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Abstract 

We describe the use of single-plane phase retrieval tomography using a laboratory based 

X-ray source, under conditions where the retrieval is not formally valid, to present images 

of the internal structure of an Aerosil granule and a hydrated bentonite gel. The technique 

provides phase images for samples that interact weakly with the x-ray beam. As the 

method is less affected by noise than an alternative two-plane phase retrieval method that 

is otherwise formally valid, object structure can be observed that would not otherwise be 

seen. We demonstrate our results for phase imaging in tomographic measurements. 

 

1. Introduction 

In conventional, or absorption, tomography, the distribution of X-ray attenuation by the 

object can be calculated using filtered back-projection1 from contact, or radiological, 

measurements of the intensity as modulated by the sample for a set of different projections 

through the sample2. This can become a problem for materials with low electron density 

due to the weak attenuation of X-rays where noise in the experimental system can swamp 

the signal due to absorption. In such cases it has been recognised that measurement of the 

propagated beam exiting a sample will exhibit contrast due to diffraction from the spatial 
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distribution of the real and imaginary parts of the refractive index of a material. The 

imaginary part of the refractive index is colloquially associated with absorption imaging 

while the real part can dominate what is referred to phase contrast imaging3. Standard 

filtered back-projection methods2 can be applied to the projections acquired in phase 

contrast imaging to provide a qualitative picture of the sample due, typically, to edge 

enhancement of the sample image4. Phase contrast methods have been widely used by 

synchrotron researchers due to the highly coherence of the source5. However, laboratory 

based x-ray tube systems with sufficiently small source sizes have also been used to 

demonstrate phase contrast imaging6, 7.  

 

There are several approaches to phase retrieval currently used8-11. We consider here 

methods that rely solely on the free-space propagation of x-rays that exit a sample as this 

allows sample imaging with a minimum of additional equipment. There are also several 

algorithms that have been explored for free-space propagation8-10 and the particular 

method chosen will depend on the imaging regime in which the data has been acquired. 

This will include factors such as the X-ray energy used, the properties of the sample and 

the experimental geometry. An important class of algorithms, in the context of free-space 

propagation methods, are those where the assumption is made that the sample is 

homogeneous10, 12 . For more general samples multiple planes of image data at different 

propagation distances must be collected in order to solve the phase retrieval problem. 

Under the assumption of sample homogeneity a single plane of data will typically suffice 

and hence these methods are often referred to as single plane methods.  

 

In phase retrieval tomography the intensity data measured at the detector is subjected to a 

phase retrieval step that provides a map of the real part of the projected refractive index 
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through the sample. Those projections can in turn be operated on using filtered back-

projection to obtain the 3D distribution8, 13. Alternatively, algorithms have been 

demonstrated that combine the phase retrieval and filtered back-projection steps into a 

single operation that produce a 3D map of the sample distribution in the real part of the 

refractive index14-16. In some of that work16, 17 it was shown that, although violating the 

assumption of homogeneity, useful results could still be obtained for non-homogeneous 

samples when using a single plane method.   

 

In this paper we will further explore the use of a particular single-plane approach under 

conditions that violate the assumption of sample homogeneity in the context of phase 

imaging using a laboratory source. We demonstrate that notwithstanding the lack of 

sample homogeneity high-quality images amenable for 3D sample segmentation can be 

obtained. In addition, due to the different noise characteristics of the single plane method 

compared to some multiple plane methods, more useful images can be obtained using the 

single plane approach for non-homogeneous samples. Some experimental results of this 

type of phase retrieval will be demonstrated. 

 

2. Phase retrieval, noise and homogeneity 

A well-studied multiple plane phase retrieval method3 can be written as: 
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 where  k=2π/λ, λ is the wavelength, r is the position in a plane, I is the intensity, z the 

propagation distance and φ the retrieved phase. Note that in the Fourier domain, the 

Laplacian has a simple expression given by 2 1
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whereF is the Fourier transform operator, u is the Fourier variable conjugate to the 

position coordinates. Two intensity images taken at different propagation distances 

separated by dz are needed for this method in order to obtain the intensity derivative, 

∂I/∂z, hence its classification as a multiple-plane, or in this case two-plane, scheme. It is 

readily seen that low spatial frequencies in the intensity derivative and in the filtered 

intensity derivative divided by the intensity will be enhanced by the 1/u filtering term that 

appears twice in the solution to the phase. Consequently, any noise signal that has power 

at low spatial frequencies will be enhanced in the retrieved phase. 

