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Algebraic Lower Bounds on the Free Distance of
Convolutional Codes

Kristine Lally

Abstract—A new module structure for convolutional codes is in-
troduced and used to establish further links with quasi-cyclic and
cyclic codes. The set of finite weight codewords of an ( ) convo-
lutional code over is shown to be isomorphic to an [ ]-sub-
module of [ ], where [ ] is the ring of polynomials in inde-
terminate over , an extension field of . Such a module can
then be associated with a quasi-cyclic code of index and block
length viewed as an [ ]-submodule of [ ] 1 ,
for any positive integer . Using this new module approach alge-
braic lower bounds on the free distance of a convolutional code are
derived which can be read directly from the choice of polynomial
generators. Links between convolutional codes and cyclic codes
over the field extension are also developed and Bose–Chaud-
huri–Hocquenghem (BCH)-type results are easily established in
this setting. Techniques to find the optimal choice of the param-
eter are outlined.

Index Terms—Convolutional codes, cyclic codes, free distance,
lower bound, quasi-cyclic codes.

I. INTRODUCTION

AN convolutional code is the set of all output se-
quences produced by a linear function which maps a (pos-

sibly infinite) input sequence of -tuples
to a (possibly infinite) output sequence of

-tuples, , where each -tuple output block produced at
time depends on the corresponding -tuple input block and
on some of the previous input blocks
that entered the encoder and were stored. The parameter is
called the memory order of the encoder.

There is a strong link between convolutional codes and (mem-
oryless) block codes, in particular cyclic and quasi-cyclic block
codes, shown in the work of Solomon and van Tilborg [20], Levy
and Costello [10], and Tanner [21], and more recently by Rosen-
thal and York [15] and Smarandache et al. [19]. Lower bounds
on the free distance of convolutional codes have been developed
by Massey et al. [13], Costello [1] and Justesen [7], amongst
others.

In this paper we develop a new module representation for con-
volutional codes. A similar idea was previously used by Séguin
[17] to describe convolutional codes when divides , and by
this author [9] and more recently by Séguin [18] to describe
quasi-cyclic codes. Using our new module approach we estab-
lish further links between convolutional codes and cyclic and
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quasi-cyclic codes. Our main result is an algebraic lower bound
on the free distance of a convolutional code which can be read
directly from the choice of polynomial generators.

We conclude this first section with a brief introduction to
the conventional algebraic structure of convolutional codes, and
in particular the notion of a basic polynomial generator matrix
which is needed throughout this paper. We refer the reader to
[2], [6], [12], [14] for further details.

Generalizing the subspace structure of a linear block code, an
convolutional code over can be viewed (see [14])

as a -dimensional vector subspace of , where is
the field of rational functions in indeterminate over , that
is

A generator matrix (or transfer function matrix) for the code is
a matrix over whose rows form a basis for

. An input vector

is encoded to the output vector

by the mapping

where each rational function and has a unique
expansion as a one-sided formal Laurent series. The code is the
set

In practice, only generator matrices with causal rational en-
tries (that is, realizable encoders) and input and output vec-
tors with causal Laurent series are achievable. The weight of
a vector is the sum of the weights of its com-
ponent entries. The free distance of a convolutional code, de-
noted , is the minimum weight of any nonzero output
vector obtained from a causal input vector (that is, one whose
entries are all causal Laurent series of the form

). The free distance of a convo-
lutional code is an important parameter in determining the error
correcting capability of the code.
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Any generator matrix which is -row equivalent
to is also a generator matrix for . It follows that every
convolutional code has a polynomial generator matrix (PGM),
that is, a matrix of the form

...
...

...
(1)

with entries

, . In this case, the maximum of the
degrees of the polynomial entries is the memory order of the
encoder.

A PGM can be expanded as the polynomial

with matrix coefficients , . The matrix

. . .
. . .

. . .
(2)

is called a semi-infinite scalar generator matrix for the code
and encodes the causal information sequences

to the causal codeword sequences

Applying further -row operations to a PGM a more
restrictive generator matrix for can be obtained. We include
the following definition from [14].

