
Multiobjective Parsimony Enforcement for Superior 
Generalisation Performance 

Yaniv Bemstein, Xiaodong Li, Vic Ciesielski, and Andy Song 
School of Computer Science and Information Technology 

RMIT University, Melbourne VIC 3001, Australia 
Email: {yherstein,xiaodong,vc,asong} @cs.rmit.edu.au 

Absfraef-Program Bloat - the phenomenon of ever-increasing 
program size during a GP run - is a recognised and widespread 
problem. Traditional techniques to combat program bloat are 
program size limitations or parsimony pressure (penalty func- 
tions). These techniques suffer from a number of problems, in 
particular their reliance on parameters whose optimal values it is 
difficult to a priori determine. In this paper we introduce POPE- 
GP, a system that makes use of the NSGA-I1 multiobjective evoln- 
tionary algorithm as an alternative, parameter-free technique for 
eliminating program bloat. We test it on a classification problem 
and find that while vastly reducing program size, it does improve 
generalisation performance. 

I. INTRODUCTION 

It is often the case in GP runs that the average size of 
individuals in the population increases substantially over the 
course of the run. This phenomenon is known as program 
bloat. Bloated populations lead to greater load on both CPU 
and memory over the course of a run, decreased search 
effectiveness and difficulty in interpreting results. Furthermore, 
in applications where programs are desired to generalise from 
a limited training set (and there are many; symbolic regression, 
machine learning and classification are just a few) it has been 
observed that smaller solutions tend to generalise better [15], 
(91. 

In this paper we study the performance of POPE-GP, a new 
algorithm that uses the NSGA-I1 multiobjective algorithm as 
the hasis for parsimony enforcement. The use of multiobjective 
techniques for parsimony enforcement has been studied by 
Bleuler et al. [2] and De Jong et a1.[4] and proved extremely 
successful in producing highly parsimonious solutions that 
exhibit good performance on the parity problem. Our focus 
in this paper is somewhat different: we would like to further 
test the hypothesis that small solutions generalise better than 
large solutions. To this end, we compare the performance of 
POPE-GP on a real-world classification problem with that 
of a GP with more traditional parsimony control and a GP 
with no control at all, paying particular attention to the 
performance of solutions on the unseen testing set as a measure 
of generalisation performance. 

Our results not only reconfirm that the multiobjective 
approach is an excellent way of enforcing parsimony in a 
population without adversely impacting on fitness, hut do also 
demonstrate an increase in the generalisation ability of the 
programs generated by POPE-GP. 

11. PROGRAM BLOAT IN GPS 

There are a number of theories in existence that attempt to 
explain the causes of bloat; these include pmtection against 
crossover [13], removal bias [I41 and difusion[lO]. While the 
exact mechanisms and behaviours differ between the theories, 
they all echo one fundamental truth that it is easier to add 
code to a program than it is to remove it. That is, it is 
quite difficult to remove code from an effectively functioning 
program without heavily impacting on that functionality and 
thus reducing its fitness. On the other hand, adding code to 
such a program is much less likely to be harmful. As such, 
there is an inherent bias towards the expansion of code and 
against its removal. 

Code bloat is associated with a number of harmful out- 
comes: 

- Increased Resource Usage: Larger programs consume 
more memory and take longer to evaluate. 

- Decreased Search Effectiveness: Program bloat inter- 
feres with the efficacy of the crossover and mutation 
operators. 

- Obfuscation: The operation of a bloated program is 
usually so opaque that it is nearly impossible for humans 
to understand its basic functionality. 

- Overfitting: This can he classified as both a possible 
cause and possible effect of bloat. Overfitting occurs 
when optimisation pressure causes the solution to adhere 
too closely to the training set, causing degradation in the 
generalised performance of the solution. An overfitted 
solution tends to be large because of the complexity 
of adhering precisely to the often noisy data presented 
to the learning algorithm. Thus, it is possible that 
overfitting contributes to program bloat, and conversely 
that tackling program bloat discourages overfitting and 
improves a solution’s generalisation performance. Tack- 
ett [15], Kinnear [9] and Zhang and Miihlenbein [I61 
all report that smaller solutions tended to have superior 
generalisation performance in their experiments. 

