
Planning on demand in BDI systems

Lavindra de Silva and Lin Padgham
{ldesilva,linpa}@cs.rmit.edu.au

School of Computer Science and Information Technology
RMIT University, Melbourne 3000, VIC, Australia

1 Introduction
The BDI (Belief, Desire, Intention) model of agency is a
popular architecture based on Bratman’s (Bratman 1987)
theory of practical reasoning. There are numerous im-
plementations based on the BDI architecture such as PRS
(Georgeff & Ingrand 1989) and JACK1, which are used for
both academic and industrial purposes. An important as-
pect of BDI style systems is that they execute as they rea-
son, and so avoid the possibility of the reasoning being out-
dated, due to environmental change, by the time execution
happens. This makes them useful for many complex and dy-
namic environments, such as Unmanned Autonomous Vehi-
cles (UAVs) and Air Traffic Management, due to their abil-
ity to cope well with changes, making adjustments as they
go in terms of the steps chosen. They are also very fast, and
therefore well suited to systems needing to operate in real
time, or close to real time environments. However, there are
no generic mechanisms in BDI systems to do any kind of
look-ahead, or planning. In some situations this would be
desirable.

The primary goals and contributions of our work are: 1)
incorporating planning at specific points in a BDI applica-
tion, on an as needed basis, under control of the program-
mer; 2) planning using only limited subsets of the applica-
tion, making the planning more efficient, and; 3) incorporat-
ing the plan generated back into the BDI system, for regular
BDI execution, identifying plan steps that could be pursued
in parallel.

Other features of our approach include: 1) minimising
the programming overhead, as the program to be run by the
planner is derived from the existing BDI program; 2) allow-
ing the use of regular functions in planning; 3) extracting
planning effects from existing code, and; 4) incorporating
aspects of both HTN (Hierarchical Task Networks) planning
and classical planning.

There is some previous work that deals with using plan-
ning capabilities to guide the execution of BDI-like systems.
Some of the research closely related to ours is Propel (Levin-
son 1995), Propice-Plan (Despouys & Ingrand 1999), and
RETSINA (Paolucci et al. 1999). Propice-Plan (and other
similar systems) use a reactive system for execution, and a

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1JACK Intelligent Agents : http://www.agent-software.com.au

separate planning component to produce plans. There are
three important differences between our system and Propice-
plan : 1) the planner provides an alternative means of oper-
ation; it is not smoothly integrated into the BDI architecture
and algorithms. In particular, the planner does not provide
guidance to the reactive-planner, on how to use its hierarchy
to achieve the goal, instead, the reactive planner only exe-
cutes the operators in the final plan produced; 2) Propice-
plan does not allow the programmer to specify points when
the planner should be called, and to provide extra operators
for each planning point; 3) Propice-plan does not support
the use of programmer provided functions in planning, i.e.
where the outcome cannot be specified as an effect. Propel
and RETSINA are different to Propice-plan in that planning
and execution are tightly integrated within a single frame-
work. However, in Propel, the planner is called every time a
runtime failure occurs, whereas our system allows the pro-
grammer to specify when to call the planner, and what part
of the hierarchy to use for planning. In RETSINA, planning
is done when all the information required for planning is
available, therefore not leaving the decision of when to plan
and when to execute to the programmer.

A simplified view of the BDI architecture is in terms of
goals and recipes, where a goal has one or more recipes that
can be used to achieve it. The recipes to achieve goals are
stored in a library provided by the programmer. When an
agent has a goal to achieve, it looks for a recipe that can
achieve the goal in the current state of the world. If a suitable
recipe is found, it is executed. If it fails during execution,
the agent looks for other suitable recipes to achieve the goal.
The goal fails if none of its recipes could be executed to
completion, or if none of them were suitable for the current
state of the world.