Definition 1: A PGM for a convolutional code
is basic if and only if any of the following equivalent conditions
is satisfied.

1) The of all minors of is .
2) has a right inverse, that is, there exists an

polynomial matrix such that
.

3) if and then
, that is, polynomial output implies polynomial

input.

Every convolutional code has a basic PGM
. It is well known that if is a basic PGM for an

convolutional code then there exists an polynomial
matrix with rank such that .

is called a parity check matrix for and any

satisfies if and only if .
Expanding this matrix

...
...

...

(3)
with entry

in , , , we can form the
polynomial

with matrix coefficients , .

The semi-infinite scalar parity check matrix

. . .
. . .

. . .

satisfies

(4)

where is given in (2). A sequence of
-tuples satisfies if and only if .

II. NEW MODULE STRUCTURE

Let be an convolutional code over with a
basic PGM over . We recall that is the subspace
of spanned by the rows of . We first isolate an
important polynomial submodule of which is of key interest
to us here. It is well known that a basic PGM is an noncatas-
trophic encoder, that is, a finite weight output sequence cannot
be obtained from an infinite weight input sequence. Every fi-
nite weight Laurent series is a rational function of the form

, where and is a nonnegative integer.
For our purposes here (determining lower bounds on ) we
consider only output vectors produced from causal input vec-
tors. It is a simple fact that a PGM encodes a causal input vector
to a causal output vector. We note that every causal finite-weight
Laurent series is in fact a polynomial. Thus it follows from Def-
inition 1 part 3) that the set of all causal finite weight code-
words in our convolutional code is the set of all output vectors
produced by input vectors with polynomial entries, that is

where is a basic PGM. The free distance of is therefore
the minimum nonzero weight of the codewords in . Hence-
forth we ignore all infinite weight codewords and make no dis-
tinction between and . A convolutional code can, there-
fore, be viewed as an -submodule of generated
by the rows of a basic PGM . We note that this view of
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a convolutional code was also adopted in recent papers such as
[3] and [4].

We now introduce a new module structure for convolutional
codes which follows naturally from our initial definition of a
convolutional code given at the beginning of Section I, and is
an isomorphic image of the polynomial module structure men-
tioned above. Let us consider a (finite weight causal) codeword

over as a sequence of blocks of length , and associate each
-tuple with an element

of the field extension
, where is some fixed choice of basis

of as a vector space over . We then associate the entire
codeword with the polynomial

in where as usual the increasing
powers of the delay operator indicate successive inputs over
time.

This same association can be achieved from the causal vector

with

by the mapping

The mapping defines an -module isomorphism between
and which preserves -weight structure of the

submodules. Henceforth, we fix as our
choice of basis for , and assume the association between
elements and described earlier, without fur-
ther comment. It follows that an convolutional code
can be viewed as an -submodule of , generated by
the images under of the rows of a basic PGM , that is,
the polynomials

The code is the set

and as a vector space over is generated by the set
where

and
each coefficient .

A generator matrix for the code can be constructed from these
polynomial generators in the form

...

...

...

...
...

...

...
...

. . .
. . .

. . .

where each represents the vector

, , . We
call this a semi-infinite polynomial generator matrix for
the code . The memory order of the generator matrix is
equal to . The shift action by places on the

rows of the semi-infinite scalar generator matrix given in
(2) corresponds here to multiplication by of the polynomial
generator .

The rows of the semi-infinite parity check matrix can be
associated in a similar way with polynomials in to
form the semi-infinite polynomial parity check matrix

...

...

...
where

for , and each coefficient

, is a -linear combination of the -basis
of . It follows from (4) that

the polynomial
with ,

, is a codeword in the convolutional code if and only if
.

