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Abstract— In a recent work we have proposed a subclass of
Cohen’s Class of quadratic time-frequency distributions (TFD’s),
the T-class of distributions with time-only Doppler-lag kernels to
provide high-resolution and considerable cross-terms reduction
for FM signals. In this work we investigate the instantaneous
frequency (IF) properties of two members of this class: the
hyperbolic and the exponential T-distributions in the presence
of Gaussian noise. Both mono- and multi-component FM signals
will be considered, with various modulation coefficients. A
comparison with two well-known TFD’s, Wigner-Ville and Choi-
Williams distributions, is presented for performance evaluation.

I. INTRODUCTION

Instantaneous frequency (IF) estimation plays a significant
role in signal processing and communication engineering [1],
[2], [3]. Methods of IF estimation can be classified into two
major categories: parametric and non-parametric. Parametric
IF estimation methods are complicated and time-consuming,
hence not suitable for real-time applications. Non-parametric
IF estimation for multicomponent non-stationary signals is
an important (and unresolved) issue in signal processing [4],
[5]. The concept of the instantaneous frequency can be found
in [4], [1], [2], [3]. Time-frequency analysis is used for IF
estimation for multicomponent signals as it is the only reliable
tool to reveal the multicomponent nature of such signals by
concentrating the signal energy in the time-frequency plane
around the component IF laws [1]. These energy concentra-
tions are known as ”peaks” or ”ridges” of the time-frequency
representation or distribution (TFD). However, the quadratic
time - frequency distributions of multicomponent signals suffer
from the presence of cross-terms [1], [2], [3], which can
obscure the real features of interest in the signal. Considerable
efforts have been made to define TFD’s which reduce the effect
of cross-terms while improving the time-frequency resolution
[1], [3]. However, there is always a compromise between
these two requirements. TFD’s have different performances in
this respect and the choice of the proper TFD is application
dependent.

A class of time-frequency distributions with high time-
frequency resolution and strong cross-terms reduction was
proposed in [4], [7] and proved to be effective for both
mono- and multicomponent FM signals. Also it was recently
shown that this class is highly effective in Blind Source
Separation (BSS) [8]. Members of this class has kernels that
are functions of time only. We shall refer to these TFD’s
with time-only kernels as the T-distributions (TD’s). In this
paper we show that this class is also efficient in IF estimation

of mono- and multicomponent FM signals in the presence
of additive gaussian noise. Its performance is compared to
two widely used members of the quadratic class of TFD’s:
The Choi-Williams Distribution (CWD) and the Wigner-Ville
Distribution (WVD).

II. TIME-FREQUENCY DISTRIBUTIONS FOR

INSTANTANEOUS FREQUENCY ESTIMATION

For time-frequency analysis of a real signal x(t), we always
consider its analytic associate z(t) = x(t)+jx̂(t), where x̂(t)
is the Hilbert transform of x(t) [2].

Consider an analytic signal of the form

z(t) = aejφ(t) + ε(t) (1)

where the amplitude a is constant, and ε(t) is a complex-
valued white Gaussian noise with independent identically
distributed (i.i.d.) real and imaginary parts with total variance
σ2

ε . The instantaneous frequency of z(t) is given by

fi(t) = (1/2π)dφ(t)/dt (2)

We assume in this analysis that fi(t) is an arbitrary, smooth
and differentiable function of time with bounded derivatives
of all orders.

The general equation for quadratic time-frequency represen-
tation of a signal z(t) is given by [2]

ρ(t, f) = F
τ→f

[G(t, τ) ∗
(t)
Kz(t, τ)] (3)

where G(t, τ) is the time-lag kernel, Kz(t, τ) = z(t +
τ/2)z∗(t− τ/2) and ∗

(t)
denotes time convolution. The kernel

could also be expressed in the Doppler-lag domain as g(ν, τ),
where

G(t, τ) = F−1

ν→t
{g(ν, τ)} (4)

In the discrete lag domain ρ(t, f) can be written as follows:

ρ(t, f) =
∫ ∞
−∞

∑∞
m=−∞Kz(u, 2mT )

× G(t− u, 2mT )e−j4πfmT du (5)

where m is an integer and T is the sampling interval. If ρ(t, f)
is discretized over time and frequency then we have

ρ(n, k) =
∑N−1

l=−N

∑N−1
m=−NKz(lT, 2mT )

