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Abstract
We derive bivariate polynomial formulae for cocycles and coboundaries in

Z2(Zn
p , Zn

p ), and a basis for the (pn − 1 − n)-dimensional GF (pn)-space of
coboundaries. When p = 2 we determine a basis for the (2n+

(
n
2

)
−1)-dimensional

GF (2n)-space of cocycles and show each cocycle has a unique decomposition as
a direct sum of a coboundary and a multiplicative cocycle of restricted form.
Keywords: 2-cocycle, coboundary, multiplicative cocycle, basis, Pascal’s triangle

1 Introduction
We consider only two-dimensional cocycles between finite groups, with trivial action.
These cocycles are functions arising naturally in surface topology, projective repre-
sentation theory, combinatorial designs and quantum dynamics, amongst other areas.
They are used to search for good high-distance error-correcting codes, low-correlation
sequences and functions with strong nonlinearity properties for cryptographic applica-
tions. Two basic classes of cocycles, the coboundaries and the multiplicative cocycles,
have proved very productive for these purposes. The coboundaries are used to find S-
box functions with low differential uniformity, such as PN and APN functions, which
are thus robust against differential cryptanalysis. The multiplicative cocycles over
elementary abelian groups form a structured space within which to find generalised
Hadamard matrices and codes, relative difference sets and finite semifields which co-
ordinatise certain projective planes. Cocycles fall into equivalence classes (“bundles”)
within which these desirable properties are invariant.

Very little is known about the form of individual cocycles or how to find all the
cocycles (or even all the coboundaries) from a finite group G to a finite abelian group
C. Focus is usually on listing a set of representatives of the second cohomology group
(the quotient group of the group of cocycles by the subgroup of coboundaries). Fa-
cilities for computation and manipulation of a set of cohomology class representatives

∗The final version of this preprint is published in J. Aust. Math. Soc. 85 (2008) 177–190.
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exist in MAGMA, in particular in a module (due to Flannery and O’Brien [5]) which
uses the Universal Coefficient Theorem to list them. Another algorithm uses a smaller
homological model to compute such representatives much faster, but requires more
precomputation.

The second cohomology group decomposes as an internal direct sum of two groups,
so every cocycle is a sum of an “inflation” cocycle, a “transgression” cocycle and a
coboundary, but the decomposition is not unique. Computation of a set of generators
for the subgroup of coboundaries is usually left as an exercise in linear algebra, though
for cocycles mapping to Z2, an algorithm is known. In the early 1990s, a group the-
oretic algorithm was developed that lists a set of generators for the group of cocycles
for abelian groups G. See [6, Chapter 6.3] for details.

This paper has two main purposes. The first is to present a formula for any cocycle
from Zn

p to Zn
p as a bivariate polynomial over GF (pn). This provides a new technique

for working with these cocycles and a fourth algorithm for computation in this partic-
ular case. The second is to exploit an overlying vector space structure of the group
of cocycles to extract a basis for the space of coboundaries. When p = 2 – the most
important case for applications – we then extract a basis for the space of cocycles.

The paper is organised as follows. In Section 2 we use Lagrange Interpolation
and the cocycle equation to derive polynomial formulae for coboundaries, cocycles
and multiplicative cocycles from Zn

p to Zn
p . In Section 3 we prove two results about

coboundaries. The first (Theorem 3.1) is the basis theorem for coboundaries and the
second (Theorem 3.5) is a recursive formula for the coboundary basis in the binary case
p = 2, suitable for computation.

In the final Section 4, we concentrate on cocycles from Zn
2 to Zm

2 , n ≥ m. We show
(Lemma 4.1) that every symmetrisation cocycle is a coboundary (which, when m = n,
must be defined by a unique Dembowski-Ostrom polynomial). We then derive the basis
theorem for cocycles (Theorem 4.4) and, as a consequence, bases and dimensions for
several other subspaces of interest. From this we prove that any cocycle over Zn

2 has
a unique decomposition as a direct sum of a coboundary and a multiplicative non-
coboundary cocycle of specific form (Corollary 4.6).

2 Cocycles and coboundaries
Let GF (q) be the finite field of order q = pn, where p is prime and n ∈ Z+. Let G
be a finite group, C be an additively written finite abelian group, and let C1(G,C) =
{φ : G→ C, φ(1) = 0} be the group of all normalised functions from G to C.

