
High-Performance Extendable Instruction Set Computing

Heui Lee Paul Beckett Bill Appelbe

hlee@adc.co.kr pbeckett@~-mit.edu.au hill@cs.i-mit.edu.au
Asia Design Corporation RMIT University RMIT University

Abstract
111 this paper, a new architecture called the extendable
instruction set computer (EISC) is introduced that
addresses the issues of memory size and performance in
embedded microprocessor systems. The architecture
exhibits an efficient fixed length 16-bit instruction set with
short length offset and immediate operands. The offset
arid imniediate operands can be extended to 32 bits via
the operation of an extension Jag.
The code den& of the ElSC instruction set and its
memoly transfer performance is shown to be significantly
higher than current architectures making it a suitable
candidate for the next generation of embedded computer
systems.
The compact EISC instruction set introduces data
dependencies that seemingly limit deep pipeline and
superscalar implementations., This paper suggests a
mechanism by which these dependencies might be
removed in hardware.

1. Introduction

Since its development in the 1970s, the microprocessor
had been applied in a range of embedded applications, in
fields as diverse as home automation and industrial
control to PDAs and network computers [l]. The
introduction of RJSC architectures in the 1980s [2]
allowed microprocessor architectures to move into the
domain previously occupied by mini-computers. Further,
advances in semiconductor technology have seen the
development of super scalar architectures [3] as well as
significant increases in processor operating speeds [4-71.

However despite all of these architectural advances,
program execution still involves accessing program and
data in memory. And regardless of either the rapid
increase in available memory capacity or the
accompanying decrease in access times, the basic
performance of memory still does match that of the
microprocessor core. For example, in 1980 the access
time of DRAM was in the order of 250nsec, and by 1988
its operating speed had increased to 300MHz - 70 times
faster. However, in the same period the performance of
the microprocessor core increased from 8MHz (e.g. 8086)

to 5OOMHz (e.g. Pentium-2). Moreover, if the superscalar
nature of the Pentium-2 is taken into account, its
performance is actually in the order of lGHz - 120 times
faster. Clearly, the performance of microprocessors is
now limited by not only the speed difference between
memory and the CPU, but also by the physical properties
of the bus available to connect the memory and the CPU
of the microprocessor (in terms of width and throughput;
i.e. its bandwidth) [8].

Further, in embedded microcontroller systems where
memory, CPU and I/O circuits tend to be integrated into a
single chip, the price of that chip is largely dependent
upon its size. As memory circuits (RAM and ROM) take
up significant area, the overall cost is especially sensitive
to the size of the memory.

In this paper, the architecture of the Extendable
Instruction Set Computer (EISC) is presented. The EISC
architecture offers a viable solution to the memory
sizebandwidth problem by exhibiting an efficient fixed
length 16-bit instruction set with short length offset and
small immediate operands. The offset and immediate
operands can be extended to 32 bits via the operation of
an extension flag (the e-flag) resulting in high code
density for the 32-bit microprocessor. A solution for
avoiding e-flag dependencies in deep pipeline and
superscalar configurations is proposed. Comparisons are
made with the performance of the MIPS-R3000 to
demonstrate the development and operation of the
extendable instruction set concept.

2. Embedded Microprocessors

There has been much recent work looking at the issue
of bus bandwidth and memory size in embedded
processors. One approach has been to add code
compression to a variety of architectural styles
([9],[10],[11]). For example, [12] looks at the effect of
replacing frequently used sequences of instructions with a
code word serving as an index into a list of instruction
sequences, while [13] proposes a software method of
doing the same thing.

Another approach has been the adaptation of 32-bit
RISC architectures to use a compressed 16-bit instruction
set. The ARM-7TDMI [14] represents a 16 bit

89
0-7695-0954-1101 $10.00 0 2001 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore. Restrictions apply.

compressed instruction version of the ARM-7 and the
TR4101 is the 16-bit compressed instruction architecture
form of the MIPS-R3000 ([l], [14]). These 16-bit
compressed-instruction RISCs exhibit complex arch-
itectures because of the requirement for compatibility with
existing machines. Moreover, the 16-bit instruction set
version of these architectures can address only eight
registers, further compromising their performance.

