
A Novel Time Independent Asynchronous Communication Protocol & Its
Applications

Pj Radcliffe and Xinghuo Yu (Senior Member IEEE)
RMIT University

Melbourne 3001, Australia
pjr@rmit.edu.au x.yu@rmit.edu.au

Abstract – This paper proposes a novel communications
protocol called Time Independent Asynchronous (TIA)
communications. This protocol constitutes a new category
which has unique properties very useful in a variety of
applications including embedded controller communications.
The 2-wire TIA communications system proposed is
implemented using software controlled IO. Analysis of this
system shows that traditional Signal Transition Graphs (STGs)
may fail to predict livelock and deadlock in software based
systems. A modified form of STG called STG For Threads
(STG-FT) is proposed to better model the behaviour of
software driven systems and is shown to correctly detect
livelock and deadlock that a normal STG model may miss. The
performance of the new 2-wire TIA system is reported and
livelock and deadlock properties found to match the STG-FT
simulation. The new 2-wire TIA communication system has
particular application to communications in products and
industrial systems with low end microprocessors and any
microprocessor that is heavily loaded with time critical
applications.

I. INTRODUCTION

More and more processors are being used in industrial and
consumer products For example, the 2005 7-series BMW
and S-Class Mercedes each contain about 100 processors [1].
According to Garner research in 2002 the average American
home had 200 microprocessors [2]. Many products and
systems contain multiple microprocessors and inter-
processor communications represents a financial cost [3].
Any method that can reduce the cost of the communications
link has the potential to reduce the cost of the overall
product.

An ideal low cost communications system uses no
specialised peripherals, a minimum number of IO pins, and
has minimal impact on any real time tasks [4]. To the best of
our knowledge, there is no bidirectional communications
system that satisfies these constraints with only two pins.
Such a system would be very useful to any low end
microprocessor and any microprocessor that is heavily
loaded with real time applications.

In this paper we develop a novel, highly economic
solution to this problem particulary applicable to small to
medium enterprises where cost is a major concern. We
propose a new category of communications called Time
Independent Asynchronous (TIA) communications. This is
a distinct category from asynchronous communications and
has a range of useful and unique attributes. We have found
that the Petri net based Signal Transition Graphs (STGs) do
not correctly predict livelock and deadlock behaviour and so
we have developed a modified form we call STG-FT (STG
For Threads) to better model software implementations of
asynchronous systems.

A 2-wire TIA communications protocol is developed that
uses two microprocessor pins and has minimal impact on any
existing real time code. An analysis of livelock and
deadlock is given using the STG-FT model and the simulator
we have developed.

This paper is organised as follows : Section II details the
new proposed communications protocol and discusses the
issues in relation to TIA, section III outlines the problems
faced while applying a standard STG model. Section IV
describes a modified form of STG that better models
software driven systems and section V gives an example
which shows how the STG model fails and the new model
successfully predicts behaviour. Section VI reports on the
modelling and performance of the proposed 2-wire TIA
system.

II. TIA COMMUNICATIONS

We propose a new category of asynchronous
communications called Time Independent Asynchronous
(TIA) communications. Unlike many asynchronous
communications methods, we adopt a simple rule that there
are no restraints on timing, only the order of signals is
important. Unlike Time Free communications [5], gross
error conditions such as a host lockup may be corrected with
time-outs. For normal signalling there are no timing
requirements on an individual signal, nor any timing
relationship between signals. Adopting this simple rule has
several important implications-

A host may work as fast or as slow as it likes, and
change speeds arbitrarily without causing problems.
This can be useful when a host can be interrupted
with application or operating system tasks or has
low processing power. Another use is when a
system is intermittently unavailable as can be found
in some power saving strategies.
The response time to signal changes does not matter
and as a result a host does not have to make any
guarantees about response time to a signal change.
This enables TIA communications to be run at
background level which often has considerable CPU
time available but on an intermittent basis. Time
critical applications or operating system programs
are only marginally effected by the TIA
communications running in the background.
TIA can be efficiently implemented with general IO
pins which is useful when there is no dedicated
communications or special purpose hardware
available.
TIA can cope with a communications medium that
distorts timing though not to the stage where signals

35741-4244-0136-4/06/$20.00 '2006 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 17:53 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15610455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are delivered out of order.
Data overrun of the communications system
becomes impossible as a host can simply stop
receiving until it is ready to resume.