Each φ ∈ C1(G,C) determines a coboundary ∂φ(x, y) = φ(xy) − φ(x) − φ(y),
which measures how much φ differs from a homomorphism from G to C. A cobound-
ary is the simplest form of cocycle. A (2-dimensional normalised) cocycle (with trivial
action) is a mapping ψ : G×G→ C satisfying

ψ(1, 1) = 0; ψ(x, y) + ψ(xy, z) = ψ(x, yz) + ψ(y, z), ∀x, y, z ∈ G. (1)

The set Z2(G,C) of cocycles over G with values in C is an abelian group under point-
wise addition. The subgroup of coboundaries is denoted B2(G,C), and the cobound-
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ary mapping ∂ : C1(G,C) → B2(G,C) mapping φ to ∂φ is a group homomorphism
with kernel ker(∂) = Hom(G,C).

In the reverse direction to ∂ is the diagonal mapping

D : Z2(G,C) → C1(G,C), Dψ(x) = ψ(x, x), x ∈ G. (2)

It follows that ∂ ◦D : Z2(G,C) → B2(G,C) and (D ◦∂)φ(x) = φ(x2)−2φ(x). The
mappings D and ∂ may be thought of as generalising the mappings between bilinear
and quadratic forms.

We are interested two other subgroups of Z2(G,C), the subgroup M2(G,C) of
multiplicative cocycles and the subgroup S2(G,C) of symmetric cocycles.1

A cocycle is called multiplicative if it is a homomorphism on either coordinate (and
hence on both coordinates, by (1)). IfG is abelian, on defining ψ>(x, y) = ψ(y, x) and
ψ−(x, y) = ψ(x, y)− ψ(y, x) for all x, y ∈ G, we have that ψ> and ψ− are cocycles,
the decomposition ψ = ψ> + ψ− is unique, and ψ−, the commutator pairing, is
multiplicative [1, Exercises IV.3.8 and V.6.5].

A cocycle ψ is called symmetric if ψ(x, y) = ψ(y, x) for all x, y ∈ G. If G
is abelian, the coboundaries are all symmetric; that is, B2(G,C) ≤ S2(G,C). If
G is abelian, the symmetrisation ψ+ of ψ, given by ψ+(x, y) = ψ(x, y) + ψ(y, x),
is a symmetric cocycle, and then the symmetrisation mapping S+ : Z2(G,C) →
S2(G,C), given by S+(ψ) = ψ+, is a group homomorphism. We set S2

+(G,C) =
S+(Z2(G,C)).

If G is abelian the isotype of the finite abelian group Z2(G,C) may be derived
using cohomological techniques [6, Theorem 6.13, Corollary 6.16]. We record the
elementary abelian case needed here.

Proposition 2.1 Let G ∼= Zn
p and C ∼= Zm

p , n ≥ m ≥ 1 and set N = pn +
(
n
2

)
− 1,

with
(
n
2

)
= 0 if n = 1. Then Z2(Zn

p ,Zm
p ) ∼= CN ∼= (Zm

p )N .

2.1 A polynomial formula for cocycles over GF (q)

This subsection is devoted to the representation of cocycles in Z2(Zn
p ,Zn

p ) as bivariate
polynomials. We treat Zn

p as the underlying additive group of the finite field GF (q),
where q = pn, so that G = C = (GF (q),+).

By the Lagrange Interpolation Formula [9, Theorem 1.71], if m ≥ 1, then for m
distinct points a0, . . . , am−1 of GF (q) and m arbitrary points b0, . . . , bm−1 of GF (q)
there exists a unique polynomial f ∈ GF (q)[x] of degree < m such that f(ai) = bi
for i = 0, . . . ,m − 1. Any function π : GF (q) × GF (q) → GF (q) can there-
fore be represented by a unique polynomial P ∈ GF (q)[x, y] as follows. Let α be a
primitive element of GF (q) and order GF (q) as GF (q) = {α0 = 0, α1 = 1, α2 =
α, . . . , αq−1 = αq−2}. Under this ordering a q × q array A with entries from GF (q)
determined by π(αi, αj) = aij will have for each rowAi = [ai0, . . . , ai,q−1], a unique
polynomial fi(y) =

∑q−1
k=0 biky

k ∈ GF (q)[y] such that fi(αj) = aij . For fixed
k, the coefficients of yk from each row are {bik| i = 0, . . . , q − 1}, and for each k

1In [6] the subgroup of symmetric cocycles is denoted S2
+(G, C) but the notation presented here, with

