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Abstract-A particle swarm opthiisation model for tracking 
multiple peaks in a continuously varying dynamic environment 
is described. To achieve this, a form of speciation allowing 
development of parallel subpopulations is used. The model 
employs a mechanism to encourage simulatanenus tracking of 
multiple peaks by preventing overcrowding at peaks. Possible 
metrics for evaluating the performance of algorithms in dynamic, 
multimodal environments are put forward. Results are appraised 
io terms of the proposed metrics, showing that the technique 
is capable of tracking multiple peaks and that its performance 
is enhanced by preventing overcrowding. Directions for further 
research suggested by these results are put forward. 

I. INTRODUCTION 

The particle swarm model is a tool used for the optimi- 
sation of continuous, non-linear problems [I]. Optimisation 
is achieved by ‘flying’ particles through a solution space 
representing a problem with the particle’s position representing 
a possible solution. Particles evaluate the fitness of a solution 
represented by their coordinates and record the position of the 
best solution they have found so far (their personal best or 
pbest value). Particles communicate with their neighbours to 
record the best position found by other particles (the global 
best or gbest value). Using the knowledge of their own best 
position and others’ best position, particles derive a velocity 
vector which is used to update their position. By using a swarm 
of particles behaving in this fashion, a solution space can be 
searched for a global optimum. The equations describing this 
behaviour are as follows: 

U i ( t )  = W ( t  - l)+c1r1(p, -za(t- 1)) +czrz(pg  - z,(t - 1)) (1) 

%(t)  = z,(t - 1) + v , ( t )  , (2) 

where ui(t) represents the velocity of particle i at time t ,  
x;(t) its position, p i  and p ,  the previous best position of the 
particle (pbest) and its neighbours (gbest) respectively, c1 and 
cz are two positive constants, w the inertia weighting and v1 
and r~ two random numbers in the range [0,1]. 

Particle Swarm Optimisation (PSO) variations have been 
developed to search multimodal environments [2] and to track 
a single peak in a dynamic environment [3]. However, to the 
best knowledge of the authors a PSO model for tracking mul- 
tiple peaks in a dynamic environment has not been developed. 
In this respect PSO development lags behind that of genetic 

algorithms, variants of which have been developed to operate 
in dynamic multimodal envimoments (e.g. 141). 

Dynamic multimodal environments may change in several 
ways - peaks may shift spatially, change shape and change 
height. Note that a dynamic multimodal environment in which 
only fitness changes is roughly equivalent to a static mul- 
timodal environment - once the peaks’ (static) locations are 
found no further searching is needed. On the other hand, if 
only position changes and not height, only the single peak 
representing the global optimum needs to be tracked. In a 
fully dynamic multimodal environment, the peak representing 
the global optimum may decrease while a local optimum 
increases, changing not just the position of the global optimum 
as the peaks shift but also the peak which must be tracked 
to find it. A peak may ‘disappear’ as it is obscured by 
a higher peak above it, or peaks may appear or disappear 
entirely. To effectively search such a space an evolutionary 
computation technique should track multiple peaks, rather than 
a single peak temporarily representing the global optimum, in 
order to maintain the location of the global optimum. A two- 
dimensional, three-peak mulitmodal space as used later in this 
paper is shown in Figure 1. 

Fig. I .  Three-peak multimodal environment 

This paper provides a technique for multimodal optimisation 
in a dynamic environment using a form of speciation similar 
to that developed in work by Li et al. on a genetic algorithm 
for multimodal optimisation [5 ] .  This technique uses a local 
‘species seed’ which provides the local best value to particles 
whose position in the solution space is within a user-sprrified 
radius of the seed. This encourages particles to converge 
upon local optima rather than all converging to a single 
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global optimum, hence developing multiple sub-populations 
in parallel. 

