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Abstract

Managing resources in large scale distributed systems – “Computational
Grids”, is a complex and time sensitive process. The computational re-
sources being shared vary in type and complexity, and resource prop-
erties can change over time. An approach based on interacting software
agents is presented, where each resource manager and resource requester
is modelled as a BDI (Belief-Desire-Intention) agent. The proposed ap-
proach can help resolve conflicts that arise during resource discovery
and application scheduling, and enables site autonomy to be maintained.
The modelling and detection of conflicts is important in the context of
this work, to enable each resource and application to respond to changes
in the environment. We propose a BDI based framework that can be used
to model agents that represent resources and applications – and outline
properties that each must maintain.

1 Introduction

An intelligent agent is able to make rational decisions, i.e.,
blending proactiveness and reactiveness, showing ratio-
nal commitment to decisions made, and exhibiting flex-
ibility in the face of an uncertain and changing environ-
ment. Agents offer new ways of abstraction, decom-
position, and organisation that fit well with our natu-
ral view of the world and agent oriented programming
is often considered a natural successor to object ori-
ented programming [Jennings, 2001]. It has the poten-
tial to change the way we design, visualise, and build
software in that agents can naturally model “actors” –
real world entities that can show autonomy and proac-
tiveness. Additionally, social agents naturally model
(human) organisations ranging from business structure
& processes to military command structures. A num-
ber of significant applications utilising agent technology
[Jennings and Wooldridge, 1998a] have already been de-
veloped, many of which are decidedly non-trivial, such as
the military simulation work undertaken with dMars con-
taining thousands of plans [Tidhar et al., 1998].

In this paper we apply intelligent software
agents, using the Belief-Desire-Intention (BDI)
model [Wooldridge, 2000, Georgeff and Rao, 1998,
Rao and Georgeff, 1992] (more details about BDI agents
can be found in section 3), to the problem of resource
management in distributed systems. The resource man-
agement problem in distributed systems (in its simplest
form) consists of, (1) selecting a set of resources on
which to execute tasks generated from an application, (2)
mapping tasks to computational resources, (3) feeding
data to these computations, and (4) ensuring that task
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and data dependencies between executing tasks are main-
tained. Generally, relations between tasks are defined
using a task graph – which provides a partial ordering
on task execution. Each node within such a graph repre-
sents a computation, and arcs represent data or control
relationships. Once a task graph has been specified,
the next stage involves resource selection or discovery,
to identify suitable computational engines from a pool,
typically homogeneous, based on criteria ranging from
licensing constraints, processor(s) capability(ies), execu-
tion costs, and background workload. A good overview
of such cluster management systems can be found
in [Baker, Fox and Yau, 1996]. In [Rana et al., 2001] an
agent based MatchMaking service is described, which
acts as a “yellow pages” service to discover resources
of interest. This study assumes that resources can be
heterogeneous, and their properties can change over time.
A match between task and resource properties is achieved
by finding commonalities (either syntactic, contextual
or semantic) between task and resource properties. An
implementation based on JKQML [JKQML, 1999] is also
provided in the study to demonstrate the concepts. The
agents however undertake simple activities, and do not
have associated behaviours that can be used to adapt their
operations over time.

We extend the work in [Rana et al., 2001] to include
rational agents based on the BDI model. A rational agent
executes a plan (from a pre-defined plan library) to achieve
local goals, and can retry alternate plans if a goal cannot
be achieved. To utilise this model, it is necessary to trans-
late the resource management problem into goals that need
to be satisfied locally within each agent, based on the role
that an agent undertakes within the system. We identify
three roles that are necessary for such a resource manage-
ment system, (1) a resource agent role, (2) an application
agent role, and (3) a middle (broker) agent role. These
are described in greater detail in section 2. Expressing
the resource management problem in this way supports a
de-centralised management strategy, whereby each agent
in the system is responsible for managing its local goals,
and is particularly useful in an environment (such as Com-
putational Grids [Foster and Kesselman, 1999]) where re-
source capabilities and application demands can vary sig-
nificantly over time.

2 Resource management

A three tier system is considered, based on BDI Appli-
cation Agents (AAs), Broker Agents (BAs) and BDI Re-
source Agents (RAs) as illustrated in figure 1. Each AA
is responsible for managing the execution of a program
described as a task graph. An AA can manage multiple
programs (task graphs) and undertakes a similarity check
between the task graphs it manages to identify common
tasks. A task graph is an ordered set, consisting of tasksθ
and arcsη,

Task Graph(TG) = (θ, η)
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Figure 1: Overall system architecture. The figure contains three kinds of agents: Application Agents (A), Broker or
Middle Agents (B) and Resource Agents (R). Application agents are responsible for handling task graphs generated from
computational applications. Broker agents support the application agents in locating resources. Each resource agent is
responsible for managing a particular computational resource

η = ηin ∪ ηout

where eachθ is an executable unit. The set of arcsη is
the union of input and output arcs, and each arc carries a
label, a type, and data. Two tasksθi andθj are said to be
identical1 if:

(ηi
in ∩ ηj

in 6= ∅) ∧ (ηi
out ∩ ηj

out 6= ∅)
and two tasks are said to besimilar if:

(ηi
in ∩ ηj

in 6= 0)

Activities undertaken by each of the different types of
agents illustrated in figure 1 are described in the follow-
ing sections.

