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Abstract

There is great promise in the idea of having web services
available on the internet, that can be flexibly composed to
achieve more complex services, which can themselves then
also be used as components in other contexts. However
it is challenging to realise this idea, without essentially
programming the composition using some process language
such as WS-BPEL or OWL-S process descriptions. This
paper presents a mechanism for specifying the external
interface to composite and component services, and
then deriving an appropriate internal model to realise
a functioning composition. We present a conversation
specification language for defining interaction protocols
and investigate the issue of synchronous and asynchronous
communication between the composite service and the
component services.

1 Introduction
Web services have been growing enormously in popu-

larity over the last few years, as people see the potential
of the world wide web to provide a repository of program
components, in much the same way as it currently provides
a repository of information pages. A vision of service-
oriented architecture is that, upon a user request for service,
an appropriate service should be automatically located and
invoked to deliver the required service to the user. More-
over, when more than one services are needed to fulfill a
user request, a composition mechanism that combines the
components to form composite services is also desired.

There have been a number of languages for modelling
and describing web services developed as well as frame-
works for web service composition. Process modelling lan-
guages such as BPEL4WS (or the newer specification WS-
BPEL), BPML or WSCI provide concrete ways for com-
posite services to be manually described. There has been
significant work on using workflows to support automated
composition (e.g. [1, 2] and references therein). One com-
mon approach is to map workflows to Petri-nets as a formal
model to allow reasoning. Using a similar idea, Narayanan

and McIlraith [3] propose a framework for web service
composition in which web service descriptions in OWL-S
are mapped to Petri-nets to allow formal verification and
simulation and to Situation Calculus [4] to allow automatic
composition. This approach requires that the services to
be composed be atomic. As the process model description
of the composite service must be given, such a mechanism
should be more precisely described as service orchestration.
On the other hand, the problem of synthesising the process
model of a targeted composite service has been largely ne-
glected with the notable exception of the work by Berardi
et al [5]. As such, two major goals of the work presented
in the present paper are to introduce a language for describ-
ing conversational services and to achieve a mechanism to
synthesise the process models of the composite services.

Several composition frameworks employ finite state ma-
chines or transition systems to formally describe either in-
put/output messages or behaviours with environmental pre-
conditions and effects. These include: the message-based
approach (a.k.a. the Mealy model), (e.g. [6]) the activity-
based approach (a.k.a. the Roman model) (e.g. [5]), and
Traverso and Pistore’s [7] approach which performs com-
position using an AI planner (based on a symbolic model
checking approach). For a more thorough discussion of the
various approaches, the reader is referred to [8]. Most of
these approaches aim to describe web services using formal
models such as process algebras, Petri-nets and finite state
machines, to allow formal properties of the services to be
verified. Our aim is rather to provide a simple language to
allow the exported behaviours as well as the interface of a
web service to be described in a way that will enable us
to automatically produce an executable process model that
realises a composite service. The description language pro-
posed in our paper takes a major inspiration from a rich lit-
erature on component-based software engineering and com-
munication protocols [9, 10].

Finally, it has been noted [11] that many real-world
applications require that certain kinds of session-oriented
web services respond to asynchronous events during their
life-cycles [12]. Although it is simpler to describe a syn-
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chronous communication semantics, it is important to facil-
itate well founded asynchronicity.

The main contribution of this paper is a mechanism that
allows for automated synthesis of the internal process of a
composite service, given the interface description of both
component services and the desired composite service. In
order to achieve this we also (i) specify a conversation spec-
ification language that allows specification of interactions
with other entities; (ii) provide a synchronous semantics
for the conversations between services; and (iii) provide a
framework for asynchronous communication with adaptors
between services.

2 Modelling and describing services
In our model a service is an event-driven component

whose events are sending and receiving of messages. As
such, the description of a service comprises an external
interface, i.e. the input/output messages that can be ex-
changed between a service and its clients, and a system dy-
namics specification of the service. The system dynamics
itself comprises an interaction protocol, i.e. the sequences
of actions to be invoked, to allow the service to converse
with its client applications or users, and event descriptions
which allow the preconditions and effects of an event to be
clearly specified in a first-order logical language.

The interaction protocol describes a set of sequencing
constraints, i.e. legal orderings of messages, by means of
a finite-state grammar. The finite-state grammar consists of
a set of named states and a set of transitions, one transition
for each message that can be received or sent from a par-
ticular state. In order to incorporate the event descriptions
into the interaction protocol to obtain the system dynamics,
we encode the preconditions and the effects of the events to
their respective transitions. Formally, a transition is of the
form: <S> : <dir><msg>-> <S>
where <S> is the symbolic name of a state; <dir> is the
direction of the message which can be either “!” (send) or
“?” (receive); <msg> is the name of a message described
in the external interface.

