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Proteins are the biomolecular workhorses driving the most bio-
logical processes in any living organism. These processes are based
on selective interactions between particular proteins. So far, the
rules governing the coding of the protein’s biological function, i.e.
its ability to selectively interact with other biomolecules, have not
been elucidated. The resonant recognition model (RRM) is a novel
physicomathematical approach established to analyze the interac-
tion between a protein and its target. The RRM assumes that the
specificities of protein interactions are based on the resonant elec-
tromagnetic energy transfer at the specific frequency for each in-
teraction. One of the main applications of this model is to predict
the location of a protein’s biological active site(s) using digital
signal processing. This paper incorporates the continuous wavelet
transform (CWT) into the RRM to predict the active sites for a
chosen protein example. We have investigated the oncogene func-
tional group using digital signal analysis methods, in particular
Fourier transform and CWT; determined oncogenes’ characteristic
frequency and functional active sites; and performed the design of
the peptide analogous. The results obtained provide new insights
into the structure–function relationships of the analyzed oncogene
protein family.

Keywords—Amino acids, characteristic frequency, digital signal
processing, protein active site, protein function.

I. INTRODUCTION

Proteins are one of the most complex and varied classes of
macromolecules found in the cell. As enzymes, they catalyze
innumerable chemical reactions that would otherwise occur
slowly. They are active as carrier and storage molecules,
in muscle contraction, and in mechanical support. As
antibodies, they are responsible for immune protection; as
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receptors in the nervous system, they are responsible for
the generation and transmission of nerve impulses. Proteins
are polymers built up from amino acids. The great diversity
and versatility of protein sequences are derived from the
properties of 20 different amino acid side chains that may
exist in a protein molecule, which are reflected in the wide
range of bioactivity of the formed protein molecules. How-
ever, proteins are able to express their biological functions
only by achievement of a certain active native conformation,
the so-called three-dimensional (3-D) structure. Obviously,
the particular function of a given protein and its active 3-D
structure are determined by the sequence of amino acids
forming this particular protein molecule. The protein’s
biological function is encrypted within the protein’s primary
structure, i.e., the sequence of amino acids. There have been
many attempts to discover the main principles governing
the functional behavior of proteins. Typical approaches are
either homology characterization of specific features of the
primary and secondary structure of proteins or molecular
modeling of the protein’s 3-D structure. Although such
approaches permit a significant insight into the protein’s
structure and active site location, they still do not provide
sufficient knowledge about informational, structural, and
physicochemical parameters crucial to the selectivity of
protein interactions that can be used for thede novodesign
of peptides or proteins analogous to the desired biological
activity [1], [2].

The resonant recognition model (RRM) [1], [2] employed
in this study essentially belongs to the approaches able to
derive the protein’s functional and structural information
from the analysis of amino acid sequences and dopxyribonu-
cleic acid (DNA). The RRM is a physical and mathematical
model that interprets the protein sequence linear information
using signal analysis methods. In the RRM, the protein’s
primary structure is represented as a numerical series by
assigning to each amino acid in the sequence a physical
parameter value relevant to the protein’s biological activity.

0018-9219/02$17.00 © 2002 IEEE

PROCEEDINGS OF THE IEEE, VOL. 90, NO. 12, DECEMBER 2002 1859

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 22:07 from IEEE Xplore.  Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15610761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The RRM concept is based on the finding that there is a
significant correlation between spectra of the numerical
presentation of amino acids and their biological activity. It
has been found through extensive research that proteins with
the same biological function have a common frequency in
their numerical spectra. This frequency was found to be a
characteristic feature of a protein’s biological function or
interaction [1], [2]. Once the characteristic frequency for
a particular protein function/interaction is identified, it is
possible to use the RRM to predict the amino acids in the
sequence which predominantly contributed to this frequency
and consequently to the observed function. It also becomes
possible to design peptides having the desired periodicities.
Initially, these amino acids were identified using inverse
Fourier transform (IFT) [1], [2]. Wavelet transform (WT),
as a new signal-processing tool for multiresolution analysis
and local feature extraction of nonstationary signals, has
recently been incorporated into the RRM. In our recent
studies, continuous wavelet transform (CWT) was suc-
cessfully used to determine the functional active sites of
different protein families [3]–[5]. The continuous scalogram
of mouse epidermal growth factor (EGF), humanhemo-
globin, prolactin, and tuna heart cytochrome c [3], [15] have
been obtained using different wavelet functions, including
Morley, Meyer, Daubechies, Simlets, Coiflets, and Mexican
Hat. The combination of Fourier and WT methods has been
proposed as a useful analytical tool in determining a pro-
tein’s active site(s). Our preliminary studies suggested that
the high-energy domains of EGF, hemoglobin, prolactin, and
cytochrome c are sensitive to the wavelet type used in the
analysis. Morley/Meyer wavelets are more successful in the
identification of active sites or domains than other wavelet
functions. However, better results could be obtained if a
specific wavelet for the analysis of proteins were designed.