In the implementation discussed, Morrison and De Jong’s 
dynamic function generator DF1 [6] is used to continuously 
vary the shape, height and position of peaks within a solution 
space. Particles update their fitness at their current position 
and their own recorded best-so-far position in order to remain 
up-to-date in the dynamic environment. 

A parameter p,,, is used to limit the number of particles 
in a sub-population (i.e. the number of particles sharing 
a common gbes t ) .  Those particles located within the sub- 
population’s space (whose distance to the gbest position is 
less than the species radius) beyond the number of allowable 
particles are reinitialised at random locations about the search 
space. 

Research relevant to the problem is explored in Section 2. 
Section 3 describes the technique itself. Results are given in 
Section 4, along with the problem generator on which the 
technique was tested and the metrics used to evaluate its 
performance. A discussion of these results is given in Section 
5. Following that are the conclusions drawn from this research 
and suggestions of directions for further research. 

11. RELATED RESEARCH 
While research on optimisation in dynamic multimodal 

environments has been carried out using GA, none has yet 
been published on the use of particle swarms in such an 
environment. Evolutionary computation research relevant to 
dynamic environments, multimodal environments and dynamic 
multimodal environments is briefly reviewed here. 

A. Genetic Algorithm for Dynamic Multimodal Environments 

A genetic algorithm designed to find optima in a dy- 
namic, multimodal enviroment is described by Ursem (the 
Multinational GA, [4]). Multinational GAS use multiple GA 
populations or nations to track multiple peaks in a dynamic 
environment, with each nation having a policy representing 
the best point of the nation. A hill-valley detection algorithm 
is used to sample points on a line drawn between policies 
and its results used to migrate individuals from one nation 
to another, to merge nations and to establish new nations 
on newly found peaks. It should be noted that the hill- 
valley detection algorithm works only on points between 
policies (known optima) - the remainder of the space remains 
unsampled unless by mutation. The Multinational GA was 
tested using several methods of moving a pair of peaks in 
two-dimensional environments. 

The concepts of using multiple populations to track peaks 
and of migrating indiviudals from one population to another, 
combining populations and using existing populations to seed 
new populations could be applicable to PSO. 

E. PSO Algorithms for Dynamic Environment5 
PSO algorithms appear to be well suited to dynamic envi- 

ronments. Eberhart and Shi investigated using PSO to track a 
single peak varying spatially only [3]. However, they noted that 

in a dynamic environment the height and position may change 
in a number of environments simultaneously (but omitted 
that the shape and number of peaks may also change). The 
authors considered that ability to adapt to a periodic change 
occurring every hundred generations should be sufficient. 
Using a standard particle swarm to track a single peak in three 
dimensions (parabolic function f(z) = zz + yz + -2’). they 
obtained errors several orders of magnitude less than those of 
comparable GA-based approaches. 

To adapt PSO to dynamic environments, Hu and Eberhart 
[7] suggested monitoring environments for a change and 
updating the gbest and pbest values of panicles when a change 
is detected. Again, they have only tested their algorithms on 
single-optimum environments. Carlisle and Dozier investigated 
a similar mechanism in their work [8] and also suggested 
periodic resetting of personal and population fitness values. 

C. PSO and GA Algorithms for Multimodal Environments 

Various methods of niching, fitness sharing and speciation 
have been used in evolutionary algorithms to find optima in 
multimodal environments. 

Brits et al. [9] adapted the unimodal particle swarm opti- 
miser using niching to find multiple optima in parallel in a 
static multimodal environment, a PSO variant they refer to 
as NichePSO. Particles are initialised uniformly throughout 
the search space using Faure sequences (the authors stated 
that success of the algorithm depends on the proper initial 
distribution of particles). Particles in the main swarm do not 
share knowledge about the best solution - they use only their 
own knowledge (‘cognition only’). When a particle’s fitness 
shows little change over several iterations a subswam is cre- 
ated with it and its closest topological neighbour as members. 
Particles entering the subswarm’s space (a sphere centred on 
the position of the best particle in the subswarm with radius 
defined as the distance between the centre and the particle in 
the subswarm furthest from the centre) automatically become 
part of the subswarm. The algorithm was reported to be 
successful at detecting global maxima and sometimes local 
maxima (although this point was not emphasized in the paper). 