2.1 Application Agents

An AA is responsible for managing one or more task
graphs. As identified previously, each task graph is a di-
rected graph, with nodes representing executable tasks,
and links representing dependencies. For tasks that can
be concurrently executed, an AA must decide an order-
ing – especially if tasks belonging to different graphs can
be shared. In cases where common tasks can be detected,
such tasks are given a higher precedence (execution pri-
ority). Each AA must therefore perform a static analysis
of a task graph to determine whether tasks can be shared
across graphs.

Each AA maintains a plan library (see section 3) which
can be used to change the ordering of tasks, the discovery
of common tasks, the decomposition of tasks, and the ag-
gregation (grouping) of tasks. Each plan is a well defined

1The tasks are not identical in the conventional sense of being indistinguishable,
merely in the (weaker) sense of having identical inputs. A more detailed definition
of ‘similar’ and ‘identical’ is provided later for specifying BDI behaviours (see
section 3.1).

logic formula, which is triggered based on the current state
of the AA, and its priorities.

Let < be a set of resources, and= be a set of tasks,
where

<(t) = {R1(t), ..., Rn(t)},= = {T1, ..., Tm}
eachTi can be obtained from a task graph, or may be spec-
ified directly by the application developer. EveryRj(t)
specifies the state of resource ‘j’ at time ‘t’. Associated
with eachTi is an execution time, such that the total exe-
cution time of an application with ‘k’ tasks (TApp) can be
specified as:

TApp =
k∑

i=1

Ti

EachTi consists of the time to acquire data for a task, per-
form the execution, and write results to a file system. If
tasks are run in parallel, the total execution time is the sum
of the maximum task execution times (at each stage of ex-
ecution) of the parallel tasks (assuming that tasks run con-
currently). The objective of the AA is to find a mapping
functionΦ : = → (j, t), 1 ≤ j ≤ n, which maximises
the utilisation of each resource, and minimisesTapp. The
function Φ allocates tasks to resources;Φ(Ti) = (j, t)
represents the presence of taskTi on resourceRj at time
t.

We consider ‘t’ to be discretised, and assume that the
total execution time of an application can be specified in
units of this parameter. From this definition, a resource
management system would monitor the state of the sys-
tem (i.e. the properties ofTi andRj) and aim to find a
functionΦ such that the execution time of an application
for each AA is minimised, and the utilisation for each RA
is maximised. Traditionally the determination ofΦ has
been considered as an optimisation problem, over tasks
and resources. This problem has been addressed in various
ways, generally involving two simplifying assumptions,
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(1) ‘n’ is fixed and all members of< are identical, (2) ‘m’
is fixed, and all members of= are pre-defined (suggesting
a static schedule). Additionally, the mappingΦ is gener-
ally performed by a centralised scheduler (allocator), with
some support for dynamic task creation (i.e. variable ‘m’)
provided via an additional dispatcher. In this latter case,
the dispatcher works with a resource information service
to generate<(t) at fixed time intervals, or whenever a
new Ti needs to be allocated to a resource. In order to
overcome these restrictions, we propose a de-centralised
mechanism, which can cater for variable ‘n’ and ‘m’.

2.2 Resource Agents

A RA is responsible for managing access to services be-
ing offered on a given resource. The RA also monitors the
state of the resource, and makes these parameters avail-
able to Broker and Application agents. Each RA main-
tains a plan library (similar to an AA) based on the type of
resource it manages. For computational resources this can
include scheduling operations on the resource, re-ordering
a given schedule, and pre-empting executing tasks. Based
on its current state (beliefs), the RA makes one or more
plans active, and executes these in order to achieve its goal
of improving resource utilisation.

Consider an application composed of one AA and
two RAs. The application task graph consists of three
tasks, where the granularity of each task may range
from a sub-routine, to a complete application. We con-
sider each resource to specialise in a particular opera-
tion, but be capable of supporting all three task execu-
tions. Based on our task graph representation, we could
define2: RA1(θ1) = 10, RA2(θ1) = 12, RA1(θ2) =
8, RA2(θ2) = 4, RA1(θ3) = 30, RA2(θ3) = 32. This
is summarised in the following table:

θ1 θ2 θ3

R1 10 8 30
R2 12 4 32

Table 1:Execution times on Resource Agents

Hence, the total execution time onRA1 would be 48 units,
and onRA2 would also be 48 units. However, ifθ1 was
run onRA1, θ2 on RA2, andθ3 on RA1 then the total
execution time would be 44 units (assuming that task as-
signment is static). In the second scenario,RA2 may spe-
cialise in performing tasks of typeθ2, and should be iden-
tified as the most suitable resource by the broker. It is in
the interest of the AA to map taskθ2 to resourceRA2 to
minimise its execution time. If we consider agentAA2,
consisting only of tasks of typeθ2 from AA1, then this
agent will find a match for all of its tasks from resource
RA2, and it must now find a mechanism to execute all its
tasks on this resource. This leads to a conflict between
AA1 andAA2 in determining who should accessRA2.
This conflict may be overcome by other parameters, such
as the priority associated with the application being man-
aged byAA1 over AA2, and whether some tasks being
managed by the two AAs are similar in some way. It is
also possible for some resources to be incapable of exe-
cuting certain tasks – in which case the conflicts are much
easier to resolve. Since none of the application or resource
agents are aware of the complete state of the other agents
at any one time, it is hard for them to optimise their sched-
ule for the complete application. This holds in the context
of Computational Grids in particular, where a resource
cannot influence task execution at other resources, or de-
termine the selection of tasks from particular applications.