In achieving a goal, the agent typically executes a num-
ber of steps, or subgoals/subtasks. In some situations there
can be multiple options (recipes) at each step, but for a given
state, only certain combinations of choices will lead to suc-
cess of the overall goal. However, it may not be possible
to (easily) encode information enabling successful choices,
based only on knowledge of the current state. If steps are
cheap, reversible, and there is little or no cost to doing them,
then a BDI system can easily be used to find a solution in
these situations. However, in many cases of this sort in real
applications, actually doing the actions rather than only rea-

E79927
Typewritten Text
Citation: De Silva, L and Padgham, L 2005, 'Planning on demand in BDI systems', in Proceedings of the International Conference on Automated Planning and Scheduling - Poster Session, Monterey, USA, 5-10 June 2005. 

E79927
Typewritten Text

E79927
Typewritten Text



Invoke
Planner

Service
Emergency

FindSuitable
Idle

Redirect
Allocated

Goal

Recipe

Travel
Time

Calculate
Constraints
Calculate

Constraints
All
Calculate

CheckTravel
Time

Check
Constraints

AND

OR

Service

Find
Ambulance

Dispatch
Ambulance

SendTo
Hospital

OR

FindSuitable
Allocated

MoveTo
Hospital

AND ANDAND

MoveTo
Emergency

CheckAll
Constraints

Figure 1: The Design of the BDI Program. Additional plan-
ner recipes are highlighted in bold.

soning about them (planning), results in wasting time and
resources in ineffectual behaviour. At times this can even
lead to inability to achieve the goal. While it is always pos-
sible for planning to be explicitly programmed into a BDI
application (and in fact this is often done), it would be ad-
vantageous to have a simple mechanism that incorporates
planning in a generic way, at particular points where it is
needed.

2 Example
Let us present an example to illustrate the inclusion of a
planning facility within a BDI application. Consider an am-
bulance dispatch system: as ambulance requests arrive, a
dispatching agent ascertains the best ambulance to dispatch
and provides ongoing directions during the process of deal-
ing with the emergency.

The steps that are part of servicing the emergency are
FindAmbulance, DispatchAmbulance and SendToHospital,
in that order, as shown in Figure 1 (ignore recipes in bold
for now). Normally the FindAmbulance goal is achieved by
executing the FindSuitableIdle recipe. This is a recipe type
representing a set of recipe instances. These instances are
determined at runtime, one for each idle ambulance. Each
of these recipe instances will be tried in turn, attempting to
successfully complete the subtasks of CheckTravelTime and
CheckConstraints. If no recipe instance of this type com-
pletes successfully, instances of the alternative recipe type
FindSuitableAllocated will be tried. This recipe attempts to
schedule the new emergency to follow one of the jobs that is
already allocated.

However, if all instances of all applicable plan types fail,
i.e. are unable to be done in a way that meets the time con-
straints for the new emergency, the ServiceEmergency goal
will fail. Since at this point the BDI system cannot find a
solution, it could be useful to call a planner to see if there is
a way to successfully achieve this ServiceEmergency goal,
while also servicing all other such goals and maintaining all
timing constraints. The planner could attempt to develop a
plan that reallocates some of the currently allocated emer-
gencies, so that the new emergency can also be serviced.

For example, the situation may be that there are two am-
bulances and two hospitals, placed on the grid as shown in
Figure 2. Three emergencies occur at different times, at lo-
cations also shown on the grid. The table beside the grid

Time Emergency Urgency

2
5

0 E1
E2
E3

10
81

15

1 2 3 4 5

1

2

3

4

5

A1
A2

H2

H1

E1

E2

E3

Figure 2: Ambulance servicing example

gives the number of time units after the start that each emer-
gency happens and the urgency of the emergency. Urgency
is in terms of maximum time units acceptable between the
emergency happening, and the ambulance having serviced
the emergency arriving at the hospital. We assume that the
ambulances can move right, left, up and down, and that each
move takes one time unit.

Using the BDI recipes in Figure 1, the first two emergen-
cies will be allocated to the two ambulances. Assume E1 is
allocated to ambulance A1, and to hospital H1, while E2 is
allocated to ambulance A2, and also to hospital H1. It will
take eight time units to service each of E1 and E2.

