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Abstract 
111 this paper, a new architecture called the extendable 
instruction set computer (EISC) is introduced that 
addresses the issues of memory size and performance in 
embedded microprocessor systems. The architecture 
exhibits an efficient fixed length 16-bit instruction set with 
short length offset and immediate operands. The offset 
arid imniediate operands can be extended to 32 bits via 
the operation of an extension Jag. 
The code den& of the ElSC instruction set and its 
memoly transfer performance is shown to be significantly 
higher than current architectures making it a suitable 
candidate for the next generation of embedded computer 
systems. 
The compact EISC instruction set introduces data 
dependencies that seemingly limit deep pipeline and 
superscalar implementations., This paper suggests a 
mechanism by which these dependencies might be 
removed in hardware. 

1. Introduction 

Since its development in the 1970s, the microprocessor 
had been applied in a range of embedded applications, in 
fields as diverse as home automation and industrial 
control to PDAs and network computers [l]. The 
introduction of RJSC architectures in the 1980s [2] 
allowed microprocessor architectures to move into the 
domain previously occupied by mini-computers. Further, 
advances in semiconductor technology have seen the 
development of super scalar architectures [3] as well as 
significant increases in processor operating speeds [4-71. 

However despite all of these architectural advances, 
program execution still involves accessing program and 
data in memory. And regardless of either the rapid 
increase in available memory capacity or the 
accompanying decrease in access times, the basic 
performance of memory still does match that of the 
microprocessor core. For example, in 1980 the access 
time of DRAM was in the order of 250nsec, and by 1988 
its operating speed had increased to 300MHz - 70 times 
faster. However, in the same period the performance of 
the microprocessor core increased from 8MHz (e.g. 8086) 

to 5OOMHz (e.g. Pentium-2). Moreover, if the superscalar 
nature of the Pentium-2 is taken into account, its 
performance is actually in the order of lGHz - 120 times 
faster. Clearly, the performance of microprocessors is 
now limited by not only the speed difference between 
memory and the CPU, but also by the physical properties 
of the bus available to connect the memory and the CPU 
of the microprocessor (in terms of width and throughput; 
i.e. its bandwidth) [8]. 

Further, in embedded microcontroller systems where 
memory, CPU and I/O circuits tend to be integrated into a 
single chip, the price of that chip is largely dependent 
upon its size. As memory circuits (RAM and ROM) take 
up significant area, the overall cost is especially sensitive 
to the size of the memory. 

In this paper, the architecture of the Extendable 
Instruction Set Computer (EISC) is presented. The EISC 
architecture offers a viable solution to the memory 
sizebandwidth problem by exhibiting an efficient fixed 
length 16-bit instruction set with short length offset and 
small immediate operands. The offset and immediate 
operands can be extended to 32 bits via the operation of 
an extension flag (the e-flag) resulting in high code 
density for the 32-bit microprocessor. A solution for 
avoiding e-flag dependencies in deep pipeline and 
superscalar configurations is proposed. Comparisons are 
made with the performance of the MIPS-R3000 to 
demonstrate the development and operation of the 
extendable instruction set concept. 

2. Embedded Microprocessors 

There has been much recent work looking at the issue 
of bus bandwidth and memory size in embedded 
processors. One approach has been to add code 
compression to a variety of architectural styles 
([9],[10],[11]). For example, [12] looks at the effect of 
replacing frequently used sequences of instructions with a 
code word serving as an index into a list of instruction 
sequences, while [13] proposes a software method of 
doing the same thing. 

Another approach has been the adaptation of 32-bit 
RISC architectures to use a compressed 16-bit instruction 
set. The ARM-7TDMI [14] represents a 16 bit 
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compressed instruction version of the ARM-7 and the 
TR4101 is the 16-bit compressed instruction architecture 
form of the MIPS-R3000 ([l], [14]). These 16-bit 
compressed-instruction RISCs exhibit complex arch- 
itectures because of the requirement for compatibility with 
existing machines. Moreover, the 16-bit instruction set 
version of these architectures can address only eight 
registers, further compromising their performance. 

Lui 
sh, sb, lh, Ib, Ihu, lbu 
bnez, bne, beqz, beq, bltz ... 