While providing useful ideas for a dynamic-environment 
PSO, the gradual absorption of all particles, inability to 
break populations and use of a convergence-biased PSO in 
subswarms do not allow it to be directly applied. Requiring a 
certain distribution of particles for the method to succeed is 
clearly not useful for a dynamic environment as particles in a 
dynamic environment will congregate around the peaks which 
must then be tracked. 

Parsopoulas et al. studied altering the fitness value via fit- 
ness function stretching [lo] to adapt PSO to sequentially find 
peaks in a multimodal environment. However, in a dynamic 
environment it is required to develop multiple populations in 
parallel. Kennedy [ l l l  has investigated modifying the PSO 
algorithm with stereotyping - clustering based on particles 
previous position, with cluster centers substituted for individ- 
ual’s or neighbour’s previous bests - which by causing clusters 

99 

Authorized licensed use limited to: RMIT University. Downloaded on November 19, 2008 at 21:44 from IEEE Xplore.  Restrictions apply.



to focus on local regions provides an algorithm suitable for 
finding optima in multimodal environments in parallel. 

Li et al. [5] have developed a species-based GA for use in 
static multimodal environments which is applicable with little 
modification to PSO techniques. A spatial speciation technique 
is used which creates clusters of individuals around species 
seeds, representing a local best particle not yet assigned 
to another species, with other particles within the species 
radius (that are not members of another species) forming a 
species. Species are conserved by copying them into the next 
generation if they do not survive the GA breeding process. 
The technique has similarities to spherical k-means clustering 
[12] in its use of population radius. 

111. SPECIATION ALGORITHM 
Tracking multiple dynamic peaks requires a technique that 

allows the development of multiple sub-populations in parallel. 
Any such technique should: 

.. allow an unbiased search for the local optimum by 
members of the exploiting sub-population; 
encourage particles to find multiple peaks; 
provide a natural method for individuals to join sub- 
populations, for sub-populations to join and split, and for 
sub-population formation; and . prevent too many particles focusing on a few peaks to 
the detriment of the total population’s ability to search 
the solution space and track other peaks. 

These requirements are features of the algorithm described 
which uses speciation to create multiple sub-populations in 
parallel, with each sub-population attempting to track and 
‘exploit’ a local peak. These sub-populations or species are 
centred on the best known position of the fittest particle in 
a local region defined as a sphere of radius T (the speciation 
radius) centred on the best position of the fittest particle or 
‘species seed’. All particles belonging to the species adopt 
the pbest position of the species seed as their gbest position. 
Hence, a candidate species member is defined as any particle 
1: such that the distance d between it and the species seed s 
is less than the speciation radius r: 

where the distance d ( s , s )  is defined as the Euclidean 
distance between two points in n dimesnions: 

d(z,  s) = E(.; - s;)2 4 ”  i=l  
(4) 

Where a particle is a candidate member of two species, it 
will be allocated to the species with the fitter species seed 
(Figure 2). 

Using this mechanism, every particle is either a species seed 
(possibly for a species with only itself as a member) or a 
member of a species. Species themselves will be reformed 
each iteration of the algorithm, frequently with a different 
species seed and set of members than that of any species 

of the previous iteration (although the same set of particles 
will likely remain near each other for periods of the time as 
they track the same peaks). In this way the requirements that 
the technique should allow unbiased search for local peaks, 
encourage the finding of multiple peaks and provide a natural 
way for sub-populations to form and alter are met. 

