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Abstract-Evolving programs with explicit loops presents ma- 
jor difficulties, primarily due to the massive increase in the size 
of the search space. Fitness evaluation becomes computationally 
expensive and a method fur dealing with infinite loops must he 
implemented. We have investigated ways of dealing with these 
problems by the evolution of for-loops of increasing semantic 
complexity. We have chosen two problems - a modified Santa Fe 
ant problem and a sorting problem - which have natural looping 
constructs in their solution and a solution without loops is not 
possible unless the tree depth is very large. We have shown that 
by controlling the complexity of the loop structures it is possible 
to evolve smaller and more understandable program fur these 
prohlems. 

1. INTRODUCTION 

Loops are probably the most powerful constructs in pro- 
gramming. They provide a mechanism for repeated execution 
of a sequence of instructions. However, there is very little 
use of looping constructs in the programs evolved by genetic 
programming. There are a number of reasons for this. Firstly, 
loops are hard to evolve. It is necessary to evolve the start 
and end points and the body and to make sure they are 
consistent, for example, in some kinds of loops an index 
variable must appear in the body of the loop. Programs 
with loops generally take a lot longer to evaluate and some 
mechanism must be implemented for dealing with infinite 
loops. Secondly, it has turned out that there is a large class of 
useful problems which can be solved by evolving programs 
without loops. Thirdly, it is often possible to put the looping 
behaviour in the environment or into a terminal, for example, 
in the usual approach to the Santa Fe ant problem [l], the 
evolved program is repetitively invoked by the environment 
until some maximum number of steps has been exceeded while 
some robotics application might have a terminal such as ‘go- 
forward-until-obstacle’ [2]. 

At the most general level of abstraction there are two 
primary kinds of loops, the for-loop and the while-loop. In 
a for-loop the number of times the body of the loop is to be 
executed is known before execution of the loop begins. In a 
while-loop the number of repetitions is not known in advance 
and the loop body is repeated until some condition becomes 
truelfalse. In this paper we consider only for-loops. 
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A. Goals 

Our goal is to investigate the evolution of programs with 
for-loops for problems which naturally involve some kind of 
repetitive behaviour. 

We consider loops of the form 
(FOR-LOOP1 NUM-ITERATIONS BODY) 

in which BODY is executed NUM-ITERATIONS times and 
(FOR-LOOP2 START END BODY) 

in which a counter used in BODY is initialised to the value 
of START, BODY executed, the counter incremented and the 
process repeated until the value of the counter reaches END. 

We investigate the following strategies for setting the values 
of NUM-ITERATIONS, START and END. 

1) Set the value to a random type (Simple loop). 
2) Set the value to the result of any computation permined 

by the terminals and functions, including embedded 
looping constructs (Unrestricted loop). 

Our expectation is that simple loops will be easier to evolve 
than unrestricted loops. We use these looping constructs on 
two problems which have natural repetitive characteristics, a 
modified Santa Fe ant problem in which we use FOR-LOOP1 
constructs, and sorting of an array of numbers in which we 
use FOR-LOOP2 constructs. For each strategy we investigate 
whether the problem can be solved at all, the convergence 
behaviour, and the size of the evolved programs and compare 
the solutions with loops to solutions without loops. 

11. RELATED WORK 

There are very few reports in the literature on the use of 
loops in genetic programming. Koza [3, p1351 described how 
to implement loops with automatically defined functions. He 
used the approach to solve the problem of computing the 
numerical average of LEN numbers in a vector V. In all 
of experiments described in his book, only a constrained form 
of automatically defined loops (ADL) is used and nested loops 
are not allowed. He used a pre-established maximum number 
of executions to ration the resources. He also used the ADL 
io a potential function set to solve an even-parity, a minimal 
sorting network and a robot controller problem. He concluded 
that ADLs could be a good factor for efficient solutions. 
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Kinnear 141, [5] used an iterative operator with an index 
value to evolve a sorting algorithm. He restricted each loop to 
no more than 200 iterations and the total number of iterations 
in a program to 2,000. Considerable effort was expended in 
the design of the fitness function to encourage generality of 
the evolved solution. For example, he used tests of random 
sequences to obtain a high likelihood of generality. He added 
inverse size to the fitness measure and found that as well as 
decreasing the size, this improved generality. 

