
Experiments with Explicit For-loops in Genetic
Programming

Vic Ciesielski
School of Computer Science
and Information Technology

RMIT University, GPO Box 2476V
Melbourne Victoria 3001
Email: vc@cs.rmit.edu.au

Abstract-Evolving programs with explicit loops presents ma-
jor difficulties, primarily due to the massive increase in the size
of the search space. Fitness evaluation becomes computationally
expensive and a method fur dealing with infinite loops must he
implemented. We have investigated ways of dealing with these
problems by the evolution of for-loops of increasing semantic
complexity. We have chosen two problems - a modified Santa Fe
ant problem and a sorting problem - which have natural looping
constructs in their solution and a solution without loops is not
possible unless the tree depth is very large. We have shown that
by controlling the complexity of the loop structures it is possible
to evolve smaller and more understandable program fur these
prohlems.

1. INTRODUCTION

Loops are probably the most powerful constructs in pro-
gramming. They provide a mechanism for repeated execution
of a sequence of instructions. However, there is very little
use of looping constructs in the programs evolved by genetic
programming. There are a number of reasons for this. Firstly,
loops are hard to evolve. It is necessary to evolve the start
and end points and the body and to make sure they are
consistent, for example, in some kinds of loops an index
variable must appear in the body of the loop. Programs
with loops generally take a lot longer to evaluate and some
mechanism must be implemented for dealing with infinite
loops. Secondly, it has turned out that there is a large class of
useful problems which can be solved by evolving programs
without loops. Thirdly, it is often possible to put the looping
behaviour in the environment or into a terminal, for example,
in the usual approach to the Santa Fe ant problem [l], the
evolved program is repetitively invoked by the environment
until some maximum number of steps has been exceeded while
some robotics application might have a terminal such as ‘go-
forward-until-obstacle’ [2].

At the most general level of abstraction there are two
primary kinds of loops, the for-loop and the while-loop. In
a for-loop the number of times the body of the loop is to be
executed is known before execution of the loop begins. In a
while-loop the number of repetitions is not known in advance
and the loop body is repeated until some condition becomes
truelfalse. In this paper we consider only for-loops.

Xiang Li
School of Computer Science
and Information Technology

RMIT University, GPO Box 2476V
Melboume Victoria 3001

Email: xiali@cs.rmit.edu.au

A. Goals

Our goal is to investigate the evolution of programs with
for-loops for problems which naturally involve some kind of
repetitive behaviour.

We consider loops of the form
(FOR-LOOP1 NUM-ITERATIONS BODY)

in which BODY is executed NUM-ITERATIONS times and
(FOR-LOOP2 START END BODY)

in which a counter used in BODY is initialised to the value
of START, BODY executed, the counter incremented and the
process repeated until the value of the counter reaches END.

We investigate the following strategies for setting the values
of NUM-ITERATIONS, START and END.

1) Set the value to a random type (Simple loop).
2) Set the value to the result of any computation permined

by the terminals and functions, including embedded
looping constructs (Unrestricted loop).

Our expectation is that simple loops will be easier to evolve
than unrestricted loops. We use these looping constructs on
two problems which have natural repetitive characteristics, a
modified Santa Fe ant problem in which we use FOR-LOOP1
constructs, and sorting of an array of numbers in which we
use FOR-LOOP2 constructs. For each strategy we investigate
whether the problem can be solved at all, the convergence
behaviour, and the size of the evolved programs and compare
the solutions with loops to solutions without loops.

11. RELATED WORK

There are very few reports in the literature on the use of
loops in genetic programming. Koza [3, p1351 described how
to implement loops with automatically defined functions. He
used the approach to solve the problem of computing the
numerical average of LEN numbers in a vector V. In all
of experiments described in his book, only a constrained form
of automatically defined loops (ADL) is used and nested loops
are not allowed. He used a pre-established maximum number
of executions to ration the resources. He also used the ADL
io a potential function set to solve an even-parity, a minimal
sorting network and a robot controller problem. He concluded
that ADLs could be a good factor for efficient solutions.

0-7803-85 15-%/04/$20.00 02004 IEEE 494

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

Kinnear 141, [5] used an iterative operator with an index
value to evolve a sorting algorithm. He restricted each loop to
no more than 200 iterations and the total number of iterations
in a program to 2,000. Considerable effort was expended in
the design of the fitness function to encourage generality of
the evolved solution. For example, he used tests of random
sequences to obtain a high likelihood of generality. He added
inverse size to the fitness measure and found that as well as
decreasing the size, this improved generality.