111. EXISTING PARSIMONY ENFORCEMENT METHODS 

A.  Tree Limitation 

One of the simplest ways to manage program bloat is to 
impose a static maximum upon the depth or size (number 
of nodes) of program trees within the population. If a new 

0-7803-85 15-2/04/$20.00 02004 IEEE 83 

Authorized licensed use limited to: RMIT University. Downloaded on November 18, 2008 at 00:14 from IEEE Xplore.  Restrictions apply.



individual is generated (for example by crossover) which 
breaches these limitations, it is simply rejected. This technique 
is certainly effective in stopping individuals from reaching 
an unmanagable size, but is unsatisfactory for a number of 
reasons. 

One problem is that it is very difficult to reliably choose a 
good value for the limit. If a depth limit is made too shallow, 
there is a risk that good solutions will never be generated 
because their depth exceeds the limit. Conversely, if the limit 
is too deep, then program bloat will remain an appreciable 
problem. As an appropriate depth can rarely be known a priori, 
one is faced with a choice between stunting the generation of 
good solutions and allowing a substantial degree of bloat. 

Another issue is that the process of culling nonconforming 
individuals actually creates a bias against certain types of 
inlormation transference within the population. The conse- 
quences of this are difficult to determine and are problem 
dependent but can be adverse in some cases [8]. 

B. Constant Parsimony Pressure 
Constant Parsimony Pressure applies a penalty function to 

an individual based upon its size. The intuition is that by 
degrading the fitness of large (and thus possibly bloated) indi- 
viduals, significant pressure is applied towards brevity within 
the population. The user defines the value of a parameter oi 
which determines to what degree programs are penalised for 
their size. A higher value of 01 results in greater pressure 
towards parsimony - solutions are more heavily punished 
for their hulk the higher oi is. The selection of an appropriate 
value for oi is critical as it has a significant impact on the 
search bias of the algorithm. 

Note that constant parsimony pressure cannot distinguish 
between a solution that is bloated and one that is fundamen- 
tally large and cannot be represented more compactly. If the 
value of a is too high, it is quite possible that fit, complex 
solutions will be rejected in favour of less fit but very simple 
solutions. Conversely, if a is too low, the parsimony pressure 
will be weak and bloat can proceed largely unhindered. The 
problem is that it is impossible to know the ideal value for a 
a priori. 

C. Adaptive Parsimony Pressure 
Adaptive Parsimony Pressure [ 161 changes the amount of 

pressure exerted towards parsimony based upon the circum- 
stances of the population. The pressure parameter a is no 
longer static but rather a function a(g) that adapts at each 
generation. There is one required parameter - e, a user- 
specified error tolerance. While the error of an individual 
remains worse than e, the parsimony pressure remains low 
and the main pressure is towards improving performance. 
When the error is within the specified tolerance, the parsimony 
pressure becomes far stronger and the main evolutionary 
pressure is towards the individual reducing its size. 

Zhang and Muhlenbein report good results for their tech- 
nique [16]. Compared to a GP with no growth controls, 
adaptive parsimony pressure took less time to train and 

produced substantially smaller individuals with significantly 
better generalisation performance. Blickle [3] reports mi:red 
results with his experiments on adaptive parsimony pressure, 
finding it generated small trees but that they had relatively iow 
fitness. Bleuler et a1.[2] find that adaptive parsimony pressure 
is inferior to constant parsimony pressure on the even-parity 
problem. 

IV. MULTIOBJECTIVE OPTlMlSATlON FOR COMBATING 
BLOAT 

A. Overview of Multiobjective Optimisation 
Many real world problems require optimisation ove:r a 

number of distinct and often contradictory objectives simul- 
taneously [SI. For example, a structural support may need to 
be light and strong, or we may wish for a computer tcl be 
both fast and cheap. When there are multiple objectives, it 
is in most cases no longer possible to have just one optimal 
solution. For example, which is superior: a very cheap, r.low 
computer; or an expensive, fast computer? 

Definition I :  The dominance relation > d  between two so- 
lutions i and j ,  j >d i holds over the set of objectives 8 if 

where fn is the fitness of a solution under objective b' and all 
objectives are maximisation objectives. 

E @ ( f o b )  2 fn(i)) A 38 E O(fe(j) > fn(i)) 

Definition 2: A solution i is said to be nondominated in a 
solution set P if 
7 g j  E P ( j  >d i ) .  

Definition 3: A solution i is set to be a member of the 
Pareto Front of a problem if it is nondominated in the set of 
all possible solutions S. 