Langdon [6] utilized a 'forwhile' construct to evolve a 
list data structure. In his experiments, nested loops were not 
allowed and the number of iterations was restricted to 32. 
The 'forwhile' provided the capability to process multiple list 
elements. 

Wong and Leung [7] tried to evolve a general recursive 
solution for even-n-parity problems. They employed a logic 
grammar to enforce the base-case structure of recursion and 
regarded a program which did not produce a result after an 
allowed execution time as unfit. 

Maxwell [SI developed a method to deal with infinite loops 
by incorporating time spent executing loops into a partial 
fitness calculation. This enables the evolution to use partial 
solutions where there are infinite loops, but which contain 
good building blocks. He used this method for the Santa 
Fe Aut Problem and found that it generated more efficient 
solutions than the optimum found in [91. 

111. SYNTAX A N D  SEMANTICS OF THE FOR-LOOPS 

We have used two variations of for-loops. For both varia- 
tions we have experimented with simple loops and unrestricted 
loops. The syntax of the first variation is: 

(FOR-LOOP1 NUM-ITERATIONS BODY) 
and the semantics are quite straight forward, BODY is ex- 
ecuted NUM-ITERATIONS times. During evolution, both 
NUM-ITERATIONS and BODY undergo crossover and mu- 
tation. In the case of simple loops NUM-ITERATIONS is 
restricted to a special integer type. The value is initially set to 
a random number between 1 and a programmer supplied value 
of MAX-ITERATIONS. During crossover and mutation typing 
is preserved so NUM-ITERATIONS can only be changed to 
another integer of this type. In the case of unrestricted loops, 
the value of NUM-ITERATIONS can be set by any function. 
This could involve the arithmetic functions {+, -} as well as 
several nested loops. 

The syntax of the second for-loop variation is: 
(FOR-LOOP2 START END BODY) 

The semantics are also straight forward. BODY is executed 
once for each value of a counter between START and END. 
If START is greater than END. BODY is not executed. In the 
case of simple loops, START and END are restricted integer 
types as before, and in the case of unrestricted loops START 
and END can be the result of any possible computation, also 
as before. 

In this implementation of looping, infinite loops are not pos- 
sible, so no special actions are necessary in fitness evaluation. 

I v .  EVOLUTION OF THE FOR-LOOPS 

We use strongly typed genetic programming (STGP) [IO] 
in our experiments. STGP simultaneously allows multiple data 
types and enforces closure by only generating parse trees 
which satisfy the type constraints. During genetic operations 
like crossover and mutation, only functions and terminals of 
the same type can be swapped or mutated. 

In our function definitions for FOR-LOOP1 and FOR- 
LOOP2, {NUM-ITERATIONS, START, END} are of integer 
type. The for-loop function return type is of type dummy 
for simple-loops and integer for unrestricted-loops. During 
evolution, STGP will take care type matching and ensure only 
correct operations can be done. 

V. MODIFIED SANTA F E  ANT PROBLEM 

The Santa Fe ant problem is described in detail in 191 and 
has been extensively studied 111. The problem is to direct a 
robot ant to navigate through a twisting trail, the "Santa Fe 
Trail", on a 32 x 32 grid. There are 89 pieces of food on the 
trail. The robot eats the food when it enters into a square. The 
goal is for the robot to eat all of the food in as few moves 
as possible. The program can use three operations {Move, 
TurnRight, TurnLeft). Move allows the robot to move one 
square forward. TurnRight and TurnLeft turns the robot to the 
right and left respectively. Each operation costs one step. 

