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Abstract: Template-free, rapid polymerisation was employed to synthesize 

polyaniline nanofibers using chemical oxidative polymerisation of aniline, with HCl 

as a dopant. The doped and dedoped nanofibers were deposited onto 

conductometric sapphire transducers for gas sensing applications. The sensors 

were exposed to various concentrations of hydrogen (H2) gas at room 

temperature. The sensitivity was measured to be 1.11 for doped and 1.07 for 

dedoped polyaniline nanofiber sensors upon exposure to 1% H2. Fast response 

times of 28 seconds and 32 seconds were observed for dedoped and doped 

sensors respectively. The dedoped nanofiber sensor outperforms the doped 

sensor in terms of baseline stability and repeatability. Due to its room temperature 

operation, the gas sensor is promising for environmental applications. 
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1. Introduction 

Conducting polymers are of increasing importance in the development of smart sensors 

due to their room temperature operation, low fabrication cost, ease of deposition onto a 

wide variety of substrates [1][2] and their rich structural modification chemistry [3]. 

Polyaniline is unique among the family of conducting polymers since its doping level can 

be controlled through a non-redox acid doping/ base dedoping process [4]. By changing 

the doping level, conductivity of polyaniline can be modified to suit specific applications. 

Polyaniline in the emeraldine oxidation state can be reversibly switched between 

electrically insulating emeraldine base and conducting emeraldine salt forms. 

Polyemeraldine (Fig. 1: top) consists of amine (-NH-) and imine (=N-) sites in equal 

proportions. The imine sites can be protonated to achieve the intermediate bipolaron 

form (Fig. 1: middle) and finally by dissociation the polaron lattice form (Fig. 1: bottom), 

resulting in high conductivity [5]. It is widely agreed that polarons are the charge carriers 

responsible for the high conductivity of polyaniline. By controlling the pH of the dopant 

acid solution any desired quantity of dopant can be added until all imine nitrogen atoms 

are doped. The dopant can be removed by a reversible reaction with any strong base 

such as ammonium hydroxide (NH4OH).  

     The conductivity of polyaniline depends on both the oxidation state of the main 

polymer chain and the degree of protonation on imine sites [6]. Any interaction with 

polyaniline that alters either of these processes will affect its conductivity. Unlike acids 

and bases, redox active chemicals and gases can change the conductivity of polyaniline 

by changing its inherent oxidation state. 



 

 

     Depending on the extent of the redox reaction, polyaniline can exist in a range of 

oxidation states: fully reduced leucoemeraldine, half oxidized emeraldine and fully 

oxidized pernigraniline. The emeraldine form of polyaniline shows the highest electrical 

conductivity after it had been doped with protonic acid [8]. Neutral, non-redox organic 

compounds, such as chloroform or toluene, are able to change the conductance of 

doped polyaniline films through swelling effects [9]. Functional additives incorporated into 

the polyaniline structural matrix, such as metals, metal oxides and enzymes can change 

the electrical characteristics of polyaniline. This versatility has made polyaniline attractive 

for a broad scope of design and development of smart sensors [10]. 

     Recently, nanostructured materials, in the form of nanowires, nanotubes, nanofibers 

or nanobelts have received much attention. These one-dimentional materials process 

extremely high surface area without increasing the device dimension. Therefore, they 

should have improved performance in applications where a high surface contact area is 

needed between the device and its environment, such as in sensors [11-12]. Polyaniline 

nanofibers which have a cylindrical morphology form porous structures when deposited 

as thin films. Polyaniline nanofibers, with diameters in the nanometer range, possess 

larger surface areas per unit mass and permit easier addition of surface functionalities 

compared with traditional polyaniline which is highly agglomerated [13]. The three-

dimensional porous structure of a polyaniline nanofiber film allows easy diffusion of gas 

molecules into and out of the film and the nano-scale fiber diameters lead to rapid 

diffusion of gas molecules into the polyaniline [14]. As a result, polyaniline nanofiber 

based sensors outperform conventional polyaniline thin film sensors in terms of 

sensitivity and dynamic performances upon exposure to a number of gases [11-12]. 



 

 

 

     The sensitivity of conventional polyaniline thin film gas sensors depends on the film 

thickness [15]. Generally, sensor sensitivity increases with a reduction of film thickness 

as entire thickness of the film is affected by the reactions with gas species in a short 

period of time. On the other hand, sensitivity of a polyaniline nanofiber sensor is 

independent of film thickness, due to the porous structure of the film which leads to the 

predominance of surface phenomena over the bulk material phenomena. This advantage 

allows the fabrication of sensors with reproducible response that have a large tolerance 

in thickness variation [11]. 

     Although nanostructured conducting polymers are very promising for sensors, there 

are few reports of them in the literature. Recently, we have reported [7] a surface 

acoustic wave based polyaniline nanofiber hydrogen sensor. To the best of our 

knowledge, polyaniline nanofibers have not yet been used as a conductometric sensor 

for hydrogen gas sensing. In this paper, we will present and compare the responses of 

doped and dedoped polyaniline nanofiber based conductometric H2 gas sensors. 

