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Abstract— In this paper we derive closed-form expressions for
the single-user capacity of selection combining diversity (SCD)
system, taking into account the effect of imperfect channel
estimation at the receiver. The channel considered is a slowly
varying spatially independent flat Rayleigh fading channel. The
complex channel estimate and the actual channel are modelled
as jointly Gaussian random variables with a correlation that
depends on the estimation quality. Two adaptive transmission
schemes are analyzed: 1) optimal power and rate adaptation; and
2) constant power with optimal rate adaptation. Our numerical
results show the effect of Gaussian channel estimation error on
the achievable spectral efficiency.

I. INTRODUCTION

It’s well known that information bearing signals transmit-

ted over wireless channels experience multipath fading that

introduces both random phase shift and amplitude variation

[1], resulting in a serious degradation in communication and

increased bit error rate (BER). Diversity can help effectively in

recovering the signal by providing the receiver with multiple

faded replica of information bearing signal[1], [2], [3]. In par-

ticular, selection combining diversity (SCD) has been the most

commonly implemented scheme in wireless communication

systems owing to its simplicity.

Most system designs assume that perfect channel estimation

is available at the receiver. However, in practical systems,

the branch signal-to-noise ratio (SNR) estimates are usually

combined with noise which makes it difficult to estimate them

perfectly. In practice, a diversity branch SNR estimate can be

obtained either from a pilot signal or data signals (by applying

a clairvoyant estimator) [4]. For example, if a pilot signal is

inserted to estimate the channel, a Gaussian error may arise in

due the large frequency separation or time dispersion. Previous

work on the analysis of imperfect channel estimation with no

diversity can be found in [5] and [6]. In [7], a new closed-form

expression for the probability density function (PDF) of the

SCD combiner output with imperfect channel estimation was

derived, based on the derivation of [4]. The author focused on

deriving the average error probability, where it was shown that

the degradation due to imperfect channel estimation induces

error floors at relatively high SNR values.

Shannon’s benchmark paper [8] established the significance

of channel capacity as the maximum possible rate at which

information can be transmitted over a communication channel.

The Shannon capacity of fading channels under different

assumptions about the knowledge of the channel information

at the transmitter and the receiver was presented in [9]

and [10], respectively. In [11], the capacity of a single-user

flat fading channels with perfect channel information at the

transmitter and the receiver was derived for various adaptation

policies; namely, 1) optimal rate and power adaptation (opra),

2) optimal rate adaptation and constant power (ora), and

3) channel inversion with fixed rate (cifr), which is beyond

the scope of our work. The first scheme requires channel

information at the transmitter and receiver, whereas the second

scheme is more practical since the transmission power remains

constant. The last scheme is a suboptimal transmission adap-

tation scheme, in which the channel side information is used

to maintain a constant received power by inverting the channel

fading [11]. In [12], the general theory developed in [11] was

applied to derive closed-form expressions for the capacity of

Rayleigh fading channels under different adaptive transmission

and diversity combining techniques. Recently, there has been

some work dealing with the channel capacity of different

fading channels employing different adaptive schemes such

as [13],[14], and the references therein. Up to the knowledge

of the authors, the capacity of SCD receivers with estimation

errors has not been derived.

In this paper, we extend the results in [12] to obtain closed-

form expressions for the single-user capacity of SCD system,

in the presence of Gaussian channel estimation errors. The

contributions of this paper are deriving closed-expressions for

two adaptive transmission schemes including their asymptotic

approximations and upper bounds and these schemes are:

(1) optimal simultaneous power and rate adaptation (opra).

(2) optimal rate adaptation with constant transmit power (ora).

The paper is organized as follows. In Section II, the system

model used in this paper is discussed. In Section III, we derive

closed-form expressions for the channel capacity under two

adaptation schemes; opra and ora including their asymptotic

approximations and upper bounds in sub-sections III-A and

in III-B, respectively. Results are presented and discussed in

Section IV. The main outcomes of the paper are summarized

in Section V.

