
 

Fig. 1. Deployment of a remotely piloted vehicle 
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Abstract - Due to the random nature of the ship's motion 
in an open water environment, the deployment and the 
landing of air vehicles from a ship can often be difficult and 
even dangerous. The ability to reliably predict the motion will 
allow improvements in safety on board ships and facilitate 
more accurate deployment of vehicles off ships. This paper 
presents an investigation into the application of artificial 
neural network methods trained using singular value 
decomposition and genetic algorithms for the prediction of 
ship motion. It is shown that the artificial neural network 
produces excellent predictions and is able to predict the ship 
motion satisfactorily for up to 7 seconds. 

I. INTRODUCTION 

 
An algorithm capable of predicting the motion of a 

ship is required for the successful deployment of air 
vehicles that are currently used on ships that operate in 
open sea environments. The predicted motion and 
attitude of the ship will be transmitted to the air vehicle 
to ensure that it is successfully deployed and 
subsequently recovered. Future ship motion will allow 
the correct flight conditions to be calculated thereby 
allowing successful and safe deployment of the air 
vehicle. 

The motion of a ship in an open water environment is 
the result of complex hydrodynamic forces between the 
ship, the water and unknown random processes. This 
leads to the necessity to use statistical prediction methods 
for the prediction of this motion rather then a 
deterministic analysis, which would lead to a ship 
specific model that involves highly complex calculations 
and many assumptions or idelizations [1]. 

Past attempts at ship motion prediction [2-5] have 
shown that traditional statistical prediction techniques 
such as the autoregressive moving average models and 
Kalman filters are unable to maintain a high degree of 
accuracy when the prediction interval is increased above 
3-4 seconds when predicting ship motion in high sea 
states of 5 and above. The traditional statistical 
techniques used for time series prediction have difficulty 
dealing with noisy data, do not have much parallelism 
and fail to adapt to circumstances. 

This paper explores the use of artificial neural 
networks which is a form of artificial intelligence to 
develop an algorithm that is capable of predicting ship 

motions. Artificial Neural Networks, in contrast to 
traditional statistical techniques, promise to produce 
predictions with high accuracy as well as high efficiency 
due to their ability to learn and adapt according to the 
conditions present. 

II. NECESSITY OF RESEARCH 

The ability to predict the ship motion reliably in any 
sea state will enable better control of air vehicles 
operated off ship platforms. For example, the landing and 
take off of helicopters and aircraft whether manned or 
unmanned from ship decks in rough sea conditions can 
be difficult and at times dangerous. 

If the motion of a ship can be predicted with 
reasonable error bounds and communicated to the aircraft 
or helicopter, touchdown dispersion can be improved on 
landing and a smoother aircraft trajectory can be 
achieved on take off. Prediction of ship motion is also 
important for the deployment of missiles and remote 
piloted vehicle from ship platforms such as those shown 
in Fig. 1 and Fig. 2 for the correct trajectory calculation 
[5]. In some cases there is a launch "lock-out" condition 
where the missile or remote piloted vehicle cannot be 
launched safely if the ship's roll angle exceeds a 
predefined operational limit. 

There is a specific need for an algorithm that is 
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Fig. 3. A representation of a single neuron 

Fig. 2. Harpoon surface to surface missile fired from 
the USS New Jersey 

capable of predicting ship motions beyond 7 seconds. 
The algorithm developed in this investigation is vital for 
determining if the air vehicle is in the launch "lock-out" 
condition as their is a delay between the activation of air 
vehicle and when they are actually launched. When it is 
predicted that the angles exceed the launch "lock-out" 
value the algorithm will deny the activation of air vehicle 
until it is not in "lock-out". 

It is important that the predicted angles are of a high 
accuracy as the batteries for the system are "one shot" 
batteries, which means that the process of deployment 
once activated cannot be reversed.  

III. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN) form a class of 
systems that are inspired by biological neural networks 
[6]. A neural network is simply a series of neurons that 
are interconnected to create a network. They are a class 
of non-linear systems and there are a wide variety of 
different approaches that can be used. The use of ANN in 
time series prediction relate to the application of ANN 
for the nonlinear system identification. The use of ANN 
is particularly appealing due to the ability of the ANN to 
learn and adapt which will be important for this 
investigation as one of the underlying goals is to create 
an algorithm that is able to work in all conditions and 
environments. The ANN architecture that will be used to 
create the ANN for time series prediction will be the 
multi-layer feed-forward ANN. This type of architecture 
has a minimum of two layers consisting of the input layer 
and the output layer. In this investigation a three layered 
feed forward neural network consisting of an input layer, 
a hidden layer and an output layer is used. In a 
feed-forward ANN the inputs for each layer come from 
the preceding layer. A single neuron is shown in Fig 3. 

It has n inputs including a bias term, which has been 

set to 1 in this investigation. The inputs are each 
multiplied by their corresponding weight value, which 
are summed together and subsequently entered into an 
activation function. The output of the activation function 
will correspond to the output of the neuron. 
Mathematically, the output of a neuron is given as: 

( )
1

0

n

i i n
i

out f net f x w w
−

=

 = = + 
 
∑    (1.1) 

 
Generally the neuron's operation is not effected 

significantly by the activation function ( )( )f net  but 
the training speed is effected somewhat [7]. The 
activation function is usually a non-linear function that 
will determine the output of the neuron. Its domain is 
generally all real numbers. The range of the output for an 
activation function is usually limited between 0 to 1 and 
sometimes -1 to 1. The majority of activation functions 
use a sigmoid (S-shaped) function. In this investigation 
the activation function shown below was primarily used: 

 ( ) ( )tanhf net net=     (1.2) 
 
The use of ANN for time series prediction has a 

number of distinct advantages. Firstly, any amount of 
information pertinent to the prediction can be 
incorporated into the ANN. There is also no need to 
choose any particular model for the ANN. A validation 
process is included to ensure that the ANN is working 
correctly. It is to ensure that the ANN has not over-fitted 
the data. If the architecture of the ANN is poorly 
designed, the ANN may be able to learn irrelevant details 
specific to the training set which will lead to an ANN that 
is only relevant to the training set. Conversely, the ANN 
may have a deficient architecture where the ANN is not 
able to learn the subtleties required for accurate outputs. 
The validation process should reveal these problems.  

To validate the ANN a simple procedure is used. The 
test set is divided into two. One part of the test set is 
designated for training purposes only while the second 
part is designated as the validation set. The ANN is only 
trained using the training set and no data from the 
validation set is used while training. Once trained, the 
validation set is inputted into the ANN and the resulting 
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Fig. 4. Basic model for time series prediction using 
ANN 

Fig. 5. Flow Chart of the GA process 

predictions based on the validation set are used to 
measure the effectiveness of the ANN. The validation 
process is discussed in detail in section III-B.  

The basic model for time series prediction is shown 
in Fig. 4. Any neural network that is capable of accepting 
real valued vectors as input and producing real valued 
outputs may be used for time series prediction. In the 
diagram above it can be seen that there are seven points. 
Lag 0 represents the current sample while the past six 
values are represented by lags 1-6. In this investigation 
lags of up to 60 are used as inputs into the ANN. The 
output of the ANN is the prediction. It can be noticed that 
there is only one output shown. For every lead prediction 
interval it is advisable to use a single ANN. If multiple 
predictions are required then for every prediction interval 
a separate ANN is used. The basis for the presumption is 
that the weights for an optimal prediction will vary 
according to the prediction interval desired. By having 
the ANN create multiple predictions, the overall optimal 
prediction cannot be made. By having separate ANN 
create separate predictions, the optimal weight 
configuration can be obtained for each prediction and 
therefore, higher accuracy can be expected. 

