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ABSTRACT  16 

The concentration of PBDE congeners was measured at various treatment stages of an Australian 17 

wastewater treatment plant (WWTP).  This included four aqueous samples (raw, primary, 18 

secondary and tertiary effluent) and three sludges (primary, secondary and lime stabilised 19 
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biosolids).  Semi-permeable membrane devices (SPMDs) were also installed for the duration of 20 

the experiment, the first time that SPMDs have been used to measure PBDEs in a WWTP.  Over 21 

99% of the PBDEs entering the WWTP were removed through the treatment process, principally 22 

by sedimentation.  The main congeners detected were BDE 47, 99 and 209, which are 23 

characteristic of the two major commercial formulations viz pentaBDE, and decaBDE.  All the 24 

PBDE congeners measured were highly correlated with each other, suggesting a similar origin.  In 25 

this case, the PBDEs are thought to be from domestic sources since domestic wastewater is the 26 

main contribution to the inflow.  The lower brominated PBDE congeners demonstrated a greater 27 

solubility than the higher ones, which reflects increasing KOW with increasing bromination.  The 28 

mean concentration of ΣPBDEs (defined as the sum of all targeted PBDEs) in chemically 29 

stabilized sewage sludge (biosolids) was 300 µg kg-1 dry weight, which is likely to be the 30 

minimum PBDE burden for all Australia sewage sludge.  This corresponds to at least 110 kg of 31 

PBDEs contaminating Australian sewage sludge annually.  It is estimated that 6.5 to 9.9 kg of 32 

PBDEs are disposed of each year with biosolids generated from Subiaco WWTP.  Less than 10 g 33 

are released annually into the environment via ocean outfall and field irrigation and this level of 34 

contamination is unlikely to pose risk to humans or the environment.  The release of treated 35 

effluent is not considered a large source of PBDE environmental emissions compared to biosolids 36 

or landfill. 37 

  38 
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INTRODUCTION 39 

Polybrominated diphenyl ethers (PBDEs) are widespread environmental contaminants (Norén et 40 

al., 1998, de Wit, 2002, Hites, 2004) and certain PBDEs have recently been included as United 41 

Nation’s Persistent Organic Pollutants (POPs) in recognition of the threat that they pose to human 42 

health and the environment (UNEP, 2001, UNEP, 2009).  This includes the penta-BDE and octa-43 

BDE commercial formulations and they have largely been restricted for use in Europe and 44 

Australia (NICNAS, 2007).  The deca-BDE formulation wasn’t categorized as an UNEP POP and 45 

is still currently widely used internationally.  Despite restriction on future uses, PBDEs are 46 

incorporated into many commonly used objects and are likely to cycle through the environment 47 

for some time to come.  Investigations that quantify amounts of PBDEs entering the environment 48 

via wastewater treatment products (viz. effluents, sludges) are important and can aid efforts to 49 

minimize further environmental contamination. 50 

PBDEs are routinely detected in sewage sludges in the low part-per-million range (Clarke et al., 51 

2008a).  In sewage sludges, congeners representative of the pentaBDE (BDE47, 99, 100, 153, 52 

154) formulations are often present at similar concentrations regardless of region, indicating 53 

domestic origins (Hale, 2001).  BDE209, the primary congeners of the decaBDE formulation, is 54 

consistently the main PBDE congeners present in sewage sludge.  In national sewage sludge 55 

surveys BDE 209 concentrations are highly variable, suggesting industrial and domestic sources 56 

(Fabrellas et al., 2004, Clarke et al., 2008b).  Trace PBDE amounts (ng L-1) have also been 57 

detected in treated effluent (de Boer et al., 2000, Hamm, 2004, North, 2004, Knoth et al., 2007) 58 

and recent studies have demonstrated this as a point source of environmental PBDE 59 

contamination (Toms et al., 2006, Toms et al., 2008).  The contamination of sludges and effluents 60 

with PBDEs may have implications for disposal and beneficial reuse strategies.  Also, given many 61 
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nations reliance on treated effluent for a range of purposes, including drinking water, 62 

understanding PBDE concentrations and fate in wastewater treatment is increasingly important. 63 

A few studies have investigated the fate of PBDEs in WWTPs.  A mass balance study of PBDEs 64 

in an USA WWTP found that 96% of PBDEs associated with the sludge during WWTP (North, 65 