The above description of a service comprises the
external schema which is made available on the Internet to
allow a user or a client application to discover the service
and to correctly interact with it.

Example 1 The following gives a Banking Service specification,
describing how a client (of the bank) who has an account with the bank
can interact with the service to carry out certain transactions.

Service Banking {
Interface {
RECEIVE enterPIN(Account acc, EncryptedPIN PIN);
RECEIVE requestTransfer(Account toAcc, float amount);
RECEIVE requestBalance();
SEND invalidPIN();
SEND authorised();
SEND overdrawn();
SEND transactionApproved();

SEND currentBalance(float balance);
};
Protocol {
States { 0(init,final), 1, 2, 3, 4, 5(final), 6(final) };
Transitions {
0 : ?enterPIN -> 1;
1 : !invalidPIN -> 0;
1 : !authorised -> 2;
2 : ?requestTransfer -> 4;
2 : ?requestBalance -> 3;
3 : !currentBalance -> 0;
4 : !transferApproved -> 5;
4 : !overdrawn -> 6;
};

};
};

Figure 1 represents the interaction protocol of the Banking Service:

10
?enterPIN !authorised

3

!invalidPIN ?requestBalance

42

!currentBalance
5 6

!overdrawn

?requestTransfer

!transferApproved

Figure 1. The interaction protocol of a banking service.

2.1 A model for composite services

There are situations in which a client request can not be
satisfied by any single available service, but a composite
service obtained by combining some available services
might fulfill such a request. The services used to form a
composite service are referred to as component services.
When an organisation wishes to introduce a composite
service based on a collection of existing services, at least
two basic tasks need to be accomplished. In the first task,
the organisation must produce a specification of how to
coordinate the component service to allow the client request
to be fulfilled. It is normally required that the specification
be executable, i.e. there is an execution engine to execute
the specification. Secondly the composite service must be
made available as a normal service, i.e. its external schema
must be exported and made available on the Internet to
allow potential clients to discover and deploy it. It is
the former task which is the focus of our current work,
though we will also briefly discuss how an external schema
is extracted from a composite service at the end of the paper.

Example 2 We now show a simple example of a composite service,
namely AirTicket Sale Service, involving the banking service discussed in
Example 1 and an Airline Service:

To realise the composite service AirTicket Sale Service,
on the one hand an external schema consisting of an in-
terface and an interaction protocol with messages such as
offer(), payment(), transactionNotApproved(), etc. must
be exported and made available to the clients. On the other
hand, a mechanism to coordinate the component services
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flightRequest(flightID)
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bookFlight(flightID)
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Figure 2. A simple composite service for on-
line Air Ticketing.

Airline Service and Banking Service must be introduced to
allow the functionalities of the composite service to be cor-
rectly achieved. This is known as the problem of composi-
tion synthesis which is concerned with producing a specifi-
cation of how to coordinate the existing services to realise
the functionality of a desired composite service.

2.2 Problem formalisation

Gerede et al [13] formalise the activity-based composi-
tion synthesis problem which was originally proposed by
Berardi [8] based on finite state automata whose transitions
between states are labelled by activities. The problem of
message-based service composition has been discussed in
the work of Hull et al [6, 14]. Given a set of available
services whose external schemata are made available, we
would like to construct a composite service that meets cer-
tain criteria. While there could be several way in which
such criteria could be expressed, we will require that the
external schema of the composite service be provided. This
leads us to a similar starting point to that of Gerede et al’s
[13] formalisation of the activity-based composition synthe-
sis problem, viz. the composition system.

Definition 1 A composition system C is a pair (ST ,S)
where ST is the external schema of the target (or, desired)
service to be composed and S = {S1, . . . , Sn} is a set of
external schemata specifying the available component ser-
vices to be used in the composition of the desired service.

Essentially, in a composition system C, the set of compo-
nent services is fixed with their external schemata required
to be fully specified. We require that the target service to
be composed also be clearly specified in terms of its in-
put/output messages and its interaction protocol. It is the
task of a composer to construct a mechanism to coordinate
the component services so that the specification of the target
services is satisfied. We henceforth refer to this mechanism

as the internal model of the target composite service. For
convenience, we introduce the following notations: Given
the external schema S of a service, Messages(S) denotes
the set of messages declared in the interface of S, and let
τ ∈ Transitions(S), the function Dir(S, τ) will be ?
if τ is a receiving message in S and will be ! otherwise.
We will also write a transition as s : m → s′ where
s, s′ ∈ States(S) and m ∈ Messages(S).

The internal model M of a composite service will have
both message based transitions, with which it communi-
cates with component services and the user, and also in-
ternal transitions to allow control of internal processing to
capture the required business logic of the service.