 

The phase retrieval for a single plane method is written12, 14 (in the weakly absorbing 

limit): 
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where μ and δ  are the attenuation coefficient and the decrement of the real part of the 

refractive index respectively, zI  is the intensity at a distance z and inI is the intensity 

entering the sample. It can be seen here that low spatial frequencies will now be 

suppressed by the appearance of the absorption term, μ, in the denominator. 

 

To better compare the noise performance of the two approaches, consider the case when μ 

varies insignificantly in r direction. So that / 0rμ∂ ∂ ≈  and  Eq. (2) can be simplified as: 
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Figure 1 shows the simulation result of applying the two- and single-plane phase retrieval 

of Eq’s (2) and (3) to a Gaussian shaped phase object with maximum phase shift of 4.7 

rad. The noise is composed of random numbers with a standard deviation of a percentage 

of the mean intensity. We chose experimental and materials parameters for an experiment 

similar to those described below to illustrate the noise behaviour here.  The X-ray energy 

was 11.5keV. We used a polyimide sample (C22H10N2O4) with δ = 2.36x10-6 and μ = 

355m-1. The noise is 1%. The separation distance, dz, for the two-plane method and the 

propagation distance, z, for the one-plane method are shown in the first column of Figure 

1. The plots are taken horizontally in the middle of the field of view (1000x1000) μm2 of 

each image. Figure 1 shows that the single plane algorithm is more stable to noise and 

increasing distance can be used to reduce the noise effect in both single- and two plane 

phase retrieval methods. 

 

If we consider measured intensity that is entirely comprised of noise, n(r), then it is readily 

shown18 that the characteristic features in the retrieved phase obtained from Eq. (4) can be 

described by: 
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where the superscript symbol 2 denotes that the phase is retrieved using the two-plane 

method described in Eq’s (2) and (4). It can be similarly shown that the phase retrieved 

from a noise signal using the single plane method of Eq. (3) is given by:   
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where the superscript symbol 1 denotes the single plane method.   
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For a noise distribution of pseudo-random numbers, n(r), the Fourier transform, is also 

composed of random numbers. Eq (5) then shows that the distribution of spatial 

frequencies in the retrieved phase arising from noise is strongly peaked at the origin due to 

the effect of the division by u2. Thus this type of phase retrieval behaves as a low pass 

filter with a strong peak around the origin18. The result is that low frequency noise is 

amplified, which causes a low frequency contamination in the phase retrieved product, as 

confirmed in simulation results (Figure 1-left column). Eq (5) also shows that a large 

separation distance between the two measurement planes, dz, is critical for reducing the 

magnitude of noise as can be seen from the lineouts in the left column of Figure 1.  

 

For the single-plane method Eq (6) shows that the distribution of spatial frequencies in the 

retrieved phase arising from noise will have a similar distribution to the original random 

number noise, provided the attenuation term, μ, in the denominator, μ+zδu2 dominates 

significantly. As the propagation distance, z, increases the filter acts more like a low pass 

filter but where the attenuation component will always limit the amplification at the origin 

(Figure 1-right column). It can also be seen from the lineouts in Figure 1 that the 

magnitude of the retrieved phase due to noise for the single plane method is, in this case, 

less than that for the two-plane method. 

 

A Tikhonof regularization parameter, α, that handles division by u=0 in Eq (5) can also 

act to provide noise suppression by substituting19: 
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Tikhonof regularisation has been pointed out before in the context of the division by zero 

effect that the filter term introduces in various forms of phase retrieval10 but it is worth 

considering here in relation to the effects of noise and the quality of the retrieval.   