Handling such conflicts efficiently is essential in mak-
ing more effective use of resources. In some situations,
it may be possible to overcome some of these conflicts,

2WhereRAj(θi) is the execution timeTi on resourceRj .

whilst in others, it may only be possible to flag the exis-
tence of such conflicts.

2.3 Broker Agents

The BAs can undertake different roles within such a sys-
tem, offering services such as a certificate granting ser-
vice, a matchmaking service etc. Hence, a BA may re-
strict interaction with AAs and RAs based on access cri-
teria, such as restricting access to RAs from one or more
administrative domains, access to tasks from RAs based
on the types of resources currently available, and based on
periods of access for particular types of resources. Each
RA is responsible for advertising the capability of a re-
source to a BA, and also for monitoring activities under-
taken on the resource. For instance, an RA for a compu-
tational resource would monitor the number of processes
currently active on the resource, the usage of local mem-
ory etc. These metrics are then reported to the AA manag-
ing a program on a given resource, and to a BA which re-
quests this information to determine suitable resources to
which tasks may be mapped. The data model for exchang-
ing this information is provided in [Rana et al., 2001].

3 BDI Agents

The BDI model [Georgeff and Rao, 1998,
Rao and Georgeff, 1992] is a popular model for intelligent
agents. It has its basis in philosophy [Bratman, 1987] and
offers alogical theorywhich defines the mental attitudes
of Belief, Desire, and Intention using a modal logic; a
system architecture; a number of implementations of this
architecture(e.g. PRS [PRS, 2001], JAM [IRS, 2001],
JACK [JACK, 2001]); andapplicationsdemonstrating the
viability of the model.

The central concepts in the BDI model are
[Georgeff and Rao, 1998, page 144]:

Beliefs: Information about the environment;informative.

Desires: Objectives to be accomplished, possibly with
each objective’s associated priority/payoff;motiva-
tional.

Intentions: The currently chosen course of action;delib-
erative.

Plans: Means of achieving certain future world states. In-
tuitively, plans are an abstract specification of both
the means for achieving certain desires and the op-
tions available to the agent. Each plan has (i) a
body describing the primitive actions or sub-goals
that have to be achieved for plan execution to be
successful; (ii) an invocation condition which spec-
ifies the triggering event, and (iii) a context condition
which specifies the situation in which the plan is ap-
plicable.

We shall use the notation and execution model of
AgentSpeak(L) [Rao, 1996] as an exemplar of BDI sys-
tems. An AgentSpeak(L) agent consists of a belief set,
and a collection of plan clauses. Each plan clause is of the
form

goal : B1 ∧ . . . ∧Bn ← S1; . . . ; Sm

where eachBi is a belief, and eachSi is either an action
(a), or a subgoal (αsub).

The execution model of AgentSpeak consists of the
following steps:

1. The agent selects an evente (note that goals are an
event type)

2. The agent generates all plans with matching invoca-
tion conditions

3. From these relevant plans the agent identifies those
with satisfied preconditions
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4. If there are several plans, one is chosen nondetermin-
istically

The plan is then added to the intention stack. The in-
tention stack is executed by popping the topmost plan of
an intention and performing the first (unperformed)Si. If
Si is an event, then it is posted, and if it is an action, then
it is executed.

In the interests of conciseness we shall useπ to denote
an agent’s plan set,πi to denote theith plan clause,α to
denote the goal which triggersπi, andX to denoteB1 ∧
. . . ∧ Bn. Additionally, we useπi(X, α) to denote the
body ofπi. Assuming that a plan consists of a number of
actionsa, we can define:

πi(X, α) = (a1(p), a2(p), ..., ak(p))
head(πi(X, α)) = (a1(p)),

tail(πi(X, α)) = (a2(p), ..., ak(p))

where each actionai(p) corresponds to a well defined op-
eration that an AA can perform on a task graph, or an
RA can perform on its local schedule (or executing tasks).
Each action within a plan results in an update on the prop-
erties (p) of a task or a resource. A plan is therefore not
an atomic operation, and it is possible for a plan to be in-
terrupted during execution. An agent can measure its en-
vironment after running each action within the plan, and
based on this determine if plan execution should continue.

3.1 Specifying BDI behaviours

Each RA and AA is aiming to maximise its utilisation and
application execution time, respectively. For AAs that
manage multiple applications, the maximisation is over
multiple application task graphs. AAs compete for re-
sources in order to minimise the execution time for a task
graph that they manage. Similarly, each RA is aiming
to maximise its utilisation over all available applications.
Resource agents compete for tasks from AAs, based on
the particular capabilities of the RA.