Lui
sh, sb, lh, Ib, Ihu, lbu
bnez, bne, beqz, beq, bltz ...

3. The Extendable Instruction Set

3.76 %
1.98%
6.69%

The specification of the EISC instruction set
commenced with an analysis of the performance of a
number of instruction sets of existing processors
(especially the MIPS R3000) using EGCS-1.1 [15], the C
library NEWLIB-1.8.1 [16], the C++ library
LIBSTDC++-2.8.1 [171 and various benchmark programs.
This analysis indicated some general characteristics of
embedded microprocessor systems (some of which are
common to all processors). For example:

The availability of sixteen general-purpose
registers is close to optimum:
Load and Store instructions are used often and
mostly employ short length offset addressing:
The frequency of use of small sized constants is
high.

To support these characteristics effectively, the EISC
was given 16-bit fixed length instruction and the 32-bit
instruction set was designed to extend the offset and
constant fields. Code density was further increased by the
inclusion of register list ‘Push and Pop’ instructions plus
the use of hardware interlocks to resolve pipeline conflicts
(thus eliminating the need to insert NOP instructions).

The basic 32-bit EISC system has been implemented as
an FPGA, and all of its functions verified at low speed
(1.8432MHz). The following sections outline how the
analysis of processors such as the R3000 has resulted in
the major architectural features of the EISC.

mult,multu,div, divu
break, mfhi, mflo

3.1 The EISC Register Set

0.09 %
0.12 %

The MIPS R3000 has thirty-four 32-bit registers. Two
of them are the private registers for ‘Multiply and Divide’,
five of them are the special registers for stack, frame
pointer and condition codes and the remaining twenty-
seven are the general-purpose registers. To study the
effect of register availability on code size, the EGCS
C/C++ compiler was used to generate code for the C/C++
library and benchmark programs while the number of
available registers was varied.

In Table 1, it can be seen that, as the number of the
general-purpose registers becomes smaller, the overall
program size gets bigger (note that the program size for
the case of 27 registers has been normalized to 100). The

frequency and therefore the space taken by Load and
Store instructions also grows and, since these instructions
use memory and the bus, they directly influence the
required data transfer width. There is little change in
either the program size or the load and store frequency as
the number general-purpose registers reduces from twenty
down to sixteen. However, eight registers are clearly too
few as, by that stage, the frequency of load and store
instructions has almost doubled. Thus the EISC was set
up with access to 16 registers.

I No.of I Program I Load/ I Move I

Table 1. Program size vs. number of
registers for MIPS-R3000.

3.2 LoadIStore Architecture

Table 2 shows the average instruction frequency in a
MIPS-R3000 with sixteen general-purpose registers
available to the.CPU. The EISC architecture is RISC-like
in that all operations use register operands while the only
memory access is via load/store instructions.

Instruction
20.27 %

Iw, sw 28.27 %

Addiu 7.53 %
2.93 %

I j , jaI I 10.36% 1
Jr I 1.79 %
addu, subu,and, or, xor,nor,negu I 3.33 %

I andi, ori, xori I 2.17 % I
jalr 1 0.17 %
slt. sltu. slti. sltiu I 1.70 %

I sll, srl, sra, sllv, srlv, srav 1 1.40% 1

Table 2 Instruction frequency of MIPSR3000
with sixteen general-purpose registers.

90

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore. Restrictions apply.

It is clear from Table 2 that the decision to employ a
load/store architecture will very little impact on the
performance of the machine because of the low frequency
of occurrence of instructions that might otherwise employ
a register-memory architecture (e.g. addu, subu ,
and etc.).

3.3 16 bit Fixed Length Extendable Instruction

It can also be seen from Table 2 that the move
instruction is the most frequent, at 20.27% (the combined
frequency of load/store is a little larger, but move is the
most frequent individual instruction). Since the EISC has
access to sixteen registers, it requires four bits each to
represent the source and destination registers. Instructions
such as move therefore fit easily within 16 bits. Using a
16 bit fixed length instruction also simplifies the
hardware. Whilst most instructions (such as the move,
above) can be represented within a 16-bit fixed length
structure, instructions with constant operands such as load
and store are more problematic due to the length of the
offset and constant operands. In particular, 93.5% of the
total load and store instruction have 32-bit operands.