 

Figure 2 shows the comparison of the filter terms for Tikhonof regularisation, for the two-

plane approach and for the single-plane approach. For realistic parameters it can be seen 

that the single-plane approach will limit low frequency noise effects compared to the two-

plane approach. Violating the homogeneity assumption will have a similar effect to using 

the wrong materials parameters, δ  and μ  in Eq.(3). The effect of this on the filter term 

can be seen in Figure 2. It can be seen that even a gross change (factor of two in the 

absorption coefficient or δ value) has relatively little effect on the filter term in the phase 

retrieval. Additionally, while having the wrong δ  and μ  for non-homogenous samples 

will give incorrect magnitudes in the retrieved phase. The relatively small errors at low 

frequency mean that, in general, the retrieved shape of an object will be preserved. On the 

other hand, varying the Tikhonov regularisation parameter, α, for the two-plane approach, 

will suppress very low frequency terms as shown in Figure 2 (dot line). Increasing the 

value of the regularization parameter will shift the maximum peak to higher frequencies 

and will suppress more of the low frequency terms. Therefore, Tikhonov regularisation is 

more likely to introduce artefacts into the retrieved shape of an object. 

 

Overall, violating homogeneity is thus expected to have a relatively benign effect on the 

retrieved phase in the single-plane approach compared to the noise and shape effects seen 

in the two-plane approach.  

  

3. Experimental results 
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We present here two case studies comparing qualitative phase-contrast tomography (i.e. 

no phase retrieval), single-plane phase retrieval tomography where we violate the 

assumption of object homogeneity and two-plane phase retrieval tomography. The three 

different cases are represented schematically in Figure 3.  

The first sample is an aerosil granule representing a weakly absorbing non-homogeneous 

sample. The second sample is a hydrated bentonite gel representing an absorbing and non-

homogeneous sample.  

 

3.1 Aerosil granule: non-homogeneous sample 

Aerosil R202 (Degussa Co. Germany) is the commercial name for highly hydrophobic 

fumed silica. Fumed silica is an amorphous compound of silicon dioxide (sand) produced 

in high-temperature processes. Aerosil R202 is a fine, very light and white powder with a 

particle size of around 16 nm and is widely used in the cosmetic and pharmaceutical 

industries. Granulation of hydrophobic powders is frequently required in the 

pharmaceutical industry20. Granulation is the process of collecting particles together by 

creating bonds between them by using a binding agent21. The poor wetting properties of 

hydrophobic powders can create considerable difficulty in understanding, controlling and 

trouble-shooting these industrial granulation processes20. Hollow granule formation is a 

new way to solve the problematic granulating behaviour of hydrophobic powders21. The 

dissolution rate of tablets due to the presence of hollow granules will be rapid and the 

drying will be fast due to the thin shell thickness. These granules also show good 

compressibility characteristics during the tablet pressing process. Hollow granules can be 

formed from hydrophobic powders by spreading powder around a template drop and the 

subsequent drying of the interior liquid to form a hollow granule. This process is known as 

liquid marble or dry water20.. 
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This sample represents a weakly absorbing non-homogeneous material. 3D X-ray images 

of a hollow Aerosil granule were obtained using the X-ray micro-computed tomography 

machine (Xradia Inc. USA), located in the Physics Department, La Trobe University. An 

X-ray source with a Tungsten target was operated at 40 kV and a current of 150 μA. The 

source size is about 8μm. The illuminating spectrum with such a source is not 

monochromatic, as is assumed in the phase retrieval formulae discussed above. We used 

an effective wavelength matched to the phase and absorption components in the formula 

using the procedure developed in Arhatari et al22. This approach works best for samples 

that are weakly absorbing. Consequently, we have applied the approach here to both a 

weakly (this sample) and strongly absorbing sample (the second sample) to investigate 

whether the beneficial effect in noise suppression still applies when the sample is both 

inhomogeneous and strongly absorbing.  

 

The granule was scanned by acquiring 361 projections taken at 0.5º rotational increments. 