2004).  On an annual basis the authors calculated that 22 kg were associated with sludge and 0.9 66 

kg were released into the environment with treated effluent (North, 2004).  A German study 67 

reported that no degradation of PBDE congeners was observed during wastewater treatment and 68 

estimated the annual environmental release of PBDEs associated with sewage sludge to be 500 kg 69 

year (Knoth et al., 2007).  The fate of many other organic pollutants in WWTPs has been studied 70 

and includes polychlorinated biphenyls (PCBs), organochlorinate pesticides, phthalates, 71 

nonphenyls and linear alkyl sulphonates (Choi et al., 1974, Lawrence et al., 1976, McIntyre et al., 72 

1981, Garcia Gutierrez et al., 1984, Buisson et al., 1986, Buisson et al., 1988, Morris et al., 73 

1994). 74 

PBDEs are expected to behave most similarly to PCBs in a WWTP.  Of the identified WWTP 75 

organic pollutant removal mechanisms (degradation, air stripping, volatilization, effluent) only 76 

sedimentation in primary and secondary treatments is expected for PCBs and PBDEs.  77 

Volatilization losses are not high when chemicals are strongly bound to particles and normally 78 

only considered when the chemical is in the aqueous phase.  The fraction that is sorbed to 79 

particulate matter or other solids phase is not directly available, under equilibrium conditions, for 80 

mass transfer across the water/air interface (Byrns, 2001).  General principles of organic pollutant 81 

behavior in a WWTP are decreasing water solubility, as measured by the octanol-water partition 82 

coefficient (KOW), the greater removal in primary sedimentation (Petrasek et al., 1983, Buisson et 83 

al., 1988, Morris et al., 1994, Katsoyiannis et al., 2006).  However, there are contradictory 84 

experimental results with respect to the degradation of PCBs in a WWTP.  Degradation of the 85 
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lower chlorinated PCBs (di-, tri-, tetra-) has been reported, while the higher chlorinated PCBs are 86 

generally resistant to degradation (Buisson et al., 1986).   87 

A number of studies have also successfully employed passive samplers for the measurement of a 88 

range of organic pollutants in the WWTP (Petty et al., 2000, Stuer-Lauridsen et al., 2000, Wang 89 

et al., 2001, Yusa et al., 2005, Bergqvist et al., 2006, Katsoyiannis et al., 2007).  No other studies 90 

have reported measurements of PBDE concentrations in WWTP using passive sampling 91 

techniques. 92 

The aim of this research is to measure the concentration of common PBDEs through an activated 93 

sludge WWTP process (using active and passive sampling techniques) and quantify the amount of 94 

PBDEs released into the environment via secondary effluent, tertiary effluent and sewage sludge. 95 

METHOD 96 

The experiment was conducted at an Australian WWTP, located in the city of Perth, Australia, 97 

which has a population of approximately one and a half million people.  It is a conventional 98 

activated sludge treatment system that treats approximately 60 ML of water daily that derives 99 

primarily from domestic (~95%) sources, with a small contribution from industrial sources 100 

(~5%).  Passive samplers were installed in the WWTP for 29 days and grab samples were 101 

collected on three occasions during this sampling period.  PBDEs were quantified using isotope 102 

dilution internal standard high-resolution gas chromatography/high resolution mass spectrometry 103 

(HRGC/HRMS).  Analysis was undertaken for the following PBDE congeners; BDE17, 28+33, 104 

47, 49, 66, 77, 85, 99, 100, 119, 138+166, 153, 154, 183, 184, 196, 197, 206, 207 and 209 and 105 

polybrominated biphenyl (PBB) congener 153.  The analyses were conducted at the National 106 

Measurement Institute (NMI), Sydney (Pymble), Australia. 107 
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Sampling Methodology 108 

Grab Samples 109 

Grab samples were collected from the various stages of the WWTP and measured for PBDE 110 

congeners.  Four aqueous samples (raw water, primary effluent, secondary effluent and tertiary 111 

treated effluent) and three sludge samples (primary sludge, secondary sludge and lime stabilised 112 

biosolids) collected on 12/11/07, 22/11/07 and 03/12/07 between 11am and 1pm which was peak 113 

water in-flow.  Inflow volumes were and volumes of water treated are listed in Table 1 (NOTE: 114 

Volume of final effluent is greater than raw water due to the addition of flocculants).  . 115 

Semi-Permeable Membrane Device Deployment 116 
Five semi-permeable membrane devices (SPMDs) were deployed for 29 days at the WWTP, 117 

located in the raw water (PS1), primary effluent (PS2), secondary effluent (PS3) and tertiary 118 

effluent (PS4a, PS4b) channels.  They were regularly checked for interfering materials.  A field 119 

blank and laboratory blank were completed for quality control purposes. 120 

Sample Treatment 121 

Grab samples 122 

Freeze-dried sludge samples (20.0 g) were spiked with 10 µL of mixed 13C12 PBDE surrogate 123 

standards and were extracted into toluene using accelerated solvent extraction (Dionex Model 124 

