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Effectiveness of Note Duration Information for
Music Retrieval

Iman S. H. Suyoto and Alexandra L. Uitdenbogerd

School of Computer Science and Information Technology, RMIT
GPO Box 2476V, Melbourne, Victoria 3001, Australia

imsuyoto@cs.rmit.edu.au, sandrau@rmit.edu.au

Abstract. Content-based music information retrieval uses features ex-
tracted from music to answer queries. For melodic queries, the two main
features are the pitch and duration of notes. The note pitch feature has
been well researched whereas duration has not been fully explored. In
this paper, we discuss how the note duration feature can be used to al-
ter music retrieval effectiveness. Notes are represented by strings called
standardisations. A standardisation is designed for approximate string
matching and may not capture melodic information precisely. To repre-
sent pitches, we use a string of pitch differences. Our duration standard-
isation uses a string of five symbols representing the relative durations
of adjacent notes. For both features, the Smith-Waterman alignment is
used for matching. We demonstrate combining the similarity in both
features using a vector model. Results of our experiments in retrieval
effectiveness show that note duration similarity by itself is not useful for
effective music retrieval. Combining pitch and duration similarity using
the vector model does not improve retrieval effectiveness over the use of
pitch on its own.

1 Introduction

The field of music information retrieval (MIR) research explores ways in which
users can better find pieces of music in which they are interested. For content-
based MIR, we attempt to find answers to queries that contain a fragment of
music. This music fragment can be of two main types: an audio sample or a set
of notes. The goal of the user could be to find the exact piece of music that they
have heard, or to find music that is similar, such as might occur in copyright
infringement or in arrangements of a piece. The latter is our main interest in
this research.

Current state of the art in content-based MIR has user queries consisting of
sung or symbolically created queries. The ability to extract melodies from an
audio stream consisting of a single voice is at an acceptable level of precision
for matching. The same cannot be said as yet of note extraction from typical
commercial recordings of music. Thus for melody search we mainly work with
collections of symbolically represented music, such as found in Musical Instru-
ment Digital Interface (MIDI) files.



A technique that has been shown to work reasonably well [1] is a three-phase
matching process. First, as most pieces of music are polyphonic, that is, have more
than one note sounding at the same time, representative melodies or themes are
extracted from each piece in the collection. Second, both the pieces and queries
are transformed into a standardised form that retains the salient features for
matching and allows straightforward matching. Third, a similarity measure is
applied to determine the amount of match for each piece, resulting in a ranked
set of answers. Melody matching gives quite good results when a simple string
representation of the pitch of extracted melodies is compared. While there has
been work previously using both pitch and rhythm (see for example Kageyama,
Mochizuki, and Takashima [2], McNab et al. [3], Chen and Chen [4], Lemstrom,
Laine, and Perttu [5], and Dannenberg et al. [6]), the relative value of these
two aspects of melody for matching have not been quantified for polyphonic
collections, and whether a string-matching approach is of benefit in this situation.
The experiments reported in this paper show that rhythm, when expressed using
an alphabet of five relative values, is quite poor in its own right for matching,
even more so than a three-value alphabet representation of a melody’s pitch
contour. Further, when combined using a vector model, it does not improve the
precision of retrieved answers to queries.

Below we discuss the different melody standardisations used in our experi-
ments (Sec. 2), the dynamic-programming-based matching technique we applied
(Sec. 3), and the experiments that show that simple pitch matching is superior
to a vector-combined pitch and rhythm approach (Sec. 4).

2 Standardisations

To support approximate matching, we convert the melody into searchable repre-
sentations called standardisations. A standardisation is designed for approximate
string matching and may not capture melodic information precisely [1]. In this
paper, we discuss three pitch standardisations and one duration standardisation.
The three pitch standardisations are contour, extended contour, and directed
modulo-12 (see Secs. 2.1, 2.2, and 2.3). For duration, we use both the contour
and extended contour standardisation (see Sec. 2.4).

2.1 Pitch contour standardisation

The pitch contour standardisation uses three distinct symbols to represent a
note. The symbols represent the movement direction of the previous note pitch
to the current note pitch [7]. We use the convention “S” for same, “U” for up,
and “D” for down. The first note is not represented. For example, the melody
shown in Fig. 1 is represented as “UUUDDUUDDD”.

2.2 Pitch extended contour standardisation

For finer granularity, the pitch contour standardisation is extended so that there

[13)

are small and big up’s (symbolised as “u” and “U”, respectively) and down’s
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Fig. 1. “Melbourne Still Shines” by ade ishs.

(“d” and “D”). We use three or more semitones as big intervals. For example,
the melody shown in Fig. 1 is represented as “UUuDDuUddd”.