The goal in multiobjective optimisation is to discover the 
Pareto Front. Traditional single-objective optimisation tech- 
niques are limited in their ability to solve this sort of problem, 
because they focus on reaching a single globally optimal point. 
By contrast, multiobjective optimisation algorithms such as 
NSGA-I1[6] and SPEA2 [I71 are specifically designed to seek 
out a set of nondominated solutions as close as possible to the 
true Pareto Front. They use a variety of different techniques to 
do so but all algorithms emphasise the gathering of a diverse 
collection of nondominated individuals rather than a single 
outstanding solution. 

If we consider parsimony as an additional (pseudo) objective 
during a GP run, and hence GP as a multiobjective problem, 
the problem with parsimony pressure techniques becomes 
clear. We are attempting to combine two different objectives 
-fitness and size - into a single fitness value. This does not 
capture the full flavour of what is desired: that individuals do 
not gain in size without a corresponding increase in fitness. 
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In other words, we would like individuals to belong to the 
fitness-size Pareto Front. Once it is recognised that this Pareto 
front is in fact what we are seeking, multiobjective optimisa- 
tion algorithms present themselves as an obvious choice for 
parsimony enforcement. 

Bleuler et al.[Z] and De Jong et al. [4] have tried this 
approach of using multiobjective algorithms for reducing bloat 
before. In both cases a multiobjective algorithm was used 
to attempt to control bloat and produce superior results on 
the parity problem. The results were excellent; in particular, 
tree sizes remained very small compared to all other methods 
including parsimony pressure. Furthermore, the multiobjective 
algorithms found better solutions with less computational 
effort. 

V. THE POPE-GP ALGORITHM 

The Pseudo-Objective Parsimony Enforcement GP (POPE- 
GP) uses the NSGA-I1 multiobjective optimisation algo- 
rithm [6] as a base for its operation. The two objectives are 
defined as being the actual objective of the GP run (the fitness) 
and the size of the program. Once these objectives have been 
defined, the NSGA-I1 algorithm attempts to find the Pareto 
Front for these two objectives. The operation of the NSGA-I1 
algorithm is described in the following section. 

A. The NSGA-I1 Multiobjective Algorithm 

rithm, we must define a number of terms. 
Before we describe the mechanincs of the NSGA-I1 algo- 

Definition 4: The first nondominated front ffi of a pop- 
ulation P is the set of individuals that are nondominated in 
that population. 

Using the above definition, we can then recursively define all 
further nondominated fronts as follows: 

Definition 5: The nth nondominated front Nn of a pop- 
ulation P is the first nondominated front of the population 
P:, = P - u;=;'JVi. 

In other words, the nth nondominated front of the population 
is the first nondominated front of the remaining population 
when the first n - 1 nondominated fronts are removed. Thus, 
the second nondominated front consists of all individuals 
in the population dominated only by individuals in the first 
nondominated front, the third nondominated front consists of 
all individuals dominated only by individuals in the first and 
second fronts, and so on. 

We also for convenience define a function N ( i )  which 
returns q. the number of the nondominated front of which 
an individual i is a member: 

Definition 6: N ( i )  = q iff i E Nu 

The final quantity we need to define is the crowding distance 
C(i):  

Definition 7: The crowding distance C(i) of a particular 
individual i is equal to the sum of the distance between i's 
nearest neighbours to either side on its nondominated front for 
all objectives. If i does not have a neighbour on one side (ie. 
it is on the edge of the front) then its crowding distance is 
deemed to be infinite. 

Using the above definitions we are now able to define the 
crowded-comparison operator -&, which lies at the heart of 
the operation of the NSGA-I1 algorithm: 

Definition 8: For two individuals i and j we say that i 4 ,  j 

N ( i )  < N ( j ) ,  or 
iff 

. N ( i )  = N(j) and C(i)  > C(j) . 

At each generation n the parent population p ,  is sorted into 
nondominated fronts' and the crowding distance calculated 
for each individual. A child population c, is then created 
using toumament selection and the user's choice of genetic 
operators. The toumament selection functions by using the 
crowded comparison operator +, rather than the usual fitness 
function. This ensures that solutions on a higher nondominated 
front are favoured, and within each front, individuals that 
are less crowded. This creates the necessary pressure for the 
population to move towards the Pareto Front and to disperse 
along it. 

After the child population is created, the two populations 
are merged and sorted once again into nondominated order 
and the crowding distance for each individual once again 
calculated. The parent population for the next generation p,+l 
is then created by taking the top half of the sorted, merged 
population. See Figure 1 for a schematic of the process. Note 
that individuals within a nondominated front are sorted by 
decreasing crowding distance. Thus, if a front is split when 
the new parent population is selected, it is the individuals 
with higher crowding distance that will be selected. Note that 
NSGA-I1 is fully elitist; the next generation is selected from 
a combination of the parent and child populations. As such, 
there is no possibility of losing a high quality solution. 