A. Training the Network 

The training of the network can be viewed as a 
minimization process where the weights in the ANN are 
systematically adjusted in a manner that reduces the error 
between the output of the ANN and the desired output. 
Therefore the process of training the neural network 
becomes an optimization problem where the performance 
of the neural network will be dependent upon the quality 
of the solution found after the training process has been 
completed. Therefore the algorithm used to determine the 
minimum must ensure that global minimum is achieved 
and has not merely discovered the local minimum. The 
back-propagation algorithm and the conjugate gradient 
methods are two techniques which are widely used for 
training ANN and are very capable of finding the local 
minimums but there is no guarantee that the global 
minimum will be found using these techniques. As the 
global minimum is desired a genetic algorithm has been 
chosen for this investigation. 

The genetic algorithm (GA) is a part of a rapidly 
growing area of artificial intelligence called evolutionary 
computing. The term 'evolutionary computing' is based 
on Darwin's theory of evolution, which states that 
problems are solved by an evolutionary process resulting 
in a best solution. It is basically survival of the fittest 
where the 'fittest' (best) 'survivor' (solution) evolves to 
create the next population [8]. Solution to a problem 
solved by the GA uses an evolutionary process based on 
the principles of genetics and natural selection [9]. A 
flow chart of the process is given in Fig. 5. 

The algorithm begins with a population of solutions. 
Solutions from one population are taken and used to form 
a new generation of solutions or the next population of 
solutions. The expectation is that the new population will 
be better than the old one. Solutions or individuals are 

then selected to form new solutions or 'offspring' 
according to their fitness. The fitness is a positive value 
that is used to reflect the degree of 'goodness' of the 
solution and is directly related to the objective value [10] 
which is minimization of the mean square error of the 
difference between the output of the neural network and 
the target value in this investigation. As mentioned 
previously, the more suitable they are, the more chances 
they have to reproduce. This is repeated until a 
predefined stop criterion is satisfied.  

There are a number of advantages in using the genetic 
algorithm. Firstly, it does not require any derivative 
information as required by the back-propagation method. 
It simultaneously searches from a wide sampling of the 
cost surface which is helpful for finding the general 
location of the global minimum quickly.  

The GA can be implemented on parallel computers 
which will allow the solution to be found more rapidly 
then if it were implemented on a single processor which 
is an important consideration for real time prediction as 
required for this project. Also, as it provides a list of 
optimum variables and not just a single solution, if the 
global minimum is difficult to locate a good alternative 
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Fig. 6. The artificial neural network process 

solution can be returned.  
The aim of this investigation is to develop a 

methodology to predict ship motion in real time. Singular 
value decomposition (SVD) is a linear regression 
technique that can quickly obtain an approximate set of 
optimum weights which is far superior to randomly 
generating the weights. The values returned from running 
the SVD can be used as the initial starting point for a 
selection of the population for the GA algorithm 
discussed previously and they can sometimes be of such 
a high standard that this method can be used alone. A 
detailed description of the SVD technique is beyond the 
scope of this paper but essentially the matrix X  which 
satisfies the function: 

 .A X B=  (1.3) 
when A  and B  are known can be calculated 
efficiently using SVD. When applying it to the ANN 
process the weights between the input layer and the 
hidden layer are initially randomly generated. The 
training samples are then inserted into the ANN and the 
hidden layer activation functions are calculated creating a 
matrix equivalent to A . Also, the values for the inverse 
transfer function of the output are also calculated creating 
a matrix equivalent to B . Applying SVD and solving 
equation (1.3), the approximate optimal weights X  are 
found. 

B. Validation of ANN Model 

To ensure that the weights in the ANN have been 
correctly set and that the output of the ANN is 
sufficiently reliable, a validation process is applied after 
training has been completed. The set of known inputs 
with their desired output needs to be divided into two 
distinct sets. The first set is the training set and is used 
throughout the training period to adjust the weights to the 
appropriate values. 

The second set is referred to as the validation set and 
is used to test the ANN. Once the values of the training 
set have been determined, the inputs from the validation 
set are inserted into the ANN and the output of ANN is 
compared with the target values in the validation set. The 
validation process is included to ensure that the ANN is 
working correctly. It is to ensure that the ANN has not 
overfitted the data. 

