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Observation of a smectic-like crystalline 
structure in polydisperse colloids. 

 

Stephen Martin, Gary Bryant* and William van Megen 
Department of Applied Physics, Royal Melbourne Institute of Technology, GPO Box, 
2476V, Melbourne 3001, Australia 
*gary.bryant@rmit.edu.au 
 
Abstract 
 
We present the results of crystallographic measurements on samples of two latexes, 
one with a relatively symmetric particle size distribution, and another with a highly 
skewed pseudo-bimodal distribution. For the skewed latex, crystallites are clearly 
visible, but they exhibit only a single Bragg reflection, indicating long-range order in 
only one direction. We propose a schematic model that explains this result in terms of 
stacks of planes, which are unregistered due to a high incidence of stacking faults 
caused by the incorporation of a large number of small particles. 
 
 
PACS Number(s): 64.70.Dv, 81.10.Fq, 82.70.Dd  
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It is well known that at volume fractions beyond 0.494, single component hard 

spheres crystallize into close-packed hexagonal layers. Such stacking can take the 

form of Face-Centered Cubic  FCC (an ABCABC stacking sequence), Hexagonal 

Close Packed HCP (an ABAB stacking sequence), or random hexagonal close packed 

(RHCP), a mixture of the two where there is random registration of planes. 

Experimentally it is found that hard sphere colloids which crystallize quickly from the 

melt exhibit RHCP stacking [1, 2], while FCC-like stacking can be induced through 

the application of shear [3]. More complicated systems, such as binary mixtures, can 

exhibit superlattice formation [4]. 

 

However, colloidal particles are inherently polydisperse. Models of hard-sphere 

systems show that, even for small polydispersities (<10%), there is local partitioning 

or segregation of particle sizes [5].  Other studies [6] show that any partitioning in a 

sample, for example via eutectic or compound formation, has a strong retarding effect 

on nucleation. However in a single component system there is no evidence that the 

crystal is anything other than a random hexagonal close-packed (RHCP) structure.  

 

In this paper we report qualitatively different crystal structures for two suspensions of 

polymer particles (identified as samples X and W) with different particle size 

distributions. One of the suspensions exhibits hexagonal close packing with random 

registration of planes (RHCP), while the other exhibits packing with no registration of 

planes, comparable with the smectic phase of a liquid crystal. 

 

Both samples are composed of hard sphere-like polymer particles suspended in cis-

decalin for refractive index matching. These particles behave as near perfect hard 



 3 

spheres as shown from phase diagrams [7] and direct measurements [8]. The two 

samples have qualitative, although quantifiable differences in their Particle Size 

Distributions (PSDs), but have equilibrium phase diagrams which are similar, within 

the normal errors associated with these measurements. 

 

The PSDs are shown in figure 1. These were determined from light scattering 

measurements of the angular dependence of the intensity and apparent radius. These 

properties are very sensitive to the PSD when traversing intensity form factor minima, 

allowing for accurate determinations of the PSD [9]. Latex X has a slightly negatively 

skewed size distribution of particles, with a polydispersity of approximately 7%. For 

latex W, the spectroscopic data cannot be explained by a uni-modal PSD – in this case 

a continuous bimodal distribution provides the best agreement with the spectroscopic 

data, and is consistent with other measurements (see [9] for details). The distribution 

of the smaller component is so broad that the PSD can practically be considered a 

single distribution with an extreme skewness.  

 

Results presented here are for sample volume fractions of φ=0.54. Prior to each 

measurement the samples were tumbled to shear melt any crystals and then left 

undisturbed. All results described here apply to homogeneously nucleated crystals 

after the completion of spontaneous crystallization and growth (1 day for X, 3 days 

for W). A detailed analysis of the kinetics of crystal growth has been presented 

elsewhere [10]. 

 

Photographs of suspensions X and W shown in figures 2a and 2b are typical of 

colloidal crystals of hard sphere particles [11]. The crystals are small, and in order to 
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obtain good averaging, scattered laser light is collected from an area of ~1 cm3, 

analogous to X-ray powder crystallography [1]. In this work the averaging over 

crystal orientations is improved further by rotating the detector over the Debye-

Scherrer cone [12].  