The focus of this study is therefore directed at solving the
problem of functional and structural relationships of onco-
gene proteins using the RRM with the incorporated CWT
method. Oncogenes are a specific group of growth factors
that promotes uncontrolled cell growth and proliferation.
These proteins are derived from normal cellular growth
factors (so-called proto-oncogenes) by a limited number of
modifications: mutations, insertions, or deletions. Because
proto-oncogenes control the cell cycle, it is obvious that
should a proto-oncogene be mutated, the potential for an
unregulated cell cycle results. An unregulated cell cycle is
the essence of cancer. Cells begin to divide uncontrollably,
forming tissue masses, tumors, and the disease known as
cancer. Here we have focused on the question whether there
is a common characteristic of oncogene proteins that causes
their ability to promote uncontrolled cell proliferation,
and if so, whether it is possible to predict modifications
in proto-oncogenes that cause their transformation into
oncogenes.

II. M ATERIALS AND METHODS

With the rapid expansion of the protein databases, the
identification of the biological function of newly sequenced

proteins or the determination of their relationships with
defined functional families becomes a real problem. There-
fore, the introduction of additional information concerning
the relationship between amino acids within the protein
sequence would be helpful. The information encoded in the
amino acid sequence ultimately determines the 3-D structure
and biological function of a protein under physiological
conditions. To understand empirical relationships between
the amino acid sequence, structural patterns, and functional
sites, the RRM has been invented. This model presents a
completely new engineering approach to analysis of linear
macromolecules: protein and DNA sequences [1], [2]. The
physical nature of the biological function of a protein or
DNA is based on the ability of the macromolecule to interact
selectively with the particular targets (other proteins, DNA
regulatory segments, or small molecules). According to the
RRM, the information pertinent to the protein’s biological
function can be obtained by digital signal analysis of original
amino acid sequences transformed into the numerical series
representing the distribution of delocalized electron energies
along the protein molecule. Taking into account the protein’s
conductive properties, a theoretical model of biologically
relevant protein resonant frequencies was established. These
frequencies were calculated and found to cover a very wide
range including the infrared and visible light [2].

Here, we summarize the analytical methods (RRM and
CWT) briefly.

A. The RRM Physicomathematical Basis

The RRM model incorporates digital signal-processing
methods [1], [2]. It has been shown that certain periodicities
(frequencies) within the distribution of energies of delocal-
ized electrons along the protein molecule are critical for the
protein’s biological function (i.e., interaction with its target).
Once the RRM characteristic frequency for a particular
biological function or interaction has been determined, it is
possible to identify the individual amino acids, the so-called
hot spots, or domains that contribute most to the character-
istic frequency and thus to the protein’s biological function
[1], [2]. The application of the RRM involves two stages
of calculation. The first is the transformation of the amino
acid sequence into a numerical sequence. Each amino acid
is represented by the value of the electron-ion interaction
potential (EIIP) describing the average energy states of all
valence electrons in a given amino acid. The EIIP values for
each amino acid were calculated using the following general
model of pseudopotentials, [6] and are presented in Table 1:

(1)

where is a change of momentum of the delocalized electron
in the interaction with potential , while

(2)

where is the number of valence electrons of theth com-
ponent of each amino acid and is the total number of
atoms in the amino acid. A unique number can thus represent
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Table 1
EIIP Values of Amino Acids

each amino acid or nucleotide, irrespective of its position in
a sequence.

