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Observation of nonlinear surface waves in
modulated waveguide arrays

Xinyuan Qi,1,2,* Ivan L. Garanovich,1 Zhiyong Xu,1 Andrey A. Sukhorukov,1 Wieslaw Krolikowski,1

Arnan Mitchell,3 Guoquan Zhang,2 Dragomir N. Neshev,1 and Yuri S. Kivshar1

1Nonlinear Physics Centre and Laser Physics Centre, Research School of Physics and Engineering,
Australian National University, Canberra, ACT 0200, Australia

2The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, Nankai University,
Tianjin 300457, China

3School of Electrical and Computer Engineering and Centre for Ultra-high Bandwidth Devices for Optical Systems
(CUDOS), Royal Melbourne Institute of Technology University, Melbourne, VIC 3001, Australia

*Corresponding author: qixycn@gmail.com

Received June 9, 2009; accepted July 17, 2009;
posted August 18, 2009 (Doc. ID 112547); published September 9, 2009

We describe theoretically and study experimentally nonlinear surface waves at the edge of a modulated
waveguide array with a surface defect and a self-defocusing nonlinearity. We fabricate such structures in a
LiNbO3 crystal and demonstrate the beam switching to different output waveguides with a change of the
light intensity due to nonlinear coupling between the linear surface modes supported by the array.
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The study of surface waves in periodic photonic struc-
tures such as photonic crystals or optical lattices is
attracting increasing attention. Their basic proper-
ties have many similarities to the physics of electrons
localized at crystalline surfaces, which were first dis-
cussed by Tamm [1] and Shockley [2]. The direct ob-
servations of such states have been performed only in
photonic systems [3,4], such as periodic waveguide
arrays. It was found that strong surface localization
is possible when the edge waveguide is modified and
the defect strength exceeds a certain threshold, in
agreement with original predictions by Tamm [1].
Such a surface defect can also be induced through op-
tical nonlinearity, resulting in the formation of sur-
face lattice solitons [5–11]. On the other hand, it was
recently demonstrated that arrays of periodically
curved waveguides can support a novel type of linear
surface modes without any surface defects [12,13].

In this Letter, we describe theoretically and ob-
serve experimentally nonlinear surface waves at the
edge of modulated waveguide arrays. We demon-
strate nontrivial beam dynamics due to an interplay
between three mechanisms of surface localization: (i)
waveguide bending, (ii) fabricated surface defect, and
(iii) nonlinear beam self-action. First, we present the
theoretical classification of linear surface modes sup-
ported by the curved arrays with a surface defect.
Next, we demonstrate experimentally that nonlinear
beam self-action can provide effective control of the
output beam profile, including switching between dif-
ferent waveguides near the surface.

We fabricate arrays of modulated waveguides by ti-
tanium indiffusion in a 50-mm-long X-cut LiNbO3
crystal with defocusing photorefractive nonlinearity
[14], featuring a transverse refractive index profile
containing a negative surface defect (lower refractive
index value at the first waveguide) [see Fig. 1(a)]. We
choose the waveguide bending profile composed of
sinusoidal sections, x �z�=A�cos�4�z /L�−1� for 0�z
0
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�L /2, x0�z�=−x0�z−L /2� for L /2�z�L, and x0�z�
=x0�z−L� for z�L [see sketch in Fig. 1(a)]. Here x0 is
the transverse waveguide shift, z is the longitudinal
coordinate, and A and L are the waveguide axes
bending amplitude and period, respectively. Two
curved arrays with different bending amplitudes (A
=21.5 �m and A=24.5 �m) are fabricated. Both
samples contain one full bending period of L
=50 mm.

It was shown that, away from the boundaries, the
linear beam diffraction in a curved array appears the
same after each bending period as in a straight array
with the effective coupling coefficient Ce [15–18]. For
our bending profile, Ce=CJ0��A /A0�, where C is the

Fig. 1. (Color online) Linear surface modes in a curved
waveguide array with a surface defect. (a) Schematic of the
array (bottom) and index change (top). (b), (c) Propagation
constants of linear surface modes versus waveguide bend-
ing amplitude A for surface defects (b) �1=−0.52 and (c)
�1=−0.56. Gray shading marks the array transmission
band, and the vertical dashed line corresponds to (b) A
=21.5 �m and (c) A=24.5 �m. (d) Intensity profiles at z
=0, L of three different surface modes for A=24.5 �m, cor-
responding to mode dispersion lines marked 1–3 in (c).
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coupling coefficient in the absence of bending [12], J0
is the Bessel function of first kind of order 0, �
�2.40 is its first root, A0=��L /8�2n0d=24.6 �m, �
=532 nm is the laser wavelength used in the experi-
ments, n0=2.35 is the refractive index of LiNbO3 sub-
strate, and d=14 �m is the spacing between the cen-
ters of the adjacent waveguides. Note that the
average beam diffraction is completely suppressed
�Ce=0� for a set of bending amplitudes including A
=A0, analogous to the effect of dynamic localization
for electrons in crystals with an applied ac bias field
[16].

The curved waveguide arrays can support linear
surface modes even in the absence of surface defects
[12]. We consider here a more general case when
the edge waveguide is modified [Fig. 1(a)]. We
use coupled-mode equations to model the beam
dynamics [12,16], idan /dz+C exp�−iẋ0�z��an+1
+C exp�iẋ0�z��an−1+�nan+��an�2an=0, where an�z� are
the normalized mode amplitudes, n=1,2. . . is the
waveguide number, and an	0�0 is due to the struc-
ture termination. The value of �1 defines the detun-
ing of the surface waveguide, while �n�1�0. We take
the value of the normalized nonlinear coefficient �=
−1 to account for the defocusing photorefractive non-
linearity of LiNbO3. By matching the experimentally
measured discrete diffraction pattern in a straight
waveguide array, we determine the value of the cou-
pling coefficient C�0.09 mm−1. By measuring the
beam propagation close to the boundaries of the
curved arrays we estimate the defect strengths as
�1=−0.52 in the fabricated sample with A=21.5 �m
and �1=−0.56 for the sample with A=24.5 �m.

