
Effect of Uncertainties on UCAV Trajectory
Optimisation Using Evolutionary Programming

Istas F. Nusyirwan 1, Cees Bil 2

The Sir Lawrence Wackett Centre for Aerospace Design Technology, RMIT University
GPO Box 2476V, Melbourne VIC 3001, Australia,

1 s3093201@student.rmit.edu.au 2 cees.bil@rmit.edu.au

Abstract

There is a recognised need for an automated trajectory
planning to guide manned or unmanned aircraft against an
agile adversary such as a missile. Evolutionary program-
ming approaches provide an alternative to classical functional
optimisation methods with the capability of incorporating
multiple optimisation goals and in the same time tolerating
aircraft constraints. In this study, an evolutionary flight path
planning algorithm capable of mapping aircraft trajectories
in three dimensions under several aerodynamics constraints
is developed. The task of the trajectory was to guide the
aircraft away from interception. The calculations assumes that
the aircraft states are accurate. Good trajectories were found
under this assumption. But in reality, states are measured in an
environment that has uncertainties, such as instrument error,
atmospheric disturbances, etc. This paper studies the effect
of the presence of errors to the accuracy of the algorithm.
Two state variables were studied, i.e. altitude and velocity
for both players. From the simulation, the effect of noises
and interception radius can influence the sensitivity of the
optimiser.

1. INTRODUCTION

A two player pursuit-evasion game between is a problem

in which they strive for a common performance index. One

player (the pursuer) wants to maximise it and the other player

(the evader) wants to minimise it [7]. It is called differential

games when the games are expressed in ordinary differential

equations. The study of pursuit-evasion differential games have

been pursued by many such as [1],[2] and [4]. The results from

this approach, although has attracted a considerable interest,

seem to be difficult for actual application [7].

[7] has suggested several ways to overcome this problem.

The basic idea is to give the players a prior optimal or sub

optimal feedback strategies. These strategies are evaluated by

conducting massive simulations in the parameter space of

initial geometries and guidance law parameters, and analysing

the results. Good solutions were found although, statistically

the probability is very small.

[8] analysed differential game problems consisting of two

aircraft with variable speeds in coplanar motion (horizontal

plane), i.e. 2-dimension. His objective is to solve realistic

aerial combat problems. There parameters were important

for longitudinal acceleration, i.e. speed, turn rate and throttle

setting. The pursuer uses throttle setting and turn rate as the

control input, whereas the evader uses only turn rate as the

control input. A modified differential dynamic programming

method is used as the optimisation algorithm for solving

optimal open-loop differential games.

Another approach of solving pursuit-evasion games is by the

descretisation of optimal control. Two methods were proposed

by Tuomas [6]. One is the solution of the necessary conditions

of the continuous-time game is broken down into ordinary op-

timal control problems. These control problems can be solved

using discretisation and nonlinear programming techniques.

The second method is to discretised the game and transformed

into a bilevel programming problem and solved using a first

order feasible direction method. He demonstrated the solution

using these methods between a realistically modeled aircraft

and a missile at the end game using the terminal time as the

payoff.

In this paper, a technique using evolutionary algorithm

to search for optimal control for an evader against a much

more agile pursuer is proposed. In this technique, an initial

population of strategies for the evader were created in random.

Using evolutionary programming, good strategies were found.

However, in reality, the states of other aircraft has to be

estimated due to sensor noise. The difference between the

actual states and the measured states is called error. The idea is

to introduce ”errors” in the optimisation algorithm and to see

if these errors could influence the accuracy of the algorithm.

In this study, we would like to see the sensitivity of the

optimisation to altitude error and interception radius.

The paper is divided into 5 main sections. Section 2 dis-

cusses the methodology used in the algorithm. In this section,

we discussed about the equation of motion used, the devel-

opment of the evolutionary programming and the intelligence

of the pursuer. Section 3 discusses several scenarios for the

purpose of analysis and comparison. Section 4 discusses the

results from each scenario. And finally, the conclusion is at

section 5.

2. METHODOLOGY

A. Evolutionary Programming

Evolutionary programming is selected because it opens up the

possibility to search for optimal solution with the presence

of nonlinearity, parameter discontinuity and discrete input.