S2
+(G, C) reserved for the subgroup of symmetrisation cocycles, is more consistent.
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there is a unique polynomial gk(x) =
∑q−1

l=0 λlkx
l such that gk(αi) = bik. Since

fi(y) =
∑q−1

k=0 gk(αi)yk, there exists a unique polynomial P ∈ GF (q)[x, y] such that
π(x, y) = P (x, y) =

∑q−1
k=0

∑q−1
l=0 λlkx

lyk.
If ψ : GF (q) × GF (q) → GF (q) also satisfies ψ(x, 0) = ψ(0, y) = 0 for all

x, y ∈ GF (q) (a necessary condition for the cocycle equation (1) to hold for G = C =
(GF (q),+)) then it has a unique representation in GF (q)[x, y]

ψ(x, y) =
q−1∑
i=1

q−1∑
j=1

λijx
iyj . (3)

For a coboundary, the coefficients in (3) are very restricted. Again by Lagrange inter-
polation every φ ∈ C1(G,G) may be represented uniquely as a polynomial of degree
at most q − 1 in GF (q)[x].

Lemma 2.2 Let ψ : GF (q) × GF (q) → GF (q) be given by (3). If φ : GF (q) →
GF (q) is given by φ(x) =

∑q−1
i=1 φix

i, then ψ = ∂φ if and only if

1. λij = 0, for j = q − i, . . . , q − 1

2. λij =
(
i+j

i

)
φi+j , otherwise.

Proof.

∂φ(g, h) =
q−1∑
i=1

φi

{
(g + h)i − gi − hi

}
=

q−1∑
i=2

i−1∑
j=1

φi

(
i

j

)
gi−jhj

=
q−2∑
i=1

q−i−1∑
j=1

φi+j

(
i+ j

j

)
gihj ,

and the result follows on equating coefficients. �

Clearly, if ψ : GF (q) × GF (q) → GF (q) is given by (3) then ψ is symmetric if
and only if λij = λji, 1 ≤ i, j ≤ q − 1.

Subsequently we will need the following theorem, attributed to Lucas in [4], and
its corollaries.

Theorem 2.3 (Lucas) [4, Theorem 1] Let p be a prime, and let

M = M0 +M1p+M2p
2 + . . .+Mkp

k, (0 ≤Mr < p)
N = N0 +N1p+N2p

2 + . . .+Nkp
k, (0 ≤ Nr < p).

Then (
M

N

)
=

(
M0

N0

)(
M1

N1

)(
M2

N2

)
. . .

(
Mk

Nk

)
mod p. (4)

4



Corollary 2.4 [4, Theorem 3] A necessary and sufficient condition that all the bino-
mial coefficients (

M

N

)
, 0 < N < M, (5)

be divisible by p is that M be a power of p.

The p-ary weight wp(k) of the natural number k is the weight of the vector of coeffi-
cients of its p-ary expansion, so for example, wp(pi) = 1 and, for i 6= j, wp(pi +pj) =
2.

Corollary 2.5 Let M = 2, . . . , pn − 1 and N < M . Then wp(M) = 1 =⇒
(
M
N

)
=

0 mod p.

The next function class of interest is that consisting of the “multiplicative” bivari-
ate polynomials (3); that is, those which are homomorphic in each coordinate. Such
functions are always cocycles. The following result may be well-known but a proof is
provided for completeness.

Theorem 2.6 Let ψ : GF (q) × GF (q) → GF (q) be given by (3). Then ψ is multi-
plicative if and only if

ψ(x, y) =
n−1∑
i=0

n−1∑
j=0

λpipjxpi

ypj

.

Proof. It is straightforward to show that if ψ has this form it is multiplicative. To show
the converse is true, let ψ be multiplicative in both coordinates, i.e.

ψ(x+ z, y) = ψ(x, y) + ψ(z, y), (6)
ψ(x, y + z) = ψ(x, y) + ψ(x, z). (7)

Expanding the LHS of (6) gives, for each λij 6= 0,

q−1∑
i=1

[(
i

1

)
xi−1z +

(
i

2

)
xi−2z2 + . . .+

(
i

i− 1

)
xzi−1

]
= 0 ∀ x, z ∈ GF (q).

Therefore, we must have that for each i = 1, 2, . . . , q − 1,(
i

r

)
≡ 0 mod p for r = 1, 2, . . . , i− 1.