However, a mechanism for preventing too many particles 
attempting to track a single peak is still needed. In a dynamic 
environment, it is necessary to track not just the current global 
optimum but also local optima which are potentially the global 
optimum in the near future. To accomplish this a maximum 
species population parameter p,,, has been introduced such 
that only the best p,,, candidate members (including the 
species seed) will be allocated as members of the species. 
The lower fitness candidate members which would cause. the 
species population to exceed p,,, are reinitialised at random 
positions in the solution space. In this way, the total population 
can be prevented from focusing its attention on too few areas 
and encouraged to explore the total solution space. 

x 

Fig. 2 .  
species I and 2 moving towards species seed SI, the fitter seed. 

Representation of speciation. Note the candidate member 01 both 

To allow the algorithm to operate in a dynamic environ- 
ment, each particle’s pbest fitness value is re-evaluated ;at its 
recorded pbest positon each iteration. As the algorithm was 
designed to operate in a continuously varying environment, 
this extra evaluation is warranted although it doubler; the 
number of fitness evaluations performed by the algorithm. 

IV. METHOD 
A. Tesr Function 

Momson and De Jong’s DF1 dynamic test function gen- 
erator [6] has been used to generate the environment. This 
function is capable of generating a given number of peaks in 
a given number of dimensions that vary both spatially (position 
and shape of the peak) and in terms of fitness. Fitnesses cycle 
between a maximum and minimum value creating a saw-tooth 
profile when fitness is graphed against iterations for a peak. 
The rate at which environments alter is set by a parameter A 
used as input to a logistics function: 
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The function.can produce a series of stepsizes varying from 
0 to constant values through to a chaotic series of numbers. 
A value of A less than 1.0 produces a static environement 
while increasing A beyond 1.0 produces increasingly dynamic 
environments with pseudo-random movement. 

B. Measurement 

Measuring the effectiveness of an evolutionary algorithm 
in a dynamic environment is substantially more difficult than 
in a static environment. Traditional measures used in static 
environments, such as mean fitness, best current fitness and 
time to convergence lose their relevance when full convergence 
is not desired and the best possible fitness is continuously 
changing. As a result, the average minimum error over a run 
was used, where minimum error each iteration was defined as: 

error = 1 - 
a r r e n t  best fitness 

ar ren t  global mazimum possible fi tness ' 

The minimum and maximum errors for the run were 
recorded and the standard deviation calculated to measure the 
variability ofthe error. To reduce the variability of results, each 
set of parameters was run 50 times and the averages reported. 

C. Environment 
The experiments were run in a 2-dimensional environment 

with range [-LO, 1.01 for 500 iterations each with a default 
dynamism setihy A=1.2 . The PSO parameters CI and c2 were 
set to 1.4 and inertia weight to 0.7. The default number of 
agents and maximum species population p,,, were both set 
to 60 (hence operating as if the maximum species population 
were not a factor), the default speciation radius T set to 0.1 
and the environment created with three peaks by default. 

Fifty runs were performed for each experiment and the 
results averaged over the runs. Parameters were kept at the 
default settings other than those explicitly varied. 

V. RESULTS 

A. Default parameters with Logistics Function parameter A 
varying 

The model was run with values of A of 0.0, 1.1, 1.2, 1.5 
and 2.0 to vary the dynamism of the environment, with results 
given in Table I. As expected, as A was increased the average 
and maximum errors over the run also increased. Standard 
deviation for the dynamic cases was about 0.03 to 0.04 greater 
than the average error. These results indicate that the algorithm 
with default settings finds it increasingly difficult to track the 
global optimum as the level of dynamism increases. 

B. Default with parameters with number of agents varying 

As the number of agents was increased from 30 to 150 in 
steps of 30 the average error decreased from 0.1 to 0.04 in an 
almost linear fashion (the change in average error decreased 
slightly with each increase in agent numbers, suggesting that 
the 'law of diminishing returns' was in effect). As shown 
in Table 11, standard deviation also decreased from 0.13 to 
0.07 while maximum error decreased from 0.45 to 0.30 over 

the same range of agent numbers. These results show that 
increasing the number of agents decreased the average error 
as would be expected. 