ASE 100).  Effluents (1 L) were extracted into hexane using liquid-liquid extraction.  The extracts 125 

were concentrated using a BÜCHI Syncore® Analyst (BÜCHI Labortechnik AG, Flawil, 126 

Switzerland), which was used for removing various solvents throughout the extract cleanup 127 

process.  The concentrated extract was solvent-exchanged into hexane and then subsequently 128 

treated with concentrated sulfuric acid for destructive removal of organic material.  The extract 129 

was then treated for inorganic and organic sulfur by activated copper and silver nitrate clean-up 130 
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techniques, respectively.  A commercial automated clean-up procedure (PowerPrep™ by Fluid 131 

Management Systems, Waltham, MA, USA) that employs acid and base modified silica gels and 132 

basic alumina column chromatography was used to remove interferences from the sample extract 133 

and produce a cleaned up final extract.  Extracts were concentrated to dryness under nitrogen and 134 

made up to 40 µL with a PBDE internal standard.  Analyses were undertaken for PBDEs and 135 

PBBs using isotope dilution high-resolution gas chromatography – electron ionisation – high-136 

resolution mass spectrometry, with monitoring of the following ions: 137 

Tri, Tetra, Penta BDEs - M+, [M+2]+, [M+4]+, [M+6]+; Hexa, Hepta, Octa, Deca BDEs - [M+4-138 

2Br]+, [M+6-2Br]+, [M+8-2Br]+; Hexa BB - [M+2-2Br]+, [M+4-2Br]+. 139 

The analytical procedure was based upon standard U.S. EPA methodologies (US EPA, 2007). 140 

Passive Samples - Semi-Permeable Membrane Devices (SPMDs) Preparation, Deployment 141 

& Extraction 142 
SPMDs were prepared from lay-flat low-density polyethylene (LDPE) tubing (purchased from 143 

Brentwood Plastics, MO, USA) of size 105 cm long, 3.0 cm wide, wall thickness 0.003 cm.  The 144 

tubing was pre-extracted two times by soaking overnight in hexane and then dried under nitrogen.  145 

1 mL of triolein (Sigma Glyceryl Trioleate T7140 ≥ 99%) containing PAH performance reference 146 

compounds (Wellington Labs PAH-LCS-A deuterated surrogate) was added prior to the SPMD 147 

being heat-sealed.  Air bubbles were removed with a short pasteur pipette and triolein spread 148 

along the tube, no further than 91.4 cm, where it was again sealed.  Three SPMDs were looped 149 

into a cage for deployment. 150 

After deployment, SPMDs were first wiped with a white KimwipeTM and rinsed under a tap to 151 

remove surface material.  The SPMDs were submerged in hexane for 30 s, followed by 1M HCl 152 

for 30 s, rinsed clean with milli-q water, acetone and 2-propanol.  Once cleaned, the SPMDs were 153 
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extracted into 400 mL hexane for 8 to 18 h and then re-extracted in hexane for a further 6 h.  The 154 

solvent was removed and exchanged with dichloromethane.  The extract was passed through a 155 

0.45 µm filter, followed by treatment with gel-permeation chromatography (GPC). 2mL of 156 

sample was eluted from a multi column GPC system (Waters Envirogel™ columns, 4.6mm x 30 157 

mm guard – 19 mm x 150 mm – 19mm x 300 mm, 100 Å pore size, 10 µm nominal particle size) 158 

with dichloromethane at 5 mL min-1. The concentrated extract was solvent-exchanged into hexane 159 

and then subsequently treated with concentrated sulfuric acid for destructive removal of organic 160 

material.  A commercial automated clean-up procedure (PowerPrep™ by Fluid Management 161 

Systems, Waltham, MA, USA) that employs acid and base modified silica gels and basic alumina 162 

column chromatography was used to remove interferences from the sample extract and produce a 163 

cleaned up final extract. 164 

Instrumental Technique  165 

Quantification was performed on an Agilent 6890 gas chromatograph that was coupled to a 166 

Thermo Finnigan MAT 95XL HRMS. The column used was a DB-5 column (J&W Scientific) 10 167 

m × 0.1 mm × 0.1 µm.  A 1 µL sample extract was injected using the splitless method with an 168 

injector temp of 280 °C. The temperature program employed was an initial temperature of 120 °C 169 

held for 2 min, a ramp rate of 15 °C min-1 from 120 to 230 °C followed by a 5 °C min-1 increase 170 

from 230 °C to the final temperature of 320 °C that was held for 5 min.  Helium was used as a 171 

carrier gas with constant flow mode of 0.4 mL min-1. The transfer line was maintained at 280 °C.   172 