A small number of existing communications protocols are
TIA in nature but most require many signals wires and so are
impractical for embedded processor use. Example TIA
systems include the old DEC Unibus [6] and the basics of the
GPIB bus [7]. TIA systems are used with VLSI chips [8],
Yakalov et al [9] propose a 4 wire system, Bainbridge and
Furber [10] developed a 3 wire system. Takahashi and
Hanyu propose a multi-level logic based system [11] but this
does not suit simple digital logic. We have developed a new
and novel 2-wire bidirectional TIA bus that only requires 2
pins on the microcontroller and particularly suits embedded
controller communication.

III. STG PROBLEMS

Our 2-wire TIA protocol was conceived using a timing
diagram but it was clear that complex behaviour could result
from variations in host timing. A Petri net style simulation
was essential to discover key properties such as deadlock,
livelock and correctness. The modelling could have been
performed using state machines but as Cortadella, Yakovlev
et al explain [12] "(FSMs) cannot explicitly express the
notions of concurrency, causality and conflict. Petri nets can
naturally capture these notions." Signal Transition Graphs
such as those used by Yakovlev [13] and Kishinevsky [14]
are a form of Petri net (PN) that are useful for modelling
asynchronous logic systems and would appear to be very
suitable for modelling the 2-wire TIA system. Key STG
constraints [15] include the 1-safety requirement, a free
choice PN structure, transitions only have binary triggers,
and ordinary tokens (no values or colours). An STG can be
mapped onto one or more Finite State Machines (FSMs) for
the purposes of implementation.

We found that the STG model did not properly model a
system implemented with software rather than asynchronous
logic. The main reason was that STGs did not model
behaviour at the atomic level. We also found problems
related to state allocation and automatic translation to code.

Atomic behaviour: There are differences at the atomic
(indivisible) level of behaviour between the asynchronous
logic view of STGs and operation of a system implemented
with several software threads.

For a thread based system a transition that tests an
input is polled : it occurs at an instant in time and is
then not rechecked until the software thread again
executes the test instruction. There is a dead zone
in which a transition may be true but not acted
upon. Other transitions implemented in other FSMs
that come true later, may fire before the first
transition because of these polling delays.
Modeling must be at an atomic (indivisible) level
of activity to properly capture the range of
behaviors of the thread based system.
Asynchronous logic can respond very quickly to

one of several possible transitions firing whereas a
thread based system on one CPU can only consider
one transition at a time. Multiple test transitions
from a single STG place are polled : they are tested
sequentially with dead zone periods between each
test. The transition to fire may not be the first one
to come true due to the polling sequence and delays.
Again modeling must describe these tests at an
atomic (indivisible) level to properly capture the
range of behaviors of the system.
STG transitions are triggered by rising or falling
edges of signals [15]. With the aid of dedicated
hardware a software thread may detect edge
changes but in general a software thread can only
test for high or low.
A software thread may also implement very
complex tests where many lines of code result in a
true or false result.

State allocation: minimizing of the number of states is an
important topic in the design of asynchronous logic
[13][14][15] and can result in fewer gates. When using
software threads state variables and other data are effectively
free as memory is inexpensive. A penalty of being too free
with states and data comes when simulation is executed. If
the reachability tree (signal graph) is to consider all possible
system states then state explosion may occur. If the
reachability tree is examining all possible operational paths
then states and variables may produce numerous initial states
which can again cause a state explosion.

Automatic translation: Any translation requiring human
judgement and expertise provides an opportunity for errors
to creep in. Ideally the translation from one form to another
should follow a strict set of rules that can be automated, or
at least followed in an automated manner by a human being.

An STG may be mapped onto FSMs and this has been
automated in tools such as Petrify [16]. Once an FSM is
available it can be translated automatically into the code
structure of a programming language. State tables are a
convenient solution as the driver code, the state table, and
the empty functions for action and test routines can be
automatically generated. The user must add the code inside
each action and test routine.

Standard STGs face several problems when applied to a
system that must be implemented using several FSMs run by
software threads-

The splitting of an STG in to several FSMs is
difficult to automate.
The traditional labeling does not differentiate input
and output signals which can cause readability
problems and so encourage errors.
The traditional poor naming conventions inhibits
readability and also encourages errors.

IV. STG FOR THREADS (STG-FT) SOLUTION

We propose a new and novel form of STGs we call “STG
For Threads” (STG-FT) that will accurately model a system
implemented using software threads. The following process

3575

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 17:53 from IEEE Xplore. Restrictions apply.

will convert an STG model into an STG-FT model.