From Corollary 2.4, i = ps for s = 0, 1, . . . , blogp(q− 1)c = n− 1. By symmetry, (7)
implies j = pl only, with l = 0, 1, . . . , n− 1. �

Our main result for this section is the following formula for any cocycle inZ2(Zn
p ,Zn

p ),
in terms of simultaneous linear equations over GF (q) in the bivariate polynomial co-
efficients λij . Proof is a straightforward exercise in tracking limits of summation.

This new approach to studying Z2(Zn
p ,Zn

p ) complements those in [6].
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Theorem 2.7 Let ψ : GF (q)×GF (q) → GF (q) be given by (3). Then ψ satisfies (1)
if and only if

1.
(
i+l
l

)
λi+l,j = 0, for i = 1, . . . , j − 1 and l = q − j, . . . , q − 1− i

2.
(
j+l

l

)
λi,l+j = 0, for i = j + 1, . . . , q − 1 and l = q − i, . . . , q − 1− j

3.
(
i+l
l

)
λi+l,j =

(
j+l

l

)
λi,l+j , otherwise.

Proof. Now, ψ(g, h) + ψ(g + h, k)− ψ(g, h+ k)− ψ(h, k) = 0 if and only if

0 =
q−1∑
j=1

q−1∑
i=2

i−1∑
l=1

λij

(
i

l

)
gi−lhlkj −

q−1∑
j=2

q−1∑
i=1

j−1∑
l=1

λij

(
j

l

)
gihj−lkl

=
q−1∑
j=1

q−2∑
i=1

q−i−1∑
l=1

λi+l,j

(
i+ l

l

)
gihlkj −

q−2∑
j=1

q−1∑
i=1

q−j−1∑
l=1

λi,j+l

(
j + l

l

)
gihlkj .

Splitting this into cases for i < j, i = j and i > j gives

0 =
q−2∑
j=2

j−1∑
i=1

q−1−j∑
l=1

(
λi+l,j

(
i+ l

l

)
− λi,l+j

(
j + l

l

))
gihlkj

+
q−3∑
j=1

q−2∑
i=j+1

q−1−i∑
l=1

(
λi+l,j

(
i+ l

l

)
gihlkj − λi,l+j

(
j + l

l

))
gihlkj

+
q−2∑
i=1

q−1−i∑
l=1

(
λi+l,i

(
i+ l

l

)
− λi,l+i

(
i+ l

l

))
gihlki

+
q−1∑
j=2

j−1∑
i=1

q−1−i∑
l=q−j

λi+l,j

(
i+ l

l

)
gihlkj −

q−2∑
j=1

q−1∑
i=j+1

q−1−j∑
l=q−i

λi,l+j

(
j + l

l

)
gihlkj .

The sum on the RHS contains each term gihlkj exactly once, so by linear independence
it equals 0 if and only if the stated conditions hold. �

Solution of these simultaneous equations using Theorem 2.3 will give the general
cocycle formula for each q. Some coefficients will necessarily be zero.

We illustrate Theorem 2.7 for the smallest examples q = 2, 3, 4, 5, 7, 8. The num-
ber of independent coefficients λij , respectively 1, 2, 4, 4, 6, 10, is the integer N of
Proposition 2.1. (See also [6, Examples 6.3.1, 6.3.2].)

Example 1 Let G = C = (GF (q),+). Let ψ ∈ Z2(G,G) have form (3).

1. If q = 2, ψ(x, y) = λ11 xy.

2. If q = 3, ψ(x, y) = λ11 xy + λ12 (xy2 + x2y).

3. If q = 4, ψ(x, y) = λ11 xy + λ12 xy
2 + λ21 x

2y + λ22 x
2y2.
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4. If q = 5, ψ(x, y) = λ11 xy + λ12 (xy2 + x2y) + λ22 (4xy3 + x2y2 + 4x3y)
+λ14 (xy4 + 2x2y3 + 2x3y2 + x4y).

5. If q = 7, ψ(x, y) = λ11 xy + λ12 (xy2 + x2y) + λ13 (xy3 + 5x2y2 + x3y)
+λ14 (xy4 +2x2y3 +2x3y2 +x4y) +λ15 (xy5 +6x2y4 +x3y3 +6x4y2 +x5y)
+λ16 (xy6 + 3x2y5 + 5x3y4 + 5x4y3 + 3x5y2 + x6y).

6. If q = 8, ψ(x, y) = λ11 xy+λ12 xy
2+λ21 x

2y+λ22 x
2y2+λ14 xy

4+λ41 x
4y+

λ24 x
2y4+λ42 x

4y2+λ44 x
4y4+λ16 (xy6+x2y5+x3y4+x4y3+x5y2+x6y).

