)

Example 2: Real Data of MB systems

The second data set is a real data set taken from magnetic bearing apparatus. Since the

magnetic bearing system is an open-loop unstable system, therefore the Proportional-Derivative

(PD) controllers are embedded to the bearing system in order to suspend the shaft and to facili-

tate a closed-loop data collection. There are two sets of data available. The first set is measured

from the x − z plane, left and right bearing and will be labelled as (xL&xR). Second set is

measured from the y − z plane, left and right bearing and will be labelled as (yL&yR). For the

SISO system identification, these data will be identified individually. However, in this section

only the data taken from the xR will be demonstrated. The illustration results for other set of

plane are omitted, however, the MSE and VAF are calculated and mentioned.

The Kurtosis calculated for the signal is given in Table 4.7. The configuration of the model can

be referred in Table 4.8. The plot of input and output data for xR can been seen as in Figure

(4.12). The comparison results of estimation and validation data sets with the estimated output

from the proposed model can be seen in Figure (4.13). The VAF and MSE values can be seen

in Table 4.9. From observation, the results show that the model can identify the system closely

for both estimation and validation data set.
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Table 4.7: Kurtosis of the input & output signal - SISO real data

Description Kurtosis of input Kurtosis of output

xL -0.0185 −4.4184× 10−4

xR -0.0107 -0.0031

yL -0.0240 -0.0017

yR -0.0147 -0.0012

Table 4.8: System and model configuration - SISO real data

Symbol Description CREF model CREF model

(xL&xR) (yL&yR)

p Laguarre parameter 230 230

i Expanding observability matrix 10 10

n Model order 6 6

∆t Sampling time 0.002 0.002

N Number of sampled data 1000 1000

Nest Estimation data 500 500

Nval Validation data 500 500

Table 4.9: MSE and VAF calculation - SISO MB systems

Description MSEest MSEval VAFest VAFval

CREF model: xL 0.0074 0.0073 86.21% 88.55%

CREF model: xR 0.0103 0.0067 91.71% 91.61%

CREF model: yL 0.0063 0.0063 87.16% 90.06%

CREF model: yR 0.0144 0.0144 89.28% 73.13%

Calculation on VAF also show that the model has demonstrated an acceptable level of quality.

The model also gives low value of MSE.
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Figure 4.12: Plot of input & output - SISO MB System, xR
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Figure 4.13: Measured (solid-line) & estimated (thick-line) output - SISO MB xR (CREF)
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The estimated (A,B, C, D) system matrices are obtained as

Â =




−218.5893 152.2021 −529.4181 56.2305 −495.4974 −775.6968

−55.6609 −9.6979 89.5740 −20.8493 112.3898 167.3354

102.5845 4.7648 −208.2802 11.0533 −469.9023 −788.8309

−5.8212 2.6146 37.7181 10.5029 −25.9838 99.1283

−2.1953 2.2948 −15.6177 63.8423 −274.0887 −737.6722

−7.9211 0.6857 22.7917 6.9395 −154.9759 −681.0978




B̂ =




−2.6228

−0.1589

−0.0188

0.0054

−0.0659

0.0589




× 103; Ĉ =




−0.2744

1.4474

−0.2051

−5.0999

3.1628

−4.0820




>

; D̂ = [0];

The eigenvalue is given as

eig(Â) =




−8.7489

−2.2853± 2.6403j

−0.1346± 0.4975j

−0.2237



× 102

Multi Input Multi Output Data Systems

In this section, the two inputs two outputs systems are investigated. The data taken from the

x−z plane of the MB apparatus will be used for multi-variable closed-loop system identification.

The identification is run under the configuration as can be referred in Table 4.10. The data is also

divided into estimation data and validation data. The performance is compared based on the

fit between the measured output and the estimated output. The superimposed of measured and

estimated output can be seen as in Figure (4.14). The VAF and MSE calculation can be referred

as in Table 4.11. Based on the fit between the measured and estimated, it can be said that the

model is still able to identify the multi-variable MB systems with reasonable performance. The

MSE and VAF calculation also show that the model gives reasonable level of accuracy.
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Table 4.10: System and model configuration - MIMO real data

Symbol Description CREF model CREF model

(xL&xR) (yL&yR)

p Laguarre parameter 210 200

i Expanding observability matrix 10 10

n Model order 6 6

∆t Sampling time 0.002 0.002

N Number of sampled data 1000 1000

Nest Estimation data 500 500

Nval Validation data 500 500

Table 4.11: MSE and VAF calculation - MIMO MB systems

Description MSEest MSEval VAFest VAFval

CREF model: xL 0.0167 0.0148 69.98% 75.02%

CREF model: xR 0.0192 0.0143 84.27% 81.65%

CREF model: yL 0.0218 0.0204 71.27% 67.66%

CREF model: yR 0.0211 0.0170 74.17% 69.44%

The estimated (A,B, C, D) system matrices are obtained as

Â =




−224.5888 −81.3482 −124.7197 −150.6280 490.9242 −147.2753

18.2897 −200.3484 120.4889 −209.8670 −160.5393 −439.4549

31.6193 51.7443 −52.9217 72.1994 197.9366 174.2963

35.7413 78.8937 −41.6793 −30.3442 53.1054 −103.8757

−97.0787 35.7693 −29.5466 −11.9255 −187.6419 −39.3412

18.1400 72.4412 −34.7701 −21.2507 −23.0873 −138.9825
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Figure 4.14: Measured (solid-line) & estimated (thick-line) MIMO MB x−plane (CREF)
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4.4 Summary

B̂ =




−1.5992 −112.8881

−78.2819 70.6188

4.3564 34.1773

−72.5089 −16.8690

6.7836 −16.5156

21.9138 0.6673




; Ĉ =




−0.4132 −0.5718

−0.6045 −0.2215

0.2517 −1.0635

0.3737 0.0022

0.1384 −1.1496

−0.1839 −0.2359




>

; D̂ =


 0 0

0 0




The eigenvalue is given as

eig(Â) =




−2.1184± 2.6391j

−1.9202± 2.4363j

−0.1137

−0.1574



× 102

4.4 Summary

This chapter has demonstrated an approach based on subspace method to identify a continuous

time state-space model for closed-loop data. Two approaches have been studied and the perfor-

mance capability of each approach in identifying the systems are investigated. The first approach

is an extension of the existing approach in discrete time system identification for “error in vari-

able” problem into the continuous time closed-loop system identification. Second approach is

an extension of the existing approach in discrete time system identification using the reference

signal as an instrumental variable into the continuous time closed-loop system identification.

These two approaches are tested to identify the SISO and MIMO systems; for simulated data

systems and real data of magnetic bearing systems. These two models have successfully identi-

fied the simulated systems and also give acceptable performance in identifying the MB systems.

In comparison among models, both models show quite a similar performance in identifying the

system closely.
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Chapter 5

Subspace System Identification

Through Data Compression

5.1 Introduction

In previous chapters, the subspace identification method is used to develop a continuous time

state-space model for open-loop and closed-loop systems, in which it has been demonstrated

based on a direct periodic input signal to produce output as time domain data. Overall, the

identifications have demonstrated a promising performance. There is another good data view-

point that one might consider; a step response data. The step response of a dynamical system

provides information regarding the stability of the system and its ability to reach a stationary

state. It also has a transparent representation in terms of gain, time delay and time constant.

At some points, it is widely viewed as a precursor to the design of further experiments, as an

indicator to the collection of more input-output data, and as a subsequent for regression-based

techniques to obtain more accurate model [180].

In this chapter the identification procedure involves two steps. The first step is the identifi-

cation of the system step response from the experimental data using the Frequency Sampling

Filter (FSF) approach of Wang and Cluett [179, 180]. This first stage is also referred as data

compression stage in which the raw data will be analysed, the noise will be eliminated and the

data is finally compressed into an empirical model of the analysed data. The second step is the
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5.2 Data Compression using Frequency Sampling Filters

identification of a continuous time state space model using subspace methods from the identified

step response. The subspace method that will be used is similar to that one that has already

discussed in Chapter 3. The contribution of this chapter is rather the combination of the two

stages in a novel way and to verify the approach in a real application context. The main content

of this chapter has been written in a conference paper and submitted to IEEE International

Conference on Systems, Man and Cybernetics to be held in Singapore in October 2008 [117].

The two stage system identification demonstrated in this chapter involves both a discrete time

model and a continuous time model. The first stage of identification involves the discrete time

model. However, the step response that is obtained from the first stage is invariant in both

discrete time and continuous time. Therefore, the applicability remains in continuous time

model during the second stage of system identification.

As a reminder to readers, some of the mathematical symbol presented in this chapter may

have the same character as the one represented for subspace identification equations in previous

chapters. Therefore, confusion due to redundancy usage may arise. The author will try her best

to indicate and declare the meaning of each symbol after each equation presented. Overall, this

chapter will go as follows. Section 5.2 elaborates the data compression using the FSF approach.

The key ingredients behind the FSF model are justified and the use of PRESS statistic and

the orthogonal decomposition algorithm are also stated. Next in Section 5.3, the step response

estimates obtained from FSF model are justified. Then, Section 5.4 visualizes the continuous

time state space model identification using the identified step response estimates. To show the

performance capability of the proposed model, the simulation and experimental data systems

are used, in which the SISO and multi-variable systems are observed. These examples are shown

in Section 5.5. Finally, Section 5.6 concludes the chapter.

5.2 Data Compression using Frequency Sampling Filters

Data acquisition process from real system typically yields large amounts of data. This particular

raw data may contain complex system disturbance information which may require a sophisticated

optimization algorithm to achieve desirable results [48, 49]. Thus, there must be a certain

mechanism that can utilize the measured data by encapsulating the important features and

compressing it into a few parameters within an empirical system model. As discussed in [48,49],
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5.2 Data Compression using Frequency Sampling Filters

there are many possible empirical models available but one of interest is the FSF model approach

[179,180].

5.2.1 Frequency Sampling Filter Model

Introduce the Finite Impulse Response (FIR) transfer function model as

G(z) =
n−1∑

i=0

hiz
−i (5.1)

where n is the model order chosen such that the FIR model coefficients hi ≈ 0 for all i ≥ n, and

z−1 is the backward shift operator. The model order n can be determined from an estimate of

the process settling time Ts, where n = Ts
∆t and ∆t is the sampling interval [180]. Under the

assumption that n is an odd number, the relationship between the process frequency response

and its impulse response of the Inverse Discrete Fourier Transform (IDFT) can be defined as

hi =
1
n

n−1
2∑

l=−n−1
2

G
(
ej 2πl

n

)
ej 2πli

n (5.2)

This relationship maps a set of discrete time frequency response coefficients, G
(
ej 2πl

n

)
, l =

0,±1,±2, . . . ,±n−1
2 into the set of discrete time unit impulse response coefficients, hi, i =

0, . . . , n− 1. Substituting Equation (5.2) into Equation (5.1) gives

G(z) =
n−1∑

i=0

1
n

n−1
2∑

l=−n−1
2

G
(
ej 2πl

n

)
ej 2πli

n z−i (5.3)

Interchanging the summations in Equation (5.3) gives the transfer function in its FSF model

form

G(z) =

n−1
2∑

l=−n−1
2

G
(
ej 2πl

n

) 1
n

1− z−n

1− ej 2πl
n z−1

(5.4)

where
n−1∑

i=0

ej 2πli
n z−i =

1− z−n

1− ej 2πl
n z−1

(5.5)

Define a set of transfer functions extracting from Equation (5.4)

H l(z) =
1
n

1− z−n

1− ej 2πl
n z−1

(5.6)
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5.2 Data Compression using Frequency Sampling Filters

for l = 0,±1,±2, . . . ,±n−1
2 , the above equation is referred as the l−th FSF with the centre

frequency of the l−th filter is at 2πl
n radians. Let z = ejω, Equation (5.4) will become

G
(
ejω

)
=

n−1
2∑

l=−n−1
2

G
(
ej 2πl

n

) 1
n

1− e−jωn

1− ej 2πl
n e−jω

(5.7)

At ω = ωl, the following condition holds

Ha
(
ejω

)
= 0 for a 6= l

Ha
(
ejω

)
= 1 for a = l

where a is an integer like l in the range
[−n−1

2 , n−1
2

]
. In this case, the value of the process

frequency response in Equation (5.7) reduces to the value of the process frequency response

coefficient G
(
ej 2πl

n

)
.

Given the discrete time input signal, u(k), the discrete time measured output signal, y(k), and

the disturbance v(k), the FSF model can be explained in block diagram as shown in Figure (5.1).

The FSF filters are narrow band-limited around their respective centre frequencies [180]. All

the filters have identical frequency responses except for the location of their centre frequencies.

Some of the FSF model characteristics are listed below [180].

1. FSF model only requires prior information about the process settling time expressed in

terms of n.

2. The number of unknown parameters in the FSF model is equal to the number of unknown

parameters in the FIR model.

3. FSF model corresponds to the discrete time frequency response coefficients.

4. The elements of the regressor vector for estimating the frequency response coefficients are

formed by passing the process input through the set of narrow band-limited frequency

sampling filters.

Therefore, with the arbitrary input, u(k) and the measured output, y(k), the FSF model system

can be identified as

y(k) = G(z)u(k) + v(k) (5.8)
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5.2 Data Compression using Frequency Sampling Filters

Figure 5.1: Frequency sampling filter model structure [180]

where G(z) is given by Equation (5.4) and v(k) is the zero mean disturbance term. Define the

parameter vector as

θ =
[

G (0) G
(
ej( 2π

n )
)

G
(
e−j( 2π

n )
)

. . . G

(
e
j
(

(n−1)π
n

))
G

(
e
−j

(
(n−1)π

n

)) ]>
(5.9)

and its corresponding regressor vector as

φ(k) =
[

f0(k) ∗ u(k) f1(k) ∗ u(k) f−1(k) ∗ u(k) . . . fn−1
2

(k) ∗ u(k) f−n−1
2

(k) ∗ u(k)
]>

(5.10)

where fl(k) is defined according to Equation (5.6). Thus, Equation (5.8) can be rewritten as

y(k) = θ>φ(k) + v(k) (5.11)

For N data measurements, Equation (5.11) can also be written in matrix form as

Y = ΘΦ + V (5.12)
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5.2 Data Compression using Frequency Sampling Filters

where

Y > =
[

y(1) y(2) . . . y(N)
]

V > =
[

v(1) v(2) . . . v(N)
]

Φ =




f0(1) f1(1) f−1(1) . . . f−n−1
2

(1)

f0(2) f1(2) f−1(2) . . . f−n−1
2

(2)
...