Electron ionisation (EI) mode was used with an electron energy of 70 eV, filament current of 0.7 173 

mA and maintaining the ion source at 240 °C.   The electron multiplier voltage was set to produce 174 

a gain of 106.  175 
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Material, Standards and Reagents 176 

Pesticide grade solvents were purchased from Merck and were tested for contamination prior to 177 

use.  PowerPrep™ columns (acid and base modified silica gels and basic alumina) were 178 

purchased from Fluid Management Systems, Waltham, MA, USA. 179 

Isotope dilution was performed using standard compounds purchased from Wellington 180 

Laboratories Inc., Guelph, Ontario, Canada.  Surrogate Standard: BFR-LCS-STK; Calibration 181 

Standard: BFR-CVS; Recovery Standard: BFR-ISS-STK. 182 

Quality Assurance/Quality Control 183 

Internal standard isotope dilution quantification was undertaken within this study.  This employs 184 

the use of 13C12 labeled surrogates and internal standards.  The 13C12 surrogates standards (13C12 185 

BDE28, 47, 77, 99, 100, 126, 153, 183, 197, 205, 207, 209, BB153) are added to the sample prior 186 

to extraction and are carried through all the laboratory operations.   The recovery standards (13C12 187 

BDE79, 139, 180, 206) were added just prior to analysis by HRGC-EI-HRMS.  Both the recovery 188 

of the surrogate and internal standard response are then used in the quantification of the native 189 

BDEs.  190 

Procedural blanks were performed in each batch of analyses.  All glassware was placed in a 191 

furnace overnight at 450 °C and rinsed with solvent before use.  Each batch of disposable 192 

equipment such as PowerPrep™ columns was checked prior to use for PBDE contamination.  The 193 

limit of detection (LOD) was set as the limit of quantification (LOQ) and was determined as three 194 

times the blank response. 195 

The analysis of the higher brominated BDEs, particularly BDE-209, is recognized as being 196 

difficult because it can degrade during the analytical process (Covaci et al., 2003).  Using a short 197 
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thin-film capillary column, regularly changing the injection liner, and using a low source 198 

temperature minimized the potential for degradation of BDE209.  199 

The laboratory is National Association of Testing Authorities (NATA) accredited and has 200 

participated successfully in four international inter-laboratory studies. 201 

Statistical Analysis 202 

Statistical analysis was performed using  Minitab 15.   203 

RESULTS 204 

Grab Samples 205 

Measurement of PBDE congeners typical of commercial formulations was performed for aqueous 206 

and sludge samples collected from an Australian WWTP (Table 2).  As expected PBDE 207 

congeners were greatly associated with the sludges with ΣPBDE ranging between 220 and 460 µg 208 

kg-1 dw.  The mean biosolids concentration was 300 µg kg-1 dw and is lower than the national 209 

Australian mean of 1100 µg kg-1 dw recently reported (Clarke et al., 2008b).  The low and 210 

consistent PBDE concentration in all sludges analysed suggests the primary source of PBDEs in 211 

raw water is the domestic environment.  Similar to international studies BDE209 contributed the 212 

major portion of total PBDEs (>50%) and was found in the highest concentrations in primary 213 

sludges (217 µg kg-1 dw), compared to the biosolids (163 µg kg-1 dw) and secondary sludge (146 214 

µg kg-1 dw).  PBDEs concentrations in the raw water and effluents were in the low ng L-1 range 215 

(0.058 – 100 ng L-1).  The concentration was significantly higher in the raw water (mean 70 ng L-216 

1) and primary effluent (mean 74 ng L-1) compared to the secondary (mean 0.30 ng L-1) and 217 

tertiary treated effluents (mean 0.34 ng L-1).  This indicates high PBDE removal rates through the 218 

WWTP, where PBDEs are likely to be associated with suspended solids (SS).  Covariance 219 
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principal components analysis (PCA) preformed on the raw data found that three congeners 220 

(BDE47, 99 and 209) can explain >99% of the sample variation.  Both the correlation PCA and 221 

covariance PCA demonstrates that the concentration of PBDE congeners taken from the three 222 

separate sampling events were consistent, with the highest variation found in the secondary 223 

sludge samples.  The returning activated sludge (RAS) process in wastewater treatment can 224 

explain this observation.   225 

In order to further examine the data the aqueous concentration data was manipulated from 226 

mass/volume to mass/mass by dividing the effluent concentration ng L-1 by the SS concentration 227 

(g L-1).  The assumption is that the majority of all PBDEs will be associated with the suspended 228 

solids in the sample in preference to the aqueous phase based upon the high KOC values of the 229 

