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Abstract. A meta-interpreterfor a language can provide an easy way of ex-
perimenting with modifications or extensions to a language. We give a meta-
interpreter for the AgentSpeak language, prove its correctness, and show how
the meta-interpreter can be used to extend the AgentSpeak language and to add
features to the implementation.

1 Introduction

A meta-interpreterfor a given programming language is an interpreter for that lan-
guage which is written in the same language. For example, a program written in LISP
that interprets LISP programs. A distinguishing feature of meta-interpreters (sometimes
described as “meta-circular interpreters”) is that certain details of the implementation
are not handled directly by the meta-interpreter, but are delegated to the underlying im-
plementation. For example, the original LISP meta-interpreter [1] defines the meaning
of the symboICAR(in code being interpreted by the meta-interpreter) in terms of the
functioncar provided by the underlying implementation.

Although meta-interpreters can help in understanding a programming language,
they do not give complete formal semantics, because certain aspects are delegated to
the underlying language. For example, definB@yRin terms ofcar allows the meta-
interpreter to correctly interpret programs (assuming that the underlying LISP imple-
mentation provides a suitable implementatiorcaf ), but does not shed any light on
the meaning of the symb@AR

Meta-interpreters are useful as a way of easily prototyping extensions or changes to
a language. For example, the Erlang language began life as a Prolog meta-interpreter
which was then extended [2], and the interpreter for Concurrent Prolog can be seen
as an extended Prolog meta-interpreter [3]. Being able to modify the semantics of an
agent platform is often essential to researchers experimenting with extensions to agent
platforms (e.g. [4, 5]), and we argue that meta-interpreters can provide a much easier
way of doing so than modifying the agent platform itself.

A drawback of meta-interpreters is the efficiency overhead of the additional layer of
interpretation. However, this may not be significant in a prototype if the aim is to explore
language design, rather than develop software of any significant size. It has also been
suggested thatartial evaluationcould be used to “evaluate away” the meta-interpreter
given a meta-interpreter and a program that it is to interpret [6].


E79927
Typewritten Text
Citation: Winikoff, M 2005, 'An AgentSpeak meta-interpreter and its applications', in R. H. Bordini et al. (ed.) Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi Agent Systems - 3rd International Workshop on Programming Multi-Agent Systems (ProMAS 2005), Utrecht, 28 March 2006. 


E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text


In this paper we present a meta-interpreter forAlgentSpeakagent-oriented pro-
gramming language [7]. Although meta-interpreters exist for a range of programming
languages, to the best of our knowledge this is the first meta-interpreter for an agent-
oriented programming language.

Given the meta-interpreter for AgentSpeak, we then show a number of ways in
which it can be modified for various purposes such as extending the language or adding
functionality. The extensions that we present are very simple to implement: most in-
volve the addition or change of a very small number of lines of code, and the code is
written in AgentSpeak itself. By contrast, other approaches for making agent platforms
extensible, such asARADIGMA [8] and the Java Agent Framewdrkequire the user
to change languages to the implementation language and to delve into the implementa-
tion which includes both high-level control issues (what is the sequence of events), and
lower-level representation issues (e.g. how are beliefs represented in terms of Java ob-
jects). Another approach, that is closer to the use of meta-interpreters, is that of Dastani
et. al. [9] where the essential control cycle of an agent is broken down into primitives
such as executing a goal, selecting a rule, etc. and a customised agent deliberation cy-
cle is programmed in terms of these primitives using a meta-language. Compared with
our approach, a disadvantage is the need to introduce a distinct meta-language with its
own semantics. An interesting direction for future work would be to add similar prim-
itives to the AgentSpeak language: this would extend the range of modifications that
could be easily done using a meta-interpreter, and would avoid the need for a distinct
meta-language by using AgentSpeak as its own meta-language.

The remainder of this paper is structured as follows. In section 2 we briefly sum-
marise AgentSpeak’s syntax, present (another) formal operational semantics for the
language, and discuss a nhumber of issues with the language. In section 3 we present a
meta-interpreter for AgentSpeak and in section 4 show a number of modifications to
the meta-interpreter. The implementation and performance of the meta-interpreter are
briefly examined in section 5 and we then conclude in section 6.

2 AgentSpeak

Agent programming languages in the BDI tradition define an agent’s behaviour by pro-
viding a library of recipes (“plans”), each indicating (i) the goal that it aims to achieve
(modelled as a triggering event), (ii) the situations in which the plan should be used
(defined using a logical condition, the “context condition”), and (iii) a plan body. Given
a collection of plans, the following execution cycle is used:

1. An event is posted (which can be used to model a new goal being adopted by the
agent, as well as new information (“percepts”), or a significant change that needs
to be responded to).