C. Default with number of peaks varying, agenupeak ratio 
constanr 

The model was run with a constant ratio of 20 agents per 
peak and 1, 3 and 10 peaks. Average error decreased from 
0.08 for 1 peak to 0.07 for 3 peaks and 0.03 for 10 peaks. as 
shown in Table 111. This decrease in error is attributed to the 
increased agent density. 

D. Varying species p,,, and speciation radius r 
The algorithm was run with p,,, set to values of 2, 5, 10, 

20.40 and 60 while the speciation radius T was set to 0.1.0.2, 
0.5, and 1.0 and the number of peaks held constant at three. 
Results are shown in Figure 3. 

Notably each of the T settings of 0.2,O.S and 1.0 performed 
comparatively well at a specific p,,, setting (IO, 20 and 
40 respectively) with an average error between 0.039 and 
0.042. Figure 3 suggests there may be a superior p,,, setting 
between 20 and 40 agents for T = 1.0. The default setting of 
rd .1  with p,,, 20 is relatively had and r=O.l appears to 
perform uniformly poorly in the experiment. 

Figures 4 and 5 shows the difference in clustering between 
the {r=O.2, p,,,=IO} instance and the {r=I.O, pmaz=40} 
instance. The low species population case shows less cluster- 
ing of agents around the peaks and a more evenly distributed 
population than the high species population case. Note that 
in Figure 5 there is a peak without attending agents (at 
approximate (z, y) coordinates (-0.5,0.8)); as suggested by the 
contour lines, this 'peak' is submerged beneath its neighbour 
and hence undetectable by the agents. 

cm 
0.11 

padlW=o.l - I 

0 10 B 54 40 50 E4 

Rrr 

Fig. 3. Error versus pmoz with v;uying population radius 

E. Varying species p,,, and A 
With the T set to 0.1, p,,, was assigned values of 2, 5, 

10, 20, 40 and 60 while the parameter A was set to 1.1, 1.2, 
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A Average error SD of average error 
0 0 0.01 

1.1 0.06 0.09 
1 .2 0.08 0.1 1 
1.5 0. I 0.13 
2 0.12 0.16 

TABLE II 
RESULT OF INCREASING NUMBER OF AGENTS 

Minimum error Maximum ~ K O C  

0 0.16 
0 0.39 
0 0.45 
0 0.49 
0 0.53 

No. of Agents I Average error I SD of average error 1 Minimum error I Maximum error 
7n I n l  I n 17 I n I n A4 ~" 

60 
90 
120 
I Sn 

-. ._ 
0.07 0.11 0 0.4 
0.06 0.09 0 0.39 
0.05 0.08 0 0.35 
n u  n 07 n " 2  

TABLE Ill 
RESULT OF INCREASING NUMBER Of AGENTS 

No. of Peaks I No. of Age"$ I Average error I SD of average error I Minimum error I Maximum error 

3 60 0.07 0.1 0 0.42 
i n  I 7nn I n n7 I n nA I n I n I (L 

1 I 20 I 0.08 I 0.12 I 0 I 0.81 

1 

0.5 

Agent= f 

Paakr m 
0 

-0.5 

-1 

I -0.5 0 0.5 1 

1 

0.5 Rgentr: . 
Peak:$ m 

0 

-0.5 

I 
-1 -0.5 0 0.5 1 

Fig. 4. Swarm with (r=0.2, pmaZ=1O} Fig. 5. Swam with (r=l.O. p,,,=40} 

1.5, and 2.0 and the number of peaks held constant at three. 
Results are shown in Figure 6. 

As expected from earlier results, the average enor increases 
as A increases. In the A = 1.1 and A=1.2 cases there is a 
minimum error at p,,,=IO and p,,,=5 respectively while 
for A=13 and A=2.0 error is at a minimum with the lowest 
pmoz value, indicating that the level of dynamism was too 
great for the algorithm to effectively track the peaks at these 
settings. 