We call the polynomials , , parity check poly-
nomials of the code.
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III. LINKS TO QUASI-CYCLIC CODES

A quasi-cyclic code of index and length over
is a block linear code invariant under cyclic shifts by places
on its codewords, and is usually constructed as the rowspace
of a block matrix consisting of rows of circulant sub-
matrices, and as such corresponds to an -submodule of
where and , [8], [16]. Links be-
tween convolutional codes and quasi-cyclic codes in this con-
ventional ‘circulant’ form have been previously studied by many
authors, for example, see [10], [20]. In this paper we establish
links between convolutional codes and quasi-cyclic codes using
our new alternative module approach and develop many useful
results not forthcoming within the conventional context.

It has recently been shown in [9] that a quasi-cyclic code of
index and length can be viewed as an -submodule
of . In this setting the rows of a generator matrix of a
quasi-cyclic code are successive powers of multiplied modulo

by each of the generating polynomials of the submodule
in . The similarity to our new module representation
of a convolutional code is immediately evident. Changing inde-
terminate to wherever previously used, we can associate
an convolutional code , viewed as an -submodule
of , with the quasi-cyclic block code of index and
length , an -submodule of , for any positive
integer , by simply mapping each codeword to the
codeword in where . In
this latter module we usually drop the coset notation, write
for , where is the unique polynomial of degree less
than in the coset , and perform multiplication modulo

. If the convolutional code is generated by the polyno-
mials ,

, then the corresponding quasi-cyclic code is gener-
ated by , , where each

is a polynomial in of degree at most .
The quasi-cyclic code has dimension at most as a vector
space over and thus has rate at most .

Using this link between a convolutional code and the corre-
sponding quasi-cyclic code we now present a general lower
bound on the free distance of in the next theorem. This bound
was previously derived by Tanner [21] using a polynomial parity
check matrix [given in (3)] to characterize and the
corresponding ‘circulant’ representation of . We note how-
ever that finding the minimum distance of a quasi-cyclic code
in this conventional context is not easy, no good algebraic lower
bounds have been developed and good codes have largely been
found by computationally intensive searching techniques (for
example in [5]). Here we present the same general bound in
the context of our new module representation for convolutional
codes and the associated unconventional quasi-cyclic represen-
tation. The proof is a direct analogue of that given by Tanner.
Our new module structure allows us to extend this connection
between convolutional and block codes and establish further
links to cyclic codes. Results derived in [9] for quasi-cyclic
codes can then be adapted and applied to convolutional codes to
develop more constructive lower bounds on , in partic-
ular a BCH-type bound derived from an associated cyclic code
over an extension field. To achieve these additional results some

aspects of our alternative proof of the following theorem are re-
quired in subsequent sections, and thus included here.

Let . We make the
following distinction when considering the weight of . We
denote by the number of nonzero coefficients of

, that is, its weight as a polynomial in . We denote
by the sum of the -weights of the nonzero coeffi-
cients, where each coefficient is considered as a vector of length

in .
Theorem 2: If is an convolutional code over with

basic PGM over and generators

for , as an -submodule of then

where is the quasi-cyclic code over of index and length
generated by , ,

for any positive integer .
Proof: If then

. Each coefficient of
is formed as the sum

of coefficients from , and thus it is easily seen
that . Furthermore the summation
of elements in is equivalent to the componentwise sum-
mation of the corresponding vector representation in . Each

component of the vector

is therefore formed as the sum . It fol-
lows that . Hence if then

. However if and
then for some nonzero multiple

. Let be the highest (positive integer)
power of which divides . We write

where is nonzero,
, , and .

Since is a basic PGM there exist parity check polyno-
mials , in . If then

As is an integral domain, this implies that
and therefore

also. It follows that
and since we have . We now show
that if and then
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where is the nonzero codeword in obtained as earlier.
First applying the weight preserving property given in [13,
Theorem 6.3] in we find that

Furthermore, we also have
with , , and now

applying [13, Theorem 6.3] in we find

Hence for any nonzero we have
and our theorem follows.

IV. SINGLE-INPUT CONVOLUTIONAL CODES

An convolutional code over has a basic PGM
over and as an -sub-

module of is generated by a single polynomial

where each coefficient
The code is the set

As an -vector space is generated by

and has a semi-infinite polynomial generator matrix of the form

...