Numerical series obtained in this way are then analyzed by
digital signal analysis methods in order to extract informa-
tion relevant to the biological function. The original numer-
ical sequence is transformed to the frequency domain using
the discrete Fourier transform (DFT). As the average dis-
tance between amino acid residues in a polypeptide chain
is about 3.8 Å, it can be assumed that the points derived
in the numerical sequence are equidistant. For further nu-
merical analysis, the distance between points in these nu-
merical sequences is set at an arbitrary value . Then
the maximum frequency in the spectrum is

. The total number of points in the sequence influences
the resolution of the spectrum only. Thus, for point se-
quence, the resolution in the spectrum is equal to . The

th point in the spectral function corresponds to the fre-
quency . To extract common spectral characteris-
tics of sequences having the same or similar biological func-
tion, the following cross-spectral function was used:

(3)

where are the DFT coefficients of the series and
are complex conjugate DFT coefficients of the series .
Peak frequencies in the amplitude cross-spectral function de-
fine common frequency components of the two sequences
analyzed. To determine the common frequency components
for a group of protein sequences, the absolute values of mul-
tiple cross-spectral function coefficients have been calcu-
lated as follows:

(4)
Peak frequencies in such a multiple cross-spectral function
denote common frequency components for all sequences an-
alyzed (see, e.g., Fig. 1). Signal-to-noise ratio ( ) for each

Fig. 1. Multiple cross-spectral function of oncogene proteins
(46 sequences). The prominent peak(s) denote common frequency
components. The abscissa represents RRM frequencies, and the
ordinate is the normalized intensity.

peak is defined as a measure of similarity between sequences
analyzed. is calculated as the ratio between signal in-
tensity at the particular peak frequency and the mean value
over the whole spectrum. The extensive experience gained
from previous research [1], [2], [7]–[9] suggests that an
of at least 20 can be considered as significant. The multiple
cross-spectral functions for a large group of sequences with
the same biological function have been named the consensus
spectrum. The presence of a peak frequency with significant

in a consensus spectrum implies that all of the analyzed
sequences within the group have one frequency component
in common. This frequency is related to the biological func-
tion provided the following criteria are met.

1) Only one peak exists for a group of protein sequences
sharing the same biological function.

2) No significant peak exists for biologically unrelated pro-
tein sequences.

3) Peak frequencies are different for different biological
functions.

In our previous studies, the above criteria have been tested
with more than 1000 proteins from 25 functional groups [1],
[2]. The following fundamental conclusion was drawn from
our studies: one RRM peak frequency characterizes one par-
ticular biological function or interaction [1], [2]. Therefore,
those peaks are named as the RRM characteristic frequen-
cies.

B. “Hot Spots” in Terms of the RRM and 3-D Protein
Structures

It is known that proteins cannot express their biological
function until they achieve a certain active 3-D conforma-
tion. By identifying the characteristic frequency of a partic-
ular protein, it is possible to predict which amino acids in the
sequence predominantly contribute to the frequency and con-
sequently to the observed function [1], [2], [7], [8]. Since the
characteristic frequency correlates with the biological func-
tion, the positions of the amino acids that are most affected
by the change of amplitude at the particular frequency can be
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defined as hot spots for the corresponding biological func-
tion. The strategy for this prediction includes the following
steps.

1) Determine the unique characteristic frequency for the
specific biological function by multiple cross-spectral
analysis for the group of sequences with the corre-
sponding biological function.

2) Alter the amplitude at this characteristic frequency in
the particular numerical spectrum. The criterion used for
identifying the critical characteristic frequency change is
the minimum number of hot spot amino acids that are
least sensitive to further changes in the amplitude of the
characteristic frequency.

3) Derive a numerical sequence from the modified spectrum
using DFT.