In previous work on the Santa Fe ant problem there has 
been no explicit iteration in the evolved programs. Iteration 
is accomplished implicitly in the environment by invoking the 
program as many times as necessary to eat all of the food or 
until some maximum number of steps (usually 600) has been 
expended. The fitness of a program is the number of pieces 
of food left after 600 steps. A successful solution is one in 
which all of the food has been consumed before 600 steps 
have elapsed. Three functions are used to glue the operations 
{IfFoodAhead, Pro@, Prog3) together. IfFoodAhead takes 
two arguments and executes one of its arguments depending 
on whether the square the robot is facing contains food or not. 
Prog2 and Prog3 take two or three arguments separately and 
execute them sequentially. 

Our intention is to evolve programs in which there is no 
implicit looping. A program will be invoked only once, any 
looping behaviour must be explicitly in the program and the 
fitness of the program is the number of pieces of uneaten food 
after 600 steps. In our modified problem, the size of the grid 
is changed to 20x20 aod 108 pieces of food are placed on 
the grid in 3 blocks of 6x6 as shown in figure 1. This regular 
placement of food is intended to encourage the evolution of 
loops within the evolved programs. 

It is important to note that a solution to this problem which 
uses the nodes {Move, TurnLeft, TurnRight, IfFoodAhead, 
Prog2, Prog3) and has no explicit loop constructs will require 
a large tree. The optimal solution will require around 160 steps 
if the ant starts at position (0.0). A brute force sohfion which 
visits every square will need at least 400 hundred moves and 
80 turns. A binary tree of depth 9 has this capacity. This is 
the reason we have restricted the grid size to 20x20. 

495 

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore.  Restrictions apply. 



20 0 5 t o  

TumRighl::Teminal 

RandTimes::Terminal 

IffoodAhead::Functian 

IFoOd - I 

Fig. 1. Food Layout, modified ant problem 

i u  current facing and cost one step. 
Tum the robot to the right direction of 
its current facing and cost one step. 
Generates a random integer between 0-6 
or 0-20 or 0-50. 
Takes 2 arguments and executes the first 
argument if there i s  a faad in front, 

TABLE I 
DEFlNlTlON OF TERMINALS A N D  FUNCTIONS, MODIFIED ANT PROBLEM 

Nodes Name I Description 
Move: :Tcnninal I The robot mover one square forward 

and it costs one step. 
r u m m i : :  'reermind I Tum the robat to the left direction of 

Prog2::Function 

ProgS::Fm&on 

For-hop1 ::Function 

else executes the second. 
Takes 2 arguments and exe~utes them 
sequentially. 
Takes 3 arguments and executes them 
sequentially. 
Takes 2 arguments. The fi n t  argument 
indicates number of times &e second 
argument i s  executed. It returns number 
pieces of food left after the execution 
of the loop body. 

TABLE II 
VARIABLE SETTINGS, MODIFIED ANT PROBLEM 

Variable Name Value 
Population Size 
Mutation Rate 
Crossover Rate 
Elitism Rate 
Maximum Depth 
Minimum Depth 

(108 pieces) is found or 
600 steps are reached. 

- "o-loopl --- simple-loops _ _ _  unrestricted-loops 

'-- 
*--------------- - -_________________ 

0 . . l . l l l . . , . . . . , . . . l ,  

500 I" ISW 2030 
G~llWatiOllS 

Fig. 2. 
average of 100 runs 

Mean best program 6 mess, modified ant problem. max-ileratians=6, 

A. Experiments 

All experiments have been run with the functions and 
terminals shown in table I. The values of other GP variables 
are shown in table 11. 