3. The Extendable Instruction Set 

3.76 % 
1.98% 
6.69% 

The specification of the EISC instruction set 
commenced with an analysis of the performance of a 
number of instruction sets of existing processors 
(especially the MIPS R3000) using EGCS-1.1 [15], the C 
library NEWLIB-1.8.1 [16], the C++ library 
LIBSTDC++-2.8.1 [ 171 and various benchmark programs. 
This analysis indicated some general characteristics of 
embedded microprocessor systems (some of which are 
common to all processors). For example: 

The availability of sixteen general-purpose 
registers is close to optimum: 
Load and Store instructions are used often and 
mostly employ short length offset addressing: 
The frequency of use of small sized constants is 
high. 

To support these characteristics effectively, the EISC 
was given 16-bit fixed length instruction and the 32-bit 
instruction set was designed to extend the offset and 
constant fields. Code density was further increased by the 
inclusion of register list ‘Push and Pop’ instructions plus 
the use of hardware interlocks to resolve pipeline conflicts 
(thus eliminating the need to insert NOP instructions). 

The basic 32-bit EISC system has been implemented as 
an FPGA, and all of its functions verified at low speed 
(1.8432MHz). The following sections outline how the 
analysis of processors such as the R3000 has resulted in 
the major architectural features of the EISC. 

mult,multu,div, divu 
break, mfhi, mflo 

3.1 The EISC Register Set 

0.09 % 
0.12 % 

The MIPS R3000 has thirty-four 32-bit registers. Two 
of them are the private registers for ‘Multiply and Divide’, 
five of them are the special registers for stack, frame 
pointer and condition codes and the remaining twenty- 
seven are the general-purpose registers. To study the 
effect of register availability on code size, the EGCS 
C/C++ compiler was used to generate code for the C/C++ 
library and benchmark programs while the number of 
available registers was varied. 

In Table 1, it can be seen that, as the number of the 
general-purpose registers becomes smaller, the overall 
program size gets bigger (note that the program size for 
the case of 27 registers has been normalized to 100). The 

frequency and therefore the space taken by Load and 
Store instructions also grows and, since these instructions 
use memory and the bus, they directly influence the 
required data transfer width. There is little change in 
either the program size or the load and store frequency as 
the number general-purpose registers reduces from twenty 
down to sixteen. However, eight registers are clearly too 
few as, by that stage, the frequency of load and store 
instructions has almost doubled. Thus the EISC was set 
up with access to 16 registers. 

I No.of I Program I Load/ I Move I 

Table 1. Program size vs. number of 
registers for MIPS-R3000. 

3.2 LoadIStore Architecture 

Table 2 shows the average instruction frequency in a 
MIPS-R3000 with sixteen general-purpose registers 
available to the.CPU. The EISC architecture is RISC-like 
in that all operations use register operands while the only 
memory access is via load/store instructions. 

Instruction 
20.27 % 

Iw, sw 28.27 % 

Addiu 7.53 % 
2.93 % 

I j ,  jaI I 10.36% 1 
Jr I 1.79 % 
addu, subu,and, or, xor,nor,negu I 3.33 % 

I andi, ori, xori I 2.17 % I 
jalr 1 0.17 % 
slt. sltu. slti. sltiu I 1.70 % 

I sll, srl, sra, sllv, srlv, srav 1 1.40% 1 

Table 2 Instruction frequency of MIPSR3000 
with sixteen general-purpose registers. 

90 

Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:44 from IEEE Xplore.  Restrictions apply. 



It is clear from Table 2 that the decision to employ a 
load/store architecture will very little impact on the 
performance of the machine because of the low frequency 
of occurrence of instructions that might otherwise employ 
a register-memory architecture (e.g. addu, subu , 
and etc.). 

3.3 16 bit Fixed Length Extendable Instruction 

It can also be seen from Table 2 that the move 
instruction is the most frequent, at 20.27% (the combined 
frequency of load/store is a little larger, but move is the 
most frequent individual instruction). Since the EISC has 
access to sixteen registers, it requires four bits each to 
represent the source and destination registers. Instructions 
such as move therefore fit easily within 16 bits. Using a 
16 bit fixed length instruction also simplifies the 
hardware. Whilst most instructions (such as the move, 
above) can be represented within a 16-bit fixed length 
structure, instructions with constant operands such as load 
and store are more problematic due to the length of the 
offset and constant operands. In particular, 93.5% of the 
total load and store instruction have 32-bit operands. 

