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Abstract 

Research into formation of hollow granules from liquid marbles is an emerging field in 

hydrophobic granulation. A liquid marble is formed by a network of self-assembled hydrophobic 

powder around a droplet, and this paper investigates the conditions required for forming hollow 

granules from a liquid marble precursor. 

 

Single drops of fluid were produced using a syringe and placed onto loosely packed powder beds 

of hydrophobic powders. Liquid marbles formed from several powder/liquid combinations were 

dried at several conditions to investigate the drying conditions required for formation of a stable 

hollow granule.  

 

The formation of stable hollow granules was found to depend on drying temperature and binder 

concentration. For HPMC and PVP binder, formation of hollow granule is proportional to binder 

viscosity and for HPC binder, this relationship is constant. Different combinations of powder and 

binder at both drying temperatures - 60ºC, 100ºC - had mixed success rates in forming hollow 

*Revised Manuscript-CLEAN COPY
Click here to view linked References

mailto:Karen.Hapgood@eng.monash.edu.au
http://ees.elsevier.com/powtec/viewRCResults.aspx?pdf=1&docID=2920&rev=2&fileID=115770&msid={16C15B15-650B-47E6-9F9B-2F6F9998AA3E}
E72964
Typewritten Text

E72964
Typewritten Text
Citation:Eshtiaghi, N, Liu, J and Hapgood, K 2010, 'Formation of hollow granules from liquid marbles: Small Scaleexperiments', Powder Technology, vol. 197, no. 3, pp. 184-195. 

E72964
Typewritten Text

E72964
Typewritten Text

E72964
Typewritten Text



 2 

granules, but generally the success rate was improved by using higher drying temperatures, smaller 

particles or higher viscosity binder fluids.  

 

Keywords: Hollow granule, liquid marble, non-wetting, hydrophobic granulation, dry water. 

 

1. Introduction 

Hollow granules can be formed from hydrophobic powders by “solid spreading nucleation” [1] 

where the powder spreads around a template drop and the interior liquid is subsequently dried to 

form a hollow granule. The nuclei formed by solid spreading are also known as “liquid marbles” [2, 

3] and “dry water” [4], and are used in cosmetic [4] and pharmaceutical formulations [1]. 

 

The pre-specified structural properties of hollow granules allow simultaneous control of granule 

size and structure, excellent flow, good compression for tabletting and fast dissolution rate. These 

granules are ideal for pharmaceutical products with a high concentration of a hydrophobic drug. 

Research into formation of hollow granules via either melt granulation [5] or via hydrophobic liquid 

marbles [1, 6] is an emerging field in hydrophobic granulation. 

 

Solid spreading nucleation can be used to create hollow pharmaceutical granules suitable for 

compression into tablets [1]. Powder shell formation experiments were performed in a 2L high-

shear mixer with 70 mass% of a submicron hydrophobic powder (contact angle >90
o
) and 78% w/w 

water, which was atomized over 7-8 minutes into the mixer. In addition, 20% microcrystalline 

cellulose and 4% hydroxypropyl cellulose binder were added as hydrophilic excipients components 

plus 1% sodium lauryl sulfate as a surfactant. By drying the liquid marbles to remove internal fluid, 
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stable spherical hollow granules were formed. The presence of excipients and surfactants did not 

prevent liquid marble formation or self-assembly of the particles at the drop interface since the 

hydrophobic model drug powder constituted 90% of the batch on a volume basis. Moreover, the 

excipients stabilized the powder shell to allow the hollow structure to be preserved during drying 

[1]. Apart from this one paper, there are no further studies on hollow granule formation from liquid 

marble precursors. 

 

Bhosale et al. [7] studied the strength of liquid marble formed with PTFE (7-12 m) and 2 types 

of fumed silica powder, which had been treated with hexamethyldisilazane and 

dimethyldichlorosilane. Bhosale et al. suggested that high surface area nanoparticle materials like 

Aerosil create more uniform powder shells though uniform coverage of the liquid –vapor interface. 

They found that nano-powder shells form an “elastic” membrane that makes these liquid marbles 

mechanically robust in comparison with conventional liquid marbles made from larger particles.  

We expect that liquid marbles formed from nano-particles may be able to withstand higher 

compressive stresses during drying, and may be more likely to form a hollow granule. 