2.3 Pitch directed modulo-12 standardisation

The directed modulo-12 standardisation uses direction information too. A note
is represented as a value p; which is the interval between a note and its previous
note scaled to a maximum of one octave (7, 8]:

p12=d(1+ ((I —1) mod 12)) (1)

where [ is the interval between a note and its previous note (absolute value) and
d is 1 if the previous note is lower than the current note, —1 if higher, and 0 if
otherwise. For example, the melody shown in Fig. 1 is represented as “7 4 1 -5
-523-2-1-2"%

2.4 Duration contour and extended contour standardisations

Just as in pitch contour-based standardisations, the duration contour and ex-
tended contour standardisations also employ three and five distinct symbols
respectively to represent a note. In the case of duration, we use “S”, “s”, “R”,
“1”, and “L” for “much shorter”, “a little shorter”, “same”, “a little longer”,
and “much longer” respectively . (Analogous to pitch contour standardisation,
the duration contour standardisation does not have “s” and “1” symbols). The
quantisation we use is based on the encoding in Moles [9]. Let A¢ be the current
note, Ap be the previous one, and K = Ac/Ap. A note is represented based on
the ranges of log, K as illustrated in Fig. 2. For example, the melody shown in
Fig. 1 is represented as “LSRLSR1RRR”.

3 Retrieval

The use of duration information along with dynamic programming was suggested
by Kageyama, Mochizuki, and Takasima [2]. They suggest that note durations
be used as penalty scores for insertion and deletion operations. How the scores
are calculated is however not formally defined. In this work, we also use a dy-
namic programming approach. In particular, we use the Smith—Waterman align-
ment [10] (also known as local alignment [11]) which is useful to find a substring

! Note that a figure is treated as a symbol. Therefore, it is a 10-symbol string.
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Fig. 2. Duration extended contour quantisation. K = Ac/Ap where Ac and Ap are
respectively the current and previous note durations.
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Fig. 3. Local alignment between “UUDS” and “SSDUU”.

with highest similarity. Because query tunes typically translate to short strings
while tunes in the collection typically to long strings, the alignment is more
suitable than global alignment [1].

To calculate the local alignment between two strings s and ¢, we perform the
following steps:

1. Prepare the data structure.

(a) Construct a matrix of which dimension is (]s|+1) x (|¢|+1). We use 0 as
the base index, i.e. the column indices are 0, 1,2, ..., |q|, the row indices
are 0,1,2,...,|s|, and the symbol indices for s and ¢ are respectively
0,1,2,...,|s]—1and 0,1,2,...,|q| — 1.

(b) Initialise the 0-th row and column with 0.

2. Calculate the score.

(a) For i in (1...[s|):

i. For jin (1...|q|):

A. Dij < max(0,Di—1;+1,Dij1+1,Diy -1+ M(si-1,qj-1))
where I is the insertion/deletion score (commonly non-positive)
and M is the match/mismatch function. The values for M and
I that we use in our experiments are detailed in Sec. 4.

The local alignment score is max(D; ;);¢ € {1...]s|}, 5 € {1...]¢|}. For example,
suppose s = UUDS, ¢ = SSDUU, M(z,z) = 2 (a match), M(z,y)|z2y = —2 (a
mismatch), and I = —1. The matrix looks like the one shown in Fig. 3. The
local alignment score is the maximum score in the matrix, i.e. 4.

We are experimenting with a vector model to combine similarity evidences
from both pitch and duration matching. The pitches and durations are symbol-
ised by the respective standardisations. As vectors, they are modelled as being
perpendicular to each other. The overall similarity is indicated by the resultant



similarity vector. The following formula is based on one in our previous work [12],
except that now we also assign weights for both pitch and duration components:

Y = wesr T+ wsssd (2)

where ¥ is the resultant similarity vector, ¢, is the pitch similarity, g5 is the
duration similarity, w, and ws are both weight constants, and & and 5 are
respectively pitch and duration unit vectors. Ranking is then based on the mag-
nitude of resultant similarity vector, |X| = y/w2¢2 + w3cZ. Therefore, the value
of w, is not meaningful on its own, and neither is ws. However, the ratio w, /ws
(or reciprocally, ws/w,) is.

4 Experiments

Our aim with these experiments was to determine how effective rhythm infor-
mation is for melody retrieval using our experimental framework of a polyphonic
MIDI file collection, manual queries, and two sets of relevance judgements [13].

The collection consists of 14,193 MIDI files, which are a superset of those
used in our earlier experiments (such as Uitdenbogerd and Zobel [1,14], and
Uitdenbogerd, Chattaraj, and Zobel [13]). The query set used here is the set
of 28 manual melody queries created by a musician upon listening to a set of
rendered polyphonic pieces. We used two sets of relevance judgements. The first,
known as automatic, was created by Uitdenbogerd by identifying likely matches
by file-name, and verifying by listening. The second, called manual, was the result
of pooling top answers from several matching techniques, and asking users to
decide upon listening whether the pieces were similar. More detail is found in
Uitdenbogerd, Chattaraj, and Zobel [13].