Typically, the actions performed by the RAs corre-
spond to well defined operations on the agent’s local
schedule (or executing task). The actions performed by
AAs correspond to well defined operations on a task
graph. Each action influences the properties of a task
graph or a resource, and can be defined as a function which
modifies the properties of a resource in some way (dis-
cussed later). The time to execute a planTπi can be ex-
pressed as:

Tπi = tdeliberate + texecute(πi)

The value oftdeliberate depends on the complexity of the
agent, the complexity of the environment, and on the size
of the plan library. tdeliberate specifies the time it takes
the agent to select a plan – when multiple plans may be
selection for a given event/belief. This time is applicable
to all BDI agents – AA, BA and RA here. We assume
that texecute(π) � tdeliberate, and therefore, we can ap-
proximatetdeliberate + texecute(π) with texecute(π). The
validity of this assumption depends on the criteria men-
tioned above. Each AA attempts to minimise execution
time for a task graph, hence the goal for an AA is:

Goal(agent(AA)) = minimise
n∑

i=1

ti(p)

whereti(p) = texecute(π) + texecute(i) – i.e. execution
time is the sum of plan execution and the time to execute a
task from the task graph. In an AA, the properties ‘p’ refer
to the current ordering of tasks, the change in dependen-
cies between the tasks etc. Hence, running an actionai(p)

within a planπi will result in a change of these properties.
A plan may also be represented as a task graph, in which
case the AA must determine whether the plan should also
be run remotely. We assume that the machine hosting the
AA will be able to execute the plan locally. Similarly, the
goal function for a RA can be defined as:

Goal(agent(RA)) = maximise
m∑

j=1

C(pj)

whereC(pj) represents the capacity of the resource on a
given propertypj – where resource properties can range
from local memory, CPU utilisation etc. Alternatively, an
RA may attempt to maximise utilisation on one or more
individual properties. If there areP properties in total,
then the goal function is:

Goal(agent(RA)) =
∧

p∈P

maximiseC(p)

wheremaximise(C(p)) represents the goal of maximising
the achieved value for a given resource property. For in-
stance, a resource may aim to maximise its memory usage,
but not CPU utilisation. By selective maximisation of a
particular property, an RA can aim to achieve a particu-
lar behaviour over a given time period. The beliefs (X) of
an AA and RA correspond to the value of these properties
that are measured at any time.

Based on the plans that each AA and RA maintains,
it is possible for multiple plans to be runnable at a given
time, if pre-conditions to such plans match. In this case,
the agent needs to choose between the available plans (in
reality, this may be random, or based on particular admin-
istrative policy). Plan ordering is left to the AA or RA,
and it is possible for AA or RA agents to have the same
plan library, but different plan ordering. Each AA agent
maintains the following beliefs:

task(θi, In, Out, f): which says that the task labelledθi
has input linksIn = 〈Li, Lj , . . .〉, output linksOut =
〈Lk, Ll, . . .〉 and functionf which takes values from
each input link and produces a tuple of values, one
for each output link.

link(Li, T, V ): which says that the link labelledLi has
type T and valueV which can either be a value of
type T or the distinguished value⊥ indicating that
no value has yet been determined for the link.

For example, a simple mathematical task which adds
its three inputs might be specified as the beliefs:

task(θ1, 〈L1, L2, L3〉, 〈L4〉,
f = λ〈x, y, z〉 7→ 〈x + y + z〉)

link(L1, N, 3)
link(L2, N, 6)
link(L3, N, 3)
link(L4, N,⊥)

Generally the exact operation performed by functionf is
not known, and it often corresponds to an executable (bi-
nary) program. In section 2 we have provided a general
definition of what is necessary for two tasks to besimilar
and identical. To make this definition more specific, we
relate these ideas to the beliefs of each agent. Hence, a
taskθi is runnableif all of its input links have supplied
values: runnable(θi) ⇔ task(θi, In, Out, f) ∧ ∀Li ∈
In . link(Li, T, V ) ∧ V 6= ⊥

Two tasks are similar of they have common inputs,
that is the same number of input links, and a correspon-
dence between the two sets of input links, where two in-
puts are considered the same if they have the same value.
For convenience we define the notationIn∗ to be the
multi-setof types and values corresponding to the labels
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in In, so for the example aboveIn∗ = 〈L1, L2, L3〉∗ =
{(N, 3), (N, 6), (N, 3)}.

In∗ ≡ {(Ti, Vi)|Li ∈ In ∧ link(Li, Ti, Vi)}
We can now define similarity: similar(θi, θj) ⇔
task(θi, Ini, Outi, fi)∧task(θj , Inj , Outj , fj)∧Ini

∗ =
Inj

∗
We also have a notion of “identical” tasks. Two tasks

are identical if they have the same number of inputs, the
same number of outputs, and the same values and types
for inputs. identical(θi, θj) ⇔ task(θi, Ini, Outi, fi) ∧
task(θj , Inj , Outj , fj) ∧ Ini

∗ = Inj
∗ ∧ #Outi =

#Outj Note that two identical tasks donot necessarily
compute the same functions – they merely have the same
inputs, and can be conveniently allocated together.

We assume that we have an algorithm to identify sim-
ilar and identical tasks in the AA’s task graph(s). We treat
this as a capability of the agent and assume that it ex-
amines the agent’s beliefs and adds beliefs of the form
similar({θi, θj , . . .}) and identical({θi, θj, . . .}). An ap-
plication agent uses these beliefs (identical, similar, task,
andlink) in the execution of its plans.