The distance between the source and sample was zss = 100 mm, and the sample detector 

distances were zsd  = 20 mm and 125 mm. In this point projection geometry the phase 

retrieval formulae are modified by replacing distances with effective distance12 calculated 

by .ss sd
eff

ss sd

z zz
z z

=
+

 = 16.7 mm and 55.6 mm and by scaling images by the magnification, 

which was here 1.2 and 2.25.  The exposure time was 60 s for each projection. A CCD 

camera coupled with a scintillator and a 20x objective lens was used as the detector. The 

best resolution for this setup was about 1.2 μm. A dataset of intensity projections, at the 

two propagation distances was obtained and the three types of tomographic 

reconstructions described in Figure 3 were calculated.  
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Figure 4 shows the result for qualitative phase tomography. The edge-contrast 

characteristic of phase-contrast imaging in Figure 4 shows that the Aerosil granule is 

spherical and hollow with a diameter of about 200 μm. It has a thin (2 –  4 μm) shell and 

there are sponge-like structures outside the granule of similar density to the shell. The 

images at 16.7 mm show better resolution due to the source size demagnification by the 

geometric setup. Blurring from the finite source size starts to influence the images taken at 

55.6 mm, as indicated by the thicker and blurrier shell features. 

 

Phase retrieval tomography becomes an important technique for the study of the 3D 

morphology and structure of hollow granules within Aerosil as, qualitative phase contrast 

tomography (Figure 4) does not completely show the information available from the 

sample. Accordingly, we performed two-plane phase retrieval for each projected set of 

data (taken at 16.7 and 55.6 mm with a separation in effective propagation distance of 

38.9 mm) thus producing phase images for each projection. The resulting 3D 

reconstruction is shown in Figure 5 in the same cross section planes as for Figure 4. Figure 

5 shows similar spherical wall structure as the image in Figure 4, albeit indicating thicker 

walls. This is expected as Figure 5 shows a map of the phase and Figure 4 essentially 

shows a map of the Laplacian of the phase.  Of more interest is the suggestion of an object 

inside the spherical shell. However, the images are contaminated by low frequency noise 

artefacts, as indicated by a layer of clouds on the image and these are at a similar level of 

intensity to the putative object.  

 

Finally we performed single-plane phase retrieval for each projected set of data at both 

propagation distances. We used the refractive index of silicon dioxide (density of 2.2 

g/cm3 at effective energy for the attenuation term of 10.5keV and for the δ term of 
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11.5keV 22) to calculate the phase in each projection. The resulting 3D reconstruction is 

shown in Figure 6 in the same cross section planes as for Figure 4. The single-plane 

algorithm clearly reveals better sample structure and also provides greater contrast. While 

the 16.7 mm result provides better high frequency contrast, it is more sensitive to noise, 

compared to the larger propagation distance of 55.6 mm as indicated by the presence of 

noise artefacts. This is in agreement with Figure 1 (right column) that larger propagation 

distances will provide a lower noise magnitude in the retrieved result. 

 

Of particular interest is that the putative object seen in Figure 5 is clearly revealed in 

Figure 6. The results of the single-plane phase retrieval (Figure 6) are consistent with the 

features observed in an SEM micrograph (Figure 7). The micrograph shows multiple 

small, spherical attachments on the surface of the granule (indicated by arrows in Figure 

7). But it is not possible to tell from the micrograph whether the attachments are small 

hollow granules or small aggregates of the primary particles. The single-plane phase 

retrieval result confirms that the attachments (indicated by dot arrows in Figure 6 right 

column) are not hollow. The bright outlines surrounding the granule shell indicates a 

denser wall structure formed from Aerosil and the binder (i.e. HPC-Hydroxyl Propyl 

Cellulose), while the weak white colour is the agglomerated Aerosil. Aerosil powder tends 

to self-agglomerate to form a larger particle size between 1-50μm. These facts and the 

images suggest that these small exterior attachments are aggregated Aerosil particles21. 

 

This similarity between the external structures and the internal structures in Figure 6 also 

suggests that the large spherical hollow granule contains smaller spherical aggregates of 

Aerosil powder. The internal aggregates may be formed during granulation or perhaps are 
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related to erosion of the interior of the granule shell during drying, transportation or other 

handling process21.  

 

3.2 Hydrated bentonite gel: non-weak absorption and non-homogeneous sample 

Bentonite is a naturally occurring material and is among the most important industrial 

minerals used in energy recovery, manufacturing and environmental industries23. 