2. The plans that handle that event are collected and formetbeantplan set.

! Properly the language is called “AgentSpeak(L)”, but in the remainder of the paper we shall
refer to it as “AgentSpeak”.
2 http://dis.cs.umass.edu/research/jaf/



3. A plan with a true context condition &pplicable An applicable plan is selected
and its body is run.

4. If the plan fails, then an alternative applicable plan is found and its body is run.
This repeats until either a plan succeeds, or there are no more applicable plans, in
which case failure is propagated.

There are a number of agent programming languages in the BDI tradition, such as
dMARS [10], JAM [11], PRS [12, 13], UM-PRS [14], and JACK [15]. The language
AgentSpeak [7] was proposed by Anand Rao in an attempt to capture the common
essence of existing BDI programming languages whilst having precisely defined seman-
tics. Although Rao’s formal semantics are incomplete, the work has inspired a number
of implementations of AgentSpeak such as Agentiadin implementation based on
SIM_AGENT [16], an implementation in Java that is designed to run on hand-held de-
vices [17], and the Java-based Jdson

2.1 Syntax

An agent program (denoted ly) consists of a collection of plan clauses of the férm
e : ¢ «— P wheree is an everft, ¢ is a context condition (a logical formula over the
agent’s beliefs) which must be true in order for the plan to be applicablePasdhe
plan body. A condition(, is a logical formula over belief termgwhereb is a belief
atom). The plan body is built up from the following constructs. We have primitive
actions @ct), operations to add#{b) and delete{b) beliefs, a test for a conditior?{),
and posting an evenli). These can be sequencdd { ). These cases are summarised
below.

C=z=b|CAC|CVC|C|IzC

P:u=act|+b|—=b|?]|le|P;P

In addition to these constructs which can be used by the programmer, we define a
number of constructs that are used in the formal semantics. These are:

— true which is the empty step which always succeeds.

— fail which is a step which always fails.

— Py > P, is sequential disjunction?; is run, and if it succeeds thap, is discarded
andP; > P, has succeeded. Otherwide, is executed.

— (4), whereA is a set of plan bodies; . .. P,,) which is used to represent a set of
possible alternatives. It is executed by selectirfgg &om A and executing it (with
the remainder ofA being kept as possible alternatives in c&séails).

3 http://lwww.cs.rmit.edu.acwinikoff/agenttalk

4 http://jason.sourceforge.net/

5 An omittedc is equivalent tdrue, i.e.e «— P = e : true « P.

® In Rao’s original formulationg is one of+!g, +?g, —!g, —?g, +b, —b corresponding respec-
tively to the addition of an achievement or query goal, the deletion of an achievement or query
goal, the addition of a belief, and the deletion of a belief. In practice it is rare for any other
than the+!g form to be used. Indeed, Rao’s semantics only address this event form, and so in
the remainder of this paper we writgn the heads of clauses as shorthandsfde. Similarly,
we write e as shorthand for !e in the bodies of clauses.

" In Rao’s formulation only conjunctions of literals were permitted.



2.2 Semantics

In the years since Rao introduced AgentSpeak a number of authors have published
(complete) formal semantics for the language. The specification language Z (“Zed”)
was used to formally specify the essential execution cycle of AgentSpeak [18], and
an operational semantics for AgentSpeak was given by Moreira and Bordini [19]. The
operational semantics that we give here is in the style of Plotkin’s Structural Operational
Semantics [20], and is based on the semantics of2AB notation [21], which is a
superset of AgentSpeak. Unlike the previous semantics, it includes failure handling: if
a plan fails, then alternative plans are tried (step 4 of the execution cycle at the start of
this section).

The semantics assume that operations exist that check whether a condition follows
from a belief set B |= ¢), that add a belief to a belief seB(U {b}), and that delete
a belief from a belief set \ {b}). In the case of beliefs being a set of ground atoms
these operations are respectively consequence checking, and set addition/deletion. Tra-
ditionally, agent systems have represented beliefs as a set of ground atoms, but there is
no reason why more sophisticated representations and reasoning mechanisms (such as
belief revision, Bayesian reasoning etc.) could not be used.