Langdon [6] utilized a 'forwhile' construct to evolve a
list data structure. In his experiments, nested loops were not
allowed and the number of iterations was restricted to 32.
The 'forwhile' provided the capability to process multiple list
elements.

Wong and Leung [7] tried to evolve a general recursive
solution for even-n-parity problems. They employed a logic
grammar to enforce the base-case structure of recursion and
regarded a program which did not produce a result after an
allowed execution time as unfit.

Maxwell [SI developed a method to deal with infinite loops
by incorporating time spent executing loops into a partial
fitness calculation. This enables the evolution to use partial
solutions where there are infinite loops, but which contain
good building blocks. He used this method for the Santa
Fe Aut Problem and found that it generated more efficient
solutions than the optimum found in [91.

111. SYNTAX A N D SEMANTICS OF THE FOR-LOOPS

We have used two variations of for-loops. For both varia-
tions we have experimented with simple loops and unrestricted
loops. The syntax of the first variation is:

(FOR-LOOP1 NUM-ITERATIONS BODY)
and the semantics are quite straight forward, BODY is ex-
ecuted NUM-ITERATIONS times. During evolution, both
NUM-ITERATIONS and BODY undergo crossover and mu-
tation. In the case of simple loops NUM-ITERATIONS is
restricted to a special integer type. The value is initially set to
a random number between 1 and a programmer supplied value
of MAX-ITERATIONS. During crossover and mutation typing
is preserved so NUM-ITERATIONS can only be changed to
another integer of this type. In the case of unrestricted loops,
the value of NUM-ITERATIONS can be set by any function.
This could involve the arithmetic functions {+, -} as well as
several nested loops.

The syntax of the second for-loop variation is:
(FOR-LOOP2 START END BODY)

The semantics are also straight forward. BODY is executed
once for each value of a counter between START and END.
If START is greater than END. BODY is not executed. In the
case of simple loops, START and END are restricted integer
types as before, and in the case of unrestricted loops START
and END can be the result of any possible computation, also
as before.

In this implementation of looping, infinite loops are not pos-
sible, so no special actions are necessary in fitness evaluation.

I v . EVOLUTION OF THE FOR-LOOPS

We use strongly typed genetic programming (STGP) [IO]
in our experiments. STGP simultaneously allows multiple data
types and enforces closure by only generating parse trees
which satisfy the type constraints. During genetic operations
like crossover and mutation, only functions and terminals of
the same type can be swapped or mutated.

In our function definitions for FOR-LOOP1 and FOR-
LOOP2, {NUM-ITERATIONS, START, END} are of integer
type. The for-loop function return type is of type dummy
for simple-loops and integer for unrestricted-loops. During
evolution, STGP will take care type matching and ensure only
correct operations can be done.

V. MODIFIED SANTA F E ANT PROBLEM

The Santa Fe ant problem is described in detail in 191 and
has been extensively studied 111. The problem is to direct a
robot ant to navigate through a twisting trail, the "Santa Fe
Trail", on a 32 x 32 grid. There are 89 pieces of food on the
trail. The robot eats the food when it enters into a square. The
goal is for the robot to eat all of the food in as few moves
as possible. The program can use three operations {Move,
TurnRight, TurnLeft). Move allows the robot to move one
square forward. TurnRight and TurnLeft turns the robot to the
right and left respectively. Each operation costs one step.

In previous work on the Santa Fe ant problem there has
been no explicit iteration in the evolved programs. Iteration
is accomplished implicitly in the environment by invoking the
program as many times as necessary to eat all of the food or
until some maximum number of steps (usually 600) has been
expended. The fitness of a program is the number of pieces
of food left after 600 steps. A successful solution is one in
which all of the food has been consumed before 600 steps
have elapsed. Three functions are used to glue the operations
{IfFoodAhead, Pro@, Prog3) together. IfFoodAhead takes
two arguments and executes one of its arguments depending
on whether the square the robot is facing contains food or not.
Prog2 and Prog3 take two or three arguments separately and
execute them sequentially.

