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Abstract

Determining if a direct sum of functions inherits nonlinearity properties
from its direct summands is a subtle problem. Here, we correct a statement
by Nyberg on inheritance of balance and we use a connection between bal-
anced derivatives and orthogonal cocycles to generalise Nyberg’s result to
orthogonal cocycles. We obtain a new search criterion for PN functions and
orthogonal cocycles mapping to non-cyclic abelian groups and use it to find
all the orthogonal cocycles over Zt2, 2 ≤ t ≤ 4. We conjecture that any
orthogonal cocycle over Zt2, t ≥ 2, must be multiplicative.
Keywords: perfect nonlinear function, balanced function, orthogonal cocy-
cle, relative difference set, generalized Hadamard matrix, exponential sum

1 Introduction
We assume throughout that G and C are finite groups of orders v and w, respec-
tively, and that C is abelian of exponent m, additively written as a direct product
C = C1 × · · · × Cn, n ≥ 1.

A function f : G→ C is balanced if w|v and

∀ c ∈ C, |{g ∈ G : f(g) = c}| = v/w. (1)

For instance, any epimorphism is balanced. The composition of two balanced
functions is balanced. In particular, let πj : C � Cj be the jth projection epimor-
phism. If f is balanced, the compositions fj = πj ◦ f : G � Cj, 1 ≤ j ≤ n,
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are all balanced. The converse is not true. In this paper we investigate conditions
under which balance for f is inherited from balanced projections fj, 1 ≤ j ≤ n.

Every f : G → C can be written as a direct sum1 f = (f1, . . . , fn) of the
projections fj , with (f1, . . . , fn)(g) = (f1(g), . . . , fn(g)), g ∈ G. Nyberg [10, p.
381] states that for any integers m, t, n ≥ 1, t ≥ n, a function f = (f1, . . . , fn) :
Zt
m → Zn

m is balanced if and only if, for every c = (c1, . . . , cn) 6= 0 ∈ Zn
m, the

“inner product” c · f : Zt
m → Zm is balanced, where

(c · f)(x) = c · f(x) =

(
n∑
j=1

cj fj

)
(x) =

n∑
j=1

cj (fj(x)), ∀ x ∈ Zt
m. (2)

Whilst this is true when m is a prime p, it is not true for composite m, even for
a prime power m = pk, if k > 1 (see Corollary 2.3.2). For instance, the identity
map Z4 → Z4 is balanced, but the map Z4 → Z4 defined by x 7→ 2x is not
balanced — it is not even surjective.

The paper is organised as follows. In Section 2, the character group of C is
used to derive an exponential sum generalisation (Theorem 2.2) of the balanced
linear combination condition in (2), which exactly characterises when f : G→ C
inherits balance from the functions fj , for any G and abelian C. The balanced
linear combination condition applies only when C is elementary abelian (Corol-
lary 2.3). In Section 3, we translate the perfect nonlinear (PN) property (i.e. f has
balanced derivatives) to an orthogonality property for a class of 2-dimensional
functions called cocycles. Then we characterise exactly when direct sums of co-
cycles inherit orthogonality (Theorem 3.3).

Theorem 3.3 provides us with a new search criterion for finding PN functions
and orthogonal cocycles for anyG and abelianC. In Section 4 the characterisation
is used to find all orthogonal cocycles from Zt

2 to Zn
2 for 1 ≤ n ≤ t ≤ 4. For

n ≥ 2, these are all multiplicative. We conjecture this is true for all t.
Balanced functions and orthogonal cocycles are used in the search for highly

nonlinear functions such as bent, PN and APN functions. In cryptography, highly
nonlinear functions are used to construct keystream generators, S-box functions,
components of hash algorithms and authentication codes; in sequence design,
functions with low autocorrelation are used in CDMA communications systems;
and in coding theory they describe good error-correcting codes. Orthogonal cocy-
cles are also equivalent to central semiregular relative difference sets and therefore
to generalised Hadamard matrices (see [11]).