A more detailed analysis of the characteristics of the
lw (load word) and s w (store word) instructions (Table
3) revealed that about 61% of these instructions
referenced the Stack Pointer and 40% use the Index
Register. In the latter case, 77% of those instructions
could be represented by 3-bit offset.

1 Offset I Stack 1 Index
length pointer register

I (60.9%) I (39.1%)
3 bit 1 43.2 % I 77.0 %

I 4 bit 1 72.6% I 81.6 % I

I I

Table 3 Characteristics of
’Iw’ and ’sw’ instructions

Instructions with constant operands (e.g. li - load
immediate) do not occur very often: just 2.9% of all
instructions in this analysis. In addition, Table 4
illustrates that using an 8-bit constant will cover 93.6 % of
these instructions.

Constant range 1 Frequency
-32--+31 1 72.4 %

I -64--+63 I 86.9 % 1
-128 - -+ 127 I 93.6 %
-256--+255 I 95.2 %

I > e 5 6 1 100% I
Table 4 Operand Size of ‘li’ instruction

Thus the great majority of instructions use short offset
or constant operands. This situation applies equally to
instructions such as 1w (load word) and s w (store word)
as well as arithmetic instructions such as addiu, slti,
and sltiu.

3.4 The Extension Register and Flag

The EISC architecture synthesizes long operands from
adjacent instructions using an Extension Register and Flag
(E). The E-flag is set when an operand has just been
transferred into the 32-bit Extension Register (i.e. % ER).
The leri instruction (Load Extension Register
Immediate) performs a conditional shift (controlled by the
E-flag) and load to synthesize long immediate operands in
the Extension Register, as shown in Figure 1.

Instruction Mnemonics : LERl
Instruction Format : LERl constant
Instruction Representation :
bit 15-14 =01
bit 13-0 = constant data bit 13-0
Operation ;
If (E flag is 0) Load %ER with sign extended constant
ELSE %ER =%ER <c 14 + Constant
Set E flag

Figure 1. Operation of the LERl instruction

Instruction Function : Load /Store
Instruction Representation :
bit 15-1,4 =00
bit 13-1 2, 7= Operation

000 : sign extend 8 bit load
001 : sign extend 16 bit load
010 : 32 bit load
01 1 : Zero extend 8 bit load
100 : 8 bit store
101 : 16 bit store
11 0 : 32 bit store
11 1 : Zero extend 16 bit load

LDB SRC DST
LDS SRC DST
LD SRC DST
LDBU SRC DST

STS SRC DST
ST SRC DST
LDSU SRC DST

STB . SRC DST

bit 1 1-8
bit 6-4
= offset bit 3-1 if 16 bit load/store
= offset bit 4-2 if 32 bit loadlstore
bit 3-0
Effective operand address : EA
Operation:
If (E flag is 0)
EA = Zero extend offset + Index register
If (E flag is 1)
if (32/16 bit loadktore)
EA = %ER cc4 + Offset + Index register
if (8 bit loadktore)
EA = %ER<< 3 + Offset + Index register

=Source /Destination register. %RO to %R15.
= offset bit 2-0 if 8 bit load/store

= Index register. %RO thru %R15.

Figure 2. Operation of the LD instruction

Load and store instructions use the E-flag to create the
effective address or 32-bit constant. For example, Figure
2, illustrates that if the‘ E-flag is set to 1, the effectivd
address is formed from %ER cc4 + Offset + Index register.

91

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore. Restrictions apply.

,

As the total number of 32-bit load/store instructions is
typically small, this mechanism has little effect on overall
performance of the machine.

3.5 Stack pointer

As shown in Table 3, load/store instructions that
reference the Stack Pointer and the Index Register tend to
exhibit very different operand lengths. For Stack Pointer
use, the offset needs to be more than 5 bits, while the
majority (77%) of the Index Register load/store operations
can utilize a 3-bit operand. For this reason, the 32-bit
EISC instruction set includes separate load/store stack
pointer instructions with 7-bit offset.

