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Abstract 
With the availability of a wide range of Evolution- 
ary Algorithms such as Genetic Algorithms, Evolu- 
tionary Programming, Evolution Strategies and Dif- 
ferential Evolution, every conceivable aspect of the de- 
sign of a f izzy  logic controller has been optimized and 
automated. Although there is no doubt that these au- 
tomated techniques can produce an optimal fuzzy logic 
controller, the structure of such a controller is often 
obscure and in many cases these optimizations are 
simply not needed. We believe that the automatic de- 
sign of a fuzzy logic controller can be simplified by  us- 
ing a generic rule base such as the Mac Vicar- Whelan 
rule base and using an evolutionary algorithm to opti- 
mize only the membership functions of the fuzzy sets. 
Furthermore, by  restricting the overlapping of fuzzy 
sets, using triangular membership functions and sin- 
gletons, and reducing the number of parameters to rep- 
resent the membership functions, the design can be 
further simplified. This paper describes this method 
of simplifying the design and some experiments per- 
formed to ascertain its validity. 
Keywords Evolutionary Algorithms, Evolutionary 
Programming, Fuzzy Logic Controller, Fuzzy Systems 

1. Introduction 
Fuzzy logic controllers (FLCs) are rule based systems 
that use fuzzy linguistic variables (e.g. small, large, 
etc) to  model human rule-of-thumb approaches to 
problem solving. They have been successfully applied 
to many control problems because no mathematical 
modelling is involved; only heuristic knowledge is 
required. The main problem with FLCs is that 
there is no generalised design method; their design 

has been an ad hoc trial and error exercise for a 
long time. With the advent of global optimization 
techniques such as Genetic Algorithms (and other 
evolutionary algorithms) many parts of the design 
have been optimized and automated such as the 
derivation of the rule base, the minimization of the 
number of rules and the membership functions, etc. 
Every conceivable aspect of the design process has 
been the object of optimization. Although there is no 
doubt that these optimization techniques can produce 
optimum FLC designs, often these designs cannot be 
interpreted meaningfully. 

We believe that FLC design has been the subject 
of too much automation; in particular, we feel that 
in many cases it is not necesssary to optimize the 
design of the rule base provided that a sound template 
rule base such as the Macvicar-Whelan rule base [l] 
is used. This rule base is a standard template rule 
base built according to common engineering sense and 
experience with fuzzy logic. It defines a reasonable set 
of rules that can be adjusted by excluding, modifying 
or adding new control rules based on the specificity 
of the control problem. If the input variables to the 
FLC are the error and change in error, then the rule 
base can be built from the following Macvicar-Whelan 
meta rules: 

1. If both the error and change in error are zero, 
then change in output is zero. 

2. If the error is tending to zero at a satisfactory 
rate, then change in output is zero. 

3. If the error is not self-correcting, then change in 
output is not zero and depends on the sign and 
magnitude of the error and change in error. 
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The rule base can be formulated using these 
meta rules and a 7 by 7 rule base expressed as a 
fuzzy associative matrix (FAM) [2] is shown in Figure 
1 (see [l, 31 for a detailed formulation of the rule base). 

Change in Enor 
NB N M  NS ZE PS PM PB 

Figure 1. 7 by 7 Macvicar-Whelm rule base 

In this paper, we aim to show that the automatic 
design of FLCs for most control applications can 
be simplified by using a fixed rule base such as 
the Macvicar-Whelan rule base and adjusting 
only the membership functions of the fuzzy sets 
using an Evolution Algorithm such as Evolutionary 
Programming. We believe that the adjustment of the 
membership functions can provide enough latitude to 
meet the requirements of the control problem. Should 
the adjustment of the membership functions not give 
satisfactory results, then optimization of the rule base 
might be contemplated. However, it is believed that 
this will not often be the case. 

We demonstrate the validity of our simplified ap- 
proach by designing FLCs to control three plant pro- 
cesses with second order transfer functions that we 
used in a previous study. Then we assessed the per- 
formance of the FLCs by simulating step responses 
and compared them with those obtained in a previous 
study where the membership functions and the rule 
base were both optimized. 