...
... . . .

...

f0(N) f1(N) f−1(N) . . . f−n−1
2

(N)




Equation (5.12) can then be used to solve the least squares estimate of Θ given by

Θ̂ = (Φ>NΦN )−1Φ>NYN (5.13)

which minimize the performance index of the form

J(N, Θ̂) =
N∑

a=0

|Y −ΘΦ|2 (5.14)

The matrix Φ>NΦN is called the correlation matrix and the invertibility condition on this matrix

is sometimes called the sufficient excitation condition for parameter estimation [180]. In order

to obtain a proper FSF parameter optimization, the least squares model estimates based on

PRESS computation is used. The PRESS criterion will ensure that the FSF model has the

greatest predictive capability among all its candidate models.

5.2.2 The PRESS Criterion

In the statistical literature, the sum of squared prediction errors is defined as the PRESS (An

abbreviation of Predicted REsidual Sums of Square) [178–180]. The idea of PRESS is to set aside

each data point, estimate a model using the rest of the data, and then evaluate the prediction

error at the point that was removed [121]. Instead of its usage in minimizing the prediction

error, the PRESS statistic can be applied as a criterion for model structure detection in dynamic

system identification [178]. The PRESS computation is based on the orthogonal decomposition

algorithm proposed by Korenberg et al. [90]. The orthogonal decomposition algorithm can be

referred as in Appendix A.
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Define the prediction error as

e−k(k) = y(k)− θ̂>φ(k)

= y(k)− ŷ−k(k) (5.15)

where e−k(k), k = 1, 2, . . . , N are called the PRESS residuals and θ̂ has been estimated according

to Equation (5.13) without including φ(k) and y(k). The PRESS residuals e−k(k) represent the

true prediction errors, since y(k) and ŷ−k(k) are independent. Based on the Shermon-Morrison-

Woodbury theorem (see e.g. in [121]), the PRESS residuals e−k(k) can be calculated according

to the following equation

e−k(k) =
e(k)

1− φ(k)>(Φ>Φ)−1φ(k)
(5.16)

The PRESS statistic is defined as

PRESS =
N∑

k=1

e−k(k)2 (5.17)

The average PRESS is calculated as

PRESSav =

√∑N
k=1 e−k(k)2

N − 1
(5.18)

Equations (5.17) and (5.18) both provide measures of the predictive capability of the estimated

model. In terms of model structure selection, the chosen structures are based on the smallest

PRESS value.

5.2.3 Computation of the PRESS statistic

Let wi(·) denote the ith column of W and ĝi represent the ith estimated auxiliary parameter

(Refer to Appendix A on elaboration of these two terms). The PRESS residuals e−k(k), k =

1, 2, . . . , N defined in Equation (5.15) for the original model with n parameters are given by

e−k(k) =
y(k)−∑n

i=1 wi(k)ĝi

1−∑n
i=1

wi(k)2

‖wi‖2
(5.19)

where ‖wi‖ =
√∑N

k=1 wi(k)2 is the norm of wi.

139



5.2 Data Compression using Frequency Sampling Filters

Proof:

The ordinary residuals can be written in terms of orthogonalized data matrix and the auxiliary

parameter estimates [180]

e(k) = y(k)−
n∑

i=1

wi(k)ĝi (5.20)

From definitions of φ(t) and Φ in Equations (5.9-5.12), it becomes

φ(k)>(Φ>Φ)−1φ(k) = diagk[Φ(Φ>Φ)−1Φ>] (5.21)

Using Φ = WT gives

Φ(Φ>Φ)−1Φ> = WT (T>W>WT )−1T>W>

= W (W>W )−1W> (5.22)

Hence

φ(k)>(Φ>Φ)−1φ(k) = diagk[W (W>W )−1W>]

=
n∑

i=1

wi(k)2

‖wi‖2
(5.23)

From the expression for the PRESS residuals ek(k) in Equation (5.16), the result in Equation

(5.19) dictates as follows [180].

1. The sum of squares of the ordinary residuals for a model with n parameters is given by

Jn =
N∑

k=1

y(k)2 −
n∑

i=1

ĝ2
i ‖wi‖2 (5.24)

Therefore, for a model of order, n + 1

Jn − Jn+1 = ĝ2
n+1‖wn+1‖2 (5.25)

which indicates that the sum of squares of the ordinary residuals is non-increasing with

respect to model order. However, if a term is added to the model and the PRESS increases,

this indicates that the predictive capability of the model is better without that term.

2. The true prediction errors ek(k) are actually a weighted version of the ordinary residuals.

The weighting factor [1−∑n
i=1

wi(k)2

‖wi‖2 ]−1 gives large weights to ordinary residuals associated

with data points where prediction is poor.
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3. The computation of the PRESS residuals ek(k) using Equation (5.19) only requires the

orthogonal matrix W and the auxiliary parameter vector ĝ. Hence, the value of the PRESS

can be used to detect the significance of each additional term in the original model without

actually having to compute θ̂.

5.3 Step Response Estimation using Frequency Sampling Filters

In the estimation of step response, the description of the system using frequency sampling filters

can be described as follow.

y(k) =

n−1
2∑

l=−n−1
2

G
(
ej 2πl

n

)
H l(z)u(k) + v(k) (5.26)

where for a suitable choice of G
(
ej 2πl

n

)
and H l(z) defined as in Equation (5.3) and (5.6),

respectively, u(k) is the input signal, y(k) is the output signal and v(k) is the disturbance signal.

Upon obtaining the estimate of the frequency response parameters (according to FSF model and

PRESS criterion), the estimate of the step response at sampling instant, m can be expressed by

ĝm =
m−1∑

i=0

ĥi (5.27)

where the estimated impulse response coefficients ĥ0, ĥ1, ĥ2, . . . , ĥm−1 are related to frequency

response via

ĥi =
1
n

n−1
2∑

l=−n−1
2

Ĝ
(
ej 2πl

n

)
ej 2πli

n (5.28)

Substituting Equation (5.28) into (5.27), the estimated step response coefficient can be rewritten

as

ĝm =

n−1
2∑

l=−n−1
2

Ĝ
(
ej 2πl

n

) 1
n

1− ej 2π1
n

(m+1)

1− ej 2πl
n

(5.29)

Although the FSF approach is cast in the discrete time domain and the corresponding z-

transform domain, the resultant model can be used to obtain continuous time step response [180].

The system impulse response ĝ(t) can be approximately computed using the continuous time

equivalent as

ĝ(t) ≈ ĝfsf (t) =

n−1
2∑

l=−n−1
2

θ̂lĥl(t) (5.30)
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and

ĥl(t) =
1
T

ej 2πlt
T for t < T4 (5.31)

where T is a sampling period. The step response is determined as

ys(t) =
∫ t

0
ĝ(τ)dτ (5.32)

5.4 Continuous Time Model Identification using Step Response

Estimates

As discussed in Section 5.2 and Section 5.3, the first stage of the two-stage identification involved

a process of data compression in which the system step response in non-parametric form is

obtained. The significant of this approximation lies in the fact that

1. Large amount of data that have been collected from the system can be deduced or com-

pressed into fewer number of data.

2. The process frequency parameters correspond to higher frequency region of the system are

neglected as the information contain from that region normally has severe noise corruption.

3. The relatively noise-free step response is obtained as compared to an actual step response

test. Thus, it can be intuitively judged by the process engineer.

Next in this section, the second stage of the identification is discussed in which the continuous

time state space model is developed based on the estimated step response. In here, the open-loop

identification technique is possible to be used as to deal with the closed-loop data from closed-

loop system. Since the procedure in the first stage involves the usage of the FIR model and the

maximum likelihood method (based on PRESS calculation) as to remove the noise effects, the

estimated data used for identification in second stage will give unbiased estimation.

Consider the state-space model of the continuous time system in the Laplace domain

sX(s) = AX(s) + BU(s)

Y (s) = CX(s) + DU(s) (5.33)
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5.4 Continuous Time Model Identification using Step Response Estimates

where U(s) ∈ Rm, Y (s) ∈ Rl, X(s) ∈ Rn are the Laplace transforms of the system inputs,

outputs and state variables respectively, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m

are the system matrices. The transfer function can be expressed as

G(s) = C(sIn −A)−1B + D (5.34)

For a given plant input signal u(t), the plant output response is described by [182]

y(t) = G(p)u(t) + η(t) (5.35)

where G(p) is an operator corresponding to the transfer function G(s) and η(t) is a continuous

time disturbance. In this indirect approach, the input to the plant is a unit step and the output

is the step response resulting from stage 1 as discussed in previous section. Thus,

y(ti) = ĝ(ti) = g(ti) + η(ti) (5.36)

It can be regarded this way as at the sampling instant ti, of the step response are equivalent in

both continuous time and discrete time cases, and the disturbance η(ti) is the error contained

in the estimated step response. The disturbance is a discrete sequence with known statistical

properties that

E[η(ti)] = 0

E[η(ti)2] = δ(i)2

If δ(i) is approximately constant for all i, the discrete disturbance sequence is a near white noise

in the discrete time. In general, η(·) has a “flat” spectrum in the low and medium frequency

region and its amplitude is relatively small [182]. In the second stage of the identification

procedure, the subspace method with the adoption of Laguerre filter and Instrumental Variable

methods discussed in Chapter 3 will be used again here. The overall identification process can

be referred as in Figure 5.2.
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Figure 5.2: 2-stage identification procedure

5.5 Simulation and Experimental Examples

In this section the results from the 2-stage identification will be demonstrated. The system

under investigation is divided into two categories: A simulated system and the actual magnetic

bearing apparatus. As for the simulated system, a simple stable system is generated according

to the following transfer function

G(s) =
1

(s + 1)(s + 3)

The GRBS is used to generate the input signal, u(t). At sampling time of ∆t = 0.05s, about

Nm = 3000 set of output signal y(t) is generated. To see the difference when the system is

corrupted with measurement noise, v(t), three sets of noise are added to the system. The added

sets of noise are labelled according to the Signal to Noise Ratio (SNR); 25dB, 50dB and 75dB

SNR. The output signal of these systems are shown in Figure (5.3). The step response estimates

with confidence bounds obtained from the 1-stage identification can be seen as in Figure (5.4).
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Figure 5.3: The output system for different noise level
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Figure 5.4: The step response estimate with confidence bounds - simulated data
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Figure 5.5: The MB input-output systems x− z plane

For the real magnetic bearing data systems, the plot of input and output signal obtained from

the x− z of left and right plane and the y − z of left and right plane can be seen as in Figures

(5.5) and (5.6) respectively. The step response estimates with confidence bounds obtained from

the 1-stage identification of MB systems can be seen as in Figure (5.7). From the step response

plots, it shows that the confidence bounds are relatively wider, especially in the steady state

parts of the 25dB step response plot. This indicates that the plant disturbances have frequency

contents that are concentrated in the low frequency regions.

Upon obtaining the continuous time step response data from the first stage of the identification,

the second stage of the identification takes part in which the state-space model is developed

based on the subspace methods. During this stage, the input signal u(t) is a unit step input

signal and the output signal y(t) is based on the step response output data from first stage.

The model is developed for both SISO and MIMO systems. The performance capability of the

proposed model is further demonstrated by measuring its accuracy based on VAF and MSE

calculation.
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Figure 5.6: The MB input-output systems y − z plane
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Figure 5.7: The step response estimate with confidence bounds - MB data
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Table 5.1: Model configuration - SISO simulated data

Symbol Description Noise-free 75dB SNR 50dB SNR 25dB SNR

p Laguarre parameter 2 2 2 2

i Expanding observability matrix 10 10 10 10

n Model order 2 2 2 2

∆t Sampling time 0.05 0.05 0.05 0.05

N Number of sampled data 3000 3000 3000 3000

Ns Number of step response data 300 300 300 300

5.5.1 Single Input Single Output System

Observation over single input single output system is divided into two examples: A simulated

data and a real MB data.

Example 1 - Simulated Data

The parameter used in developing the model can be referred as in Table 5.1. The step responses

of the continuous time models are compared to their respective responses as in Figure (5.8).

From the step response plot of each systems, it shows that the subspace model can identify the

step response data successfully. The VAF percentage and MSE calculation can be referred in

Table 5.2. From this calculation, it shows that even though the actual data has different noise

level, after running through the first identification stage, the subspace model can identify the

systems with approximately the same accuracy.
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Figure 5.8: System (dotted) & model (solid) step response - SISO simulated data

Table 5.2: VAF & MSE - SISO simulated data

Description Noise-free 75dB SNR 50dB SNR 25dB SNR

VAF 99.8283% 99.8282% 99.8281% 99.8219%

MSE 1.1631× 10−5 1.1623× 10−5 1.1595× 10−5 1.1976× 10−5
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The estimated (A,B, C, D) system matrices are given as

Ânf =


 −0.7288 −3.1316

0.1620 −3.0249


 ; B̂nf =


 −9.1469

−3.2984


× 103; Ĉnf =


 −0.1415

0.3986



>

× 103; D̂nf = [0];

Â75dB =


 −0.7300 −3.1287

0.1626 −3.0128


 ; B̂75dB =


 6.5746

0.9635


× 103; Ĉ75dB =


 0.0002

−0.0014



>

; D̂75dB = [0];

Â50dB =


 −0.7328 3.1445

−0.1647 −3.0249


 ; B̂50dB =


 −1.0399

0.1913


× 103; Ĉ50dB =


 −0.0011

−0.0062



>

; D̂50dB = [0];

Â25dB =


 −0.7352 3.8288

−0.1889 −4.2267


 ; B̂25dB =


 −223.3228

24.8873


 ; Ĉ25dB =


 −0.0050

−0.0497



>

; D̂25dB = [0];

The eigenvalues are obtained as

eig(Ânf ) =


 −0.9764

−2.7773


 ; eig(Â75dB) =


 −0.9802

−2.7625


 ;

eig(Â50dB) =


 −0.9869

−2.7708


 ; eig(Â25dB) =


 −0.9564

−4.0055


 ;

Next, the comparison is made as to see any significant improvement in system identification by

using fresh measured data direct apply to the subspace model and by using the estimated data

obtained from first stage of 2-stage identification method. Since the same subspace identification

algorithms are used, the parameters involved are equally set for this comparison.