A task is allocated when an AA sends a message to
an RA containing the task identifier (θi), the input val-
ues (e.g.(3, 6, 3)) and the function to be performed (e.g.
λ〈x, y, z〉 7→ 〈x + y + z〉. In practice, this would be im-
plemented by a binary executable that is transfered (along
with the data) to the resource on which execution is to take
place.

AA→ RA : task(θi, 〈3, 6, 3〉, f)

Assuming the RA accepts the task it will execute the func-
tion and, when it completes, send a message to the AA
containing the task identifier and the output data.

RA→ AA : results(θi, 〈12〉)
An agent executes its task graph by selecting a

runnable task and allocating it to a resource (see figure 2).
The first clause (π1) applies when there exists a runnable
task. This clause selects a runnable task and allocates it.
The second clause (π2) applies when there are no runnable
tasks. This clause waits for a task to become runnable and
then continues with execution (which will allocate it).

The agent has plans to allocate a task. Firstly, we check
whether the task is similar or identical to others. If it is
(π3,π4), then we construct a merged task and allocate it
(see figure 3). Allocation (π5) is done by sending a mes-
sage to the broker. The response by the broker is processed
by further plan clauses (figure 4).

Once the AA has received from the broker agent a list
of potential resources (Rs) to which the task can be al-
located it needs to select a resource. This list will only
be sent by the broker if the resources are currently avail-
able, and have the capacity to execute the task. It may
be possible, for instance, for a resource to be particularly
suitable for running tasks of a particular type (or be the
only resource with the capability to execute such tasks) but
not be available at the time the resource request is made.
The broker agent must therefore determine whether to re-
turn resources currently available, or the best matching re-
sources. A number of possible strategies may be adopted:

1. The AA selects a resource from the list at random,
and sends it a request. The resource is free and ac-
cepts the allocation. The task is transfered to the re-
source, and execution of the task commences.

2. None of the resources on the list are able to accept
the allocation at the present time, i.e. all are busy. In
this case there are a number of strategies that the AA
can pursue:

• The AA could submit a new request to the bro-
ker with weaker requirements (π7, where we

denote a request with weaker requirements by
weaken(θi)). For example, it could indicate that
it is willing to accept compute servers with less
memory.
• The AA could ask the broker to send it a list

of all resources which match its criteria – even
those that are not currently available (this is de-
noted by planπ8). Based on this list, the AA de-
termines which (other) AA owns the task that is
keeping the resource busy, and requests the AA
in question to release the resource. This interac-
tion involves a negotiation between the AA that
wants a resource, and one that currently owns
the running task on the resource.

This behaviour is described by the plans in figure 4. In
the scenario whereAA2 wishes to execute a taskθ2

i , on
a given resourceRAj , which is currently running taskθ1

k
(for AA1), it is possible forAA2 to:

1. RequestRAj to preemptθ1
k in preference forθ2

k.
Based on the belief set forRAj , and its current plans,
either the existing schedule onRAj is aborted, or the
request fromAA2 is ignored.

2. RequestAA1 to preempt its task onRAj , and reserve
this resource forAA2. If AA1 agrees, it will make
a preemption request, and pass a reservation token to
RAj to enableAA2 to then schedule its task onRAj .
It is now up toRAj to accept or deny the reservation
request fromAA1

This assumes that agents are altruistic, or at least co-
operative. Note that although conflict (in the alloca-
tion of resources) is usually cast as being between
two agents, conflict can also arisewithin a single
agent if that agent has more than one task graph. In
this case we certainly can assume cooperation.

3. Request a higher priority level from a broker agent
(B2), and use this as a means to pre-empt a task from
another application agent. This strategy would not
require a direct interaction between AAs in order to
resolve conflicts.

Figure 5 illustrates these interactions – and demonstrates
the case where a negotiation betweenAA1 andAA2 takes
place to abort taskθ1

k onRA1. The release/reserve proto-
col for resourceRAj is as follows:

1. AA2 → B: Request(B, Capability(RA))

2. B → AA2: Reply([RA1])

3. AA2 → AA1 : Request(AA1, Abort(θ1
k, RA1),

where Select(AA2, RA1) ∧ ¬Available(RA1)

4. AA1 → RA1: Request(RA1, Reserve(θ2
i ))

5. AA1 → AA2: Reply(AA2, Abort(θ1
k, RA1))

6. AA2 → RA1: Request(RA1, Schedule(θ2
i ))

3.2 Dealing with conflicts

In the context of such a BDI system, it is possible for
agents to have conflicting sub-goals in order to satisfy
their overall goal of minimising execution time, or max-
imising utilisation. Conflicts can arise between plans
within an AA or an RA. For instance, an AA may try to
group tasks to minimise execution times – however, the
new grouping may not be runnable on the available re-
sources, resulting in the agent having to find an alternate
grouping, or to wait until the required resources are avail-
able. In this case, the grouping of tasks achieves the sub-
goal of combining tasks with common properties, but it
violates the global goal of minimising the execution time.