1. Atomic modelling: The first set of constraints to apply to
an STG model aim to enforce atomic level modelling so as to
properly capture the behaviour of a software thread based
system.

Atomic transition : each transition may represent an
atomic test or action but not both (the terms test
and action have been chosen to avoid confusion
with the terms input and output which define
relationships between places and transitions). An
atomic transition must operate at one instant in
time, or at least sufficiently fast that no part of the
system can see any intermediate results and the
active FSM cannot see any change in the system.
Atomic output transitions : consider the output
transitions of a place. An STG-FT may have only
one output transition for a place, or if the output
transition is a test transition “Y/” then there may be
one additional test transition “!Y/” which is the
inverse of the first test.
An atomic action transition: this is a transition that
defines an output or a change to data. An action
transition always fires if there is a token in its input
place. It is labeled as follows-
 / output_name
An action transition effecting output pin A then pin
B labeled “ / set_A_clr_B” would not be atomic. It
must be split into to sequential action transitions
labeled “/set_A” and “/clr_B”, or the reverse order
as appropriate (see Fig. 1).
An atomic test transition: this is a transition that
performs a simple boolean test that can be made at
one instant in time from the point of view of the
FSM containing the test. For example the test may
consider multiple data structures providing they

cannot change during the period spent executing the
test. If the test is true and the input place contains a
token then the transition fires. An atomic test is
labeled as follows-
 atomic_test_name /
A single test transition labeled “strobe_lo_reset_hi/”
which looks at two external inputs would not be
atomic . Two tests leaving the one place, labeled
strobe_lo/ and the other reset_hi/, would not be
atomic. The test must be broken into two atomic
tests as per figure 2. The order of testing is
important and may effect operation.

2. FSM translation: The next set of constraints to apply to
an STG model aim to make it easy to translate the STG-FT
into multiple FSMs.

FSM object : an STG-FT may model several FSMs
and places and transitions are grouped into FSM
objects each of which will implement one FSM.
FSM objects, as with software objects, should have
good encapsulation. Each FSM object should have
a clear purpose and have a minimal and well
defined interface to the rest of the system. A dotted
ring may be used to denote an FSM object.
Place = state : a place (a vector under STGs which
may contain a circle, and may show an initial
marking) represents a single state in an FSM. Only
one place in an FSM object may contain a token.
Place naming : each FSM object has its own name.
Each place has its own number and may have a
descriptive name as well.
For example X2 : wait_for_busy
X is the FSM name, 2 is the place number within
the FSM object, and wait_for_busy is an optional
descriptive name.

3. Inter-FSM communication: Once places and transitions
are arranged into FSM objects there will be some places and
transitions that link the FSM objects. In reality these
communication between FSMs often represent an IO pin, or
information sent via a media. Such a link is eliminated by
placing an action transition in the source that effects a
variable which may be as simple as a boolean IO pin, or a
complete data structure. There will be one or more test
transitions in the destination FSM object that can test the
resulting variable. None of these variables have any state
transition behaviour of their own and depend on the FSMs to
change values. Variables may depend on each other and be
modelled with boolean logic.

The eliminated linkage place and transition may be
represented as a dotted arrow from the source action
transition to the destination test transition and this represents
a cause-effect relationship (see Fig. 3). The dotted arrow is
an optional readability aid rather than an artefact to guide
automatic implementation.

All variables must have a known value at the start of a
simulation. If they can have different values then the
simulation must be run for every possible data combination
of all variables. The number of variables and the range of
values they can take should be minimised to avoid state

Figure 3 Multiple Test
Implementation

strobe_lo/ reset_hi/

Multi-Test Place

STGFT Equivalent

strobe_lo/ !strobe_lo/

reset_hi/

!reset_hi/Fig. 1 Atomic Output
Transitions

/set_A_clr_B

Multi-Action Transition

/set_A

/clr_B

STGFT Equivalent

Figure 2 Inter-FSM
Communication

/set_IO2 ext_hi/IO2

3576

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 17:53 from IEEE Xplore. Restrictions apply.

explosion.
FSM objects may be able to directly test the state variable

of another FSM and so avoid the need for an extra variable.
A dotted arrow may still be used to indicate a cause-effect
relationship.

The procedure outlined should have produced an STG-FT
model that will accurately model a software based
implementation of a system.