PBDE congeners.   230 

On a mass/mass basis the concentrations of the PBDEs congeners (47, 99, 209 and ΣPBDEs) 231 

were consistent throughout the WWTP (Figure 3).  The concentrations of PBDEs were always 232 

lower in the secondary and tertiary treated effluents compared to the raw water and primary 233 

effluent.  This may be because of the reduction in SS and also many congeners were not detected, 234 

possibly because the limit of detection was inadequate.  An analysis of variance was performed 235 

(ANOVA) on each of the congeners to compare differences between the concentrations of PBDE 236 

congeners in effluents (raw and primary only) and sludges.  The concentration of BDE47 is 237 

statistically significantly higher in the effluents compared to the sludges (P=0.034), which was 238 

not observed for BDE99 (P=0.118) or BDE209 (P=0.410).  The ΣPBDE concentration was also 239 

found to have the highest concentration in the primary effluent, however there was no statistically 240 

significant difference observed between effluents and sludges (p = 0.608).  Covariance PCA again 241 

showed that BDE47&99 and 209 explain >98% of the sample variation, 24% and 74% 242 

respectively.  Both the correlation PCA and covariance PCA demonstrates that there is a 243 
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similarity between the PBDE concentration patterns in all samples; with the exception of samples 244 

A2, C2 and C6 (Figure 2a).  Also, PBDE congeners were largely correlated between the penta-245 

BDE and deca-BDE formulations (Figure 2b). 246 

The concentration of BDE47 is highest is the primary effluent which suggests that this compound 247 

is not only associated with the SS but is also dissolved in the aqueous phase to a small extent.  248 

This is in contrast to BDE209 that is preferentially partitioning to the SS and sludges with the 249 

highest mean concentration observed in the primary sludge.  The ratio of BDE47:BDE99 found in 250 

the pentaBDE commercial formulation is reported to be 0.95:1 (Sjödin et al., 1998).   This is in 251 

contrast to the ratio that was found in the raw and primary effluent with BDE47 consistently 252 

higher in concentration than BDE99, with average ratios of 1.06:1 and 1.18:1 respectively.  253 

BDE47 is dissolved in the aqueous phase of the raw and primary effluent due to a lower KOW; 254 

perhaps due to the association with surfactant, the ratio of BDE47:BDE99 increases the relative 255 

concentrations in the primary treatment compared to the raw water.  WWTP models employ the 256 

organic carbon-water partition coefficient (KOC) to explain the partitioning of hydrophobic 257 

contaminants in wastewater treatment.  Applying this technique the predicted concentration of 258 

BDE47 in the aqueous phase of the raw effluent theoretically will range between 0.1 to 0.4 ng L-1 259 

when the SS organic carbon content ranges between of 60% to 10%.  Assuming a high organic 260 

carbon content at this stage of the treatment process the concentration of BDE47 will be less than 261 

0.15 ng L-1 which can explain the observed increase of BDE47 relative to BDE99 found in the 262 

raw effluent samples.   263 

Semipermeable membrane device 264 

Substantial interference (bio-fouling) occurred on SPMDs located in the raw water and primary 265 

effluent.  Therefore, recovery and quantification of the PRCs wasn’t possible and hence, 266 
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quantification of PBDEs was also not possible.  While not quantitative, SPMDs located in the raw 267 

water and primary effluents do provide qualitative information for dissolved PBDE levels.  All 268 

PBDE congeners were detected in the dissolved fraction at these stages of the WWTP. 269 

Recovery and quantification of the PFCs from SPMDs located in secondary and tertiary effluent 270 

channels was achieved and therefore, it was possible to quantify PBDEs concentrations.  The 271 

flow-rate of the PBDE congeners, based upon the leaching of the PRCs, correlated to the linear 272 

uptake phase for PBDEs.  The concentration of PBDEs in the aqueous phase was calculated 273 

according to N(t) = RSCWt (where N = absorbed amount, RS = water sampling rate, CW = aqueous 274 

concentration, t = time) (Booij et al., 2002).  The major congeners detected in the SPMDs were 275 

17, 47, 99 & 209.  With the exception of BDE209, which was not detected in the secondary and 276 

tertiary effluents, these compounds are detected in all water sampled.  The absence of BDE209 in 277 

the secondary and tertiary effluents indicates extremely high removal rates of BDE209 through 278 

the WTWP.  The ratio of the congeners changed through the treatment process, with the ratio of 279 

BDE47:99 far higher in the secondary effluent than in the preliminary or primary effluent. 280 