We define a basic configuratigh= (B, P) whereB is the beliefs of the agent and
P is the plan body being executed (i.e. the intention). A transifigpr— S, specifies
that executingS, a single step yields,. We defineS, — S,, in the usual ways,, is
the result of zero or more single step transitions. The transition relation is defined using

S — S,

rules of the formS — S’ or of the form.S — S/ ; the latter are conditional with the
top (numerator) being the premise and the bottom (denominator) being the conclusion.
In order to make the presentation more readable we use the convention that where a
component of5 isn't mentioned it is the same ifi andS’ (and in.S,. andS!). We also
assume thabB refers to the agent’s beliefs, and elide angle brackets. Thus each of the
following rules on the left is shorthand for the corresponding right rule.

BEc ) Blc
%2c — true © (B, ?c) — (B, true) o
P1—>P/ . <37P1>H<BI7PI> .
PP, — PP, (B,P;;Py) — (B, PP

The first rule above specifies that the condition fedransitions to true if the con-
dition ¢ is a consequence of the agent’s beligisk ¢). The second rule specifies that
Py; P, transitions taP’; P, whereP’ is the result of a single execution stepff. The
full set of rules are given in figure 1.

We extend simple configurations (which correspond to a single thread of execution
within an agent) to agent configuratiofs = (N, B, Ps) which consist of a name, a
single (shared) belief set, andsatof intentions (executing plans). The following rule
defines the operational semantics over agent configurations in terms of the operational



semantics over simple configurations.

P=8/(I') (B,P)— (B,P
(N, B, I') — (N, B',(I'\{P}) U{P"})

Agent

Note that there is non-determinism in AgentSpeak and in these semantics, e.g. the
choice of plan to execute from a set of applicable plans. In additioglketrule non-
deterministically selects an executing plan. Instead of resolving these non-deterministic
choices with an arbitrary policy, AgentSpeak defines selection funcens, and
Se which respectively select a plan from the set of executing plans, an option from
the set of applicable plans, and an event from the set of events. These are assumed
to be provided by an AgentSpeak implementation and could also be replaced by the
programmer.

Two of these selection function§£ andSy) are used in our formal semantics. The
third selection functiong) is not used. The reason is that AgentSpeak splits event
processing into two steps: adding the event to a set of events, and then selecting an
event from the set and adding an intention corresponding to the applicable plans for
that event. Since neither of these steps results in any changes to the agent’s beliefs or
to its environment, these two steps can be merged into a single atomic step without any
loss of generality, i.e. events in AgentSpeak are eliminable (which has been formally
proven by Hindriks et. al. [22]), and eliminating events simplifies the formal semantics.

BEc ) Blc ”
7% — true 7c — fail o act — true act
+b -
B, +b — B U{b},true B,—-b — B\ {b}, true
A:{PleKtzCszl)EH/\tlzﬁJe/\B':CZe}
Ev
le — (4)
P — P . . ..
PP, — PP ’ true; P — P ot fail; P — fail 7
P, =8o(A
———— Sely o(4) Sel
() — fail (4) — P> (AN{P})
P1 — Pl
n > D¢ - g3
PP, — P> P true> P — true failb P — P

P=S8:(I') (B,P)— <B’,P’>
(N,B,T") — (N, B, (I'\ {P}) U{P'})
P =8z(I') P € {true, fail} Agent
(N,B,T) — (N, B,(I'\ {P})) !
e is a new external event
(N,B,T') — (N,B,TU{le})

Agent

Agent_,

Fig. 1. Operational Semantics for AgentSpeak



2.3 Issues with AgentSpeak

The semantics of AgentSpeak as presented by Rao [7] are incomplete in a number of
ways.

One area of incompleteness is failure recovery. All of the platforms that AgentS-
peak was intended to model provide failure handling by trying alternative plans if a plan
fails. This form of failure handling is based on the idea that for a given goal the relevant
plans offer alternative means of achieving the goal, and that if one way of achieving a
goal fails, alternative ways should be considérgdowever, because AgentSpeak [7]
focuses on describing the execution cycle around plan selection, it does not explicitly
specify what should be done when a plan fails. This omission has led to certain imple-
mentations (such as Jason) not providing this form of failure hartlivg regard the
omission of failure handling from Rao’s semantics as unfortunate, since it has allowed
implementations of AgentSpeak to be consistent with the original AgentSpeak paper,
but to be incompatible with each other, and with other BDI-platforms. For example,
although the semantics of Jason [19] are consistent with Rao’s semantics [7], Jason’s
failure handling is quite different from that of other BDI-platforms such as dMARS
[10], JAM [11], PRS [12,13], UM-PRS [14] and JACK [15].