The frequency of push and pop to stack was found to
be reasonably high in the experiments reported here
(15.8%) and if eight registers were bound together, the
average number of registers pushed/popped per
instruction was about 4.3. This indicated that it was worth
including a “push/pop to list” type of instruction. This is
more commonly found in CISC rather than RISC
machines and, although it reduces the amount of memory
used by push/pop instructions, it can cause problems with
superscalar and deep pipeline configurations. A simple
solution is to disallow the use of multiple pushes or pops
within a single instruction in such configurations. Since
binary compatibility is not an objective, this solution
suffices.

In Table 2 it can be seen that the frequency of addiu
(Add Immediate) instructions was 7.53%. Within these
instructions, the frequency of stack pointer usage is 35%
of which 99.1% employed 7-bit constant operands. The
32-bit EISC instruction set therefore includes the capacity
for arithmetic on the stack pointer using 7-bit constant
operands.

3.6 Other Instructions

The frequency of conditional branch instructions in
Table 2 is 6.69%. In the EISC instruction set, the Carry,
Sign, Zero and Overflow flags can be combined such that
fourteen kinds of Conditional branch instructions can be
formed. The offset of conditional instructions is set at 9
bits and extended to 32 bits via the extension register.

It can also be noted that 48.5% of all ALU instructions
used two operands and 5 1.4% used three. However, three
operand instructions can be easily synthesized using a
combination of the move instruction and a two-operand
instruction and this is what is done in the EISC
architecture.

Instructions such as multiply and divide exhibit low
frequency of use but they are very useful in applications
such as multimedia. As well, the performance of these
instruction types depends heavily on their method of

implementation. The EISC includes two 32-bit registers
(%ML and %MH) to store the results of multiply
operations.

The EISC includes provision for a number of co-
processors to perform particular functions. Each co-
processor has sixteen general-purpose registers. Co-
processor ‘0’ is the system co-processor that manages
Cache, Pipeline and Memory control etc. Other co-
processors have been defined for Floating point and
Multimedia acceleration. CO-processor instructions can
extend to 20 or 30 bits by use of the extension register.

4. Performance Evaluation

In order to benchmark the relative performance of the
EISC architecture, it was compared to a range of existing
microprocessors. The metric used was their Relative
Code Density (RCD) defined as follows:

Code Density of 32bit EISC
RCD = Code Densiry of Comparison Microprocessor

- - Program Size of Comparison Microprocessor
Program Size of 32bit EISC

To perform the evaluation, a cross C/C++ compiler
was produced for both the 32-bit EISC and the existing
microprocessor and the C/C++ library and benchmark test
programs were complied, The resulting RCD figures are
shown in Table 5.

Table 5. Relative Code Densitv of 32-bit EISC.

As shown in Table 5, in comparison tests between the
EISC and existing architectures, the Relative Code
Density of the EISC was found to be higher in all cases
(i.e. its code size was smaller). For example, the code
density of the EISC is 66% higher than of MIPS R3000
(considered the benchmark 32-bit RISC architecture) for
the programs chosen. Compared to the popular ARM 7
processor, the RCD figure was 1.64.

92

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore. Restrictions apply.

32 bit
EISC

RCD I 1.00 I 1.07 I 1.13
Load/Store I 30.2 % I 48.4 % I 46.5 %

TR4101 ARM-
7TDMI

L I

Table 6 Comparison between 32-bit EISC
and 16-bit compressed RISC

7 Jz Ox8b4 <.L2>

4.1 E-flag Dependencies

E E

Once the instruction set was defined, the performance
of the EISC architecture was investigated using the
Dhrystone benchmark [18] running on a micro-
architecture simulator for a basic five-level pipeline. This
was repeated for various levels of superscalar operation.
The micro-architecture simulator was adapted from
SuperDLX [191 initially developed at McGill University
in Canada and further extended at RMIT University.