3 Coboundaries over GF (pn)

We will abbreviate by B the finite abelian group of coboundaries B2(Zn
p ,Zn

p ).

Theorem 3.1 (Coboundary Basis Theorem) For n > 1 and k = 2, . . . , pn−1, define
ck ∈ B by

ck(x, y) =
k−1∑
i=1

(
k

i

)
xiyk−i.

Then {ck : k = 2, . . . , pn − 1, w(k) ≥ 2} is a basis for B over GF (pn), and
dim(B) = pn − 1− n.

Proof. For φ(x) as in Lemma 2.2, ∂φ(x, y) =
∑pn−2

i=1

∑pn−i−1
j=1 φi+j

(
i+j

i

)
xiyj

=
∑pn−1

k=2

∑k−1
i=1 φk

(
k
i

)
xiyk−i =

∑pn−1
k=2 φk ck(x, y), so {ck : k = 2, . . . , pn − 1}

spans B. From Corollary 2.5, wp(k) = 1 ⇒ ck ≡ 0 so there are pn − 1− n elements
ck spanning B. These ck are linearly independent since distinct ck have no monomial
summands in common. �

MAGMA computations using Theorem 3.1 show that the coboundary bases ex-
hibit recursive patterns as n increments. In effect, this recursion occurs because the
coefficients of each basis element are the non-trivial binomial coefficients in a row of
Pascal’s triangle, as we now show. In [11], Wolfram describes the self-similar geom-
etry of Pascal’s triangle when the binomial coefficients are taken modulo r, and it is
noted that for the case of r a prime, a very regular self-similar pattern is found. We can
explain this regularity in terms of Lucas’ Theorem and the matrix Kronecker product.
The matrix Pn in Theorem 3.2 has the successive rows of Pascal’s triangle as its upper
diagonals, with the convention

(
m
0

)
= 1. The core of Pn, that is, Pn stripped of its first

row and column of 1s, has the coefficients of successive basis elements ck as its upper
diagonals.

Theorem 3.2 Define Pn = [aij ], where aij =
(
i+j

i

)
mod p, i, j = 0, 1, . . . , pn − 1.

Then Pn+1 = Pn ⊗ P1 = ⊗n+1 P1.
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Proof. Now,

Pk =



(
0
0

) (
1
0

) (
2
0

)
. . .

(
pk−1

0

)(
1
1

) (
2
1

) (
3
1

)
. . .

(
pk

1

)(
2
2

) (
3
2

) (
4
2

)
. . .

(
pk+1

2

)
... . . .

...(
pk−1
pk−1

) (
pk

pk−1

) (
pk+1
pk−1

)
. . .

(
2pk−2
pk−1

)


.

Consider any entry aij where i + j ≥ pk. From the definition of the binomial coeffi-
cients, these entries will all have a factor pk, and hence aij = 0 mod p for i+ j ≥ pk.
Therefore,

Pk =



(
0
0

) (
1
0

) (
2
0

)
. . .

(
pk−1

0

)(
1
1

) (
2
1

) (
3
1

)
. . . 0(

2
2

) (
3
2

) (
4
2

)
. . . 0

... . . .
...(

pk−1
pk−1

)
0 0 . . . 0

 . (8)

Now consider the (i, j)th entry of Pk+1, where i = upk +m, 0 ≤ u < p, 0 ≤ m < pk

and j = vpk + n, 0 ≤ v < p, 0 ≤ n < pk. Then

aij =
(
upk +m+ vpk + n

upk +m

)
=

(
(m+ n) + (u+ v)pk

upk +m

)
.

From (8), if (m+n)+ (u+ v)pk ≥ pk+1, then aij = 0 mod p. Two cases can occur if
(m+n)+ (u+ v)pk < pk+1. If m+n ≥ pk then aij will have a factor (1+u+ v)pk,
and hence aij = 0 mod p. If m+ n < pk, then by Theorem 2.3,

aij =
(
m+ n+ (u+ v)pk

upk +m

)
=

(
m+ n

m

)(
u+ v

u

)
mod p.

Since Pk = [amn] for 0 ≤ m,n < pk, and P1 = [auv] for 0 ≤ u, v < p, we have
that Pk+1 = Pk ⊗ P1. �

A collection of consequences of Theorem 2.3 in the binary case follows for conve-
nience; proof is straightforward and is left to the reader.

Lemma 3.3 (Corollaries of Lucas’ Theorem) Let i, j, k ∈ Z+.