 

Dandan and Erbil [8] determined the evaporation rate of graphite liquid marble and found that 

graphite liquid marbles had a much longer life time than a pure water droplet of the same size. The 

presence of graphite retarded the evaporation of water and extended the time required for the liquid 

to be completely evaporated. Increasing the relative humidity of the medium increases the 

evaporation resistance. For larger droplets, the lifetime was determined by diffusion controlled 

evaporation [8]. In comparison to Bhosale et al. [7] study, they found the graphite liquid marble 

evaporation rate was 7% lower compared to PTFE liquid marbles, which indicated that the liquid 
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marble life time is extended by using small particles (e.g. graphite 10-20 m) rather than larger 

particles (e.g. PTFE (5-7  m).  

 

Polymeric binder is required to avoid the liquid marble collapsing after drying, as the binder 

forms solid bridges between the particles during drying which give strength to the powder shell. The 

physical properties of the binder and the drying temperature are both expected to be important in 

avoiding granule collapse. Drying of liquid marbles is expected to show some similarities with 

drying of liquid drops containing solutes. Fundamental studies of the phenomena occurring during 

the droplet drying process were reported by Charlesworth & Marshall [9]. They developed a 

technique where an individual droplet was suspended in a controlled air stream, and the weight and 

temperature were recorded during drying in parallel with visual observations of the appearance and 

size of the droplet (see Figure 1). They used an aqueous solution of an inorganic salt droplet in 

relatively slow rates of evaporation (moderate air temperatures and velocities). The first period of 

drying was characterized by evaporation from a free liquid surface which is similar for all droplets 

regardless of the solute or drying conditions. After further drying, crystals formed at the bottom of 

droplet and gradually formed a crust around the droplet. After completion of the crust formation, 

drying depended on the solutes and the surrounding air temperature. Charlesworth & Marshall [9] 

categorized these features into two main sections: air temperature above or below the boiling point 

of solution.  In this study, we are interested in drying a single droplet in air at a temperature below 

the boiling point of solution. For this case, three different sub-categories were defined [9] (see 

Figure 1): 

a) If the crust is rigid and porous, the air-liquid interface retreats between pores and the 

appearance does not change (I) 
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b) If the crust is rigid but non-porous, fracture phenomenon occurring on the crust allow air to 

enter the particle and the air-liquid interface returns to the crust surface under the influence 

of capillary forces. There are three possible conditions after fracturing: 

I. If fracture remains open, further formation of solid occurs out from particle surface 

(IIb) or within the crust structure (IIa).  

II. If the fracture closes, the supply of air would be disrupted and the liquid interface once 

more retreats into the crust interstices. As the amount of liquid decreases, successfully 

smaller pores are emptied (crystal grows (IIc)) 

c) Crust is pliable and impervious. Rupture by implosion could eventually occur as the skin 

thickens and stiffens (III). 

 

Charlesworth and Marshall’s study [9] as summarized in Figure 1 is also presumed to be 

applicable for liquid marble drying, as the outer shell of powder in a liquid marble can be assumed 

to be similar to the first step of drying from a liquid surface. After further drying and shrinkage, a 

solid shell-like crust is produced. The permeability of the powder shell and binder matrix will 

determine whether there are enough pores to allow the interior liquid to be vaporized freely, and 

thus which of the cases shown in Figure 1 will occur for the drying of liquid marbles.  

 

Walton and Mumford [10] also classified the various types of particle morphology produced at 

two different temperatures (70
o
C, 200

o
C). They used a single droplet drying technique with a 

droplet contained dissolved solids under controlled air temperature, humidity and velocity in a 

simulated spray dryer. Their study demonstrated that both the chemical and physical nature of the 

material are important in determining particle morphology and the pliable or plastic nature of skin is 
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related to its chemical and/or physical structure [10]. Polymeric materials tended to form a shriveled 

thin-walled hollow particle. Particles with a polymeric skin decreased in size without any rupture of 

the skin surface during initial drying period suggesting that the skin is porous. By increasing the 

concentration of solute in droplet, the particle diameter tended to stabilize as the particle skin (crust) 

adopted a more permanent structure, and resulted in a decrease in particle distortion, surface rupture 

and internal bubble nucleation. 

 

At lower drying temperatures after complete drying, particles tend to shrivel and deform, and 

some signs of internal bubble nucleation and particle inflation appeared [10]. An increase in drying 

temperature from 70
o
C to 200

 o
C increased the rate of heat and mass transfer experienced by both 

droplet and particle increased. This resulted in shorter drying times and more violent drying 

behavior which produced particles with a greater tendency to inflate, shrivel and in some cases 

explode. At 200
o
C, internal bubble nucleation was rapidly formed and the bubbles expanded to 

violently distort, and eventually rupture. This caused the particle to collapse, shrive and then re-

inflate. This cycle was repeated three or four times until the internal moisture had evaporated (see 

Figure 2). 