It is known that a change in amplitude at one frequency in
the spectrum causes changes at each point in the numerical
sequence. Thus, a new numerical series is obtained where
each point is different from those in the original series.
Detecting the amino acids corresponding to each element
of this new numerical sequence can then be achieved using
tabulated values of the EIIP or other appropriate amino
acid parameters. The amino acids in the new sequence
that differ from the original ones reside at the points most
contributing to the frequency. These hot spots are related to
this frequency and to the corresponding biological function.
The procedure described was used in a number of examples:
IL-2 [8]; hemoglobins, myoglobins, and lysozymes [7];
chymotrypsins [11]; glucagons and tumor necrosis factors
[9]; EGFs, fibroblast growth factors (FGFs), etc. [2]. These
examples have shown that such predicted amino acids
denote residues crucial for protein functions. Consequently,
these hot spot amino acids are found spatially clustered in
the protein’s 3-D structure in and around the protein active
site. As these specific amino acids strongly influence the
characteristic frequency, their cluster represents a site in
the protein where the signal of characteristic frequency for
the specific protein property is dominant. Since this cluster
of amino acids has been found positioned in and around
the active site (see Fig. 2), it is proposed that these specific
amino acids play a crucial role in determining the structure
of the active site, and possibly the active structure of the
whole molecule [7], [10].

C. Bioactive Peptide Design

Following the determination of the RRM characteristic
frequencies and corresponding phases for particular biolog-
ical functions, it is possible to design amino acid sequences
having those spectral characteristics only. It is expected the
designed peptide will exhibit the desired biological activity.
The strategy for the design of such defined peptides is as
follows.

1) Within the multiple cross-spectral analysis of the group
of protein sequences sharing the corresponding biolog-
ical function, determine the unique RRM frequency char-
acterizing this specific biological function/interaction.

Fig. 2. Three-dimensional structure of the Ha-ras oncogene
product p21 shown using the ribbon with CPK surfaces. The active
site is denoted by the guanine triphosphate (GTP) molecule (in
stick presentation) bound to the p21 oncogene product. It can
be observed that all predicted hot spot amino acids are clustered
around the active site.

2) Define the characteristic phases at the characteristic fre-
quencies for the particular protein that is chosen as the
parent for agonist/antagonist peptide design.

3) Derive a numerical sequence from the known character-
istic frequencies and phases. This can be done by sum-
ming sinusoids of the particular frequencies, amplitudes,
and phases. The length of the numerical sequence is de-
fined by the appropriate frequency resolution and the re-
quired peptide’s length.

4) Determine the amino acids that correspond to each ele-
ment of the new numerical sequence. It can be achieved
by the tabulated EIIP or other appropriate amino acid pa-
rameters [1], [2], [9].

D. The Continuous Wavelet Transform Model

Using IFT, we can identify only a number of single amino
acids mostly contributed to the particular frequency. How-
ever, the protein active site is usually composed of domain(s)
within the protein molecule. Applying the WT, we observe
a whole frequency/spatial distribution and thus are able to
identify the domain(s) of high energy of a particular fre-
quency along the sequence. The CWT is a relatively new
signal-processing tool effective for multiresolution analysis
and local feature extraction of nonstationary signals [4]. The
WT can be viewed as an inner product operation that mea-
sures the similarity or cross correlation between the signal
and the wavelets. The continuous version of the WT of the
signal ( ) is defined as

(5)

where is the shift factor (the translation factor of the wavelet
function along the time axis) and is the scale factor (it
scales a function by compressing or stretching it). CWT is
one of the time- or space-frequency representations. A time
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(space)-frequency representation of a signal provides infor-
mation about how the spectral content of the signal evolves
with time (space), thus providing an ideal tool to dissect, ana-
lyze, and interpret signals with transients or localized events.
This is performed by mapping a one-dimensional signal in
the time (space) domain into two-dimensional time (space)-
frequency representation of the signal. Because CWT pro-
vides the same time/space resolution for each scale, CWT
can be chosen to localize individual events, such as the ac-
tive site identification. The particular wavelet chosen here for
critical amino acid identification is the Morlet, which is a lo-
cally periodic wave-train

(6)

where and is the constant used for normaliza-
tion.