A more subtle issue concerns the context condition of plans, specifically when are
they evaluated? There are two possibilities: one can either evaluate the context condi-
tions of all relevant plans at once giving a set of applicable plans, or one can evaluate
relevant plans one at a time. The former — “eager” evaluation — is simpler semantically,
but the latter — “lazy” evaluation — has the advantage that when a plan is considered for
execution, its context condition is evaluated in the current state of the world, not in the
state of the world that held when the event was first posted. The execution cycle at the
start of this section is deliberately ambiguous about when context conditions are eval-
uated because BDI platforms differ in their handling of this issue. For example, JAM
is eager whereas JACK is lazy, and in fBAN notation [21] each plan has an eager
context conditiorand a lazy context condition. Since Rao’s semantics for AgentSpeak
specify eager evaluation [7, Figure 1], this is what our ruleHerspecifies.

Another issue concerns multiple solutions to context conditions. Suppose that we
have a program clause : ¢ < P and that given the agent’s current beliefs there
are two different ways of satisfying which give different substitutiong; and 6.
Should there be a single applicable pl&d; (wherei is arbitrarily eitherl or 2),
or should there be two applicable plan (instancé¥), and P6,? Again, there is no
consensus among BDI platforms, for example, JAM doesn’t support multiple solu-
tions to context conditions whereas JACK does. The semantics of AgentSpeak spec-
ifies multiple substitution': [7, Figure 1] computes the applicable plafis asO, =

8 This is not backtracking in the logic programming sense because there is no attempt to undo
the actions of a failed plan.

% Jason provides an alternative form of failure handling where failure of a plan posts a failure
event of the form-!g and this event can be handled by an “exception handling” plan.

19 But note that AgentSpeak’s semantics are inconsistent as to wheikarnique: although
Figure 1 says that is “an” applicable unifier, Definition 10 says thats “the correct answer
substitutiori (emphasis added).



{pf]0 is an applicable unifier for eventand plarp}. Our semantics therefore allows
multiple substitutions, providing an applicable plan instance for each substitution.

Finally, a very minor syntactical issue that is nonetheless worth mentioning, is that
having to writele in the bodies of plans is error-prone: it is too easy to weitey
mistake.

3 An AgentSpeak Meta Interpreter

Logic programming languages have particularly elegant meta-interpreters. For example,
the meta-interpreter for Prolog is only a few lines long [23, section 17.2] and follows
the pattern of interpreting connectives and primitives in terms of themselves (lines 1
& 2) and interpreting an atom by non-deterministically selecting a program clause and
solving it (line 3).

1. solve(true)« true.
2. solve((A,B)) — solve(A) , solve(B).
3. solve(A) < clause(A,B) , solve(B).

Meta-interpreters for other logic programming languages can be developed along
similar lines, for example the logic programming languaggon which is based on
linear logic, has a meta-interpreter along similar lines [24, section 5.6].

A meta-interpreter for AgentSpeak can also be defined similarly:

solve(Act) : isAction(Act) < do(Act).
solve(true)« true.

solve(fail) « fail.

solve(-B) «— —B.

solve(+B) «— +B.

solvelC) « 7C.

solve; ; P,) <« solve(P;) ; solve(,).

8. solve(lE) : clause(+'E,G,R) isTrue(G) < solve(P).

Noo,rwbdpE

We assume that the agent has a collection of beliefs of the étaose(H,G,P)which
represent the program being interpreted.

In order for this meta-interpreter to work the underlying AgentSpeak implementa-
tion needs to support multiple solutions for context conditions. This is needed because
the meta-interpreter’s last clause, where alternative plans are retrieved, needs to have
multiple instances corresponding to different solutionsltmse

Lemmal. If P = X and X ¢ {true, fail} then there exist¥” such thatX — Y.

Theorem 1. The above meta-interpreter is correct. Formally, given an AgentSpeak pro-
gram IT and its translation into a collection oflausebeliefs (denoted byr), the exe-
cution of an intentionP with programI7 is mirrored* by the execution of the intention

1 \We don't precisely define this due to lack of space. The formal concept corresponding to this
is bisimulation.



solve(P) with programIl UM, whereM denotes the above meta-interpreter. By “mir-
rored” we mean that B, P) —— (B’, R) with R € {true, fail} and with a given se-
quence of actiongl, if and only if (B, solve(P)) —— (B’, R) with the same sequence
of actionsA. We useS = S’ whereS’ = (A, B, R) as shorthand for S —— (B, R)

with the sequence of action¥'. In the following proof we usé] to denote the empty
sequence and to denote sequence concatenation.