 

 

Figure 3 shows the scattered intensity for the two samples over the range of scattering 

vectors accessible to our experiment.  For sample X there are six reflections 

(indicated by the bold vertical lines) observed over the accessible spatial range. These 

peaks are invariant to the position of the sample with respect to the laser beam and the 

position of the detector on the Debye-Scherrer cone. Calculation of the ratios of the 

observed peaks in sample X shows the structure to be RHCP, with the main interlayer 

reflection occurring at qR=3.5.  

 

By contrast, sample W has only one reproducible reflection at qR=3.64. The other 

small features at high qR are not reproducible – they depend on the position of the 

sample and the position of the detector on the Debye-Scherrer cone. The presence of 

the single reflection in sample W indicates a solid phase ordered in one direction, but 

with very little correlation in perpendicular directions. Sample W crystallites therefore 

consist of an unregistered stacking of planes. These qualitative differences in the 

crystal structure of samples X and W are also found at φ=0.55 and φ=0.53, and are 

completely reproducible. For volume fractions φ≥ 0.56 sample W formed a glass. 

 

To further examine this behaviour, the effects of applied shear forces were studied. It 

is well known that the application of shear to colloidal solids has a significant effect 
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on the rate and type of crystallization [e.g. 13-16]. For crystalline samples shear can 

drive RHCP crystals towards the FCC structure [3,  15]. In addition, shearing can 

induce crystallization in samples which are too polydisperse or too concentrated to 

crystallize under when left completely undisturbed [16]. 

 

To investigate these effects, both samples were oscillated at 1Hz for times comparable 

with the crystallization times when left undisturbed [see 17]. Figures 2(c) and 2(d) 

show photographs of samples X and W respectively, immediately after sample 

oscillation had ceased. Sample X behaves as expected, with nothing obviously 

different between 2(a) and 2(c). Measurement of the scattered intensity for the 

sheared sample X (data not shown) indicates suppression of the HCP (100) and (101) 

reflections and the emergence of an FCC (200) peak, similar to the results of Kegel 

and Dhont [15]. For sample X the oscillations guide the sample closer to equilibrium, 

leading to a more FCC-like structure.  

 

Sample W, however, shows quite different behaviour. Figure 2(d) shows a sheared 

region (within the dotted line) in which there appear to be fewer crystallites, 

surrounded by an apparently unchanged nucleated region.  Several repeats of the 

experiment gave the same result. Figure 4 shows the scattering intensity from the 

different regions of the sample. With both the nucleated and sheared region 

illuminated simultaneously, the reflection is shown in line 2. This reflection appears 

to be a superposition of a peak from the nucleated region, at approximately the same 

scattering vector as when the sample was not oscillated (line 1), and a separate peak 

from the sheared region positioned at a lower scattering vector. To confirm this, lines 

(3) and (4) show the scattered intensities from the nucleated and sheared regions, 
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when these regions were illuminated separately. The annealing produced by the 

oscillation results in crystallites in which the distance between reflecting layers 

increases, but there is still no evidence of registration of planes.  

 

Latex W can be considered to be a (continuous) bimodal distribution with a size ratio 

of about 0.57. The equilibrium crystal structure for hard spheres with such a complex 

distribution has not been considered. The nearest approximation is that of a binary 

hard sphere system with a size ration of 0.57, where superlattice structures, such as 

AB2 and AB13 are expected to occur [e.g. 18]. 

 

It is possible that some of the smaller particles within the distribution are of a size that 

can slip into interstices within the main lattice. However, as the smaller particles 

themselves have a broad size distribution, such interstitial particles are more likely to 

occur randomly as interstitial point defects, rather than forming a (regular) sub-lattice. 

As planes of the average (larger) sized particles form, these smaller particles could 

become trapped between and within the planes. These spatially random substitutions 

of small particles both destroy long range intra-plane (spatial) correlation, and 

increase the average intra-plane spacing of particles. So the only source of coherence 

comes from the interplanar spacing. 