From (6), it can be seen that the Morlet wavelet is a com-
plex sine wave modulated by a Gaussian function. The time-
frequency version of CWT can be achieved by making the
substitution

(7)

in which the analyzing wavelet becomes essentially a proto-
type band-pass filter with center time and center fre-
quency . The center frequency and frequency bandwidth
of the CWT vary with scale. However, their ratio remains
fixed. It is the constant property of the wavelet. The under-
lying property of wavelets is that they are pretty well lo-
calized in both time and frequency [4]. A product of the
uncertainties of both time and the frequency is bound by
the Heisenberg uncertainty principle; no filter can have a
width product smaller than . The Gaussian filters (Morlet
wavelet) attain this theoretical limit. Strictly speaking, the
CWT provides a time-scale representation rather than a time-
frequency representation. However, the scale factor of CWT
is closely related to the frequency, and this makes the map-
ping from time-scale representation to time-frequency rep-
resentation possible. The active sites along the protein se-
quence are determined through studying the set of local ex-
trema of the moduli in the WT domain. Those energy-con-
centrated local extrema are the locations of sharp variations
points of the EIIP and are proposed as the most critical lo-
cations for protein’s biological functions. The wavelet ap-
proach incorporated to the RRM has been tested on a number
of different protein groups [3], , [5], [12]–[15].

III. RESULTS

In this paper, the RRM approach has been applied to the
analysis of the oncogene protein family for the understanding
of the structural and functional relationship within this pro-
tein group. All sequences have been taken from the Protein
Data Bank, Brookhaven National Laboratory. Twenty-eight
viral and 18 cellular proteins, which are the products ofmyc,
myb, mos, fes, fps, fgr, fms, erb, ras, src, abl, yes, syn, and
int, have been analyzed within the RRM. Here we have deter-
mined the RRM characteristic frequencies of analyzed onco-

genes as a whole functional group (46 sequences), as well as
the specific characteristics of different subgroups: viral (28
sequences) and cellular (18 sequences) oncogene proteins.
Also we have identified the hot spots, or domains that con-
tribute mostly to the observed protein’s biological function
of the selected protein sequences. The model protein studied
here is the p21ras oncogene product (Harvey Murine sar-
coma virus) shared with a number of other oncogenic pro-
teins the ability to transform cells. In this paper, we have pre-
dicted the active sites for the chosen protein example using
the CWT incorporated into the RRM. In addition, the compu-
tational design of peptide analogous, based on the frequency
and phase predicted by the RRM, has been performed.

A. The RRM Characteristic Frequency of Oncogenes

The RRM approach has been applied to a group of 46
oncogenes, with the aim of ascertaining their RRM fre-
quency characteristics. As a result, there is one prominent
frequency component at ,
in the cross-spectral function (see Fig. 1), common to the
analyzed protein sequences related to the Ha-ras family.
According to the RRM axioms, the result suggests that
this common frequency characterizes a common biological
activity of this group of oncogene products, i.e., their ability
to transform cells. Then, the whole oncogene functional
group consisting of 46 sequences was divided into two
subgroups according to their originality, and the RRM
analysis was performed for the group of 28 viral oncogenes
and 18 cellular proteins respectively. The obtained RRM
characteristic frequencies are as follows: ,

, and , .
As is evident from Fig. 1, both identified frequencies with
significantly different amplitude ratios are observed in
the cross-spectral function of all oncogene proteins. The
following fundamental conclusion was drawn from our
previous studies [1], [2]: each specific biological function
of the protein is characterized by a single frequency. Thus,
two peak frequencies detected by the RRM correspond to
two different protein functions identified for these groups of
protein sequences.

B. Hot Spots Prediction and the Peptide’s Design

Ras-p21 proteins, the products of theras oncogenes and
proto-oncogenes, are guanine nucleotide binding proteins
functioning as molecular switches in the signal trans-
duction processes in the cell, regulating cell proliferation
and differentiation. These proteins exist in an active or
inactive conformational state. This state depends on the
attachment of growth factors to the extracellular receptors,
and a large number of effector molecules to the protein.
Certain mutations of the protein determined in 30% of
human tumors have been found to negatively regulate the
intrinsic as well as effector-activated GTPase activity of the
protein (GAP). The mutations are usually found in only
two residues: Gly-12 or Gln-61 of the p21 protein. Gln61
was found to be particularly important, as mutations of this
residue eliminate the sensitivity to GAPs. In contrast to
cellular p21, oncogenic p21 mutants are not able to function
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as signal switch molecules and are constantly producing a
growth-promoting signal [16], [17].