Proof (sketch): Proof by induction on the length of the derivation, we consider three
cases since the other base cases are analogous to the first base case.

— Firstly, consider a base casé€, +b) — (BU{b}, true). Given the meta-interpreter
clausesolve(+B) «— +B we have(B, solve(+b)) — (B, (+b)) — (B,+b>
0y — (B U {b},truer ()) — (B U {b},true). Since both sequences of
transitions involve no actions we have th@, +b) = ([], B U {b}, true) and
(B, solve(+b)) = ([], B U {b},true). Since both sequences of transitions are
deterministic (no other transitions are possible) we have fiat+b) = S iff
(B, solve(+b)) = S as required.

— Now consider the case &% ; P,. We assume by the inductive hypothesis {BatP; )
= S iff (B, solve(Py)) = S1 (WhereS; = (44, By, Ry)) and similarly for P,.
There are then two case®, — true and P, — fail. In the first case we have
that (B, Pi; P») = (A4, By, true; P2) and then(B, true; Py) — (By, P2) =
(Ag, B2, Ro). We also have thatolve(Py; Py) — (solve(Py); solve(Ps)) —
solve(Py); solve(Py) & (), that (B, solve(Py); solve(Ps) > ()) = (Ay, By, true;
solve(Py) > (), and that(By, true; solve(Ps) > ()) — (By, solve(Pe) > () =
(As, B2, Ro > (). Now, regardless of whethe®, is true or fail this transitions
to Ry sincetrue> () — true and fail > () — () — fail. Hence, in the first
case, wheré®?, — true, we have thatB, Pi; P,) = (A1 ® Ay, Bo, Rs) and that
(B, solve(Py; Py)) = (A; @ As, Bo, Ry). In the second caseé?, —— fail, we
have that( B, Py; P,) = (A1, By, fail; P,). We then have from the semantics that
fail; P, — fail and hence thatB, Pi; P,) = (A1, By, fail). We also have
that solve(Py; Po) — (solve(Py); solve(Py)) — solve(Py); solve(Py) & (),
that (B, solve(Py); solve(Ps) > ()) = (A, By, fail; solve(Py) > ()), and that
this then transitions tgail > () — () — fail, i.e. that(B, solve(Py; P2)) =
(A1, By, fail). Thus, in both cases the executionf»f P, and solve( Py ; Py) mir-
ror each other.

— We now consider the clauselve(!E) : clause(+!E,G,P) isTrue(G) « solve(P)
We have that iflf contains a program clause-le : ¢ «— p thenle — (A4)
whereA = {P0|(t; : ¢; — P;) € II At; = +le A B = ¢;0}. We also have
solve(le) — (£2) where(? is the instances of the clause in the meta-interpreter
(since this is the only clause applicable to solviag i.e. 2 = {solve(P)f | B |=
(clause(+le, ¢;, P) NisTrue(c;))0}. Since for each clausg : ¢; < P; in IT there
is an equivalentiause(t;, ¢;, P;) in 1T we have thatt; : ¢; — P;) € II N t; =
+le wheneverB |= clause(+le, ¢;, P). We also have thaB = c¢;0 whenever
B = isTrue(c;)8 (assuming a correct implementation isfTrug), thuss? has the
same alternatives ag\, more precisely? = {solve(P)|P € A}. Hencele —
(4) and solve(le) — ({solve(P)|P € A}). Once a givenp; is selected from



A (respectivelyf?) we have by the induction hypothesis thi#&, P;) = R; iff
(B, solve(P;)) = R; which is easily extended to show th{#@, P;> (A\ {P;})) =
Riff (B, solve(P;)>(£2\ {solve(P;)})) = R, and hence, provided th& ({2) =
solve(Sp(A4)), that (B, le) = Riff (B, solve(le)) = R as desired.

4 Variations on a Theme

In this section we present a number of variations of the meta-interpreter which extend
the AgentSpeak language in various ways or add functionality to the implementation.
The key point here is that these modifications are very easy to implement by changing
the meta-interpreter. We invite the reader to consider how much work would be involved
in making each of these modifications to their favourite agent platform by modifying
the underlying implementation . ..