When emergency E3 occurs, the ambulances are busy, so
the recipe FindSuitableAllocated will be tried, to see if E3
can be scheduled with either A1 or A2, after their current
job, in a way that meets the urgency constraints. In this case
A1 and A2 arrive at H1 at time units 8 and 10 respectively
(from the start time). The trip from H1, to E3, and then
to H2 takes 10 units. As it is necessary to service E3 by
20 time units from the start (occurrence time plus urgency
allowance) it is possible to allocate E3 to be done by A1 after
it has reached H1. This will have E3 at the hospital at time
unit 18, 2 time units before the maximum for its urgency
level.

However, if E3 had had an urgency level of 10 units, then
this allocation would not have been successful. By calling
a planner, and exploring possible re-allocations, it would be
possible to allocate A1 to service E1 and E2, while A2 ser-
vices E3. To arrive at this set of allocations the planner must
find an appropriate set of bindings to meet all constraints for
the three ServiceEmergency goals. I.e. find a set of bind-
ings for the first goal, project it’s effects, then find a set of
bindings for the next goal based on the projected state, and
continue in this manner. If a set of bindings could not be
found for a goal, an alternative set of bindings would need
to be found for the previous goal.

3 Overview
What we propose in this work is a mechanism whereby a
BDI programmer can indicate that runtime planning should
be applied. This may be on failure of a more simple ap-
proach (as in our example), or in a situation where planning
may always be appropriate for a particular task or subtask.
Our approach is to use the information already available
within the BDI program as the knowledge which must be
provided to the planner, and to thereby relieve the program-
mer of the responsibility of specifying information specifi-
cally for planning. The planner can then make choices about
which recipe instances to use and how these are sequenced.

In order to provide the required information to the plan-
ner, the relevant BDI goals and/or recipes, as well as the
relevant information about the current state as captured by
agent beliefs, must be translated into a representation suit-



able for some planning system. Due to the similarity of
problem representation between BDI systems and HTNs (de
Silva & Padgham 2004), we decided to use an HTN plan-
ner which allows representation of the information encoded
in the hierarchical BDI structure. We have decided to use
the Java version of the SHOP planner called JSHOP2 as it
can handle numeric computations and also allows user de-
fined Java functions to be used during planning. The BDI
platform we are using is JACK, BDI agent platform, with
research licensing available to universities.

The approach that we use is to have the programmer in-
clude in the BDI program a generic recipe that invokes the
HTN planner at the desired point. At compile time our
system then automatically converts the relevant goals and
recipes3 into a JSHOP program, which can be accessed at
runtime, if the recipe invoking the planner is instantiated.
After invoking the planner, the recipe executes the plan re-
turned. If desired, additional recipes can be provided within
the BDI program, for the express purpose of being available
for use in planning. A suitable context condition can ensure
that they are not instantiated at other times.

The process of converting information from the JACK
program, into a suitable JSHOP representation, is a straight-
forward one-one mapping of JACK’s goals and recipes
(including each recipe’s precondition and effect), into
JSHOP’s syntax (i.e. methods, and precondition and
tail pairs). Due to space constraints, the mapping pro-
cess will not be discussed here. The reader can refer
to http://www.cs.rmit.edu.au/l̃desilva/research/publications/
for a more detailed paper.

The bold recipes in Figure 1 show the recipe InvokePlan-
ner which calls the planner, and also recipe RedirectAllo-
cated provided specifically for use by the planner.

4 Invoking the Planner
As indicated in section 3, a recipe is placed at whatever point
the programmer wishes the planner to be invoked. This
recipe will be chosen according to normal BDI principles.
Therefore it can have a context condition which captures the
situation in which it should be used, or it can be a last prior-
ity, if other options have failed (as in our example situation),
or it can be prioritised with respect to alternative options in
the same way that other alternative plans are prioritised (in
JACK using either a precedence attribute or order of decla-
ration).