1The direct sum is so-called to avoid confusion with the direct product f1 × · · · × fn : G1 ×
· · · ×Gn → C of functions fj : Gj → C.
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2 Balance and the Fourier Transform
Recall that an irreducible character of an additively written finite abelian group C
of exponentm is any group homomorphism from C to the multiplicatively written
cyclic group D = 〈ω〉 ⊂ C of all complex mth roots of unity, where ω = e2iπ/m.
The group Ĉ = Hom(C,D) of all such characters of C under multiplication is
isomorphic toC. For any choice of isomorphism χ : C → Ĉ, we denote the image
of c ∈ C by χc. The identity χ0 is the trivial homomorphism. The characters of
C may therefore be expressed as exponential functions χc(d) = ωK(c,d) where
K : C × C → Zm is some biadditive function.

Given a choice of isomorphism χ, the Fourier Transform (FT) of a complex-
valued function ϕ : C → C is the function ϕ̂ : C → C given by

ϕ̂(c) =
∑
c′∈C

ϕ(c′)χc(c
′), c ∈ C. (3)

The balance property for a function f : G � C may be reformulated in terms
of its composition with the characters of C, using the FT.

Proposition 2.1 Let C be abelian. Then f : G → C is balanced if and only if,
for every c 6= 0 ∈ C, ∑

g∈G

(χc ◦ f)(g) = 0.

Proof. (c.f. [3, Proposition 14] for G abelian.) Set Nc = {g ∈ G : f(g) = c}, c ∈
C. Thus for any b ∈ C,

∑
g∈G(χb ◦ f)(g) =

∑
c∈C |Nc|χb(c). If f is balanced,

|Nc| = v/w is constant, so for b 6= 0 ∈ C,
∑

g∈G(χb◦f)(g) = v/w
∑

c∈C χb(c) =
0. Conversely, if

∑
g∈G(χb ◦ f)(g) = 0 for all b 6= 0 ∈ C then the function

N : C → C given by N(c) = |Nc| ∈ Z has FT N̂(b) =
∑

c∈C N(c)χb(c) = 0 for
all b 6= 0 ∈ C. Therefore, applying the inverse FT, N(c) = w−1

∑
b∈C N̂(b)χb(c)

= w−1N̂(0)χ0(c) = N̂(0)/w, a constant for all c ∈ C, and f is balanced. �

When C = C1 × · · · ×Cn and Cj has exponent mj , where mj|m, select ωj =

ωm/mj = e2iπ/mj as the mth
j root of unity used to define the character group Ĉj .

Given an isomorphism χj : Cj → Ĉj, j = 1, . . . , n, there are biadditive functions
Kj : Cj × Cj → Zmj

such that (χj)cj(dj) = ω
Kj(cj ,dj)
j for all cj, dj ∈ Cj .

Then the isomorphism χ : C → Ĉ must be given, for all c = (c1, c2, . . . , cn) and
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d = (d1, d2, . . . , dn) in C, by

χc(d) =
n∏
j=1

(χj)cj(dj) = ωK(c,d), where K(c,d) =
n∑
j=1

Kj(cj, dj)m/mj.

(4)
Combining (4) with Proposition 2.1 we have the following result.

Theorem 2.2 Let C = C1 × · · · × Cn, where Cj has exponent mj . With the
notation above, f : G→ C is balanced if and only if, in C, for every c 6= 0 ∈ C,

∑
g∈G

ωK(c,f(g)) = 0, where K(c, f(g)) =
n∑
j=1

Kj(cj, fj(g))m/mj. �

Note that C may be isomorphic to several different direct products. This variation
can be useful in other applications, such as the weighted Galois Ring trace [6], but
here we restrict to factorisations in which the direct factors are all cyclic.

