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ABSTRACT

Rational agents typically pursue multiple goals in parallel.
However most existing agent systems do not have any in-
frastructure support for reasoning about either positive or
negative interactions between goals. Negative interactions
include such things as competition for resources, which if
unrecognised can lead to unnecessary failure of both goals
requiring the resource. Positive interactions include situa-
tions where there is potentially a common subgoal of two
goals. This paper looks at mechanisms for identifying po-
tential common subgoals, and attempting to schedule the
actions of the agent to take advantage of this. Potential
common subgoals are identified by maintaining summaries
of definite and potential effects of goals and plans to achieve
those goals. Template summaries for goal types are pro-
duced at compile time, while instance summaries are main-
tained and updated at execution time to allow the agent to
choose and schedule its plans to take advantage of poten-
tial commonality where possible. This increases the ability
of the agent to act in a rational manner, where rational is
loosely defined as the sensible behaviour exhibited by hu-
mans.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Scheduling, Plan ezecution, forma-
tion, and generation; 1.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence— Intelligent agents
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Algorithms
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1. INTRODUCTION

Goals are a central concept to pro-active intelligent agents
[16]. Typically an intelligent agent will have multiple goals
which are active simultaneously. Goals can interact both
negatively and positively. Intelligent agents should be ra-
tional in the way they go about achieving these goals. One
aspect of rationality is to avoid conflicting goals, for example
a rational agent should not simultaneously pursue a goal G1
and a goal G2 if G1 prevents the achievement of G2. In [14,
15] we presented a framework for detecting and resolving
conflicts related to resources.

Goals can interact not only negatively but also positively
[16]. For example a Mars rover agent that has a goal to per-
form soil experiments at location A and a goal to perform
rock experiments at location A could perform the goals se-
quentially by going to A, performing the soil experiments,
return back to lander, then go to A, perform the rock ex-
periments and return back to lander. Alternatively it could
go to A, perform the soil experiments, perform the rock ex-
periments and then return to lander. Clearly the second
approach is more intelligent, and is brought about by the
agent reasoning about the positive interaction between the
goals. This makes the agent actions more efficient. The con-
tribution of this paper is to provide a framework that allows
the agent to detect and make use of potential positive inter-
actions, thus contributing to the theory of rational choice of
intelligent agents.

Much work has been done on merging plans, where the
plans to be executed are determined before execution [7, 5,
10]. However these are not applicable to the type of agent
systems that we work with, which operate in highly dynamic
environments where it is generally not possible to decide
which plans to use in advance as they depend on (dynamic)
environmental conditions.

Our approach identifies positive interaction between goals
without requiring that each goal has a fully elaborated plan
to achieve it. Plan merging is done through scheduling. For
example, suppose that the goals G; and G2 have a common
sub-goal G’ that could potentially be performed only once
for both goals rather than once for each goal. In order to
do this we synchronise the execution of the two goals such
that G’ is executed only once.

Horty and Pollack in [7] present a theory of rational choice
where an agent evaluates its options in the context of its ex-
isting plans. They discuss methods of merging type-identical®

YA Type is a function associating each plan step s with
Type(s), its action type.



EF - Effects DE - Definite Effect

PE - Potential Effects

DE - { (EF, [plan, plan ..]), (EF, [..]) ..} each effect has the set of plans that bring about the effect. Similar for PE .

SE (G) - Effect-summary of goal G. It is a two tuple < DE, PE >

DMP - [ (EF, goal{plan, plan}, goal{plan, plan}) , (EF , goal{..}, ..)] is the data structure that contains plans that can
be definitely merged. With each effect the goals and the plans of the goals that bring about the effect is stored.

PMP - [ (EF, goal d/p {plan, plan}, goal d/p {plan, plan}), ..)] similar to DMP except that the plans here are only
potentialy mergable. For each goal of an effect the flag (d or p) indicates if the effect is definite or potential.

Common effect of G1 and G2 - an effect that is an effect of G1 and an effect of G2
WGL - The Waiting Goals List. A list of goals currently suspended due to scheduling. Assists in deadlock prevention.

Figure 1: Legend of terms

plan steps and how plan merging reduces the cost of the
overall goal. Their work is interesting in that they evaluate
potential goals in the context of other goals being pursued,
which has some similarity to our approach. For example,
assume an agent pursuing a goal of buying a shirt and con-
sidering a new goal of buying a tie. In this case even if
buying a tie is not as important as some other goal, be-
cause buying a tie and buying a shirt have many aspects in
common such as going to the shopping centre, going to a
clothing shop etc, it may be pursued.