. . .
. . .

. . .
(5)

The PGM is basic and so the corresponding generator
is not arbitrary as the following theorem shows.

Theorem 3: The convolutional code over has
basic PGM over if and only if the polynomial gen-
erator , as an -submodule of , has
no monic divisor in other than .

Proof: From Definition 1 part 1), we know that the
matrix is a basic PGM if

and only if . Let
. Since

divides each , , it follows that
divides

. If the largest monic divisor of in is 1 then
and is a basic PGM.

Now for the converse, suppose and
. Then for some .

Writing

with , , we have

which implies that , .
It follows that divides , ,
and therefore divides . If then we must have

also.
Henceforth we call such a polynomial in a basic poly-

nomial generator for the single-input convolutional code . It
can be easily seen that the constant coefficient of the polynomial
is nonzero in this case. As aforementioned, the convolutional
code can be associated, by the reduction mapping modulo

, with the quasi-cyclic code of index and length
.

Corollary 4: If is an convolutional code over
with basic polynomial generator

as an -submodule of , then the associated
quasi-cyclic code of index and length generated
by , for any positive integer ,
has dimension .

Proof: We know from Theorem 3 that the largest monic
divisor of in is 1. It follows that the largest
monic divisor of both and in is 1 for any
positive integer , and so applying [9, Theorem 2] we see that
the dimension of the code is .

A quasi-cyclic code of index , length and dimension
has rate , which is the maximum rate possible for a 1-gen-

erator quasi-cyclic code.
We now derive some further connections between , and

an associated cyclic code. As described in [9], is
the annihilator ideal of the -module and so every
quasi-cyclic code can also be viewed as an - submodule
of . As such the code is a subset subcode of the
cyclic code over generated as an -submodule
of (an ideal in ) by the same set of gener-
ators. These observations establish a link between a convolu-
tional code over the field and an associated cyclic code

defined over the extension field of and leads us to
the following simple result.

Lemma 5: If is an convolutional code over with
basic polynomial generator as an -sub-
module of , then
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where is the cyclic code over of length with generator
polynomial , for any
positive integer .

Proof: Applying Theorem 2 and [9, Lemma 1] we have
. The cyclic code is

generated by and,
therefore, has generator polynomial

.
Previous work has been done in [7] and [19] associating a

subclass of convolutional codes to cyclic codes over the same
field and lower bounds on obtained when

. Our results here can be applied to any convolutional code, for
any parameters and , and as we see later any .

However it is easily seen that this initial result is useful only
when is small. The weight of a codeword

in the cyclic code is
the number of nonzero coefficients in . In the convolutional
code however each nonzero coefficient of a codeword

represents
a vector in and thus can contribute up to weight to the

-weight of the convolutional codeword. We now develop an
improved lower bound on which also arises from our
new module representation.

We can see from the shifting nature of our semi-infinite poly-
nomial generator matrix (given in (5)) that each coefficient

of a convolutional codeword is an -linear combina-
tion of the subset of the entries that
appear in the column of this generator matrix. It follows that
the corresponding vector representation of this coeffi-
cient is a codeword in the linear block code of length generated
by , where each , ,
is the vector equivalent of the coefficient .

Theorem 6: If is an convolutional code over with
basic polynomial generator

as an -submodule of , then

where is the cyclic code of length over with generator
polynomial for any
positive integer , and is the linear block code of length
over generated by the set .

Proof: The proof of Theorem 1 also showed that
each nonzero codeword satisfies

for some nonzero codeword
in . Every is also in and so every nonzero

has at least nonzero coefficients as a
polynomial in . In turn each such nonzero coefficient

of a codeword when viewed as a vector
is a codeword in the block linear code generated by

.
The coefficients , , in the theorem can

be read directly from the choice of basic polynomial generator
, and are not subject to the effects of reduction

modulo , (as a direct application of Theorem 2 and [9,
Theorem 3] would require).