B. Experimental Results 

Figure 2 shows the fitness of the hest individual, averaged 
over 100 runs, for 2000 generations of evolution for the case 
where MAX-ITERATIONS was 6 .  These results were some- 
what surprising. Since the a large tree is necessary to solve 
the problem without loops, as described above, we expected 
that programs with loops might perform better. However, we 

. I  

expected that the simple loops would be easier to evolve than 
the unrestricted ones. As figure 2 reveals, the opposite was the 
case. The reason for this is not clear. We think that in some 
way the unrestricted loops constrain the search more than the 
by using subtle feedback about the quality of the solution. 

fewer occurrences of FOR-LOOP1. This was done by couni.ing 
the number of occurrences of FOR-LOOP1 in the text of 
the program and adding it to the number of pieces of food 
left after program execution. Thus, if two programs consume 
the same amount of food, the one with fewer loops will be 

Figure 3 shows the cumulative probability of petting, a 
successful solution, that is, the evolved ant eats all of the 
food, corresponding to the fitness values given in figure 2. 
None of the runs without loops gave a successful solution. At 
2000 generations, 12 of the 100 simple loop and 23 of the 
unrestricted loop runs gave a solution. 

Figure 4 shows a comparision of the fitness of the best 
individual for different choices of MAX-ITERATIONS for 
simple loops. The figure shows that higher values of MAX- 
ITERATIONS lead to better programs. There is, however, an 
unfortunate side effect that is not evident from the figur(: - 
the execution time rises dramatically. The 100 runs for MPX- 
ITERATIONS of 6, 20 and 50 took I hour, 3 hours ;and 
1 day, respectively on our hardware. A similar analysis for 
unrestricted loops showed no difference for the same values 
of MAX-ITERATIONS. 

Since programs with a small number of loops are usually 
more understandable, we performed a number of runs in which 
the fitness function was modified to favour Droerams with 
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Fig. 3. 
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Cumulative probability of success, madifid ant problem. m- 

1 
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Fig. 4. Mean best program fi mess, different values of MAX-ITERATIONS, 
average ai 100 runs, modified an1 problem 

fitter. Figure 5 shows a comparison of best fitness over the 
generations while figure 6 shows a comparison of program 
size, As can be seen from figure 5, favouring programs with 
fewer loops has a dramatic effect on fitness for simple loops 
but has no effect on the unrestricted loops. Figure 6 reveals 
quite a difference in program size if fewer loops are favoured. 
All but one of the curves shows an initial drop in program size. 
We believe that reason for this is the following: The programs 
in the initial population are generated by the ramped half- 
and-half method. Larger programs are highly likely to have 
more occurrences of loops. In fitness evaluation programs are 
terminated after executing 600 steps. Large programs will use 
up their allocation of steps before consuming much of the 
food and hence will not be as fit as the smaller programs. 
These unfit programs are not selected for mating and hence 
are removed from the next generation. Eventually these smaller 
programs increase in size as their fitness improves. 

--..----- 
. . simple-max-it-6 
_ _ -  simple-max-it-6-fewer-loaps ...... simple-max-it-20 
___ simple-max-it-ZO-fewer-lwps 
-.-. simole-max-it-SO 

Fig. 5. 
NOS, modified ant problem 

Favouring programs with fewer loops, best fitness. averages of 100 

- simple-mx-it-6 
-- - simpl~-max-it-6-iewer-Iwps ------ simple-ma-it-20 
...... simple-max-it-20-fewer-loops ---- simde-max-il-50 

Fig. 6. Favouring program with fewer loops. program size, averages of 100 
runs. modified ant problem 

C. Analysis of Solutions 

When MAX-ITERATIONS was large (20,50) the evolved 
solutions traversed every square in the grid. A typical pattern 
is shown in figure 7. 

Solutions favouring a smaller number of loops tended to 
have larger loop bodies, shorter depth and size, and to be 
more understandable. An example of such a solution is shown 
in table 111. This solution, whose traversal pattern is shown 
in figure 8, was found at generation 294 using the strategy of 
favouring programs with fewer loops. It uses 168 steps to eat 
the food and is close to optimal. The robot moves in a zigzag 
manner, switching its head left and right to detect food. If there 
is food ahead, it moves ahead and turns back by executing two 
TurnRight actions. If not, it turns left. Depending on the result 
of sensing, the robot either does 2 forward moves or just ane 
move and then senses again. 
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TABLE Ill 
A SOLUTION EVOLVED B Y  FAVORING PROGRAMS WITH FEWER LOOPS, 