2. Experimental 

The classical methods of synthesizing polyaniline nanostructures usually require 

structure-directing templates, such as zeolite channels [16], nanoporous membranes 

Error! Reference source not found., or surfactants [17]. Complex synthesis conditions 

require removal of these templates at the end of the reaction, resulting in very low 

production rate. Recently, template-free, interfacial polymerisation was employed to 

synthesize polyaniline nanofibers using chemical oxidative polymerisation of aniline 

[19][20]. The polymerisation is performed in an aqueous solution where aniline is rapidly 



 

 

polymerised in 1M acid by the quick addition of the oxidant. Due to the immediate 

interaction between the monomer and the oxidant, the primary reaction product, 

nanofibers, is the main morphology present. After completion of the reaction, the product 

is collected for purification.  Washing or dialyzing with water gives pure HCl doped 

polyaniline nanofibers. The dedoped solution was prepared by washing or dializing 

doped solution with ammonia.   

     Hydrogen gas sensors were designed and fabricated to operate as a resistive 

element. They are made up of two important physical components: the sensitive 

polyaniline nanofiber layer, which interacts with the gas media and the transducer, which 

converts the chemical signal to an electrical signal. Platinum (Pt) sputtered inter digital 

electrodes and heater were fabricated on 3x3 mm
2
 sapphire substrate to form a 

transducer. Doped and dedoped polyaniline nanofiber dispersions were drop cast onto 

the electrodes of two separate transducers. They were then left to dry in a clean, dry 

environment for one day. The electrodes are used directly to measure the resistance of 

the sensitive polyaniline nanofiber layer upon exposure to the H2 gas. Two types of 

sensors were created: one with doped and the other with dedoped polyaniline nanofiber 

sensitive layer. 

     The sensors were mounted inside an enclosed environmental cell (Fig. 2). Four mass 

flow controllers (MFC) were connected to form a single output that supplied gas to the 

cell. The gas mixture was delivered at a constant flow rate of 0.2 liters per minute. A 

computerized gas calibration system was used to vary the concentration of H2 gas in 

synthetic air. The sensors were exposed to a H2 gas pulse sequence of 0.06%, 0.12%, 

0.25%, 0.50%, 1%, and 0.12% in synthetic air at room temperature. Gas exposure time 



 

 

 

was three minutes for each pulse of H2 gas and the cell was purged with synthetic air for 

seven minutes between each pulse to allow the surface of the sensor to regain 

atmospheric conditions. A Keithley 2001 multimeter was used to measure the variation of 

sensor resistance. 

 

3.     Results & Discussion 

A Scanning Electron Microscope (SEM) image of the polyaniline nanostructures on the 

sapphire substrate is shown in Fig. 3. The SEM result indicates that the polyaniline layer 

deposited on the sapphire substrate consists of nanofibers. The average diameter of the 

both doped and dedoped polyaniline nanofibers is about 50 nm with a length of several 

microns. The average thickness measured for both of the thin films on sapphire 

substrate using a profilometer is 0.3 µm, and the deviation in thickness across the active 

area of the sensors is 0.05 µm. 

     Dynamic responses of the dedoped and doped polyaniline nanofiber sensors to H2 

gas at room temperature are shown in Fig. 4 and 5, respectively. It was observed that the 

conductivity of both doped and dedoped sensitive layers increase after exposure to H2 

gas. It is also observed that at high concentrations of H2 (0.25%, 0.5% and 1%), fast 

conductivity increase followed by a slow decrease of the conductivity for both of the 

sensors. The observations indicate that either more than one type of reaction site is 

available or that a number of different reactions are possible. The results prove that the 

sensors are useful for detecting a low concentration range of H2.  

Although, the hydrogen storage properties of conducting polymers are being actively 

studied, the mechanism for polymer and hydrogen interactions is still not fully 



 

 

understood. Cho et al. [21] believed 6-8% (wt) hydrogen storage in HCl doped polyaniline 

and polypyrrole at room temperature. The authors attributed this unusual phenomenon to 

the combined effects of the molecular sieving and metallic properties of the conducting 

polymer. This result could not be reproduce by Panella et al. [22] experiments and 

Huang et al. [23] observed a much lower hydrogen storage capacity of 1.44% (wt). The 

hydrogen may form a bridge between nitrogen atoms on two adjacent chains or there 

may be partial protonation of some imine nitrogen atoms [24]. These reactions lead to 

the protonation of polyaniline nitrogen atoms, resulting in more delocalized charge 

carriers (polarons and bipolarons) on the backbone for conduction and an increase of the 

film conductivity. It has also been suggested that the resistance change is caused by the 

formation of water [25]. The effects of water on the conductivity of polyaniline are well 

known [26,27] and have been established from nuclear magnetic resonance (NMR) 

spectroscopy studies that presence of water molecules in the polyaniline facilitates the 

charge transfer in the polyaniline backbone leading to an increase in polymer’s 

conductivity. In the process of H2 and polyaniline interaction, a proportion of the analyte 

is probably catalytically oxidized forming water, which decreases the resistance of the 

both doped and dedoped polyaniline. The sensitivity of the sensors is defined as: S = 

Rair/Rgas, where Rair is the resistance of the sensor in air, Rgas is the resistance of the 

sensor in presence of gas. The sensitivity of the sensors was calculated to be 1.11 for 

doped and 1.07 for dedoped polyaniline nanofiber sensors upon exposure to 1% of H2 at 

room temperature. Fast response times of 32 seconds and 28 seconds were observed 

towards 1% H2 for doped and dedoped sensors, respectively. Two significant 

observations were obtained from the tests. Firstly, the response curves show that the 



 

 

 

doped polyaniline nanofiber sensor is more sensitive than the dedoped sensor (Fig. 6). 