Of particular interest was the effect of register
dependencies in the EISC architecture as these threatened
to impact on its performance in deep pipeline and
superscalar configurations. In the EISC, dependency on
the E-register and, particularly, the E-flag is a special case

Fortunately, there is a fairly straightforward solution to
this problem as almost all of the necessary information
about the E-flag is known at decode time. This solution is
outlined in the following section.

In Figure 3, the arrows show the dependencies
operating within the example code fragment. Apart from
the true data dependency on r l at lines 1 and 2 (andi &
cmpi), it can be seen that this code fragment exhibits an
almost continuous serial dependency on the E-flag.

The effect of this is to severely limit the available
parallelism in the code. Each instruction has to complete
to the commit stage before the next instruction can be
decoded - i.e. in the five stage pipeline of the simulator,
the next instruction could not commence until the commit
stage had been reached by the previous instructions,
forcing at least three stall cycles for each instruction. In
our benchmark tests it was found that the immediate
instructions (e.g. addi , cmpi) were amongst those
most heavily dependent on the E-flag and register, and a
very low level of overall instruction parallelism was
observed (<2.5% best case).

I I Instruction I ReadX 1 Write I

that is of particular importance as their use is pervasive
throughout the instruction set. The vast majority of Figure 3. Instruction Dependencies in EISC
instructions in the EISC use the E-flag in some manner
(either clearing it, or using it during an effective address
calculation).

4.2 wVirtualisingtt the ~ - f l ~ ~

It was identified early in the analysis that the operation
of the E-Flag creates artificial pipeline dependencies that
threaten to restrict the operating efficiency of the pipeline.
While the overall efficiency of the EISC pipeline was still
high (>78% in our tests), it was clear that this figure could
be further improved by removing E-flag and procedural
dependencies. Further, these dependencies had the
potential to prevent the architecture from achieving any
meaningful gains from superscalar organization.

Dependency analysis does not distinguish between a
“write” and a t‘clear” of the E-flag. However, there is a
real distinction that could be made by the micro-
architecture simulator. A “clear” creates a dependence
that can be removed if the architecture “virtualises” the e-
flag. After an instruction that clears the e-flag is decoded,
we can record that the next instruction that reads the e-flag
will read a new, or virtual value of zero. This instruction
could then be executed in parallel.

93

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore. Restrictions apply.

Virtualising the e-registeriflag in this way is a simple
extension in hardware of existing virtual register schemes,
and exposes significant parallelism. In typical
implementation schemes, virtual registers are assigned at
decode time, with a tag that identifies their status. If an
instruction unconditionally clears the e-flag, subsequent
instructions (that use the e-flag) reference a virtual flag
with the value zero. In the instruction fragment of Figure
3, removing the E-flag dependency, in combination with
branch prediction would allow instructions pairs to be
forwarded to separate execution pipes and executed in
parallel. This type of superscalar operation can clearly
make a significant impact on the performance of the EISC
architecture.

5. Conclusions

This paper has introduced a new architecture called the
extendable instruction set computer (EISC) aimed at the
embedded systems market. The overall performance and
cost of this class of processors are particularly sensitive to
the size and access bandwidth of their memory systems.
The EISC has been shown to offer significant
improvements over existing architectures in these areas.
The use of the Extension Register and Extension Flag
allows the architecture to use an efficient fixed length 16-
bit instruction set with short length offset and immediate
operands. The offset and immediate operands can then be
extended to 32 bits via the operation of the E- flag.

Using this mechanism, the EISC architecture has
achieved in the order of 140 to 220 5% better code density
than existing FUSC processors and a figure of about 120 to
140 % compared to CISC machines. Even compared to
16-bit compressed instruction RISC machines such as the
ARM-7TDM1, the program size of the EISC has been
found to be 5 to 15% smaller and the fiequency of Load
and Store instructions about 15% lower. As a result, the
EISC architecture can be seen to be well suited to
embedded applications where small code size and low
memory transfer width are desirable attributes.

