
Enhancing the robustness of a speciation-based PSO

Stefan Bird, Member, IEEE, and Xiaodong Li, Member, IEEE

Abstract— Speciation encourages an evolutionary algorithm
to locate multiple solutions in multimodal environments. Spe-
ciation algorithms often require a user to specify a parameter
to define the species radius, which can be a major drawback
since this knowledge may not be available a priori. This paper
proposes a technique using a time-based convergence measure
to overcome this problem. The proposed method is used to
enhance the performance of a speciation-based PSO (SPSO)
and has been shown to be robust over a wide range of values
for this user-specified parameter.

I. INTRODUCTION

Evolutionary Algorithms (EA) have been shown to be

very effective in solving difficult optimisation problems. EAs

were initially designed to solve unimodal problems, that is

problems with only one peak. However, there is a large class

of problems that have more than one optimum. These are

known as multimodal problems. They may have many local

optima, many global optima or both. EAs can have difficulty

solving problems with many local optima as they can become

trapped on a local peak. For problems with many global

optima, the simple EAs will generally only converge on one

of the optima. Often it is desirable to locate most or all of

the optima so the user can be presented with a choice.

Several techniques exist to provide better performance on

multimodal problems. These include derating [1], restricted

tournament selection [2], crowding [3], [4], fitness shar-

ing [5] and speciation [6], [7], [8], [9], [10].

Speciation, also known as niching, improves EA perfor-

mance on multimodal problems by allowing different areas of

the problem space to be explored independently. Individuals

are grouped into species based on their proximity; the al-

gorithm either discourages or prohibits interactions between

different species. Speciation reduces the risk of premature

convergence by having several populations converging on

different areas simultaneously. Even if one species becomes

trapped in a local peak, chances are that another will locate a

global optimum. The EA is also able to locate multiple global

optima simultaneously as the populations on each optimum

are not affected by each other.

One speciation technique, speciation-based PSO

(SPSO) [8], has shown to be effective on a variety of

multimodal problems. It has a drawback however in that it

requires the user to specify the radius r of each species. The

algorithm is quite sensitive to the value this parameter is set

to [8]. Setting it too small causes many particles to become

Stefan Bird is with the School of Computer Science and Informa-
tion Technology, RMIT University, Melbourne, Victoria, Australia (email:
stbird@seatiger.org).

Xiaodong Li is with the School of Computer Science and Information
Technology, RMIT University, Melbourne, Victoria, Australia (email: xi-
aodong@cs.rmit.edu.au).

trapped in local optima. Setting it too large prevents the

algorithm from locating nearby optima - peaks within r of

an already-found peak will not be seen. This paper presents

an enhanced version of SPSO, ESPSO. This new algorithm

is able to locate individual optima, even if they are within r

of each other.

Section II presents an outline of existing research. Sec-

tion III describes the enhancements to SPSO, and our

testing methods for this new algorithm will be explained

in Section IV. The effectiveness of the enhancements will

be discussed in Section V, followed by some concluding

remarks in Section VI.

II. PRIOR WORK

In this section, we will give an introduction to particle

swarms. We will then describe how SPSO enhances parti-

cle swarms, improving performance in multimodal environ-

ments.

A. Particle Swarms

Particle Swarm Optimisation (PSO) is a stochastic search

strategy. It maintains a population of “particles” which travel

around the search space. Each particle is able to remember a

single location - the best point it has found so far, known as

its personal best. It is also connected to several neighbours

with which it can communicate the fitness and location of

its personal best.

To decide where to move next, each particle chooses a

point somewhere along the line running between its personal

best and the fittest personal best of any of its neighbours,

known as the neighbourhood best. While the particle will aim

for this point, it has momentum, meaning it will generally

overshoot the point and have to turn around and return. By

continually overshooting, the particle is able to thoroughly

explore the area, hopefully finding an even better point.

When a particle finds a good location, its neighbours become

aware of and are attracted to the point. Once they reach the

area and discover fitter points for themselves, they attract

their neighbours, who attract their neighbours and so forth.

Assuming that the particles have found the best known

optimum, eventually the whole population will converge on

the peak.