1. For 1 ≤ i < 2k,
(
i+2k

i

)
=

(
i+2k

2k

)
≡ 1 mod 2 .
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2. For 1 ≤ j < i < 2k,
(
j+2k

i

)
≡ 0 mod 2 .

3. For 1 ≤ j < 2k < i < 2k+1,
(
i+j

i

)
≡ 1 mod 2 ⇒

(
i+j−2k

i−2k

)
≡ 1 mod 2 .

Next, we use Lemma 3.3 and the fact that, irrespective of n, all coefficients of the
basis polynomials ck found in Theorem 3.1 lie in the ground field GF (2), to describe
the recursive formula implied by Theorem 3.2 for the basis of B directly. An interme-
diate lemma is our key.

Lemma 3.4 For n > 1, define An(x, y) =
∑2n−1

k=2 ck(x, y),
A

(c)
n (x, y) = y2n ∑2n−1

l=1

(
l+2n

l

)
xl and A(r)

n (x, y) = x2n ∑2n−1
l=1

(
l+2n

2n

)
yl.

Then An+1 = An + y2n

An +A
(c)
n +A

(r)
n + x2n

An.

Proof.

An+1 =
2n+1−1∑

k=2

k−1∑
i=1

(
k

i

)
xiyk−i = An +

2n+1−1∑
k=2n+1

k−1∑
i=1

(
k

i

)
xiyk−i

= An +
2n−1∑
l=2

l−1∑
i=1

(
l + 2n

i

)
xiyl+2n−i +

2n−1∑
l=1

l+2n−1∑
i=l

(
l + 2n

i

)
xiyl+2n−i.

By Lemma 3.3.1-3,

An+1 = An + y2n

An +
2n−1∑
l=1

(
l + 2n

l

)
xly2n

+
2n−1∑
l=1

l+2n−1∑
i=l+1

(
l + 2n

i

)
xiyl+2n−i

= An + y2n

An +A(c)
n +

2n−1∑
l=1

2n−1∑
i=l+1

(
l + 2n

i

)
xiyl+2n−i

+
2n−1∑
l=1

(
l + 2n

2n

)
x2n

yl +
2n−1∑
l=2

l+2n−1∑
i=2n+1

(
l + 2n

i

)
xiyl+2n−i

= An + y2n

An +A(c)
n + 0 +A(r)

n +
2n−1∑
l=2

l−1∑
i=1

(
l + 2n

i

)
xl+2n−iyi

= An + y2n

An +A(c)
n +A(r)

n + x2n

An. �

Theorem 3.5 For n > 1 and 2n−1 < k < 2n, the coboundaries ck over Zn
2 can be

defined recursively:

ck(x, y) =

{
(xk−2n−1

+ ck−2n−1) y2n−1
+ x2n−1

(yk−2n−1
+ ck−2n−1), w(k) ≥ 3

x2r

y2n−1
+ x2n−1

y2r

, k = 2n−1 + 2r, r = 0, . . . , n− 2.

Proof. By Lemma 3.4,
∑2n−1

k=2n−1 ck(x, y) = y2n−1
An−1+A

(c)
n−1+A

(r)
n−1+x

2n−1
An−1.

Hence ck(x, y) = y2n−1
ck−2n−1 + xk−2n−1

y2n−1
+ x2n−1

yk−2n−1
+ x2n−1

ck−2n−1 .
If w(k) = 2 then w(k − 2n−1) = 1 and ck−2n−1 ≡ 0. �
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We distinguish between the basis coboundaries ck with w2(k) = 2 and those with
w2(k) ≥ 3, since it is plain from (10) and Corollary 4.3 that the ck with w2(k) = 2
form a basis for S+ .

Corollary 3.6 For n > 1, define C = span{ck, k = 2, . . . , 2n − 1, w2(k) ≥ 3} and

bij(x, y) = c2i+2j (x, y) = x2i

y2j

+ x2j

y2i

, x, y ∈ GF (2n), 0 ≤ i < j ≤ n− 1.

Then S+ = span{bij , 0 ≤ i < j ≤ n− 1} and B = S+ ⊕ C. �

4 A polynomial basis for cocycles over Zn
2

From now on, we consider cocycles in Z2(Zn
2 ,Zm

2 ), n ≥ m ≥ 1, where we can say
more about the subgroup of symmetrisation cocycles S2

+. Not only is every symmetri-
sation multiplicative, it is a coboundary.