 

In some cases, evaporation of a residual liquid inside partially dried particles caused the liquid to 

foam and bubble causing internal blistering within the larger parent particle [10]. After drying, the 

hardened foam gave a blistered appearance to particle. High surface area powders with good gas 

absorption properties increased the internal porosity of the particles by adsorption of gases during 

drying. The internal structure of these particles showed much larger vacuoles [10]. 

 



 7 

 

This paper will investigate what happens to the liquid marble as the template drop is removed 

during drying for a variety of powder-fluid combinations and a range of drying temperatures. The 

aim is to identify the right powder-binder combination and the right drying temperature to produce 

stable hollow granules from liquid marble nuclei. 

  

2.  Materials and Methods 

Glass ballotini spheres (d50=65 m, AH/AG grade, ρ=2.5 g/cm
3
, Potters Industries Pty Ltd.) 

were used to form liquid marbles. In order to make the glass beads hydrophobic, SIGMACOTE 

solution (chlorinated organopolysiloxane in heptane, Sigma Aldrich Pty Ltd.) was used. Two 

additional hydrophobic powders were used: Polytetra fluoroethylene (PTFE) with four different 

particle size grades (1, 12, 35, and 100  m, ρ=2.1 g/cm
3
, Sigma Aldrich Pty Ltd), and fumed silica 

Aerosil R974 with primary particle size of 12nm (Degussa, Germany). 

 

Several different binder solutions were used:  PVP (poly-vinyl pyrrolidone (40T), Sigma Aldrich 

Pty Ltd), HPMC (Hydroxy Propyl Methyl Cellulose, Premium LV, E3, The DOW Chemical 

Company), and HPC (Hydroxy Propyl Celloluse, 100,000 Mw, Sigma Aldrich Pty Ltd). 

Concentrations between 2-18% on a weight basis were used. Fluid viscosities were measured using a 

rotational viscometer (Visco Basic Plus, Fungilab, Barcelona). 

 

Liquid marbles were prepared by releasing a droplet from a 1mL syringe with a 18g needle 

approximately 2cm above a loosely packed powder bed.  The droplets were then agitated using the 

syringe needle tip on the surface of the powder bed to form a multilayered liquid marble. At least 10 
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liquid marbles were dried for each individual combination of temperature, powder and binder. To try 

to estimate the liquid to solid for each powder-liquid combination, the average weight of 10 liquid 

marbles was measured using an analytical balance, and compared to the average weight of 10 drops 

of the fluid. The powder shells were very light, approximately 0.1mg each, and the random 

variations during weighing were the same or larger than the weight of the powder shell. We were 

unable to obtain sensible results for the L: S ratio and this data is therefore not reported. 

 

Several drying methods have been used: air drying at 24 ºC and 31% humidity, freeze drying at -

50 ºC and 300 mmHg (Bench Top Freeze Dryer, OPERON Co., Ltd.) and oven drying in a fan-

forced 60 L laboratory oven (S.E.M.(SA) Pty. Ltd) at 60ºC, 80ºC, and 100ºC and an overall air flow 

rate of 20 L/min. This gives an air flow rate of 12 cm/min. Based on the inlet air temperature and 

humidity, the RH in the oven was approximately 3%RH at 60 ºC and less than 1%RH at 80ºC and 

100ºC. Liquid marbles were dried for at least 12 hours to ensure complete drying.  

 

Once dried, the granules were removed from drier and classified visually into categories and 

counted. To minimize inconsistency, all analysis for each powder/binder combination was 

performed on the same day. Pictures of the hollow granules were taken with a stereo microscope 

(SMZ series) with a 3MP Motic camera. The internal structure of selected granules was analyzed 

using an XUM x-ray microscopy.   

 

The effects of changing the drying temperature, powder type and size, binder type and binder 

concentration were studied to determine the best drying conditions. The matrix of data was first 

analyzed for each binder solution at different drying temperatures to find the most suitable 
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temperature for drying liquid marbles regardless of binder and powder type. Then, the effect of 

binder and powder type at two selected drying temperatures (60 ºC and 100 ºC) were examined.  

 

3. Results  

During experiments we observed that if the liquid droplet was covered with only a thin or mono 

layer of powder, all the liquid marbles collapsed during drying regardless of temperature, binder and 

powder type. Survival of hollow granules was generally observed when there was a thick powder 

layer around the droplet. In practice during granulation in high shear mixers, it can be assumed that 

all droplets will have a multi-layer of powder as a result of the frequent collision with powders in the 

highly agitated powder motion in granulator. Moreover, anecdotal observations suggested that 

smaller the droplet size, the higher the chance of hollow granule survival. This is consistent with 

previous reports of collapsed granules occurring mainly in the larger granule sizes [1]. Drop sizes are 

in a granulation process are much smaller, typically 100-500  m, so the liquid marble survival 

results in this study represent a worst case scenario. 