Their work does however, like many others, require com-
plete plans. They also assume that plans do not fail, which
is inappropriate for the kinds of systems we are dealing with.
They also use explicit notions of temporal constraints, and
causal links in their representation of plans. In contrast
our approach performs online scheduling and monitoring of
plans, taking plan failure into consideration and although we
have no notion of explicit time constraints we generate suffi-
cient information to perform reasoning about future positive
interactions.

Pollack in [12] discusses ways in which intentions may be
overloaded and argues that this can improve plan genera-
tion as well as plan recognition. Although [12] does not
provide any detailed mechanisms, they provide a good theo-
retical foundation for overloading intentions. Our work then
provides detailed mechanisms for exploiting positive goal in-
teractions that can be directly implemented in agent devel-
opment platforms such as PRS[9], JAM[8], dMARS [4], and
JACK [1].

2. PLAN AND GOAL REPRESENTATION

The type of agents that we develop have a library of pro-
grammer defined plans which are utilised to satisfy goals at
run-time. Goals are achieved by executing plans. Each goal
has a number of alternative plans that can be used to achieve
it. Each plan has a number (possibly zero) of sub-goals, all
of which must be achieved to successfully execute the plan.
This naturally defines a goal-plan tree where the children of
each goal are the alternative plans that achieve it and the
children of each plan are its sub-goals. The children of a goal
node are alternatives, and thus are “or’d”, whereas the chil-
dren of a plan node are “anded”. Given this goal-plan tree
we denote nodes by a path expression from the root to the
node. For example from figure 2 the node MoveToPlan(A)
is denoted as PerformSoilEzperimentGoal(A)—

Soil ExperimentPlan —MoveToLocation(A) —
MoveToPlan(A).
A goal-type is a template for a goal (similar to a class in

Object-oriented terms). When an agent decides to pursue
a goal, a goal-instance of the goal-type is created (instanti-
ated). The same applies to a plan-type and plan-instance.
Each goal-type will have a template goal-plan tree at com-
pile time which gets instantiated at run-time with each goal.
Sub-goals share the goal-plan tree of their respective top-
level goal.

The execution cycle of an agent consists of the steps [15]:

1. Instantiate a goal-type creating a goal-instance.

2. Match the goal instance against plans in the plan li-
brary obtaining a set of relevant plan-types.

3. For each relevant plan-type, evaluate its context con-
dition giving a plan instance for each context condition
which evaluates to true.

4. Remove any plan instances which are equivalent to pre-
viously failed plan instances for this goal-instance. The
remaining set of plan instances are the applicable plans.

5. Select an applicable plan and execute it.

If a plan fails, the goal-instance remains active and new
applicable plans are calculated and tried. If there are no
applicable plans left, the goal-instance fails.

The above description characterises what are known as
BDI (belief Desire Intention) systems [13], such as PRS [9],
dMARS [4], and JACK [1].

In the work that we are doing we require the plans and
goals of the agent to contain particular information.?

We require each plan-type to contain the following:

e Type - A label for the type of plan. e.g. MoveToPlan
(some location)

e Pre-Condition - A logical condition that must be
true in order for an instance of the plan to begin ex-
ecution. The condition need not hold once the plan
has begun execution. Pre-conditions can be viewed as
context conditions in systems such as JACK.

e.g. TransmitDataPlan.preCondition(DataCollected)

e In-Condition - A logical condition that must be true
for the duration of a plan-instance. The pre-condition
is implicitly extended with the in-condition: a plan
with pre-condition P and in-condition I is treated as
though it really had pre-condition P AI. The reason is
that if P is true but I false then the plan will be cho-
sen for execution and immediately fail because the in-
condition is violated! e.g. AnalyseSoilPlan.inCondition
(RoverStationary)

2Not all this information is required for the reasoning de-
scribed in this paper but it is provided here for completeness
and for consistency with our other work.