When C = Zw is itself cyclic (so m = w) and c ∈ Zw, we choose χ to be
χc(1) = ωc, so χc(d) = ωcd, d ∈ Zw and K(c, d) = cd. Under the isomorphism
D ∼= Zw given by ω 7→ 1, χc is multiplication by c. When C = C1×· · ·×Cn and
Cj = Zmj

, then by (4), for all c = (c1, c2, . . . , cn), d = (d1, d2, . . . , dn) ∈ C, we
have

χc(d) = ωc∗d, where c ∗ d =
n∑
j=1

cjdjm/mj. (5)

In particular, when mj = m for all 1 ≤ j ≤ n, c ∗ d = c · d =
∑n

j=1 cjdj .

Corollary 2.3 Let C = Zm1 × . . . × Zmn have order w and exponent m and let
ω = e2iπ/m.

1. f : G → C is balanced if and only if, in C, for every c 6= 0 ∈ C,∑
g∈G ωc∗f(g) = 0 .

2. Let C = Zn
m and f : G→ Zn

m. If c · f is balanced for every c 6= 0 ∈ C, f
is balanced. If f is balanced, c · f is balanced for every c 6= 0 ∈ C only
if m = p is prime.

Proof. 2. If c · f is balanced, c 6= 0, then
∑

g∈G ω
c·f(g) = v/m (

∑m−1
i=0 ωi) = 0.

The mapping Kc : C → Zm defined by Kc(d) = c · d is an epimorphism for
every c 6= 0 if and only if m is prime. Therefore, if f is balanced, the composite
Kc ◦ f = c · f is balanced for every c 6= 0, only if m is prime. �
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When m = p and G = Zt
p in Corollary 2.3.2, we recover Nyberg’s linear

combination condition (2). It is clear that the condition fails for composite m.

3 Direct sums of PN functions and orthogonal cocy-
cles

The (left) derivative of a function φ : G → C in direction g is the function
(∆φ)g : G→ C defined by (∆φ)g(h) = φ(gh)− φ(h). The function φ is perfect
nonlinear (PN) if (∆φ)g is balanced for every g 6= 1 ∈ G.

When φ is PN and w = v, it is a planar function, and it is conjectured that
v must be a prime power. When G is abelian, this conjecture is known to hold
[1]. When G = C is cyclic, v must be odd and square-free (see [8]) so v must be
an odd prime. Nyberg’s original PN functions [10, Def. 3.1] have G = Zt

m and
C = Zn

m, n ≤ t. When n = t, examples of such PN functions exist when m is an
odd prime p but they cannot exist when m = 2, since

(∆φ)g(h) = φ(g + h) + φ(h) = (∆φ)g(g + h) (6)

and (∆φ)g is at best an APN (two-to-one) function.

There is a natural differential operator ∂ which maps 1D functions φ to 2D
functions ∂φ called coboundaries, which are the simplest form of 2D cocycles.

Given a function φ : G→ C, define ∂φ : G×G→ C to be

∂φ(g, h) = φ(gh)− φ(g)− φ(h), g, h ∈ G. (7)

A function ∂φ satisfying (7) is called a coboundary. The function φ is normalised
if φ(1) = 0, and then ∂φ(1, g) = ∂φ(g, 1) = 0, g ∈ G. The coboundaries ∂φ are
the simplest members of a set of 2D functions which are known as cocycles. A
(2-dimensional) cocycle is a mapping ψ : G×G→ C satisfying

ψ(g, h) + ψ(gh, k) = ψ(g, hk) + ψ(h, k), ∀ g, h, k ∈ G. (8)

This implies ψ(g, 1) = ψ(1, h) = ψ(1, 1), ∀g, h ∈ G, and we assume, as is
standard, that ψ is normalised; that is, ψ(1, 1) = 0. For fixed G and C, the set
of cocycles forms an abelian group Z2(G,C) under pointwise addition and the
coboundaries form a subgroup B2(G,C).
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Clearly,

φ is PN ⇔ ∀ g 6= 1 ∈ G, c ∈ C, |{h ∈ G : ∂φ(g, h) = c}| = v/w. (9)

The condition on coboundaries ∂φ in (9) which translates perfect nonlinear-
ity of φ is called orthogonality. It extends to cocycles without difficulty [11]:
a cocycle ψ ∈ Z2(G,C) is orthogonal if |{h ∈ G : ψ(g, h) = c}| = v/w
∀ g 6= 1 ∈ G, c ∈ C. By (1), the following definition is equivalent.