2. Evolutionary Algorithms and Evo- 

Evolutionary Algorithms (EAs) are a class of 
algorithms that use some of the known mechanics of 
evolution, more specifically the processes of selection, 
reproduction and mutation to search for the best 
solution to a problem. The interest in EAs is mainly 
due their flexibility, adaptibility and robustness 
in solving difficult optimization problems. Unlike 

lutionary Programming 

many classical optimizing techniques, EAs do not 
require the computing of local derivatives to guide 
the search process; only an objective function needs 
to be computed. Furthermore, EAs are more likely 
to arrive at the global optimum because they work 
on a population of points instead of a point by 
point approach as used by conventional optimization 
techniques. 

A typical EA is shown in Figure 2. Given an 
optimization problem, the parameters concerned 
are grouped into a structure (an individual) and a 
collection of such individuals (a population) is created 
by either randomly generating the parameters or 
using expert knowledge about the problem. The EA 
runs iteratively on the popubation of individuals using 
the genetic operators in a random way but based on 
the fitness of the structure:; to perform such tasks 
as selecting, copying, exchanging and perturbing 
portions of individuals to create new generations of 
individuals and eventually ,find the best individual 
representing the solution to the problem. Currently, 
there are three main EA!;: Genetic Algorithms 
(GAS) , Evolution Strategies (ESs) and Evolutionary 
Programming (EP). They di:ffer in the representation 
of the problem and the use of genetic operations 
(selection, reproduction and mutation). 

E P  is an EA that was conceived by Fogel et al. [4]. 
EP has traditionally used representations that are 
tailored to the problem domain such as real-valued 
vectors for real-valued optimization problems, ordered 
lists for travelling salesman ]problems and graphs for 
finite state machine problems. EP is an abstraction 
of the evolution process at the species level and not 
at the individual level like GAS and ESs. Thus, it 
does not use the recombination mechanism at all 
since recombination does not occur within species. 

An offspring is created by mutating a parent and 
this can be expressed mathematically as: 

where Q and p are system parameters. Since it is 
sometimes hard to set these parameters, there has 
been several studies [5, 6, 71 on the use of adaptive 
system parameters to optimize them. When adaptive 
system parameters are used, the system parameters 
are evolved together with the parameters of the 
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problem to be solved. 

Algorithm EA 
1. 
2. Evaluate f i t n e s s  of individuals  
3. While not done do 

S t a r t  with a randomly i n i t i a l i z e d  population 

3 .1  Increment generation counter 
3 .2  Se lec t  parents  for reproduction 
3 . 3  Recombine genes of se lec ted  parents  
3.4 Mutate population s tochas t ica l ly  
3 . 5  Evaluate f i t n e s s  of individuals  
3 .6  Se lec t  survivors  

End while 

Figure 2. Generic Evolutionary Algorithm 

Selection of survivors is done by stochastic methods 
via a tournament based on fitness. If there are N 
individuals in the population, each individual is mu- 
tated to produce an offspring. Each individual from 
the 2 N  (parents plus offsprings) population is entered 
into a competition against a pre-selected number of 
opponents and receives a "win" if its fitness is equal 
to or better than its opponent. N individuals with the 
highest "wins" are then selected as the survivors for 
the next generation. More details on EP can be found 
in [4, 8, 91. 

3. The Simplified Design 
The simplified design involves using a fixed MacVicar- 
Whelan rule base and optimizing the membership 
functions of fuzzy sets using EP. We chose EP for 
optimizing the membership functions because EP 
is designed to  work with real numbers as opposed 
to GAS which traditionally operate on binary 
representations. 

To further simplify the design of FLCs, we use 
triangular membership functions for the inputs and 
singletons [lo] for the outputs. We also use fuzzy sets 
with a degree of overlapping of two as shown in Figure 
3. This results in the use of only one parameter 
to describe a fuzzy set (the two other parameters 
required for triangular fuzzy sets are defined by the 
neighbouring fuzzy sets). Furthermore, since we use 
a universe of discourse normalized to the range [-1.0, 
1.01 and we avoid the use of trapezoidal fuzzy sets for 
the first and last fuzzy set, we fix the apices of the 
first and last fuzzy sets to -1.0 and 1.0 respectively. 