Our intention is to evolve programs in which there is no
implicit looping. A program will be invoked only once, any
looping behaviour must be explicitly in the program and the
fitness of the program is the number of pieces of uneaten food
after 600 steps. In our modified problem, the size of the grid
is changed to 20x20 aod 108 pieces of food are placed on
the grid in 3 blocks of 6x6 as shown in figure 1. This regular
placement of food is intended to encourage the evolution of
loops within the evolved programs.

It is important to note that a solution to this problem which
uses the nodes {Move, TurnLeft, TurnRight, IfFoodAhead,
Prog2, Prog3) and has no explicit loop constructs will require
a large tree. The optimal solution will require around 160 steps
if the ant starts at position (0.0). A brute force sohfion which
visits every square will need at least 400 hundred moves and
80 turns. A binary tree of depth 9 has this capacity. This is
the reason we have restricted the grid size to 20x20.

495

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

20 0 5 t o

TumRighl::Teminal

RandTimes::Terminal

IffoodAhead::Functian

IFoOd - I

Fig. 1. Food Layout, modified ant problem

i u current facing and cost one step.
Tum the robot to the right direction of
its current facing and cost one step.
Generates a random integer between 0-6
or 0-20 or 0-50.
Takes 2 arguments and executes the first
argument if there i s a faad in front,

TABLE I
DEFlNlTlON OF TERMINALS A N D FUNCTIONS, MODIFIED ANT PROBLEM

Nodes Name I Description
Move: :Tcnninal I The robot mover one square forward

and it costs one step.
r u m m i : : 'reermind I Tum the robat to the left direction of

Prog2::Function

ProgS::Fm&on

For-hop1 ::Function

else executes the second.
Takes 2 arguments and exe~utes them
sequentially.
Takes 3 arguments and executes them
sequentially.
Takes 2 arguments. The fi n t argument
indicates number of times &e second
argument i s executed. It returns number
pieces of food left after the execution
of the loop body.

TABLE II
VARIABLE SETTINGS, MODIFIED ANT PROBLEM

Variable Name Value
Population Size
Mutation Rate
Crossover Rate
Elitism Rate
Maximum Depth
Minimum Depth

(108 pieces) is found or
600 steps are reached.

- "o-loopl --- simple-loops _ _ _ unrestricted-loops

'--
*--------------- - -_________________

0 . . l . l l l . . , , . . . l ,

500 I" ISW 2030
G~llWatiOllS

Fig. 2.
average of 100 runs

Mean best program 6 mess, modified ant problem. max-ileratians=6,

A. Experiments

All experiments have been run with the functions and
terminals shown in table I. The values of other GP variables
are shown in table 11.

B. Experimental Results

Figure 2 shows the fitness of the hest individual, averaged
over 100 runs, for 2000 generations of evolution for the case
where MAX-ITERATIONS was 6 . These results were some-
what surprising. Since the a large tree is necessary to solve
the problem without loops, as described above, we expected
that programs with loops might perform better. However, we

. I

expected that the simple loops would be easier to evolve than
the unrestricted ones. As figure 2 reveals, the opposite was the
case. The reason for this is not clear. We think that in some
way the unrestricted loops constrain the search more than the
by using subtle feedback about the quality of the solution.

fewer occurrences of FOR-LOOP1. This was done by couni.ing
the number of occurrences of FOR-LOOP1 in the text of
the program and adding it to the number of pieces of food
left after program execution. Thus, if two programs consume
the same amount of food, the one with fewer loops will be

Figure 3 shows the cumulative probability of petting, a
successful solution, that is, the evolved ant eats all of the
food, corresponding to the fitness values given in figure 2.
None of the runs without loops gave a successful solution. At
2000 generations, 12 of the 100 simple loop and 23 of the
unrestricted loop runs gave a solution.

Figure 4 shows a comparision of the fitness of the best
individual for different choices of MAX-ITERATIONS for
simple loops. The figure shows that higher values of MAX-
ITERATIONS lead to better programs. There is, however, an
unfortunate side effect that is not evident from the figur(: -
the execution time rises dramatically. The 100 runs for MPX-
ITERATIONS of 6, 20 and 50 took I hour, 3 hours ;and
1 day, respectively on our hardware. A similar analysis for
unrestricted loops showed no difference for the same values
of MAX-ITERATIONS.