 

In our analysis we consider two criteria: “survivability” and “quality” of the hollow granules.  

“Survivability” refers to the propensity of the liquid marbles to form hollow granules, i.e. to avoid 

collapse during drying. “Quality” of the hollow granules refers to their shape. A variety of different 

shapes were observed after drying: collapsed granules which often formed an annular blood cell 

shape; buckled hemispherical granules with one or more depression; and perfect hemispherical 

granules.   
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Figure 3 shows several examples of each type. In a few cases, perfect spherical granules were 

formed. The success of a given drying condition is a combination of how well the drying condition 

supports both survivability and quality.  

 

X-ray microscopy was used to confirm that the spherical or hemispherical granules formed after 

drying were hollow, as shown in Figures 4, 5, and 6. Figure 6 clearly shows the hollow structure as 

the absence of particles in the interior of the shell is obvious. X-ray microscopy was conducted only 

on glass ballotini and Aerosil granules as a confirmation of visual observations. The remaining 

granules are assumed to be hollow or collapsed based on the shape of the exterior. 

 

A systematic set of experiments was performed with different binder types and powders, at a 

range of different drying temperatures. Table 1 summarizes the overall results of these experiments, 

and indicates the dependency of stability and shape of the hollow granules on the drying 

temperature, and powder / binder combination.  

 

From Table 1, PVP polymer was not able to stabilize glass ballotini liquid marbles at any tested 

drying temperature, but HPMC polymer was successful at 100ºC and HPC above 80ºC. Maintaining 

a hollow granule throughout the drying process appears to be aided by higher drying temperatures. 

All the tested binders were able to make hollow granules with Aerosil at drying temperatures above 

60ºC.   The results in Table 1 imply that the ability to form hollow granules after drying depends on 

both binder type and drying temperature. 
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The stability of the hollow granule appears to depend on the powder used as indicated by Walton 

and Mumford [10], as different drying temperatures are required for each powder to ensure hollow 

granule survival. For example, glass ballotini hollow granules survive above 80ºC while Aerosil 

granules survive as long as the drying temperature is above 60ºC. Moreover, by increasing 

temperature from 60ºC to 100ºC the shape of hollow granule gradually improves until a perfect 

hemisphere is reached (see Table 1). This result shows that the final quality of the hollow granules 

depends on both the drying temperature. At higher drying temperatures, quick removal of the interior 

liquid improves the stability of hollow structure. The receding surface of the drying droplet does not 

generate as much capillary stress on the particle shell. It may also form a rigid porous shell at higher 

drying temperatures (as per case Ia in Figure 1) and form a pliable shell (see case III in Figure 1) at 

lower drying temperatures [9]. 

 

To find a general trend for drying liquid marbles it is necessary to examine a matrix of data for 

different binder/powder combinations at two selected temperatures- 60ºC and 100ºC - which had 

shown reasonable hollow granule formation after drying in the preliminary drying studies in Table 1. 

Each binder-HPMC, PVP, HPC- is discussed individually below before analyzing the overall trends 

observed during the experiments. 

 

3.1. HPMC binder  

As the HPMC binder concentration increased, the survivability of the liquid marbles improved as 

well as the quality of the hollow granules. As shown in Figure 7, by increasing HPMC concentration 

from 5% to 18% the proportion of perfect hollow granules increased from 19% to 72% and the 

percentage collapsed was reduced from 58% with 5% HPMC to 0% with 18% HPMC. This result is 
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consistent with the previous study reported by Walton and Mumford [10] as they reported that by 

increasing the concentration the particle distortion and surface rupture decreased. The Formation rate 

for buckled granules was unaffected over the concentration tested. Data in Figure 7 is a combination 

of result for all powders- Aerosil, glass beads and PTFE - at both drying temperatures - 60ºC and 

100ºC.  

 

Figure 8 illustrates how increasing the concentration of HPMC affected the quality of hollow 

granules formed from Aerosil. The 12% HPMC granule (left) is almost a hemisphere and has a hole 

in the base. In contrast, the granule formed from 18% HPMC (right) is noticeably more spherical and 

has no hole in the base.  Some of the produced hollow granules produced with 18% HPMC had odd 

striped patterns on their surface (see Figure 9). The striated surface may be the first step toward 

buckling. As the overall shape of these hollow granules was still hemispherical, these hollow 

granules were classed as hemispherical rather than buckled.   