The concentrations of PBDEs in the aqueous phase of the effluent as determined by the SPMDs 281 

was higher (ranging between 1.4 and 2.2 ng L-1) than that predicted simply based upon organic 282 

carbon-water partition coefficient; BDE47 predicted aqueous concentration ranges between 0.1 to 283 

0.4 ng L-1 and was determined by the SPMDs to be between 0.8 and 1.2 ng L-1 in secondary and 284 

treated effluent. 285 

Mass-balance equation 286 

Quantities of PBDEs associated with each phase were calculated using the daily averages from 287 

the 2007; in-flow of 60.5 ML day-1 with an average SS of 340 mg L-1, biosolids of 22 000 kg dw, 288 

secondary outflow of 66.3 ML day-1 and tertiary outflow of 1.82 ML day-1 (C. Camplin - Process 289 
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Technical Officer 2008).  Therefore, it has been calculated that 4.9 g ΣPBDEs enter the WWTP 290 

daily, or 1.8 kg annually.  It is estimated that the total amount of PBDEs that are released into the 291 

ocean is 6.9 g per year (secondary effluent).  This is significantly lower than the US reports of 292 

900 g of ΣPBDE released per day into the surrounding ocean (North, 2004).  There are a number 293 

of factors that may influence this discrepancy, such as the source of wastewater, the size of the 294 

WWTP and the efficiency of the WWTP process.  The annual release of PBDEs was largely 295 

associated with biosolids (>99%) and it is estimated that 7.6 kg are disposed of in this manner, 296 

which is substantially higher than the calculated PBDEs in-flow (1.8 kg).  This observation is 297 

unusual and it is possible that PBDEs are introduced during wastewater treatment (i.e. 298 

flocculation) or sewage sludge stabilization.  It is estimated that Australia produces 3.6 × 108 kg 299 

of sewage sludge annually (Gale, 2007) and the average ΣPBDE concentration in biosolids 300 

observed will be used to estimated a minimum PBDEs burden associated with sewage sludge 301 

annually in Australia.  Assuming that all sludge in Australia carry a similar burden of PBDEs 302 

equal to or greater than that observed (mean ΣPBDE sludge concentration of 300 µg kg-1 dw), 303 

then the amount of ΣPBDE associated with Australian sewage sludges annually is at least 110 kg, 304 

which is similar to the German annual estimate of 500 kg (Knoth et al., 2007) on a population 305 

basis. 306 
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Figure Captions 313 

Figure 1 Flow diagram for the water treatment process with sampling points indicated by 314 

numbers; PS indicates passive samplers. 315 

Figure 2 Principal components analysis (correlation) performed on the mass standardized samples 316 

collected from Subiaco WWTP from time periods A, B, C.; (A) Score plot of PCA2 vs PCA1 and 317 

(B) loading plot. 318 

Figure 3 Bar-chart of mean BDE47, 99, 209 & ΣPBDE concentration (µg kg-1 dw) at the various 319 

stages of the WWTP (Wastewaters: raw, secondary; Sludges: primary, secondary and biosolids. 320 

Error bars represent the minimum and maximum concentrations. 321 

  322 
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Table 1 Volumes of water flowing into the experimental WWTP and released via secondary treated 
effluent and tertiary treated effluent (L) 

Sample 
Label 

Date Inflow Outflow 

Secondary treated 
effluent 

Outflow 

Tertiary treated 
effluent  

A Monday 12th 
November 2007 

60.02 × 106 67.03 2.0 

B Thursday 22nd 
November 2007 

64.43 65.75 1.27 

C Monday 3rd December 
2007 

61.37 66.22 2.2 

 323 

 324 

  325 



 17 

Table 2 Concentration of polybrominated diphenyl ether congeners and polybrominated biphenyl 153 measured in grab samples (effluent ng L-1, sludges µg kg-1 dw) from each stage of an Australian wastewater treatment plant 

 Monday 12th November 2007 Thursday 22nd November 2007 Monday 3rd December 2007 

 A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 C5 C6 C7 

 

Effluents 

ng L-1 

Sludges 

µg kg-1 dw 

Effluents 

ng L-1 

Sludges 

µg kg-1 dw 

Effluents 

ng L-1 

Sludges 

µg kg-1 dw 

 

R
aw

 

Prim
ary 

Secondary 

Tertiary 

Prim
ary 

Secondary 

Biosolids 

R
aw

 

Prim
ary 

Secondary 

Tertiary 

Prim
ary 

Secondary 

Biosolids 

R
aw

 