Since programs with a small number of loops are usually
more understandable, we performed a number of runs in which
the fitness function was modified to favour Droerams with

496

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

YI Im IYI xa
Ed- r ,WO

Fig. 3.
ireratloos=6, average of 100 mu. (the no-loops line is on the x axis)

Cumulative probability of success, madifid ant problem. m-

1

'-1 --- simple-mi-it-6 ...-- rimole-max-it-28

--..-..-..- .._.._... -..---.- .._.._.__.__.._
2wo

GtW116001

Fig. 4. Mean best program fi mess, different values of MAX-ITERATIONS,
average ai 100 runs, modified an1 problem

fitter. Figure 5 shows a comparison of best fitness over the
generations while figure 6 shows a comparison of program
size, As can be seen from figure 5, favouring programs with
fewer loops has a dramatic effect on fitness for simple loops
but has no effect on the unrestricted loops. Figure 6 reveals
quite a difference in program size if fewer loops are favoured.
All but one of the curves shows an initial drop in program size.
We believe that reason for this is the following: The programs
in the initial population are generated by the ramped half-
and-half method. Larger programs are highly likely to have
more occurrences of loops. In fitness evaluation programs are
terminated after executing 600 steps. Large programs will use
up their allocation of steps before consuming much of the
food and hence will not be as fit as the smaller programs.
These unfit programs are not selected for mating and hence
are removed from the next generation. Eventually these smaller
programs increase in size as their fitness improves.

--..-----
. . simple-max-it-6
_ _ - simple-max-it-6-fewer-loaps simple-max-it-20
___ simple-max-it-ZO-fewer-lwps
-.-. simole-max-it-SO

Fig. 5.
NOS, modified ant problem

Favouring programs with fewer loops, best fitness. averages of 100

- simple-mx-it-6
-- - simpl~-max-it-6-iewer-Iwps ------ simple-ma-it-20
...... simple-max-it-20-fewer-loops ---- simde-max-il-50

Fig. 6. Favouring program with fewer loops. program size, averages of 100
runs. modified ant problem

C. Analysis of Solutions

When MAX-ITERATIONS was large (20,50) the evolved
solutions traversed every square in the grid. A typical pattern
is shown in figure 7.

Solutions favouring a smaller number of loops tended to
have larger loop bodies, shorter depth and size, and to be
more understandable. An example of such a solution is shown
in table 111. This solution, whose traversal pattern is shown
in figure 8, was found at generation 294 using the strategy of
favouring programs with fewer loops. It uses 168 steps to eat
the food and is close to optimal. The robot moves in a zigzag
manner, switching its head left and right to detect food. If there
is food ahead, it moves ahead and turns back by executing two
TurnRight actions. If not, it turns left. Depending on the result
of sensing, the robot either does 2 forward moves or just ane
move and then senses again.

497

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

TABLE Ill
A SOLUTION EVOLVED B Y FAVORING PROGRAMS WITH FEWER LOOPS,

MODIFIED ANT PROBLEM

(ForLoopl times5
(ForLoopl limes5

(IfFoodAhead
((Prug2 move IurnRight) Iumlighl)

0 5 10 15 20

AntTlail r F O O ~ .
Fig. 7. Traversal pattem for a solution evolved with MAX-ITERATIONS=ZO,
modified an1 problem

In contrast, table IV shows the smallest successful solution
evolved when there as no favouring of programs containing
fewer loops. This was generated for a MAX-ITERATIONS
of 6. As can be seen from table IV it has more nodes and
fragments and it is harder to understand what the program is
doing by analysing the code. Figure 9 shows the corresponding
traversal pattern.

It is very hard to get a solution with the non-loop approach.
Out of three hundred runs with a maximum depth of IO, only
one found an answer. The solution is enormous. It contains
more than 5000 nodes and is impossible to understand. It takes
4 full A4 pages to print out. Figure 10 shows the traversal path
of the solution. The robot uses 1704 steps to complete the task.
As mentioned earlier, no solution was found at a maximum

TABLE IV
A SOLUTION EVOLVED WITHOUT FAVOURING PROGRAMS W I T H FEWER

LOOPS, MODIFIED A N T PROBLEM

(FarLoopl times5 (ForLoopl times4
(Prog3 (WrLaapl limes4 move)
(Prog3 (IffoodAhead (Prog3 move move move) move)
(Prog3 (Prag2 tumRight move) turnRight (IffoodAhead
(ForLoopl times4 move) (Pro@ tumRight turnleft)))
(IffoodAhead (Prog3 move move move) move)) (Pmg3
(IffoodAhead (IfFwdAhead (Bog3 tumkft turnRight
move) move) t u d e f t) t umkf t (ProgZ move move)))))

: ; ; ; ! , : : : , : : . . , .-.. , - - ,
1 Food s AntTrail I

Fig. 8. Traversal pattern of the program shown in table 111

0 5 10 15 20

. . , , ~ ~.~, .