Definition 3.1 For ψ ∈ Z2(G,C) define ψg : G→ C for each g ∈ G to be

ψg(h) = ψ(g, h), ∀ h ∈ G.

We say ψ ∈ Z2(G,C) is orthogonal if ψg is balanced for all g 6= 1 ∈ G.

If C = C1×C2, ψ ∈ Z2(G,C1) and ϕ ∈ Z2(G,C2), then (ψ, ϕ) ∈ Z2(G,C).
Conversely, every cocycle ψ ∈ Z2(G,C), C = C1 × . . .× Cn, is a direct sum of
cocycles ψj = πj ◦ ψ ∈ Z2(G,Cj), 1 ≤ j ≤ n.

If ψ ∈ Z2(G,C) is orthogonal and γ : C � D is an epimorphism of abelian
groups then γ ◦ ψ ∈ Z2(G,D) is orthogonal. Hence each of the cocycles ψj is
orthogonal. However, the converse does not hold. For instance if ψj is orthogonal,
the cocycle (ψj, ψj) : G×G→ Cj×Cj is not even surjective. Thus an orthogonal
cocycle cannot have any repeated direct factors. We record some straightforward
consequences when ψ is orthogonal.

Proposition 3.2 Assume ψ = (ψ1, . . . , ψn) ∈ Z2(G,C1 × . . . × Cn), n ≥ 2, is
orthogonal. Then each ψj ∈ Z2(G,Cj) is orthogonal. Further,

1. If i 6= j but there is an isomorphism α : Ci ∼= Cj , then α ◦ ψi 6= ψj .

2. If Cj = Zr and k ∈ Zr, then the scalar multiple kψj is orthogonal if and
only if (k, r) = 1.

3. If p is prime and Cj = Zp, 1 ≤ j ≤ n, then every nontrivial Zp-linear
combination

∑n
j=1cjψj is an orthogonal cocycle in Z2(G,Zp).

Proof. 1. Suppose that α◦ψi = ψj . Let γ be the epimorphism γ : C1×· · ·×Cn →
Cj × Cj which sends factors Ck, for k 6= i, j, to the identity, is the identity on Cj
and is α on Ci. Then γ ◦ ψ = (ψj, ψj) is orthogonal, a contradiction. 2. This
follows from the surjectivity or otherwise of Zr → kZr. 3. Every nontrivial
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Zp-linear combination
∑n

j=1cjψj is a composition c ◦ (ψ1, . . . , ψn) of ψ with the
epimorphism c : Zn

p → Zp, where c takes the jth unit vector of Zn
p to cj , with at

least one cj 6= 0 and, vice versa, every epimorphism is of this form. �

Now we can show that orthogonality of a cocycle ψ = (ψ1, . . . , ψn) is an ex-
ponential sum property of nontrivial weighted linear combination cocycles formed
from its direct summands ψj .

Theorem 3.3 Let G be a group of order v, let C = Zm1 × . . . × Zmn , mj ≥
2, 1 ≤ j ≤ n, be an abelian group of exponent m and order w, where w|v and let
ω = e2iπ/m. Let ψ = (ψ1, . . . , ψn) ∈ Z2(G,C) and for every c = (c1, . . . , cn) ∈
C, define c ∗ ψ ∈ Z2(G,Zm) to be

(c ∗ ψ)(g, h) =
n∑
j=1

cj ψj(g, h)m/mj, g, h ∈ G.