We have used Clerc’s constriction coefficient PSO vari-

ation in our testing [11], [12] as it guarantees conver-

gence [11]. It is mathematically described thus:

~v(i,t+1) = χ(~v(i,t) + ϕ1(~p(i,t) − ~x(i,t)) + ϕ2(~p(g,t) − ~x(i,t)))
(1)

~x(i,t+1) = ~x(i,t) + ~v(i,t+1) (2)

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

843

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15610642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) Peak a has been located, but b is unlikely to be found because
r is set too large; particles approaching peak b are attracted to
a.

(b) The swarm is able to locate both peaks because r has been
set to the ideal value for this problem. Determining the correct
value for r often requires knowledge of the problem domain.

Fig. 1. The effects of setting r too large in SPSO

where:

ϕ1 = c1r1, ϕ2 = c2r2,

χ =
2κ

∣

∣2 − c −
√

c2 − 4c
∣

∣

(3)

Equations (1) and (2) are run at every step t. The velocity

of the particle at step t is represented as ~v(i,t), and its current

location ~x(i,t). The particle’s personal and neighbourhood

best locations are denoted by ~p(i,t) and ~p(g,t) respectively.

In equation (2) the particle’s new velocity is added to its

current position to calculate the next location for the particle.

The constriction factor χ, calculated in Equation (3), is used

to dampen the velocity. This prevents violent oscillations

around an optimum, allowing the particles to converge. c1

and c2 are constants, typically set to 2.05. c = c1 + c2. κ

is also a constant, usually set at 1. r1 and r2 are uniform

random numbers between 0 and 1.

B. SPSO

Pétrowski [10] developed a clearing procedure for genetic

algorithms. The individuals are sorted in descending order

of fitness and placed into a list. For each particle in the list,

the algorithm scans all of the particles that come after it. All

subsequent particles that are closer than the user-set distance

parameter σ of the current particle have their fitness set to 0.

By doing this, each peak is represented by a single individual.

Brits et. al. created an algorithm called NichePSO [6].

Unlike a normal PSO, in NichePSO the particles use a

cognitive model and do not communicate. The system tracks

the fitness of each particle over the last 3 steps. If the variance

of the fitness is less than the user-set parameter δ, a subswarm

is created between that particle and its nearest topological

neighbour. Particles that subsequently move to a point within

the species join that species.

In [13] Kennedy presents a speciation technique that uses

a clustering algorithm to allocate particles to species. The

species centre is used as the particle’s personal best. The

clustering algorithm used requires the number of clusters to

be set a priori. Kennedy doesn’t report how different values

of this parameter affect performance.

In [8] Li extended Pétrowski’s algorithm to develop SPSO.

Li’s algorithm allocates each particle to a species based on

that particle’s proximity to a better particle. At each iteration,

the particles are sorted by the fitness of their current location,

so that the fittest particles are at the front of the list. The

species list is then reset so it is empty. The list is traversed

and each particle is checked in turn:

• If the particle is not within the radius r of any exist-

ing species, create a new species containing only that

particle. This particle is set as the species seed and the

species added to the species list.

• Otherwise the particle is placed in the first species in

the species list whose seed is within r of the particle.

The particle’s neighbours are all of the particles in its species;

there is no interaction between species.

III. ENHANCING SPSO

The main disadvantage of SPSO is its dependence on the

radius parameter, r. For most problems, the ideal setting

is the largest value that does not cause nearby optima to

interfere with each other. Any set of optima within 2r of

each other can potentially interfere if a significant portion

of one optimum’s catchment area lies within r of another.

Interference occurs when particles seeking an unrepresented

optimum get “captured” by a species representing a neigh-

bouring optimum. If the optima are within r of each other

it becomes impossible for SPSO to differentiate them at all

(see Figure 1).

The purpose of the r parameter is to allow particles to

interact only with others that are in their local area and not

be distracted by a potential solution on the other side of

the search space. However once a peak has been located,

it is desirable to prevent the species representing it from

capturing new particles. This allows nearby optima to be

located without interference from existing species.