Fig. 9. Traversal pauem of the program Shown in table IV

depth of 8

VI. SORTING PROBLEM

Sorting an array of numbers is another problem that has
natural looping characteristics. The sorting algorithms tau,ght
in introductory computer science classes, such as selection
sort and bubble sort, require two nested loops. The two basic
operations are comparing and swapping. Evolution of sorting
programs is not well suited to genetic programming because of
difficulties with fitness evaluation. It is very difficult to develop
a tractable fitness function that guarantees that any m a y of
arbitrary length will he sorted after the evolved program has
been executed.

Genetic programming solutions to sorting problems have
been studied by Kinnear 141, [5] who attempted to evolve
generalised sorting algorithms and Koza 111, ~ 3 3 5 1 who

498

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

n 5 10 1s 20

Nodes Name
P0S::Teminal
1ftessThanSwap::Functio"

Prog2:Function

ForLoopZ: :Function

+,-,x,/

Description
Random number in range 0..6
Takes two arguments. I f argl is less than
argl the positions are swapped and lhe
position of the larger value is returned
Takes 2 arguments and executes them se-
quentia11y.
Takes 3 arguments, SM position, end po-
sition and body.
with usual meanings

attempted to minimise the number of comparisons.
Our focus is on the evolution of loops of different complex-

ities and on the comparison of loop and non loop solutions.
We do not address the issue of a generalised fitness function.
Fitness is evaluated by applying an evolved program to all 7!
= 5040 permutations of arrays of length 7 and counting the
number of out-of-place elements. The actual fitness calculation
is shown in table VII. Seven was chosen as the upper limit of
array size so that the runs could be done in reasonable time.

A. Experirnerits

As before we have carried out runs with no loops, with
simple loops where START and END are restricted to an
integer type and with unrestricted loops where START and
END can be set by any possible calculation. The terminals
and functions used are shown in table V. Values of the other
GP variables are shown in table VI.

E. Results

The fitness of the best individual for all methods is shown i n
figure 11. The corresponding cumulative probability of success
is shown in figure 12. Programs with loops are clearly fitter
and, in fact, for both kinds of loops all runs found a solution

TABLE VI
PARAMETER VALUES, SORTING PROBLEM

Variable Name Value
Population Sire
Mumtion Rate
Crossover Rate
Elitism Rate 0.02
Maximum Depth
Minimum Deplh

TABLE VI1
ALGORITHM FOR FITNESS CALCULATION, SORTING PROBLEM

t calculateFimess(int Jenglh. int * m y)

in1 i, result = 0

for(i = l ; i <= Jength i++)

result += abs(array[i-ll - i);
{

I
m u m result;

within 40 generations. In contrast, at 100 generations only 34
of the 50 runs without loops had found a solution.

There seems to be an inconsistency between figures 11 and
12. The runs of simple-loops have the best possible mean
fitness from the first generation and unrestricted-loops take
several generations to get there. Yet the cumulative probability
of success rises faster for unrestricted ones. This is because the
Y-axis scale for the mean best program fitness is huge. Best
programs with simple loops get very good mean best fitness,
but none of them actually reaches a solution in the first several
generations. Because of the scale, the fitness diagram looks
like the simple approach gets to the solutions quicker.

The size of the best individual is shown in figure 13.
Surprisingly the programs with loops are bigger than the
programs without loops. This is because at an array size of 7,
the programs without loops are still relatively small and the
benefits of loops are not yet apparent. As the size of the array
grows larger the non loop solution must also grow, perhaps
exponentially. Some preliminary work that we have done on
an array size of 11 has led to similar results as with the
ant problem, that is, the programs without loops were huge
and the cumulative probability of success very small, while
the programs with loops were smaller and the cumulative
probability of success considerably higher.

The number of comparisons made by the best individual is
shown in figure 14. The programs with loops are making more
comparisons. This is related to program size.