 

A simple schematic of this proposed structure for sample W crystallites is shown in 

figure 5. The upper figure shows a cross section of a regular hexagonal crystal, set at 

an arbitrary interlayer distance of 1. The lower figure shows the proposed stacking of 

the W crystallites. The intra-plane spacing between particles in the top and bottom 

layers has been increased, and the spacing between the layers has been reduced to 
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about 0.8, which conserves the particle density. This conservation of the density has 

been assumed as we expect the crystallites of sample W to have a similar packing 

fraction to those in sample X. The change in the spacing of the layer results as a 

consequence of particles much smaller than the average size being incorporated into 

the crystallites as point defects, disrupting the formation of a regular hexagonal 

stacking sequence. The smaller particles remain either due to kinetic constraints, or 

because of a drive to locally create a superlattice structure. It can also be seen in 

figure 5 how the planes now become unregistered; while the three planes shown are 

on average parallel, particles in the vertical direction no longer line up. This 

deregistering of the planes is more severe when the schematic is extended to three 

dimensions. 

 

The application of shear on the sample fractionates out some of the defect particles 

from the crystallites. The slight reduction in polydispersity within the crystallites 

causes less disruption to the particle spacing in the planes, and the crystal formed in 

the sheared region of figure 2d tends towards a regular stacking of hexagonal layers. 

This in turn allows the planes to sit further away from each other. 

 

We have found evidence for an intermediate smectic-like structure present in the 

presence of a highly skewed (or continuous bimodal) particle size distribution. We 

speculate that the structure of this phase is one in which a large number of point 

defects occur within the crystallites, which locally may replicate complex superlattice 

structures, but which produce no long range order within layers. This observation 

suggests that the effects of polydispersity in hard-spheres may be more subtle than is 

generally realized. 
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FIG. 1. Particle size distributions of the radius for samples X (dashed line) and W 
(solid line) determined from fits to the static and dynamic light scattering 
measurements made on dilute suspension [8]. For sample W there is a significant 
fraction of particles continuously distributed at sizes much smaller than the average 
radius (approximately 18% of particles have a radius below 214 nm). The distribution 
is a continuous bimodal with peaks at 245 nm and 140 nm (the latter is indicated by 
an arrow). 
FIG. 2. Photographs of samples X (a) and W (b) at a volume fraction of 0.54, taken 
three days after shear melting. The scale divisions are in millimeters. Figures (c) and 
(d) show the same two samples immediately following sample oscillation at ≈1Hz (1 
day for X and 2 days for W). Sample X shows uniform crystallite coverage 
throughout the sample. Sample W shows a large, more uniform central region (dotted 
line), surrounded by regular crystallites. 
FIG. 3.  Scattered intensity over the accessible range for sample X (upper line) and 
sample W (lower line) both at φ = 0.54. The vertical lines show possible Bragg 
reflections, labeled with both HCP and FCC notation, assuming the primary reflection 
for sample X is due to the distance between close packed planes of an RHCP crystal. 
FIG. 4. Scattered intensity of sample W when left to stand undisturbed (line (1)), and 
after two days of oscillation following the cessation of shear melting (line (2)). Line 
(2) appears to be two peaks superimposed onto each other. To confirm this, the 
incident laser beam was shaped using a rectangular aperture so that the nucleated and 
sheared regions were illuminated separately. The results are shown as lines (3) and 
(4). The fluid structure factor is also shown with line (4) for comparison. 
FIG. 5. Schematic of the proposed local structure of a sample W crystallite. The 
upper diagram shows a regular hexagonal stacking where the space between three 
layers is defined in arbitrary units as 1. In the lower diagram some smaller particles 
have become positioned within the lattice. As a consequence particles within the 
parallel layers are spread out further in the horizontal direction (relative to the regular 
stacking sequence shown above), and the planes are now closer together. Although 
the spacing between planes is closer, spreading of the particles within the planes 
conserves the density, so the lower diagram is approximately the same density as the 
upper diagram. 
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