The result of the comparison can be seen in Table 5.3. From this table, first obvious improve-

ment is on number of sampled data, in which it has been compressed from 3000 to 300 data.

Second improvement can be observed as the noise level adding to the system is increased. This

will degrade the performance of the subspace model in identifying the systems. However, the

performance remain almost the same for the 2-stage identification, as the noise effects in the

systems have been cleared during the first stage.

Example 2 - MB Data

For the SISO system identification, the four sets of MB data will be identified individually. The

parameter used in developing the model can be referred as in Table 5.4. The step responses of
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Table 5.3: Performance comparison - SISO simulated data

Symbol Description Direct Identification 2-stage Identification

p Laguarre parameter 2 2

i Expanding observability matrix 10 10

n Model order 2 2

∆t Sampling time 0.05 0.05

N Number of sampled data 3000 300

VAF for noise-free data 99.95% 99.83%

VAF for 75dB data 99.89% 99.83%

VAF for 50dB data 99.23% 99.83%

VAF for 25dB data 90.74% 99.82%

Table 5.4: Model configuration - SISO MB data

Symbol Description xL xR yL yR

p Laguarre parameter 60 60 100 60

i Expanding observability matrix 10 10 10 10

n Model order 8 8 8 8

∆t Sampling time 0.002 0.002 0.002 0.002

N Number of sampled data 1000 1000 1000 1000

Ns Number of step response data 300 300 300 300
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Figure 5.9: System (dotted) & model (solid) step response - SISO MB data

the continuous time models are compared to their respective responses as in Figure (5.9). From

this figure, it shows that the subspace model can identify the step response for each of the MB

systems closely.

The VAF percentage and MSE calculation can be referred in Table 5.5. These calculation

also give low MSE and good performance of accuracy according to VAF. The example of the

Table 5.5: VAF & MSE - SISO MB data

Description yxL yxR yyL yyR

VAF 98.8437% 99.6518% 99.3985% 98.7117%

MSE 0.0030 0.0035 0.0027 0.0041
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estimated (A,B, C, D) system matrices for the xL data are given as

ÂxL =




−20.7652 36.3213 −42.0148 24.7938 3.8734 −46.3922 13.2676 106.3437

−15.4431 −5.1447 59.0697 −16.6568 −4.9293 32.1206 −4.7140 −53.3310

−4.5090 −36.5395 −24.2739 23.3503 1.2529 −56.9782 15.1193 106.0079

1.9955 3.8430 3.9400 −7.6038 11.5437 46.1725 −12.7770 −56.0640

1.5582 1.6780 6.9961 −16.6960 0.3012 −31.4479 −8.8977 −16.9652

−1.7037 −5.5373 −6.8972 −7.5324 31.6759 −13.8510 33.5567 146.2488

−0.4849 −1.4467 −1.9126 5.3835 6.5553 −15.6471 −1.7769 −57.8724

0.9421 1.7715 4.2056 −5.5019 −3.0691 5.8146 28.3058 −122.8657




B̂xL =




−651.0776

−324.7180

−301.4940

−418.6805

45.4888

138.6734

−135.1435

−82.8360




; ĈxL =




−0.3230

−0.2925

1.5299

−1.2331

1.1892

−5.6717

−0.4905

−4.4514




>

; D̂xL = [0];

The eigenvalue is given as

eig(ÂxL) =




−1.3619

−0.0773± 0.5590j

−0.1514

−0.1423± 0.2506j

−0.0037± 0.4521j




× 102

Next, the comparison is made based on direct open-loop subspace identification, closed-loop

subspace identification and the 2-stage identification. Results from this analysis can be referred

in Table 5.6. From this table, the 2-stage identification has given better performance in com-

parison with others. The analysis also shows that the subspace model becomes more stable and

is not so sensitive towards the change of the design parameter p and i when is identifying the

step response data. This is probably due to the “clean” step response data that make the model

identification run successfully.
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Table 5.6: Performance comparison - SISO MB data

Description Direct Closed-loop Closed-loop 2-stage

Identification CEIV model CREF model Identification

Sampling time, ∆t 0.002 0.002 0.002 0.002

Number of data, N 1000 1000 1000 300

VAF for xL data [p=60,i=10,n=8] [p=100,i=10,n=6] [p=230,i=10,n=6] [p=60,i=10,n=8]

86.66% 83.57% 86.21% 98.84%

VAF for xR data [p=230,i=10,n=8] [p=100,i=10,n=6] [p=230,i=10,n=6] [p=60,i=10,n=8]

91.72% 90.16% 91.71% 99.65%

VAF for yL data [p=230,i=10,n=8] [p=260,i=10,n=6] [p=230,i=10,n=6] [p=100,i=10,n=8]

87.05% 85.12% 87.16% 99.40%

VAF for yR data [p=100,i=10,n=8] [p=260,i=10,n=6] [p=230,i=10,n=6] [p=60,i=10,n=8]

92.80% 81.12% 89.28% 98.71%

5.5.2 Multi Input Multi Output Systems

Observation over multi input multi output systems are divided into three examples: A two-input-

two-output simulated data, a two-input-two-output MB data and a four-input-four-output MB

data.

Example 1 - 2 in 2 out simulated data

The two-input-two-output systems are defined by the following configuration


 y1(t)

y2(t)


 =




1
s+1

1
s+3

1
s+2

1
s+1





 u1(t)

u2(t)




At sampling time, ∆t = 0.01s, about N = 4000 data is sampled. The input and output data

with different noise level are then processed in the first stage to obtain about Ns = 400 step

response data. The parameter used in developing the model can be referred as in Table 5.7.

The step responses of the continuous time models are compared to their respective responses
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Table 5.7: Model configuration - MIMO simulated data

Symbol Description Noise-free 75dB SNR 50dB SNR 25dB SNR

p Laguarre parameter 16 14 16 14

i Expanding observability matrix 10 10 10 10

n Model order 4 4 4 4

∆t Sampling time 0.01 0.01 0.01 0.01

N Number of sampled data 4000 4000 4000 4000

Ns Number of step response data 400 400 400 400

Table 5.8: VAF & MSE - MIMO simulated data

Description Noise-free 75dB SNR 50dB SNR 25dB SNR

VAF - y1 99.7677% 99.5581% 99.2758% 99.6785%

VAF - y2 99.9263% 99.5167% 99.6985% 99.3817%

MSE - y1 4.5943× 10−4 4.5532× 10−4 0.0011 0.0029

MSE - y2 1.6507× 10−4 6.3879× 10−4 9.2808× 10−4 0.0019

as in Figure (5.10). The results show very good performance for all the data tested. The VAF

percentage and MSE calculation can be referred in Table 5.8. These calculations also give low

MSE and good level of accuracy.
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Figure 5.10: System (dashed) & model (solid) step response - MIMO simulated data
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The example of estimated (A,B, C,D) system matrices for the identification of 50dB SNR data

are given by

Â50dB =




−1.0914 1.6321 −3.7023 0.2767

0.0200 −0.4697 4.4103 2.6245

0.0242 −0.6541 −1.4724 9.4458

−0.0147 −0.8310 −9.7561 0.9137




;

B̂50dB =




−3.3168 −3.3168

0.1123 0.1123

−0.0089 −0.0089

−0.0463 −0.0463




; Ĉ50dB =




−0.2635 −0.2856

0.6555 −0.8424

0.6217 −0.6924

−0.0548 0.0017




>

; D̂50dB =


 0 0

0 0


 ;

The eigenvalue is given by

eig(Â50dB) =




−0.1996± 9.7934j

−1.1001

−0.6204




Example 2 - 2 in 2 out MB data

The two inputs two outputs MB systems are defined by the following configuration


 yxL(t)

yxR(t)


 =


 G11 G12

G21 G22





 uxL(t)

uxR(t)




and 
 yyL(t)

yyR(t)


 =


 G11 G12

G21 G22





 uyL(t)

uyR(t)




The system identification for x− z plane is treated separately from y− z plane. The parameter

used in developing the model can be referred as in Table 5.9. The step responses of the continuous

time models are compared to their respective response as in Figure (5.11). From this figure, it

shows that for the x− z plane data and y − z plane data, the subspace models are still able to

identify the step response data closely. The VAF and MSE calculation also give good percentage

and low MSE value. The result from the calculation can be referred in Table 5.10.
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Table 5.9: Model configuration - 2in2out MB data

Symbol Description x− z y − z

p Laguarre parameter 440 440

i Expanding observability matrix 10 10

n Model order 8 8

∆t Sampling time 0.002 0.002

N Number of sampled data 1000 1000

Ns Number of step response data 300 300

Table 5.10: VAF & MSE - 2in2out MB data

Description yxL yxR yyL yyR

VAF 90.8608% 95.5858% 97.5811% 94.8730%

MSE 0.0242 0.0378 0.0107 0.0158

The example of the estimated (A,B,C, D) system matrices for x− z plane data are obtained as

Âxz =




−22.4907 94.4261 144.8680 −100.3611 158.0706 −15.0460 −60.5002 −86.5977

−5.9929 −76.7282 −112.5933 265.0370 −282.2011 95.8136 46.7170 241.1249

1.0407 −104.4179 −242.3469 448.9313 −561.0103 −42.1161 369.0528 107.5494

−1.6883 −50.7986 −142.2114 −119.8108 340.4446 −74.5834 −86.5572 −266.8047

−3.3409 39.7773 161.1324 23.1792 −195.4469 49.5041 105.6253 328.8940

−0.4993 −19.4826 −39.3356 5.3463 30.8667 −65.7358 276.6391 −325.4345

0.7978 −14.4095 −49.1758 11.2010 23.5728 −14.9632 −209.7371 463.8943

0.0846 −19.1350 −4.2794 18.8740 −17.0796 89.6570 −209.8264 −232.1297




;
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Figure 5.11: System (dotted) & model (solid) step response - 2in2out MB data

B̂xz =




100.4897 100.4897

5.9133 5.9133

−370.2224 −370.2224

−142.5527 −142.5527

118.0908 118.0908

−297.7573 −297.7573

160.3891 160.3891

163.6160 163.6160




; Ĉxz =




−0.4309 −2.1302

−1.8894 −1.1540

0.9752 −1.1796

−1.9071 −4.9300

−4.2980 −3.9139

5.9112 2.5031

−3.3507 2.1924

−3.4569 −0.3461




>

; D̂xz =


 0 0

0 0


 ;

The eigenvalue is given as

eig(Âxz) =




−3.2756± 4.7399j

−2.3340± 3.8535j

−0.0867± 0.4146j

−0.1258± 0.0773j



× 102
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Table 5.11: Model configuration - 4in4out MB data

Symbol Description Value

p Laguarre parameter 640

i Expanding observability matrix 10

n Model order 8

∆t Sampling time 0.002

N Number of sampled data 1000

Ns Number of step response data 300

Example 3 - 4 in 4 out MB data

The four inputs four outputs MB systems are defined by the following configuration




yxL(t)

yxR(t)

yyL(t)

yyR(t)




=




G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44







uxL(t)

uxR(t)

uyL(t)

uyR(t)




The parameter used in developing the model can be referred as in Table 5.11. The step responses

of the continuous time models are compared to their respective response as in Figure (5.12).

For the four inputs four outputs systems, it shows that the subspace model is still able to

identify the system closely. The VAF percentage and MSE calculation can be referred in Table

5.12. From this multi-variable identification results, in which the model has been developed to

identify for up to four inputs and outputs signals, represent the strong contribution of the first

stage identification in diminishing the noise effects that occurred in the data systems. Thus,

the subspace identification is able to develop a state-space model with high chances of good

performance and excellent accuracy.
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Table 5.12: VAF & MSE - 4in4out MB data

Description yxL yxR yyL yyR

VAF 93.8496% 97.9419% 93.1036% 87.3999%

MSE 0.0153 0.0178 0.0304 0.0389

The estimated (A,B, C, D) system matrices are given as

Â =




−1.6882 1.2788 −2.5298 18.0770 −21.5398 33.6565 22.0558 −114.5656

−19.7703 −26.0653 −200.5672 145.5981 −61.1684 106.7317 −93.1105 −2.1850

−3.1778 1.5481 −316.2057 674.6397 −271.4468 420.5493 −264.7590 79.9086

1.6769 1.7037 −151.5716 −199.2238 143.7993 −260.4409 217.4410 −41.3422

2.6859 5.7584 108.5820 −2.8537 −44.7762 48.4710 −67.6132 99.5774

−1.3526 −4.0713 −119.3756 2.7179 53.6197 −140.4750 −146.5774 −139.0323

−0.4252 1.7930 52.1407 −2.6976 −12.0736 2.8736 −240.0895 −272.2605

−1.8397 −3.8484 −16.1018 14.9791 1.4585 103.1877 249.9907 −249.1268




;

B̂ =




−50.5297 −50.5297 −50.5297 −50.5297

−12.8267 −12.8267 −12.8267 −12.8267

−11.3887 −11.3887 −11.3887 −11.3887

21.5039 21.5039 21.5039 21.5039

38.6656 38.6656 38.6656 38.6656

−81.6739 −81.6739 −81.6739 −81.6739

−156.9741 −156.9741 −156.9741 −156.9741

−90.0863 −90.0863 −90.0863 −90.0863




;

Ĉ =




−0.6116 −0.5839 0.8383 2.4955 3.9557 −0.0529 0.9094 0.7470

−2.0006 −2.4017 1.2398 2.0675 −0.7498 −1.4914 1.6280 −0.3750

5.2039 −1.7414 0.6871 1.3952 −0.5589 −0.5394 0.6183 −2.2174

0.9092 −1.3441 1.1632 2.9194 −1.2504 −3.7543 3.2109 −1.5084




;

D̂ =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




;

161



5.5 Simulation and Experimental Examples

The eigenvalue is given by

eig(Â) =




−3.2678± 4.7439j

−2.5695± 2.9351j

−0.2075± 0.2615j

−0.0165

−0.0704
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Figure 5.12: System (dotted) & model (solid) step response - 4in4out MB data
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5.6 Summary

5.6 Summary

In this chapter the 2-stage system identification is performed. The first stage includes a process

of compressing the data and perform a non-parametric identification of the system step response

by using the FSF filters approach. The second stage involves a parametric model fitting of the

identified step response by using the subspace methods. The contribution of this research is

to combine these two approaches in a novel way and perform the indirect continuous time

identification method. This method has been evaluated on identifying a simulated data system

and an experimental data system from magnetic bearing apparatus. The performance results

based on SISO and multi-variable systems have shown that this proposed identification method

is capable of identifying the systems closely. The role play by the first stage identification has

contributed to huge improvement in diminishing the noise that appear in the system. By running

the first stage identification as well, the closed-loop data can next be treated using open-loop

subspace identification method in which the problem of biased estimation (if direct identification

is applied) is finally solved.
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Chapter 6

Continuous Time Identification using

Frequency Response Data

6.1 Introduction

This chapter discusses on continuous time state space model identification using subspace ap-

proach with respect to frequency response data. Subspace-based identification methods in the

frequency domain have been proposed by McKelvey and colleagues in [107, 109], in addition to

the work by De Moor and Vandewalle [120], and Liu et.al [97]. In McKelvey et al. [109], a

bilinear transformation was used in deriving a continuous time state-space model of the form
s−1
s+1 . In Haverkamp et al. [59], a Laguerre network was proposed in subspace continuous time

system identification whereby the scaling factor in the Laguerre network plays a role in the

model estimation. This work was further extended by Yang [188] to subspace continuous time

using frequency response data.