Table VI11 shows one of the best evolved individuals without
loops in terms of number of comparisons and number of
swaps. Table IX shows one of the hest programs evolved
with simple loops. Analysis of this program reveals a general
strategy of moving large elements to one end, while the non
loop program is very difficult to understand.

499

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

' ' L ~ "o-loaps
. . ~ ~ . simple-fewer-loops

+ unrestricted-fewer-loopr

C e " P r a t i 0 S

Fig. 11. Mean best program fi mess comparison, Averages of SO runs, soninp
Drablem

TABLE Vlll
ONE O F T H E BEST PROGRAMS EVOLVED WITHOUTLOOPS, 18

COMPARISONS A N D 8 SWAPS ([LETS = IFLESSTHANSWAP)

(ILETs POS4 POS6))

(ILETs POSl POS6) (ILETs POSO POS4))

(ILETs POS4 POSS) (ILETs POSO POS4))
(ILETs POS3 POS4))))

(ILETs POSl POS3) (ILETs POSZ POS4))

(ILETs POS4 POS6) (ILETs POS5 POS4))

(ILETs POSl POSZ) (ILETs POSZ POSS))))

(ILETs POSO POSI) (ILETs POS3 POS5)l

(Pragz (hog2

(hog2 (Prog2

(Prag2 (Progz (hog2

(Prng2 (hog2

(PrOg2

(Prog2 (hog2

The results on the sorting problem are not as good as those
on the ant problem. The main reason for this is that the sorting
problem is considerably harder. It is known that sorting can
be done with two nested loops, however, the limits of the
inner loop need to he co-ordinated with the loop index of the
outer loop. In our formulation of the problem this could only
happen by random chance. This did not occur in any of the
runs and the evolved programs contained large numbers of
uncoordinated loops.

Comparisons of the efficiency of the different approaches,
as well as comparisons with standard sorting algorithms are
shown in table X. For each row of the table the given algorithm
was applied to all of the 5040 test cases and the number of
comparisons and the number of swaps were counted. The
numbers given are the average number of swaps per test
case. The evolved programs are competitive with conventional
algorithms.

1 2 P . - . . * .". -2 -*-no-~onps . * simple-fewerhops
4 . + unrestricted-fewu-laops F

J .. a d

00 I
0 20 40 ta BO IW

Evalvstionr x 1W

Fig. 12. Cumulative probability of succcss. soning problem

x no-loops
* simple-fewer-loops
+ unrestncted-fewer-loops

0 (

0 20 .o 60 80 I W

Ce"1lOnE

Fig. 13. Size of lhe beat individual, Averages of SO runs, sorting problem

TABLE IX
A GOOD PROGRAM WITH SIMPLE LOOPS, 22 COMPARISONS AND I O

SWAPS. SORTING PROBLEM

(Progz (hog2 (Pro@

(Prog2

(hog2

(Forhap2 POS3 POS4 (ILETr i (i+l)))
(F a r h p 2 POS2 POS6 (ILETs i (,+I))))

(ForLoopZ POS3 POS4 (ILETs i (icl)))
(ForLoop2 POS4 POSS (ILETs i (icl)))))

(FarLonpa POSl POS6 (ILETs i (,+I)))

(Prog2
(ForLoopZ POSl POS3 (ILETs L (,+I)))
(ForLoop2 POSO POS6 (ILETr I (i+Il))))))

500

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

50 1

~X. . . . r d w p s
z simple-fewer-loops

- +~ unrestricted-fewer-Imps

oJ, . . . , . . . , , , ,
0 20 u) M 80 IW

GCmr.ti0ns

Fig. 14. Number of comparisons made by best individual, Averages of 50
IUnS, SONng problem

TABLE X
DIFFERENT SORTINGMETHODS,FOR 7 ELEMENT ARRAYS, 5 0 4 0 T ~ s ~

CASES, SORTING PROBLEM

Methods I Tompansons I Swaps
Bubble San I 21.00 I 10.50
Shell Son 16.50

15.50
Selection Sort
Quick Son
No loops
Simple lwps 22.00 I O . 0

9.00

VII. CONCLUSIONS

Our goal was to evolve programs with loops to solve
problems with some naturally occurring repetitive behaviour.
By restricting the semantic >complexity of for-loops we have
succeeded in evolving small, efficient and reasonably under-
standable solutions to a modified Santa Fe ant problem and to
a sorting problem. In the case of the ant problem, a solution
without loops contained over 5,000 nodes and many of the
evolved solutions with loops had fewer than 30 nodes.