Lemma 4.1 Let G ∼= Zn
2 and C ∼= Zm

2 , n ≥ m ≥ 1.

(i) ker(S+) = S2(G,C) so S2
+(G,C) ≤M2(G,C) ∩ S2(G,C).

(ii) S+ = ∂ ◦D so S2
+(G,C) = (∂ ◦D)(Z2(G,C)) ≤M2(G,C) ∩B2(G,C).

Proof. (i) This follows by definition since ψ− = ψ+ and ψ− is multiplicative.
(ii) If ψ ∈ Z2(G,C), then ∂(Dψ)(x, y) = ψ(x + y, x + y) + ψ(x, x) + ψ(y, y) =
(ψ(x, y) + ψ(x, y + x+ y) + ψ(y, y + x)) + ψ(x, x) + ψ(y, y) by (1), which equals
ψ(x, y) + (ψ(y + y, x) + ψ(y, y) + ψ(y, x)) + ψ(y, y) again by (1), which equals
S+(ψ)(x, y). �

Hereafter, assume G = C = (GF (2n),+) ∼= Zn
2 . We will abbreviate by Z,

B, M , S and S+ the finite abelian groups of cocycles, coboundaries, multiplicative,
symmetric and symmetrisation cocycles respectively. In this case, by Proposition 2.1,
Z is a GF (2n)-vector space of dimension N = 2n +

(
n
2

)
− 1.

The function φ : G → G is said to be linearised or quadratic, respectively, if
every monomial summand has degree of binary weight ≤ 1 or ≤ 2, respectively. A
polynomial for which every monomial summand has degree of weight 2 is called a
Dembowski-Ostrom (DO) polynomial in [2]. That is, a polynomial φ in GF (2n)[x] is
DO if, when reduced modulo x2n − x, it is of the form

φ(x) =
n−1∑
j=1

j−1∑
i=0

λij x
2i+2j

, λij ∈ GF (2n). (9)

When G = C, Lemma 4.1 can be improved to show M ∩ B = S+. We need the
following result, proof of which is an easy adaption of that of [2, Theorem 3.2] to the
case p = 2. Proposition 4.2 has been rediscovered by other authors, eg [7].

Proposition 4.2 (cf. [2]) Let G ∼= Zn
2 , let f ∈ C1(G,G) have linearised summand `

and set φ = f − `. Then ∂φ = ∂f ∈ M ∩ B if and only if φ is DO, if and only if f is
quadratic. That is, M ∩B = {∂f : f = φ+ `, φ DO, ` linearised}. �
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Every DO polynomial is the image under the diagonal mapping of at least one
cocycle. For the DO polynomial φ in (9), define

ϕ(x, y) =
n−1∑
j=1

j−1∑
i=0

λij x
2i

y2j

, (10)

which is multiplicative by Theorem 2.6. Then Dϕ = φ and so ∂φ = ϕ+.

Corollary 4.3 Let G ∼= Zn
2 , let φ be a DO polynomial (9) and let ϕ be the correspond-

ing cocycle (10). Then

(i) ∂φ = ϕ+ = ∂ ◦D(ϕ),

(ii) M ∩B = S+ = (∂ ◦D)(Z). �

In Theorem 3.1 we proved the GF (2n)-subspace B of coboundaries has dimen-
sion 2n − n − 1. By Proposition 2.1, Z has GF (2n)-dimension N = 2n +

(
n
2

)
− 1,

so we need only to identify a further n +
(
n
2

)
basis cocycles which are not cobound-

aries. We make the surprising and valuable observation that these may all be cho-
sen to be multiplicative. This observation is not apparent from the theory described
above. The multiplicative cocycles have already been identified in Theorem 2.6. If
i < j, then λijx

2i

y2j

+ λjix
2j

y2i

= (λji + λij)x2j

y2i

+ λij(x2i

y2j

+ x2j

y2i

) =
(λji + λij)x2i

y2j

+ λji(x2i

y2j

+ x2j

y2i

) and in either form the second summand is
a multiple of the symmetrisation coboundary bij(x, y). We have two possible repre-
sentations of λijx

2i

y2j

+λjix
2j

y2i

here, and without loss of generality we choose the
former.

Hence dim(M) = n2 = n + 2
(
n
2

)
and in M there are n linearly independent

multiplicative symmetric cocycles we denote by

di(x, y) = x2i

y2i

, 0 ≤ i ≤ n− 1,

and
(
n
2

)
linearly independent multiplicative asymmetric cocycles we denote by

aji(x, y) = x2j

y2i

, 0 ≤ i < j ≤ n− 1

as well as the
(
n
2

)
linearly independent symmetrisation coboundaries bij(x, y), 0 ≤

i < j ≤ n− 1 already found as a basis for S+.