 

Increasing the drying temperature from 60ºC to 100ºC improved the success rate for hollow 

granule formation using HPMC binder across all powders (Figure 10). For example, with 8% HPMC 

dried at 100ºC exhibited less collapsing compared to drying at 60ºC. It appears that increasing the 

drying temperature does not significantly affect the proportion of buckled granules. Figure 10 shows 

a steady amount of buckled hollow granules across HPMC 8% to 18%, while the amount of 

collapsed granules decreases and the number of perfect granules increases. Thus, increasing the 

drying temperature considerably improves both the survivability and quality of hollow granules 

formed with HPMC as a binder.  
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Increasing the drying temperature at higher HPMC concentrations (12 &18%) had little effect on 

the quality or survivability (see Figure 10). When the desired hollow granule is achieved at a lower 

temperature, there is no advantage in increasing the drying temperature further.  

 

Figure 11 shows the survivability and quality of HPMC granules as a function of the powder 

used. Data for all HPMC concentrations and both drying temperatures have been combined to show 

the overall trend in Figure 11.  

 

Overall, Aerosil is clearly most successful powder in terms of survivability as well as the quality 

of formed hollow granule. The loosely aggregate floc-like structure of the nano-sized silica particles 

creates a highly porous shell and consequently increases the chance of survival (see case I in Figure 

1). These resilient Aerosil liquid marbles are consistent with reports by Bhosale et al. [7] that nano-

sized Aerosil forms stronger liquid marbles compared to larger size particles. This is demonstrated in 

Figure 11, where Aerosil is produces a very high proportion of perfect hemispherical hollow 

granules compared to PTFE and glass beads as these liquid marbles will withstand higher 

compressive stresses and tensile loads [7], as experienced during drying.  

 

It was expected that as particle size decreased, the chance of survival would increase as small 

particles are subjected to less gravity force due to the reduced weight of the small particles. 

However, for PTFE powder, the largest PTFE 100  m powder was the most successful, then the 

12  m and 1  m size grades, and finally the 35  m size grade which was the least successful. The 

12 & 1  m size grades of PTFE may form better multilayered powder shells due to their 

cohesiveness and this would improve the survivability. The PTFE 100 may also provide good 
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coverage as each particle was large and the particles were observed to pack fairly densely in the 

powder shell, leaving relatively only small regions of the droplet surface uncovered. The chance of 

survival of the liquid marbles will be high as powder creates a uniform particle layer in the liquid-

vapor interface [7]. These factors would explain the apparent superiority of 100, 12, and 1 micron 

PTFE powders over the 35 micron size grade, which was neither large nor cohesive and could not 

achieve good liquid coverage.  

 

3.2. PVP binder  

Increasing the PVP binder concentration also increased the success rate for hollow granule 

formation. As shown in Figure 12, increasing the concentration of PVP from 5% to 18% improved 

survivability. Increasing the binder concentration had only a slight effect on the quality of the 

granules formed, as there is no significant change in the number of perfect hollow granule across 5 

to 18% PVP concentration. 

 

Increasing the drying temperature from 60ºC to 100ºC improved PVP hollow granule survival by 

decreasing the number of collapsed granules and increasing number of buckled granules across all 

PVP concentrations (Figure 13 ).  

 

From Figure 14, Aerosil was the most successful powder (see lowest left image in Figure 3) with 

PVP binder, and glass ballotini was the least successful. Hollow PVP granules are most likely to 

survive if the particle size is small – the nanosized Aerosil R974 produced 100% perfect granules 

and the 1μm and 12 μm grades of PTFE had high survival rates close to 50%. For glass ballotini 

neither increasing binder concentration nor increasing drying temperature could produce any form of 
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hollow granule. The complete collapse under all conditions implies that some property of the glass 

powder – perhaps the higher density - is incompatible with PVP binder which corresponds with 

Walton and Mumford [10] study that the final morphology of particles depends on chemical and 

physical nature of the skin material. In summary, the survival of PVP hollow granules improves as 

the particle size decreases, the drying temperature increases and as the concentration of PVP 

increases.  

 

3.3.   HPC binder  

Figure 15 summarizes whether a hollow granule survived during drying process as a function of 

HPC binder concentration across all used powders and drying temperatures. As the HPC 

concentration increases from 5% to 18 %, the number of collapsed granules remains almost constant 

but the quality improves as shown by the decreasing number of buckled granules and increasing 

number of perfect hollow granules. Above 10% HPC concentration, it seems that the quality of the 

formed granules decreases while the number of collapsed granules remains constant. In other words, 

increasing HPC concentration above 10% causes previously perfect hollow granules to start 

buckling. This implies that there is a limit in increasing the concentration of binder (see Figure 15) 

and that there is an optimum binder viscosity and/or surface tension which occurs at 8-10% HPC. 