The strategy of implementing the subspace methods with additional w−operator has improved

system performance and stability, as well as providing better conditioning in regards to all the

data matrices employed in the identification algorithm. In addition, the instrumental variable

method is adopted to the algorithm with the goal to cope with measurement noise. It has

shown a successful result in identifying a single input single output system based on frequency

response data. In this chapter, the proposed algorithm by Yang [188] is further extended for
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6.2 Subspace Identification Approach in Frequency Domain

multi-input-multi-output systems. Perhaps the subspace frequency response approach is not new

in terms of methodology. However, the use of the subspace method with additional operator and

strategy to identify the continuous time state-space model of MIMO magnetic bearing system will

demonstrate another new real application for the methodology of subspace frequency response

methods.

This chapter is an expandable and detail elaborated version of two published papers by the

author in [115,119]. The Chapter starts with the subspace identification approach in frequency

domain form. In Section 6.2 the w−operator method, instrumental variable method and other

approaches are explained. As the aim here is to apply the subspace identification approach to

the MB systems, therefore Section 6.3 demonstrates on how to obtain frequency response esti-

mates using FSF filters. This procedure is necessary in order to perform unbiased estimation to

the closed-loop MB data. To evaluate the performance capability of the proposed identification

algorithm, an analysis on SISO and MIMO data system is presented in Section 6.4. The per-

formance is measured by identifying the models using two sets of data: Noise-added data and a

real data from MB systems. Finally, Section 6.5 concludes the chapter.

6.2 Subspace Identification Approach in Frequency Domain

Consider the state-space model of the continuous time system in the Laplace domain

sX(s) = AX(s) + BU(s)

Y (s) = CX(s) + DU(s) (6.1)

where U(s) ∈ Rm, Y (s) ∈ Rl, X(s) ∈ Rn are the Laplace transforms of the system inputs,

outputs and state variables respectively, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m

are the system matrices. The transfer function can be expressed as

G(s) = C(sIn −A)−1B + D (6.2)

Define U(s) = Im (as Im denotes m×m identity matrix), Equation (6.1) can be rewritten as

sX̂(s) = AX̂(s) + BIm

G(s) = CX̂(s) + DIm (6.3)
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6.2 Subspace Identification Approach in Frequency Domain

where X̂(s) is an n×m matrix in which the k-th column corresponds to the state variable when

the k-th impulse input is activated. For a single input and single output system with the input

signal being a unit impulse, therefore U(s) = Im = 1. Traditionally, the N frequency response

samples are measured at frequencies ωk(k = 1, . . . , N) for each individual element giving the

frequency response data matrices

Gm(jωk) = G(jωk) + V (jωk), k = 1, . . . , N (6.4)

where V (jωk) is a stochastic noise of zero mean.

6.2.1 w-operator and Laguerre filters

In similarity with the continuous time system identification using time domain data, the Laguerre

filters will be adopted again in the frequency response system identification. Thus, define again

the w−operator corresponds to the all-pass filter as

w(s) =
s− p

s + p
(6.5)

where

w =
s− p

s + p

w(s + p) = s− p

ws + wp = s− p

ws− s = −p− wp

−s(1− w) = −p(1 + w)

s = p
1 + w

1− w

The notation of Laguerre filters in the form of w−operator is given by

Lσ(s) = w0(s)wσ(s), (σ = 1, . . . , i− 1) (6.6)

where

w0 =
√

2p

s + p

p > 0 is a design parameter to ensure that the filters are stable. With the all-pass filter described

by Equation (6.5), a bank of Laguerre filters can be generated by multiplying the first order
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6.2 Subspace Identification Approach in Frequency Domain

of Laguerre filter repetitively with the all-pass filter. In the frequency domain, the w-operator

with respect to the Laguerre filter bank can be expressed as

wσ(jω) =
√

2p
(jω − p)σ

(jω + p)σ+1
, (σ = 0, 1, . . . , i− 1) (6.7)

With w−operator been described as in Equation (6.5), now, substitute s with p1+w
1−w in the state

equation of (6.3) gives

p
1 + w

1− w
X̂(s) = AX̂(s) + BIm

p(1 + w)X̂(s) = A(1− w)X̂(s) + B(1− w)Im

pX̂(s) + pwX̂(s) = AX̂(s)−AwX̂(s) + B(1− w)Im

pwX̂(s) + AwX̂(s) = AX̂(s)− pX̂(s) + B(1− w)Im

w(A + pIn)X̂(s) = (A− pIn)X̂(s) + B(1− w)Im

wX̂(s) = (A + pIn)−1(A− pIn)X̂(s) + (A + pIn)−1B(1− w)Im

Using Equation (6.5),

1− w = 1−
(

s− p

s + p

)

=
s + p− s + p

s + p

=
2p

s + p

Substituting w0 =
√

2p
s+p into the solution gives

1− w =
2p

s + p

=
2p
√

2p
w0

=
√

2pw0

Therefore now the state equation becomes

wX̂(s) = (A + pIn)−1(A− pIn)X̂(s) +
√

2p(A + pIn)−1Bw0Im

wX̂(s) = AwX̂(s) + Bww0Im

Thus, the Aw and Bw are obtained as

Aw = (A + pIn)−1(A− pIn)

Bw =
√

2p(A + pIn)−1B
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6.2 Subspace Identification Approach in Frequency Domain

Then, solve the output of state equation (6.3) as

(1− w)Gm(s) = C(1− w)X̂(s) + D(1− w)Im + (1− w)V (s)

= CX̂(s)− CwX̂(s) + D(1− w)Im + (1− w)V (s)

= CX̂(s)− C[AwX̂(s) + Bww0Im] + D(1− w)Im + (1− w)V (s)

= CX̂(s)− CAwX̂(s)− CBww0Im + D(1− w)Im + (1− w)V (s)
√

2pw0Gm(s) = CX̂(s)− CAwX̂(s)− CBww0Im +
√

2pDw0Im +
√

2pw0V (s)

= (C − CAw)X̂(s) + (
√

2pD − CBw)w0Im +
√

2pw0V (s)

w0Gm(s) =
1√
2p

(C − CAw)X̂(s) +
1√
2p

(
√

2pD − CBw)w0Im + w0V (s)

= CwX̂(s) + Dww0Im + w0V (s)

which results in

Cw =
1√
2p

(C − CAw)

=
1√
2p

(C − C(A + pIn)−1(A− pIn))

=
1√
2p

(C(A + pIn)−1(A + pIn)− C(A + pIn)−1(A− pIn))

=
1√
2p

(2pC(A + pIn)−1)

=
√

2pC(A + pIn)−1

and,

Dw =
1√
2p

(
√

2pD − CBw)

=
1√
2p

(
√

2pD − C
√

2p(A + pIn)−1B)

= D − C(A + pIn)−1B

The corresponding state-space models therefore can be transformed into the following form

wX̂(s) = AwX̂(s) + Bww0Im (6.8)

w0Gm(s) = CwX̂(s) + Dww0Im + w0V (s) (6.9)

where

Aw = (A + pIn)−1(A− pIn)

Bw =
√

2p(A + pIn)−1B

Cw =
√

2pC(A + pIn)−1

Dw = D − C(A + pIn)−1B (6.10)
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6.2 Subspace Identification Approach in Frequency Domain

and

A = p(In −Aw)−1(In + Aw)

B =
√

2p(In −Aw)−1Bw

C =
√

2pCw(In −Aw)−1

D = Dw + Cw(In −Aw)−1Bw (6.11)

In frequency domain, Equation (6.8-6.9) with the w−operator model can be expressed as

w(jω)X̂w(jω) = AwX̂w(jω) + Bww0(jω)Im

w0(jω)Gm(jω) = CwX̂w(jω) + Dww0(jω)Im + w0(jω)V (jω) (6.12)

6.2.2 Constructing Data Matrices

Based on the model description given in Equation (6.12), data equations are constructed as

w0(jω)Gm(jω) = CwX̂w(jω) + Dww0(jω)Im + w0(jω)V (jω)

w0(jω)w(jω)Gm(jω) = Cww(jω)X̂w(jω) + Dww0(jω)w(jω)Im + w0(jω)w(jω)V (jω)

= Cw[AwX̂w(jω) + Bww0(jω)Im] + Dww0(jω)w(jω)Im

+ w0(jω)w(jω)V (jω)

= CwAwX̂w(jω) + CwBww0(jω)Im + Dww0(jω)w(jω)Im

+ w0(jω)w(jω)V (jω)

w0(jω)w2(jω)Gm(jω) = CwAww(jω)X̂w(jω) + CwBww0(jω)w(jω)Im

+ Dww0(jω)w2(jω)Im + w0(jω)w2(jω)V (jω)

= CwAw[AwX̂w(jω) + Bww0(jω)Im] + CwBww0(jω)w(jω)Im

+ Dww0(jω)w2(jω)Im + w0(jω)w2(jω)V (jω)

= CwA2
w(jω)X̂w(jω) + CwAwBww0(jω)Im

+ CwBww0(jω)w(jω)Im + Dww0(jω)w2(jω)Im

+ w0(jω)w2(jω)V (jω)
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6.2 Subspace Identification Approach in Frequency Domain

By repetitively multiplying with w, the impulse response is related to the measured frequency

response as follows



w0(jω)Gf
m(jω)

w1(jω)Gf
m(jω)

w2(jω)Gf
m(jω)

...

wi−1(jω)Gf
m(jω)




= OiX̂w(jω) + Γi




w0(jω)Im

w1(jω)Im

w2(jω)Im

...

wi−1(jω)Im




+




w0(jω)V f (jω)

w1(jω)V f (jω)

w2(jω)V f (jω)
...

wi−1(jω)V f (jω)




(6.13)

where the extended observability matrix, Oi is defined as

Oi =




Cw

CwAw

CwA2
w

...

CwAi−1
w




(6.14)

And the Toeplitz matrix, Γi is defined as

Γi =




Dw 0 0 . . . 0

CwBw Dw 0 . . . 0

CwAwBw CwBw Dw . . . 0
...

. . . . . . . . .
...

CwAi−2
w Bw . . . CwAwBw CwBw Dw




(6.15)

and i is the number of term for the observability matrix. Given frequency response data at

ωk(k = 1, . . . , N), expanding the row matrix will produce the extended model formulation as

Gf
i,N = OiX̂wN + ΓiΩ

f
i,N + V f

i,N (6.16)

where

Gf
i,N =




w0(jω1)G
f
m(jω1) . . . w0(jωN )Gf

m(jωN )

w1(jω1)G
f
m(jω1) . . . w1(jωN )Gf

m(jωN )

w2(jω1)G
f
m(jω1) . . . w2(jωN )Gf

m(jωN )
...

...
...

wi−1(jω1)G
f
m(jω1) . . . wi−1(jωN )Gf

m(jωN )




(6.17)

X̂wN =
[

X̂w(jω1) X̂w(jω2) . . . X̂w(jωN )
]

(6.18)
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6.2 Subspace Identification Approach in Frequency Domain

Ωf
i,N =




w0(jω1)Im . . . w0(jωN )Im

w1(jω1)Im . . . w1(jωN )Im

w2(jω1)Im . . . w2(jωN )Im

...
...

...

wi−1(jω1)Im . . . wi−1(jωN )Im




(6.19)

V f
i,N =




w0(jω1)V f (jω1) . . . w0(jωN )V f (jωN )

w1(jω1)V f (jω1) . . . w1(jωN )V f (jωN )

w2(jω1)V f (jω1) . . . w2(jωN )V f (jωN )
...

...
...

wi−1(jω1)V f (jω1) . . . wi−1(jωN )V f (jωN )




(6.20)

6.2.3 State-space Model Identification

Consider now a problem to estimate the system matrices A, B, C and D in the state-space

model. With the assumption that the state-space representation is a minimal realization, the

transfer function and state-space model of the system defined in the form of w−operator as

Gw(w) = Cw(wIn −Aw)−1Bw + Dw (6.21)

wxw(t) = Awxw(t) + Bwu(t) (6.22)

y(t) = Cwxw(t) + Dwu(t) (6.23)

The identification algorithm is therefore developed to consistently estimate:

• The system order, n.