Theorem 4.4 (Basis Theorem) A GF (2n)-basis for Z2(Zn
2 ,Zn

2 ), n > 1, consists of
the following N = 2n +

(
n
2

)
− 1 polynomials:

1. n multiplicative symmetric non-coboundary cocycles di, i = 0, . . . , n− 1;

2.
(
n
2

)
multiplicative asymmetric non-coboundary cocycles aji, 0 ≤ i < j ≤ n−1;

3.
(

n
2

)
multiplicative symmetrisation coboundaries bij , 0 ≤ i < j ≤ n− 1;

4. 2n −
(
n
2

)
− n − 1 non-multiplicative symmetric coboundaries ck, 2 ≤ k ≤

2n − 1, w2(k) ≥ 3. �
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Corollary 4.5 Define A = span{aji, 0 ≤ i < j ≤ n − 1} and D = span{di, i =
0, . . . , n−1}. Then dim(A) =

(
n
2

)
, dim(B) = 2n−n−1, dim(C) = 2n−

(
n
2

)
−n−1,

dim(D) = n, dim(M) = n2, dim(S) = 2n − 1, dim(S+) =
(
n
2

)
and dim(Z) =

2n +
(
n
2

)
− 1. Furthermore,

1. Z = A⊕D ⊕ S+ ⊕ C = M ⊕ C = A⊕ S;

2. S = D ⊕ S+ ⊕ C;

3. M = A⊕D ⊕ S+;

4. B = S+ ⊕ C. �

Theorem 3.5, Theorem 4.4 and Corollary 4.5 provide us with a new and effective
approach to working with cocycles over Zn

2 . Known algorithms for finding a gener-
ating set of cocycles require costly precomputation of representative cocycles in each
cohomology class, and for a generating set of coboundaries to be found using linear
algebra, on a case by case basis. There are iterative techniques for finding the co-
homology class representatives as n increments, but no simple recursive formula for
coboundaries, such as we have given in Theorem 3.5.

We illustrate the transformation from the basis found by another algorithm to this
basis with a small example.

Example 2 If n = 2, Z ∼= (Z2
2)

4. Using Algorithm 1 [6, 6.3.1], each cocycle ψ
is uniquely defined by the 4 values ψ(1, 1) = α, ψ(ω, ω) = β, ψ(1, ω) = γ and
ψ(1, ω) + ψ(ω, 1) = κ, where ω is a primitive element of GF (4). These values can
be used to identify 4 basis cocycles. By Theorem 4.4, there are 4 basis polynomials
d0(x, y) = xy, d1(x, y) = x2y2, a10(x, y) = x2y and b01(x, y) = xy2+x2y. Suppose
ψ = λ1d0 + λ2d1 + λ3a10 + λ4b01. Then the transform matrix is given by

λ1

λ2

λ3

λ4

 =


ω 1 ω2 0
ω2 1 ω 0
0 0 1 0
1 1 ω 1



α
β
κ
γ

 .
As a consequence of the Basis Theorem, every cocycle from Zn

2 to Zn
2 has a unique

decomposition as a direct sum of a coboundary and a multiplicative cocycle of re-
stricted type, a fact which we do not believe has been previously observed.

Corollary 4.6 Since Z = (A⊕D)⊕B, every cocycle ψ ∈ Z has a unique decompo-
sition as a direct sum of the form ψ = µ⊕ ∂φ where µ ∈ A⊕D is multiplicative and
∂φ is a coboundary.

The known but previously unusable unique decomposition ψ = ψ>+ψ−, where ψ− is
the commutator pairing, is now revealed as the decomposition Z = (A⊕D⊕C)⊕S+,
since ψ− = ψ+ = S+(ψ).

We expect the Basis Theorem and Corollary 4.6 will prove very useful in the search
for orthogonal and other cocycles with low differential uniformity in Z2(Zn

2 ,Zm
2 ),

m ≤ n, for applications in coding and cryptography. For instance, it is conjectured
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in [8] that all orthogonal cocycles in Z2(Zn
2 ,Zm

2 ), n ≥ m ≥ 2 are multiplicative,
based on computed results for n ≤ 4. The decomposition above may be the clue to
discovering if this is true for all n when p = 2. (It cannot be true for odd p [2].)
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