V. STG-FT EXAMPLE

This example will show how an STG which is not fully in
STG-FT format, will not accurately model a software
implemented system. The procedure for creating STG-FT is
applied and the resulting model does correctly predict
behaviour.

Consider the waveforms in Figure 5. The unit to be
designed must read a clock and a wait signal and generate a
data bit from some internal source. If the wait signal is high
when the clock goes high then the data must stay stable until
after the next rising clock edge where wait is low.

The first pass STG-FT is shown at the top of figure 4.
The STG-FT with Sx labelling is the data source that must be
created. The diagrams labelled with Cx (clock generator)
and Wx (wait generator) implement signal generators that
are only used in simulation and as such they can break the
atomic operation rule. They allow for the generation and
testing of one cycle of wait.

We have developed an STG-FT simulator which has been
used to simulate the problem. The simulator examines the
full reachability tree from every initial condition through
every possible valid path across all state machines. This
results in full detection of livelock, deadlock and correct or
incorrect operation. The translation from STG-FT to
software code in the simulator is automatic in nature except
that the user must create the initial conditions, the code that
implements each action and test transition, and the
conditions which terminate the simulation.

The simulation will show no problems and indicate correct
operation with no livelock and deadlock for all possible
sequences of operation. When implemented using software
on CPUs the system will fail. Problem scenarios include-

wait just before clock : the CPU polls wait and finds
it low, shortly after wait goes high but the CPU
does not see this due to the polling sequence. The
CPU tests for clock high and finds this true and then
asserts new data. Clearly a wait request has been
missed and a data bit will be lost.
wait just after clock : the CPU samples clock just
before it goes high and finds it low, clock then goes
high but this is not detected by the CPU due to the
polling sequence. The signal wait goes high and the
CPU tests wait and finds it high and so delays the
sending of new data. Clearly the wait request has
been applied one cycle too early.

If the STG-FT process introduced in section 4 is applied to
the first pass STG-FT in Figure 4, it can be seen that it has a
non-atomic test transition at S2. Note how this place has
been redrawn at the bottom of Figure 4 to satisfy the atomic
modelling rules. Simulation of the corrected STG-FT will

detect the problem scenarios listed above. This example
shows the necessity of the STG-FT approach when a system
is implemented using software threads.

The data generator example as implemented with threads
cannot be made to work as correct operation requires the

Fig. 5 Data Generator With Wait

Sample
data.

Wait forces
delay.

Sample
data.

clock

data

wait

Fig. 4 Data Generator With Wait

/ output_data

S1

 clock_lo/

 wait_hi/

 wait_lo/

 clock_hi /

S2
 wait_hi /

 !wait_hi /

S2b

 clock_hi /

 !clock_hi /

First Pass STGFT

Correction for S2

S3

W3

/ set_wait

/ clr_wait

clock_at_C2 /

W0

W1

W2

S2

S0

C3

/ clr_clock

/ set_clock, / check_data

 / set_clock

C0

C1

C2

3577

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 17:53 from IEEE Xplore. Restrictions apply.

detection of the rising edge of clock and simultaneously
reading the state of wait. The sampling delays of a thread
mean the exact point of the clock transition is missed, and
even if it is detected then it is not possible to sample wait at
the same time. Some additional hardware is required, for
example wait could be sampled by hardware – perhaps a D
flipflop clocked by clock with the D input connected to wait.

The original STG-FT in Figure 4, with non-atomic
elements, could be made to work with asynchronous logic
though meta-stability [17] is an issue as wait could be
changing just as the clock is rising.

VI. 2-WIRE TIA SIMULATION & IMPLEMENTATION

In mid 2005 we faced an apparently simple problem as
part of a larger research project. A small microcontroller
based sensor was developed which used all of the
microcontroller's peripherals and most of the available CPU
time. A requirement was added that meant the controller had
to communicate with an IBM-PC in a simple and cost effect
manner. One option was to select a more powerful and
expensive microcontroller. In some products such a cost
increase would have a significant impact. We chose a
different path – to develop a novel 2-wire TIA
communications method that would enable the existing, low
cost, microprocessor to be used.

The proposed 2-wire TIA system was simulated using an
STG-FT simulator we have developed. It followed a similar
path to the example -: the initial model was not atomic,
following a more traditional STG approach, and on
simulation showed no livelock or deadlock. The model was
updated to STG-FT format and several livelocks were found
and eliminated by modifying the protocol.