• The extended observability matrix, Oi based on the availability of a transfer function data,

Gm(jω).

• The Aw and Cw matrices from the extended observability matrix, Oi.

Oi =




Cw

CwAw

...

CwAi−1
w
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6.2 Subspace Identification Approach in Frequency Domain

• The matrices Bw and Dw with the knowledge of Aw and Cw using a least squares solution

from

Gm( jω Bw, Dw ) = Cw(w(jω)In −Aw)−1BwIm + DwIm

• The A, B, C and D matrices from Aw, Bw, Cw and Dw.

Refer back to the Equation (6.16) of

Gf
i,N = OiX̂wN + ΓiΩ

f
i,N + V f

i,N

The next step is to isolate the Oi term using known data structures. Before doing so, the data

equation notation is simplified for easier recognition and is defined as

G = OiX + ΓiΩ + V (6.24)

The second term on the right-hand side can be removed by introducing a projection on the null

space of Ω which is defined as

Π⊥Ω> = I −Ω>(ΩΩ>)−1Ω (6.25)

where I is the identity matrix. If ΩΩ> is singular, then the Moore-Penrose pseudo-inverse of

Ω> (denotes as (Ω>)†) can be taken. Mathematically, it is equivalent to

Υ† = (Υ>Υ)−1Υ>

The pseudo-inverse is computed recursively using singular value decomposition (SVD) describes

as [53]

Υ = USV >

Υ† = V S†U>

Therefore equation (6.25) can be written as

Π⊥Ω> = I −Ω>(Ω>)†

Multiply this projection on Ω gives

ΩΠ⊥Ω> = Ω− (ΩΩ>(ΩΩ>)−1)Ω

= Ω− IΩ

= 0
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Thus, by multiplying Equation (6.25) to both side of Equation (6.24), the term Γi will be

removed as ΩΠ⊥
Ω> = 0. Therefore, the data equation reduces to

GΠ⊥Ω> = OiXΠ⊥Ω> + VΠ⊥Ω> (6.26)

For a general case where noise effect to the system can be omitted (V = 0), the data equation

of (6.26) is reduced to

GΠ⊥Ω> = OiXΠ⊥Ω> (6.27)

From the above equation, the identification goes as according to MOESP method that can

be referred in [172, 175]. However, in many practical systems, the effect of noise either from

measurement or process noise is somehow unavoidable. Therefore, a new mechanism needs to

be implemented or improved as to overcome those disturbances.

6.2.4 Instrumental Variable Method

The instrumental variable method is used here to handle the measurement noise that may exist

in the system. Defining instrumental variable matrix as P (jω), Equation (6.16) can be rewritten

as
1
N

Gf
i,N (P f

β,N )> =
1
N
OiX̂wN (P f

β,N )> +
1
N

ΓiΩ
f
i,N (P f

β,N )> +
1
N

V f
i,N (P f

β,N )> (6.28)

where

P f
β,N =




wi(jω1)Im . . . wi(jωN )Im

wi+1(jω1)Im . . . wi+1(jωN )Im

wi+2(jω1)Im . . . wi+2(jωN )Im

...
...

...

wi+β−1(jω1)Im . . . wi+β−1(jωN )Im




(6.29)

Again, multiplying the projection matrix, Π⊥
Ω> to Equation (6.28) will give the following expres-

sion
1
N

Gf
i,NΠ⊥Ω>(P f

β,N )> =
1
N
OiX̂

f
wNΠ⊥Ω>(P f

β,N )> (6.30)

And it can give consistent estimation if it satisfies the following conditions

lim
N→∞

1
N

V f
i,NΠ⊥Ω>(P f

β,N )> = 0 (6.31)

rank( lim
N→∞

1
N
OiX̂wNΠ⊥Ω>(P f

β,N )>) = n (6.32)
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Up to this far, the formulation can now be used to model the systems. Nevertheless, the

algorithm can also be implemented by performing the linear quadratic (LQ) factorization and

singular value decomposition (SVD) to the working matrices. Here, the recursive quadratic (RQ)

factorization using the modified Gram-Schmidt algorithm is used.

6.2.5 Identification Algorithm

Let wi(jω) be an operator developed from Laguerre filters (p > 0). Let Gm(jω) be the measured

frequency response data described in Equation (6.4). For N frequency response samples mea-

sured at frequencies ωk(k = 1, . . . , N), construct Gf
i,N , Ωf

i,N and P f
β,N according to Equations

(6.17), (6.19) and (6.29) respectively.

Consider the RQ factorization



Ωf
i,N

Gf
i,N

P f
β,N


 =




R11 0 0

R21 R22 0

R31 R32 R33







Q1

Q2

Q3


 (6.33)

Then the following holds:

lim
N→∞

1√
N

R22R
>
32 = lim

N→∞
1√
N
OiX̂wN (P f

β,N )>


 Q2

Q3



>

(6.34)

Proof:

From the RQ factorization of Equation (6.33), we have

lim
N→∞

1√
N

R22R
>
32 = lim

N→∞
1√
N

Gf
i,N (P f

β,N )>


 Q2

Q3



>

(6.35)

From Equation (6.28) we have

lim
N→∞

1√
N

Gf
i,N (P f

β,N )>


 Q2

Q3



>

= lim
N→∞

1√
N
OiX̂wN (P f

β,N )>


 Q2

Q3



>

+ lim
N→∞

1√
N

ΓiΩ
f
i,N (P f

β,N )>


 Q2

Q3



>

+ lim
N→∞

1√
N

V f
i,N (P f

β,N )>


 Q2

Q3



>

(6.36)
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As Ωf
i,N = R11Q1, the second term on the right hand side goes to zero as Q1


 Q2

Q3



>

= 0

lim
N→∞

1√
N

ΓiΩ
f
i,N (P f

β,N )>


 Q2

Q3



>

= 0

Next is to prove that the third term on the right hand side also goes to zero as N goes to infinity.

lim
N→∞

1√
N

V f
i,NQ>

2 = 0 (6.37)

lim
N→∞

1√
N

V f
i,NQ>

3 = 0 (6.38)

Observe the first row of the RQ factorization leads to

lim
N→∞

1
N

Ωf
i,N (V f

i,N )> = 0

lim
N→∞

1
N

R11Q1(V
f
i,N )> = 0

lim
N→∞

1√
N

Q1(V
f
i,N )> = 0

in which Equations (6.37) and (6.38) goes to zero as Q1


 Q2

Q3



>

= 0. Then, observe the second

row of the RQ factorization leads to

lim
N→∞

1
N

Gf
i,N (V f

i,N )> = 0

lim
N→∞

1
N

(R21Q1 + R22Q2)(V
f
i,N )> = 0

lim
N→∞

1
N

R22Q2(V
f
i,N )> = 0

lim
N→∞

1√
N

Q2(V
f
i,N )> = 0

which is the transpose of Equation (6.37). Similarly, observe the third row of the RQ factorization

leads to

lim
N→∞

1
N

P f
β,N (V f

i,N )> = 0

lim
N→∞

1
N

(R31Q1 + R32Q2 + R33Q3)(V
f
i,N )> = 0

lim
N→∞

1
N

R33Q3(V
f
i,N )> = 0

lim
N→∞

1√
N

Q3(V
f
i,N )> = 0
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which is the transpose of Equation (6.38). Therefore now Equation (6.36) reduces to

lim
N→∞

1√
N

Gf
i,N (P f

β,N )>


 Q2

Q3



>

= lim
N→∞

1√
N
OiX̂wN (P f

β,N )>


 Q2

Q3



>

The subspace algorithm with the aid of w−operator and instrumental variable used to identify

the continuous time systems can be summarized as follows

1. Construct the filtered data matrices of Gf
i,N , Ωf

i,N and P f
β,N according to Equations (6.17),

(6.19) and (6.29) respectively.

2. Divide matrices into real and imaginary part

Gf
i,N =

[
Re(Gf

i,N ) Im(Gf
i,N )

]

Ωf
i,N =

[
Re(Ωf

i,N ) Im(Ωf
i,N )

]

P f
β,N =

[
Re(P f

β,N ) Im(P f
β,N )

]

3. Perform the RQ factorization



Ωf
i,N

Gf
i,N

P f
β,N


 =




R11 0 0

R21 R22 0

R31 R32 R33







Q1

Q2

Q3




4. Perform the SVD to the working matrix R22R
>
32.

R22R
>
32 =

[
Un U0

]

 Sn 0

0 S0





 Vn

V0



>

5. Determine the model order n from the singular value in S.
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6. Determine the system matrices (Aw, Cw).

Aw = (J1Un)†J2Un

Cw = J3Un

J1 =
[

I(i−1)l 0(i−1)l×l

]

J2 =
[

0(i−1)l×l I(i−1)l

]

J3 =
[

Il×l 0l×(i−1)l

]

Υ† = (Υ>Υ)−1Υ>

7. Solve least squares problem to determine (Bw, Dw).


 Re(Z)

Im(Z)


 =


 Re(Z̄)

Im(Z̄)





 Bw

Dw




Z =




Gm(jω1)

Gm(jω2

...

Gm(jωN )




Z̄ =




Cw(w(jω1)In −Aw)−1 Il

Cw(w(jω2)In −Aw)−1 Il

...
...

Cw(w(jωN )In −Aw)−1 Il




8. Reconstruct Bw and Dw from


 Bw

Dw




9. Compute the matrices A, B, C and D.

10. Generate the estimated transfer function.

Ĝ(s) = C(sIn −A)−1B + D
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6.2.6 Data Arrangement for MIMO Identification

For the single input single output system identification, the data matrices for Gf
i,N , Ωf

i,N and

P f
β,N are constructed in straightforward way according to Equations (6.17), (6.19) and (6.29).

However, for the MIMO system, the matrix expansion is arranged as follows. For instance,

consider the two-input-two-output system identification, the data matrices of Gf
i,N , Ωf

i,N and

P f
β,N are arranged as

Gf
i,N =




w0(jω1)


 Gf

11(jω1) Gf
12(jω1)

Gf
21(jω1) Gf

22(jω1)


 . . . w0(jωN )


 Gf

11(jωN ) Gf
12(jωN )

Gf
21(jωN ) Gf

22(jωN )




w1(jω1)


 Gf

11(jω1) Gf
12(jω1)

Gf
21(jω1) Gf

22(jω1)


 . . . w1(jωN )


 Gf

11(jωN ) Gf
12(jωN )

Gf
21(jωN ) Gf

22(jωN )




w2(jω1)


 Gf

11(jω1) Gf
12(jω1)

Gf
21(jω1) Gf

22(jω1)


 . . . w2(jωN )


 Gf

11(jωN ) Gf
12(jωN )

Gf
21(jωN ) Gf

22(jωN )




...
...

...

wi−1(jω1)


 Gf

11(jω1) Gf
12(jω1)

Gf
21(jω1) Gf

22(jω1)


 . . . wi−1(jωN )


 Gf

11(jωN ) Gf
12(jωN )

Gf
21(jωN ) Gf

22(jωN )







Ωf
i,N =




w0(jω1)I2 . . . w0(jωN )I2

w1(jω1)I2 . . . w1(jωN )I2

w2(jω1)I2 . . . w2(jωN )I2

...
...

...

wi−1(jω1)I2 . . . wi−1(jωN )I2




P f
β,N =




wi(jω1)I2 . . . wi(jωN )I2

wi+1(jω1)I2 . . . wi+1(jωN )I2

wi+2(jω1)I2 . . . wi+2(jωN )I2

...
...

...

wi+β−1(jω1)I2 . . . wi+β−1(jωN )I2
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6.3 Frequency Response Estimates

Measured frequency response data come in two forms, either as samples of the transfer function

[106]

Gk = Gm(jωk), k = 1, . . . , N

or as samples of the input and output Fourier transforms

Yk = Ym(jωk), Uk = Um(jωk), k = 1, . . . , N

If the method requires samples of the frequency response, the common way is to form as

Gk =
Yk

Uk

For the case where the noise level on the input signal is low and can be omitted, the notation

as above is still valid. However, if noise disturbance is high, two distinctions must be put into

consideration [106].

• If Uk is small or zero, the input signal u(k) contains little or no power at the frequency

and the samples should be discarded to reduce the noise influence.

• If the inputs are corrupted by noise of known character, it is favourable to use the input

and output samples directly in the identification.

It has been noted that the direct frequency response measurement based on Fast Fourier Trans-

forms (FFT) usually will provide biased measurement of the transfer function for a closed-loop

system. In consideration of the noise influence in the closed-loop MB systems, the second dis-

tinction will be followed. To overcome biased measurement, the FSF filters approach will be

used to process the measured input and output samples and obtained the frequency response

estimates.

The FSF approach approximates the transfer function Ḡ(z) as [49]

Ḡfsf (z) =

n−1
2∑

k=−n−1
2

θkH̄k(z) (6.39)

H̄k(z) =
1
N

1− z−N

1− ejΩkz−1
(6.40)
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6.4 Simulation Results

where n is odd and the frequency sampling interval Ω = 2π
T , H̄k(z) is the kth FSF and θk is

the corresponding (complex) parameter. For the frequency range of 0 ≤ ω ≤ NΩ, choosing

n = N gives an exact match Ḡfsf (z) = Ḡ(z) and choosing n < N gives an approximate match

Ḡfsf (z) ≈ Ḡ(z) [179,180].

The FSF Equation (6.39) can be rewritten in a compact form as [49]

Ḡfsf (z) = θ>F̄ (z) (6.41)

where

F̄ (z) =




H̄0(z)

H̄−1(z)

H̄1(z)
...

H̄−n−1
2

(z)

H̄n−1
2

(z)




; θ =




θ0

θ−1

θ1

...