VI. EMPIRICAL STUDY: CLASSIFICATION 

We compared the generalisation performance of classifier 
programs generated by the POPE-GP algorithm with those 
generated by a standard GP with a depth limit of eight and 
one with no limits at all. We used the Wisconsin Breast 

'For a description of a fa1 nondominated son procedure. sec [6] 
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Fig. 1 .  The NSGA-I1 process 

Cancer Databasez, which has been widely used as a testbed for 
classification [I], [I I]. The dataset consists of 699 instances, 
each containing nine numerical attributes plus a class attribute. 
Each instance is in either the malignant or benign class. The 
dataset contains 16 instances with missing property values. For 
simplicity, these instances were culled, leaving 683 instances 
in the dataset. 

We divided the data randomly into training and testing sets, 
so that 70% (479 instances) of the data made up the training set 
and the remaining 30% (204 instances) constituted the testing 
set. 

We used the RMITGP3 GP programming library with 
strongly-typed GP [12]. The root node was required to return 
a double; if the value returned was below zero, this was taken 
to mean that the program has classified the instance as benign. 
Otherwise, it was considered to have classified it as malignant. 

The set of functions and terminals used for the classification 
task is shown in Table I. The set is very simple, with the only 
terminals being random numbers and classification attributes, 
and the functions consisting of arithmetic and relational prim- 
itives and a conditional operator. Nonetheless, such a set has 
been shown in the past to he sufficient for creating effective 
classification programs [ll], [7]. 

The fitness of an individual was taken to be the gross 
classification error - ie. the number of instances in the 
training set that are misclassified. 

The plan was to have populations of SO0 individuals. 
However, after accidentally setting the population to 50 for 
a batch of runs on POPE-GP, it was noticed that it per- 
formed surprisingly well considering the modest number of 
evaluations that the algorithm made. Thus as well as having 
populations of SO0 for POPE-GP, the depth-limited GP and the 
GP with no parsimony enforcement, experiments were also run 
for POPE-GP and the depth-limited GP using populations of 
50. Algorithms were run for 150 generations on the training 
set, after which the best individual (or the set of nondominated 
individuals in the case of the POPE-GP) was tested for 

-3 

-- 
population to 
create new 
parent 

generalisation performance on the testing set. All algorithms 
were run SO times and results averaged. 

VII. RESULTS A N D  DISCUSSION 

Online performance graphs for POPE-GP, the depth-limited 
GP and the GP with no parsimony control are presented in 
Figure 2. Note that only the experiments using 500 individuals 
are plotted: the experiments with SO individuals were omitted 
to improve readability. 

As expected, POPE-GP has been extremely effective at tack- 
ling bloat. Figures 2(c) and 2(d) show the size growth of the 
fittest individual in the population and the population average 
respectively. The graphs clearly show that without any bloat 
control, program size grows consistently throughout the: run. 
Setting a depth limit caps the size of the programs eventually, 
but not before they have grown quite large. Programs evolved 
with the POPE-GP, however, remain miniscule by comparison. 
By the 150" generation, the average size of programs evolved 
with POPE-GP was less than 10% of that of programs created 
with the depth-limited algorithm and less that 2% of the size of 
the programs generated by the GP with no parsimony control. 

Interestingly, note that although the depth (Figure 2(h:)) and 
size (Figure 2(d)) of the average individual in the uncontrolled 
populations seemed to grow linearly throughout the GP run, 
those of the fittest individual (Figure 2(a) & (c)) grow less 
rapidly than the average and, in the case of size, seemingly 
sublinearly. This is further evidence in support of the assertion 
that bloat is hatmful to an individual's evolution. Also inter- 
esting is that despite their extremely small number of nodes, 
the depth of the best solutions for POPE-GP are often quite 
deep (Figure 2(a)). This highlights another problem of depth 
limitation - that programs are often barred from forming in 
a shape that is conducive to their function. Limiting depth 
encourages trees to he shallow and bushy, even if they would 
do better to be deep and narrow. Admittedly, size limitation 
does not suffer from this problem and as such should probably 
be preferred to depth limitation, though it seems to be rarely 
used. 