A more detailed analysis of the characteristics of the 
lw (load word ) and s w  (store word) instructions (Table 
3) revealed that about 61% of these instructions 
referenced the Stack Pointer and 40% use the Index 
Register. In the latter case, 77% of those instructions 
could be represented by 3-bit offset. 

1 Offset I Stack 1 Index 
length pointer register 

I (60.9%) I (39.1%) 
3 bit 1 43.2 % I 77.0 % 

I 4 bit 1 72.6% I 81.6 % I 

I I 

Table 3 Characteristics of 
’Iw’ and ’sw’ instructions 

Instructions with constant operands (e.g. li - load 
immediate) do not occur very often: just 2.9% of all 
instructions in this analysis. In addition, Table 4 
illustrates that using an 8-bit constant will cover 93.6 % of 
these instructions. 

Constant range 1 Frequency 
-32--+31 1 72.4 % 

I -64--+63 I 86.9 % 1 
-128 - -+ 127 I 93.6 % 
-256--+255 I 95.2 % 

I > e 5 6  1 100% I 
Table 4 Operand Size of ‘li’ instruction 

Thus the great majority of instructions use short offset 
or constant operands. This situation applies equally to 
instructions such as 1w (load word) and s w  (store word) 
as well as arithmetic instructions such as addiu, slti, 
and sltiu. 

3.4 The Extension Register and Flag 

The EISC architecture synthesizes long operands from 
adjacent instructions using an Extension Register and Flag 
(E). The E-flag is set when an operand has just been 
transferred into the 32-bit Extension Register (i.e. % ER). 
The leri instruction (Load Extension Register 
Immediate) performs a conditional shift (controlled by the 
E-flag) and load to synthesize long immediate operands in 
the Extension Register, as shown in Figure 1. 

Instruction Mnemonics : LERl 
Instruction Format : LERl constant 
Instruction Representation : 
bit 15-14 =01 
bit 13-0 = constant data bit 13-0 
Operation ; 
If ( E flag is 0 ) Load %ER with sign extended constant 
ELSE %ER =%ER <c 14 + Constant 
Set E flag 

Figure 1. Operation of the LERl instruction 

Instruction Function : Load /Store 
Instruction Representation : 
bit 15-1,4 =00 
bit 13-1 2, 7= Operation 

000 : sign extend 8 bit load 
001 : sign extend 16 bit load 
010 : 32 bit load 
01 1 : Zero extend 8 bit load 
100 : 8 bit store 
101 : 16 bit store 
11 0 : 32 bit store 
11 1 : Zero extend 16 bit load 

LDB SRC DST 
LDS SRC DST 
LD SRC DST 
LDBU SRC DST 

STS SRC DST 
ST SRC DST 
LDSU SRC DST 

STB . SRC DST 

bit 1 1-8 
bit 6-4 
= offset bit 3-1 if 16 bit load/store 
= offset bit 4-2 if 32 bit loadlstore 
bit 3-0 
Effective operand address : EA 
Operation: 
If ( E flag is 0) 
EA = Zero extend offset + Index register 
If ( E flag is 1) 
if ( 32/16 bit loadktore ) 
EA = %ER cc4 + Offset + Index register 
if ( 8 bit loadktore ) 
EA = %ER<< 3 + Offset + Index register 

=Source /Destination register. %RO to %R15. 
= offset bit 2-0 if 8 bit load/store 

= Index register. %RO thru %R15. 

Figure 2. Operation of the LD instruction 

Load and store instructions use the E-flag to create the 
effective address or 32-bit constant. For example, Figure 
2, illustrates that if the‘ E-flag is set to 1, the effectivd 
address is formed from %ER cc4 + Offset + Index register. 
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, 

As the total number of 32-bit load/store instructions is 
typically small, this mechanism has little effect on overall 
performance of the machine. 

3.5 Stack pointer 

As shown in Table 3, load/store instructions that 
reference the Stack Pointer and the Index Register tend to 
exhibit very different operand lengths. For Stack Pointer 
use, the offset needs to be more than 5 bits, while the 
majority (77%) of the Index Register load/store operations 
can utilize a 3-bit operand. For this reason, the 32-bit 
EISC instruction set includes separate load/store stack 
pointer instructions with 7-bit offset. 