G1 :Perform Soil Experiment Goal At (A)

EF - {SoilAnalysedAt(A), DataTransmitted}

.

xr }.
SoilExperimentPlan

DE - {(AT(A){P2}), (SoilAnalysedAt(A){P3}), (Data Transmitted{P6, P8})}
PE - {(CloseToLander, {P7})}

DE - {(AT(A){P2}), (SoilAnalysedAt(A){P3}), (Data Transmitted{P6, P8})}
PE - {(CloseToLander, {P7})}

S MoveToLocation (A) PerformSoil AnalysisAt(A)

EF - {AT(A)} EF - {SoilAnalysedAt(A)}
DE - {(AT(A{P2})} DE - {(SoilAnalysedAt(A){P3})}
PE -{} PE - {}

Transmit Results
EF - {DataTransmitted}

DE - {(DataTransmitted {P6, P8})}
PE - {(CloseToLander {P7})}

I MoveToPlan(A) AnalyseSoilPlan(A)

EF - {AT(A)} EF - {SoilAnalysedAt(A)}

TransmitResultsPlanl

TransmitResultsPlan2

DE - {(AT(A)}{P2})}
PE-{}

DE - {(SoilAnalysedAt(A){P3})}
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SG- -
TransmitData
EF - {DataTransmitted}

DE - {(DataTransmitted {P6})}

PE- {}

DE - {(DataTransmitted {P6})}

DE - {(DataTransmitted{P8}), (CloseToLander{P7})}
PE -{}

SG S
MoveCloseToLander
EF - {CloseToLander}

TransmitData

EF - {DataTransmitted}

DE - {(CloseToLander {P7})}
PE-{}

DE - {(DataTransmitted {P8})}
PE- {3

TransmitDataPlan
EF - {DataTransmitted}

B

MoveClosePlan
EF - {CloseToLander}

P -
TransmitDataPlan
EF - {DataTransmitted}

DE - {(DataTransmitted {P6})}

PE- {}

DE - {(CloseToLander{P7})}
PE-{}

DE - {(DataTransmitted{P8})}
PE={}

Figure 2: Interaction Tree example

o Effects - The effects of executing the actions within
the plan (excluding subgoal effects) represented as log-
ical conditions, i.e. what becomes true as a result of
executing the plan’s actions. The effects of a plan that
are not effects of a goal are side-effects, or secondary
expectations [12]°.

e.g. RockExperimentPlan.Effects(RocksAnalysed and
StorageSpaceFull?).

e plan body - The body of the plan which contains
actions and sub-goals. These are combined by either
sequencing them (e.g. “achieve goal Gi and then per-
form action A” written as “G1;A”) or by performing
them in parallel (e.g. “achieve goals G1 and G»” writ-
ten as “G1||G2”).

Similarly each goal-type consists of:
e Type - A label which indicates the type of the goal.

e In Condition - a logical condition that must be true
during the entire execution of the goal.

e Effects (i.e. Success condition [16]) - logical condition
that the goal is trying to achieve. The goal is satisfied

3Pollack defines expectations as beliefs about future ac-
tivities and circumstances. Primary expectations are those
that are directly intended by the agents actions and sec-
ondary expectations are those that are side effects of in-
tended actions.

“In this example RocksAnalysed is a primary expectation
and StorageSpaceFull is a secondary expectation

when the success condition evaluates to true. This is
used to identify the primary ezpectations [12]>of a goal.

e Plans - The possible set of plan-types that can satisfy
the goal [16].

In addition, each plan and goal instance have an Instan-
ceName which is a label created at run-time to provide a
handle to the plan/goal. This is basically a path expression
in a goal-plan tree instance. e.g. G1 —
PerformRockEzpGoal — RockExperimentPlan,
where G is the label of the relevant goal-plan tree instance.

3. ASIMPLE EXAMPLE

Consider a mars rover that is deployed on the Martian
surface to perform soil and rock analysis experiments at
various designated locations. For illustration purposes we
assume that the rover has storage space for results of four
experiments, and regularly uploads stored data to the lan-
der.

Assume that one such location is location A and the two
goals related to it are PerformSoilExperimentAt(A) (lets call
it G1) and PerformRockExperimentAt(A) (G2). Some of the
sub-goals in the plans to achieve G1 may include, moving to
location A, analysing the soil, and transmitting the results.
Plans to achieve G2 may have sub-goals of moving to loca-
tion A, analysing rock samples and transmitting the results.
It can be seen that there are some common elements in the
execution of G and G, that could possibly be merged, al-
lowing plans and/or sub-goals to be executed only once.



Figure 2 shows a simple goal-plan tree template for the
goal-type Per formSoil ExperimentGoal At(A) where A is
a location. The effect summaries of the goal, which we will
define and discuss in the next section, are attached to the
nodes to the tree. We have labelled the nodes in the tree
(e.g. G1, P1, SG1, etc), so that we use the label for the
node instead of the full path name when making reference
to that node. For example SG3 is a label for PerformSoil-
EzperimentGoalAt(A) —

Soil Experiment Plan —Transmit Results.