5



π1 = exec : task(θi, In, Out,f ) ∧ runnable(θi)← allocate(θi) ; exec
π2 = exec :otherwise← waitfor task(θi, In, Out,f ) ∧ runnable(θi) ; exec

Figure 2: Exec plans

π3 = allocate(θi) : identical(G)∧ θi ∈ G← mergeIdentical(G,θnew) ; allocate(θnew)
π4 = allocate(θi) : similar(G)∧ θi ∈ G← mergeSimilar(G,θnew) ; allocate(θnew)
π5 = allocate(θi) : otherwise← send queryθi to broker agent

Figure 3: Allocate plans

Similar conflicts can arise in RAs trying to optimise their
local schedule to improve the overall utilisation of the re-
source.

When modelling conflicts, it is important to relate the
achievement of a sub-goal with the global goal that the
agent is aiming to satisfy. The general case is that the
agent should not try to attempt a sub-goal which con-
flicts with its global goal, based on the information that
the agent has about the environment at any time. In the
context of task and resource allocation, this relates to vi-
olating the global goals of minimising execution time (for
AA) and maximising resource utilisation (for RA). The
point at which a conflict is detected between the sub-
goal and the overall goal of the agent determines the “dy-
namicity” of the agent. For instance, an agent may ini-
tiate a plan to achieve a sub-goal, but the environment
may change resulting in the beliefs of the agent chang-
ing, and the sub-goal conflicting with the global goal.
In this case, a dynamic or “cautious” agent would aban-
don the plan, and search for plans that match its cur-
rent beliefs. A static or “bold” agent on the other hand
would only detect a change in the environment once it
has completed executing the current plan, and then de-
termine which other plans become valid. The use of ei-
ther strategy depends on the rate of change of the un-
derlying environment, and the time overhead of abandon-
ing the current plan and choosing a new one. Kinny and
Georgeff [Kinny and Georgeff, 1991] and subsequently
Schut and Wooldridge [Schut and Wooldridge, 2000] de-
fine this as the “degree of boldness” of an agent – which
represents the maximum number of plan steps the agent
executes before re-considering its intentions. Their work
however has focus on agents which operate in environ-
ments which are simpler than the ones we outline here.

In a general case, we can model conflicts between
plans that achieve sub-goals, and the global goal as
Con(αsub, α), where the number of sub-goals can vary.
A dynamic agent checks for this conflict after executing
each action within a plan, provided that the rate of change
of the environment does not exceed the rate at which the
agent can achieve its intentions. Aborting a plan (Abort())
implies that the agent abandons the next activity within
the current plan, and tries to search for another plan that
matches its current beliefs. Hence, executing a plan is
equivalent to

∀a ∈ πi, Exec(π)→ Exec(a, tail(π))

We must determine ways to (1) detect conflicts, (2) ways
to deal with conflicts. We can detect conflicts by analysing
changes in the properties associated with an application or
resource. There may be a number of possible types of
conflicts which may arise within each agent. Conflicts can

be between two goals, denotedCon(αsub, α) – in which
case the plan that leads to the sub-goalαsub is aborted

πi(X, αsub) ∧ Con(αsub, α)→ Abort(πi)

providedα is the goal of higher importance to the agent.
A conflict between a goal and a plan is treated in the same
way, leading to the plan being aborted. In the context of
Computational Grids, this can arise when a RA tries to
improve utilisation by running the longest running task,
although this task may not utilise the capability available
at the resource. In this scenario, other tasks which can-
not run elsewhere may need to wait for the resource to be
released. We can detect goal conflicts by evaluating the
changes that two goals would make to the properties of a
resource or application.

If a conflict between two plans arises, then the agent
must decide which plan to pursue with the current be-
liefs. This scenario is particularly important in the con-
text of dynamic (cautious) agents, where the beliefs of an
agent may change to make the currently conflicting plan
more viable. We denote this asCon(πi, πj), and the cor-
responding sub-goals asαi andαj . We can detect con-
flicts between plans by evaluating changes that the actions
within a plan would make to resource or application prop-
erties.

4 An Example

Consider a system consisting of the following named re-
sources:

Zeus (Z): An application server

Apollo (A): Another application server

Vulcan (V): A compute server with multiple CPUs, and
with capability to run graphics tasks

Mercury (M): A computer server with a single CPU, and
with capability to run database tasks

Hercules (H): A slow compute server

Zeus has a simple task graph consisting of three tasksφ1,
φ2, andφ3 whereφ3 cannot be scheduled until bothφ1
andφ2 have been completed, butφ1 andφ2 can be sched-
uled in parallel. Apollo has a task graph consisting of four
tasksφ4 through toφ7 which can all be scheduled in par-
allel. The nature of the tasks is such that all tasks can
be scheduled on any machine, butφ3 is a database task,
and will be particularly slow to complete unless sched-
uled on Mercury. Similarly,φ4 andφ5 are graphics tasks
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π6 = brokerResponse(θi,Rs) : R = head(Rs)∧ Rs 6= [ ] ∧ task(θi, In, Out, f)←
send to R : task(θi, 〈V1, . . . , Vn〉, f ) ;
receive task(θi, Status) ;

〈V1, . . . , Vn〉 are the values corresponding to〈L1, . . . , Ln〉(= In)
if status6= ok then brokerResponse(θi, R = tail(Rs))