This further reduces the number of parameters to 
represent the membership functions by two. 

Our simplified design method results into an 
appreciable reduction of parameters to be optimized 
as compared to other methods reported in the 
literature. For example, only 15 (3 x 5) real-valued 
parameters have to be optimized for an FLC with 
two inputs and one output and with seven fuzzy 
sets per input/output variable. In several design 
methods reported in the literature (e.g. [ll, 12]), 
the use of three parameters per triangular fuzzy set 
requires the optimization of 63 (3 x 21) real-valued 
parameters for the membership functions, and if rule 
base optimization is required, an additional 49 (7 x 
7) integer-valued parameters is required such that in 
total 112 parameters have to  be optimized. There is 
no doubt that it is easier to  optimize 15 parameters 
instead of 112. 

Constraining the degree of overlapping of the fuzzy 
sets to  two not only simplifies the representation of 
the membership functions, it also makes the number 
of rules firing at one time independent of the number 
of fuzzy sets per input variable. In a two-inputs FLC, 
this limits the number of fired rules to a maximum 
of four irrespective of the number of fuzzy sets used 
per input variable. In an unconstrained situation, 
increasing the number of fuzzy sets per input variable 
increases the number of rules firing at one time 
because each FLC input would be fuzzified into an 
increasing number of fuzzy sets and this number is 
dependent on the number of fuzzy sets overlapping 
each other. 
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Degree of membership 
t 
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Figure 3. Fuzzy sets with a degree of overlapping of two 

This is probably the main reason that has prompted 
research about reducing the total number of rules in 
the rule base (e.g. [U, 13, 14, 15, IS]) in an attempt 
to reduce computation time. However, we believe 
that constraining the overlapping of fuzzy sets is a 
more effective method of controlling computation time 
than a reduced rule base because in an unconstrained 
situation, the degree of overlapping is not constant 
across the universe of discourse. Although, reducing 
the total number of rules in the rule base has a bearing 
on computation time, it does not affect computation 
time directly and consistently as when the overlapping 
of fuzzy sets is constrained. Furthermore, it is safer 
to keep all the control rules in the rule base rather 
than reducing them because a full rule base specifies 
a control action for every possible combination of the 
inputs. 

4. Testing the Design 
In order to test the feasibility of our simplified FLC 
design method, we designed FLCs for controlling 
unknown plant processes and compared the 
performance of these FLCs with those designed 
in a previous study where both the rule base and 
the membership functions were optimized by an 
EA. To be able to make some generalizations and 
comparisons we used the same three plant processes 
with second order transfer functions used in a 
previous study. The three plant processes are labelled 
Plant A, Plant B and Plant C and are defined as 

2 2 follows GA(S)  = G B ( S )  = -7 

‘The plant transfer functions are unknown to the FLCs 
which treat the controlled plants as black boxes; they are only 
used for simulating the unit step responses. 

The successful use of EAs requires the choice of 
the appropriate problem representation, objective 
function, selection mechanisms, genetic operators 
and system parameters. Some EAs are fairly 
straightforward to configure since their operating 
mechanisms are fixed and only a small number of 
parameters have to be set. However, others require 
the selection of mechanisms from a wide available 
range and have a large number of parameters to  be 
set. EP was chosen to optimize the design of the FLCs 
because of its ease of configuration and its ability to 
work directly on the real-valued representation of the 
problem domain. To keep the experiments simple, 
we used the standard plain original version of EP, 
no strategy was used for self-adapting the system 
parameters. 

The problem to be solved by E P  is the finding 
of the membership functions of the three variables 
error, change in error and (change in output of an 
FLC whose rule base has been determined according 
to the MacVicar-Whelan meta-rules such that the 
FLC controls an unknown plant process optimally 
according to some performance measure. The 
performance of the FLCs is assessed by means of 
a unit step response and we used the Integral-of- 
Time multiplied Absolute-Error (ITAE) as the 
performance measure. 

