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Abstract 
 
In a network, traffic demands are known with a degree of 
uncertainty, traffic engineering should take into account 
the traffic variability. In this research work we focus on 
the robust routing under changing network conditions. 
Daily internet traffic pattern shows that network is 
vulnerable to malicious attacks, denial of service attacks, 
worms and viruses. Oblivious routing has a substantially 
better performance than Open Shortest Path First 
[OSPF] routing for different level of uncertainty. We 
propose a theoretical framework for Robust Routing 
aiming to improve online and offline traffic engineering 
approaches. 
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1. Introduction 
 

Internet applications such as voice-over-IP, video-on-
demand and peer-to-peer are characterized as having 
unpredictable traffic pattern. Classical approaches are 
based on modeling traffic as a single or multiple traffic 
metrics for the design and dimensioning of the network. 
When actual traffic does not come in line with such 
modeling, desired Quality of Service (QoS) cannot be 
guaranteed due to network congestion. Development of 
routing infrastructures that can optimize network 
resources while accommodating traffic uncertainty in a 
robust and efficient manner is one of the open and 
potential research areas for the next generation Internet. 

 
 
 
 
 
 

Routing Optimization refers to finding set of paths 
between pair of origin and destination routers by 
optimizing an objective function subjected to traffic 
demand and capacity constraints. Relying on precise 
knowledge of the Traffic Matrix (TM) may enable 
optimal solutions. However in practice, traffic demand 
between each node pair changes.  

Traffic Engineering (TE) scheme based on distributed 
load based update [8] and on-line monitoring [13] that 
uses precise knowledge of traffic can lead to network 
instability and complexity. Prediction based TE 
algorithms provide routing optimization for collected 
samples from a stable traffic without preparing for 
unpredictable traffic spikes. Online approach is an 
extreme case of prediction-based TE. 

Traffic Engineering is now playing a vital role for 
network design and dimensioning. Traffic engineering 
algorithms largely depends on the traffic pattern. Traffic 
demand is usually stable most of the time but there exits 
time period when it is highly dynamic and unpredictable. 
Traffic traces of several backbone networks [2] indicate 
that traffic demand vary during this period. Highly 
unpredictable traffic variations have been studied recently 
by other researchers [10, 11, 12 and 13].Unpredictable 
traffic is the result of the factors e.g. Denial of Service 
attacks, intradomain routing changes of major ISPs and 
outbreaks of worms and viruses. 

Data networks in practice follow the OSPF policy: 
where arc weights are used to select the shortest path in 
the route selection between origin and destination. 
Routing optimization with OSPF thus consists of finding 
the value of weights so as to optimize some network 
performance measure [4, 17, and 18]. Other popular 
forwarding techniques such as Multi–Protocol Label 
Switching (MPLS) do not constraint route length, thus 
allowing multiple implementation of any routing. 

The concept of oblivious routing aims at developing 
routing algorithm that base their routing decisions on 
local knowledge and therefore can be deployed very 
efficiently in a distributed environment. However, the 
traffic demand is seldom known with accuracy because of 
difficulty in measurement or due to variation. 
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The uncertainty in the traffic leads us to address some 
issues: 
-Finding a robust routing strategy over a range of traffic 
demands. 
-How traffic model can scale to the traffic variations. 
-Optimizing the routing to provide cost effective services. 

In this paper we are proposing routing algorithm to 
address robustness under changing traffic demand due to 
denial of service attacks and intradomain routing changes. 

Paper is structured as follows: we presented related 
research work in this area in section 2 followed by 
preliminaries and notations in section 3. In section 4 we 
defined problem, its linear program formulation and 
solution approach. Computational experiments are briefly 
described in section 5.We present conclusion and future 
work in section 6. 

 
2. Related Work 

 
There are thee classes of solutions in this area of 

research: 
1. Oblivious routing – [1], [6], [16]. 
2. Link weight optimization – [4], [17], [18]. 
3. Traffic engineering adaptive approaches – [7], [8]. 

 
In recent years a body of literature is developing in the 

area of robust routing optimization. In [1], Applegate and 
Cohen proposed a simple polynomial size LP to obtain a 
demand based oblivious routing scheme. They computed 
network performance   and found performance ratio near 
2 for changing traffic. A potential drawback of oblivious 
routing, however is its suboptimal performance for 
normal traffic. In [3], Azar et al. introduce the concept of 
oblivious routing. Their performance metric for a routing 
is relative and it does not give any guarantee about the 
absolute performance of the selected routing. Oblivious 
routing problem is to develop a routing that achieves a 
near optimal performance with little knowledge of TM. 