The effect of register dependencies in the EISC
architecture was investigated thoroughly - especially those
caused by the E-flag and E-register. The operation of the
E-Flag in particular has the potential to create artificial
dependencies that could restrict the operating efficiency of
the pipeline and impact on the overall performance of the
archtecture in deep pipeline and superscalar
configurations. "Virtualising" the e-flag, using a similar
mechanism to existing virtual register schemes, will
expose significant parallelism in the instruction set and
allow the architecture to operate efficiently in superscalar
and deep pipeline configurations.

Comparing its code density and memory transfer
performance against existing processors, the EISC

architecture can be seen to offer significant advantages
that will make it highly suited to a range of embedded
computer systems applications.

6. References

[11 Manfred Schlett, "Trends in Embedded-Microprocessor
Design", IEEE Compurer, pp. 44-50, Aug. 1998.

[2] D. Patterson, " Reduced Instruction Set Computer", Comm.
ACM, Vol. 28, No. 1 , pp. 8-21, Jan. 1985.

131 Dezso Sima et al., "Superscalar Instruction Issue", IEEE
Micro, pp. 28-39, Oct. 1987.

[4] B. Gieseke et al., "A 600MHz Superscalar RISC
Microprocessor with out-of- order execution", ISSCC
Digest Tech. Papers, pp. 176-177, Feb. 1997.

[5] C. A. Maier et al., "A 533MHz BiCMOS Superscalar RISC
Microprocessor", IEEE Journal of Solid-Stare Circuits,

[6] Charles F. Webb et al., "A 400MHz S/390 Micro-
processor", IEEE Journal of Solid-state Circuits, Vol. 32,

[7] Paul E. Gronowski et al., "High-Performance
Microprocessor Design", IEEE Journal of Solid-State
Circuits, Vol. 33, No. 5, pp. 676-686, May 1998.

[8] Doug Burger, "Limited Bandwidth to Affect Processor
Design", IEEE Micro, pp. 55-62, Dec. 1997

[9] A. Wolfe & A. Chanin, "Executing Compressed Programs
on an Embedded RISC Architecture", Proceedings of the
25th Annual International Symposium on
Microarchitecture, December 1992.

[IO] M. Kozuch and A. Wolfe, "Compression of Embedded
System Programs", IEEE International Conference on
Computer Design, 1994.

[113 C. W. Fraser, T. A. Proebsting, "Custom Instruction Sets
for Code Compression", unpublished, http://www.cs.ari-
zona.edu/people/todd/papers/pldi2.p~, October 1995.

[12] C. Lefurgy and T. Mudge, "Code Compression for DSP",
CASES '98, Dec. 4-5, 1998, http://www.eecs.
umich.edu/-tndcompress

[13] C. Lefurgy and T. Mudge, "Fast Software-managed Code
Decompression", CASES'99, October 1-3, 1999,
http://www.eecs.umich.edu/-tndcompress

[141 S. Segars et al., "Embedded Control Problems, Thumb, and
the ARM7TDMI", IEEE Micro, pp. 22-30, Oct. 1995

[151 ftp://cair-archive.kaist.ac.kr/pub/gnu/egcs/releases/egcs-
l.lb/egcs-1.1 b.tar.gz

[161 ftp://ftp.cygnus.codpub/newlib/newlib- 1.8.1 .tar.gz
[171 ftp://cair-archive.kaist.ac.kr/pub/gnu/released~ibstdc++-

2.8.1 .tar.gz
[181 Reinhold P. Weicker, "DHRYSTONE Benchmark

Program", CACM Vol 27, No 10, 10/84 pg. 1013.
(Translated from ADA by Rick Richardson).

[191 Moura, C., "SuperDLX: A Generic Superscalar Simulator",
ACAPS Technical Memo 64, May 1993.

Vol. 32, NO. 11, pp. 1625-1634, NOV. 1997.

NO. 11, pp. 1665-1675, NOV, 1997.

94

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore. Restrictions apply.

http://www.cs.ari
http://www.eecs
http://www.eecs.umich.edu/-tndcompress
ftp://cair-archive.kaist.ac.kr/pub/gnu/egcs/releases/egcs
ftp://ftp.cygnus.codpub/newlib/newlib