II. SYSTEM MODEL

Consider an L-branch diversity receiver in slow fading

channels. Assuming perfect timing and no inter-symbol in-
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terference (ISI) , the received signal on the lth branch due to

the transmission of a symbol s can be expressed as

rl = gls + nl, l = 1 . . . L, (1)

where gl is a zero-mean complex Gaussian distributed channel

gain, nl is the complex additive white Gaussian noise (AWGN)

sample with a variance of N0/2, and s is the data symbol

taken from a normalized unit-energy signal set with an average

power Ps. An SCD receiver tracks the amplitude of the

channel estimate ĝl from the L diversity branches, and selects

the branch yielding the largest fading amplitude. Thus, if the

SCD is employed with equal noise mean power at all branches,

the decision criteria reduces to

m = arg max
l=1...L

{|ĝl|}, (2)

where ĝm is the magnitude of the selected diversity branch

gain at the output of the combiner. The channel estimate ĝ
and the channel gain g can by accurately approximated as

jointly complex Gaussian [4]. We further assume the actual

channel gains of the L diversity branches are i.i.d. as well as

the channel estimates. The actual channel gain g is related to

the channel estimate ĝ [4] as follows

gl = ρĝl + zl, (3)

where ρ is a complex number representing the normalized

correlation between g and ĝ and zl is a complex Gaussian

random variable independent of ĝ with zero-mean and a

variance of σ2
z . The PDF of the SCD receiver with imperfect

channel estimation is given by [7]

pγ(γ) =
L−1∑
k=0

(−1)k

(
L

k + 1

)
k + 1

γt

(
k + 1 − kρ2

)
exp

( −γ(k + 1)
γt

(
k + 1 − kρ2

))
, (4)

where γt = Ps

N0
is the average SNR per receive branch. In

the following, the PDF in (4) is used to derive the channel

capacity with SCD and channel estimation errors.

III. ADAPTIVE CAPACITY POLICIES

We recall the main results from [12] for channel capacities

for the following transmission policies.

A. Power and Rate Adaptation

Given an average transmit power constraint, the channel

capacity Copra in (bits/seconds) of a fading channel [11], [12]

is given by

Copra =
B

ln 2

∫ ∞

γ0

ln
(

γ

γ0

)
pγ(γ)dγ, (5)

where B (in hertz) is the channel bandwidth and γ0 is the

optimum cutoff SNR satisfying the following condition∫ ∞

γ0

(
1
γ0

− 1
γ

)
pγ(γ)dγ = 1. (6)

To achieve the capacity in (5), the channel fading level must

be tracked at both transmitter and receiver. The transmitter

has to adapt its power and rate accordingly by allocating

high power levels and transmission rates for good channel

conditions (large γ). Since the transmission is suspended when

γ < γ0, this policy suffers from outage, whose probability

Pout is defined as the probability of no transmission and is

given by

Pout = 1 −
∫ ∞

γ0

pγ(γ)dγ. (7)

However, Copra in (5) can be expressed in terms of the CDF

of γ by applying integration by-parts resulting in

Copra ln(2)
B

= −
∫ ∞

γ0

1
γ

F (γ)dγ. (8)

Substituting (4) in (6) yields the equality

L−1∑
k=0

(−1)k

(
L

k + 1

)
(k + 1)

[
exp

(
γ0(1 + k)

γt

[
k + 1 − kρ2

])
([

k + 1 − kρ2
]
γt

(1 + k)γ0

)
− E1

(
(k + 1)γ0

γt

[
k + 1 − kρ2

])]
= γt

[
k + 1 − kρ2

]
. (9)

The second term of (9) can be evaluated by making use of

Exponential integral function of first order [16] defined as

E1(x) =
∫ ∞

1

e−xt

t
dt. (10)

Upon substitution of (10) into (9), it is found that the optimal

cutoff SNR, γ0 has to satisfy the following equality

L−1∑
k=0

(−1)k

(
L

k + 1

)
(k + 1)

×
[

exp

(
γ0(1 + k)

γt

[
k + 1 − kρ2

])([
k + 1 − kρ2

]
γt

(1 + k)γ0

)
−

E1

(
(k + 1)γ0

γt

[
k + 1 − kρ2

])]
= γt

[
k + 1 − kρ2

]
. (11)

To obtain the optimal cutoff SNR, γ0 in (11), we follow the

following procedure. Let x = γ0
γt

and define the function

fsc(x) as

fsc(x) =
L−1∑
k=0

(−1)k

(
L

k + 1

)[
exp

(
−x(1 + k)

γt

[
k + 1 − kρ2

])
([

k + 1 − kρ2
]

(1 + k)x

)
− E1

(
(k + 1)x

γt

[
k + 1 − kρ2

])]