The frequency of push and pop to stack was found to 
be reasonably high in the experiments reported here 
(15.8%) and if eight registers were bound together, the 
average number of registers pushed/popped per 
instruction was about 4.3. This indicated that it was worth 
including a “push/pop to list” type of instruction. This is 
more commonly found in CISC rather than RISC 
machines and, although it reduces the amount of memory 
used by push/pop instructions, it can cause problems with 
superscalar and deep pipeline configurations. A simple 
solution is to disallow the use of multiple pushes or pops 
within a single instruction in such configurations. Since 
binary compatibility is not an objective, this solution 
suffices. 

In Table 2 it can be seen that the frequency of addiu 
(Add Immediate) instructions was 7.53%. Within these 
instructions, the frequency of stack pointer usage is 35% 
of which 99.1% employed 7-bit constant operands. The 
32-bit EISC instruction set therefore includes the capacity 
for arithmetic on the stack pointer using 7-bit constant 
operands. 

3.6 Other Instructions 

The frequency of conditional branch instructions in 
Table 2 is 6.69%. In the EISC instruction set, the Carry, 
Sign, Zero and Overflow flags can be combined such that 
fourteen kinds of Conditional branch instructions can be 
formed. The offset of conditional instructions is set at 9 
bits and extended to 32 bits via the extension register. 

It can also be noted that 48.5% of all ALU instructions 
used two operands and 5 1.4% used three. However, three 
operand instructions can be easily synthesized using a 
combination of the move instruction and a two-operand 
instruction and this is what is done in the EISC 
architecture. 

Instructions such as multiply and divide exhibit low 
frequency of use but they are very useful in applications 
such as multimedia. As well, the performance of these 
instruction types depends heavily on their method of 

implementation. The EISC includes two 32-bit registers 
(%ML and %MH) to store the results of multiply 
operations. 

The EISC includes provision for a number of co- 
processors to perform particular functions. Each co- 
processor has sixteen general-purpose registers. Co- 
processor ‘0’ is the system co-processor that manages 
Cache, Pipeline and Memory control etc. Other co- 
processors have been defined for Floating point and 
Multimedia acceleration. CO-processor instructions can 
extend to 20 or 30 bits by use of the extension register. 

4. Performance Evaluation 

In order to benchmark the relative performance of the 
EISC architecture, it was compared to a range of existing 
microprocessors. The metric used was their Relative 
Code Density (RCD) defined as follows: 

Code Density of 32bit EISC 
RCD = Code Densiry of Comparison Microprocessor 

- - Program Size of Comparison Microprocessor 
Program Size of 32bit EISC 

To perform the evaluation, a cross C/C++ compiler 
was produced for both the 32-bit EISC and the existing 
microprocessor and the C/C++ library and benchmark test 
programs were complied, The resulting RCD figures are 
shown in Table 5. 

Table 5. Relative Code Densitv of 32-bit EISC. 

As shown in Table 5, in comparison tests between the 
EISC and existing architectures, the Relative Code 
Density of the EISC was found to be higher in all cases 
(i.e. its code size was smaller). For example, the code 
density of the EISC is 66% higher than of MIPS R3000 
(considered the benchmark 32-bit RISC architecture) for 
the programs chosen. Compared to the popular ARM 7 
processor, the RCD figure was 1.64. 
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32 bit 
EISC 

RCD I 1.00 I 1.07 I 1.13 
Load/Store I 30.2 % I 48.4 % I 46.5 % 

TR4101 ARM- 
7TDMI 

L I 

Table 6 Comparison between 32-bit EISC 
and 16-bit compressed RISC 

7 Jz Ox8b4 <.L2> 

4.1 E-flag Dependencies 

E E 

Once the instruction set was defined, the performance 
of the EISC architecture was investigated using the 
Dhrystone benchmark [18] running on a micro- 
architecture simulator for a basic five-level pipeline. This 
was repeated for various levels of superscalar operation. 
The micro-architecture simulator was adapted from 
SuperDLX [ 191 initially developed at McGill University 
in Canada and further extended at RMIT University. 

Of particular interest was the effect of register 
dependencies in the EISC architecture as these threatened 
to impact on its performance in deep pipeline and 
superscalar configurations. In the EISC, dependency on 
the E-register and, particularly, the E-flag is a special case 

Fortunately, there is a fairly straightforward solution to 
this problem as almost all of the necessary information 
about the E-flag is known at decode time. This solution is 
outlined in the following section. 

In Figure 3, the arrows show the dependencies 
operating within the example code fragment. Apart from 
the true data dependency on r l  at lines 1 and 2 (andi & 
cmpi), it can be seen that this code fragment exhibits an 
almost continuous serial dependency on the E-flag. 