A. Detecting Convergence

The “enhanced” parts of ESPSO are only triggered once

a species has converged. The simplest method of detecting

convergence is to require all particles to be within a certain

distance of the seed. This distance is generally very small

relative to r. Although much easier to set than r, this

parameter is still dependant on the scale of the problem

space, meaning there is not a single value that will work

for all problems. Instead ESPSO uses a time-based measure

844

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

(a) The particles have approximately located peak a. The species
seed (see Section II-B) will keep moving as the particles hone
in on the optimum.

(b) Peak a has been located and the species seed has not moved
for s steps. The best particles in the species will be placed into a
sub-population that doesn’t interact with the rest of the swarm.
The other particles will be reinitialised with random positions
and velocities and their personal best memory set to their new
location.

(c) Immediately after the sub-population is created. The particles
that were kept still have the same location, velocity and personal
best, and will continue to converge over time. As there is no
longer a species in the area, other particles are free to come in
and explore, eventually locating peak b.

(d) Other particles move in and start locating peak b. As these
particles do not interact with the particles on peak a in any way,
there is no interference from the existing optimum.

(e) As happened with peak a, the best particles in the species
are about to be placed in a sub-population.

(f) Immediately after the sub-population is created. The particles
on peak b will continue to converge.

(g) The particles on both optima are now converged. Other
particles are free to explore the area looking for any other peaks
that might exist.

Fig. 2. Time-lapse diagram of ESPSO locating two nearby peaks within radius r.

- a species is said to have converged if the personal best

location of its seed has not moved for s steps. This measure

is invariant to the scale of the problem space. This process

is illustrated in Figure 2 parts (b) and (e).

In SPSO, species groupings are determined by the current

location of each particle. ESPSO uses the personal best loca-

tion instead, as it more accurately reflects the true location of

the peak. The personal best is also far more stable; it would

be impractical to use the time-based convergence measure

with the particle’s current location - the seed particle would

have to have stopped moving completely before a species is

considered to have converged.

845

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

TABLE I

EVALUATION FUNCTIONS. THE OPTIMAL VALUE OF r FOR SPSO IS DETERMINED AS SOMEWHERE BETWEEN 50% AND 90% OF THE DISTANCE

BETWEEN THE CLOSEST TWO OPTIMA FOR THAT FUNCTION.

Function Function Name Range Optimal r

(SPSO)

Comments

F1 Brainin RCOS [14]: F1(x, y) = (y −
5.1x

2

4π2 + 5x
π
−6)2 +10(1− 1

8π
)cos(x)+10

−5 ≤ x ≤ 10; 0 ≤
y ≤ 15

4 3 global optima

F2 Six-Hump Camel Back [14]: F2(x, y) =

−4[(4−2.1x2+x4

3)x2+xy+(−4+4y2)y2]

−1.9 ≤ x ≤ 1.9;

−1.1 ≤ y ≤ 1.1
1 2 global optima and

4 local optima

F3 Deb’s 1st Function [15]: F3(x) =
sin6(5πx)

0 ≤ x ≤ 1 0.15 5 equally spaced

global optima

F4 Himmelblau [1]: F4(x, y) = 200− (x2 +
y − 11)2 − (x + y2 − 7)2

−6 ≤ x, y ≤ 6 3 4 global optima

F5 Shubert 2D [7]: F5(x, y) =
∑5

i=1 i cos[(i + 1)x + i]
∑5

i=1 i cos[(i +
1)y + i]

−10 ≤ x, y ≤ 10 0.75 18 global optima in 9

clusters, many local

optima

Fig. 3. The Shubert 2D test function has 18 global optima located in 9
pairs, as well as many local optima. SPSO performs poorly on this function
due to the proximity of the global optima and multitude of local peaks.

B. Preventing Future Interactions

When a species has converged, a sub-population contain-

ing m particles is formed (See Figure 2 parts (c) and (f)).