× G(nT − lT, 2mT )e−j2π km
2N (6)
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where 2N is the total number of signal samples. In the
frequency domain, the frequency samples are given by fk =
k/4NT.
The IF estimate is a solution of the following optimization:

f̂i(t) = arg[max
f

ρ(t, f)] ; 0 ≤ f ≤ fs/2 (7)

where fs = 1/T is the sampling frequency. The frequency
estimation error is the difference between the actual value in
eq.(2) and the estimate in eq.(7) as follows

∆f̂i(t) = fi(t) − f̂i(t) = φ′(t)/2π − f̂i(t). (8)

Therefore, the bias and variance are described as follows:

B(f̂i(t)) = E [∆f̂i(t)] = fi(t) − E [f̂i(t)]
V (f̂i(t)) = E [∆f̂i(t)]2 = E [{fi(t) − f̂i(t)}2] (9)

As we will see later, for the T-Class of TFD’s, this bias
is zero for single-tone and linear FM (LFM) signals, and
therefore a Cramer-Rao bound (CRB) exists for the variance.

III. THE T-CLASS OF QUADRATIC TIME-FREQUENCY

DISTRIBUTIONS

Time-only kernels are a special case of separable time-lag
kernels. Suppose we have a separable time-lag kernel as
follows

G(t, τ) = g1(t)g2(τ) (10)

where g1 and g2 are continuous and L2 integrable functions.
It was shown in [7] that for best time-frequency resolution

we should have

G(t, τ) = R(t) = r1(t)/M
g(ν, τ) = r(ν) = F

t→ν

−1{r1(t)}/M (11)

where M =
∫
g1(u)du is a constant and G(t, τ) is now a

time-only kernel. This is the formula for all time-only kernels,
which are the kernels of the T-distributions.

To examine the behavior of this kind of kernels in terms
of resolution and cross-terms reduction, we consider a sum of
two complex sinusoids

z(t) = a1 exp{j(2πf1t+θ1)}+a2 exp{j(2πf2t+θ2)} (12)

where a1, a2 are real constants and θ1 and θ2 are phase
constants. We obtain

ρz(t, f) = a2
1δ(f − f1) + a2

2δ(f − f2) + 2a1a2 g(f1 − f2)

× cos{2π(f1 − f2)t+ θ1 − θ2} δ(f − f1 + f2
2

)(13)

where there is still ideal concentration about the auto-terms,
and cross-terms appear with a controlling factor g(f1 − f2).
The Wigner-Ville distribution, which utilizes a time-only ker-
nel G(t, τ) = G(t) = δ(t) with g(ν, τ) = g(ν) = 1, has
significant oscillatory cross-terms without a controlling factor,
where the cross-terms can be larger in amplitude than the auto-
terms. However, using a low-pass time-only kernel other than

δ(t) will result in controlling the cross-terms by the low-pass
function g. In case of two complex sinusoids above we have
the controlling factor g(f1 − f2) with cross-terms reduction
that depends on the shape of the low-pass function g and
the frequency separation f1 − f2, where better cross-terms
reduction is obtained for wider frequency separation.

The Exponential T-Distribution (ETD): the kernel of the
Choi-Williams distribution (CWD) in the Doppler - lag domain
is g(ν, τ) = exp(−4π2ν2τ2/σ) which can be given in the
time-lag domain by [2]

G(t, τ) =
√
σ/4πτ2 exp(−σt2/4τ2) (14)

where σ is a real parameter. In [7], we proposed a time-
frequency distribution Te(t, f) with the following exponential
time-only kernel

G(t, τ) = Rσ(t) =
√
σ/π exp(−σt2) (15)

where σ is a real parameter and
√
σ/π is a normalization

factor. It was shown in [4] that the resolution of the ETD
exceeds that of CWD by far.

The hyperbolic T-distribution (HTD): it has the following
time-only kernel [7]

G(t, τ) = Rσ(t) = kσ/ cosh2σ(t) (16)

where σ is a real positive number and kσ is a normalization
factor given by

kσ =
∫ ∞

−∞
1/ cosh2σ(t)dt = Γ(2σ)/22σ−1Γ2(σ)

in which Γ represents the gamma function.

