
An exploration of bugs and debugging in multi-agent
systems

David Poutakidis, Lin Padgham, and Michael Winikoff

RMIT University, Melbourne, Victoria, Australia,
�davpout,linpa,winikoff�@cs.rmit.edu.au

Abstract. Debugging multi-agent systems, which are concurrent, distributed,
and consist of complex components, is difficult, yet crucial. In earlier work we
have proposed mechanisms whereby protocol specifications available from the
design process can be used for monitoring the execution of the multi-agent sys-
tem they describe. Protocol specifications can be used at run-time for reporting
any discrepancies in interactions compared to that which was specified. In this
paper we describe and categorise a range of bugs found in actual multi-agent sys-
tems developed by students in an Agent Oriented Programming and Design class.
We then indicate how these bugs manifest to the debugging agent and what in-
formation it is able to provide to the user to assist in locating and diagnosing the
problem.

1 Introduction

Based on foundational work in AI and Philosophy, agent technology has significant ap-
plications in a wide range of domains [5]. Agent based software engineering methodolo-
gies [1] have emerged to facilitate the development of agent based applications. These
applications are often developed as multi-agent systems and are notoriously difficult to
debug since they are distributed, concurrent, and complex. Under these circumstances
good debugging tools are essential.

Despite this, little work has focused on debugging multi-agent systems. Most of
the existing prototype or research tools rely on visualisation of the messages passing
between agents, possibly with some filtering applied to these [4]. However these are
often not useful as there is too much information for the developer to be able to detect
that there may be a problem.

Exception detection and resolution and domain independent exception handling ser-
vices [6] is a similar domain to debugging. However the techniques are not appropriate
for multi-agent systems that are not the traditional problem solving or workflow systems
seen in [6]. Many agent system do not have a concrete representation of tasks, resources
and other properties required to make use of these exception handling services.

In an earlier paper [2] we proposed that protocol specifications, produced during the
design stages of system development, could be used during debugging to monitor what
message exchanges are expected and to locate bugs by detecting unexpected patterns of
message exchange. We proposed a mechanism for taking protocol diagrams developed
in Agent UML (AUML) [3], converting them to equivalent Petri nets, and then using

E79927
Typewritten Text
Citation: Poutakidis, D, Padgham, L and Winikoff, M 2003, 'An exploration of bugs and debugging in multi-agent systems', in Foundations of Intelligent Systems, Maebashi City, Japan, 28-31 October 2003. 

E79927
Typewritten Text



2

them to monitor execution and detect problems. The protocol diagrams being used were
typical of those produced during the architectural design phase of the Prometheus de-
sign methodology for agent systems [1]. The key point is that instead of presenting
messages to the programmer and relying on him or her to detect problems, the debug-
ging agent proposed in [2] monitors conversations and detects problems by identifying
messages that are not permissible in the conversation defined by the protocols.

In this paper we describe the results of applying the debugging agent from [2] to
actual agent applications. Our aims are to:

– Determine what types of bugs occur in practice.
– Determine to what extent the debugging agent is able to assist with detecting these

bugs.
– Apply these results to determine the usefulness of applying design documents in

debugging multi-agent systems.

2 A description of the debugging agent

In Poutakidis et. al. [2] we proposed that the design documents (specifically interaction
protocols) produced in pre-implementation could be used by a debugging system to
provide run-time error detection and debugging support. It was suggested that the design
documents could be converted into an internal representation that the debugging agent
could use to compare against run-time execution. Execution that differed from what
was defined by the design documents is reported to the developer.

Petri nets were used as an internal representation for protocols since they are a
formal graphical modelling notation that can easily be interpreted by both the human
user and a program. Importantly, Petri nets are also able to capture concurrency. We
discussed a process for converting AUML interaction protocols to an internal Petri net
form in [2].

The debugging agent takes as input a set of these Petri net protocols, one for each
AUML interaction protocol. These Petri net protocols are used by the debugging agent
to both monitor interactions for errors and to reason about how the errors may have
occurred. This process is discussed in detail in [2].