Link weight optimization is based on adjusting weights 
for the routing decisions and guarantees performance over 
a limited set of traffic demands. An adaptive approach is 
responsive to the traffic changes, so that the issue of 
stability and convergence needs to be addressed both in 
theory and in practice. Oblivious routing aims for the 
optimal routing regardless of network demand assuming 
no knowledge of traffic matrix. In [4], Fortz and Thorup 
deployed a local search technique for OSPF/IS-IS to find 
a set of link weights which gives good performance for a 
given TM or a set of TMs. Advances in traffic 
measurement are proposed in [10, 11, 12, 13, 14, and 15]. 

More recently, there have been proposals for online 
Multipath traffic engineering [7, 8].They have both 
proposed a distributed adaptive traffic engineering 
algorithms, which may cause routing instability. 

Common-case Optimization with Penalty Envelope 
(COPE) [6] is our inspiration for the research work. 
COPE propose a deterministic approach using a notion of 
penalty envelope and modeling traffic demand as a 
convex-hull. The convex-hull based TE is effective in 
situations when traffic demand fall into the convex hull.  

In our case model is not trivial as we would have to 
make sure that all traffic flows through the network which 
in the deterministic case would mean taking the minimum 
capacity, but this would make little sense. 

We are using a combined approach of [1] and [6] to 
find a polynomial size Linear Programming model with 
finite constraints for robust routing. This paper models 
traffic demand as a random variable (section 4.2). Daily 
traffic pattern shows us that while network can handle 
link cuts and router crashes, they remain vulnerable to 
more complex faults that include implementation bugs, 
configuration mistakes, malicious attacks and greedy 
users e.g. wide spread Internet service outages can be 
caused by denial of service attacks, worms and viruses. 
We are focusing on the problem of investigating routing 
robustness under changing network conditions due to 
malicious attacks and greedy users. Refer Table-1 for a 
brief overview of the related research work. 
Algorithm No of 

TM
  

Constraints 
model  

LP size
  

Routing 
formulation
  

Applegate 
and Cohen 

Infinite Pipe finite Link Based 

Azar et al. Infinite No 
constraints 

Infinite Link Based 

Zhang et al Finite NA   Finite Link Based 

Ben-Ameur  
et al.  [22] 

Infinite Hose and 
Pipe 

Infinite Path Based 

Our approach Finite Hose and 
Pipe 

Finite Path based 

 
Table 1.  Related research work 

 

3. Preliminaries and Notations 
 
3.1 Traffic demand, Traffic Matrix and Routing 
 

A traffic demand is defined as a tuple of origin router, 
destination router and the flow between these two routers. 

The traffic demand originates from a client connected 
via the ISP through the origin router and is destined for a 
specific client at the destination router. 

A traffic matrix is the amount of traffic between 
Origin-Destination (OD) pair over a certain time interval. 
It represents the traffic demand between every origin node 
i and every destination node j in the network and defined 
by the following constraint: 

dij   ≥  0 
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The routing refers to route traffic between each OD 
pair. Popular internet routing protocols are the OSPF and 
IS-IS. MPLS architecture allows a flexible forwarding 
paradigm. MPLS combined with OSPF or IS-IS can take 
advantage of the path diversity. Our work is mainly based 
on MPLS which is widely deployed by ISPs. 

 
3.2 Performance Metrics 

 
The most common performance metric of a given 

routing problem with respect to a certain Traffic Matrix 
(TM) is defined as the Maximum Link Utilization (MLU). 
This is the ratio of the maximum between the total flow 
and capacity over all the links [1]. 

The formal definition of the MLU of a routing f on TM 
D, where dxy is the demand from the nodes x to y, is 
expressed as follows 

linksji ∈),(
max ∑

yx ij

jixyxy

cap
fd

,

),(.
 

Where capij is the capacity of the link (i, j). 
An optimal routing solution for a certain TM D is the 

routing that reduces the MLU for TM D, and is defined in 
the following formula: 

OPT U (D) =  

routingisff

min
linksji ∈),(

max ∑
yx ij

jixyxy

cap
fd

,

),(.  

The Performance Ratio is defined as the ratio of the 
MLU of “f” on D over the maximum number of the 
possible link utilization of the given TM. 

)(
/),(max}){,( ),(,),(

DU
capjifdDfPERF

OPT

jixyxyyxlinksji ∑= ∈

 

In addition, it should be noted that the optimal routing 
for a given range of TM can be solved as the Multi-
Commodity Flow Linear Program.  Since the traffic 
pattern is highly variable in its nature, it is not always 
possible to obtain accurate estimate of the current TM. 