MODIFIED ANT PROBLEM 

(ForLoopl times5 
(ForLoopl limes5 

(IfFoodAhead 
((Prug2 move IurnRight) Iumlighl) 

0 5 10 15 20 

AntTlail .......... r F O O ~  . 
Fig. 7.  Traversal pattem for a solution evolved with MAX-ITERATIONS=ZO, 
modified an1 problem 

In contrast, table IV shows the smallest successful solution 
evolved when there as no favouring of programs containing 
fewer loops. This was generated for a MAX-ITERATIONS 
of 6. As can be seen from table IV it has more nodes and 
fragments and it is harder to understand what the program is 
doing by analysing the code. Figure 9 shows the corresponding 
traversal pattern. 

It is very hard to get a solution with the non-loop approach. 
Out of three hundred runs with a maximum depth of IO, only 
one found an answer. The solution is enormous. It contains 
more than 5000 nodes and is impossible to understand. It takes 
4 full A4 pages to print out. Figure 10 shows the traversal path 
of the solution. The robot uses 1704 steps to complete the task. 
As mentioned earlier, no solution was found at a maximum 

TABLE IV 
A SOLUTION EVOLVED WITHOUT FAVOURING PROGRAMS W I T H  FEWER 

LOOPS, MODIFIED A N T  PROBLEM 

(FarLoopl times5 (ForLoopl times4 
(Prog3 (WrLaapl limes4 move) 
(Prog3 (IffoodAhead (Prog3 move move move) move) 
(Prog3 (Prag2 tumRight move) turnRight (IffoodAhead 
(ForLoopl times4 move) (Pro@ tumRight turnleft))) 
(IffoodAhead (Prog3 move move move) move)) (Pmg3 
(IffoodAhead (IfFwdAhead (Bog3 tumkft turnRight 
move) move) t u d e f t )  t umkf t  (ProgZ move move))))) 

: ; ; ; ! , :  : : , :  : . . ,  .-.. , - - , 
1 Food s AntTrail I 

Fig. 8. Traversal pattern of the program shown in table 111 

0 5 10 15 20 

. .  , , ...... . ~ ~.~ . ........, . 

Fig. 9. Traversal pauem of the program Shown in table IV 

depth of 8 

VI. SORTING PROBLEM 

Sorting an array of numbers is another problem that has 
natural looping characteristics. The sorting algorithms tau,ght 
in introductory computer science classes, such as selection 
sort and bubble sort, require two nested loops. The two basic 
operations are comparing and swapping. Evolution of sorting 
programs is not well suited to genetic programming because of 
difficulties with fitness evaluation. It is very difficult to develop 
a tractable fitness function that guarantees that any m a y  of 
arbitrary length will he sorted after the evolved program has 
been executed. 

Genetic programming solutions to sorting problems have 
been studied by Kinnear 141, [ 5 ]  who attempted to evolve 
generalised sorting algorithms and Koza 111, ~ 3 3 5 1  who 
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n 5 10 1s 20 

Nodes Name 
P0S::Teminal 
1ftessThanSwap::Functio" 

Prog2:Function 

ForLoopZ: :Function 

+,-,x,/ 

Description 
Random number in range 0..6 
Takes two arguments. I f  argl is less than 
argl the positions are swapped and lhe 
position of the larger value is returned 
Takes 2 arguments and executes them se- 
quentia11y. 
Takes 3 arguments, SM position, end po- 
sition and body. 
with usual meanings 

attempted to minimise the number of comparisons. 
Our focus is on the evolution of loops of different complex- 

ities and on the comparison of loop and non loop solutions. 
We do not address the issue of a generalised fitness function. 
Fitness is evaluated by applying an evolved program to all 7! 
= 5040 permutations of arrays of length 7 and counting the 
number of out-of-place elements. The actual fitness calculation 
is shown in table VII. Seven was chosen as the upper limit of 
array size so that the runs could be done in reasonable time. 