−γt

[
k + 1 − kρ2

]
k + 1

. (12)

Making change of variable where μ = (k+1)/(γt[k+1−kρ2])
and applying the first order derivative to (12) with respect to

x, it yields

f
′
sc(x) = −

L−1∑
k=1

(
L

k + 1

)
exp

(−μx

μ2x2

)
. (13)
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Hence, f
′
sc(x) < 0, ∀ x > 0, meaning that f

′
sc(x) is a strictly

decreasing function of x. Also, observing that

1) lim
x→0+

fsc(x) = ∞ (14)

2) lim
x→∞+

fsc(x) = −γt

[
k + 1 − kρ2

]
k + 1

, (15)

Noting that, fsc(x) is a continuous function of x, which leads

to a unique positive γo such that fsc(x) = 0. Therefore, it is

concluded that for each γt > 0 there is a unique γ0 satisfying

(12). Numerical results using MATLAB show that γo ∈ [0, 1]
as γt increases, and γo → 1 as γt → ∞.

Now, substituting (4) into (5) yields the channel capacity

with the opra scheme as follows

Copra

B
=

L−1∑
k=0

(−1)k

(
L

k + 1

)
k + 1

γt

[
k + 1 − kρ2

] (16)∫ ∞

γ0

ln
(

γ

γ0

)
exp

( −γ(k + 1)
γt

[
k + 1 − kρ2

])
dγ︸ ︷︷ ︸

I1

.

where the integral I1 in the above expression can be computed

using the fact from [12], which states the following∫ 1

0

lnx exp(−μx) = E1(μ)/μ. (17)

Inserting (17) into (16) implies that the capacity Copra per unit

bandwidth (in bits/seconds/hertz) can be expressed as

Copra

B
=

L−1∑
k=0

(−1)k

(
L

k + 1

)
E1

(
(1 + k)γ0

γt

[
k + 1 − kρ2

])
exp

( −γ(k + 1)
γt

[
k + 1 − kρ2

])
(18)

1) Asymptotic Approximation: We can obtain asymptotic

approximation Copra using the series representation of Expo-

nential integral of first order function [16] expressed as

E1(x) = −E − ln(x) −
+∞∑
i=1

(−x)i

i.i!
, (19)

where E = 0.5772156659 is the Euler-Mascheroni constant.

Then, the asymptotic approximation C∞
opra per unit bandwidth

(in bits/seconds/hertz) can be shown to be

Copra

B
=

L−1∑
k=0

(−1)k

(
L

k + 1

)(
− E

− ln
(

(1 + k)γ0

γt

[
k + 1 − kρ2

])
+

(
γ(k + 1)

γt

[
k + 1 − kρ2

]))

× exp
( −γ(k + 1)

γt

[
k + 1 − kρ2

])
. (20)

2) Upper Bound: The capacity expression of Copra can

be upper bounded by applying Jensen’s inequality to (5) as

follows
CUB

opra

B
= ln

(
E[γ]

)
, (21)

where E[.] is the expectation operator. The expression in (24)

can be evaluated by averaging it over the PDF in (4) and

making help of [16] resulting in∫ ∞

0

xne−μxdx = n!μ−n−1, (22)

for Re[μ] > 0. The resulting expression can be further

simplified to obtain the upper bound for Copra as follows

CUB
opra

B
= ln

(
L−1∑
k=0

(−1)k

γ0

(
L

k + 1

)
γt

[
k + 1 − kρ2

]
γ(k + 1)

)
. (23)

3) Opra Upper Bound: We upper-bound the capacity Copra

by applying Jensen’s inequality to (5) as follows:

CUpperBound
opra

B
= ln

(
E{γ}

)
. (24)

We evaluate the expression in (24) by averaging γ over (4)

with help of [16]:∫ ∞

0

xne−μxdx = n!μ−n−1. (25)

for Re[μ] > 0. We simplify the resulting expression to obtain

the upper bound as follows:

CUpperBound
opra

B
= ln

(
L−1∑
k=0

(−1)k

γ0

(
L

k + 1

)
γt

[
k + 1 − kρ2

]
γ(k + 1)

)
.