In this paper, Ha-ras p21 sequence (Harvey Murine sar-
coma virus) was used as a protein model for further anal-
ysis within the RRM. Once the common characteristic fre-
quency of the analyzed oncogene proteins was identified, the
hot spot analysis of the Ha-rasp21 sequence was performed
using IFT. This analysis was intended to allocate the amino
acids related to the frequency identified
previously. In our results, the following amino acids were
found as hot spots for the analyzed sequence: Gly 10, Gly
12, Gly 13, Gly 15, Phe 28, Gly 48, and Ser 65. Furthermore,
the analysis indicated that Gly 10, Gly 12, Gly 13, Gly 15,
and Phe 28 contribute to the characteristic frequency for p21
oncogenic and GTP-binding function to a greater extent than
Gly 48 and Ser 65 [18], [19]. These predictions have been
compared with other biological and crystallographic find-
ings [16], [17] relevant to the functional and binding sites
of the analyzed Ha-rasp21 protein sequence. To validate the
above predictions, the hot spot amino acids were superim-
posed on the known 3-D crystal structure of p21. The results
are shown in Fig. 2. In addition, we have identified the hot
spot amino acids related to the “nonsignificant” frequency

. These amino acids have been superim-
posed previously and are shown in Fig. 3.

Following the preliminary gains made through our study,
the RRM has been applied to Ha-ras p21 protein to design
the peptide that exhibitsras-like activity, i.e., the ability to
transform cells. The design is based on the characteristic fre-
quency and phase determined within the RRM for the onco-
gene proteins ( , ). We have designed
an amino acid sequence that has only this spectral charac-
teristic. This bioactive sequence designedde novohas only
the desired biological function related to the chosen charac-
teristic frequency and purported to have the corresponding
biological activity. The designed sequence is as follows:

— One-letter abbreviation:
DDRTQWYKHPENLINEPHA

— Three-letter abbreviation:
Asp-Asp-Arg-Trn-Gln-Trp-Tyr-Lys-His-Pro-
Glu-Asn-Leu-Ile-Asn-Glu-Pro-His-Ala

C. CWT in the Protein Sequence Analysis

It should be mentioned that by using IFT, it is possible to
identify only a number of single amino acids that contribute
to the particular frequency. However, the protein active site
is usually built up of domain(s) within the protein sequence.
Applying WT leads to the possibility of observing a whole
frequency/spatial distribution along the sequence and thus
identifying domains of high energy of particular frequency
for this protein molecule. The results obtained within the
study are considered to be useful inputs toward the finding
of the appropriate wavelet function(s) for the analysis of dif-
ferent protein sequences. Here we have compared the per-
formance of different wavelet functions, including Morlet,
Meyer, Daubechies, Simlets, Coiflets, and Mexican Hat, to
improve the detection of the active sites of the oncogene pro-
tein with previously determined characteristics. The contin-

Fig. 3. Three-dimensional structure of Ha-ras oncogene product
p21 shown in ribon presentation. Two separate clusters of the "hot
spot" amino acids are highlighted with CPK surfaces and related to
the frequencyf = 0:0322�0:004 and to thef = 0:0537�0:004

respectively.

uous scalograms of Ha-rasp21 oncogene product using dif-
ferent wavelets functions are shown in Figs. 4–9.

IV. DISCUSSION

The results of hot spot analysis within the RRM and the
further comparison of predicted and experimentally identi-
fied active sites (see Fig. 2) have led us to the following
significant conclusions. As mentioned, the mutations in the
p21 protein at amino acid positions 12, 13, and 61 have been
found in a high percentage of human tumors. The mutations
at these residue positions have a significant effect on the nu-
cleotide dissociation rate constant of p21 and have been im-
plied in oncogenic activation [16], [17]. Three out of five pre-
dicted hot spot amino acids are found to be among the active
site residue (Gly 12, Gly 13, and Phe 28), while the remaining
residues Gly 10 and Gly 15, together with Gly12, Gly 13, and
Phe 28, represent the part of the continuous topological sur-
face around the guanine-binding site. Thus, the predicted hot
spot positions represent the site where the signal of the char-
acteristic frequency ( ) is dominant and
consequently can act as a resonator for this characteristic fre-
quency. Therefore, this characteristic frequency may dictate
the specificity of the protein interactions and the selectivity
of the subsequent energy transfer associated with the func-
tional consequences of the biomolecular interactions. The
results with the Ha-ras p21 oncogene product validate the
RRM concepts and indicate a new strategy to characterize
and interpret the informational content of oncogene proteins
relevant to the cellular transformation.