Definition 2 A realisation of the composite service ST ,
within a composition system C = (ST ,S), is a finite state
machine (FSM) M = (Q, Σ, δ, q0, F ) where Q is a finite set
of states, Σ denotes the set of transitions, δ : Q × Σ → 2Q

is the transition function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. The realisation M of a
composite service ST is required to satisfy the following
conditions:

1. Σ = commM ∪ transM where commM = {<?|!>m :
m ∈ msgM} is the set of communicative acts such that
msgM ⊆ Messages(ST ) ∪

⋃
S∈S

Messages(S), and
transM consists of the set of transitions denoting the in-
ternal computations of the composite service.

2. There is a surjective function ı : Q → States(ST )
such that: (i) ı(q0) = initST , and (ii) for each transition
(u : m → v) ∈ Transitions(ST ), there exist two states

q, r ∈ Q such that ı(q) = u and ı(r) = v, and q
χ∗

→ r, where
χ∗ is a sequence of transitions from Σ \ Messages(ST )
such that m occurs in χ∗.

Moreover, in order for the composite service to behave
correctly, certain properties need to be guaranteed.

Definition 3 Let S be an external schema. The comple-
ment schema of S, denoted by C(S), is defined as fol-
lows: (i) there is an isomorphism  between States(S) and
States(C(S)); and (ii) s :?m → s′ ∈ Transitions(S)
iff (s) :!m → (s′) ∈ Transitions(C(S)), and
s :!m → s′ ∈ Transitions(S) iff (s) :?m → (s′) ∈
Transitions(C(S)).

A composition state for a composition sys-
tem C = (ST , {S1, . . . , Sn}) with a realisation
M = (Q, Σ, δ, q0, F ) is a tuple 〈s1, . . . , sn, scT , q〉
where si ∈ States(Si) (i = 1, . . . , n), scT ∈ C(S), and
q ∈ Q. An execution trace over (C, M) is a (possibly
infinite) sequence σ0 →m1

σ1 →m2
σ2 → . . ., where

• each σi is a composition state for (C, M);
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• σ0 = 〈initS1 , . . . , initSn , (initST ), q0〉, and

• σi+1 = 〈s1
i+1, . . . , s

n
i+1, s

cT
i+1, qi+1〉 iff

σi = 〈s1
i , . . . , s

n
i , scT

i , qi〉, and there exists
κ ∈ {1, . . . , n, cT} such that (i) τ = (sκ

i : mi →
sκ

i+1) ∈ Transitions(Sκ); (ii) qi+1 ∈ δ(qi,!mi) if
Dir(Sκ, τ) = ? and qi+1 ∈ δ(qi,?mi) otherwise;
and (iii) for each ℓ ∈ {1, . . . , n} such that ℓ 6= κ,
sℓ

i+1 = sℓ
i .

By definition, Exec T ree(C, M) = {σ : σ is an execu-
tion trace over (C, M)}. Exec T ree(C, M) is a tree whose
root is the initial composition state σ0. Two desirable prop-
erties of a realisation of a composition system C are freedom
of deadlock and freedom of unspecified receptions.1

Intuitively, a composition system C with a realisation M

has no unspecified receptions if and only if (i) whenever an
execution trace σ can reach a point where the realisation
M is in a state where it can send a message m then some
service from the composition system C , be it a component
service or the constructed composite service, will be in a
state where it can receive that message, and (ii) whenever
an execution trace σ can reach a point where a service from
the composition system C is in a state where (ii.a) it can
send a message m and (ii.b) it can not receive any message,
then the realisation M will be in a state where it can receive
that message.

We can show that there is a poly-time algorithm to check
whether a realisation M of a given composition system C is
free of deadlock and free of unspecified receptions.

3 Asynchronous communication
Under our formulation of the synchronous semantics, the

finite-state machines describing the protocols of the compo-
nent services and the composite service on the one side and
the internal model of the composite service on the other side
are required to advance atomically. That is, when a message
m is sent, one side must be in a state that enables it to send
m and the other side is in a state that enables it to receive m.
Hence, the finite-state machines describing one of the com-
ponents and the internal model advance synchronously, so
that the sending and receipt of a message are considered an
atomic action under this abstraction. However, as discussed
by Yellin and Strom [9], the synchronous semantics can be
implemented without requiring the components to send and
receive messages atomically. The only requirement is that
the communicating components always agree on the execu-
tion trace, i.e. the order of messages sent and received.

While the synchronous semantics significantly simplifies
the reasoning about communicating systems, in particular,
composite services and their internal models, this restric-
tion may severely hamper the applicability of our model

1The notions of freedom of deadlock and freedom of unspecified re-
ceptions was first introduced by Brand and Zafiropulo [15].

to most application domains in which services are required
to be dynamically discovered and plugged in to obtain the
composite services. The standard way to achieve asynchro-
nism is to use unbounded memory to store the parameters
sent from one component to another without requiring the
sending component to halt its process to wait for its mate to
receive the messages it sends. Although the asynchronous
semantics are easier to implement in comparison to the syn-
chronous semantics, it is hard to reason about systems of
communicating components under these semantics. In gen-
eral, properties of the system such as deadlock or existence
of unspecified receptions are undecidable [15].