Prim
ary 

Secondary 

Tertiary 

Prim
ary 

Secondary 

Biosolids 

SS mg/L 220 120 5 4    330 230 11 4    320 190 11 11    

BDE17 0.12 0.13 0.043 0.059 0.32 1.5 0.79 0.13 0.13 0.039 0.086 0.17 1.6 0.83 0.099 0.14 <0.05 <0.06 0.2 3.2 0.66 

BDE28+33 <1 <1 <0.5 <0.5 1.3 1.5 0.98 <1 <1 <0.3 <1 0.95 1.8 0.99 <0.9 <3 <0.5 <0.8 0.87 1.8 0.89 

BDE30 <0.04 <0.02 <0.02 <0.02 <0.04 <0.07 <0.02 <0.04 <0.03 <0.02 <0.04 <0.003 <0.01 <0.008 <0.03 <0.06 <0.03 <0.02 <0.05 <0.08 <0.01 

BDE47 17 21 <2 <2 48 39 51 20 15 <2 <4 31 58 39 13 24 <2 <3 39 84 52 

BDE49 0.55 0.61 <0.05 <0.05 1.4 1.3 1.3 0.59 0.43 <0.04 0.089 0.82 1.7 1.2 0.39 0.58 0.056 0.077 1.1 2.8 1.4 

BDE66 0.46 0.53 <0.03 <0.04 1.3 1 1.2 0.51 0.37 <0.04 0.057 0.86 1.8 1.1 0.33 0.49 <0.06 <0.2 1 2.5 1.3 

BDE71 0.035 0.036 0.014 0.016 0.16 0.6 0.37 0.043 0.02 <0.007 0.025 0.065 0.66 0.28 0.016 0.053 0.011 0.024 0.052 1.2 0.33 

BDE77 0.018 0.01 <0.005 <0.008 0.046 0.036 0.041 0.013 0.015 <0.005 0.0048 0.03 0.052 0.035 0.014 0.014 <0.02 <0.01 0.038 0.074 0.044 

BDE85 0.53 0.77 <0.05 <0.04 1.9 1.7 1.7 0.73 0.51 <0.05 <0.08 1.1 2.2 1.4 0.5 0.88 <0.09 <0.07 1.5 3.5 1.9 

BDE99 16 21 <1 <2 51 42 55 19 12 <1 <2 33 63 45 13 19 <2 <2 39 97 53 

BDE100 3.1 3.9 <0.3 <0.3 9.4 8 9.6 3.9 2.6 <0.3 <0.5 6 12 8.4 2.7 3.9 <0.4 <0.4 7.5 18 10 

BDE119 0.035 0.04 <0.02 <0.02 0.074 0.077 0.073 <0.3 <0.2 <0.02 <0.02 0.044 0.1 0.066 0.024 0.03 <0.03 <0.02 0.063 0.16 0.084 

BDE126 0.0034 <0.02 <0.008 <0.01 0.0052 0.0053 0.0047 <0.01 <0.007 <0.008 <0.008 0.0038 0.0074 0.0049 <0.008 <0.01 <0.009 <0.007 0.005 0.018 0.009 

BDE138+166 0.14 0.19 <0.01 <0.04 0.46 0.45 0.5 0.19 0.13 <0.008 <0.007 0.35 0.68 0.49 0.15 0.14 0.024 <0.03 0.33 0.82 0.42 

BDE139 0.24 0.39 <0.01 <0.08 0.7 0.53 0.63 0.22 0.18 0.025 0.03 0.48 0.75 0.55 0.17 0.32 0.025 <0.06 0.44 0.94 0.49 

BDE140 0.061 0.081 <0.01 <0.07 0.2 0.15 0.21 0.05 0.052 <0.01 <0.008 0.11 0.22 0.15 0.045 0.07 <0.03 <0.04 0.13 0.28 0.15 

BDE153 1.5 1.9 <0.1 <0.1 4.7 4 4.8 1.8 1.3 <0.1 <0.2 3.1 6.2 4.4 1.3 1.7 <0.1 <0.1 3.6 8.9 4.7 

BDE154 1.1 1.4 <0.08 0.095 3.5 3.2 3.8 1.3 0.95 <0.09 <0.1 2.2 5.2 3.4 0.96 1.3 <0.1 <0.1 2.6 7.3 3.8 

BDE156+169 <0.04 <0.06 <0.02 <0.07 <0.01 <0.02 <0.02 <0.08 <0.07 <0.02 <0.02 <0.01 <0.02 <0.006 <0.05 <0.04 <0.02 <0.01 <0.008 <0.02 <0.008 

BDE171 <0.06 <0.07 <0.06 <0.02 0.1 0.077 0.087 0.038 0.028 <0.01 <0.009 0.078 0.13 0.078 <0.02 <0.04 <0.06 <0.09 0.09 0.16 0.098 