θ−n−1
2

θn−1
2




Although the FSF approach is cast in the discrete time domain and the corresponding z−transform

domain, the resultant model can be used to obtain frequency responses [180]. Using z = ejω∆,

Equation (6.39) and Equation (6.40) can be rewritten in frequency domain form as

G(jω) ≈ Gfsf (jω) =

n−1
2∑

k=−n−1
2

θkHk(jω) (6.42)

Hk(jω) = H̄k(ejω∆) for ω < NΩ (6.43)

6.4 Simulation Results

In this section, the simulation results will be shown in which the magnitude and phase of the

estimated response will be compared with the measured response. As a measure of accuracy of

the proposed model, the Variance Accounted For (VAF), which is given by the following formula

VAF =

(
1− VAR(Gm − Ĝ)

VAR(Gm)

)
× 100
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and the Mean Square Errors (MSE), which is given by the following formula

MSE =
1
N

N∑

a=1

| Gm(jωa)− Ĝ(jωa) |2

is also calculated. The Bode Plot that demonstrate the performance comparison of the systems

is further categorized into identification of a simulated data and a real data taken from magnetic

bearing system apparatus.

6.4.1 Single Input Single Output Data System

For SISO systems, two different sets of data are observed: a simulated data and a real data

taken from magnetic bearing system apparatus.

Simulated Data System

The first data set is a simulated data. The sixth order plant model example presented in [164,188]

will be used here. The state space model is developed based on the following set up.

Am =




0 1 0 0 0 0

−1 −0.2 0 0 0 0

0 0 0 1 0 0

0 0 −25 −0.5 0 0

0 0 0 0 0 1

0 0 0 0 −9 −0.12




; Bm =




0

1

0

1

0

1




; Cm =




1

0

1

0

1

0




>

; Dm = [0];

At a frequency of (ω = 0.01, 0.02, . . . , 10 rad/s), about N = 1000 frequency response data is

generated according to the following function

Gm(jω) = Cm(jωIn −Am)−1Bm + Dm

The disturbance is generated according to the following condition

V (jωk) = 0.15× [eR(jωk) + jeI(jωk)]

where eR(jωk) and eI(jωk) are unit variance, zero mean white Gaussian noises. The model is

developed using model parameters listed in Table 6.1.
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6.4 Simulation Results

Table 6.1: Model parameter - Simulated data system

Symbol Description Value

p Laguarre parameter 5

i Expanding observability matrix 30

n Model order 6

The Bode Plot of magnitude and phase of the measured and estimated systems are shown in

Figure (6.1). From this figure, it can be said that the model is able to identify the systems

successfully. The verification test gives a value of MSE = 0.0249 and VAF = 95.0997%. Again,

this shows that, for a noise added data, the model is still able to identify the system with low

MSE and good percentage of accuracy. The transfer function of frequency response estimated

from the model is given by

Gm(s) =
3s4 + 1.64s3 + 70.184s2 + 14.92s + 259

s6 + 0.82s5 + 35.184s4 + 14.932s3 + 260.56s2 + 52.5s + 225

Ĝ(s) =
2.8781s4 + 1.8810s3 + 69.6337s2 + 16.1777s + 261.7167

s6 + 0.7748s5 + 35.4423s4 + 14.4575s3 + 262.8496s2 + 52.5750s + 226.5904

and the eigenvalues of A matrix is given by

eig(Am) = [−0.1000± 0.9950j;−0.2500± 4.9937j;−0.0600± 2.9994j]

eig(Â) = [−0.1003± 0.9936j;−0.2307± 5.0242j;−0.0563± 2.9965j]

which still shows a good match. The Monte Carlo simulations are also performed based on

100 runs. The choice of different random “seed” specifies the measurement noise adding to the

signal. The result from this analysis can be seen in Figure (6.2). From this figure, it shows that

with different types of noise, the model is still able to represent the system closely.

The estimated (A,B, C, D) system matrices are given as

Â =




−0.1496 1.1008 0.1345 −0.1207 −0.4572 −0.3548

−0.9104 −0.0397 −0.3402 0.1929 0.3082 0.2919

0.0570 0.1813 −0.0447 −2.8925 0.2762 0.1662

−0.1023 −0.1015 3.0803 −0.0523 −0.4894 −0.2698

0.0412 0.0232 −0.0701 0.0971 −0.2327 −5.2924

−0.0409 −0.0257 0.0743 −0.0413 4.7606 −0.2557
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Figure 6.1: Bode plot of magnitude & phase - SISO simulated data system
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B̂ =




4.9286

1.3855

0.9868

−0.2960

−0.1223

0.6963




; Ĉ =




0.0480

−0.2351

0.1521

0.2845

−0.2645

−0.0056




>

; D̂ = [−0.0024];

Real Data - MB System

The second data set is a real input and output data measured from the MB apparatus. The

frequency response estimates of the measured data are obtained using the FSF approach. There

are N = 1000 samples of input and output is processed at ∆t = 0.002s. The model order, n is

determined by the singular value of S after the SVD evaluation. The model parameters can be

referred as in Table 6.2.

Table 6.2: Model configuration - MB data system

Symbol Description GxL GxR GyL GyR

p Laguarre parameter 20 20 20 10

i Expanding observability matrix 40 30 50 40

n Model order 30 23 29 25

The Bode Plots of magnitude and phase of the measured and estimated systems for data GxL

are illustrated in Figure (6.3). The other illustration results for GxR, GyL and GyR transfer

function are omitted, however, the MSE and VAF of the systems are calculated and mentioned.

Based on the figure, the model is still able to identify the systems successfully. The verification

test give a value of

GxL: MSE= 0.0016; VAF= 99.3751%

GxR: MSE= 0.0026; VAF= 99.4044%

GyL: MSE= 0.0035; VAF= 98.9081%

GyR: MSE= 0.0042; VAF= 98.7160%
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Figure 6.3: Bode plot of magnitude & phase - MB system GxL

Based on the calculations, the model is able to identify the system with low MSE and good

percentage of accuracy.

6.4.2 Multi Input Multi Output Data Systems

Next in this section, the model is demonstrated onto MIMO systems. In here, the identification

will run for a two-input-two-output systems in which it will provide with 2×2 transfer function.

Table 6.3: Model parameter - MIMO simulated data systems

Symbol Description Value

p Laguarre parameter 5

i Expanding observability matrix 10

n Model order 6
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The system transfer function is defined as

Gm =




1
s+1

1
s2+0.2s+1

1
s2+0.5s+1

1
s+2




At a frequency of (ω = 0.01, 0.02, . . . , 10) rad/s, about N = 1000 frequency responses are gen-

erated using a Matlab function “freqs”. The measurement noise is generated according to the

following condition

V (jωk) = 0.01 ∗ [eR(jωk) + jeI(jωk)]

where eR(jωk) and eI(jωk) are unit variance, zero mean white Gaussian noise. The model

parameter can be referred in Table 6.3. Figures (6.4) and (6.5) show the superimposed of

magnitude and phase for the measured and estimated response respectively. From this figure,

it shows that the model can identify the MIMO systems closely. The verification test also give

an average value of MSE = 4.1409× 10−4 and VAF = 99.6883%. This shows that the model is

able to identify the system with low MSE and good percentage of accuracy.

The poles location calculated from the system is given by

s = [−1;−2;−0.25± 0.9682j;−0.1± j]

The poles obtained from the eigenvalues of the A matrix of the model is given by

s = [−0.9980;−1.9762;−0.2484± 0.9687j;−0.0994± 0.9950j]

which are also almost identical to the actual pole of the systems.

The estimated (A,B, C, D) system matrices are obtained as

Â =




−0.1508 0.9361 −0.7001 −0.4115 1.0675 −0.8789

−0.7111 −0.1562 0.4927 −0.4609 −0.9850 −0.3591

0.1652 −0.3946 −0.1093 −1.1094 −0.1386 −1.2831

0.1615 0.2215 0.6823 −0.3292 −0.2203 −1.6114

0.0152 0.0327 0.1738 −0.2947 −1.0799 −0.5432

−0.0749 −0.0767 0.0385 0.0432 −0.2512 −1.8346




186



6.4 Simulation Results

10
−2

10
0

10
−1

10
0

10
1

Lo
g 

M
ag

nit
ud

e

10
−2

10
0

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
−3

10
−2

10
−1

10
0

10
1

Frequency(rad/s)

Lo
g 

M
ag

nit
ud

e

10
−2

10
0

10
−1

10
0

Frequency(rad/s)

Superimposed of measured (grey) & estimated (black) response

Figure 6.4: Bode plot for magnitude of MIMO simulated data systems
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Figure 6.5: Bode plot for phase of MIMO simulated systems
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B̂ =




−24.6695 −261.0673

5.2628 −284.0706

17.9844 −630.7181

5.1694 −285.9333

31.0169 −308.2670

8.4441 −582.3992




; Ĉ =




0.4659 0.0953

−0.0535 0.1275

−0.3208 0.3228

−0.0048 −0.0128

0.6462 −0.0100

−0.1749 −0.4446




>

; D̂ =


 0.0005 0.0040

0.0006 0.0010




6.4.3 Optimal Selection for Design Parameter

When the subspace identification algorithm is applied to frequency domain data, the roles played

by the parameter p, i and n are important. Therefore, in this section, an analysis is undertaken

in order to find optimal values of these three design parameters. Optimal search for these

parameters is necessary in order to obtain a reliable and correct model to represent the system.

For this analysis, the MSE calculation is used as a guide for selecting the optimal value of

parameter p and i. The formula to determine the MSE is given as

MSE =
1
N

N∑

a=1

| Gm(jωa)− Ĝ(jωa) |2

With the assumption that a good model will provide a better prediction of the system behaviour,

optimal selection of parameter p and i are based on the lowest value of mean square error. In

this analysis, the SISO simulated data system and the MB system that have been discussed in

previous section are investigated. In general, the information from the SISO system identification

can be used as a guideline for the MIMO system identification as well.

Choice of Laguerre Design Parameter, p

For the frequency domain data, the model shows its consistency in modeling the system with

respect towards the change of parameter p. For instance, the result for the first run using the

noise added simulated data can be seen as in Figure (6.6). From this figure, it is seen that the

model gives good performance when the value is set to (p < 12). Second test run is done for

the magnetic bearing data. The result from the analysis can be seen as in Figure (6.7). For the

MB data, it gives good performance for the value to be (20 < p < 160).
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Choice on Expanding the Observability Matrix, i

Next parameter is i-parameter, the variable that determines the number of terms for the observ-

ability matrix as well as the representation of how many block rows constructed after filtering

the data with Laguerre filter network. Increasing the i value will improve the performance ac-

curacy. However, this trend will only hold for (i ≤ 100) for the examples shown. Increasing the

value of i more than 100 will add more complexity and increase running time, in which also will

results in numerical condition problem. Analysis based on the simulated data can be referred in

Figure (6.8). The analysis based on the real data using frequency domain data can be referred

in Figure (6.9).

Choice of Model Order, n

Similar to implementation to time domain, the choice of model order for frequency domain

model is also based on the diagonal plot of S matrix after performing the SVD. The diagonal

plot obtained using the frequency domain data can be seen in Figure (6.10) and Figure (6.11).
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Figure 6.11: Diagonal plot of S matrix - MB frequency domain data
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6.5 Summary

This chapter has presented a subspace identification approach in the frequency domain with an

adoption of Laguerre filter network and an instrumental variable method. Based on observations,

the design parameters, p and i play an important role in improving the model performance. For

the noise-free system, small values of design parameters, p and i, are sufficient enough to identify

the system successfully. However, when the system is corrupted with noise, higher values of both

parameters are desired in the examples. As for the magnetic bearing system data, it can be

seen that the model could identify the system nicely. The frequency response estimates obtained

over the frequency sampling filter approach have provided with “clean” and unbiased closed-

loop data, therefore the direct closed-loop identification using the open-loop system identification

approach can be done successfully. Proper selection of parameters, p and i will also improve

the model performance. The only drawback can be seen on MB data is that the model requires

high order to present the system closely.
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Chapter 7

Conclusions

7.1 Conclusions

This thesis mainly studies in four subjects: the subspace methods, the state space models, the

continuous time systems and the magnetic bearing application. The subspace identification

algorithms do not require an explicit parametrization. The only parameter needed for user

specification is the system order, in which it can be explicitly determined by inspection of

a singular value spectrum. The subspace identification algorithm also requires no nonlinear

parametric optimization and no iterative procedures, thus, is abolishing the problems of local

minima and model convergence. This method is also convenient for optimal estimation and

control. In this thesis, the development of subspace methods is investigated in both open-loop

and closed-loop systems. The performance evaluation is performed over time domain data, step

response data and frequency response data. In all different environments, the subspace approach

is properly developed as to suit with its purpose of identification.

In summary, the subspace approach on continuous time domain data has built the model catering

with input signal and output signal, targeting to cope with process and measurement noise. The

approach to closed-loop system has built the model catering with two signals (input/reference

signal and output signal) coping with noises that interfere in both input and output point.

On the other hand, the approach using step response data tries to compress the raw data and

provide a better subspace identification model. Similar purposes apply to frequency response
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data. In all of the subspace identification approaches, the main purpose is to generate accurate

state space model.

In system identification, models that describe the systems may be in various forms and one of

the possibilities is a state space model formulation. The state space mathematical modelling

involves vectors and matrices in a unique geometrical framework. It offers the key advantages

on providing low parameter sensitivity with respect to perturbation for high order systems and

also has shown its ability to present the multi-variable systems with minimal state dimensions.

Significantly, the aim is to search for accurate A, B, C and D matrices of the state space model

as to ensure that the constructed model can closely mimic the actual system as well as provide

information for the purpose of control system design. In this thesis, the subspace methods are

carried out in developing a good state space model. Eventually, this state space model has been

used to identify the continuous time system closely.

Even though the environment of “go digital” has widely influenced many researchers, this the-

sis has targeted its arrow towards continuous time systems. Yet, the identification performance

over continuous time systems are more challenging as compared to discrete time systems. Fortu-

nately, the combinations of Laguerre filter network, the instrumental variables and the frequency

sampling filters have contributed to excellent performance of the continuous time system identi-

fication overall. The Laguerre filters used in this thesis are utilized to filter the input and output

signals. The advantage of these filters lies in that they do not alter the frequency content of

the signals but only influence the phase of the frequency contents. The transformed parameter

model requires only simple algebraic relations and its orthogonality helps to cope with both

process and measurement noise.