Secondly, the baseline of the dedoped nanofiber sensor was more stable than the doped 

sensor. Additionally, the dedoped nanofiber sensor has better repeatability than the 

doped sensor. Repeatability and stability of the sensors were confirmed by testing the 

sensors continuously over a 7 day period. It is believed volatility of dopant acid HCl is 

responsible for instability of doped sensor. 

4. Conclusion 

Conductometric H2 gas sensors based on doped and dedoped polyaniline nanofibers 

were developed.  The sensors were investigated for concentrations of H2 gas in synthetic 

air. Both of the sensors showed high sensitivity and good repeatability. For dedoped 

polyaniline nanofiber sensor, a 17 kΩ resistance shift from 260 kΩ baseline, which is 

equivalent to a sensitivity of 1.07, was observed when exposed to 1% H2 at room 

temperature. For similar conditions, the doped polyaniline nanofiber sensor exhibited a 

120 Ω resistance shift from 1.26 kΩ baseline, which is equivalent to a sensitivity of 1.11. 
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Figure 1. Polyemeraldine base form (top), intermediate bipolaron form (middle) and the 
fully doped acid form (bottom) [7]. 

 
 
 
 
 
 

 

 
Figure 2. The experimental set-up for testing doped and dedoped polyaniline 

nanofiber sensor [7]. 
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Figure 3. SEM image of polyaniline nanofibers on the sapphire substrate. 
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Figure 4. Dynamic response of the dedoped polyaniline nanofiber based conductometric 
sensor to different H2 gas concentrations in synthetic air. 
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Figure 5. Dynamic response of the doped polyaniline nanofiber based 
conductometric sensor to different H2 gas concentrations in synthetic air. 
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Figure 6. Sensitivity of doped and dedoped polyaniline nanofiber sensors towards 

different concentrations of H2 in synthetic air. 

 

 

 



 

 

Authors Biographies: 

 

Abu Z. Sadek received the B.Sc. degree in electrical and electronics engineering from 
the Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh, in 
1998, and the M. E. degree in telecommunications engineering from the University of 
Melbourne, Australia, in 2002. He is currently pursuing the Ph.D. degree at the Sensor 
Technology Lab, School of Electrical and Computer Engineering, RMIT University, 
Melbourne, Australia. His research interests include chemical and biochemical sensors, 
micro and nanotechnology, acoustic propagation and conducting polymers. 

Wojtek Wlodarski has worked in the areas of sensor technology and instrumentation for 
over 30 years. He has published 4 books and monographs, over 400 papers and holds 
29 patents. He is a professor at RMIT University, Melbourne, Australia, and heads the 
Sensor Technology Laboratory at the School of Electrical and Computer Engineering. 

Christina O Baker received her B.S. in chemistry from the Georgia Institute of 
Technology, Atlanta, in May 2003. She is a graduate student pursuing a Ph.D. in 
inorganic chemistry at the University of California, Los Angeles (UCLA) working with 
Professor Kaner on conducting polymers.  Her current research involves the 
development of polyaniline nanofibers and metal nanoparticle polyaniline nanofiber 
composites for applications in non-volatile memory, chemical sensors and actuators. 

Richard B. Kaner received a Ph.D. in Inorganic Chemistry from the University of 
Pennsylvania in 1984 followed by two and a half years of postdoctoral research at UC 
Berkeley.   

   He is Professor of Chemistry and Professor of Materials Science & Engineering at the 
University of California, Los Angeles (UCLA). He joined UCLA in 1987 as an assistant 
professor, earned tenure in 1991 and became a full professor in 1993.  He has received 
awards from the Dreyfus, Fulbright, Guggenheim, Packard and Sloan Foundations for his 
work on new routes to refractory materials including high-temperature ceramics, 
intercalation compounds, fulleride superconductors, super hard materials and conducting 
polymers. 

Dr. Kourosh Kalantar-zadeh is a tenured academic at the School of Electrical and 
Computer Engineering, RMIT University, Melbourne, Australia. His research interests 
include: chemical and biochemical sensors, nanotechnology, MEMS, thermoelectric 
materials, electronic circuits, and microfluidics. Dr. Kalantar-zadeh has published more 
than 80 scientific papers in the refereed journals and in the proceedings of international 
conferences. He holds 3 patents. He is currently authoring a book entitled 
“Nanotechnology Enabled Sensors”. 

 
 
 