In the following sections we will use this example to illus-
trate how the rover agent can identify such interactions and
how it can facilitate merging of plans.

4. EFFECT SUMMARIES

We use the effects of goals and plans to identify positive
interactions. In this section we will define the notion of
effect summaries, which are based partly on our own work
with resource summaries [15] but which are also significantly
influenced by the plan summaries of Clement and Durfee
[2]. We then use these effect summaries in later sections
where we describe our algorithms for recognising and taking
advantage of possible positive interactions.

We classify effects into definite effects and potential ef-
fects. These definitions are analogous to the definitions of
necessary and possible resources in our previous work [15],
as well as being very similar to the definitions of “must” and
“may” conditions in Clement and Durfee [2].

We classify effects into definite effects and potential ef-
fects. We define a definite effect to be an effect that will
definitely be met at some point along every possible path
of achieving the goal. In other words this effect cannot be
avoided if the goal/plan doesn’t fail 5. It is important to
note that this effect need not be required by all plans, but
is required by at least one plan in every possible way of
achieving the goal.

We define a potential effect to be an effect that will
possibly be met at some point in time during the execution
of the goal. This effect is achieved by at least one plan in at
least one path (but not all paths) to achieve the goal. Unlike
our work on necessary and possible resources [15], we define
definite and potential effects to be exclusive — definite effects
are not a subset of the potential effects.

We use the notion of summary information [3, 15] to de-
fine effect summaries which basically summarises the defi-
nite and potential effects of goals and plans. We also define
and use a structure called an interaction tree. The interac-
tion tree is a goal-plan tree where each node is annotated
with the respective effects summary. This is similar to the
resource tree detailed in [15], which is a goal plan tree with
resource summaries attached to each node.

Effect summaries are calculated by propagating the ef-
fects of plans and sub-goals up the tree in order to perform
reasoning about interactions the goal might have with other
goals. These summaries are used to reason about possible
plan merges.

Figure 2 shows the interaction tree of a simple goal of a
Mars rover agent to perform soil experiments at location A.

The effects summary of a goal G (Sg(G)), is a two tuple

SDefinite effects of a goal will include the primary effects
of the goal, i.e. what the goal is trying to achieve, as well
as side-effects of the goal that cannot be avoided.

{ Dg, Pr ) where Dg and Pg are the definite effects and
potential effects of G respectively.

The data structure for definite effects (Dg) and potential
effects (Pr) is a set of effects and associated with each effect
the set of plans that bring about that effect.

Dg = {(effect, {plan, plan..}), (effect, {plan, ..})..}
For example the DE and PE of subgoal
TransmitResults(SG3) in figure 2 are

DE = {(DataTransmitted, {P6, P8})} and

PE = {(ClosetoLander,{P7})}

4.1 Deriving Effect Summaries

In this section we describe how we can derive the effect
summary for each plan and each goal within the agent sys-
tem. This effect summary will assist in identifying and fa-
cilitating positive interactions.

At each node in the tree we derive the effect summary
of that node by combining the effects of the children nodes
with the local effects of the node we are at. Since it can be
assumed that there are no direct effects of a goal, other than
those resulting from the plans associated with it, calculation
of the effect summary of a goal node results from combining
the effect summaries of its children plans.

Plans on the other hand may have both effects resulting
from their sub-goals and also effects resulting from direct
actions within the plan. Thus the effect summary of a plan
node combines the direct effects of the plan with the effect
summaries of the sub-goals within the plan, i.e. the children
nodes in the goal-plan tree. Unlike in calculation of resource
summaries [15] we need not differentiate between sequential
and parallel sub-goals of a plan as all will be achieved (if
the plan runs successfully) and therefore all effects will be
achieved.

We will first define a few useful operators that are neces-
sary for the derivation of effect summaries. We define the

intersection operator A on two sets of effects E, and E» as

Ei:NEy, = {(e,prUp2)| (e1,p1) € E1 A (e2,p2) € Es
Ner=ez }

Remember that pi1 and p2 here are sets of plans.