The classification accuracies (Table 11) on the testing data 
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Multiplication 
Division 

if argl is me, otherwise arg3 
True if argl 5 arg2 
True if argl 2 arg2 
TIU~ if argl = arg2 

True if arg2 5 argl 5 arg3 

conditional operator; r e m s  arg2 

D 2 {D. D) Addidon 
D 2 ID. D)  Subtraction 

AUIX 

TABLE I 
(A) FUNCTION SET (B) TERMINAL SET lD=Double, B=Booleonl 

Value of randomly assigned attnbute D 

POPE-GP (500) 
POPE-GP (50) 

6.71 0.9586 18.77 9.40 0.9865 31.50 
5.40 0.9467 13.12 8.00 0.9811 23.20 

DepU1-Limited (500) 
Depth-Limited (50) 
No Parsimony Pressure (500) 

TABLE II 
(A)  END-OF-RUN AVERAGE VALUES FOR THE ALGORITHMS TESTED. ( 6 )  MEAN CLASSIFICATION ACCURACY ON THE TESTING SET. 

7.99 0.9388 300.79 8.00 0.9845 282.72 
7.97 0.9175 270.27 7.86 0.9753 261.06 

33.99 0.9658 1266.01 21.30 0.9858 691.56 

-0.193 -1.980 -3.807 -3.500 
(2) POPE-GP (50) 0.193 -1.890 -3.763 -3.480 
(3) Depth-Limited (500) 1.980 1.890 -2.300 -1.139 
(4) DepIt-Limited (50) 3.8W 3.763 2.3W 1.580 
(5) No Parsimony Pressure (50) 3.500 3.480 1.139 -1.580 0 

TABLE 111 
T H E  2 VALUES FOR THE HYPOTHESIS THAT TWO POPULATIONS HAVE THE SAME CLASSIFICATIONACCURACY. VALUES IN BOLD INDICATE A 

STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN POPULATION MEANS FOR CLASSIFlCATlON ACCURACY (95% CONFIDENCE INTERVAL). VALUES IN 

ITALICS INDICATE A SOMEWHAT STATISTICALLY SIGNIFICANT DIFFERENCE BETWEEN THE POPULATION MEANS FOR CLASSIFICATION ACCURACY (90% 
CONFIDENCE INTERVAL). LARGE NEGATIVE VALUES MEAN THE ROW ALGORITHM HAS BETTER CLASSIFICATION ACCURACY THAN THE COLUMN 

ALGORITHM, WHILE LARGE POSITIVE NUMBERS INDICATETHE CONVERSE. 

Mean Accuracy (%) 
Standard Deviation 

lend suppon to the hypothesis that enforcing parsimony does 
lead to improved generalisation performance. Although the 
actual difference in mean classification accuracy is not that 
large, statistical tests confirm that they are significant in most 
cases (see Table 111). In particular the two POPE-GP algo- 
rithms (50 and 500 individuals) clearly outperformed all other 
algorithms in terms of generalisation performance. This is a 
vindication of the hypothesis that parsimonious solutions tend 

95.971 95.932 95.463 94.537 95.151 
1.065 0.954 1.466 2.442 1.268 

to generalise better and of the approach of using multiobjective 
techniques for parsimony enforcement. 

The most exciting result was the excellent generalisation 
performance of POPE-GP with 50 individuals. In fact, the 
classification accuracy of programs generated by this algo- 
rithm on the test data was statistically indistinguishable from 
the POPE-GP with 500 individuals, and clearly superior to the 
programs generated by other algorithms. This is an extremely 
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imDressive result considering that the algorithm makes Only 141 De long. E. D.. Watson, R. A. and Pollack. J. B.: Reducing bloat and 
10% of the evaluations made by the P o p ~ - ~ p  with 
individuals. Running a standard depth-limited GP with the 

promoting diversity using multi-objective methods. 10 Proceedings of 
rhe Genetic and Evolurionory Compurarion Conference, GECCO-2001 
Morean Kaufmann Publishen(2OOI) 11-18 

reduced population produced poor results. 
The excellent performance of the POPE-GP with 50 indi- 

viduals warrants further investigation and analysis, but we do 
have some clues to why it performed as it did. Firstly, the 
average size of the best performing individual in this algorithm 

individuals generated by POPE-GP with 500 individuals. Also, 
their c~ass,ficat,on on the testing data was significantly 
lower than those produced by the 500 individual algorithm. 
In other words, the programs were more general and 'fit' the 