Surprisingly, restricting the loop constructs to simple loops
in which the number of iterations or the start and end values
of a loop were a special integer type, was not as effective as
unrestricted loops. The UNeStriCted loops generally evolved
fitter solutions in fewer $generations. The reason for this
requires further investigation.

Using the fitness function to favour programs with fewer
loops was very beneficial.'The programs evolved in this way
were smaller and more undeistandable and generally fitter than
programs evolved without this bias.

Most researchers and practitioners in genetic programming
have tended to avoid the use of looping constructs, primarily
due to difficulties in evolving consistent programs and dealing
with infinite loops. In formulating the functions for a problem

domain, looping constructs are rejected out of hand. Our
results suggest that looping constructs are worth considering
when the problem domain has some repetitive charateristics.
While evolution of generalised loops is currently not possible,
looping constructs with carefully designed syntax and seman-
tics can be used to great advantage.

ACKNOWLEDGMENT
This work was partially supported by grant EPPNRMO54

from the Victorian Partnership for Advanced Computing.

REFERENCES
[I] W. B. Langdan and R. Poli. Why ane arc hard. In John R. K o a ,

Wolfgang Banrhaf, Kumar Chellapilla. Kalyanmoy Deb. Marco Dorigo,
David B. Fogel. M a H. Garroo. David E. Goldberg, Hiloshi Iba, and
Rick Riola, editors, Genetic Programming 1998: Proceedings of the
Third A n n u l Conference. pages 193-201, University of Wisconsin,
Madison, Wisconsin, USA. 22-25 1998. Morgan Kaufmann.

[21 V. Ciesielski, D. Mawhinney. and P. Wilson. Genetic programming
for robat soccer. In Proceedings of the RoboCup 2001 International
Symposium, pages 319-324. Seane, USA, July 2002. SpnngeC.

[3] John R. K o a , Forrest H Bennet 111, David Andre. and MaRin A. Keane.
Genetic Pmgramming Ill; Darwinian invention and problem solving.
Morgan Kaufmann, 1999.

141 Kenneth E. Kinnear, Jr. Evolving a son: Lessons in genetic program-
ming. In Proceedings ofthe 1993 Internationnl Conference on Neural
Nenuorkr, volume 2, pages 881-888. San Francisco, USA, 28 -I 1993.
IEEE Press.

[S] Kenneth E. Kinnear, JT. Generality and diffi cully in genetic program-
ming: Evolving a sort. In Stephanie Forrest, editor, Proceedings of
the 5th Intsrnational Conference on Generic Algorilhms, ICGA-93,
pages 287-294. University of Illinois at Urbana-Champaign, 17-21 1993.
Morgan Kaufmnn.

161 William B. Langdon. Dam shllctures and genetic programming. In
Peter I. Angeline and K. E. Kinnear, Jr., editors. Advances in Genetic
Programming 2, pages 395414 . MIT Press. Cambridge, MA, USA,
1996.

[7] Man h u n g Wong and Kwong Sak Lung. Evolving recursive functions
far the even-parity problem using genetic programming. In Peter J. An-
geline and K. E. Kinnear, Jr., editors. Advances in Genetic Pmgrmming
2, chapter 11. pages 221-240. MIT Press, Cambridge, MA, USA, 1996.

181 Sidney R. Maxwell Ill. Experiments with a coroutine mcdel for genetic
programming. In Proceedings of the 1998 United Kingdom Automatic
Control Council Internotional Conference on Conrml (U K A C C Inter-
national Conference on Conrml '98). University of Wales, volume 455,
Swansea, UK, 1-4 1998. IEEE Press.

[9] John R. K o a . Genetic Pmgromming; On the Programming ofConzpur-
er$ by Means of Norural Selection. MIT Press, 1992.

[IO] Thomas D. Haynes, Dale A. Scboenefeld, and Roger L. Wainwright.
Type inheritance in strongly typed genetic programming. In Peter I.
Angeline and K. E. Kinnear, Jr., editors, Advances in Generic Program-
ming 2, pages 359-376. MIT Press. Cambridge. MA, USA. 1996.

[I 1 1 John R. K o a . Genetic Programming 11: Autonmtic Dirrovery of
Reusable Pmgrom. MIT Press, 1994.

50 1

Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 22:29 from IEEE Xplore. Restrictions apply.