A. Experirnerits 

As before we have carried out runs with no loops, with 
simple loops where START and END are restricted to an 
integer type and with unrestricted loops where START and 
END can be set by any possible calculation. The terminals 
and functions used are shown in  table V. Values of the other 
GP variables are shown in table VI. 

E. Results 

The fitness of the best individual for all methods is shown i n  
figure 11. The corresponding cumulative probability of success 
is shown in figure 12. Programs with loops are clearly fitter 
and, in fact, for both kinds of loops all runs found a solution 

TABLE VI 
PARAMETER VALUES, SORTING PROBLEM 

Variable Name Value 
Population Sire 
Mumtion Rate 
Crossover Rate 
Elitism Rate 0.02 
Maximum Depth 
Minimum Deplh 

TABLE VI1 
ALGORITHM FOR FITNESS CALCULATION, SORTING PROBLEM 

t calculateFimess(int Jenglh. int * m y )  

in1 i, result = 0 

for( i = l ;  i <= Jength i++) 

result += abs( array[i-ll - i ); 
{ 

I 
m u m  result; 

within 40 generations. In contrast, at 100 generations only 34 
of the 50 runs without loops had found a solution. 

There seems to be an inconsistency between figures 11 and 
12. The runs of simple-loops have the best possible mean 
fitness from the first generation and unrestricted-loops take 
several generations to get there. Yet the cumulative probability 
of success rises faster for unrestricted ones. This is because the 
Y-axis scale for the mean best program fitness is huge. Best 
programs with simple loops get very good mean best fitness, 
but none of them actually reaches a solution in the first several 
generations. Because of the scale, the fitness diagram looks 
like the simple approach gets to the solutions quicker. 

The size of the best individual is shown in figure 13. 
Surprisingly the programs with loops are bigger than the 
programs without loops. This is because at an array size of 7, 
the programs without loops are still relatively small and the 
benefits of loops are not yet apparent. As the size of the array 
grows larger the non loop solution must also grow, perhaps 
exponentially. Some preliminary work that we have done on 
an array size of 11 has led to similar results as with the 
ant problem, that is, the programs without loops were huge 
and the cumulative probability of success very small, while 
the programs with loops were smaller and the cumulative 
probability of success considerably higher. 

The number of comparisons made by the best individual is 
shown in figure 14. The programs with loops are making more 
comparisons. This is related to program size. 

Table VI11 shows one of the best evolved individuals without 
loops in terms of number of comparisons and number of 
swaps. Table IX shows one of the hest programs evolved 
with simple loops. Analysis of this program reveals a general 
strategy of moving large elements to one end, while the non 
loop program is very difficult to understand. 
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' ' L ~ "o-loaps 
. . ~ ~ .  simple-fewer-loops 

+ unrestricted-fewer-loopr 

C e " P r a t i 0 S  

Fig. 11. Mean best program fi mess comparison, Averages of SO runs, soninp 
Drablem 

TABLE Vlll 
ONE O F T H E  BEST PROGRAMS EVOLVED WITHOUTLOOPS,  18 

COMPARISONS A N D  8 SWAPS ([LETS = IFLESSTHANSWAP) 

(ILETs POS4 POS6)) 

(ILETs POSl POS6) (ILETs POSO POS4)) 

(ILETs POS4 POSS) (ILETs POSO POS4)) 
(ILETs POS3 POS4)))) 

(ILETs POSl POS3) (ILETs POSZ POS4)) 

(ILETs POS4 POS6) (ILETs POS5 POS4)) 

(ILETs POSl POSZ) (ILETs POSZ POSS)))) 

(ILETs POSO POSI) (ILETs POS3 POS5)l 

(Pragz (hog2  

(hog2 (Prog2 

(Prag2 (Progz (hog2 

(Prng2 (hog2 

(PrOg2 

(Prog2 (hog2 

The results on the sorting problem are not as good as those 
on the ant problem. The main reason for this is that the sorting 
problem is considerably harder. It is known that sorting can 
be done with two nested loops, however, the limits of the 
inner loop need to he co-ordinated with the loop index of the 
outer loop. In our formulation of the problem this could only 
happen by random chance. This did not occur in any of the 
runs and the evolved programs contained large numbers of 
uncoordinated loops. 