 

Figure 16 and Figure 17 summarize hollow granule survivability during drying, as a function of 

HPC concentration and temperature for ballotini and Aerosil. Higher HPC concentrations are 

expected to produce stronger hollow granules due to a stronger and denser network of solid bridges 

which form during the drying process. The lowest HPC concentration of 2% was not able to properly 

assemble particles together to prevent collapsing the liquid marble during drying, even at the highest 
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drying temperature (100ºC) with Aerosil (see Figure 16). These figures show that there is a 

minimum concentration of HPC required to avoid granule collapse, and that the minimum HPC 

concentration varies for each different powder. For example, 5% HPC could stabilize hollow 

granules of Aerosil R974 (Figure 16) at 60ºC, but a higher concentration of HPC (10 %) was needed 

to maintain the hollow structure for glass ballotini (Figure 17) at the same temperature. The reason 

for this phenomenon may be related to the particle size and density, as larger and denser glass 

particles would need higher binder concentration to provide enough inter-particulate bonds to 

withstand the gravitational forces.  

 

Increasing the concentration of HPC binder also affects the hollow granule shape. As can be seen 

in Figure 17, by increasing the concentration of HPC binder, more “perfect” granules – including a 

full “base” are formed from glass ballotini. For instance, by increasing the HPC concentration from 

8% to 10%, just over 50% of the hollow granules formed from glass ballotini had a full base at 

100ºC. By further increasing the HPC concentration to 18%, all of the formed granules had a base 

(see Figure 17). The reason why no bases were formed for Aerosil granules despite a wide range of 

HPC concentrations is not clear. 

 

The survivability of hollow granule dried at lower temperatures can be increased if the HPC 

concentration is increased. From Figure 17 for glass ballotini and up to 8% HPC in binder, all glass 

ballotini liquid marbles dried at 60ºC collapsed. By increasing the binder concentration from 8% to 

10% and 12%, the hollow granule survival rate after drying at 60
o
C increased 30% and 60%, 

respectively.  
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Figure 16 and Figure 17 show that the survivability and quality of the hollow granules is 

different for each powder. PTFE 100  m powder performed the best with HPC binder in terms of 

survivability and the proportion of perfect hemispherical shaped granules, compare to the smaller 

PTFE grades (see Figure 18). Figure 18 also shows that Aerosil performs better than other powders, 

perhaps due to its nano particle size or the low density of the fractal particle aggregates. Although 

hydrophobic glass ballotini particles are smaller (65  m) than PTFE 100  m and lighter, hollow 

granule formation was less successful with glass ballotini which indicates the significance of careful 

powder selection.  

 

In summary, Aerosil R974 was the most successful powder with HPC, and increasing HPC 

concentration improved the hollow granule quality. The effect of increasing the drying temperature 

was mixed. 

 

4. Discussion 

 

4.1.  Comparing all three binders: HPMC, PVP and HPC  

HPMC appeared to be the best binder as it worked well across the various powders and 

temperatures (see Figure 19). HPC and PVP seemed to both perform poorly in comparison.  

However they seemed to complement each other in their response to different conditions: HPC 

performed well with the glass ballotini whilst PVP didn’t, and vice versa with respect to the PTFE 1 

and PTFE 12 powders. 
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In general, increasing temperature increases survivability in all cases (see Figure 10 and Figure 

13) and improves significantly the quality of granules formed with HPMC (see Figure 10). 

Temperature had no significant effect on the quality of hollow granules formed with PVP (see 

Figure 13) and HPC (data not shown). There may be a viscosity effect involved, as the PVP was 

much less viscous than HPC and HPMC. For comparison, Figure 20 shows the survivability of 

hollow granules as a function of viscosity for different concentrations of HPMC, PVP and HPC 

binders. As shown in Figure 20, for PVP and HPMC there is a consistent proportional relationship 

between binder fluid viscosity and the proportion of formed hollow granule. In order for a liquid 

marble to collapse, the drop must deform which requires internal fluid flow. We propose that higher 

viscosities binder fluids resist this flow and therefore enhances liquid marble stability during drying. 