One remaining problem concerns a livelock loop between
the communicating master and slave. Both ends have a wait
loop and if they executed at exactly the same rate then a live-
lock situation could develop. If the delays of the master and
slave loops are not identical then the live-lock will drop out
to normal operation.

Another test for any system is to calculate the reachability
tree from any initial system state (all possible FSM object
state combinations). While data errors are expected there
should be no livelock or deadlock. At first glance it seems
unreasonable to investigate all possible system states as
many of them are “impossible”. In practice it can be
surprising the state combinations that do occur due to
conditions such as forced reset, spurious signals, corrupted
signals, unexpected signals and software delays. In general
it is best to take a robust approach and check the behaviour
from every possible initial system state.

The 2-wire TIA system has a master with 13 states, a
slave with 10 states, and several media bits making 5148
initial system states. The STG-FT simulator automatically
generates all initial states and investigates the reachability
tree for each and checks for livelock and deadlock. The
simulator had to examine some 866 million nodes which
took approximately 30 minutes on a 1.6 GHz Celeron
running Fedora Core 3.

The result showed the 2-wire TIA system had several
deadlock conditions. The solution was to add a time-out to
one state in the master in order to break the deadlock and
return to normal operation. With the time-out added the 2-
wire TIA system is deadlock free.

The 2-wire TIA system has been implemented using an
IBM-PC as a master and an Atmel Tiny26 microprocessor as
a slave where only two IO pins were free. The
communications system can run in the background and is not
effected by delays in either the PC or the Tiny26, and does
not interfere with the Tiny26 real time code.

Preliminary performance of the system is reported in
Table 1. The PC was running Fedora Core 3 using the KDE
desktop. A simple PC hang-up program was used to stress
the communications system and gauge the effect of system
load. A hang-up program is a simple forever loop that uses
up all the CPU time the operating system allows it. The
Tiny26 had no application code running and just serviced the
communications. It is an interesting anomaly that the 20
MHz Tiny26 was slower than the 8 MHz Tiny26.

Table 1 2-wire TIA Performance between a PC and an Atmel Tiny26

PC condition
(1.6 GHz Celeron, Fedora Core 3, KDE
desktop)

Bit Transfer Rate to Tiny26 (kilobits/sec each way)

1 MHz Tiny26 4 MHz Tiny 26 8 MHz Tiny 26 20 MHz Tiny 26

Master process priority -20 (highest)
 only KDE desktop running. 12.0 29.0 44.0 36.0

Master process priority 0 (normal)
 only KDE desktop running. 11.9 29.0 43.0 35.0

Master process priority +20 (lowest)
 only KDE desktop running. 11.8 28.3 42.0 32.0

Master process priority -20 (highest)
 KDE and hang-up running. 10.6 26.0 40.5 31.0

Master process priority 0 (normal)
 KDE and hang-up running. 6.0 14.5 22.8 17.3

Master process priority +20 (lowest)
 KDE and hang-up running. 0.55 1.3 2.0 1.6

3578

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 17:53 from IEEE Xplore. Restrictions apply.

Examination of the waveforms showed that the PC and 20
MHz Tiny26 timing was nearly synchronous, exhibited a
short term livelock cycle as predicted by the STG-FT model,
and so reduced data throughput. In all other respects the 2-
wire system works as intended.

VII. CONCLUSION

The “simple” sensor application has spun off some new
insights and a novel communications system. The proposed
communications category TIA communications, is different
from the simple asynchronous category and has important
attributes useful to small embedded controllers and those
heavily loaded with real time tasks. TIA communications
has the potential to reduce costs in products and industrial
systems.

Since the Petri net based STGs are excellent for
modelling asynchronous logic, but may not properly model a
system implemented using software threads, we have
proposed and trialed a modified form of STGs called STGs
For Threads (STG-FT) that appears to correctly model
livelock and deadlock in thread based systems.

Finally a 2-wire TIA communications system has been
proposed and successfully implemented between a PC and a
small embedded controller. The behaviour matches the
predictions of the STG-FT model and the observed
performance is quite useful.

The new developments outlined in this paper raise some
interesting questions that may be worth pursuing. Do the
attributes of TIA communications make it useful in other
domains? Is it possible to devise a 2-wire TIA system that
has higher data throughput? Is a 1 wire TIA system possible
using only digital logic?

The STG-FT model appears to be very successful in
predicting the behaviour of software thread driven systems.
It would be very interesting to apply it to a range of such
systems and compare the model predictions to the actual
performance.