Comparisons of the efficiency of the different approaches, 
as well as comparisons with standard sorting algorithms are 
shown in table X. For each row of the table the given algorithm 
was applied to all of the 5040 test cases and the number of 
comparisons and the number of swaps were counted. The 
numbers given are the average number of swaps per test 
case. The evolved programs are competitive with conventional 
algorithms. 

1 2 P . -  . . *  .". -2 -*-no-~onps . * simple-fewerhops 
4 .  + unrestricted-fewu-laops F 

J .. a d  

00 I 
0 20 40 ta BO IW 

Evalvstionr x 1W 

Fig. 12. Cumulative probability of succcss. soning problem 

x no-loops 
* simple-fewer-loops 
+ unrestncted-fewer-loops 

0 . . . .  . .  . . . . .  . . . .  . . . . (  

0 20 .o 60 80 I W  

Ce"1lOnE 

Fig. 13. Size of lhe beat individual, Averages of SO runs, sorting problem 

TABLE IX 
A GOOD PROGRAM WITH SIMPLE LOOPS, 22  COMPARISONS AND I O  

SWAPS. SORTING PROBLEM 

(Progz (hog2 (Pro@ 

(Prog2 

(hog2  

(Forhap2 POS3 POS4 (ILETr i (i+l))) 
( F a r h p 2  POS2 POS6 (ILETs i (,+I)))) 

(ForLoopZ POS3 POS4 (ILETs i (icl))) 
(ForLoop2 POS4 POSS (ILETs i (icl))))) 

(FarLonpa POSl POS6 (ILETs i (,+I))) 

(Prog2 
(ForLoopZ POSl POS3 (ILETs L (,+I))) 
(ForLoop2 POSO POS6 (ILETr I (i+Il)))))) 
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- +~ unrestricted-fewer-Imps 
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0 20 u) M 80 IW 

GCmr.ti0ns 

Fig. 14. Number of comparisons made by best individual, Averages of 50 
IUnS, SONng problem 

TABLE X 
DIFFERENT SORTINGMETHODS,FOR 7 ELEMENT ARRAYS, 5 0 4 0 T ~ s ~  

CASES, SORTING PROBLEM 

Methods I Tompansons I Swaps 
Bubble San I 21.00 I 10.50 
Shell Son 16.50 

15.50 
Selection Sort 
Quick Son 
No loops 
Simple lwps  22.00 I O . 0  

9.00 

VII. CONCLUSIONS 

Our goal was to evolve programs with loops to solve 
problems with some naturally occurring repetitive behaviour. 
By restricting the semantic >complexity of for-loops we have 
succeeded in evolving small, efficient and reasonably under- 
standable solutions to a modified Santa Fe ant problem and to 
a sorting problem. In the case of the ant problem, a solution 
without loops contained over 5,000 nodes and many of the 
evolved solutions with loops had fewer than 30 nodes. 

Surprisingly, restricting the loop constructs to simple loops 
in which the number of iterations or the start and end values 
of a loop were a special integer type, was not as effective as 
unrestricted loops. The UNeStriCted loops generally evolved 
fitter solutions in fewer $generations. The reason for this 
requires further investigation. 

Using the fitness function to favour programs with fewer 
loops was very beneficial.'The programs evolved in this way 
were smaller and more undeistandable and generally fitter than 
programs evolved without this bias. 

Most researchers and practitioners in genetic programming 
have tended to avoid the use of looping constructs, primarily 
due to difficulties in evolving consistent programs and dealing 
with infinite loops. In formulating the functions for a problem 

domain, looping constructs are rejected out of hand. Our 
results suggest that looping constructs are worth considering 
when the problem domain has some repetitive charateristics. 
While evolution of generalised loops is currently not possible, 
looping constructs with carefully designed syntax and seman- 
tics can be used to great advantage. 
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