However, for HPC, the average survival rate remains relatively constant between 40-50% regardless 

of the HPC concentration or viscosity. This may be related to precipitation of HPC and decreasing 

solubility of polymer in water at higher temperature. HPC is freely soluble in water below 38ºC, 

forming a smooth, clear, colloidal solution and changes to a swollen floc at a temperature between 

40 and 45ºC [12]. HPC precipitates out when the temperature increases above the cloud point, where 

the hydrogen bonds between water and the polymer chains become less favorable. .The solubility of 

the HPC in water then decreases and a polymer-rich phase precipitates [11] which affects the 

uniformity of the polymeric bridges formed during drying. For example, the cloud point of a 250 

ppm HPC solution is 43.5ºC [11] well below even the lowest drying temperature of 60ºC. As the 

polymer concentration decreases, the cloud point increases [11]. This may at least partly explain why 

increasing HPC concentration caused previously perfect hollow granules to start buckling, as the 

lower cloud point caused earlier precipitation of the HPC which adversely affected the survival rate. 
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Aerosil was the most successful powder for forming perfect hollow granules with all the binders 

tested (see Figure 21 ). However, there were some exceptions at higher binder concentration (18% 

HPC and 18% HPMC) and at the highest drying temperature 100ºC. The most successful 

combination was 12% HPMC binder using Aerosil R974 dried at 100
o
C. The results for glass 

ballotini had mixed success.  It was highly unsuccessful with PVP, moderately successful with the 

HPMC/HPC and did better at higher temperatures. PTFE powders had mixed success again but at 

least some of the grades worked with all binders.  

 

Figure 22 shows the effect of PTFE particle size on the hollow granule survival rate for the three 

tested binder fluids. For PVP, there is a critical particle size somewhere between 12  m and 35  m 

where only hollow granules formed from particles smaller than this size can survive. HPMC also 

shows a sharp drop in survival rate for PTFE35, although the survival rate then rebounds for the 

large PTFE 100 particles. In contrast, HPC shows a high success rate only for the largest PTFE 

particles. 

 

When drying marbles formed with high binder concentrations, in some instances a higher drying 

temperature induced collapsing or buckling. At higher binder concentrations, the fluid viscosity 

could be quite high which causes the droplets to be slightly larger and thus more prone to 

deformation during the drying process. When dried at 60ºC, more shrinkage of the liquid marbles 

occurred (see Figure 23) and this may have increased survivability, as opposed to 100ºC where 

shrinkage would occur less. Thus, the beneficial effects of drying at a lower temperature when using 

high concentrations of binder may be due to the enhanced shrinkage and strengthening of the liquid 
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marble during drying. These points at least partly explain the unexpected lack of success at high 

binder concentrations and higher drying temperatures for both HPMC and HPC binders. 

 

4.2. Particle size effect 

As drying continues the particles pack closely enough that inter-particle repulsions resist further 

shrinkage [13]. The binder, however, continues to vaporize through the holes between the particles 

[8]. The decrease in binder volume causes the receding of the drying surface into the droplet. 

Buckling of liquid marble can then occur because decreasing droplet pressure exerts a compressive 

capillary stress on the particle shell. When this stress becomes large enough to overcome the 

repulsive forces between the particles the outer shell undergoes buckling and wrinkling. It is clear 

inter-particle forces play an important role in determining droplet buckling, and any other 

ingredients in the particle shell can affect these forces and the buckling behavior of liquid marble. 

Polymers are an example of material that can significantly change the interaction between solid 

particles [13].  

 

Aerosil was the most successful powder with all of binders, presumably because the inter-

particle forces between the nano particles are high and able to resist the capillary stress. This is in 

agreement with previous study by Bhosale et al. [7] who indicated that the loosely aggregate floc-

like structure of the nano-sized silica particles creates a highly porous shell and consequently 

increases the chance of survival. This hypothesis also agrees with case I in Figure 1 by Charlesworth 

& Marshall [9].  
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4.3. Shrinkage of liquid marble during drying 

During drying of the liquid marbles, the droplet shrinks and the final granule size is smaller than 

the original droplet. The level of shrinkage depends on the drying temperature. Figure 23 shows two 

granules of Aerosil with 8% HPC dried at 60
o
C and 100

o
C. Although their initial primary droplet 

size was the same, it is clearly seen that the granule dried at 60ºC is smaller than granule size at 

100ºC. The higher drying temperature creates a granule size more comparable with primary droplet 

size. This can be seen as an additional variable requiring control, or as an additional variable which 

can be used to manipulate the granule size. We expect that the granules shown in Figure 23 would 

also have different granule strengths, due to both the physical size and the film thickness, although 

we have not performed any experiments to test this to date. 

 

4.4. Implications of liquid marble drying behaviour 

We have previously postulated a series of steps for liquid marble formation and for hollow 

granule formation [1]. The final step was that “the multi-component powder shell must be 

sufficiently strong to be self-supporting in order to avoid collapse during drying to form a hollow 

sphere and subsequent standard powder handling operations” [1]. Qualitatively, the drying behavior 

of liquid marbles is in agreement with the types of drying behaviors observed by Charlesworth & 

Marshall [9] and shown in Figure 1. All crust structures except IIC were observed during this study. 