When the set D includes all possible TMs, we refer to 
the performance ratio as the oblivious performance ratio 
of a routing. The oblivious ratio is the worst performance 
ratio a routing obtains over all traffic matrices. A routing 
with the minimal oblivious ratio is an optimal oblivious 
routing and its oblivious ratio is the optimal oblivious 
ratio of the network. 

 
3.3 Single Path and Multipath Routing 
 

When a traffic demand can have a single path from its 
source to destination we have: 
re

ij      ∈    (0, 1)    ;       ∀ ( i, j)   ∈   N x N,  ∀ e∈  E 
When traffic can have multiple paths from source to its 

destination, we have: 
0     <     re

ij        ≤        1 ;  ∀ ( i, j)   ∈   N x N,  ∀ e∈  E 

re
ij :  Proportion of traffic demands going from node i to 

node j through edge e. 
 

3.4 Capacity Constraint 
 
The capacity constraint corresponds to the limitation of 

the total demands being routed across each edge being 
smaller or equal to the edge capacity i.e.: 

              ∑
∈NxNji ),(

    re
ij  . dij     ≤     cape                ∀ e∈  E 

The above capacity constraint can also be defined 
using a ratio variable. We denote kσ   as a variable to 
represent the ratio between sum of the demands routed 
through each edge and the capacity of edge. 

               ∑
∈NxNji ),(

 re
ij  . dij     ≤  kσ   . cape                ∀ e∈  E 

The value of this ratio variable may define congestion 
over the network. When kσ   is greater that 1, the network 
is congested. 

 
4. Problem Definition and Solution 
approach 

 
4.1 Problem definition 
 
Our problem is a fundamental routing problem. 

Routing can be classified as a flow routing or destination 
based routing. In flow routing for each origin destination 
(OD) pair, router maintains a fraction of flow along the 
path. Routing fractions are useful for describing the set of 
routes along which packets are forwarded. We denote 
rkl(i,j) as the function of traffic originating from node i 
destined to node j at node k, forwarded over edge (k, l).In 
figure 1, node 3 forwards 10 units of traffic originating 
from node 1 destined to node 6 over edge (3, 4).Similarly 
10 units originating from node 2 are forwarded to 
destination node 6 over edge (3, 5).On the other hand 
destination routing, shown in figure 2, maintains routing 
fraction for each destination. Specifically rkl(i,j) denotes 
the fraction of traffic flow destined to node j at node k 
forwarded over the outgoing edge (k, l). In short 
destination routing can be vied as a special case of flow 
routing where routing fractions to a common destination 
are identical for all sources. 

This paper presents a flow routing optimization 
problem that can be solved using Linear Programming 
[LP]. Optimal Routing under changing traffic demand or 
capacity supply is an interesting and challenging problem 
[21]. Techniques have yet to be investigated to solve the 
problem. 
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Figure 1. Flow Routing 
 

 
   Figure 2. Destination Routing 

 
 

4.2 Formulation 
 
We define the problem as multicommodity flow 

problem with an objective function, which can be 
formulated as a Linear Program (LP). We denote each 
entry of traffic profile as a traffic demand between an 
ingress-egress pair. The linear program is described in the 
following equations. Refer equation (6) for the variations 
in the traffic demand which is described as a random 
parameter 

We have used following notations in the formulations: 
dij :         Traffic demand . 
In , On   : Sets of Incoming and outgoing edges at vertex 

n respectively. 
re

ij :    The fraction of traffic demand for an ingress-
egress pair (i, j) through edge e.. 

kσ :      Maximum edge utilization 
 kt  :        Time fraction of occurrence of traffic demand. 

LP formulation of the problem is described as follows: 
 

Minimize   ∑
=

K

k
kt

1
kσ  

 

s. t.∑
ji,

  dij  re
ij ≤  kσ  ,     ∀ e∈  E,   k ∈   (1,.., K) (1) 

     ∑
∈Ine

 re
ij   =  ∑

∈One
 re

ij  ,  ∀ n∈  {1, --, N} – {i, j} (2) 

     ∑
∈Oie

 re
ij    -  ∑

∈Iie
 re

ij  =  1,    ∀ (i, j) (3) 

     ∑
∈Ije

 re
ij    -   ∑

∈Oje
 re

ij   =  1,   ∀ (i, j) (4) 

      re
ij           ≥      0                 ∀ i,j,e (5) 

The first constraint along with the objective function 
minimizes the average maximum edge load. Second, third 
and fourth are flow conservation constraints. The second 
constraint shows that total incoming and outgoing flow is 
equal on any node which are not a source and destination 
node for the traffic demand. The third constraint ensures 
that total fraction going out of a source is 1 and fourth 
constraint is the counterpart of third at destination. The 
routing variable is bounded by the last constraint. 