We used seven fuzzy sets per input/output variable 
of the FLCs in order to compare the FLCs with 
the best ones obtained in our previous study. As 

*ITAE is defined as t le(t)l dt .  
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discussed above, only one parameter is required to  
define one fuzzy set and furthermore, since we restrict 
the parameters of the first and last fuzzy sets to -1.0 
and 1.0, only 5 parameters are required per input 
variable. Thus, a total of 15 parameters is required 
to define the membership functions of the two inputs 
and one output of the FLC. Each potential solution 
to the problem (individual) is represented as a set 
of 15 real-valued parameters. For an individual to  
be valid, the parameter set should consist of three 
subsets of 5 parameters sorted in ascending order, 
in the range [-1,1] and all values within the subsets 
should be unique (otherwise there will be less than 
seven fuzzy sets). We used a population of 100 
individuals and initialized the parameters of each 
individual with random numbers in the range [-1.0, 
1.01. To ensure the validity of the individuals, we 
grouped their parameters into three subsets (each 
one representing the membership function of an FLC 
variable) and sorted them in ascending order. 

At the beginning of each EA cycle, individuals are 
selected to be parents for creating offsprings; in E P  
all individuals are selected to be parents. At the 
end of each EA cycle, another selection mechanism 
is required to select survivors from the population of 
parents and offsprings to form the next generation. 
In EP, survivors are selected using a probabilistic 
function (tournament) based on fitness (see section 
2.). We used a tournament size of 10. 

EP uses mutation only, it does not use recombina- 
tion. We used the standard mutation operator as 
described in section 2. and experimented with several 
values of Q and @ and found good values to be 0.0 
and 0.1 respectively. 

Each solution FLC for the three plant processes was 
obtained by evolving EP for 100 runs and each run 
consisted of 300 generations. The performance of the 
FLCs was judged by comparing the steps responses 
of FLCs with and without optimized rule bases. Step 
responses for plants A, B and C are shown in Figures 
4, 5 and 6 respectively. I t  can be seen that the perfor- 
mance of the FLCs designed by our simplified method 
is equal to that of the FLCs with both optimized rule 
bases and membership functions except for plant C. 
Slightly better control of plant C is achieved with 
an FLC using an optimized rule base. This tends 
to  suggest that in some cases, the generic MacVicar- 
Whelan rule base may not perform adequately and 

in these situations rule base optimization might be 
required. 

1 2 .  
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Figure 4. Step Responses for Plant A 
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Figure 5 .  Step Responses for Plant B 

5.  Conclusions 
In this paper, we have presented a method for 
simplifying the automatic design of an FLC by using 
a generic Macvicar-Whelm rule base and optimizing 
only the membership functions of the fuzzy sets with 
the use of Evolution Programming. The design was 
further simplified 'by restricting the overlapping of 
fuzzy sets, using triangular membership functions and 
singletons and reducing the number of parameters to 
represent the membership functions. 
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Optimized membership functions - IT ;I Optimized membership functions + rule base ..---- 

Figure 6 .  Step Responses for Plant C 

Our design method results in the optimization of a 
highly reduced number of parameters by Evolution 
Programming. For an FLC with two inputs and one 
output and with seven fuzzy sets per input/output we 
need to optimize only 15 parameters as compared to 
112 parameters used by other methods. The method 
not only facilitates the optimization process by using 
a reduced parameter set; it also results in the design 
of an FLC with several advantages. First, the rules 
used by an FLC are clearly understood since we use a 
generic rule MacVicar-Whelan rule base; second, the 
number of rules firing at one time is independent of 
the number of fuzzy sets per input variable because 
the degree of overlapping of the fuzzy sets has been 
fixed to two. This obviates the need for reducing 
the number of rules in the rule base as advocated 
by several studies. Output computation time is no 
longer adversely affected by an increase in the number 
of fuzzy sets per input variable and furthermore a full 
rule base is safer to use than a partial rule base. 

We have tested the method by designing FLCs to 
control three plant processes and comparing the per- 
formance of the FLCs with those having both opti- 
mized rule base and membership functions. Based 
on the experiments carried out, we can affirm that a 
generic MacVicar-Whelan rule base can be used for 
most control applications since the performance of 
FLCs with generic MacVicar-Whelan rule bases was 
as good as the performance of FLCs with optimized 
rule base and membership functions in two cases out 
of three. Thus, we have demonstrated the validity of 
our method for simplifying FLC automatic designs. 
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