Bentonites are composed predominantly of the swelling clay mineral montmorillonite, but 

other minerals, such as quartz, feldspars, micas and carbonates may also be present in the 

fine-fraction. Swelling clay minerals like montmorillonite can take up several times their 

mass in water and swell to several times their volume, and when confined transmit water 

very slowly. Because of this, bentonites are useful as natural seals in dams, or as 

secondary barriers in landfills23. An important issue in the use of bentonites as hydraulic 

barriers is salinity induced loss of gel structure.  When fully hydrated sodium saturated 

montmorillonite forms a gel which strongly attenuates water movement. However, 

because montmorillonite surfaces interact strongly with solutes, when exposed to saline 

water, or water containing a large proportion of divalent cations24, the gel structure 

collapses forming micron-sized pores which are not as effective at retaining water.  While 

various spectroscopic and physical measures can be correlated to changes in the pore 

sizes, there are few direct measures available. Electron microscopy techniques have been 

developed25, but are time consuming and can be subject to experimental artefact or beam 

damage. Scanning transmission X-ray spectromicroscopy26 methods are useful for gaining 

high resolution images, but suffer from difficulty in gaining experimentally relevant 

information.  For example samples have to be of sub-micron to a few microns thick to 

provide quantitative results, providing obvious difficulty in studying gel structures. Thus, 

it is expected that 3D tomography can provide a visual indication of the changes in gel 
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structure occurring when an intact bentonite sample is subjected to wetting by different 

liquids.   

 

A processed sodium bentonite powder from Miles, Queensland, Australia, (marketed as 

Trugel® by UniMin Australia) was used.  We immersed a sample of bentonite within 

solutions of deionised water of 0.2M CaCl2  to determine the effectiveness of 3D 

tomography to differentiate differences in pore features within the clay gels. In its bulk 

form, essentially all of the bentonite passes a 100 μm sieve, but this is composed of a 

range of particle sizes and different mineral phases27. The bulk material is composed of 

montmorillonite (69%), quartz (15%), opaline silica (7%), feldspar (8%) and minor 

amounts (~1%) of mica, zeolite, gypsum and anatase.  Importantly, the < 0.2μm (200 nm) 

fraction, which makes up 50% of the bulk material, is 97% montmorillonite with a small 

amount of opaline silica. 

 

The clay-gel sample immersed in CaCl2 was chosen to represent both a non-homogeneous 

and absorbing sample. A similar set-up as described above was used, except that a tube 

voltage of 100 kV and exposure time of 80 s was used for each projection. The number of 

projections acquired for this scan was 721 taken at 0.25° increments. A dataset of intensity 

projections, at the same two effective propagation distances as before were obtained and 

the three types of tomographic reconstructions described in Figure 3 were calculated.  

 

Figure 8 shows the result for qualitative phase tomography. From the slice image, we can 

see that the sample consists mainly of particles within the 5 – 20 μm size range. Some of 

them are much larger, on the order of 200 μm, as seen in upper right of the YZ plane. As 
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is typical for qualitative tomography, edge enhancement from all the particles is well 

defined and the images at 16.7 mm have better resolution than those at 55.6 mm. 

 

We performed two-plane phase retrieval for each projected set of data (taken at 16.7 and 

55.6 mm with a separation in effective propagation distance of 38.9 mm) thus producing 

phase images for each projection. The resulting 3D reconstruction is shown in Figure 9 in 

the same cross section planes as for Figure 8. However, the images shown in Figure 9 

have very poor contrast, because the low frequency artefacts completely dominate the 

result.  

 

Finally we performed single-plane phase retrieval for each projected set of data at both 

propagation distances. We used the refractive index of clay (with density of 1.3 g/cm3) to 

calculate the phase in each projection. The resulting 3D reconstruction is shown in Figure 