π7 = brokerResponse(θi, Rs) : Rs= [ ]← send queryweaken(θi) to broker agent
π8 = brokerResponse(θi, Rs) : Rs= [ ]← send querymatch(R, θi) ∧ ¬Available(R)
π9 = brokerResponse(θi, Rs) : Rs= [ ]← send message(“No Resource Available”)

Figure 4: Plans to allocate a task to a resource using the broker’s response

AA1 AA2 B1 B2 RA1 RA2

Registration Phase

RA1 running AA1
task

 Request for task 

preemption and resource
reservation 

Register
Register

Register

Match Match

Execute

Register

Match[ ]

Abort
Register

Match[ ]

Abort + Reserve

Reserved

Execute

Figure 5:Interaction between Application (AA) and Resource (RA) agents, mediated by Broker (B) agents

that would complete quicker on Vulcan. Hence, the global
goals include:

Goal(A) = min(
3∑

i=1

exec(φi) + exec(π))

with a similar formulation for Goal(Z), and,

Goal(V ) = max(
∑

(p=CPU,Memory)

C(p) + exec(π))

which also holds for Goal(M) and Goal(H). Each agent
must now monitor its properties to determine which plans
apply. Figure 6 provides one execution sequence for tasks
φ1...φ7. In this example we assume that each resource
agent can only execute a single task at a time. However,
this constraint does not invalidate the the more general
condition where a resource can execute multiple tasks si-
multaneously. All application and resource agents regis-
ter with the broker (B) to start with. Application agents
send a record for each task that needs to be executed. Re-
source agents send a record of their capabilities to B. As
all resources can run all tasks, B sends a list of all task
records to all resource agents, and all resource records to
both application agents. Z then requests V to executeφ1.
However, as V has better capability to runφ4, φ5, V ig-
nores the request, and instead asks A to submitφ4 or φ5.

Z then re-submits its request to M, where it is granted (as
there are, currently, no tasks requiring database capability
to be executed). Subsequently, A sendsφ4 to V, and then
φ5 to H. B always maintains beliefs about all tasks that
are still waiting to be completed, as indicated in the right
hand side of the diagram. After completing a task, each
resource agent (V, M or H) re-registers with B to indicate
its availability.

4.1 Analysis of system

The system presented here assumes that each agent makes
independent decisions about the best way to achieve its
goal. There may be conflicts between:

• Goals of various resource agents – as each agent is
competing for tasks

• Goals of various application agents – as each agent is
competing for resources

• Goals of application and resource agents – as each is
aiming to satisfy an objective, that could have con-
flicting outcomes on the properties of AAs and RAs

• Plans within a resource agent – trying to determine
whether to select a task currently available, or wait
for one which utilises its capability
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Figure 6:Interaction between Application (A,Z), Resource (V,M,H), and Broker (B) agents

• Plans within an application agent – trying to deter-
mine whether to run tasks separately, or to group
them for a faster CPU resource (for instance)

We outline roles that agents could undertake within such a
system. In the examples described here, the broker agent
acts as a MatchMaking service, to find similarities be-
tween task descriptions provided by AAs and resource ca-
pabilities provided by RAs. There is a single criteria over
which a match is being achieved. Within the present sys-
tem we can also include brokers which evaluate multiple
criteria to resolve conflicts and choose suitable resources
(or tasks):

• Least loaded CPU

• CPU likely to be loaded least after a particular time

• Most available memory (or likely to be available)

• Mean task execution time over entire application

• Most secure (trusted) resource

• Least expensive resource

• Quickest time within deadline threshold

some of these criteria are dependent on the broker execut-
ing a prediction algorithm. Our system can easily accom-
modate these additional criteria, as this would translate to
altering the Goal of each RA and AA, based on input it re-
ceives from the broker. We could also have multiple bro-
ker agents, where each broker either specialises in a given
criteria, or uses a different weighting function to rank each
of the above criteria.

Figure 7 illustrates a scenario involving task preemp-
tion, and is similar to that in figure 6 except that A and
Z negotiate to preempt a task on a given resource. In this
scenario, agent A negotiates with Z to abort its taskφ1
to enable it to execute its taskφ6, which it considers to
have a tighter completion deadline. Based on its beliefs,
agent Z must decide to honour the request, and to initiate
the removal of its task from resource M. Agent Z makes
a request to abort its task from resource M and make a
reservation for A. It is now the decision of resource agent
M to honour the request from agent Z. As both Z and M
are autonomous, with their own beliefs and plan library,
they must make decisions locally. In this case, M agrees
to abortφ1, and sends an acknowledgement to A and Z –
and does not register again with B. However, M informs
B thatφ1 has been aborted, and must be re-executed (the
beliefs of B now containφ1). A now sends its taskφ6 to

M, where execution can start. In this scenario the ability to
abort a task resides with the task owner, and the resource
on which the task is executing. When agent A requests
agent Z to abort its task, agent Z evaluates the priority of
the request and makes a subsequent decision. We may also
consider such decisions to be supported via another broker
agent (B2), which enables application agents to request a
priority level for their tasks. B2 may approve priority re-
quests, or may decide on a level different from the request,
leaving it up to the application agent to accept this.