The recipe for invoking the planner has a generic form,
and therefore most of the details are added automatically,
based on a template. There are four subtasks which are in-
cluded within this recipe. These are to: 1) create the initial
set of beliefs, corresponding to the current state when the
planner is to be invoked; 2) create the desired goal state; 3)

2JSHOP is a state of the art planner being used by the Naval
Research Laboratory for Noncombatant Evacuation Operations
http://www.cs.umd.edu/projects/shop/download.html

3The relevant goals and recipes are the recipes which are sib-
lings of the planning recipe in the BDI hierarchy, and all their chil-
dren recipes and goals. Other goals and recipes in the program are
excluded because they are not responsible for achieving the task
for which runtime planning is desired.

instantiate and call the planner, and; 4) execute the plan.
The list of beliefs that are relevant, and whose values

should be accessed at runtime, and provided to JSHOP, must
be specified by the programmer (via a GUI). (These could
be extracted automatically, but this has not currently been
done.) In our ambulance example, relevant beliefs are Am-
bulanceState, EmergencyState and HospitalState and values
obtained at runtime include A1 is at 4,3 and A2 is at 2,3 from
AmbulanceState, E1 is at 5,3, E2 is at 2,4, and E3 is at 2,1 for
EmergencyState and so on. When the InvokePlanner recipe
is executed, the current values are obtained and the initial
state for JSHOP is built.

The desired goal state must be provided by the program-
mer in the form of a recipe which can produce the desired
goal state for the specific situation. For the ambulance ex-
ample, the desired goal state is: EmergencyState E1 == Ser-
viced, EmergencyState E2 == Serviced, and EmergencyS-
tate E3 == Serviced. This is produced using a recipe which
obtains all current emergencies, including the new one, and
creates a beliefset instance which has all of them as being
serviced. An interface is currently being developed to sup-
port creation of most of this recipe automatically.

The third subtask is to call the appropriate JSHOP pro-
gram with the initial state and goal state produced by the first
two subtasks. The final task is to execute the plan which is
returned. This is done using a recipe supplied by our system,
and is explained in section 6.

The planner is able to do both planning by reduction
within a particular goal, and also planning with multiple in-
stances of top level goals, in a manner similar to how first
principles planners plan with multiple “instances” of oper-
ators. The latter is possible because HTNs are more ex-
pressive than STRIPS style planners, as described in (Erol,
Hendler, & Nau 1996). The ability to combine these tech-
niques allows for considerable flexibility, allowing user de-
fined functions, and a lossless representation of the BDI hi-
erarchy.

5 Producing a Suitable Partial-Order Plan
Certain planners, including JSHOP, produce a totally or-
dered sequential plan. However BDI systems like JACK are
intended to be able to pursue multiple goals in parallel. In
order to take advantage of this aspect of BDI systems, it is
desirable to parallelise the resulting JSHOP plan before be-
ginning execution within JACK.

An alternative would be to directly use a partial-order
planner. However, none of the partial-order HTN planners
are Java based and would therefore not facilitate the direct
integration of functions that we require. Following the algo-
rithm described in (Veloso, Pérez, & Carbonell 1991), with
minor changes, we have modified JSHOP to have a final pro-
cessing step which creates a partial-order plan.

In its original form, JSHOP produces a sequence of prim-
itive actions as the outcome of planning. These are parts of
JACK recipes. We now need to execute the plan found, and
we do that by incorporating it back into JACK, as there may
be other aspects of the original recipes that require execu-
tion, as well as those parts that were provided to the plan-
ning process. As JACK executes recipes as a result of goals
being instantiated, we need our resulting plan to be in terms



of goals. Consequently we have modified JSHOP to pro-
vide information on the reduction process itself; i.e. for each
operator/action in the plan, which recipe and goal instance
were selected to lead to that action4.

6 Executing the JSHOP Plan
The partial-order plan returned from the planner consists of
a partial order of nodes. Each node contains the top level
goal, and all information necessary for binding variables and
making choices of recipes as that goal is executed.

The recipe provided by our system posts the top level
goals in the appropriate order. It initially posts asyn-
chronously, all goals at the start of the plan which can be
run in parallel. As each top level goal completes, any imme-
diate successor, for which all predecesors have completed, is
posted. In our example, the goal instances SeviceEmergency
E1 and ServiceEmergency E3 are posted initially. When
ServiceEmergency E1 completes, ServiceEmergency E2 is
posted, as it is dependent only on ServiceEmergency E1 in
the partial order. If the ordering was such that ServiceEmer-
gency E2 was after both ServiceEmergency E1 and Ser-
viceEmergency E3, then it would not be posted until both
completed.