VIII. REFERENCES

[1] J. Turley, “Motoring with Microprocessors”,
Embedded Systems Programming, Dec 2002; retrieved
from
www.embedded.com/showArticle.jhtml?articleID=1300
0166.

[2] O. Christ,, E. Fleisch, F. Mattern, “M-Lab : The Mobile
and Ubiquitous Computing Lab Phase II”, ETH Zurich
& University of St. Gallen, 2002. Retrieved from
www.m-lab.ch/about/MLabIIProjectPlan_e.pdf

[3] G. Lee, M. Lee, Hui H. Shao, X. Zhao, “Networked
intelligent controller based on embedded system”, 30th
Annual Conference of IEEE Industrial Electronics
Society, 2004. IECON 2004. Volume 3, 2-6 Nov.
2004, pp. 2942 – 2945.

[4] M. Castro, R. Sebastian, F. Yeves, J. Peire, J. Urrutia, J.
Quesada, “Well-known serial buses for distributed
control of backup power plants. RS-485 versus
controller area network (CAN) solutions”, 28th Annual
Conference of the IEEE Industrial Electronics Society

(IECON02), Volume 3, 5-8 Nov. 2002 pp. 2381 -
2386.

[5] G. Le Lann, Asynchrony and real-time dependable
computing, Proceedings of the Eighth International
Workshop on Object-Oriented Real-Time Dependable
Systems, 2003. (WORDS 2003), 15-17 Jan. 2003. pp18
– 25.

[6] DEC Unibus specification, retrieved from-
http://www.bitsavers.org/pdf/dec/unibus/UnibusSpec19
79.pdf

[7] ANSI/IEEE Std 488.1-1987, IEEE standard digital
interface for programmable instrumentation, IEEE,
1987

[8] J. Kessels, “Register-communication between mutually
asynchronous domains”, Proceedings 11th IEEE
International Symposium on Asynchronous Circuits and
Systems, 2005 (ASYNC 2005), 14-16 March 2005, pp.
66 – 75.

[9] A. Yakovlev, S. Furber, R. Krenz, A. Bystrov, “Design
and analysis of a self-timed duplex communication
system”, IEEE Transactions on Computers, Volume
53, Issue 7, July 2004, pp. 798 – 814.[10] W.J.
Bainbridge and S.B. Furber, “Asynchronous macrocell
interconnect using MARBLE”, Proceedings Fourth
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 30 March-2 April
1998, pp. 122 – 132.

[11] T. Takahashi and T. Hanyu, “Multiple-valued multiple-
rail encoding scheme for low-power asynchronous
communication”, Proceedings of the 34th International
Symposium on Multiple-Valued Logic (IMSVL'04) , 19-
22 May 2004, pp 20-25.

[12] J. Cortadella, M. Kishinevsky, L. Lavagno, A.
Yakovlev, “Synthesizing Petri nets from state-based
models”, Proceedings of the 1995 IEEE/ACM
international conference on Computer-aided design,
Dec. 1995, pp. 164-171.

[13] Alex Yakovlev, “On limitations and extensions of STG
model for designing asynchronous control circuits”,
Proceedings International Conference on Computer
Design: VLSI in Computers and Processors, ICCD '92.
IEEE, 11-14 Oct. 1992, pp. 396 – 400.

[14] M. Kishinevsky, J. Cortadella , Alex Kondratyev,
“Asynchronous interface specification, analysis and
synthesis”, Proceedings : Design Automation
Conference, 15-19 Jun 1998, pp. 2 – 7.

[15] J. Cortadella , M. Kishinevsky, Al. Kondratyev, L.
Lavagno, A. Yakovlev,
“Petrify: Method and Tool for Synthesis of
Asynchronous Controllers and Interfaces”.
A tutorial from ASYNC2003 retrieved from
http://www.staff.ncl.ac.uk/alex.yakovlev/home.formal/a
sync03-tut-demo.ppt

[16] J. Cortadella, “Petrify : a tutorial for the designer of
asynchronous circuits”, (no date or revision number
given). Retrieved from
http://www.cs.technion.ac.il/~cs234305/petrify/docs/tut
orial.ps

[17] H. Johnston and M. Graham, High Speed Digital
Design, Prentice-Hall, Englewood Cliffs NJ, 1993.

3579

Authorized licensed use limited to: RMIT University. Downloaded on January 6, 2010 at 17:53 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