We conclude that the optimal drying conditions for liquid marbles are driven by similar mechanisms 

for drying of solute drops, except that liquid marbles begin the drying process with a powder shell 

“crust” already in place. This observation should be of practical use during formulation and product 

development of cosmetic and pharmaceutical products based on liquid marbles and hollow granules. 
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5. Conclusion 

The optimal condition for stabilizing liquid marbles during drying and formation of hollow 

granules were investigated for several types of powder and binder at different drying temperatures. 

Higher drying temperature, smaller or nano-size particles and higher binder concentration tend to 

promote the formation of perfect hollow granules. It was found the survival rate was directly 

proportional to binder viscosity for HPMC and PVP. However; for HPC binder the survival rate was 

essentially constant regardless of HPC concentration. Different combinations of drying temperature, 

binder type, binder concentration, and powder type/grade could result in quite large changes in 

survival rate indicating the importance of careful formulation during hollow granule process 

development. 
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Figure 1. Selected structures formed after drying of a single droplet below the boiling point of the 

solution [8] 

 
Figure 2. Selected different particle morphologies formed after drying of a single droplet at 70ºC 

and 200 ºC [10] 
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(a)Collapsed 

   

Aerosil & 18% HPC at 100ºC Ballotini & 8% PVP at 60ºC PTFE 35 & 5% HPC at 100ºC 

(b)Buckled 

   

Aerosil & 12%HPC at 100ºC Ballotini & 10%HPC at 100ºC PTFE 12 & 8% HPMC at 60ºC 

(c )Perfect 
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Aerosil & 18%PVP at 100ºC Ballotini&12% HPMC at 100ºC PTFE 100&18%HPC at 100ºC 

 

Figure 3. Formed hollow granule structure of Aerosil R974, hydrophobic glass ballotini (AG) and 

PTFE powder (a) collapsed (b) buckled (c) perfect  

 

 
Figure 4. X-ray microscopy image of a buckled hollow hemisphere granule (3mm Diameter) made 

from hydrophobic glass ballotini and 10% HPC dried at 60ºC  

 

       
                                                       (a)                                       (b) 

Figure 5. X-ray microscopy image of hollow spherical granule (2-3mm Diameter). Hydrophobic 

glass ballotini and 10% HPC dried at 100ºC (a) top view, (b) side view 
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                                          (a)         (b)            (c) 

Figure 6. X-ray microscopy image of hollow hemispherical granule (2-3mm Diameter) of Aerosil 

R974 and 8% HPC from, (a) top view, (b) bottom view, (c) side view  
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Figure 7. Effect of increasing HPMC binder concentration. Graph combines data for all powders 

and both drying temperatures.  

 

   
          (a)            (b) 

Figure 8. Hollow granules formed at 100ºC from Aerosil R974 and (a) 12% HPMC, (b) 18% HPMC  



 30 

 

 

 
Figure 9. Hollow granule formed with Aerosil R974 and 18% HPMC dried at 100ºC showing 

striated surface.   

 

 

0

10

20

30

40

50

60

70

80

90

100

Perfect 60ºC Buckled 60ºC Collapsed 60ºC Perfect 100ºC Buckled 100ºC Collapsed 100ºC 

Quality at different temperatures

H
o

ll
o

w
 g

ra
n

u
le

s
 p

e
rc

e
n

ta
g

e
 (

%
)

HPMC 5% HPMC 8% HPMC 10% HPMC 12% HPMC 18%

 
Figure 10. Effect of HPMC concentration and drying temperatures on survivability and quality of 

hollow granules (graph includes data for all used powders).  
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Figure 11. Effect of powder type on hollow granule survivability and quality. Data for all HPMC 

concentrations and drying temperatures have been combined. 
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Figure 12. Effect of increasing PVP binder concentration on survivability of hollow granule (graph 

includes data for all used powders and both drying temperature: 60ºC & 100ºC) 
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Figure 13. Effect of increasing drying temperature on survival of hollow granules using PVP binder. 
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Figure 14. Effect of powder type on survivability of hollow granule. Data from all PVP 

concentrations and both drying temperatures have been combined.  
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Figure 15. Effect of HPC concentration on the hollow granule quality (graph combines data for all 

powders and both drying temperatures) 
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Figure 16.  Effect of HPC concentration on quality of Aerosil R974 hollow granule (graphs 

combines data for both drying temperatures) 
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Figure 17. Effect of HPC concentration on quality of glass ballotini hollow granules (graph 

combines data for both drying temperatures) 