The best m particles from the original species are placed

in the sub-population; all other particles in the species are

reinitialised with a random location and velocity and their

personal best memories set to their new position. This is

similar to the Pmax method presented by Parrott and Li [9],

where they placed an upper limit on the number of particles

that are allowed to join each species. If there are fewer

than m particles in the species, new particles are created

near the seed. These particles have a random location and

velocity, however the new particles will be closer than the

furthest existing particle in the species. Their velocity is also

limited so that it is smaller than the distance between the

furthest particle and the seed. The species then becomes a

separate sub-population1 and does not interact with any other

1Note that a sub-population is different from a species. Particles are free
to join and leave species as they move around the decision space. Particles
in a sub-population cannot leave and do not interact with particles outside
that sub-population.

particles. If the original species had only one particle, the

distance and velocity limits are set to r.

C. Removing Duplicate Species

A potential problem with ESPSO is duplicate species. It is

possible for a species to locate an optimum, be converted to

a sub-population, then have another species locate the same

optimum. The result is multiple sub-populations located at

the same point. To counter this, once a seed has been at

the same location for greater than s steps and is within the

Euclidean distance in the search space δ of a fitter seed,

the species or sub-population is killed. δ is extremely easy

for the user to set - it represents the smallest difference

between optima that the user cares about. If the population

size after removing duplicate species is smaller than the

desired population size, new particles with random positions

and velocities will be created to meet the shortfall.

IV. PERFORMANCE MEASUREMENT

The primary motivation for this work is to reduce the

sensitivity of SPSO to large values of r. The performance of

ESPSO will be compared to SPSO on 5 test functions, shown

in Table I. These functions were chosen as they represent a

variety of different problem types:

• Brainin RCOS (F1) and Himmelblau (F4) both have

peaks with large catchment areas. The two right-hand

peaks of Himmelblau can cause SPSO problems if r

is set too large, even if it is not set large enough to

encompass both - the peak that is first located has a

tendency to “steal” particles that are exploring the other.

This tendency worsens as r is increased.

• Six-Hump Camel Back (F2) has two global optima with

relatively large catchment areas, however there are also

4 local optima for the particles to become trapped in.

• Deb’s 1st Function (F3) is quite simple to solve even

though there is little separation between peaks.

• Shubert 2D (F5) is the most difficult as it is highly

multimodal. There are 18 global optima, however their

846

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

catchment areas are extremely small. The optima are

located in pairs which are evenly distributed throughout

the search space. The optima in each pair are very close,

meaning that for SPSO to find them all r has to be

set very small. However with this setting most of the

particles become trapped in the many local optima (see

Figure 3).

For F1 through F4, a population size of 50 has been

used. F5, being far more multimodal and challenging, uses

a population of 500.

ESPSO introduces two new parameters, s and m. For

the enhancements to be worthwhile, we need to show that

the parameters are robust across a range of problem types.

We will analyse the effects of different values for these

parameters. For s, we will test values between 1 and 90;

m will be tested with values between 2 and 30. We will also

look at the effect of the total population size - for F1 through

F4 we will test with populations from 10 to 100, F5 will be

tested with populations from 100 to 1000. The population

tests were conducted with m = 8 and s = 3. r was set as

2.5 times the approximate ideal radius for SPSO for each

problem.

To test the robustness of r, it is set to 1
2 , 3

4 , 1, 2.5, 5,

7.5 and 10 times the approximate ideal radius for SPSO on

each function (see Table I). The ideal r value for SPSO is

somewhere between 50% and 90% of the distance between

the closest two optima in the particular problem. This allows

the largest catchment area for each species without caus-

ing undue interference between species. The comparisons

between SPSO and ESPSO are made with m = 8 and s = 3,

and SPSO has been modified to use the personal best location

for species seeds in order to make the results comparable to

ESPSO. All tests are repeated 50 times with δ set to 0.1.

A run is only considered successful if all of the optima are

located to within ε = 0.00001; if this isn’t achieved within

2000 steps the run is marked as a failure.

V. RESULTS

The results section is divided into several subsections. The

first three subsections will analyse the effects of varying s,

m and the population size respectively, and the fourth will

show the robustness of r. The final subsection will give a

comparison between the performance of SPSO and ESPSO.

A. The effect of s

Figure 4 shows the effect of s on the number of evaluations

required to find all of the optima. On all of the functions,

small values allow ESPSO to locate the optima with fewer

evaluations. With an s value of 90, all of the functions took

an order of magnitude more evaluations to complete. There

is little difference in performance for values between 1 and

5 on any of the test problems; we recommend a value of 3

for all problems.