2007 Information, Decision and Control

1-4244-0902-0/07/$20.00 2007 IEEE 219

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 19:09 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15610667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Although the search is stochastic but still with the presence

of powerful computer power, good solutions can be found in

a relatively short time, i.e. around 10-15 seconds.

This algorithm gives the optimal path in three dimensions

just as like the actual avoidance manoeuvre executed by an

aircraft.

In this method, the search for optimal path begins by

initially randomly generating a population of possible paths

[3]. A path consists the information of heading angle change,

flight path angle change and thrust setting for every time step.

Each member of the population (a solution) is evaluated

and given a fitness value. The fitness value tells how good the

solution is.

The evaluation of the solution is done by running a simu-

lation for a period of time. In this case for 100 seconds. The

simulation starts at a known initial states of both evader and

pursuer at time, t = 0. The evader uses the path given by the

tested solution and the pursuer uses its own guidance system to

guide itself toward the evader. A solution is considered good if

within the 100 seconds of the simulation, the evader manages

to evade interception and, at the same time, does not go

over the aircraft’s aerodynamic and performance constraints.

If the solution exceeds the aircraft’s constraints, although

successfully avoid interception, the solution is considered “not

good” but still can be used to produce the next offspring. The

reason is to avoid from being locked in the local optimal region

during the optimisation cycle.

Recombination through mutation is perform after evalua-

tion. Good solutions are retained and mutated in hoping it

produces a much better solution. The mutated solutions are

called the offspring. The offspring and the parent are combined

together to be the next generation of the population. The

population has to go through the evaluation cycle again.

The cycles are repeated until the number of maximum

population has been reached. The best solution is the solution

that has the highest fitness value.

B. Path Representation

In each population, there are 100 strategies or solutions. A

strategy is actually an instruction for the aircraft to change its

heading, flight path angle and throttle setting at every second.

For example, at t = 0 s, the aircraft changes its heading angle

by 20 degrees to the left, climb up by 15 degrees and set the

throttle setting to 0.7, and at t = 1 s, again the aircraft has to

change its heading angle, flight path angle to a new direction

and the throttle setting to a new setting. The duration of the

process is 100 seconds. The 100 seconds duration is chosen .

To represent a strategy in a computer program, the change

of heading (ψ), flight path (γ) angles and the throttle setting,

1, has to be coded. This is made possible by determining the

maximum permissible range for the heading, flight path angles

and the throttle setting. In this research, the range of the angles

is restricted between −150 to 150 for both heading and flight

path angles, and the range of the throttle setting is between

0.2 and 1.0.

Fig. 1: Definition of heading angle (ψ) and flight path angle (γ)

TABLE 1: ENCODING THE HEADING ANGLE, FLIGHT PATH ANGLE AND

THROTTLE SETTING

ID Heading Angle Change Flight Path Angle Change, Throttle
(ψ), deg (γ), deg Setting

1 -15 -15 0.2
2 -15 -15 0.3
3 -15 -15 0.4

.

.

.
.
.
.

.

.

.
.
.
.

5625 15 15 1

Discrete angle interval of 2.50 was used for heading and

flight path angles, and for throttle setting the interval is 0.1.

With this respect, we can now generate (24+1)(24+1)(9) =

5625 possible combinations of heading angle change, flight

path angle change and throttle setting. Table 1 shows the

coding of heading angle change, flight path angle change and

throttle setting.

Instead of directly using the angles, the strategy uses the

values of IDs as shown in Table 1. A series of numbers

valued between 0001 and 5625 are randomly constructed

such as shown in Figure 2 with 100 four-digits integer were

Fig. 2: An example of coded path

220

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 19:09 from IEEE Xplore. Restrictions apply.

ordered in series. The first value is 5314 means turn 13.750

to the left, cimb 3.750 and set the throttle to 0.5%. Next

manoeuvre is 0084 which means ‘and then turn 150 to the

right, dive 3.75 and set the throttle to 0.4’. This is repeated

for the next sequence up to the last sequence, i.e. 1568. The

whole process is called the trajectory/path of the aircraft or a

strategy. A population consists of 100 strategies. The number

of population used in this study is set to 30.

C. Equation of Motion

In order to make the simulation as realistic as possible, aircraft

equation of motion is applied. Three degree-of-freedom or

point-mass aircraft model is used in this simulation. In this

study, the trajectory of the vehicle at its center of mass (c.m.)

is of greater interest than its attitude motions.

