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ABSTRACT

Prometheus is an agent-oriented software engineering methodol-

ogy. The Prometheus Design Tool (PDT) is a software tool that sup-

ports a designer who is using the Prometheus methodology. PDT

has recently been extended with two significant new features: sup-

port for Agent UML interaction protocols, and code generation.

Categories and Subject Descriptors

D.2.2 [Design Tools and techniques]: Computer-aided software

engineering (CASE); I.2.11 [Artificial Intelligence]: Distributed

Artificial Intelligence—Intelligent agents

General Terms

Design

Keywords

Agent Oriented Software Engineering, Design Tools, Agent UML

1. PROMETHEUS
Prometheus [9] is a software engineering methodology for the

design of agent systems. It comprises a set of concepts, a process,

and notations for capturing the requirements and design of the sys-

tem. The process described in the Prometheus book [9] includes

both a high level description of the phases of the methodology,

and, importantly, detailed steps and techniques for carrying out the

various high level steps. For example, one high level step in the

overall process is identifying the agent types in the system, and the

Prometheus methodology describes how this is done by grouping

roles, considering coupling and cohesion, using a data coupling and

an agent acquaintance diagram, etc.

Prometheus consists of three phases (depicted in figure 1):

• System specification: in which the goals of the system are

identified, the interface between the agents and their environ-

ment is captured in terms of actions and percepts, roles are
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Figure 1: The Prometheus methodology

described, and detailed scenarios consisting of sequences of

steps are developed.

• High-level (architectural) design: in which the agent types

that will exist in the system are defined by combining roles,

the overall structure of the system is described using a sys-

tem overview diagram, and interaction protocols are used to

capture the dynamics of the system in terms of legal message

sequences.

• Detailed design: in which the internals of each agent are

developed in terms of capabilities, events, plans and data.

Process diagrams are used as a stepping stone between inter-

action protocols and plans.

2. PROMETHEUS DESIGN TOOL
The Prometheus Design Tool (PDT) is a freely available1 [8]

tool, running under Java 1.5, which supports the software designer

who is using the Prometheus methodology. PDT provides graphical

support for the design phases of the methodology, allowing the de-

signer to enter and edit diagrams and descriptors for entities. PDT

also enforces certain constraints (e.g. that an action performed by

an agent in the system overview diagram must also appear in the

relevant agent overview diagram) and also checks the design for

various consistency conditions.

1From http://www.cs.rmit.edu.au/agents/pdt/
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Two recent additions to PDT (which are highlighted in figure 1)

are support for Agent UML interaction protocols, and the ability to

generate code.

2.1 Support for AUML in PDT
As can be seen in figure 1, one of the steps in the architectural

design is developing interaction protocols that capture the dynam-

ics of the system, in terms of messages between agents. Although a

wide range of notations could be used for capturing interaction pro-

tocols, we choose to adopt the widely-used Agent UML (AUML2)

notation [6], specifically its sequence diagram notation, which has

also been adopted by other methodologies, such as Gaia and Tro-

pos.

Until recently PDT lacked complete support for capturing inter-

action protocols, and was only able to capture sequences of mes-

sages. This has been remedied with the addition of support for

Agent UML. The new PDT allows a designer to specify AUML

interaction protocols using a textual notation [11]. The traditional

AUML graphical rendition is automatically generated, and the tool

also propagates information from the protocol to the rest of the de-

sign. For example, if a protocol indicates that an agent sends a

message, then that message is added to the agent’s interface in the

system overview and agent overview diagrams.

2.2 Code Generation in PDT
Once a design for an agent system has been developed, the de-

sign needs to be implemented. PDT has recently been extended

with the ability to generate skeleton code in the JACK agent-oriented

programming language [2]. The code generator extension to PDT

also maintains synchronisation between the generated code and the

design when either of them changes.

3. RELATED WORK
Of the many agent-oriented methodologies that have been pro-

posed, not many have well-developed CASE tools. Two method-

ologies that do have publicly available and well-developed sup-

port tools are MaSE [4], with agentTool3, and Tropos [1], with

TAOM4E4. Other existing tools include the REBEL tool5, support-

ing the ROADMAP methodology [7], and the PTK6 tool, support-

ing the PASSI methodology [3]. Additionally, the JACK Design

Environment (JDE)7 provides design diagrams, but does not pro-

vide support for a full methodology.

4. DISCUSSION
The Prometheus methodology has been taught to undergraduates

since 2001, and our experiences in teaching this course led to the

creation of an initial prototype tool in 2002, with the current Java-

based tool being developed in the first half of 2003. Since 2003 it

has been actively enhanced, extended, and debugged.

Key areas for future work for PDT include enabling interchange

of (relevant parts of) designs with the ISLANDER tool for design-

ing electronic institutions [5]; integrating work on debugging using

design models [10]; support for importing and exporting parts of

the design, allowing design by a team of developers; and integrat-

ing support for testing agent systems, with the focus on unit testing.

2http://www.auml.org
3http://www.cis.ksu.edu/∼sdeloach/ai/projects/agentTool/
agentool.htm
4http://sra.itc.it/tools/taom4e/
5http://www.cs.mu.oz.au/agentlab/
6http://mozart.csai.unipa.it/passi/ptk.htm
7http://www.agent-software.com.au
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