As a baseline of our experiment, for pitch matching, we use M (z,z) =1 for a
match, M (z,y)|sy = —1 for a mismatch, and I = —2 for an insertion/deletion
(see Sec. 3) as used in Uitdenbogerd and Zobel [1]. For duration matching, we use
39 scoring matrices. The scoring matrices are obtained by varying the variables
a,b,c,...,i shown in Fig. 4 as detailed in Table 1. The matrix means if there is
a match “S”-“S”, M(S,S) = ¢; a mismatch “S”-“s”, M(S,s) = d; etc. At any
time,a >b>c>d>e>f>g>i>h.

5 Retrieval Performance Evaluation

The queries in our experiments are topic-oriented, i.e. for one query there can
be more than one relevant answer.

To evaluate the effectiveness of every matching method, we use a standard
measurement technique for such a task, i.e. using precision and recall:

|Rel N Ret|
= =2 = 3
|Ret]| ®)
|Rel N Ret]|
— e e 4
|Rel] (4)
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Fig. 4. Scoring matrix for duration extended contour standardisation. “S8”, “s”, “R”,
“1” and “L” respectively indicate a “much shorter”, an “a little shorter”, a “same”,
an “a little longer”, and a “much longer”.

Table 1. Scoring schemes for duration extended contour standardisation. For all scor-
ing schemes, a >b>c>d>e>f>g>1i>h.

Scoring scheme a d e f g h i
1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 -1 -1

= e
HO(DOO\IOEU'IrbwwH

b ¢

1 1 1

2 1 1

3 1 1

3 2 1

3 3 1

3 3 2

3 3 3
3 3 3 3 -1 -1 -1 -1 -1
3 3 3 2 -1 -1 -1 -1 -1
3 3 3 1 -1 -1 -1 -1 -1
3 3 3 o -1 -1 -1 -1 -1
12 3 33 -1 -1 -1 -1 -1 -1
13 3 2 1 0 -2 -3 -3 -3 -3
14 3 21 0o -3 -3 -3 -3 -3
15 3 21 0O -1 -2 -3 -3 -3
17 3 21 0O -1 -1 -3 -3 -3
17 3 2 1 o -1 -1 -2 -3 -3
18 3 2 1 o -1 -1 -1 -3 -3
19 3 2 1 o -1 -1 -1 -3 -2
20 3 2 1 o -1 -1 -1 -3 -1
21 3 2 1 o -1 -1 -1 -2 -1
22 3 2 1 o -1 -1 -1 -1 -1




where P is precision, R is recall, Rel is the set of relevant tunes and Ret
is the set of retrieved tunes. Precision can be averaged at 11 recall levels,
0.0,0.1,0.2,...,1.0, to obtain the 11-point recall-precision average [15]:

N,
i Z P,(0.17)
iz _ r=04=1 Ny 5
< (r)>r:0‘070‘170‘2,...,1‘0 = 11 (5)
which is the measure we use to compare the effectiveness of the techniques in
our experiments. However, since some queries have less than 11 relevant answers,
we use interpolated precision values, which can be calculated using the following
formula [15]:
P(j) = P 6
(7) =, max  P(r) (6)
where j € {0.0,0.1,0.2,...,0.9}. Higher 11-point recall-precision average means
more effective retrieval technique.

6 Results and Analysis

In our experiment, queries were matched against all tunes in our collection 23
times, once for pitch matching using the directed modulo-12 standardisation and
22 times for duration matching using the 22 scoring schemes.

To combine pitch and duration similarities using Eq. 2, We used six different
wy /ws values: 0, 1, 3, 5, 7, and oo. The last one is the baseline performance,
i.e. duration information is ignored (ws = 0), whereas the first one means pitch
information is ignored (w, = 0).

For automatic relevance judgments, the baseline performance is an 11-point
recall-precision value of 52.15%. The results of using other w,/ws values are
shown in Tables 2. For manual relevance judgments, the baseline performance is
an 11-point recall-precision value of 51.84%. The results of using other w, /w;
values are shown in Tables 3.

Taking the best results from each w,/ws value, we obtain the graph shown
in Fig. 5. It shows that the peak performance is obtained when w, /ws = 5.