The problem of routing traffic demands to minimize 
congestion over multiple paths is NP- hard [19].Thus we 
resort to heuristic algorithms for its computation. Aim is 
to solve LP to get an optimal multi-path solution for each 
traffic demand. 

After solving the LP, path decomposition will result in 
reduced set of paths for each traffic demand. Each path 
having a value assigned to it that represents the fraction of 
the traffic demand being routed through the path. 

 
4.3 Solution approach and simulation set up 

 
Routing Optimization refers to finding set of paths 

between pair of origin and destination routers by 
optimizing an objective function subjected to traffic 
demand and capacity constraints. Our basic approach is 
based on the figure 3, in which a traffic demand with 
network topology forms the input to a routing master 
program that generates a set of robust and optimal paths. 

 
Figure 3.  Diagram for our approach 

 
The framework of routing algorithm is as follows: 

INPUT: Set of nodes N, Set of edges E, traffic demand 
OUTPUT:  Set of robust paths   
 
Step1: Initialize with intradomain topology. 
Step2: Compute the LP of the equation 1 to 4. 
Step3: Use path decomposition to compute paths. 
           Obtain set of paths for each traffic demand.  

                Let 
           xi,j  denote the fraction of traffic carried by path 
            j of  demand i. For each i, xi,j ‘s sum up to 1. 

     Routing         

Network Topology 
i.e. supply Traffic 

Demands 
Set of robust 

Paths

                    Operational          Network                    
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Step4: Select path j according to some criteria. 
 
For path update in step 3 and 4, we are using column 

generation approach. This column generation procedure 
will solve the subproblems for each traffic demand for the 
purpose of generating new columns. A master program 
solving each subproblem based the constraint will prove 
optimality of current solution. We are currently working 
on testing the feasibility of combining oblivious routing 
and dynamic routing approaches. Our goal is focus on a 
routing solution to trade-off between robustness and 
performance guarantee of the routing solution. 

 
5. Computational experiments 

 
We are using BRITE [20] for generating topologies. 

Traffic demand is modelled with Waxman where we 
consider three random variables for modelling traffic 
demand. For each node x, we chose Sx and Rx and for 
each pair of nodes (x, y), T(x, y) as a third variable. 

If the Euclidean distance between x and y is L(x, y), 
then the demand between x and y can be represented as: 

 
d = α. Sx. Rx. T(x, y). e –L(x, y) / 2 ∆                                             (6) 
Where the parameters in the equation (6) are defined 

as: 
α:                    Waxman parameter. 
Sx. and  Rx :     Active senders and receivers nodes. 
T(x, y):           Active links. 
∆ :             Largest Euclidean distance between pair    
of nodes. 
 
In order to accommodate the traffic variations, we are 

using three random variables in equation (6) to provide 
wide range of traffic demand.  

We are using ILOG CPLEX for solving LP and 
optimal routing problem. Our approach is inspired by [6]. 
We are experimenting with random topologies as well as 
more realistic topologies of Rocketfuel [2] to provide 
robust set of solutions. 

 
6. Conclusion and future work 

 
We have considered the problem of routing with a 

range of traffic demands. The paper presented an idea on 
routing under the changing network conditions. The 
possible extension is to test the viability of algorithm 
under the changing traffic demands and capacity supplies. 

Currently working on the hybrid approach of oblivious 
and online routing to combine the better of the two 
routing approaches. 

Further plan is to deal with interdomain routing. We 
are currently working to understand the dynamics of 
interdomain demands and computation of interdomain 

routes. We aim to compute routing solution robust to 
change in interdomain traffic demand as well. 
 