The architecture of the ANN refers to the number of 
neurons that are used in the input and hidden layers. If 
the architecture of the ANN is poorly designed, the ANN 
may be able to learn irrelevant details specific to the 
training set which will lead to an ANN that is only 
relevant to the training set. Conversely, the ANN may 
have a deficient architecture where the ANN is not able 
to learn the subtleties required for accurate outputs. The 
validation process should reveal these problems. The 
entire ANN process including the validation process is 
shown in Fig. 6. 

It can be clearly seen that the first stage involves 
inputting the training set into the ANN. The ANN adjusts 
its weights in the 'learning' process until the error 
between the target values and the output of the ANN is 

reduced to a minimum. Next, the validation set is 
inputted into the ANN. The output of the ANN is 
compared to the target values of the validation set and the 
ANN is accepted if the error is of a low enough value or 
alternatively rejected if the error is too high.  

The error in the validation set may be higher than the 
error found at the end of training but should not be 
significantly larger or there is a problem with the ANN. 
Also, the validation set should be independent to the 
training set to ensure that there is no bias added into the 
validation process. It is not permissible to use any of the 
training data in the validation stage, as this will not give 
a good indication of the ANN's validity.  

IV. PREDICTIVE CAPABILITIES OF ANN 

In the following sections two investigations are 
presented. The first investigation presented in section 
IV-A is intended to determine the basic capabilities of 
ANN in learning a complex equation that is similar to 
ship motion. The second investigation presented in 
section IV-B seeks to assess the levels of accuracy that 
can be attained when using the ANN to predict a ship's 
roll motion up to 7 seconds.  

A. Complex Eqution Prediction Using ANN 

Neural networks are believed to be able to learn any 
function or pattern if given sufficient architecture, 
enough training data and an adequate amount of training 
is performed. The nature of the neural network makes it 
difficult to understand exactly how the neural network is 
capable of learning based upon a pure mathematical 
premise. In fact there does not seem to be any strict 
mathematical verification of the neural networks 
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Fig. 7. Percentage of predictions correct within 
0.133 of the actual value 

Fig. 8. Sample of the prediction generated using the 
ANN algorithm with 60 neurons in the input layer and 

15 neurons in the hidden layer 

capabilities. 
The neural network is inherently a function itself 

which is used to approximate another function which is 
the problem being solved. One can now state that the 
neural network is effective in learning a function or 
pattern if it is able to approximate the function or pattern 
to an arbitrary accuracy. By the term "arbitrary accuracy" 
it is meant that the function can be approximated so that 
errors are within acceptable levels. This does not imply 
that the neural network is expected to produce results that 
are exact but it does mean that they produce results that 
are useful for their intended purpose. 

For example, in this investigation it is not expected 
that an algorithm will be developed that predicts ship 
motion exactly, however it is expected that an algorithm 
can be developed that is capable of predicting ship 
motion to an accuracy where the predictions will be of 
practical importance. 

Three of the proven capabilities of a neural network 
are stated in Masters [7] and are listed below.  

1. If the function consists of a finite collection of 
points a three layer network is capable of learning it.  

2. If the function is continuous and defined on a 
compact domain, that is the inputs have definite bounds 
rather than having no limits on what they can be, then a 
three layer network is capable of learning it.  

3. Many functions that do not meet the above criteria 
can also be learned by a three-layer network. Even 
discontinuities can theoretically be tolerated under all 
conditions that are expected in real life. 

It is obvious that the problem of ship motion lies 
within the bounds of the cases outlined above and 
therefore should theoretically be capable of being 
modelled using a three layered neural network.  

The purpose of this section is to confirm that the 
neural networks are capable of learning any function and 
to understand some of the likely architectures that will be 
required for the prediction of ship motion.  

This investigation therefore seeks to confirm the 
stipulations made in the literature regarding neural 
network. The ANN was applied to data generated from 
the following equation to assess the capabilities of the 
ANN.  

( ) ( ) ( )
( ) ( )
( )

0.1sin 0.25 0.35sin 0.4 ...