Given a composition system C = (ST , {S1, . . . , Sn})
and a realisation M = (Q, Σ, δ, q0, F ) for C, properties
of the composite service embodied by M and C such as
deadlock, unspecified receptions, etc. can be investigated
by considering the product automaton constructed from
S1, . . . , Sn, and ST and M . This is the approach taken
by, e.g. Gerede et al. [13]. In our representation, we will
have to take into account not only the interaction states the
FSMs are in, but also the state of the FIFO channels contain-
ing the (asynchronous) messages exchanged between dif-
ferent components of the system.2 A configuration is a pair
〈I,M〉 where

• I denotes the (global) interaction state, called i-
state, of the production machine constructed from
S1, . . . , Sn, and ST and M ;

• M denotes the (communication) medium state, call m-
state, of the composite service.

There will be n duplex FIFO channels to allow mes-
sages between the components S1, . . . , Sn and the realisa-
tion M to be stored. We denote the content of the queue
storing the messages from M to Si (resp. from Si to M )
by ωi (resp. ωi). The symbol ǫ denotes the empty se-
quence. Finally, an i-state is a tuple (s1, . . . , sn, q) where
si ∈ Si (i = 1, . . . , n) and q ∈ Q.

Without loss of generality we will assume that the sets
of messages of S1, . . . , Sn and ST are disjoint. A transition
from one configuration c = 〈(s1, . . . , sn, q), (ωi, ωi)n

i=1〉 to
another configuration c′ is labelled by α which is either an
activity from the set of activities Σ of the realisation M or
a message from

⋃n

i=1
Messages(Si) satisfying the follow-

ing conditions:

1. If α = !m and m ∈ Messages(Sk) for some k ∈
{1, . . . , n}, then

(a) If (sk : α → wk) ∈ Transitions(Sk), then (i) the
i-state of c′ is the same as that of c except for sk being

2Another attribute of a configuration is the state of the world, e.g. the
content of databases, ticketing and reservation systems, etc. This will be
part of the future work to extend the framework introduced in this paper.
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replaced by wk; and (ii) the content of the FIFO queue
from Sk to M is updated by m.ωk (was ωk before the
update).

(b) If q′ ∈ δ(q, α), then (i) the i-state of c′ is the same as
that of c except from q being replaced by q′; and (ii) the
content of the FIFO queue from M to Sk is updated by
m.ωk.

2. If (i) α = ?m and m ∈ Messages(Sk) for some
k ∈ {1, . . . , n}, (ii) (sk : α → wk) ∈ Transitions(Sk),
and (iii) the content of the FIFO queue from M to Sk is
m.ω for some sequence of messages ω, then (a) the i-state
of c′ is the same as that of c except from sk being replaced
by wk; and (b) the updated content of the FIFO queue from
M to Sk becomes ω.

3. If (i) α = ?m and m ∈ Messages(Sk) for some
k ∈ {1, . . . , n}, (ii) q′ ∈ δ(q, α), and (iii) the content of the
FIFO queue from Sk to M is m.ω for some sequence of
messages ω, then (a) the i-state of c′ is the same as that of
c except from q being replaced by q′; and (b) the updated
content of the FIFO queue from Sk to M becomes ω.

4. Otherwise, the system reaches the special configuration,
denoted by error.

The above definition of configurations constitutes the
states of the production FSM of a composition system C
and its realisation. Based on this FSM and its reachability
graph, standard notions such as deadlocks and unspecified
receptions can be defined. Intuitively, error configurations
allow a system designer to mark down all execution traces
that lead to deadlock or an unspecified reception.

4 Conclusion and future work
The approach to the problem of Web service composi-

tion introduced in this paper is based on a rich literature in
component-based software engineering. Our composition
algorithm requires service specifications of the component
services and the target composite service. We further re-
quire that a set of parameter mapping rules be provided to
allow messages to be sent by the internal models of the com-
posite service to be synthesised. We examine the conditions
under which a configuration (i.e. the state of the production
FSM) is an error configuration. The algorithm has then been
constructed in such a way that error configurations and exe-
cution traces leading to error configurations are eliminated.

There are several directions we could pursue to extend
the framework presented in this paper: (i) integrating
the preconditions and effects of a service to its protocol
specification; and (ii) supporting exception handling for
composite service execution. An interesting and ambitious
research direction would be to allow the description of
the target composite service to be under-specified. Then,
based on the available component services combined with

some ontological reasoning, the system could construct an
internal computational model which accomplishes some
high-level task, subsequently enforcing a fully specified
interface and interaction protocol for the composite service.
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