7. References 
 
[1] D. Applegate, E. Cohen, Making intra-domain routing robust 
to changing and uncertain traffic demands: understanding 
fundamental tradeoffs. Proceeding of SIGCOMM’03, Karlsruhe, 
Germany, pp. 313-324. 
[2] N. Spring, R. Mahajan and D. Wetherall, Measuring ISP 
topologies with Rocketfuel. In proceedings of the ACM 
SIGCOMM’02 Conference.ACM, 2002. 
[3] Y. Azar, E. Cohen, A. Flat, H. Kalplan and H. Racke. 
Optimal oblivious routing in polynomial time. In Proceedings of 
the 35th ACM Symposium on the Theory of Computing, 2003. 
[4] B. Fortz. And M. Thorup. Optimizing OSPF/IS-IS weights in 
a changing world. IEEE journal on selected areas in 
communications, 20(4), 2002. 
[5] R. K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: 
Theory, Algorithm and Applications. Prentice-Hall 1993. 
[6] H. Wang, H. Xie, L. Qiu, Y.R. Yang, Y. Zhang and A. 
Greenberg. COPE: Traffic engineering in dynamic networks. In 
SIGCOMM’06, Pisa, Italy September 2006. 
[7] A. Elwalid, C.Jin, S.Low and I. Widjaja. MATE: MPLS 
adaptive traffic engineering. In proceedings of INFOCOMM’01 
page 1300-1309, Anchorage, April 2001. 
[8] S. Kandula, D. Katabhi, B. Davie and A. Charny. Walking 
the tightrope: Responsive yet stable traffic engineering. In 
proceedings of SIGCOMM’ 05 pages 253-264, Philadelphia, 
August 2005. 
[9] Y. Azar. E. Cohen, A. Fiat, H. Kalpan and H. Racke. 
Optimal oblivious routing in polynomial time. In Proceedings of 
35th STOC, pages 383-388, San Diego, June 2003. 
[10] M. Roughan, M. Thorup and Y. Zhang. Traffic engineering 
with estimated traffic matrix. In the 3rd ACM SIGCOMM 
conference on Internet measurement pages 248-258, Miami, 
October 2003. 
[11] Y. Zhang, M. Roughan, N. Duffield and A. Greenberg. Fast 
accurate computation of large scale IP traffic matrix from link 
loads. In proceedings of SIGCOMM’03 pages 206-217, San 
Diego, June 2003. 
[12] Y. Zhang, M. Roughan, C. Lund and D. Donoho. An 
information theoretic approach to traffic matrix estimation. In 
proceeding of SIGCOMM’03 pages 301-312 Karlsruhe, 
Germany, August, 2003. 
[13] A. Medina, N. Taft, K. Salamatian, S. Bhattacharya, C. 
Diot. Traffic matrix estimation: Existing techniques and new 
directions, ACM SIGCOMM 2002, August 2002. 
[14] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, 
J. Yates and Y. Zhang. Experience in measuring backbone 
traffic variability: Models, metrics, measurement and meanings. 
In proceedings of the 2nd Internet Measurement workshop, ACM 
2002. 
[15] A. Soule, A. Lakhina, N. Taft, K. Ppapagiannaki, K. 
Salamatian, A. Nucci, M. Crovella, and C. Diot. Traffic 
matrices: balancing measurements, inference and modeling. In 
Proceedings of SIGMETRICS’05, pages 362-373, Banff, 
Canada, June2005. 

699

Authorized licensed use limited to: RMIT University. Downloaded on March 30,2010 at 19:09:54 EDT from IEEE Xplore.  Restrictions apply. 



[16] D. Applegate, L. Breslau and E. Cohen. Coping with 
network failures: Routing Strategies for optimal demand 
oblivious restoration. In Proceedings of SIGMETRICS’04, pages 
270-281, New York, June 2004. 
[17] B. Fortz and M. Thorup. Internet traffic engineering by 
optimizing OSPF weights. In Proceedings of INFOCOMM’00, 
pages 519-528, TelAviv, Isreal, March 2000. 
[18] C. Zhang, Y. Liu, W. Gong, J. Kurose, R. Moll and D. 
Towsley. On optimal routing with multiple traffic matrices. In 
Proceedings of INFOCOMM’05, on CD, Miami, March 2005. 
[19]T. H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stien, 
Introduction to Algorithms, 2nd edition, The MIT press, 2001. 
[20] A. Medina, I. Matta and J. Byers. BRITE: A flexible 
generator of Internet topologies, Boston University 2000. 
[21] H. Agarwal, And A. Jennings, Robust Solution for Optimal 
Routing, Advanced Networks and Telecommunication Systems, 
Dec 2007. 
[22] W. Ben-Ameur, H. Kerivin, “Routing of Uncertain Traffic 
Demands”, Optimization and Engineering, vol. 6, no. 3, pp. 
283-313, Sep. 2005. 

700

Authorized licensed use limited to: RMIT University. Downloaded on March 30,2010 at 19:09:54 EDT from IEEE Xplore.  Restrictions apply. 