10 in the same cross section planes as for Figure 8. Notwithstanding the violation of weak 

absorption (as well as homogeneity) it can be seen that the resulting images provide well 

resolved and high contrast features that can potentially be used to segment the different 

regions of the image. As observed in the qualitative phase analysis, immersion of the 

bentonite in 0.2 M CaCl2 caused flocculation of the gel phase (best observed at the 55.6 

mm distance of Figure 10). The white specks (circled in the XY view) are most likely 

anatase grains, whereas the intermediate density particles (circled in the YZ view) are 

quartz grains. Individual flocs of clay are observed, as are larger incompletely hydrated 

particles, and the flocs are often separated by mineral free void spaces (represented in 

black).  This result is expected for a material consisting of a mixture of non-swelling 

dense mineral phases (e.g. quartz, feldspar and other impurities) dispersed within a matrix 

composed predominantly of partially swollen and flocculated montmorillonite.  The large 
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particle at the upper right of the YZ plane, shows a distinct boundary with the matrix 

material and has a greater density than most of the bentonite gel, but also lower density 

than the many smaller quartz particles (e.g. circled particle in the YZ image). We interpret 

this particle as being an incompletely hydrated bentonite particle, as it is too large to be a 

single grain of any accessory mineral.  These features are not observed in images of 

bentonite when it is immersed in deionised water.   

 

4. Conclusion 

Single-plane phase retrieval tomography appears to be a powerful technique that can 

provide useful phase images of non-homogeneous and either weakly or strongly absorbing 

materials, due to its non-sensitivity to noise. In particular, we have shown that these 

results can be successfully carried out using an x-ray laboratory-based source. The 

resulting images are far cleaner in terms of noise artefacts than the same data analysed 

using the (formally valid) two-plane retrieval method. While such results are not 

quantitative due to the violations of the assumptions used in the methods the errors appear 

to be relatively small and well behaved in the sense that they do not produce image 

artefacts. Accordingly, data produced using this method will be very useful in segmenting 

samples into regions of different composition.  
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Figure caption 

Figure 1: Simulation results of phase reconstruction of a phase object with 1% noise using 

the two-plane (Eq (2)) and single-plane (Eq (3)) algorithms respectively. The input phase 

is shown on the top part. The distance shown is dz for the two-plane method and z for the 

single-plane method. For each method and distance an image of the retrieved phase and a 

lineout horizontally through the centre showing magnitudes is shown. Additionally, it is 

also apparent that the same amount of noise will give less effect for the single-plane 

approach than for the two-plane approach.  

Figure 2: Plot showing the filter term from Eq (5), 2

k
zu

(thick solid line) and from Eq. (6) 

2

k
z
δ

μ δ+ u
 (thin solid line) as a function of spatial frequency. The dot line shows Eq (5) 

with a Tikhonov regularization parameter. The dash and dash-dot lines are for Eq. (6) but 

where the attenuation term, μ, and the phase term, δ, have been decreased by a factor of 2 

respectively. 

Figure 3: Process diagram to produce qualitative- (dot arrow), single-plane- (solid arrow) 

and two-plane- (dash arrow) tomography results. In qualitative phase tomography phase 

contrast images at one distance are collected and tomographically reconstructed to 

produce an edge-enhanced image. In single-plane phase tomography phase contrast 

images at one distance are collected, single-plane phase retrieval is applied (even though 

the requirement for sample homogeneity is violated) and the resulting phase images are 

tomographically reconstructed to produce a phase map of the sample. In two-plane phase 

tomography phase contrast images at two distances are collected, two-plane phase 

retrieval is applied and the resulting phase images are tomographically reconstructed to 

produce a phase map of the sample. 
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Figure 4: Qualitative phase contrast tomography of an Aerosil hollow granule, taken at 

effective propagation distances of 16.7 mm and 55.6 mm. Cross section planes XY, YZ 

and XZ are indicated. 

Figure 5: Phase retrieval tomography of an Aerosil hollow granule, based on the two-

plane phase retrieval algorithm. 

Figure 6: Single-plane phase retrieval tomography of an Aerosil hollow granule. 

Figure 7: SEM micrograph image of Aerosil granule attached by multiple small, spherical 

particles21.  

Figure 8: Qualitative phase contrast tomography of a hydrated bentonite gel immersed in 

0.2 M CaCl2, taken at propagation distances of 16.7 mm and 55.6 mm. Cross section 

planes XY, YZ and XZ are indicated. 

Figure 9: Two-plane phase retrieval tomography of a hydrated bentonite gel immersed in 

0.2 M CaCl2. 

Figure 10: Single-plane phase retrieval tomography of a hydrated bentonite gel immersed 

in 0.2 M CaCl2. 
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