From both relevance judgments, duration information by itself is shown to
be not useful for retrieval. In our experiments with automatic relevant judg-
ments, duration information does not improve retrieval performance over that
using pitch information per se, whereas with manual relevance judgments using
wy /ws = 5 and scoring schemes 16, 17, 18, and 19, slightly better performance
is obtained. We analyse further whether duration matching improves retrieval
effectiveness using Wilcoxon signed-rank test with one-sided confidence level ()
of 0.05. The null hypothesis is that duration information does not improve re-
trieval effectiveness; with alternative hyptothesis that duration information does
improve retrieval effectivenes. It is found that incorporating duration informa-
tion using the vector model does not imply significant performance gain.

To see how much information is actually contained in the standardised strings
of the tunes in our collection, we compress the strings. The rationale behind this



Table 2. 11-point recall-precision percentage values for automatic relevance judgments.

Baseline performance = 52.15.

Wr [ws
Scoring scheme 0 1 3 5 7
1 0.87 26.40 49.73 51.32 51.32
2 2.81 18.86 47.92 50.89 51.49
3 1.71 12.67 42.41 51.40 5141
4 222 893 3849 51.23 51.06
5 257 546 36.00 47.63 49.72
6 2.87 4.18 3745 46.19 49.72
7 247  3.59 36.78 48.39 49.41
8 4.08 7.38 37.56 45.51 50.20
9 3.27 436 3552 46.16 49.50
10 247  3.59 36.78 48.39 49.41
11 3.84 216 3348 49.50 50.70
12 3.57 2.07 3498 50.95 50.86
13 1.35 4.74 36.61 50.23 50.14
14 1.84 4.80 36.51 50.53 50.42
15 1.34 4.09 36.58 51.24 51.07
16 1.16 4.66 34.98 5195 51.27
17 1.16 4.66 34.98 51.95 51.27
18 1.16 4.66 34.98 51.95 51.27
19 1.16 4.66 34.98 5195 51.27
20 1.16 4.66 34.94 51.93 51.27
21 1.16 4.66 34.94 51.93 51.27
22 1.04 455 3493 5193 51.27




Table 3. 11-point recall-precision percentage values for manual relevance judgments.

Baseline performance = 51.84.

Wr [ws
Scoring scheme 0 1 3 5 7
1 0.94 25.24 50.52 52.14 52.14
2 2.60 20.38 48.81 52.04 52.65
3 1.18 13.67 42.87 52.60 52.96
4 1.05 7.83 39.83 5291 53.13
5 0.67 3.73 36.45 47.23 51.49
6 1.05 3.89 35.95 49.10 51.61
7 0.79 3.84 33.95 48.70 49.81
8 3.57 7.65 36.90 45.49 50.96
9 1.64 452 33.71 47.21 50.54
10 0.79 3.84 33.95 48.70 49.81
11 0.40 272 31.04 48.30 51.36
12 0.00 2.22 33.62 50.19 52.45
13 0.48 540 37.93 52.09 51.54
14 0.49 540 37.57 52.03 51.65
15 0.89 4.93 3830 52.96 53.14
16 0.71 571 36.72 53.72 53.42
17 0.71 571 36.72 53.72 53.42
18 0.71 571 36.72 53.72 53.42
19 0.71 571 36.72 53.72 53.42
20 0.71 5.70 36.68 53.70 53.41
21 0.71 570 36.68 53.70 53.41
22 0.60 5.57 36.65 53.70 53.41
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Fig. 5. Best 11-point recall-precision values.

is that strings that contain more information (thus having higher entropy) are
less compressible than those containing less information. We compress the strings
using the bzip2 program?. In uncompressed state, pitch information occupies
35.85 megabytes and so does duration information. The compressed standardised
string sizes are shown in Table 4. That duration extended contour strings are
more compressible than pitch contour strings reflects that not much information
is contained if tunes are represented only by their note durations despite the
larger alphabet size.

7 Conclusion and Future Work

This paper inspects the performance of combining pitch and duration similarities
using a vector model. The results of our experiment show that:

1. Duration information on its own is not useful for music retrieval.

2. The vector model is not appropriate to combine pitch and duration similari-
ties for the purpose of improving retrieval effectiveness over the use of pitch
information on its own.

Rhythm seems to be insufficiently varied for it to be useful for melody re-
trieval. However, the combination of pitch and rhythm is sometimes needed in
order for humans to distinguish or identify melodies. Using a representation that

% see http://sources.redhat.com/bzip2/
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Table 4. Compressed standardised string sizes.

Uncompressed size = 35.85 megabytes.

Standardisation Compressed size Compression ratio

(megabytes) (%)
Pitch directed modulo-12 8.15 22.74
Pitch extended contour 6.75 18.83
Pitch contour 3.95 11.02
Duration extended contour 3.83 10.69

combines the pitch and rhythm in a manner that preserves the relative position
of the match in each case may yield better results. This should be subject to
further experimentation.
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