Newton’s second law, aerodynamic and performance data

are used for the simulation. We used the so-called Cartesian

approach to simulation the aircraft’s states [5]. The state vari-

ables are the vehicle’s inertial velocity and inertial positions.

The derivation of the Cartesian approach is relatively

straight forward. The inertial position and velocity coordinates

are integrated from the Newton’s second law. All the aerody-

namic and the propulsion forces are fed into the Newton’s

second law equation given by Eq. 1.

mDIvI
B = fa,p +mg (1)

On the left side of Eq. 1 is the rotational derivative to the

inertial frame I , with the body to inertial velocity V I
B . The

position of the aircraft in the inertial coordinate is found by

integrating the velocity vector with respect to time.

The basic aerodynamic forces such as lift and drag are

calculated based from the aircraft actual aerodynamic coef-

ficient, CL and CD which are the function of altitude and

Mach Number.

The propulsion force or thrust is a function of Mach

Number, altitude and throttle setting. The thrust is modeled to

be constant with airspeed and proportional to the air density

as given in Eq. 2.

TA = τ
ρ

ρ0
TA0 (2)

where τ is a throttle setting [0-1], ρ is the air density at

altitude, ρ0 is the air density at standard sea level and TA0

is the full-throttle thrust developed in standard sea level.

The maximum turning rate is calculated by Eq. 3.

ψ̇max =
g
√
n2

max − 1
V

(3)

D. Pursuer’s Control and Guidance

Proportional Navigation Guidance system is employed by the

pursuer. The navigation constant for in this study is set to be 4.

The pursuer will use this guidance law throughout the game.

The pursuer’s speed is governed through Newton’s Second

law. Thus the throttle setting, altitude, bank angle and flight

path angle determine the speed.

TABLE 2: AIRCRAFT CONFIGURATION

Role
Parameter Pursuer Evader
Mass (kg) 6875 8500

Wing Area (m2) 27.9 38
Wing Span (m) 9.1 11.4

Xinitial (m) 0.0 6000.0
Yinitial (m) 0.0 0.0
Zinitial (m) 5000 5000

CLα 1.1 1.3
CD0 0.0412 0.0452

k 0.9 0.9
Thrust at Standard

Sea Level (N) 160,000 180,000
Maximum N 9 9
Minimum N -4 -4

Max Fuel Weight (kg) 3100 4000

TFSC (N/s/N 5.8×10−5 6.0×10−5

PNG Ratio 4 n/a

We assume that the pursuer always flies close to maximum

speed, thus the turning is always governed by the aircraft

structural limit.

The pursuer’s initial states read by the evader are corrupted

to a certain degree to simulate the error. The preceding

pursuer’s states are calculated and predicted on board the

evader’s computer.

The evader is assumed to know the pursuer’s navigation

guidance system and is using it in finding optimal trajectory

to evade interception by the pursuer.

3. CASE STUDIES

We consider the problem by varying the error level and the

interception radius. The error level selected is from 5% up

to 25% from the actual states. At each error level, we would

vary the interception radius. For each analysis, the number

of trajectories without and with interception are observed and

plotted. Table 2 shows the aircraft parameter studied in this

paper. The maximum duration of the game is set to only 200

seconds.

The evader reads the pursuer’s initial states and based from

that, the evader optimises its trajectory. Good trajectories are

found from the optimisation algorithm when considering there

is no error to the pursuer’s initial states. The next question is

by how much does the presence of error could effect the result

of the optimisation algorithm.

As to know this, we consider two pursuer states, i.e. initial

altitude and initial speed. The initial altitude are corrupted by

using Eq. 4.

ze = zactual + zerror (4)

where ze is the pursuer’s altitude as seen by the evader, zactual

is the actual pursuer’s altitude and zerror is the introduced

error.

It is assumed that the pursuer have a fixed throttle setting

and its guidance system is known a priori by the evader.

221

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 19:09 from IEEE Xplore. Restrictions apply.

Fig. 3: The encounter in three dimension. The duration is 200 seconds.

Fig. 4: Maximum error before the optimisation fail to give a good solution.
Pursuer’s maximum thrust is 160,000 kN.

4. SIMULATION ANALYSIS

The simulation is in full three dimensions. The evader reads

the pursuer’s states at time, t = 0 s and using that information

the evader optimises its trajectory against the pursuer. Example

of the game is as show in Figure 3.