(26)

B. Constant Transmit Power

By adapting the transmission rate to the channel fading

condition with a constant power, the channel capacity Cora

[8], [9] is given by

Cora =
B

ln 2
=

∫ ∞

0

ln
(
1 + γ

)
pγ(γ)dγ. (27)

Substituting (4) into (27) results in

Cora

B
=

L−1∑
k=0

(−1)k

(
L

k + 1

)[
1 − kρ2

k + 1
]−1

∫ ∞

0

ln
(

1 + γ

)
exp

( −γ(k + 1)
γt

[
k + 1 − kρ2

])
dγ︸ ︷︷ ︸

I2

.(28)

The integral I2 can be computed conveniently by using the

change of variable x = 1 + γ and applying (17), resulting
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in a closed-form expression for the capacity Cora per unit

bandwidth (in bits/seconds/hertz) given by

Cora

B
=

L−1∑
k=0

(−1)k

(
L

k + 1

)
exp

(
(1 + k)

γt

[
k + 1 − kρ2

])
×E1

(
(1 + k)

γt

[
k + 1 − kρ2

])
. (29)

1) Asymptotic Approximation: Following the same proce-

dure in Section III-A, the asymptotic approximation C∞
ora per

unit bandwidth (in bits/seconds/hertz) can be computed as

C∞
ora

B
=

L−1∑
k=0

(−1)k

(
L

k + 1

)
exp

(
(1 + k)

γt

[
k + 1 − kρ2

])

×
(

− E − ln
(

(1 + k)γ0

γt

[
k + 1 − kρ2

])

+
(

γ(k + 1)
γt

[
k + 1 − kρ2

]))
. (30)

2) Upper Bound: The capacity Cora can be upper bounded

by applying Jensen’s inequality to (5) as follows

CUB
ora = ln

(
1 + E[γ]

)
, (31)

and the upper bound can be written as

CUB
ora

B
= ln

(
1 +

L−1∑
k=0

(−1)k

γt

(
L

k + 1

)
γt

[
k + 1 − kρ2

]
γ(k + 1)

)
.

(32)

IV. NUMERICAL RESULTS

In this section we provide some numerical results that

illustrate the mathematical derivation of the channel capacity

per unit bandwidth as a function of average receiver SNR

(γt) in dB for different adaptation policies with SCD over

slow Rayleigh fading with weight estimation errors. All curves

provided are obtained using the closed-form expressions, (18),

(20), (26), (29), (30), (32).

Figure 1 shows a comparison of the capacity per unit band-

width for optimal power and rate adaptation (opra) and optimal

rate adaptation and constant transmit power (ora). The results

show the capacity of opra outperforms the capacity of ora for

any average SNR (γt) per branch (dB). However, both opra
and ora achieve the same result if the power adaptation is not

considered at the transmitter for the opra policy. In addition,

The results showed that for the same bandwidth, the capacity

increases with the increase of the diversity order L and the

increase of the average γt per branch for both opra and ora.

Figure 2 compares opra for different values of correlation

between the channel and its estimate; namely, ρ = 0.3, ρ =
0.5, ρ = 0.7, ρ = 0.9 and ρ = 1. It can be noticed that the

highest opra that can be achieved when ρ = 1. Furthermore,

opra decreases when the value of ρ decreases where in this

case the weight error increases. It can be observed from Figure
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Fig. 1. Capacity per unit bandwidth for a Rayleigh fading with SCD
diversity (L=3) for different adaptation schemes.
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Fig. 2. Capacity per unit bandwidth for a Rayleigh fading with
SCD diversity (L=3) and various values of ρ under power and rate
adaptation.

2 that there is almost a 5 dB difference in opra between ρ = 1
and ρ = 0.3.

The upper bound shows a tight approximation of the exact

average capacity. Figure. 3 shows the plot of ora as well as its

asymptotic approximation as a function of the average received

SNR γt for L = 3. The same figure shows that the ora policy

is less sensitive to the estimation error than the opra.

V. CONCLUSION

The channel capacity for unit bandwidth for three different

adaptation policies including their approximations and upper

bounds over a slow Rayleigh fading channel for SCD with

estimation error is discussed. Closed-form expressions for two

adaptation policies are derived for L-selection combiner. Our

numerical results showed that for the same bandwidth, the

capacity increases with increase of the diversity order L and

increase of of the average γt per branch. Also, simulation
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Fig. 3. Capacity per unit bandwidth for a Rayleigh fading with SCD
diversity (L=3) and various values of ρ under rate adaptation and
constant power.

showed that opra outperforms ora, however, ora is less sen-

sitive to the estimation error than opra.
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