The next operator is the union operator L*J, which on E4
and E> can be defined as:

EtUB: = {(e,p)| ((e,p) € ELA(e,p) ¢ E2)V
((e,p) € B2 A(e,p) ¢ E1) V ((e,p) € Er N Ex)}

where e is an effect, and p is a set of plans. This definition
says that F1 U E; contains (i) anything in F; that isn’t in
E,, (ii) anything in E that isn’t in Eq, and (iii) anything
that is in By N Es.

The subtraction of two set of effects E1 and E> can be
defined as:

Ey — E> = {(e,p) | ((e,p) € E1) A=(3p - (e,p) € E)}

We now can define the ® operator which combines the
effect summaries of two plans. In pursuing a goal, one of
these plans will be chosen to be executed to achieve that
goal, if this plan fails then alternative plans will be selected,
but only one plan will be selected and executed at any given
time. The combined definite effects are the effects that are



definite effects of both plans. The combined potential ef-
fects are the union of the potential effects of both plans and
the definite effects that are not common to both plans. For-
mally,

(DEg1, Pr1) ® (Dg2, Pr2) = ( (DE1 N Dg») ,
(Pe1 U Pr2 U ((DE1 U DE2) — (DE1 N DE2))))

For example from figure 2
Se(TransmitResPlan2) ® Sg(TransmitResPlanl) =
{{(DataTrasmitted{ P8}), (CloseToLander{PT})})

® ({(DataTransmitted{P6})},{}) =
{({(DataTrasmitted{P6, P8})}, {(CloseToLander{PT7})})

The @ operator is used to combine the summaries of two
goals. This operator is used when combining the sub-goals
of a plan to produce an effect summary for that plan. The
combined definite effects of two goals are the union of the
definite effects of each goal. Similarly for potential effects.
Where an effect is, for example, in both Dg1 and in Pgs
then it is a definite effect of the resulting summary, and
hence should not be also considered to be possible (recall
that definite and possible are defined to be mutually ex-
clusive). The definition thus has the possible set explicitly
exclude the resulting definite set.

(DEI;PEl) D (DEQ,PEQ) =
( (De1 0 Dgs), ((Pe1 U Pgs) — (Dp1 ¥ Dgy)) )

For example from figure 2
Se(MoveCloseToLander) ® Sg(TransmitData) =
{{(CloseToLander{P7})},{})
@ ({(DataTransmitted{P8})},{}) =
{({(DataTrasmitted{ P8}), (CloseToLander{P7})},{})

Given the above the effect summary of a goal G can be
formally derived as follows:

Se(G) = ®peG_plans Se(p)

Se(p) = Dyep.subgoats SE(9) @ {{(e; {p-name})|e € p.EF}, {})

Figure 2 shows the derived interaction summaries of all the
nodes of the goal-plan tree for the goal to perform soil ex-
periments.

Often the agent may want to consider sets of goals for
adoption instead of just single goals. In order to determine
possible interactions between sets of goals we need to derive
the effect summary for the set of goals. This can be done
by applying the @ operator on all of the goals in the set as
follows

S’E(G’oalSet) = @gEGoalSet SE(g)

The algorithms that we present in following sections are
based on effect summaries and they can be applied to in-
dividual goals or sets of goals with no distinction.

4.2 Dynamic Update of the Interaction Tree

The interaction tree template for each goal-type is built
at compile time and a copy is instantiated for every goal-
instance. This copy of the interaction tree is updated dy-
namically as the agent executes its goals and plans. This
provides the agent with up-to-date information enabling it
to make more informed rational decisions. The basic idea is

to update the tree at runtime by deleting plans and goals as
they complete and recalculating the effect summaries each
time a node is deleted.

When a plan completes execution either by successful com-
pletion or failure, the tree is updated as follows:

e the corresponding node is removed from the tree.

o if the plan successfully completed then the goal node
that is the parent is also complete and hence removed
from the tree, and the change propagated up the tree.

e if the plan failed and the parent goal has no other
means of success (i.e. if all other alternate plans have
also failed, or if there is no other alternate plan) then
the parent goal fails, which in turn fails its parent plan.
All three failed nodes are removed and the change
propagated up the tree.

e if the plan failed, but the parent goal has other plans
(children) to attempt, then the effect-summary of the
parent node is recomputed and this change is propa-
gated up the tree.

When a sub-goal completes execution the tree is updated
as follows:

e the corresponding node is removed from the tree.

e the effect-summary of the parent node is re-computed
and propagated up the tree.

Note that the change propagation is a recursive procedure.
The algorithms for performing the above is similar to the
algorithms provided in [15] for updating resource summaries
in a goal-resource tree.