A number of simulations were carried out to determine the

effect of error to the initial altitude of the purser as seen by

the evader. The initial values are important because they are

used to optimal solution against the pursuer.

When the interception radius is small, i.e. between 10 to

30 meters, the presence of errors up to ± 100 meters do not

effect the outcome of the optimisation. Good solutions were

still able to be found. But as the interception radius increases,

the optimisation becomes more sensitive to errors. This can

be seen from Figure 4.

In figure 4, when the interception radius is small, i.e.

10 meters, good solutions are still found even if the error

is close to 50%. As the interception radius increases, the

optimisation becomes more sensitive to initial value error.

As the interception radius reaches 60 meters, even 1% error

could fail the optimisation algorithm. The overall trend is the

minimum error to get good solution steadily reducing as the

interception radius increases.

Fig. 5: Maximum error before the optimisation fail to give a good solution.
Pursuer’s maximum thrust is 200,000 kN.

The pursuer’s maximum thrust could influence the sen-

sitivity of the optimisation algorithm to the initial value

error. Figure 5 shows the effect of errors to the optimisation

algorithm with the pursuer’s maximum thrust is set to 200,000

kN.

Inconsistencies between the interception radius of 20 m and

40 m is expected due to the stochastic nature of the search

algorithm. The interesting part is if the pursuer’s thrust is

higher, the optimisation algorithm could find good solutions

even if the error is relatively large. But the effectiveness is

lost if the interception radius is higher than 40 m.

From Figure 5, the increase of the pursuer’s maximum

thrust by 60% increases the error threshold level for lower

range interception radius, i.e. between 10-30 meters. This

means, the optimisation could still find good solutions even

if the error is more than 100 meters. However, the error

threshold level significantly drop when the interception radius

passes 40 meters mark. The optimisation sensitivity to errors

is maximum when the interception is more than 60 meters. In

this range, even a 1 meter error will fail the optimisation.

5. CONCLUSION

The study has shown that the initial value error could signifi-

cantly reduce the accuracy of the optimisation algorithm. The

magnitude of the errors are, among other, influenced by the

pursuer’s maximum thrust and interception radius.

The evader’s optimisation algorithm could tolerate errors

up to 100 meters if the pursuer’s maximum thrust is high and

has a small interception radius, such as 30 m. The simulation

time is between 10-15 seconds which is almost real time. This

opens up the possibility for its use in real time application such

as UCAV.

The quality of the simulation can be improved by using

six degrees-of-freedom model for both players. The use of

parallel computing can improve the speed of the simulation.

222

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 19:09 from IEEE Xplore. Restrictions apply.

This is done by distributing equally the candidates to multiple

processors.

REFERENCES

[1] Isaac,R., Differential Games, New York: John Wiley and Sons, 1965
[2] Başar, T., Olsder G.J, Differential Games, New York: John Wiley and

Sons, 1965
[3] Bäck,T., Fogel, D.B., Michalewicz, Z., Evolutionary Computation 1:

Basic Algorithms and Operators, Bristol: Institute of Physics Publishing,
2000

[4] Friedman, A., Differential Games, New York: John Wiley and Sons,
1971

[5] Zipfel, P.H., Modeling and Simulation of Aerospace Vehicle Dynamics,
AIAA Education Series, ed. Przemieniecki, Virginia, 2000

[6] R. Tuomas and E. Harry , Applying Nonlinear Programming to Pursuit-
Evasion Games, System Analysis Laborator Research Reports, Helsinki
University of Technology, 2000

[7] Imoda, F., “Some Practical Approaches To Pursuit-Evasion Dynamic
Games”, in Cybernatics and Systems Analysis, vol. 38, no.2, 2002, page
276-291

[8] Järmark, B., Hillberg, C., “Pursuit-Evasion Between Two Realistic
Aircraft”, in Journal Guidance, Dynamics and Control, Vol. 7, no.6,
1984, page 690-694

[9] J. Wang and S.Y. Chao, “Sensor Noise Model Development of a
Longitudinal Positioning System for AVCS”, in Proceedings of the
American Control Conference ’99 (ACC’99; (ACC’99; June 2-4, 1999,
San Diego, CA, Session FM11-1, pp. 3760-3764.

223

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 19:09 from IEEE Xplore. Restrictions apply.