The minimum distance of a cyclic code plays an important
part in the lower bound for given earlier. Various

bounds for cyclic codes can be further applied here. For ex-
ample, when the BCH lower bound on minimum
distance can be applied to the generator polynomial of
the cyclic code , which can be readily computed from the
choice of generator for .

If is the smallest positive integer such that divides
then is the smallest extension field of which

contains all -roots of unity. Let be a primitive -root
of unity in . The cyclic code of length over has
BCH designed minimum distance where

denotes the largest number of consecutive
powers of in which are roots of the generator polyno-
mial .

Corollary 7: If is an convolutional code over
with basic polynomial generator

as an -submodule of , then

where for any positive
integer , and is the linear block code of length over
generated by the set .

We note that this lower bound is often equal to the actual
free distance of a convolutional code, as the following example
shows.

Example 8: Let , , and . Let be a binary
convolutional code with basic PGM

The corresponding polynomial generator as an -sub-
module of is

where is a root of and thus a primitive element of
, and is a -basis for . The smallest value of

such that divides is . It follows that all roots
of are 9th-roots of unity. is the smallest field extension
of which contains a primitive 9th-root of unity , where

is a primitive element in , (taken as a root of the primitive
polynomial . Here . The polynomial
splits over and choosing we have

with . The nonzero coefficients of
expressed in vector form are

. The linear block code
has minimum distance . It follows that . The

-weight of the generator itself is 6 and so we have
. A generator matrix for the code is

...
. . .

. . .
. . .

We recall that if an convolutional code has a basic
polynomial generator

with memory order then both and
are nonzero. It is easily seen from the shift action on the

rows of the semi-infinite polynomial generator matrix that
the initial and final coefficient of any nonzero codeword must be
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an -scalar multiple of the trailing coefficient and leading
coefficients , respectively.

Corollary 9: If is an convolutional code over
with basic polynomial generator

as an -submodule of , and
memory order , then

where for any posi-
tive integer , and , , and are the linear block code
of length over generated by the sets and

, respectively.
In the binary case we have

or . When the polynomial generator
has memory order the unit memory binary
convolutional code satisfies

which, of course, can be read directly from the choice of poly-
nomial generator for the code.

V. MULTIPLE-INPUT CONVOLUTIONAL CODES

An convolutional code over has a basic
PGM over and as an -sub-
module of , is generated by the polynomials

. The code is the set

The matrix is a basic PGM and so the polynomial gener-
ators , , also satisfy restrictive proper-
ties.

Theorem 10: If is an convolutional code over
with basic PGM over then each of
the generators , , as an -sub-
module of , has no monic divisor in other than .

Proof: By definition, the PGM is basic if and
only if the of all minors of is . A
minor of is the sum of all signed elementary products
from a submatrix of and every such elementary
product contains a term from each of the rows of .
It follows that the of the entries in the row, that is,

, , di-
vides every minor. Since is basic and divides
the gcd of all minors, we must have , .
The remainder of the proof follows as for Theorem 3.

As before, reducing all codewords module for
any positive integer , our convolutional code can
be associated with a -generator quasi-cyclic code
of index and length , generated as a submodule of

by ,
. The quasi-cyclic code is a subset subcode

of the cyclic code over with generator polynomial

. A
lower bound similar to that given in Theorem 6 can be derived
in this multi-input case as follows.

Theorem 11: If is an convolutional code over
with basic PGM over and genera-
tors ,

, as an -submodule of , then

where is cyclic code of length over with generator
polynomial

for any positive integer , and is the linear
block code of length over generated by the set

.
We note that all polynomials and coefficients re-

quired can be found straightforwardly from the polynomial en-
tries in a basic PGM for the convolutional code .

Example 12: Let , , and . Let be a binary
convolutional code with basic PGM

Then the corresponding polynomial generators as an
-submodule of are

and

in , where is a root of and, thus, a primitive
element of , and is a basis for over .
The splits in , and so
choosing we have

with . The nonzero coeffi-
cients of the generators expressed in vector form are

. The linear block code

has minimum distance . It follows that . Since the
-weight of the generator is 4 we have . A

generator matrix for the code is

...
. . .

. . .
. . .