151 Deb: K.: Multi-Objective Oprimiznlion using Evolutionary Algorilhnu. 
IOhn wileY 'Sons 

161 Deb, K., Pratap, A., Aganval. S. and Meyarivan,T.: A fast and ditist 
multiobjective genetic algorithm: NSGA-II. IEEE Tronsadionr on 
Evolurionary Compurorion, 6(2):182-197,(2002) 

171 EggemonS 1.. Eiben, A. E., and van Heme& 1. 1.: A C o m P ~ S ~ ~ "  of 
genetic progra"ng variants for data classification. In Advances in 

1642. Springer-Verlag (1999) 281-290 
181 Gatherwle, C. and Ross, P.: An adverse interaction between crossover 

and resmcted tree depth in genetic programming. In Generic Program- 
ming 1996: Proceedings of the First A n n u l  Conference. MIT Press 
(1996) 291-296 

Evolving a sort In Pmceedings ofrhe 5th Inrernario,nal Conferenre on 

[IO] Langdon. W. B. and Poli. R.: Fitness causes bloat. In Second On. 

was substantially smaller - by almost 30% - than the best ~nlailigenr D~~~ Analysis, 7hird InterMtionni symposium, IDA-99. 

training data less tightly, using only the predictors 
in the underlying data for classification purposes. The exact 

191 Kinnear, 11.. K. E.: Generality and difficulty in genetic programming: 

Generic Algorithms, I C G A - ~ ~ .  Morgan Kaufmann(l993) 287-294 
reason why this occurred with the smaller population is 
unclear. The obvious hypothesis - that overfitting can 
be Ieduced by cutting the training time - is somewhat 
contradicted by the poor performance of the depth-limited GP 
with 50 individuals. 

line World Conference On SOB Computing in Engineering Derigir a d  
Monufmuring. Springer-Verlag Landon(1997)13-22 

[I I ]  Loveard, T. and Ciesielski, V,: Representing clasnifi cation problcm in 
genetic programming. In Pmcecdings of the Congress on Evolutionary 
Compurotion, Yolame 2. IEEE Press (2001)1078-lCr77 

[I21 Montana, D. 1.: Strongly typed genetic programming. Evolutionary 
Computation, 3(2):199-230, (1995) 

[I31 Nordin, P. and Banahaf, W.: Complexity compression and evolution. In 
Generic Algoritltmr: Pmceedings of the Sixth lnrernorional Confirence 
,IcGA9s,. Morgan Kaufmann(1995) 310-317 

1141 Souk, T. and Foster, I.  A.: Effects of code growth and parsimony pres- 
sure on populations in genetic programming. Evolurionnry Compurolion, 
6(4):293-309, (1998) 

[15] Tacken, w. A.: Genetic programming far feature discovery and image 
discrimination. In Pmceedings of the Srh Intemoiional Conference on 
Generic Algorithms, ICGA-93. Morgan Kaufmann( 1993)303-3W 

1161 Zhang. B.-T. and M'hh1enbein.H.: Balancing accuracy and parsimony in 
genetic programming. Evolutionary Computorion, 3(1):17-38, (1995) 

1171 Zitzlcr, E., Laumanns, M. and Thiele. L.: SPEAZ Improving Ule 
SUengIh Pareto Evolutionary Algorithm. Technical Report 103, Glo- 

VIII. FURTHER WORK AND CONCLUSIONS 

In this paper we introduced the POPE-GP algorithm, a 
multiobjective parsimony enforcement system based on the 
NSGA-I1 algorithm. Using a classic classification problem, we 
showed that the is proficient at suppress- 
ing the occurrence of code bloat and that solutions generated 
by POPE-GP generalised better to unseen data when compared 
to a depth-limited GP and a GP with no parsimony control. 

One very interesting result is that a POPE-GP algorithm 
performed nearly as well when the population size was re- 
duced by 90% - that is, using only one tenth the number 
of evaluations. A similar reduction in population on a depth- 
limited population resulted in a significant erosion of perfor- 
mance. Furthermore, the solutions generated by the POPE- 
GP with the reduced population were even smaller than those 
generated by the same algorithm with the large population. 
The exact reasons behind this phenomenon remain unclear 
and would warrant further investigation given the vary large 
potential savings in computation time. 

While the experiments described in this paper provide good 
evidence in support of our hypothesis that smaller solutions 
generalise better, further work is required on a range of 
problems in which overfitting is known to be an issue before 
a definitive conclusion can be reached. 

r i a s ~ s e  35, CH-8092 Zurich, Switzerland(2OO1) 
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