5. IDENTIFYING AND FACILITATING
POSITIVE INTERACTION

The guiding intuition here is that plans of two goals that
bring about the same effect could possibly be combined
(merged) hence reducing the overall cost and increasing effi-
ciency of the pursuit of goals. This section describes mecha-
nisms for identifying situations when plans of different goals
can be merged and the process of scheduling the pursuit of
sub-goals enabling such plans to be merged.

We identify positive interactions between two goals by us-
ing the effect summaries of the two goals, and facilitate plan
merging by using data structures that we term Definitely
Mergeable Plans(DM P) and Possibly Mergeable Plans(PM P).
These structures are used to store plans that could defi-
nitely and possibly be merged respectively in the pursuit of
the agent’s current goals. In order to avoid deadlocks when
synchronising execution we use a data structure which we
shall term the WaitingGoalsList(WGL) which is a list of
goals that are currently suspended.

Each entry in the DM P is an effect followed by the goals
that bring about this effect and associated with each goal
the set of plans of the goal that cause the effect ©.

DMP = [ (effect, (goal{plan, plan, ..}),(goal{plan, ..}),..) ,
(effect, ...), ...

All the effects in the DM P are definite effects of their re-

spective goals in the DM P.

Si.e. the plans for which the effect is a direct effect.



The data structure for the possibly Mergeable plans, PM P,
is a similar structure to the DM P. They differ in that whilst
e is a definite effect of all its associated goals in DM P, in
PMP, e can be either a potential or definite effect of the
associated goals. This is explicitly represented by a flag as
follows;

PM P=[(effect,(goal,p/d,{plan, ..}),(goal,p/d,{plan, ..})..)..]

We shall now describe how these data structures are made
use of. Consider two goals Gi1 and G2 which the agent has
just begun to pursue concurrently where e is a common effect
of the two goals. Let the plans’ that achieve e be {Py, P>}
in Gl, and {P3,P4} in Gz.

There are three ways in which e can be common to both
goals. e can be:

1 - a definite effect of G1 and G2
2 - a definite effect of G1 and a potential effect of G2
3 - a potential effect of G1 and G»

Let us first consider case 1: In this situation, when the
goal pusuit begins the plans that will be executed are un-
known (as they depend on the context of the agent’s envi-
ronment). However we do know that at least® one of Pi,Ps
and at least one of P;,P; will be attempted, since e is a
definite effect of G1 and G2. In this case we place this in-
formation in the DM P as follows;

DMP = [ (e, (G1 {P1, P2}), (G2 {Ps, P4}) ), -]

which indicates to the agent that there is a definite interac-
tion between the plans of the two goals and that the goals
should be scheduled. The basic idea is to synchronize the
plans by flagging them as ready to be executed when they
are reached, wait for other plans that could be merged with
them to be reached, and then perform a merge.

This is done by incorporating the following steps into the
agent execution cycle.

Before a plan P of goal G is executed the agent checks if it is
in the DM P.
If it is in the DM P then
let e be the associated effect in the DM P
If all the goals associated with e (other than G)
have an associated plan that has been flagged as ready to
be executed then
perform a merge between the plans that are ready to
be executed for e
Else if any of the goals(other than G) associated
with e, that does not have a plan flagged as ready
(i-e. the goals that G would have to wait for) is
already in the WaitingGoalsList then
P is executed and not suspended (in order to avoid
any potential deadlocks)
Else
P is flagged as ready to be executed, and the
execution of G is suspended. The name of the goal
instance (G) is placed in the WGL.

For example in case 1, assume that P; is reached in the
execution of Gi. Since it is in the DM P, it is flagged but

"These are plan instances and it is possible to have, say,
P; and Ps be different instances of the same plan type, for
example a MoveTo plan.

8If a plan fails then alternatives are tried.

not executed. The agent then waits for either P; or Py to
be reached in the execution of G2. Lets assume that P; is
reached. Now since all the goals that have e as a definite
effect have reached a plan that brings about e, the agent
would attempt to merge these plans.