VI. DISCUSSION 

The speciation technique used allows the particle swarm 
model to succesfully track multiple peaks in a dynamic, 
multimodal environment. The results showing that average 
error decreases as population increases and that average error 
increases as dynamism increases are to be expected. Simply 

having more particles to find peaks should decrease error while 
changing peaks faster will make them more difficult to track 
and increase the error. 

Increasing the number of peaks while keeping the ratio of 
agents to peaks constant decreases the average error. This 
is believed to be the result of simply having more agents 
available to track the peak. With a greater number of agents 
in the same area, any peak becoming the global optimum is 
more likely to have an agent nearby to exploit it and having 
more agents available to track a peak will decrease error. 

The use of a p,,, parameter has a beneficial effect (on the 
algorithm when compared to the results obtained with sub- 
population size limited only by the population size. Roughly 
equal results were obtained at three different settings of T 

and p,,,: {r=O.2, p,az.=lO}, {r=0.5, ~ , ~ ~ = 2 0 }  and {r=l.O, 
p,,,=40}. Why this is so is not clear: possibly there is an 
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Fig. 6. Error versus p,,, with varying dynamism 

appropriate population density around the peak which balances 
exploitation of the peak with exploration of the rest of the 
solution space. It is also possible that different mechanisms 
are contributing to a similar result - lower p,,, values should 
result in a higher number of particles being redistributed about 
the search space hence favouring exploration while higher 
p,,, values will lead to larger species and better tracking 
of peaks. That average error is lower in high dynamism 
environments when p,,, values are low suggests that the 
resulting redistribution of particles throughout the solution 
space is the cause of the improved result. This in turn suggests 
that for continually varying highly dynamic environments, 
random search may outperform the PSO model described. 
Logically, this is to be expected at a sufficiently high level of 
dynamism there will not be a relationship between a peak's 
position one iteration and its position the next so that an 
algorithm aimed at tracking the peak will have no benefit 
compared to a random search. 

VII. CONCLUSION A N D  FUTURE WORKS 
The results demonstrate that the speciation and crowding 

mechanisms are able to track multiple continually altering 
peaks. In highly dynamic environments low species popula- 
tions lead to lower error. For a given problem and speciation 
radius, there appears to be an optimal maximum allowable 
population for a species if attempting to achieve the lowest 
average error. However, there may be multiple speciation 
radius/population combinations which give similar lowest av- 
erage errors. 

The relationship between species papulation size and radius 
is one among many areas for potential future research. The 
standard PSO parameters cl, c2 and inertia weight were 
kept constant throughout the experiments; highly dynamic 
environments may favour greater values for these parameters 
giving rise to faster-moving particles able to track a fast- 
moving peak better. More investigations of the model's ability 
to track large numbers of peaks are needed. An investigation 
of the algorithm's success in environments with peaks shifting 

periodically (every n iterations rather than every iteration) and 
in higher dimension environments is also needed. 

To effectively measure tracking in higher dimension en- 
vironments will require improved measurement techniques. 
Understanding of the algorithms behaviour in two dimensions 
was partially achieved by watching a live representation of 
the particles and peaks. This representation itself could be 
improved to give an indication of a peak's height and width, 
whether a peak is submerged and which particles are acting as 
seeds. This information cannot be easily represented graphi- 
cally in, say, a ten dimension environment. Hence, a measure 
of clustering needs to be developed; an average over a run 
of the sum of distances between each particle and its closest 
peak may be useful. 

This paper has given details of a particle s w m  model 
for tracking multiple peaks in a dynamic environment using 
speciation and demonstrated that it works. Although the paper 
does not fully explore the possibilities of the algorithm, it 
is hoped that it may contribute to others' efforts to further 
research into evolutionary optimisation of dynamic, multi- 
modal environments, a topic at the cutting edge of eqolutionary 
computation. 
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