The instrumental variables adopted in the model are to cope with process and measurement

noise. In this thesis, the choices of instrumental variables are based on future horizon which

provide different approach from existing reported literature. This consideration is taken in-line

with the properties of Laguerre filter network that require the causality in order to keep stability.

This causal condition however can only solve the deterministic part of the systems (i.e obtain

A,B and C matrices). The stochastic part which usually involved with noise models can not

be utilized since the condition of the stochastic part is anti-causal. The only possible way to

apply the anti-causal part for the continuous time system is by working in reverse for the batch

recorded data. Apparently, this will only work if the identification is handled off-line.
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The use of frequency sampling filter in this thesis also benefits in enhancing the performance

capability and stability of subspace identification approach. In spite of its usage on compress-

ing the data, the step response estimates and the frequency response estimates obtained from

the frequency sampling filter also help in removing the noise contained in the measured data.

This will give unbiased estimation for the data taken from the closed-loop systems. Thus, the

“clean” step response and frequency response data has successfully identified using the subspace

methods.

The final subject is where all the proposed approaches are used to identify the magnetic bearing

system. As the successful rate of system identification relies on the quality of the acquired

data from the plant, the identification over magnetic bearing system is seemly so challenging.

However, with the proposed approaches it has shown that the subspace approaches are able

to identify the magnetic bearing system closely. All the results have shown the efficacy of the

proposed algorithms with acceptable accuracy.

7.2 Future Work

As the purpose of identification is to obtain an accurate model which therefore will be used

in control system design, therefore the extension of this research primarily towards the imple-

mentation of this model to apply with suitable design controller. In general controller design,

the model normally obtained from the already available model in system identification toolbox.

Thus, using this model to develop a controller would be another advantage. The comparison

of controller performance among models will be also something of interest. Other than that,

the research viewpoint on step response data and frequency response data can be utilized in

understanding and enhancing the controller performance.

In addition, the causal setup environment of subspace methods and Laguerre filter has allowed

for possible online identification. Further study on online identification using this approach will

contribute to useful research in regards towards real time modelling, controlling, diagnosing and

monitoring the systems.

In discrete time systems, the subspace methods are successfully employed to identify both the

deterministic part and stochastic part of the systems. This is due to the fact that the model
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7.2 Future Work

and identification procedure in discrete time systems are all anti-causal. As to the continuous

time subspace identification, the only possible way to retrieve the stochastic part is by working

with off-line identification in which the recorded data has to be identified back-ward in time.

Thus, further research can be done as to solve the stochastic part and at the same time working

in real time identification.

The 2-stage identification which involved the frequency sampling filters, Laguerre filters and

instrumental variables has shown such a promising achievement in identification performance.

By applying the first stage of identification using FSF approach, followed by the second stage

of subspace identification become more consistent in identifying the noisy multi-variable data

systems. However, the usage of the FSF model in this thesis is limited to single input single

output system. The extension of its capability for data compression of multi-variable systems

will definitely open for wider multi-variable system identification procedures. This will probably

become a useful tool for process engineers in which any possible applications may be employed.
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Appendix A

Algorithm

A.1 Orthogonal Decomposition Algorithm (Chapter 5)

The orthogonal decomposition algorithm was originally proposed by Korenberg et.al. [90]. The compu-

tation of the PRESS residuals can be viewed as a by-product of their proposed algorithm [180]. Here the

data matrix is decomposed as

Φ = WT

where W is a N × n matrix with N refers to number of data and n refers to the dimensionality of the

parameter vector θ. T is a unit upper triangular n× n matrix and W is arranged such that

Wd = W>W

with Wd(n× n) being a diagonal matrix. Inserting T−1T into a general system model

Y = Φ(T−1T )θ + V

= Wg + V

where g = Tθ is the auxiliary model parameter vector and W = ΦT−1 is the transformed data matrix.

The vector g can now be estimated from the least squares solution as

ĝ = W−1
d W>Y

which minimizes the loss function

Jn = (Y −Wg)>(Y −Wg)

The least squares estimate of the original parameter vector θ̂ is then obtained using the relation

θ̂ = T−1ĝ
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Appendix B

Data Acquisition

B.1 Experimental Setup for MB Data Acquisition (Chapter 4)

As one of the objectives in this thesis is to implement a subspace model identification with application to

magnetic bearing systems data, therefore, this section explains the data acquisition procedures that run

for MB system apparatus available in the laboratory. For zero shaft speed (levitating mode machine),

the dynamics in the x − z and y − z planes are decoupled, leading to two separate dynamic systems.

Each of the two systems has two inputs and two outputs. Therefore, can be modelled by a 2× 2 transfer

matrix. As MB systems are open-loop unstable, feedback control systems are required to stabilize the

system and to suspend the shafts so as to facilitate the closed-loop data acquisition. It has been noted

that decentralized PD control system is usually sufficient for this purpose and is used here as shown in

Figure (B.1).

Another important task needs to be done before running the experiment is to inject the exciting signal.

In real process industry, the information content of the input and output data measured under steady

state conditions usually insufficient for identification purposes. This is due to the fact that, for certain

systems the input does not excite the system enough to be able to identify the system uniquely. Thus, the

statistical information content from the measured data can not be obtained. To overcome this matter,

one mechanism that can deliberately excite the system is usually needed. This can be done by setting

up certain set point or by injecting an appropriate signal.

However, the used of excitation test signal may strongly influence the quality or/and the performance

of the process since the plant may deviate from more or less economical operation. In order to strike

a balance between the need to quantify process dynamics for control purposes and the urge to operate
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B.1 Experimental Setup for MB Data Acquisition (Chapter 4)

in the most economical manner, the test-signal excitation and duration should be minimized subject to

the demand that a sufficiently accurate process model can be identified, aiming at optimal experiment

design [160]. For this experiment, the random signal is used as an excitation signal. There are four data

set taken from the experiment. In block diagram, the setup can be shown as in Figure (B.2).

Figure B.1: Magnetic bearing system setup with PD controller

Figure B.2: Block diagram for data acquisition
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Appendix C

Matlab Code - Time Domain

(Chapter 3 & 4)

C.1 Generalized Random Binary Signal

function [u] = grbs(N,u1,u2,p);

% GRBS Usage: U = GRBS(N,u1,u2,p)

% Generates a Generalized Random Binary Signal [*] of length N,

% with spectrum defined by probability p and signal levels

% defined by u1, u2.

%

% U=GRBS(n) returns a GRBS with u1=-1, u2=1 and p=0.5 of

% length n. It should be noted that p=0.5 gives a GRBS of

% uniform richness in frequency.

%

% [*] H.J.A.F. Tulleken, Automatica, vol. 26, 37-49, 1990.

% The implementation algorithm has been slightly modified.

rand(’seed’,0);

if nargin==1,

u(1)=sign(rand-0.5);

u1=-1;
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C.1 Generalized Random Binary Signal

u2=1;

p=0.5;

else

if u2<u1

temp=u1;

u1=u2;

u2=temp;

end

u(1)=0.5*(u2-u1)*sign(rand-0.5)+0.5*(u2+u1);

end

for k=2:N

if rand>p

u(k)=u(k-1)-(u2-u1)*sign(u(k-1)-0.5*(u2+u1));

else

u(k)=u(k-1);

end

end

202



C.2 Generate Filtered Input & Output

C.2 Generate Filtered Input & Output

function [uf,yf,Pf] = filter_io(u,y,dt,p,k)

% Generate the filtered input and output

% Generate the Laguerre filter network

% u = measured input

% y = measured output

% N = number of sample data

% dt = sampling interval

% p = Laguerre parameter

% k = 2*i, expanding row for past and future value

N = length(y); BB=sqrt(2*p)*ones(k,1); AA=-p*eye(k,k);

for a=1:k

for b=1:k

if b<a, AA(a,b)=-2*p;

end

end

end

[f1,f2]=size(BB);

x1=zeros(f1,1); x2=zeros(f1,1);

x3=BB;

for a=1:N

x1 = x1 + AA*x1.*dt + dt.*BB.*u(1,a);

x2 = x2 + AA*x2.*dt + dt.*BB.*y(1,a);

x3 = x3 + AA*x3.*dt;

% download the filtered input and output

uf(:,a)=x1(:,1);

yf(:,a)=x2(:,1);

Pf(:,a)=x3(:,1);

end
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C.3 Modified Gram-Schmidt

C.3 Modified Gram-Schmidt

function [R,Q] = RQ_Gram(A);

% [R,Q] = RQ_Gram(A)

% The A matrix can be of any size, but there should be more columns than rows

% Q is the same size as A with orthonormal rows

% R is a lower triangular square matrix

% A = RQ’

% make sure that A is correctly orientated

if size(A,1) > size(A,2)

A = A’;

end [m,n] = size(A);

% initialize Q and R

Q = zeros(n,m) R = zeros(m,m);

% begin loop

for j = 1:m

% calculate the values of R and Q for jth entry

R(j,j) = sqrt(A(j,:)*A(j,:)’);

Q(:,j) = 1/R(j,j)*A(j,:)’;

% calculate the rest of the R values in the jth row

R(j+1:m,j) = A(j+1:m,:)*Q(:,j);

% update the A matrix

A(j+1:m,:) = A(j+1:m,:) - R(j+1:m,j)*Q(:,j)’;

end
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C.4 Estimating A & C

C.4 Estimating A & C

function [A,C] = estimate_AC(no_y,i,p,n,U_s);

% Estimate A & C matrices for continuous time state space model

% no_y = number of output

% i = number of Hankel matrix when expanding rows

% p = Laguerre parameter

% n = model order

% U_s = n times of column of U matrix from SVD

% Create identity matrix

iden_mat2=eye(no_y,no_y);

iden_mat3=eye((i-1).*no_y,(i-1).*no_y);

iden_mat4=eye(n,n);

% Find Cw

J3 = [iden_mat2 zeros(no_y,(i-1).*no_y)];

Cw = J3*U_s;

% Find Aw

J1=[iden_mat3 zeros((i-1).*no_y,no_y)];

J2=[zeros((i-1).*no_y,no_y)iden_mat3];

N1=J1*U_s;

M1 = J2*U_s;

Aw=(pinv(N1’*N1))*N1’*M1;

% Compute A & C

A=p*(pinv(iden_mat4 - Aw))*(iden_mat4 + Aw);

C=sqrt(2*p)*Cw*(pinv(iden_mat4 - Aw));
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C.5 Estimating B & D

C.5 Estimating B & D

function [B,D] = estimate_BD(u,y,N,dt,n,A,C)

% Calculation of B matrix using the estimated A and C matrices

% generating data matrix for C(sI-A)-1u(s)

% u = measured input

% y = measured output

% N = number of sample data

% dt = sampling interval

% n = model order

% A = estimated A matrices

% C = estimated C matrices

xu=zeros(n,n);

for a=1:N

xu = xu + A*xu*dt + dt*eye(n,n)*u(1,a);

Phif(a,:)=C*xu;

end

y= y.’;

theta = (pinv(Phif’*Phif))*Phif’*y;

%Reconstruct B & D

B = theta(1:n,1);

D=0;
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C.6 System Identification - Open-loop

C.6 System Identification - Open-loop

function [A,B,C,D]=sub_lag(no_u,no_y,u,y,i,n,dt,p)

% Function for estimating continuous time state space model

% no_u = number of input

% no_y = number of output

% u = measured input

% y = measured output

% i = number of Hankel matrix when expanding rows

% n = model order

% dt = sampling interval

% p = Laguerre parameter

% k=2*i, expanding row for past and future value

N=length(y);

% Generate filtered data of input and output and Laguerre filter network

[uf,yf,Pf] = filter_io(u,y,dt,p,k);

Y_0iN = zeros(i,N); %Hankel matrix for past output

Y_ijN = zeros(i,N); %Hankel matrix for future output

U_0iN = zeros(i,N); %Hankel matrix for past input

U_ijN = zeros(i,N); %Hankel matrix for future input

W_0iN = zeros(i,N); %Hankel matrix for past Laguerre filter

W_ijN = zeros(i,N); %Hankel matrix for future Laguerre filter

Y_ijN = yf(i+1:k,1:N); %future output

U_ijN = uf(i+1:k,1:N); %future input

W_ijN = Pf(i+1:k,1:N); %future Laguerre filter

Y_0iN = yf(1:i,1:N); %past output

U_0iN = uf(1:i,1:N); %past input

W_0iN = Pf(1:i,1:N); %past Laguerre filter

% Perform the QR - Orthogonal triangular decomposition

A2 = [W_0iN;U_0iN;U_ijN;Y_ijN;Y_0iN];
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C.6 System Identification - Open-loop

[R,Q] = RQ_Gram(A2);

R53=R(4*i+1:5*i,2*i+1:3*i);

R54=R(4*i+1:5*i,3*i+1:4*i);

% Perform the SVD - singular value decomposition

[U,S,V] = svd([R53 R54]);

U_s=U(:,1:n);

% Estimate A & C

[A,C] = estimate_AC(no_y,i,p,n,U_s);

% Estimate B & D

[B,D] = estimate_BD(u,y,N,dt,n,A,C);
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C.7 System Identification - Closed-loop

C.7 System Identification - Closed-loop

function [A,B,C,D]=sub_lag(no_u,no_y,u,y,i,n,dt,p)

% Function for estimating continuous time closed-loop model

% no_u = number of input

% no_y = number of output

% u = measured input

% y = measured output

% i = number of Hankel matrix when expanding rows

% n = model order

% dt = sampling interval

% p = Laguerre parameter

% k=2*i, expanding row for past and future value

N=length(y);

% Generate filtered data of input and output and Laguerre filter network

[uf,yf] = filter_io(u,y,dt,p,k);

Y_0iN = zeros(i,N); %Hankel matrix for past output

Y_ijN = zeros(i,N); %Hankel matrix for future output

U_0iN = zeros(i,N); %Hankel matrix for past input

U_ijN = zeros(i,N); %Hankel matrix for future input

Y_ijN = yf(i+1:i+i/2,1:N); %future output

U_ijN = uf(i+1:i+i/2,1:N); %future input

Y_0iN = yf(1:i,1:N); %past output

U_0iN = uf(1:i,1:N); %past input

Z1 = [U_0iN;U_ijN;Y_ijN;Y_0iN];

% Perform the QR - Orthogonal triangular decomposition

[R,Q] = RQ_Gram(Z1);

R32 = R(2*i+1:3*i,i+1:2*i);

% Perform the SVD - singular value decomposition

[U,S,V] = svd(R32);
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C.7 System Identification - Closed-loop

U_s=U(:,1:n);

% Estimate A & C

[A,C] = estimate_AC(no_y,i,p,n,U_s);

% Estimate B, D

[B,D] = estimate_BD(u,y,N,dt,n,A,C);
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Appendix D

Matlab Code - Data Compression

(Chapter 5)

D.1 Frequency Sampling Filter Model

function [g,v,G]=fsfmodel(xRaw,yRaw,N,n,CutPoints)

% xRaw - matrix of input variables

% yRaw - matrix of output variable;

% N - a row vector with numbers of step response coefficients

% n - a row vector with maximum numbers of FSF parameters

% CutPoints - a row vector containing sampling instants

specifying the segments of data to be used;

% if not specified all data will be taken.