The success rate of ESPSO is less affected by s (Figure 5).

Again small values provide the best success rate on all of

the problems tested. On Shubert 2D, the success rate was far

lower when s is set larger than 20. Since knowledge of the

Fig. 4. A log-log graph showing the number of evaluations required for
ESPSO to locate all optima with different values of s. r is set to 2.5 times
the optimum value for SPSO for each problem, m = 8.

Fig. 5. The number of successful runs with different values of s. r is set
to 2.5 times the optimum value for SPSO for each problem, m = 8.

cluster of 2 peaks is lost from the main population when a

sub-population is formed, each peak cluster must be found

at least twice2. As peaks within r of each other cannot be

discovered at a rate any greater than once every s steps, large

values of s increase the time needed to locate nearby peaks,

thus it is probable the algorithm simply ran out of time trying

to find all of the peaks.

This parameter s can be seen as an “aggressiveness”

control. Large values make ESPSO behave almost identically

to SPSO - a species seed has to be still for a very long time

before the enhancements are activated. As ESPSO becomes

more like SPSO, its efficiency when using large values for

r reduces. Eventually, for very large values of s, ESPSO

will be unable to locate all peaks because the species are

never converted to sub-populations. Similarly, small values

of s make ESPSO very aggressive in converting species to

sub-populations.

2We say at least because it is possible for the same peak to be discovered
multiple times.

847

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

Fig. 6. The number of evaluations required for ESPSO to locate all optima
with different values of m. r is set to 2.5 times the optimum value for SPSO
for each problem, s = 3.

B. The effect of m

From Figure 6 it can be seen that m does not have a large

effect on the number of evaluations required to locate all

of the optima. Values smaller than 6 cause an increase in

the time taken, this is because the sub-populations formed

do not have enough search power to quickly locate a peak.

As the ideal value of s is very small, the sub-populations

are created when the particles are still largely in exploratory

mode - they have not converged very far. A larger number of

particles is likely to locate the peak more quickly, allowing

them to rapidly hone in.

Figure 7 shows that m has a much larger effect on the

success rate of the algorithm. The rapid drops in success

rate are caused by ESPSO running out of particles. Because

the population size for F1 to F4 is 50, large sub-population

sizes can quickly exhaust the population limit. If these sub-

populations have converged on a local peak, there may not

be enough particles left in the main population to locate

the global peaks. A more gradual curve can be seen on

Shubert 2D. Because Shubert is extremely multimodal and

r is still relatively small (1.875) compared to the search

space, many sub-populations are formed on local optima.

As the number of particles in the sub-populations increases

it takes fewer sub-populations on local optima to use up all

the particles. We recommend setting m to 8. This provides

sufficient search power, but does not force the user to use

large population sizes to locate all optima.

Six-Hump Camel Back proved slightly unreliable with

most values of m, although the minimum success rate for

4 ≤ m ≤ 24 was still 94%. For m ≥ 10 this can be explained

as sub-populations being formed on too many local optima,

however we do not have an explanation for values of m less

than this. Future research could focus on why ESPSO has

difficulty on this particular test function.

C. The effect of population size

The population size has an effect on the evaluations

required to solve the problems - Figure 8 shows that larger

Fig. 7. The number of successful runs with different values of m. r is set
to 2.5 times the optimum value for SPSO for each problem, s = 3.

Fig. 8. The number of evaluations required for ESPSO to locate all optima
with different population sizes. r is set to 2.5 times the optimum value for
SPSO for each problem, m = 8, s = 3.

populations use more evaluations; adding unneeded particles

hinders optimisation performance. For every problem except

Brainin RCOS and Shubert 2D, the best performance was

achieved with a population size of 30. Shubert 2D achieved

its best performance with a population size of 300, although

the 100% reliability is only achieved with at least 400

particles. Results for Shubert 2D are shown in Table III.