The effect of this is to severely limit the available 
parallelism in the code. Each instruction has to complete 
to the commit stage before the next instruction can be 
decoded - i.e. in the five stage pipeline of the simulator, 
the next instruction could not commence until the commit 
stage had been reached by the previous instructions, 
forcing at least three stall cycles for each instruction. In 
our benchmark tests it was found that the immediate 
instructions (e.g. addi ,  cmpi) were amongst those 
most heavily dependent on the E-flag and register, and a 
very low level of overall instruction parallelism was 
observed (<2.5% best case). 

I I  Instruction I ReadX 1 Write I 

that is of particular importance as their use is pervasive 
throughout the instruction set. The vast majority of Figure 3. Instruction Dependencies in EISC 
instructions in the EISC use the E-flag in some manner 
(either clearing it, or using it during an effective address 
calculation). 

4.2 wVirtualisingtt the ~ - f l ~ ~  

It was identified early in the analysis that the operation 
of the E-Flag creates artificial pipeline dependencies that 
threaten to restrict the operating efficiency of the pipeline. 
While the overall efficiency of the EISC pipeline was still 
high (>78% in our tests), it was clear that this figure could 
be further improved by removing E-flag and procedural 
dependencies. Further, these dependencies had the 
potential to prevent the architecture from achieving any 
meaningful gains from superscalar organization. 

Dependency analysis does not distinguish between a 
“write” and a t‘clear” of the E-flag. However, there is a 
real distinction that could be made by the micro- 
architecture simulator. A “clear” creates a dependence 
that can be removed if the architecture “virtualises” the e- 
flag. After an instruction that clears the e-flag is decoded, 
we can record that the next instruction that reads the e-flag 
will read a new, or virtual value of zero. This instruction 
could then be executed in parallel. 
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Virtualising the e-registeriflag in this way is a simple 
extension in hardware of existing virtual register schemes, 
and exposes significant parallelism. In typical 
implementation schemes, virtual registers are assigned at 
decode time, with a tag that identifies their status. If an 
instruction unconditionally clears the e-flag, subsequent 
instructions (that use the e-flag) reference a virtual flag 
with the value zero. In the instruction fragment of Figure 
3, removing the E-flag dependency, in combination with 
branch prediction would allow instructions pairs to be 
forwarded to separate execution pipes and executed in 
parallel. This type of superscalar operation can clearly 
make a significant impact on the performance of the EISC 
architecture. 

5. Conclusions 

This paper has introduced a new architecture called the 
extendable instruction set computer (EISC) aimed at the 
embedded systems market. The overall performance and 
cost of this class of processors are particularly sensitive to 
the size and access bandwidth of their memory systems. 
The EISC has been shown to offer significant 
improvements over existing architectures in these areas. 
The use of the Extension Register and Extension Flag 
allows the architecture to use an efficient fixed length 16- 
bit instruction set with short length offset and immediate 
operands. The offset and immediate operands can then be 
extended to 32 bits via the operation of the E- flag. 

Using this mechanism, the EISC architecture has 
achieved in the order of 140 to 220 5% better code density 
than existing FUSC processors and a figure of about 120 to 
140 % compared to CISC machines. Even compared to 
16-bit compressed instruction RISC machines such as the 
ARM-7TDM1, the program size of the EISC has been 
found to be 5 to 15% smaller and the fiequency of Load 
and Store instructions about 15% lower. As a result, the 
EISC architecture can be seen to be well suited to 
embedded applications where small code size and low 
memory transfer width are desirable attributes. 

The effect of register dependencies in the EISC 
architecture was investigated thoroughly - especially those 
caused by the E-flag and E-register. The operation of the 
E-Flag in particular has the potential to create artificial 
dependencies that could restrict the operating efficiency of 
the pipeline and impact on the overall performance of the 
archtecture in deep pipeline and superscalar 
configurations. "Virtualising" the e-flag, using a similar 
mechanism to existing virtual register schemes, will 
expose significant parallelism in the instruction set and 
allow the architecture to operate efficiently in superscalar 
and deep pipeline configurations. 

Comparing its code density and memory transfer 
performance against existing processors, the EISC 

architecture can be seen to offer significant advantages 
that will make it highly suited to a range of embedded 
computer systems applications. 
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