4.2 Related work

Support for handling resource capabilities already
exist is some metacomputing systems, such as
Globus [Globus, 2001] and Legion. The Globus system
provides a Resource Specification Language (RSL) to
define resource properties and the location of software
executables. Two new protocols – the Grid Resource
Information Protocol (GRIP) and Grid Resource Regis-
tration Protocol (GRRP) are aimed at providing support
for discovering new information services, and registering
new services with the Globus directory service (the
MDS) [Foster, 2001]. Subsequently, a Globus Resource
Allocation Manager (GRAM) manages access to a set of
resources with the same site-specific allocation policy,
where a resource can range from a tightly coupled parallel
computer, a cluster of workstations, a data storage system
or a scientific instrument. Furthermore, resource ensem-
bles can be managed by a third party system, such as
Codine/GRIDWare or LSF [Baker, Fox and Yau, 1996].
In Globus, a Resource Broker is responsible for resource
discovery within each administrative domain, which
works with an Information Service, and a Co-allocator for
monitoring the current state of resources, and managing
an ensemble of resources respectively.

The Legion [Natrajan, et al., 2001] system describes
resources and tasks as a collection of interacting objects,
where compute resources are abstracted as ‘Host’ objects,
and data resources as ‘Vault’ objects. The Legion system
also provides a set of core objects, that enable arbitrary
naming of resources based on Legion Object Identifiers
(LOIDs) and Legion object addresses (LOA). Specialised
services, such as Binding agents and Context objects are
provided to translate between an arbitrary resource name
and its physical location – enabling the resource discov-
ery to be abstracted as a translation mechanism between
LOIDs and physical resource locations. The Legion sys-
tem provides a notation for defining resources, based on
an object-oriented type system, supporting inheritance and
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Figure 7: Interaction between Application (A,Z), Resource (V,M,H), and Broker (B) agents – scenario II involving task
preemption

encapsulation. Legion supports site autonomy with a Ju-
risdiction Magistrate (JM), which can reject requests that
conflict with the policy of a managed site.

Other systems such as Jini [Edwards, 1999] from Sun
Microsystems makes use of a Discovery, Join and Lookup
service, to enable devices to dynamically enter and leave
a cluster. Although in many ways similar to our approach,
the discovery protocol supported involves lookup on data
types and, in some instances, the class hierarchy (derived
type). Any additional matching which exploits associa-
tions between device types is not supported in Jini. The
TSpaces project from IBM [TSpaces, 2001] also uses data
types to seek a match between a service description and
a service request. However, TSpaces does claim to pro-
vide advanced tuple matching capabilities, which involves
conjunction/disjunction of capabilities expressed as data
types. Serafini et al. [Serafini et al., 2001] present an ap-
proach to optimising queries for data Grids, involving four
kinds of agents: user agents, index agents, mass stor-
age agents and “internal” agents. Whereas the first three
of these provide wrappers to existing systems, “internal”
agents act as query optimisers at different levels of spe-
cialisation and criteria. They also suggest an implement-
ing based on BDI agents using JACK [JACK, 2001]. Their
work can be easily integrated with our work on Computa-
tional Grids, by utilising brokers which hand-over control
to their “internal” agents for managing data resources.

Our approach uses the object-oriented description
mechanism in Legion, but is most closely related to the
approach taken in the ‘class advertisement’ mechanism
in Condor [Frey et al., 2001]. In this system, resources
describe their capabilities as an advertisement, which is
subsequently matched with an advertisement describing
the needs of an application. Each advertisement carries
a ‘Constraints’ and ‘Rank’ keyword, which must evalu-
ate to True, for a match between a resource and task ad-
vertisement to be successful. Matching between resource
capabilities and task requirements are based on a classifi-
cation scheme, which divides resources into one of four
categories, (1) a Storage resource, (2) a Computational
resource, (3) a Visualisation resource, (4) a scientific In-
strument. The proposed approach can utilise Jini based
services such as transaction support, leasing etc, and at
a minimum support the type matching mechanism sup-
ported in Jini. We feel the proposed approach therefore
compliments and extends vendor based approaches such
as Jini and TSpaces.

5 Conclusion

A BDI approach to modelling behaviours of resource and
application agents is presented – and plans for partici-
pating agents are described. The use of BDI behaviours
enables new application or resource agents to be added,
leading to existing agents adapting their behaviours. We
believe that the BDI model is most appropriate because it
enables each agent to model a site specific administrative
policy (for both RA and AA agents), and Broker agents
may undertake different plans based on their priorities.
The BDI model is also useful in that it can allow agents to
enter/leave the environment dynamically, and for all other
participants to adjust their plan libraries accordingly.

Various roles that intermediate broker agents could un-
dertake within such a system are outlined, and we also
suggest how role specialisation can be used to overcome
conflicts. A prototype of this system is currently being
developed in AgentTalk (an implementation of AgentS-
peak [Rao, 1996]). In subsequent work, we also aim to
explore the relationship betweentdeliberate andtexecute as
described in section 3.1, and as investigated under the gen-
eral term of ‘bounded optimality’ in agent systems. The
effective control of time to reason is important in this con-
text, as a BDI agent must deliberate only for as long as
is necessary – and dependent on environment complexity
and agent knowledge/predictability about its environment.
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