IV. FREQUENCY ESTIMATION USING THE T-CLASS OF

DISTRIBUTIONS

It can be shown that the T-distributions do not satisfy the time
marginal property, hence they do not satisfy the traditional
condition for the instantaneous frequency. But in [4] we
proposed the following general IF property: at any time t,
the time-frequency distribution ρz(t, f) should have absolute
maximum at f = 1

2π
dφ(t)

dt , which is the actual important
characteristic needed for IF estimation. In [4] we have also
shown that at any t, the hyperbolic T-distribution has an
absolute maximum at f = 1

2π
dφ(t)

dt for linear FM signals.
This is general for all T-distributions and constitutes the basis
for our IF estimation. For non-linear FM signals this IF
estimate is biased, and best IF estimation is achieved in this
case by adaptive methods [4]. For an FM signal of the form
z(t) = a ejφ(t), a being a constant, the general formula for
the T-distributions can be given by

ρz(t, f) ≈ |a|2
∫
Rσ(t− u) δ [

1
2π
φ

′
(u) − f ] du

= |a|2Rσ(t− ψ(f))ψ
′
(f) (17)
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where ψ is the inverse of 1
2πφ

′
, i.e., 1

2πφ
′
(ψ(f)) = f and it

is assumed that there is a relatively small effect from higher-
order derivatives φ(k)(t), k ≥ 3. Assuming that ψ

′
(f) is not a

highly peaked function of f and knowing that Rσ(t− ψ(f))
is peaked at t = ψ(f) since it is low-pass and even in t,
the absolute maximum of ρz(t, f) for any time t would be
at ψ(f) = t, or f = 1

2πφ
′
(t), which is the instantaneous

frequency of the FM signal z(t). For non-linear FM signals,
the energy peak of ρz(t, f) is biased from the instantaneous
frequency due to the higher-order phase derivatives. The major
contribution in this term is due to φ(3)(u) [4]. Therefore at the
instants of rapid change in the IF law the bias is not negligible
and eq.(15) would not be an accurate approximation to ρ(t, f)
unless a suitable windowing in the lag direction is used. An
adaptive window length would be recommended, but due to
significant bias no CRB is applicable.

For linear FM (LFM) signals we have φ(k)(t) = 0 for k ≥ 3.
If φ(t) = 2π(fot + βot

2/2), where fo, βo are constants, we
have

ρz(t, f) =
1
βo

|a|2Rσ

[
t− 1

βo
(f − fo)

]
(18)

which has an absolute maximum at f = fo +βot, the instanta-
neous frequency. As βo → 0, the linear-FM signal z(t) will
approach a sinusoid, and we have ρ(t, f) → |a|2δ(f−fo) for
a monocomponent single-tone signal. For a signal composed
of the sum of two LFM signals z(t) = a1 e

jφ1(t) + a2 e
jφ2(t)

with φi(t) = 2π(fit + βit
2/2), i ∈ {1, 2}, the T-distribution

can be expressed as follows:

ρz(t, f) =
1
β1

|a1|2Rσ

[
t− 1

β1
(f − f1)

]
+

1
β2

|a2|2Rσ

[
t− 1

β2
(f − f2)

]
+ cross − terms. (19)

In the next section we will consider a monocomponent
linear FM signal as well as a multicomponent signal with LFM
components to test the IF estimation capabilities of the T-Class
as compared to WVD and CWD.

V. SIMULATION RESULTS: A COMPARISON IN COHEN’S

CLASS OF DISTRIBUTIONS

The above time-frequency distributions were simulated and
the instantaneous frequency (IF) was estimated according to
eqs. (1) and (6-9). First, as a monocomponent signal, a linear
FM test signal z(t) = a ejφ(t), φ(t) = 2π(fot+ βt2/2), with
a = 1, fo = 0.05fs, β = 0.4fs is used. The instantaneous
frequency is given by f = 1

2πdφ/dt = fo + βt as shown in
Fig.(1). For TFD implementation, the signal length 2N = 512
samples was selected. The sampling frequency was fs = 2N
Hz, where the total signal duration will be 1 sec. As noise,
i.i.d noise samples were added using different SNR’s. For
each SNR, 1000 Monte Carlo iterations were considered for
the purpose of calculating the variance of the IF estimate.
Fig.(2) shows the Hyperbolic T-distribution (HTD) of the

above monocomponent LFM signal with σ = 0.05 and signal-
to-noise ratio SNR = -5 dB. Even at very low SNR’s, the HTD
gives a clear concentration around the instantaneous frequency
of the signal. Fig.(3) shows the result of applying IF estimation
on the above noisy LFM for three TFD’s. The performance of
the HTD is distinguished as superior to other TFD’s, especially
at low SNR’s. Performance of the ETD is comparable to that
of the HTD for monocomponent signals.