0.8sin 0.8 0.6sin 1.1

0.2sin 0.1

f t t t

t t

t

= +

+ +

+

… …

…

  (1.4) 

A test set was generated from equation (1.4) with 
0, ,1500t = …  seconds at a frequency of 15Hz. A three 

layered feed forward ANN was trained using the SVD 
method alone to predict 7 seconds in advance. As 
mentioned earlier, an important requirement when 
applying ANN is to ensure that there is an adequate 
architecture to represent the equation satisfactorily. The 
number of neurons in the input layer (NNIL) was varied 
from 40 to 70 with increments of 10. For each NNIL 
there was a varying number of neurons in the hidden 
layer. A graphical representation of the results is shown 
in Fig. 7 and were generated by applying the trained 

ANN to the validation set which was the last third of the 
test set. Fig. 8 shows a sample prediction created with the 
trained ANN.  

The results seen in Fig. 7 clearly show that the 
architecture of the neural network has a profound effect 
on the overall performance of the ANN. Fig. 7 shows that 
when there were only 40 neurons in the input layer the 
architecture was inadequate and the ANN was not able to 
predict future values of the validation set. It also shows 
that having too many neurons in the input layer leads to a 
degradation of the ANN's performance possibly due to 
overfitting where the ANN learnt insignificant aspects of 
the training set which were irrelevant to the general 
population. 
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Fig. 9. Percentage of predictions correct within 
1.288 of the actual value 

Fig. 10. Sample of the prediction generated using the 
ANN algorithm with 60 neurons in the input layer and 

15 neurons in the hidden layer 

A general trend that can be seen in Fig. 7 is that there 
is an optimum number of neurons in the hidden layer 
required to produce the best results. The trends exhibited 
in Fig. 7 are in conformity with the previous stipulation 
that the given architecture of the ANN is an important 
factor in the ultimate success of the neural network. 
Another outcome of this initial investigation is that a 
ANN trained using SVD methods can be very accurate 
and that using SVD methods to find an initial estimate 
for the ANN can be of great benefit.  

B. Application of ANN to Ship Motion Prediction 

The algorithm developed were subsequently applied 
to measured ship roll angle data taken from a cruiser size 
vessel operating in sea states 5-6. The term sea state is a 
description of the properties of sea surface waves at a 
given time and place [11]. The greater the sea state the 
rougher the conditions. There was 666 seconds of roll 
angle data available sampled at 15Hz. The training data 
was set to two thirds of the data sets and the validation 
set was designated as the final third of the data sets. All 
results shown are the predictions made using the 
validation set only. A graphical representation of the 
results are shown in Fig. 9 while an example prediction is 
shown in Fig.10. 

In this investigation NNIL was varied from 40 to 60 
neurons and the number of neuron in the hidden layer 
were also varied. The SVD technique was first used to 
generate 10 approximately optimum sets of weights 
which were then inserted into the GA along with other 
randomly generated sets of weights creating the initial 
population. One hundred generations were completed 
with the best individual solution chosen. 

The results show that the architecture of the neural 
network is important for high accuracy. Fig. 10 clearly 
shows that the ANN learnt to predict the ship motion and 

remained valid for up to 160 seconds. It can however be 
seen that between 100 seconds and 130 seconds of the 
prediction shown in Fig. 10 the ANN performed poorly. 
In this region the amplitude of the motion is small and as 
the aim of the investigation is to predict the large 
amplitude motion where the 'lock-out' condition is likely 
to exist, this is not a major concern. 

This investigation clearly demonstrates that artificial 
neural networks can be used to predict ship motion 
effectively for large amplitude motion and is therefore 
suitable for prediction of the 'lock-out' conditions.  

V. CONCLUSION 

In this paper an artificial neural network based 
method utilizing a combination of the singular value 
decomposition and genetic algorithm for the prediction 
of the ship motion was presented. It was shown that the 
singular value decomposition technique alone was able to 
learn a complex equation and effectively predict future 
values. It was shown that the three layered artificial 
neural networks were capable of learning the ship motion 
and producing highly accurate predictions for intervals 
up to 7 seconds. 
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