Results of the use of CWT to the structural and functional
analysis of the Ha-ras p21 protein sequence (see Figs. 4–9)
reveal that the best prediction of functional active sites of
this protein molecule can be gained by applying the Morlet
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Fig. 4. CWT of Ha-ras p21 oncogene using Morlet wavelets
function.

Fig. 5. CWT of Ha-ras p21 oncogene using Daubechis wavelets
function.

Fig. 6. CWT of Ha-ras p21 oncogene using Myer wavelets
function.

wavelets. This corresponds to our previous work, [14], [15],
where we have shown that Morlet wavelets were the most

Fig. 7. CWT of Ha-rasp21 oncogene using Mexican hat wavelet
function.

Fig. 8. CWT of Ha-ras p21 oncogene using Coiflets wavelets
function.

Fig. 9. CWT of Ha-ras p21 oncogene using Simlets wavelets
function.

suitable for the identification of active sites of EGF, FGF, and
other protein sequences. The continuous scalogram of the
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Ha-rasp21 protein (Harvey Murine Sarcoma virus) obtained
by using CWT (Morlet wavelets) is presented in Fig. 4. As
mentioned, the common frequency component of oncogene
proteins corresponding to the common biological function
(the ability to transform cells) was found at

. It can be clearly observed that at lower frequencies
(the upper part of the scalogram), there is a definite area of
high energy between the 100th and the 120th amino acid.
This domain corresponds to the last part of the domain ex-
perimentally predicted to be the Ha-rasguamine-binding do-
main [16], [17]. The real form of the Morlet wavelet function
is . There are two constants
in this function, two and five. Because two determines the
waveform amplitude modulation degree and five determines
the center frequency, they are named here as the amplitude
factor and the frequency factor. To find out if we can optimize
the function for the use with proteins, we have modified both
these factors to produce wavelets having similar shape but
different center frequencies and modulation degrees. All the
scalograms generated here have a maximum scale of ten.

V. CONCLUSION

In this paper, we have tested the RRM concepts applied
to the analysis of oncogene proteins to gain knowledge
about their structural and functional relationships. Although
the analyzed oncogenes are discerned by the diversity of
their functions, and no homologous sequences have been
selected for the analysis, the RRM approach was revealed to
be efficient to identify the common characteristic frequency
and thus the common biological activity within the group,
as well as to predict the oncogene functional active site. Par-
ticularly, the results obtained clearly indicate that while the
Fourier approach for active site identification finds the spe-
cific residues that affect the RRM characteristic frequency,
the wavelet approach identifies the amino acid domains
indicated the sharpest variation locations of energy states
and hence possibly form the so-called resonant boxes. This
paper presents the analysis of the application of different
wavelets’ functions for their possible use in the identifica-
tion of active sites of the Ha-ras p21 oncogene protein. It
has been shown that the results depend on the particular
function used, and it was suggested that Morlet wavelets
are the most appropriate function to use in the active site
prediction analysis. Thus, the domain identified at the 100th
and 120th amino acid within the CWT is proposed as Ha-ras
p21 protein functional and structural active site. This site
predicted by the RRM corresponds to the site(s) determined
experimentally by other authors. Importantly, with the
incorporation of the CWT into the RRM, the prediction of
the protein’s active sites has been improved. This is largely
due to the advantageous properties of the space-frequency
analysis pertinent to the CWT. We believe that this paper,
based on the protein analysis within the RRM, presents an
additional insight toward the understanding of the structural
and functional relationships of oncogene proteins. Finally,
the next step in our research would be to generalize this
analysis for a number of other protein groups.
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