4.1 Debugging

Just as with any form of software, agent systems need to be debugged. Unlike debugging
logic programs, multi-agent systems offer additional challenges to debugging due to
their concurrency, and due to the use of interaction between agents, i.e. debugging a
MAS involves debugging multiple agents, not just a single agent.

One approach to debugging agent interaction is to use interaction protocols that have
been produced as part of the design process. An additional “monitoring” agent is added
to the system. This agent eavesdrops on conversations in the system and checks that the
agents in the system are following the interaction protocols that they are supposed to
follow [5, 25].

In order for the monitoring agent to be able to eavesdrop on conversations all agents
in the system need to send the monitoring agent copies of all messages that they send.
This can be done manually, by changing the code of each agent. However, it is better
(and more reliable) to do this by modifying the behaviour ofskadprimitive. Modi-
fying the behaviour of a primitive using a meta-interpreter is quite simple: one merely
modifies the existing clause that executes actions to exclude the primitive in question
and adds an additional clause that provides the desired behaviour:

la. solve(Act) : Act£ send(R,M) < do(Act).
1b. solve(send(R,M)}— ?myID(I) ; send(monitor,msg(l,R,M)) ; send(R,M).

Debugging the internals of agents can be done by enhancing the meta-interpreter in
the same ways that one would enhance a Prolog meta-interpreter to aid in debugging
[23, Section 17.2 & 17.3]. For example, it is easy to modify a meta-interpreter to trace
through the computation. Another possibility is to modify the meta-interpreter to build
up a data structure that captures the computation being performed. Once the compu-
tation has been completed the resulting data structure can be manipulated in various
ways. Finally, another possible modification, suggested by one of the reviewers, is that
the interpreter could be modified to send messages to a monitoring agent whenever the
agent changes its beliefs:



4. solve-B) — — B ; send(monitor,delbelief(B)).
5. solve¢-B) — +B ; send(monitor,addbelief(B)).

4.2 Failure handling

The meta-interpreter presented in the previous section delegates the handling of failure
to the underlying implementation. However, if we want to change the way in which
failure is handled, then we need to “take control” of failure handling. This involves
extending the meta-interpreter to handle failure explicitly, which can be done by adding
the following clause:

9. solve(IE) « fail.

This additional clause applies the default failure handling rule which simply fails, but

it does provide a “hook” where we can insert code to deal with failure. For example,
the code could call a planner to generate alternative plans. Note that this clause applies
to any intention, and so it must be selected after the other clauses have been tried and
failed. For example, if the selection functiofif) selects clauses in the order in which

they are listed in the program text then this clause should come last.

Another possible response to failure is to consider that perhaps the agent lacks the
know-how to achieve the goal in question. One possible source for additional plans
that might allow the agent to achieve its goal is other (trusted) agents [26]. Adding
additional plans at run-time is difficult to do in compiled implementations, but is very
easy to do using a meta-interpreter: since the program is stored as a belief set one
simply adds to this belief set. Clause 9 below is intended as a replacement for the failure
handling clause above. Once a plan is received it is stored, and then used immediately
(useClausg

9. solve(!E) « !getPlan(E,H,G,B) ; +clause(H,G,B) ; luseClause(G,B).
10. getPlan(E,H,G,B) : trust(Agent)- send(Agent,getPlan(E)) ; receive(plan(H,G,B)).
11. useClause(G,B) : isTrue(G)- solve(B).

4.3 Making selection explicit

AgentSpeak defines a number of selection functions that are used to select which event
to process &), which intention to execute nexf{), and which plan (option) to use
(So). In some implementations, such as Jason, these selection functions can be replaced
with user-provided functions. However, other implementations may not allow easy re-
placement of the provided default selection functions. Even if the underlying imple-
mentation does allow for the selection functions to be replaced, using a meta-interpreter
might be easier since it allows the selection functions to be written in AgentSpeak rather
than in the underlying implementation language (for example in Jason user-provided
selection functions are written in Java). By extending the meta-interpreter to make the
selection of plans explicit we can override the provided defaults regardless of whether
the implementation provides for this.

Extending the meta-interpreter to do plan selection (i.e. selecting the oftion,
explicitly is done as follows. The key idea is that we add an additional argumsolve



which holds the alternative options. Then insteadai¥e(!E)having multiple instances
corresponding to different options, it collects all of the options into a set of alternatives
(usingoptiong, selects an option (using the user-providedec), and solves it. The

set of alternatives is ignored by solve, except where failure occurs, in which case we
explicitly handle it (lines 9 and 10) by selecting an alternative from the set of remaining
alternatives and trying it. If there are no alternatives remaining then fail (line 10).