When each goal is posted (both the top level goal and the
subsequent subgoals), the BDI system must decide the ap-
propriate recipe to use. This is based on the plan that has
been returned by the planner. We require firstly that the
recipe instance chosen is of the same type as that indicated
by the plan. Secondly it must contain the same bindings in
the context condition as that indicated in the plan.

Recipe selection is handled transparently to the program-
mer, by extra code added to each recipe’s context() condi-
tion at the compilation stage. The code ensures that, when
appropriate, the BDI program selects recipes based on plans
returned by JSHOP, and at other times selects recipes using
normal BDI recipe selection.

If at any point in the execution it is not possible to match
a recipe from what JACK considers is available with what
the planner considers should be executed, then this indicates
that there is a problem, probably resulting from some envi-
ronmental change. If at this stage execution continues, using
the recipe chosen by the planner, this is likely to cause prob-
lems. JACK context conditions are written to ensure that
appropriate plans for the situation are the ones that are con-
sidered. If a recipe is used which is intended for a different
situation than the one existing, then it cannot be expected to
succeed. If on the other hand we allow JACK to choose a
recipe outside the plan which has been produced, we invali-
date the plan.

In such cases, a recipe will not be selected, causing the
goal it handles to fail, therefore causing the top level goal
called within InvokePlanner (used as a generic term here to
represent any plan that invokes JSHOP) to fail. When In-
vokePlanner realises the goal state has not been achieved,
instead of calling the planner to replan, the InvokePlanner
recipe will also fail. At this point the BDI system’s failure
handling will take over.

4Refer to http://www.cs.rmit.edu.au/l̃desilva/research/publications
for more information.

7 Conclusions
BDI systems are robust in dealing with complex and dy-
namic environments, and work with a recipe library pro-
vided by the programmer. In some situations it can be de-
sirable to do some planning, either as a result of other ap-
proaches failing, or in order to look ahead to guide choices
at a particular point. The planner would ideally be able to
use information about the existing BDI program to simu-
late the behaviour of the system, and provide advice on the
choices the system should take during execution. We have
implemented a system that does this, by using an efficient
HTN planner. Our focus is different to past work in inter-
leaving planning and execution, in that we cater for the in-
trinsic needs of the BDI architecture. In particular, we leave
the choice of when planning should be done, and with what
information, to the BDI programmer. Executing the plan
is done using regular BDI execution, using the advice from
the planner on what recipes to choose, and what bindings to
use in context conditions. Furthermore, our plan execution
model is unique, in that it is possible for the BDI system
to maintain control on plan failure, and resume normal BDI
execution.

We are currently working on creating formalisms to define
and evaluate our framework.

8 Acknowledgements
We thank Michael Winikoff, Gaya Jayatilleke and John
Thangarajah for feedback and reviews, and Agent Oriented
Software, for providing the JACK Language for our work.

References
Bratman, M. E. 1987. Intention, Plans and Practical Rea-
son, Havard University Press, Cambridge, MA, ISBN (Pa-
perback): 1575861925.
de Silva, L. P., and Padgham, L. 2004. A Comparison
of BDI Based Real-Time Reasoning and HTN Based Plan-
ning. In 17th Australian Joint Conference on Artificial In-
telligence, Cairns, Australia.
Despouys, O., and Ingrand, F. F. 1999. Propice-Plan: To-
ward a Unified Framework for Planning and Execution. In
European Conference on Planning (ECP), 278–293.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Georgeff, M., and Ingrand, F. 1989. Decision making in
an embedded reasoning system. In Proceedings of the In-
ternational Joint Conference on Aritificial Intelligence (IJ-
CAI), 972–978.
Levinson, R. 1995. A general programming language
for unified planning and control. Artifial Intellgence 76(1-
2):319–375.
Paolucci, M.; Shehory, O.; Sycara, K. P.; Kalp, D.; and
Pannu, A. 1999. A Planning Component for RETSINA
Agents. In Agent Theories, Architectures, and Languages,
147–161.
Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1991.
Nonlinear Planning with Parallel Resource Allocation. In
Workshop on Innovative Approaches to Planning, Schedul-
ing and Control, 207–212.