Whenever a message is received the debugging agent needs to determine which pro-
tocol the message belongs to. The decision is facilitated by the parameters that agents
are required to include with their messages. Messages that the debugging agent receives
must include a sender, receiver, message type, and conversation id.

Briefly, for each incoming message the debugging agent determines which conver-
sation the message belongs to and a token is then placed on the appropriate message
place. The Petri Net is then fired to determine the next state of the conversation. If any
message places have tokens after firing then that message was not expected and a bug
is reported.

3 Debugging with the Debugging Agent

As part of our investigation into the types of bugs that occur in multi-agent systems and
the methods that can be used to detect them we examined 15 multi-agent applications



3

and their associated bug logs. The bugs encontered in the application and the bug logs
are presented. For each type of bug we explain what the bug is, what typical errors that
programmers make lead to the bugs, any variations of the bug (where relevant), how we
tested these bugs, and the results from the tests.

The following is a brief description of the types of bugs we found while inspecting
a set of agent programs developed by third year software engineering students. After
identifying the bugs we then introduced each of them into a single application. This
application simulates an ambulance response service where patients are generated and
ambulances are called on to handle requests by picking up patients and taking them to
a hospital. The application consists of three agent types: one Controller agent named
Controller, ten Ambulance agents named Unit-X, where X is a number between one
and ten and an ExternalSimulator agent that is not discussed further in this paper.
Failure to send a message: An example of a failure to send a message that occurred in
the test application involved the top level Dispatcher plan. This plan is responsible for
assigning Ambulance agents to patients and then instructing the Ambulance agents, via
a “PickUpPatient” message, to collect the patient and deliver them to a hospital.

There is a logic error that causes the plan to fail, the result is that no message is sent
and the Dispatcher stops responding. This is a breach of the protocol however in this
instance the debugging agent did not alert us to an error. This is however to be expected
given the design of the debugging agent. The debugging agent focuses on debugging
interaction and since the debugging agent did not receive any messages it can not know
that the agent was supposed to begin a conversation. Therefore, a limitation of our
debugging agent is that it is unable to detect a failure to send a message if the message
is the first in the protocol.

The first message in a protocol is a special case and although we would like to be
able to detect failure when it occurs in this situation, at present we cannot. However
the debugging agent is capable of detecting an error if the failure is from any message
other than the first message. To test this we modified the test application so that the
failure would occur after the conversation had begun. In this example the debugging
agent indicated that there was a warning, not an error. Since the lack of a message is
detected using a timeout it is not possible to guarantee that the message will not arrive
at some point in the future.
Uninitialised agents: When an agent sends a message to another agent that agent must
be in the position to receive the message. If the intended recipient has not yet been
initialised it will not receive the message and the protocol will not be able to complete.

In our test application when we introduced an error that resulted in one of the agents
sending a message to another that had not yet had time to initialise an error message
was generated. It is interesting to note that the error message is the same type of error as
failure to send a message. Although the cause of the bugs are different, the debugging
agent cannot tell the difference between the two. The debugging agent is able to deter-
mine that an error has occurred but can offer little more advice. This is due to the fact
that by sending a message to an uninitialised agent you are guaranteeing that a response
will not be returned, hence the bug is presented in the same way.
Sending a message to the wrong recipient: We have seen how the debugging agent
deals with the sending of a message to agents that don’t yet exist, or will never exist. We



4

now present the results of sending a message to the wrong recipient where the recipient
actually exists but was not the intended recipient..