Population size does not have a large effect on the reli-

ability (Figure 9), provided there are enough individuals to

cover all of the global optima. Since m = 8, this means the

system required approximately 8 particles for each optimum,

although the system achieved 100% reliability using slightly

less than this on most of the fitness functions. The reason for

this is that there are usually a few particles left in the main

population after most of the optima are discovered; these

were able to locate the last optimum.

As the optimum number of particles differs for each test

function we cannot offer a population size that would work

for all, however it may be possible to make this prop-

erty adaptive by adding new individuals when the number

remaining in the main population becomes too low. This

848

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

Fig. 9. The number of successful runs with different population sizes. r

is set to 2.5 times the optimum value for SPSO for each problem, m = 8,
s = 3.

condition indicates there are too many optima for the number

of particles and that it may be possible to locate more

optima. To prevent a population explosion it would probably

be necessary to “reclaim” particles from under-performing

subpopulations before creating new individuals. This could

be a focus of future research.

D. The effect of r

Figures 10 and 11 show the value of r has very little effect

on performance. While there is benefit to setting it close to

SPSO’s optimal value, it is certainly not a requirement. In the

graphs, an r multiplier of 10 corresponds to a radius larger

than the search space on all of the problems except Shubert

2D. This shows it is possible to run ESPSO without using the

r parameter at all; in which case it can be thought of as acting

similarly to sequential speciation algorithm (although it is

still inherently parallel). As r is still a problem-dependant

parameter (even if only limited in effect), we are unable to

recommend a value that will be optimal on a majority of

test functions. If the distance between optima is unknown

though, we recommend setting it to a large value as being the

safest option. Larger values of r encourage more cooperation

between particles, allowing individuals to explore the most

promising areas.

From Figure 11 it appears that small values of r are

somewhat unreliable on Shubert 2D. This is because there

were several runs where ESPSO was unable to locate all

of the optima. Even on its worst run it still located 16 of

the 18 optima, however for the purposes of the graph, this

was still a failure. Figure 13 gives a better representation of

performance on this function when finding every peak is not

a requirement.

E. Comparison to SPSO

Figures 12 and 13 compares the average number of optima

located by SPSO and ESPSO for different values of r on

different test problems. As can be seen, SPSO has a definite

sweet spot where it is able to find most of the optima, most of

Fig. 10. The number of evaluations required for ESPSO to locate all optima
with different values of r. To aid comparison between test functions, r has
been shown as a multiple of SPSO’s optimal r for each test problem.

Fig. 11. The number of successful runs with different values of r.

the time. ESPSO had no difficulty locating all of the optima

when using values of r larger than SPSO’s sweet spot.

Table II compares the relative performance of ESPSO and

SPSO when r is set to the optimal value for SPSO. It can be

seen that on most functions, SPSO required approximately

10-20% fewer evaluations to locate all of the optima. On

Shubert 2D, SPSO required a quarter of the evaluations

that ESPSO did, however SPSO only located every peak

30% of the time. ESPSO appears to be ineffecient at this

r value; increasing it allowed it to find all of the peaks with

a similar number of evaluations to SPSO (see Figure 10).

SPSO was able to find all optima on Six-Hump Camel Back

and Himmelblau 96% of the time and it was successful every

time on Deb’s First Function and Brainin RCOS. ESPSO was

successful on every run for all of the functions.

VI. CONCLUSION

ESPSO enhances SPSO by greatly increasing the robust-

ness of the r parameter - to the point that the algorithm is still

effective even if it isn’t used at all. It introduces three new

parameters, s, m and δ. The first two have been shown to be

robust across the test functions we used. The last is problem

849

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

Fig. 12. Comparing the number of optima found by SPSO and ESPSO
on test functions F1 to F4 for different values of r. For ESPSO, s = 3 and
m = 8. SPSO fails to locate all of the optima as soon as r increases much
beyond the optimal value, whereas ESPSO is still effective even with very
large r values.

Fig. 13. Comparing the number of optima found by SPSO and ESPSO on
the Shubert 2D function for different values of r (s = 3, m = 8).

dependant, however it is intuitive and easy to set - it can

be presented to the user as “Do not show solutions closer

than δ”. Further research could investigate whether ESPSO

is effective on a wider variety of problems, including ones

with higher dimensionality.