0. solve(P)+« solve(F])).

1. solve(Act,) : isAction(Act) «— do(Act).

Similarly, add an extra argument to solve for the other clauses

. solve((,; P,), Os) < solve(P,, Os) ; solvefs, Os).

. solve('E,) « ?options(E,Os) ; ?select(l,Is,0s) ; solve(l,Is).

. solve(B,0s) : O¢t [| — ?select(l,s,Os) ; solve(l,ls).

. solve(B,0s) : Os: [| « fail.

. options(E,Os)— find all solutions taclause(+!E,G,P)A isTrue(G)and return the
values ofP in Os. In Prolog this could be written dgdall(P, appClause(E,P),0s)
whereappClause(E,B)— clause(+!E,G,B)\ isTrue(G)

12. select(l,Is,0s)« select an intentiod from Os (/s is the remaining options, i.e.

Is=0s\{I})

P O © 0
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4.4 Aricher plan language

The bodies of plans in AgentSpeak are sequences of primitives (actions, belief manip-
ulation etc.). This is fairly limited, and it can be useful to extend the language with
additional constructs such as disjunction and iteration:

9. solve(if(CPy,P)) : isTrue(C) « solve(P;).
10. solve(if(CPy,F2)) : — isTrue(C) « solve(®).
11. solve(while(C,P)) : isTrue(C3}— solve(P) ; solve(while(C,P)).
12. solve(while(C,P)) - isTrue(C) « true.

5 Implementation

The meta-interpreter described in section 3 has been implemented and tested. Since
Jason doesn't support failure handling and AgentTalk doesn’t support multiple solutions
to a context condition, we have implemented a simple AgentSpeak interpreter in order
to be able to test the meta-interpreter. This simple interpreter runs under Prolog and can
be found at http://www.cs.rmit.edu.awlinikoff/AS.

In addition to enabling the meta-interpreter to be tested, not just proven éérrect
the implementation allowed us to quantify the efficiency overhead associated with the
additional layer of interpretation introduced by the meta-interpreter.

In order to measure the efficiency overhead incurred by the meta-interpreter we
use a simple benchmark program. This program controls a hypothetical robot who is

12 «Beware of bugs in the above code; I have only proved it correct, not tfi¢Bénald Knuth,
http://www-cs-faculty.stanford.eduknuth/fag.html)



travelling along a one-dimensional track (perhaps a train track?) containing obstacles
which need to be cleared. The robot is given a list of obstacle locations which need
to be cleared, and it in turn travels to each obstacle, picks up the obstacle, returns to
its starting point and disposes of the obstacle. Since we are interested in the relative
efficiency of the program running with and without the meta-interpreter, the details of
the program (given below) are not particularly important.

move < message(’'moving towards obstacle’).

moveback«— message(’'moving back towards base’).

return(0) < true.

return(N) :N > 0A N1 =N — 1 < !moveback ; !return(N1).

get(0) « true.

get(N):N >0AN1=N —1 « !move; !get(N1).

collect(]) « true.

collect(X| X s]) < !get(X) ; message(’pickup’) ; Ireturn(X) ; message('dispose’)
; Icollect(Xs).

9. collect30 < !collect(1,2,3,4,5,6,7..,28,29,30).

Nk~ wh e

Handling the eventollect30with the AgentSpeak interpreter (i.e. without the meta-
interpreter) took 169 millisecondswhereas the same program run with the meta-
interpreter took 403 milliseconds. The graph below depicts the slow-down factor (403/169
= 2.42) compared with the slow-down factor for various Prolog meta-interpreters re-
ported by O’Keefe [27, Page 273]. The comparison between our slow-down factor and
O’Keefe’s should be taken only as a rough indication that the overhead incurred by
the AgentSpeak meta-interpreter is comparable to that of a carefully-engineered Pro-
log meta-interpreter. There are too many differences between our measurement and
O’Keefe’s measurements to allow much significance to be read into the results, e.g. the
Prolog implementations are different, the underlying hardware is different, and O’Keefe
measured the time to run ainea reverse benchmark under the (Prolog) meta-interpreter

and under the meta-interpreter interpreting itself interpreting the benchmark.
Slow-down

il == e

6 Conclusion

We presented an AgentSpeak meta-interpreter, proved its correctness, and then showed
a number of ways in which it could be used to extend the AgentSpeak language and add
facilities, such as debugging, to the AgentSpeak interpreter.