It is important to avoid deadlocks when suspending goal
pursuit. For example consider the following in the DM P;
(2, (Ga {p1}), (Gb {p2})) and (y, (Ga {p3}), (Go {pa})).
If py is reached and G, waits for p» in G, and then ps4 is
reached and G, waits for p3 in G, then there is a deadlock.
In the algorithm above Gp will not be allowed to be sus-
pended because a goal that it is waiting for (G,) is already
suspended (i.e. in the WGL). This method prevents dead-
locks but is not the most optimal mechanism for deadlock
detection and prevention. Introducing more complex dead-
lock detection mechanisms would increase the complexity of
the agent system. If the additional complexity is accept-
able then deadlock prevention mechanisms such as the re-
source allocation models found in operating systems [6] or
transaction models used in distributed networks [11] can be
adopted. The details will not be presented in this work.

Case 2 is when the effect (e) is a definite effect of one goal
(G1) and a potential effect of the other (G2). In this situ-
ation the agent is unsure whether Ps or P; will be reached
in the execution of G3. Therefore the information is stored
in the PM P rather than in the DM P. This information in
the PM P is monitored as follows;

If P; is reached then

since e is a definite effect of G1, P1 or P> will definitely

be reached, hence this entry is moved to the DM P with

P; flagged as ready to be executed.

If P; is reached then

since e is only a potential effect of G2 the agent cannot

know if either of P; or P4 will be reached. In this case

the agent has two choices;

1. begin to execute P; and remove this entry from the
PMP, because neither P3 nor P, may be reached. This
approach is cautious, which would prevent the agent
from delaying the execution of P; unnecessarily if P; nor
Py is reached. However, if one of them is reached then
this approach will fail to capitalise on this.

2. flag P; as ready to be executed and move this entry
into the DM P waiting for either P3 or P4 to be
reached. This approach is optimistic. If either Ps
or P, is reached then this entry would attempt to
exploit this interaction. However if neither P3 nor P;
is reached then Pi would have to wait until G2 is either
satisfied or no longer relevant, to begin execution. By
moving the entry into the DM P, the effect although
potential is treated as if it was a definite effect.

In addition to the above monitoring the agent must also
monitor for situations where the effects in PM P move from
being potential effects to definite effects of a goal and also
when the effects are no longer applicable. This can be done
when the interaction tree is updated as described in section
4.2. If effects that were potential change to definite effects,
and all the goals associated with the effect have it as a defi-
nite effect then the relevant entry is moved to the DM P. If
the effect is no longer applicable for a particular goal, then
the goal is removed from the entry associated with the effect
in PMP. If there is not at least two other goals left in the



entry after this deletion, the entry is removed, because for
a merge there must at least be two goals involved.

In case 3, e is a potential effect of the goals, G1 and G>.
Since the effect is uncertain, neither of the plans, Pi, P»,
Ps, Py, are guaranteed to be executed (reached). In such a
situation the agent can take one of the following options;

e be cautious and execute G; and G2 independantly.
e be optimistic and place them in the DM P.

If the type of application system is more resource bound then
the optimistic approach would suit better since it will try to
merge plans in all possible situations, however it may waste
time. If the application system is more time-constrained
then the cautious approach would suit better as it would
ensure that the agent would not delay the execution of its
plans for a merge that may never happen.

In the event that two goals have no common effect (nei-
ther definite nor potential) then there is no possibility of
merging plans with respect to effects.

The above mechanisms will identify and facilitate plan
merging. However there are instances where although plans
could possibly be merged they should not be merged. For
example consider a mars rover with a goal Gi1 to perform
task task; and then refuel, and a goal G2 to perform task
tasks and then refuel. Although these two goals have a
common plan (which maps to the sub goal of) of refuel, this
must be performed once for each goal, because if it performs
taski and doesn’t refuel, it may not have sufficient fuel to
complete tasks. In order to prevent such plans from being
merged, we introduce a boolean attribute mergeable into the
representation of the plan-type discussed in section 2. This
attribute is assigned a default value of true for each plan-
type and when the plan instances that should not be merged
are instantiated the mergeable attribute of the plan instance
is set to false.

5.1 Plan Merging

When the agent decides to merge two plans it needs to
perform reasoning about the feasibility (i.e. is it possible)
and choice of merge (i.e. which plan to execute).

Consider two plans P; and Ps; that the agent wants to
merge.

e if P; and P; are of the same type (e.g. they are both
MoveTo(A))®
then either of the plans can be executed.

e if P; and P; are not the same type but they achieve
only e and no other effect,
then either of the plans can be executed.

e if P; achieves e and r where z is a potential effect of
the goal G1 (i.e. side effect), and Ps only achieves e,
then either of the plans can be executed since z is not
a necessary effect.

e if P; achieves e and z where z is also a definite effect
of the goal G1, and P3 only achieves e,
then P; must be executed because P3 will not bring
about x which is necessary for Gi.