REFERENCES

[1] D. Beasley, D. Bull, and R. Martin, “A sequential niche
technique for multimodal function optimization,” Evolutionary

Computation, vol. 1, no. 2, pp. 101–125, 1993. [Online]. Available:
citeseer.ist.psu.edu/beasley93sequential.html

[2] G. Harik, “Finding multimodal solutions using restricted tournament
selection,” in Proceedings of the Sixth International Conference on

Genetic Algorithms. Morgan Kaufmann, 1995, pp. 24–31. [Online].
Available: citeseer.ist.psu.edu/harik95finding.html

[3] K. D. Jong, “An analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, University of Michigan, 1975.

[4] S. W. Mahfoud, “Crowding and preselection revisited,”
in Parallel problem solving from nature 2. Amsterdam:
North-Holland, 1992, pp. 27–36. [Online]. Available: cite-
seer.ist.psu.edu/mahfoud92crowding.html

[5] D. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proceedings of the Second

TABLE II

NUMBER OF EVALUATIONS REQUIRED TO FIND ALL GLOBAL PEAKS

(MEAN AND STANDARD DEVIATION).

Function Pop. ESPSO SPSO

F1 50 5250 (±1184) 4387 (±943)

F2 50 4863 (±1151) 3716 (±951)

F3 50 3167 (±904) 2886 (±737)

F4 50 7279 (±1260) 6080 (±864)

F5 500 415256 (±509870) 103533 (±18956)

TABLE III

ESPSO PERFORMANCE ON SHUBERT 2D WITH DIFFERENT POPULATION

SIZES.

Population Number of evaluations Reliability

100 43255 (±0) 2%

200 57130 (±7918) 14%

300 81612 (±20254) 62%

400 99045 (±20669) 100%

500 117100 (±16643) 100%

600 133147 (±18873) 100%

700 162782 (±23952) 100%

800 173864 (±28417) 100%

900 193309 (±19985) 100%

1000 218354 (±36092) 100%

International Conference on Genetic Algorithms, J. Grefenstette, Ed.,
1987, pp. 41–49.

[6] R. Brits, A. Engelbrecht, and F. van den Bergh, “A Niching Particle
Swarm Optimizer,” in Proceedings of the 4th Asia-Pacific Conference

on Simulated Evolution and Learning (SEAL’02), vol. 2, 2002, pp.
692–696.

[7] J.Li, M. Balazs, G. Parks, and P. Clarkson, “A species conserving
genetic algorithm for multimodal function optimization,” Evolutionary

Computation, vol. 10, no. 3, pp. 207–234, 2002.
[8] X. Li, “Adaptively choosing neighbourhood bests using species in a

particle swarm optimizer for multimodal function optimization,” in
Proceedings of Genetic and Evolutionary Computation Conference

2004 (GECCO’04) (LNCS 3102), 2004, pp. 105–116.
[9] D. Parrott and X. Li, “A particle swarm model for tracking multiple

peaks in a dynamic environment using speciation,” in Congress on

Evolutionary Computation (CEC2004), vol. 1, 2004, pp. 98–103.
[10] A. Pétrowski, “A clearing procedure as a niching method for genetic

algorithms,” in Proceedings of the 3rd IEEE International Conference

on Evolutionary Computation, 1996, pp. 798–803.
[11] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,

and convergence in a multidimensional complex space,” in IEEE

Transactions on Evolutionary Computation, vol. 2, 2002, pp. 58–73.
[12] J. Kennedy and R. Eberhart, Swarm intelligence. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2001.
[13] J. Kennedy, “Stereotyping: improving particle swarm performance

with cluster analysis,” in Congress on Evolutionary Computation

(CEC2000), vol. 2, 2000, pp. 1507–1512.
[14] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. New York: Springer-Verlag, New York, 1996.
[15] K. Deb and D. Goldberg, “An investigation of niche and species

formation in genetic function optimization,” in Proceedings of the

Third International Conference on Genetic Algorithms, J. Schaffer,
Ed., 1989, pp. 42–50.

850

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 20:11 from IEEE Xplore. Restrictions apply.