VI. CHOOSING TO MAXIMIZE OUR LOWER BOUND

For a given convolutional code with basic PGM, and
polynomial generators

, with memory order , varying the value of can change the
lower bound we obtain in Theorem 11. The choice of deter-
mines the length of the cyclic code generated by

, a polynomial of de-
gree at most , and thus of course influences the minimum
distance of this code. Since (the length of the linear code
is in practice usually a lot smaller than , is usu-
ally the dominant factor in our lower bound. In this section
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we apply the BCH lower bound to the generator polynomial
of the cyclic code and

examine how to choose satisfying to maximize
and hence maximize the lower

bound on we achieve.
If then only distinct roots of

can be preserved in . As a first
consideration we now aim to choose large enough to ensure
that all distinct roots of are roots of .
Ignoring the trivial case we assume that . From
Theorem 3 and 10 we see that and so all roots of
are nonzero.

The order of over is the smallest positive integer
such that divides and can be

easily found by direct checks. If with prime then
has no multiple roots in any extension field of if and

only if . Let with
and . Then the splitting field of over

is where is the smallest positive integer such that
or equivalently . It

follows that is the product of all distinct ir-
reducible factors of over and its roots comprise all
the distinct roots of , each an -root of unity in the field

. Furthermore, is the smallest positive integer for which
this is true. Among these roots we now count the largest number
of consecutive powers of a primitive -root of unity in .

We note that choosing will not increase and usually
decreases our count, as consecutive -roots of unity preserved
in are spread out as -roots of unity. For
this reason we relabel as , the largest candidate for our
choice of .

We now consider smaller values of which may provide a
larger count of consecutive powers among all the distinct roots
of . We know that each root of has order di-
viding . For each positive integer dividing we count

, that is, the largest number of con-
secutive powers of a primitive -root of unity which are roots
of .

It is easily shown (from basic finite field theory, see [11]) that

is the cyclotomic coset of modulo over , corre-
sponding to an irreducible factor of

, if and only if, for any dividing

is the cyclotomic coset of modulo over , corre-
sponding to an irreducible factor .
Each term in corresponds to a power of a primitive -root
of unity whereas each term in corresponds to a power of a
primitive -root of unity. It follows that for each dividing

counting can be easily
achieved as the largest number of consecutive terms in the
union of all such cyclotomic cosets modulo

formed by modifying the cosets modulo previously
known from .

At last, we choose our as that value of , a divisor of ,
for which this count is maximum. We illustrate this technique
in the following example.

Example 13: Let , , and . Let be a the
binary convolutional code with basic PGM

The corresponding polynomial generator as an -sub-
module of is

where is a root of and thus a primitive element
of , and is a -basis for . The order of

is . It follows that splits over and
all its roots are 15th-roots of unity. Hence and we
have

with . The corresponding
cyclotomic cosets modulo 15 over are and .
Taking the cyclotomic cosets preserved modulo- are

and . Let be a primitive fifth-root of unity in
. Hence when we have

with . Taking the only
cyclotomic coset preserved modulo 3 is . Let be a
primitive third-root of unity in . Hence when we have

with . Our maximum
number of consecutive roots is found when or 15 The
nonzero coefficients of expressed in vector form are

. The linear block
code has minimum distance 2. It
follows that . Again it is easily seen
that in fact .

As with any method of determining the actual free distance
of an convolutional code (see discussion [12, p.
538]), obtaining our lower bound on is in general
more computationally intensive for larger values of . For
example, using a modified version of the Viterbi algorithm to
determine free distance requires state metrics to be stored,
where is the overall constraint length of the encoder given by

and . However the difficulty
of applying our lower bound depends more so on the nature of

, a polynomial
of degree at most , and in particular on its order (directly
linked to the number and degree of its irreducible factors and
the order of the roots of these irreducible factors). Computing
the order of (for example by trial division in )
can involve up to steps, and finding the roots of

in the splitting field (for example
by a simple exhaustive search) is impractical when is large.
However, as the following example shows, if the values of
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and are found to be small, then determining our lower bound
on is efficient for many codes with large where
direct computation of free distance is known to be infeasible,
such as when [12].