1. Then ψ is orthogonal if and only if, for each c 6= 0 ∈ C, the cocycle c ∗ ψ
satisfies ∑

g∈G

ω(c∗ψ)d(g) = 0, ∀ d 6= 1 ∈ G. (10)

2. If ψ = ∂φ = (∂φ1, . . . , ∂φn) ∈ B2(G,C) then φ : G → C is PN if and
only if, for each c 6= 0 ∈ C,∑

g∈G

ωc∗(∆φ)d(g) = 0, ∀ d 6= 1 ∈ G. (11)

Proof. By Definition 3.1 and Corollary 2.3, ψ is orthogonal if and only if, for each
d 6= 1 ∈ G, ∑

g∈G

ωc∗ψd(g) = 0, ∀ c 6= 0 ∈ C

and the result follows since c ∗ ψd(g) = (c ∗ ψ)(d, g) = (c ∗ ψ)d(g). If ψ = ∂φ
then

∑
g∈G ω

(c∗ψ)d(g) = ω−c∗φ(d)
∑

g∈G ω
c∗(∆φ)d(g) and this sum is 0 if and only if∑

g∈G ω
c∗(∆φ)d(g) = 0. �

Theorem 3.3.2 generalises [3, Theorem 16]: if G is abelian then φ : G → C
is PN if and only if, for every c 6= 0 ∈ C, χc ◦ φ is bent.

In the simple special case that C is an elementary abelian group, condition
(10) is equivalent to the inner product cocycle c · ψ being orthogonal.
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Theorem 3.4 Let G be a group of order v and p a prime such that pn|v. Let
ψ = (ψ1, . . . , ψn) in Z2(G,Zn

p ), where ψj ∈ Z2(G,Zp), 1 ≤ j ≤ n. Then ψ
is orthogonal if and only if each non-trivial Zp–linear combination of cocycles∑n

j=1cjψj in Z2(G,Zp) is orthogonal.

Proof. Proposition 3.2.3 gives one direction. For the other, if, for every c 6= 0 ∈
Zn
p , the cocycle c ·ψ =

∑n
j=1 cjψj is orthogonal then by Definition 3.1 for every

c 6= 0 ∈ Zn
p , c · ψd ( = (c · ψ)d ) is balanced ∀ d 6= 1 ∈ G. By Corollary 2.3.2,

ψd is balanced ∀ d 6= 1 ∈ G and so ψ is orthogonal by Definition 3.1. �

A cocycle is multiplicative if it is a homomorphism when restricted to either
coordinate (and hence, by (8), to both coordinates).

For a multiplicative ψ ∈ Z2(G,Zn
p ), Theorem 3.4 is already known (c.f. Mac-

Donald [9]), in terms of the matrix representations of the bilinear forms ψj , since
necessarily G is abelian and G ∼= Zt

p.

Corollary 3.5 Let t ≥ n, let ψ = (ψ1, . . . , ψn) in Z2(Zt
p,Zn

p ) be multiplica-
tive, and represent the bilinear form ψj by matrix Mj, 1 ≤ j ≤ n. Then
ψ is orthogonal if and only if every non-trivial Zp–linear combination of the
Mj is non-singular; that is, if and only if, for any (c1, c2, . . . , cn) 6= 0 ∈ Zn

p ,∑n
j=1 cjMj ∈ GL(t, p).

By the results above, we have a new search criterion for PN functions and
orthogonal cocycles, and therefore also for central relative difference sets and G-
cocyclic generalised Hadamard matrices with entries in C.

First, by Proposition 3.2 it is necessary to find n distinct orthogonal cocycles
ψj : G × G → Zmj

, 1 ≤ j ≤ n. Then the direct sum ψ = (ψ1, . . . , ψn) :
G × G → C = Zm1 × . . . × Zmn may be tested for orthogonality using (10). If
all the cocycles are coboundaries ψj = ∂φj , this is a test for constructing a PN
function φ = (φ1, . . . , φn) from n PN direct summands φj .