First, we perform theoretical analysis of the linear
surface modes, extending the methods described in
[12]. We characterize the mode dispersion with the
phase 
 accumulated over one modulation period and
present the mode tuning on the modulation ampli-
tude in Figs. 1(b) and 1(c) for both parameter values
of �1. We find that the profiles of the three fundamen-
tal modes (marked 1–3) are similar for �1=−0.56
[shown in Fig. 1(d)] and �1=−0.52 (not shown) owing
to their common physical origin. Mode 1 is supported
by the surface defect, similar to Tamm states [5]; it
exists for a wide range of bending amplitudes and
has a profile with intensity maximum at the first
waveguide [Fig. 1(d), left]. Modes 2 and 3 exist owing
to waveguide bending, similar to the defect-free sur-
face states [12]. The input and output mode profiles
(at z=0,L) have intensity maxima at the second and
third waveguides, respectively [Fig. 1(d), middle and
right].

Next, we simulate the beam dynamics under the
effect of nonlinear self-action, when light is coupled
to a single waveguide number n at the input with the
normalized intensity I= �an�0��2. We show the simu-
lated beam evolution in an array with A=24.5 �m in
Fig. 2. In Figs. 2(a)–2(d) we excite the first waveguide
�n=1�. At low powers, in the essentially linear propa-
gation regime, the first (defect) surface mode [Fig.
1(d), left] is excited. At higher input powers, the de-

focusing nonlinearity increases the strength of the
negative defect in the first waveguide, and eventually
the entire beam becomes trapped in the first wave-
guide [see Figs. 2(c) and 2(d)].

In Figs. 2(e)–2(h) we excite the second waveguide
�n=2�. At low light intensity, the second surface mode
[Fig. 1(d), middle] is excited. However, at higher in-
tensity, nonlinear coupling and interaction between
different linear modes is present. We note that even
away from the surface, the nonlinear beam dynamics
is highly nontrivial at these power levels [19–22]. We
observe switching of the output beam position be-
tween the second, third, and first waveguides as we
increase the intensity [Figs. 2(f) and 2(g)]. As the in-
put intensity grows further, the beam becomes local-
ized at the edge waveguide [Fig. 2(h)], indicating the
formation of a self-trapped nonlinear surface wave.
At even higher intensities (not shown) the nonlinear-
ity completely detunes the input channel, and the
light becomes trapped back to the second waveguide.

In our experiments, we use the beam from a cw la-
ser ��=532 nm�. The beam is ordinary polarized, per-
pendicularly to the plane of the array, to minimize
bending losses and radiation. The nonlinear refrac-
tive index change in the photorefractive LiNbO3 de-
pends on the input power and slowly increases with
illumination time. We therefore monitor the output
intensity distribution onto a CCD camera with in-
creasing illumination until a steady state is reached.
We focus the beam to the first and second waveguides
and for each case show the output intensity profiles
at four different illumination times in Figs. 2(a)–2(h),
top images. We observe that as the nonlinear re-
sponse increases, the output beam switches between

Fig. 2. (Color online) Surface waves in a modulated wave-
guide array �A=24.5 �m�. In each block: top images, ex-
perimental results for different illumination times; bottom
images, numerical simulations. In (a)–(d) the beam is
launched into the first waveguide; in (e)–(h) the second
waveguide is excited. (a), (e) Linear propagation: input
power 1 �W; illumination time 5 s. In (b)–(d) the illumina-
tion times are 0.50, 1.25, and 4.25 min; in (f)–(h) the illu-
mination times are 10.92, 17.67, and 18.42 min, respec-
tively. Input power in (b)–(d) and (f)–(h) is 4 mW. In the
numerical calculations the normalized input intensity I is
marked in the corners.
the different waveguides. There is good agreement
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between the experiments and numerical simulations,
except at very high input powers, when we register a
slow oscillatory beam motion between the first two
waveguides owing to the charge dynamics in photo-
refractive crystal, which is not described by the
coupled-mode equations.

Figure 3 shows numerical and experimental re-
sults for the second sample with bending amplitude
A=21.5 �m. In this case a band of extended linear
states coexist together with a single linear surface
mode [see dashed line in Fig. 1(b)]. Therefore we also
identify the presence of leaky surface modes, which
remain quasi localized for our sample length. Beating
between all these modes determines beam propaga-
tion in the linear regime, as shown in Figs. 3(a) and
3(e). As we increase the input powers/illumination
times, we observe complex beam reshaping and
switching, which depends on the nonlinearity
strength; see Figs. 3(b)–3(d) and Figs. 3(f)–3(h). We
note that in Fig. 3(b) the experimental intensity dis-
tribution is affected by the transient beam dynamics
owing to the short illumination time.

In conclusion, we have studied surface modes in
modulated waveguide arrays, which demonstrate the
features of both optical Tamm states and discrete
surface solitons. We have shown that the interplay of
different surface modes types enables novel means of
light shaping and switching between different output

Fig. 3. (Color online) The same as in Fig. 2 but for A
=21.5 �m. (a), (e) Linear propagation: power 1 �W; illumi-
nation time 5 s. In (b)–(d) and (f)–(h) input power is 4 mW.
In (b)–(d) illumination time is 0.33, 4.50, and 7.33 min; in
(f)–(h) illumination time is 1.00, 3.08, and 13.33 min,
respectively.
waveguides.
This work was supported by the Australian Re-
search Council.
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