Example 14: Let , , and . Let be a binary
convolutional code with basic polynomial generator, as an
-submodule of , given by

where is a root of and thus a primitive element
of , and is a -basis for . The memory order of
the generator matrix is . The order of

is . It follows that all roots of are
85th-roots of unity. is the smallest field extension of
which contains a primitive 85th-root of unity , where

is a primitive element in , (taken as a root of the primitive
polynomial . Here . Now

has root , for each

and therefore . The nonzero coefficients
of expressed in vector form are and .
The linear block code has minimum
distance . It follows that . The actual free dis-
tance may of course be higher.

VII. CONSTRUCTING GOOD CONVOLUTIONAL CODES

For given values of and , our new lower bound suggests
a method of algebraically constructing convolutional codes with
good designed free distance.

For example when , one way to construct good
convolutional codes with basic polynomial generator of

memory order , is to form the cyclotomic cosets modulo
over for various values of , satisfying ,
and consider the union of subsets of these cyclotomic cosets
of size , which contain a large number of consecutive terms.
The basic property can be easily checked by ensuring this union
contains no complete cyclotomic coset modulo over . The
corresponding polynomial has degree , and as a divisor of

can be taken as in Corollary 7. Good
results here depend on the existence of long BCH codes over

with high designed minimum distance. When
we can set and consider Reed–Solomon codes
of length over , choosing our union of size with
consecutive terms (subject to the basic criteria being met).
Finally we can choose a nonzero multiple so that the
coefficients of generates a linear
block code of length with high minimum distance.

Since our polynomial generator has no monic
divisors in other than 1, its nonzero coefficients cannot

TABLE I
SOME BINARY (2; 1) CONVOLUTIONAL CODES OBTAINED FROM L < 20

TABLE II
SOME BINARY (2;1) CONVOLUTIONAL CODES OBTAINED FROM L = 85

all be the same nor can they all be -multiples of a single
element of . It follows that the block code cannot have
minimum distance . Hence by Corollary 7, we can ensure a
lower bound on of at most . It follows
that, no matter how large we choose our alphabet field , when

our lower bound can never guarantee the existence of
maximum distance separable (MDS) codes, that is, those with

.
When we can obtain a lower bound on of at most

and for binary and
convolutional codes, respectively. Comparing these values to
the tables of optimal codes given in [12], (obtained by exhaus-
tive search for small values of ), we see that our lower bound
cannot in general ensure optimal codes. However our approach
does provide a method of algebraically constructing convolu-
tional codes with additional BCH-type structure for any value
of , and can often guarantee a good designed free distance.

For example taking and searching odd values of
up to , we can construct binary convolutional codes
with basic polynomial generator of memory order and
lower bounds on given in Table I. The representatives of
the cyclotomic cosets modulo over which contribute
to the choice of generator are listed in the second last column.
Searching higher values of we can construct codes with larger

. For example when binary codes can be con-
structed for even values of from to with ratios
in the range to . Results for even values of from
to are given in Table II. In each case the actual free distance
could of course be higher. We also note that when we
always have and so no computations in are
required to obtain our lower bound.

Lower bounds on the free distance of a best code are given by
Costello in [1]. It was shown that there exists at least one time-
varying convolutional code with large and

, and at least one fixed convolutional code with large and
. The ratios obtained in Table I are comparable

to the former bound (showing the existence of some fixed binary
codes which meet this bound for time-varying codes),

whereas codes given in Table II are comparable to the latter
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bound. Searching larger values of may enable the construc-
tion of codes with higher and improved values of our lower
bound on .

VIII. CONCLUSION

Representing a convolutional code over as an -sub-
module of allows us to develop new links to quasi-cyclic
and cyclic block codes. In this setting good algebraic lower
bounds on free distance can be established. BCH-type results for
convolutional codes are also derived. Such lower bounds sug-
gest a method of constructing good convolutional codes with
high designed free distance.
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