%

% g - Estimated step response coefficients for each input-output pair

% v - Standard deviations of the estimated step response coefficients

% G - Estimated frequency response

P = []; y = [];

for (iSliceCounter = 1:2:length(CutPoints))

xSlice = xRaw(CutPoints(iSliceCounter):CutPoints(iSliceCounter+1),:);
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D.1 Frequency Sampling Filter Model

ySlice = yRaw(CutPoints(iSliceCounter):CutPoints(iSliceCounter+1),:);

[Prow,ySlAnAvg]=fsfreg(xSlice,ySlice,N,n);

P = [P;Prow];

y = [y;ySlAnAvg];

end

i_loop=1;

Pf=P; % the regressor matrix

yf=y; % process output data vector

numb_iter=4; %Default value = 4

theta_p=zeros(sum(n),1);

while (i_loop < numb_iter)

%Model estimation based on PRESS

[press1,thetaw,Covar] = mfpress(Pf,yf);

%Obtain optimal orders for each input according to PRESS values

[nNew,PressN] = minOrder(press1,n);

nNew=n;

%Re-estimate process models according to the optimal orders

Pn=Pf(:,1:nNew(1));

kk=n(1);

for i=1:number_inputs-1

Pn=[Pn Pf(:,kk+1:kk+nNew(i+1))];

kk=kk+n(i+1);

end

[press2,theta,Covar] = mfpress(Pn,yf);

%Loop-break

%measurement for convergence of the estimates

pa_err=(thetaw-theta_p)’*(thetaw-theta_p);

pa_err=pa_err/(thetaw’*thetaw);

if (pa_err<10e-4)

break;

end
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D.1 Frequency Sampling Filter Model

%calculate model prediction error

P_pred=P(:,1:nNew(1));

kk=n(1);

for i=1:number_inputs-1

P_pred=[P_pred P(:,kk+1:kk+nNew(i+1))];

kk=kk+n(i+1);

end

y_pred=real(P_pred*theta); %model prediction

e_resi=y(N(1):length(y))-y_pred(N(1):length(y)); %residual

%Noise model estimation

[E,n_op,noi_press]=aupress(e_resi); %maximum model order is at default value of 15

%Pre-filtering process input and output data

for i=1:sum(n)

Pf(:,i)=filter(E,1,P(:,i));

end

yf=filter(E,1,y);

i_loop=i_loop+1;

theta_p=thetaw;

end

%Iterations using Generalized least squares completed

Para = theta; g = []; v = [];

%Transform frequency estimates into step response estimates with confidence bounds

kk=nNew(1); KK=N(1);

[g(1:N(1)),v(1:N(1))]=tdf2se(Covar(1:kk,1:kk),Para(1:kk,1),N(1),nNew(1));

for i=1:number_inputs-1

[g(KK+1:KK+N(i+1)),v(KK+1:KK+N(i+1))]=tdf2se(Covar(kk+1:kk+nNew(i+1),

kk+1:kk+nNew(i+1)),Para(kk+1:kk+nNew(i+1),1),N(i+1),nNew(i+1));

kk=kk+nNew(i+1);

KK=KK+N(i+1);

end
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D.1 Frequency Sampling Filter Model

%Frequency response bound

[G]=tfsb(Covar(1:nNew(1),1:nNew(1)),Para(1:nNew(1)),N(1),nNew(1));
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D.2 FSF Regressor

D.2 FSF Regressor

function [Pn,y] = FSFreg(x,y,N1,n)

% Function: Construct FSF Regressive Matrix Pn

% Pn - Parameter Regression Matrix

% x - the time-domain input data matrix

% y - the time-domain output data matrix

% N1 - No. of frequencies in FSF filter

% n - No. of parameters chosen in FSF model

[d1, ni]=size(x); [yc,yr]=size(y);

if yr>yc

y=y’;

end

j = sqrt(-1);

%construct the numerator of the FSF filter

for k=1:ni

dx(:,k) = (x(:,k) - [zeros(N1(k),1);

x(1:length(x)-N1(k),k)])/N1(k);

end

num = [1]; ci=1;

for k=1:ni

P(:,ci) = filter(num,[1 -1],dx(:,k));

for i=1:(n(k)-1)/2

den = [1 -exp(j*2*i*pi/N1(k))];

P(:,2*i+ci-1) = filter(num,den,dx(:,k));

P(:,2*i+ci) = conj(P(:,2*i+ci-1));

end

ci=ci+n(k);

end

Pn=P;
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D.3 FSF Identification

function [press,theta,cov] = mfpress(P,y)

% Function: Identification of FSF(truncated) of Linear Systems

Using Orthogonal Decomposition

Term selection included using PRESS criterion

% press - PRESS corresponding to index n

% theta - FSF model parameters

% cov - Covariance of the parameter estimates(theta)

% P - Process data matrix

% y - Process output truncated by the FSF

[nr,nc]=size(P); W=P(:,1); T=eye(nc,nc);

% Wn is the vector containing the diagonal elements of W’*W;

one=ones(nr,1);

Wn(1)=W’*W;

g(1,1)=W’*y/Wn(1);

es(:,1)=y-g(1,1)*W;

h=abs(W.*W/Wn(1));

epress(:,1)=es(:,1)./(one-h);

%orthogonal decomposition, W is the orthogonal matrix

for i=1:nc-1

alpha=W’*P(:,i+1);

for j=1:i;

alpha(j,1)=alpha(j,1)/(W(:,j)’*W(:,j));

end

W=[W P(:,i+1)-W*alpha];

T(:,i+1)=[alpha; 1; zeros(nc-i-1,1)];

%parameter estimation

Wn(i+1)=W(:,i+1)’*W(:,i+1);

g(i+1,1)=W(:,i+1)’*y/Wn(i+1);

%calculate prediction error
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D.3 FSF Identification

es(:,i+1)=es(:,i)-g(i+1,1)*W(:,i+1);

h=h+abs(W(:,i+1).*W(:,i+1))/Wn(i+1); %h is the inflation matrix

epress(:,i+1)=es(:,i+1)./(one-h); %epress is the press error

end

press=diag(epress’*epress);

theta=T\g;

yp=real(P(:,:)*theta);

e=y-yp;

sig=(e’*e)/(length(e)-nc);

PP=T’*diag(Wn)*T;

cov=inv(PP)*sig;
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D.4 Min Numbers of FSF Parameters

function [nNew,PressN] = minOrder(Press,n)

% Function: Finds the minimum numbers of FSF parameters

based on the Press Error criterion

% Press - PRESS corresponding to index n

% n - maximum numbers of FSF parameters

% nNew - minimum numbers of FSF parameters

% PressN - values of minimum PRESS corresponding to nNew

number_inputs=length(n);

global DEBUG

kk=n(1);

[a,b]=min(Press(1:kk)); nNew(1)=b; PressN(1)=a;

for i=1:number_inputs-1

[a,b]=min(Press(kk+1:kk+n(i+1)));

nNew(i+1)=b;

PressN(i+1)=a;

kk=kk+n(i+1);

end

for i=1:number_inputs

if nNew(i)/2==ceil(nNew(i)/2),

nNew(i) = nNew(i)+1;

end

end
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D.5 Noise Model Estimation

D.5 Noise Model Estimation

function [E,press,e_pred]=aupress(e)

% Function: Noise model estimation based on PRESS

% e - the process variable

% E - the autoregressive model

% press - sum of squared prediction errors;

% e_pred - prediction error

me=0;

e=e-me;

[n,m]=size(e);

if (m>n)

e=e’;

end

nmax=10; %default value for maximum model order

%form the auto-regressor

L=length(e); P=[0;-e(1:L-1)];

for i=2:nmax

P=[P [zeros(i,1);-e(1:L-i,1)]];

end

%calculate sum of squared prediction errors for different model structure

[press,theta,covar]=mfpress(P,e);

%decide the best model order for the noise model

pd=diff(press);

for k=1:length(pd)

if pd(k)>0

n_best=k;

break;

elseif -pd(k)/press(k)<0.005

n_best=k;

break;
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D.5 Noise Model Estimation

end

end

%re-estimate the model using the structure determined

P=P(:,1:n_best);

[pre_noise,theta,covar]=mfpress(P,e);

press=[e’*e; press];

E=[1 theta’];

e_pred=P*theta+me;

220



D.6 Step Response Estimates

D.6 Step Response Estimates

function [g,Vg]=tdf2se(Vart,fg,N,n)

% Function: Obtain step response estimates

% g - Estimated step response coefficients for each input-output pair

% Vg - Standard deviations of the estimated step response coefficients

% Vart - Covariance of the parameter estimates

% fg - FSF model parameters

% N - a row vector with numbers of step response coefficients

% n - minimum numbers of FSF parameters

j=sqrt(-1);

ep(1,1)=1;

for k=1:(n-1)/2

wk=2*k*pi/N;

ep(1,2*k)=exp(j*wk);

ep(1,2*k+1)=exp(-j*wk);

end

wei=zeros(1,n);

for m=1:N;

weight(m,:)=wei+ep.^(m-1);

wei=weight(m,:);

r(m)=weight(m,:)*fg/N;

g(m)=real(r(m));

%variance

Vg(m)=wei*Vart*wei’/(N*N);

end

Vg=sqrt(real(Vg));
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D.7 Frequency Response Estimates

D.7 Frequency Response Estimates

function [G]=tfsb(covt,para,N,n)

% Function: Frequency response estimates

% G - Estimated frequency response

% covt - Covariance of the parameter estimates

% para - FSF model parameters

% N - a row vector with numbers of frequency response

% n - minimum numbers of FSF parameters

j=sqrt(-1);

dw=0.005;

w=dw:dw:pi*n/N;

epk(1,1)=1;

for k=1:(n-1)/2

wk=2*k*pi/N;

epk(1,2*k)=exp(j*wk);

epk(1,2*k+1)=exp(-j*wk);

end

w=w’;

ep=exp(-j*w);

for k=1:n

v1=ones(length(w),1);

for i=1:N-1

v1=v1+(ep*epk(1,k)).^i;

end

dep(:,k)=v1/N;

end

for k=1:length(w)

G(k)=dep(k,:)*para;

end
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Appendix E

Matlab Code - Frequency Domain

(Chapter 6)

E.1 System Identification - Frequency Domain

function [A,B,C,D]=sub_lagf(no_u,no_y,G,i,n,w,p)

% Function for estimating continuous time state space model

% no_u = number of input

% no_y = number of output

% G = measured frequency response data

% i = number of Hankel matrix when expanding rows

% n = model order

% w = sampling frequency

% p = Laguerre parameter

N=length(w);

% Generate W-operator

W = (j*w - p)./(j*w + p);

% Compute 1st order Laguerre filter

L = ((2*p)^0.5)./(j*w + p);
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E.1 System Identification - Frequency Domain

GW = zeros(i,N); phi = zeros(i,N); P = zeros(i,N);

for a=1:i

GW(a,:) = L.*(W.^(a - 1)).*G;

phi(a,:) = L.*(W.^(a - 1));

P(a,:) = (W.^(a+i-1));

end

% Separate into real and imaginary part

GW2=[real(GW) imag(GW)];

phi2=[real(phi) imag(phi)];

P2=[real(P)imag(P)];

% Perform the QR - Orthogonal triangular decomposition

A1 = [phi2;GW2;P2];

[R,Q] = RQ_Gram(A1);

R22=R(i+1:2*i,i+1:2*i);

R32=R(2*i+1:3*i,i+1:2*i);

R_i=R22*R32’;

% Perform the SVD - singular value decomposition

[U,S,V] = svd(R_i);

U_s=U(:,1:n);

% Create identity matrix

iden_mat2=eye(no_y,no_y);

iden_mat3=eye((i-1).*no_y,(i-1).*no_y);

iden_mat4=eye(n,n);

% Find Cw

J3 = [iden_mat2 zeros(no_y,(i-1).*no_y)];

Cw = J3*U_s;

% Find Aw

J1=[iden_mat3 zeros((i-1).*no_y,no_y)];

J2=[zeros((i-1).*no_y,no_y)iden_mat3];
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E.1 System Identification - Frequency Domain

N1 = J1*U_s;

M1 = J2*U_s;

Aw=(pinv(N1’*N1))*N1’*M1;

sai_temp = zeros(N,n+1);

for a = 1:N

sai_temp(a,:) = [Cw*(pinv(((W(a)).*iden_mat4) - Aw)) 1];

end

sai=[real(sai_temp);imag(sai_temp)];

Gtemp = G.’;

Gmeas=[real(Gtemp); imag(Gtemp)];

% Find Bw & Dw via least squares solution

theta = (pinv(sai’*sai))*sai’*Gmeas;

Bw = theta(1:n,1);

Dw=theta(n+1,1);

% Calculate A,B,C & D

A=p*(pinv(iden_mat4 - Aw))*(iden_mat4 + Aw);

B=sqrt(2*p)*(pinv(iden_mat4 - Aw))*Bw;

C=sqrt(2*p)*Cw*(pinv(iden_mat4 - Aw));

D=Dw+Cw*(pinv(iden_mat4-Aw))*Bw;
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