9For the purposes of this work the parameter is included
in the plan type as we do not yet deal with logical variables.

e if P; achieves e and z, and P; achieves e and y where
z is a definite effect of G1 and y is a definite effect of
G2, and z # v,
then it is not possible to merge these plans because
if only one of P; or Ps is executed then one of = or y
will not be achieved and this is not rational as they are
definite effects of the goals. In such a situation, which
we will term useless wait, the plans must be executed
individualy. Section 5.2 deals with ways of minimising
the occurence of this situation.

Everytime the above merge is performed the DMP is
modified as follows.

e The entry in question is removed from the DM P; and

e When the plan (in the case where a merge is per-
formed) or plans (in the case where the plans were ex-
ecuted independantly) complete, the effect-summary
of the associated goals are re-computed as discussed
in section 4.2. These updated summaries are used to
check for interaction between the goals with respect to
the effect e.

The reason for re-checking only for the effect e is because
other entries in the DM P are not effected by the merge.
The reason for re-checking for interactions with respect to
e is because there may be another pair of plans (one from
each goal), that could be merged for the same effect.

5.2 Avoiding useless wait

The useless wait situation can cause the system to be in-
efficient. However, under certain assumptions, this situation
is unlikely to occur. If we assume that plans are cohesive,
i.e. are written to achieve a single effect, rather than a con-
junction of effects, then the useless wait condition will not
arise. Plans in BDI-style systems appear to meet this condi-
tion. Nevertheless if required the following methods can be
applied. The first approach is to apply the following filter
before adding these goals to DM P. If all of the goals in
question have at least one plan that has a definite effect
that is not common to all the goals, then these goals are
not added to the DM P. Whilst this method prevents the
problem it is too strict and will disallow a lot of potential
merges.

The second approach is to filter goals as follows. If all the
plans in every goal has a definite effect that is not common
to all the goals, then these goals are not added to the DM P.
This approach will remove goals that will definitely result in
a useless wait, however this does not guarantee that the
situation will never arise.

A better method would be to apply the second filter and
from the goals that pass the filter detect those that will never
bring about an useless wast (i.e. goals that pass through the
first filter) and place them in the DM P. The other goals are
placed in the PM P and each time one of them are updated
with respect to interactions, the process is repeated on the
set of goals in the PM P by applying the two filters. So the
basic idea is that those that definitely result in an useless
wait are not considered to be merged, those that will never
result in an useless wait will be moved to the DM P and the
others will remain in the PM P and monitored further.

6. CONCLUSION



This paper has focussed on the ways in which an intelli-
gent agent can recognise, and take advantage of, possibilities
for merging plans to more efficiently achieve multiple, po-
tentially interacting, goals.

We have described the representation we use for goals and
plans, and the effect-summaries calculated, which are sim-
ilar to summaries used by Durfee et al. [2] and analogous
to resource summaries in our earlier work [15]. These are
then used to identify positive interactions between goals.
We have described the algorithm whereby we compute these
summaries initially at compile time, and the mechanisms for
updating them at execution time. Finally we have shown
how this information is used to recognise opportunities for
merging of plans, and the mechanisms by which we sched-
ule and synchronise execution of goals and plans, to take
advantage of these opportunities where possible.

In contrast to existing work on plan merging [7, 5, 10],
our work does not require complete knowledge of the plans
to be executed in advance, which makes this work suitable
for intelligent agents in highly dynamic domains. We con-
struct data structures at compile time which are then up-
dated dynamically as the agent pursues its goals. Therefore
the agent always reasons about its goals in its current sit-
uation. The dynamic information about partially achieved
goals also allows us to avoid an explicit notion of time. The
representations and algorithms that we have provided in this
work are simple and efficient and are easily implemented in
agent implementation platforms.

‘We have implemented the representations and mechanisms
described in this work in a prototype which extends JACK
[1] to incorporate the notion of goals and the reasoning
mechanisms described. The test bed application is the Mars
rover example used in this paper. We are in the process of
doing experiments to analyse the costs and benefits of the
reasoning mechanims described in this and related work.

Future work also includes; investigating more optimal mech-

anisms for avoiding deadlock situations when scheduling the
execution of goals, whilst maintaining the simplicity of our
algorithms; investigating a similar notion of positive interac-
tions in a multi-agent setting; and investigating other means
of positive interactions other than common effects between
goals.
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