Second, to test the performance in IF estimation for multi-
component signals, a multicomponent test signal is considered
with two linear FM components z(t) = a1 e

jφ1(t)+a2 e
jφ2(t),

φ1(t) = 2π(f1t+ β1t
2/2), φ2(t) = 2π(f2t+ β2t

2/2), where
a1 = a2 = 1, fo1 = 0, fo2 = 0.2fs, β1 = 0.45fs, β2 = 0.3fs.
The instantaneous frequencies of the individual components
are given respectively by (see [4]) f1 = 1

2πdφ1/dt = fo +β1t
and f2 = 1

2πdφ2/dt = fo2 + β2t as shown in Fig. (4).
For TFD implementation and robust testing of IF estimation
performance, the number of signal points was 2N = 29 points,
with fs = 2N Hz and total signal duration of 1 sec. Noise is
applied as above. Fig.(5) shows the exponential T-distribution
(ETD) of the above multicomponent FM signal with σ = 0.1
and signal-to-noise ratio SNR = -5 dB. Despite the fact that IF
estimation was at a very low SNR, the ETD is giving a clear
concentration (ridge) around the two instantaneous frequencies
of the signal. Fig.(6) shows the result of applying IF estimation
on the first component of the above noisy multicomponent
signal using three TFD’s. For each SNR, 1000 Monte Carlo
iterations were considered to calculate the variance of the IF
estimate. The performance of the ETD is distinguished as
superior to other TFD’s, including the WVD (which gives ideal
concentration for LFM’s), especially at low SNR’s. The HTD
gives a comparable performance, while CWD lags behind
these TFDs. It is worth noting that all TFD’s approach the
same Cramer-Rao bound as SNR increases; this bound is
not evident at Fig.(6) as it needs a much larger 2N to be
revealed, and this will cause computer memory problems when
simulated.

VI. CONCLUSION

It is shown that members the recently developed T-Class of
time-frequency distributions (TFD’s) outperform other well -
known distributions like the Wigner - Ville distribution (WVD)
and the Choi - Williams distribution (CWD) in terms of
robustness in instantaneous frequency estimation for mono-
component and multicomponent signals. For monocomponent
IF estimation, the exponential T-distribution (ETD) and the
hyperbolic T-distribution (HTD) give a minimal variance for
all SNR’s, however, the difference in performance is more
evident at low SNR’s, where the T-Class distributions outper-
form other TFD’s by far. For multicomponent IF estiamtion,
the ETD gives the lowest IF variance among all TFD’s above.
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Fig. 1. Instantaneous frequency (IF) of the LFM test signal z(t) =
a ejφ(t), φ(t) = 2π(fot + βt2/2), with a = 1, fo = 0.05fs, β =
0.4fs. The instantaneous frequency is given by f = 1

2π
dφ/dt =

fo + βt.
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Fig. 2. Hyperbolic T-distribution (HTD) of the linear FM signal in
Fig.(1) with σ = 0.05 and signal-to-noise ratio SNR = -5 dB. The
number of points was 2N = 29 points, with fs = 2N Hz, where
the total signal duration will be 1 sec. Despite the very low SNR,
the HTD is giving a clear concentration around the instantaneous
frequency of the signal.
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Fig. 5. Exponential T-distribution (ETD) of the multicomponent FM
signal in Fig.(4) with σ = 0.1 and signal-to-noise ratio SNR = -5 dB.
The number of points was 2N = 29 points, with fs = 2N Hz and
total signal duration of 1 sec. Although operating at a very low SNR,
the ETD is giving a clear concentration around the instantaneous
frequencies of the LFM components.
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Fig. 6. Performance of various TFD’s in IF estimation of the first
linear FM component of the multicomponent signal in Fig.(4) with
length 2N = 29 samples. The sampling frequency was fs = 2N Hz.
It is evident that the recently proposed ETD surpasses other TFD’s
in robustness where it gives the minimum variance, especially at low
SNR’s. The performance of the ETD is near to that of WVD, while
CWD lags by far. Theoretically, WVD gives the ideal concentration
for LFM (i.e., a delta function around the IF ridge in the t-f plane).
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