BDE180 <0.06 0.088 <0.03 <0.02 0.19 0.15 0.16 0.12 <0.04 <0.01 0.017 0.27 0.25 0.19 0.056 0.085 <0.04 <0.05 0.19 0.33 0.19 

BDE183 0.59 0.71 <0.03 <0.04 1.9 1.3 1.6 1.3 0.62 <0.06 0.093 2.9 2.4 2.2 0.39 0.78 0.07 0.041 1.7 3.7 2 
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Table 2 Concentration of polybrominated diphenyl ether congeners and polybrominated biphenyl 153 measured in grab samples (effluent ng L-1, sludges µg kg-1 dw) from each stage of an Australian wastewater treatment plant 

 Monday 12th November 2007 Thursday 22nd November 2007 Monday 3rd December 2007 

 A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 C5 C6 C7 

 

Effluents 

ng L-1 

Sludges 

µg kg-1 dw 

Effluents 

ng L-1 

Sludges 

µg kg-1 dw 

Effluents 

ng L-1 

Sludges 

µg kg-1 dw 

 

R
aw

 

Prim
ary 

Secondary 

Tertiary 

Prim
ary 

Secondary 

Biosolids 

R
aw

 

Prim
ary 

Secondary 

Tertiary 

Prim
ary 

Secondary 

Biosolids 

R
aw

 

Prim
ary 

Secondary 

Tertiary 

Prim
ary 

Secondary 

Biosolids 

BDE184 0.024 <0.05 <0.004 <0.02 0.08 0.13 0.11 0.024 <0.008 <0.009 <0.009 0.047 0.22 0.12 <0.01 0.024 <0.008 <0.02 0.048 0.26 0.12 

BDE191 <0.03 <0.03 <0.03 <0.02 0.018 0.014 0.016 <0.02 <0.01 <0.01 <0.006 0.014 0.012 0.015 <0.02 <0.02 <0.02 <0.02 0.017 0.021 0.016 

BDE196 <0.2 0.24 <0.2 <0.03 0.91 0.55 1 0.4 0.2 0.024 0.025 0.94 0.9 1.1 0.17 0.29 0.036 <0.1 0.85 1.3 1.3 

BDE197 0.35 0.35 <0.1 <0.02 1 0.88 1.1 0.62 0.29 0.026 0.049 1.5 1.6 1.4 0.22 0.41 0.045 <0.06 0.91 2.3 1.4 

BDE201 <0.1 <0.1 <0.09 <0.02 0.36 0.32 0.38 0.13 0.089 0.011 0.014 0.23 0.38 0.32 0.081 0.11 0.017 <0.05 0.25 0.7 0.45 

BDE203 <0.3 <0.3 <0.2 <0.04 0.95 0.63 0.71 0.44 0.31 0.03 0.031 0.91 0.94 0.84 0.19 0.27 <0.06 <0.1 0.87 1.4 0.69 

BDE204 <0.01 <0.01 <0.1 <0.04 <0.04 <0.05 <0.03 <0.03 <0.01 <0.005 <0.008 <0.06 <0.09 <0.04 <0.005 <0.02 <0.005 <0.06 <0.06 <0.2 <0.05 

BDE205 <0.05 <0.2 <0.2 <0.03 0.024 0.016 0.01 0.015 <0.03 <0.02 <0.02 0.015 0.022 0.013 <0.03 <0.03 <0.06 <0.1 0.015 0.035 0.0094 

BDE206 <3 <2 <0.2 <0.08 11 5.2 6.5 2.5 1.5 <0.1 <0.2 6.7 6.5 5.1 1.5 2.5 <0.2 <0.1 7 11 6 

BDE207 <2 <2 <0.1 <0.09 6.1 3.7 5.6 1.8 1.2 0.11 0.12 3.6 4.8 4.2 0.99 1.8 0.2 <0.07 3.2 6.7 7.4 

BDE208 <0.7 <1 <0.07 <0.04 3.2 1.7 2.4 0.71 0.51 0.06 0.068 1.4 2.2 1.7 0.44 0.72 <0.09 <0.06 1.4 2.9 2.5 

BDE209 <60 <60 <3 <2 260 98 190 47 33 <2 <2 210 150 150 31 42 <4 <1 180 190 150 

ΣPBDE  42 52 0.058 0.17 410 220 340 100 71 0.33 0.71 310 330 270 68 100 0.48 0.14 290 460 300 

PBB153 <0.02 <0.04 <0.007 <0.02 0.25 0.16 0.19 0.11 <0.03 <0.02 0.036 0.23 0.22 0.18 0.038 0.063 <0.03 <0.05 0.23 0.34 0.22 
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