18 The AgentSpeak interpreter was run under B-Prolog (http://www.probp.com) version 5.0b on
a SPARC machine running SunOS 5.9. Timings are the average of ten runs.



Although the extended meta-interpreters that we presented were very simple, not all
extensions are easy to do with the meta-interpreter. The meta-interpreter that we pre-
sented focuses on the interpretation of individual intentions. Consequently, it is difficult
to make changes that cut across intentions, such as changing the mechanism for select-
ing which intention to work on nextz). This doesn’t mean that such changes cannot
be made using a meta-interpreter, just that a different meta-interpreter is required which
explicitly captures the top-level agent processing cycle including intention selection.

Another issue is that although the meta-interpreter has been presented as “an Agent-
Speak meta-interpreter”, in fact it won't work with the Jason or with the AgentTalk
implementations of AgentSpeak! The reason for this is that due to the incomplete-
ness of the semantics originally presented for AgentSpeak, different implementations
of “AgentSpeak” actually implement quite different languages (some of these differ-
ences were discussed in section 2.3). There are a number of approaches to addressing
this issue. One approach is for the authors of different AgentSpeak implementations
to agree on a common semantics for the language. Another, less ambitious, approach
to addressing this issue is to develop a more detailed meta-interpreter that explicitly
handles areas where there are differences between implementations. For example, the
meta-interpreter in section 4.3 explicitly handles alternative plans rather than delegating
this to the underlying interpreter, and so should work with the AgentTalk implementa-
tion. A third approach is to use a different agent programming language sUtANs
[21] or 3APL [9].

Both these areas are left for future work. An additional area for future work is
extending the semantics given in section 2.2 to include variables and unification. In
AgentSpeak unifying the triggering event with a clause head doesn't bind variables in
the triggering event, because the clause could fail. Instead, when the clause succeeds the
unification is applied to the triggering event [7]. This is a relatively subtle issue which
only affects non-ground events, and if handled incorrectly causes the meta-interpreter
clausesolve(?C) < ?Cto work incorrectly. Since this issue is both subtle and causes
problems if done incorrectly, we feel that it is valuable to specify it formally.
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A A Failed Attempt

In order to show that the meta-interpreter isn’t obvious, here we briefly present an al-
ternative meta-interpreter that was considered and explain why it doesn’'t work. The
intention of this meta-interpreter was that by evaluating the context condition as part
of the body, rather than the context condition, we could obtain lazy context conditions
regardless of the implementation’s semantics.

solve(Act) : isAction(Act) — do(Act).

solve(true)« true.

solve(fail) < fail.

solve-B) «— —B.

solve(+B) «— +B.

solvelC) « 7C.

solve; ; P,) « solve(P;) ; solve(P).

solve('E) : clause(+!E,G,P)— ?isTrue(G) ; solve(P).

ONogrwDE

Unfortunately this meta-interpreter does not give correct semantics. The reason is
that in order to determine that a clause is not applicable it must be selected and tried,
after which it is discarded. This means that if another plan is tried and fails, preceding
clauses are no longer available. To see this, consider the following prégram

1. g:p < print(lazy.).

2. g:true «— +p; fail.

3. g:p < print(clause 3).
4. g:true < print(eager.).

If this program is run with a lazy implementation then the following occurs:

1. Clause 2 is selected (since clause 1 isn't applicable)
2. The beliefp is added and clause 2 then fails
3. Clause 1 is now applicable and is selected, printizg before succeeding.

If the program is run with an eager implementation then the following occurs:

1. Clauses 2 and 4 are applicable, whereas clauses 1 and 3 are discarded.
2. Clause 2 is selected

3. The beliefp is added and clause 2 then fails

4. Clause 4 now runs printingager before succeeding.

However, if the program is run with the incorrect meta-interpreter above then the fol-
lowing occurs:

1. Clause 1 is selected and its guard evaluated. Since the guard is false, the clause
instance fails, and it is discarded.

2. Clause 2 is selected, its guard succeeds and it runs, apl@dind then failing.

3. Clause 3 is now considered, its guard succeeds and it runs, proftinge 3
before succeeding.

It should be noted that although this interpreter doesn’t work, it is certainly possible
to write an interpreter that gives lazy context conditions even when run under an eager
implementation. This can be done by making selection explicit (see section 4.3).

14 We assume tha$, selects clause in the order in which they are written.