4 Computations for elementary abelian 2-groups
The direct sum criterion is applied to elementary abelian 2-groups G = Zt

2,
C = Zn

2 , as the smallest cases for which exhaustive search quickly exceeds our
computational resources. Of course, none of the orthogonal cocycles found when
t = n can be coboundaries, since by (6) and (7), no (∂φ)g, for g ∈ G, can be
one-to-one. The results in [7] reported here were computed using MAGMA [2].
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t 1 2 3 4 5

x 1 6 168 20, 160 9, 999, 360
o 1 6 168 26, 880 ≈ 7.34× 107

x/o 1 1 1 0.75 ≈ 0.136
z 2 16 1024 221 ≈ 2.1× 106 241 ≈ 2.2× 1012

o/z 0.5 0.375 ≈ 0.164 ≈ 1.28× 10−2 ≈ 3.34× 10−5

Table 1: Number x of multiplicative orthogonal cocycles versus number o of or-
thogonal cocycles and total number z of cocycles in Z2(Zt

2,Z2)

For G = Zt
2, t ≤ 4, Table 1 lists the number x = |GL(t, 2)| of multiplicative

orthogonal cocycles in Z2(Zt
2,Z2) and the total number o of orthogonal cocycles

found by exhaustive checking. For t = 5, o is estimated by Monte Carlo sampling.
The total number of cocycles z = 22t−1+t(t−1)/2 = |Z2(Zt

2,Z2)| is included for
comparison purposes. When t is even and n < t, some of the orthogonal cocycles
will be orthogonal coboundaries, corresponding to the binary PN (that is, bent)
functions.

From Table 1, all orthogonal cocycles in Z2(Zt
2,Z2) with 1 ≤ t ≤ 3 are mul-

tiplicative. Hence all orthogonal cocycles in Z2(Zt
2,Zn

2 ) with 1 < n ≤ t ≤ 3 are
multiplicative, otherwise projection onto one factor would give a contradiction.

Theorem 3.4 was applied in [7] to find all the orthogonal cocycles inZ2(Zt
2,Zn

2 )
with 1 < n ≤ t ≤ 4, using the orthogonal cocycles in Z2(Zt

2,Z2) found in the
computation of Table 1. Direct exhaustive search for these is beyond our compu-
tational resources.

For example, the direct sums of every pair of orthogonal cocycles inZ2(Z4
2,Z2)

have been tested. There are 22, 575, 840 cocycles Z4
2 × Z4

2 → Z2
2 formed from

the direct sum of two non-multiplicative orthogonal cocycles and 135, 475, 200
formed from the direct sum of a multiplicative orthogonal cocycle and a non-
multiplicative orthogonal cocycle. None of these direct sums is orthogonal. Thus,
there are no non-multiplicative orthogonal cocycles in Z2(Z4

2,Z2
2). This implies

(by projection, again) all orthogonal cocycles in Z2(Z4
2,Z3

2) and Z2(Z4
2,Z4

2) are
multiplicative.

Lemma 4.1 When 2 ≤ n ≤ t ≤ 4, all orthogonal cocycles in Z2(Zt
2,Zn

2 ) are
multiplicative.
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All the orthogonal cocycles when t = n are then computed by applying The-
orem 3.4 to direct sums of distinct multiplicative orthogonal cocycles.

Lemma 4.2 (Compare with Table 1) The total number o of orthogonal cocycles
in Z2(Zn

2 ,Zn
2 ), 1 ≤ n ≤ 4, is tabulated. In each case, they are all multiplicative.

n 1 2 3 4
o 1 12 96, 768 2, 160, 666, 869, 760

[5] ≈ 2.2× 1012

We conjecture that for n > 1, any orthogonal cocycles on elementary abelian
2-groups must be multiplicative.

Conjecture 4.3 For 2 ≤ n ≤ t < ∞, any orthogonal cocycle in Z2(Zt
2,Zn

2 ) is
multiplicative.

For odd primes, this is not true, even for G = Z4
3. When p = 3, the Coulter-

Matthews PN function [4] determines an orthogonal coboundary in Z2(Z2k
3 ,Z2k

3 )
which is not multiplicative.

Acknowledgements. Theorem 3.4 (with a different proof, see [7, Theorem 6.2])
and the results in Section 4 form part of the PhD thesis [7] of the first author, taken
under the supervision of the second author.
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