A message is addressed to the wrong agent, it should be addressed to the Controller
agent but is instead addressed to Unit-4 who is a valid agent but the debugging agent
does not have it as one of the agents in the role map. Only Unit-1 and the Controller
agent are valid agents in this conversation. The token is rejected from the message place
and an error message indicating that the agent is not the intended recipient is generated.
We are given specific information as to which protocol was being followed and which
agent was supposed to receive the message.
Sending the wrong message: In the case that the message does not exist in the proto-
col and the case that the message is valid in the protocol but not at the time it was sent
the debugging agent is able to determine that an error occurred. The test application
was modified so that after Unit-1 received a “PickUpPatient” request it would send the
wrong message in reply. The debugging agent receives a copy of the wrong message,
places it in the associated message place and then fires the net. After the net is fired a
token remains in the message place indicating that an error has occurred. The debug-
ging agent informs us that the wrong message was sent and details of the status of the
conversation are presented.
Sending the same message multiple times: This can result in unintended consequences
and unless the design of the protocol allows for it it should be considered an error. We
instructed our agents to send the same message twice in immediate succession. The de-
bugging agent is able to determine that an error has occurred but it does not specify that
the error was that the same message was received twice. It is obvious how to extend the
debugging agent to handle this as the necessary information is available. The sequence
of messages that have been received is known and the debugging agent could check to
see if the last two messages are the same.

4 Conclusion

We identified a range of bugs and demonstrated how the debugging agent was able to
assist in detecting them. Figure 1 summarises the different bug types that we found, and
how well the debugging agent is able to assist in detecting them. As can be seen, the
debugging agent is able to detect most of the bugs that we found and in many cases
gives precise feedback that assists in localising the cause of the bug.

We then summarised the design of a debugging agent (presented in [2]). Having
identified a range of bugs, and described a debugging agent, we then selected a partic-
ular application and showed how the debugging agent was able to assist in detecting a
range of bugs, both actual, and seeded (based on bugs that were found in other appli-
cations). Figure 1 summarises the different bug types that we found, and how well the
debugging agent is able to assist in detecting them and in localising their cause. As can
be seen, the debugging agent is able to detect most of the bugs that we found and in
many cases gives precise feedback that assists in localising the cause of the bug.

The debugging agent is an improvement over existing debuggers in that it doesn’t
rely on the programmer to interpret information and detect bugs. Rather, it diagnoses
bugs itself based on design information. Our results show that design documents and



5

Bug Type Debugging Agent
Uninitialised Agent: ★

Failure to send:
first message in conversation ✘

not first message ✔

Wrong recipient:
recipient non-existent ★

recipient exists and first message ★

recipient exists and not first message ✔

Message sent multiple times: ✔

Wrong message sent: ✔

Fig. 1. Bug types and how well the debugging agent handled them. A “✔” or “★” indicates that
the debugging agent can handle the bug. A “✔” means that the agent also gave a precise error
message, a “★” means that the error message was not precise, but still useful. A “✘” indicates
that the bug is not handled.

system models, specifically in this case interaction protocols, can be successfully and
usefully applied to debugging agent systems. Future work includes extending to design
models other than interaction protocols and extending the debugger to look at events
posted within agents, in addition to messages between agents.

References

1. L. Padgham and M. Winikoff. Prometheus: A Methodology for Developing Intelligent
Agents. Proceedings of the Third International Workshop on Agent-Oriented Software En-
gineering (AOSE), 2002.

2. D. Poutakidis and L. Padgham and M. Winikoff. Debugging Multi-Agent Systems using
Design Artifacts: The case of Interaction Protocols. First International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), 2002.

3. Foundation for Intelligent Physical Agents (FIPA). FIPA Interaction Protocol Library Spec-
ification. Document number XC00025D, version 2001/01/29, www.fipa.org

4. M. Liedekerke and N. Avouris. Debugging multi-agent systems. Information and Software
Technology, 37(2), pg 102-112.

5. N.R. Jennings and M.J. Wooldridge. Agent Technology: Foundations, Applications, and
Markets. Chapter 1 pages 3-28, 1998.

6. Mark Klein and Chrysanthos Dellarocas Exception Handling in Agent Systems. Third
International Conference on Autonomous Agents, 1999.




