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ABSTRACT

Recently a dithered signed-error constant modulus al-
gorithm (DSE-CMA) has been proposed, associated
with fractionally-spaced equalization, for the purpose
of low complexity implementation of constant modu-
lus algorithm (CMA). DSE-CMA has robustness prop-
erties closely resembling those of CMA under certain
restrictions. As the CMA is slow in achieving its min-
imum mean squared error, so is the DSE-CMA. In this
work, we apply an adaptive step-size instead of a fixed
one, and then examine the performance of few variable
step-size algorithms that result in faster convergence
while preserve the low computational complexity and
robustness properties of the DSE-CMA algorithm. We
also derive the excess mean-squared error in the case
of noisy channel to examine the robustness of the algo-
rithms.

1. INTRODUCTION

High-speed data communication over a bandlimited
channel is subject to Inter-Symbol Interference (ISI)
as a result of transmitter receiver filtering and multi-
path propagation. Mitigation of such kind of distortion
calls for the use of equalization filter[1]. In the last few
years, blind equalization techniques have gained an in-
creasing interest. The most popular and implemented
blind adaptation algorithm is the constant modulus al-
gorithm (CMA)[2] and [3].

Recent studies (associated with the fractionally-
spaced equalization constant modulus (FSE-CM) algo-
rithm) have developed the dithered signed-error con-
stant modulus algorithm, which has been proved to
bear a resemblance to those of CMA properties when
some restrictions are satisfied [4]. The only drawback
of DSE-CMA compared to original form of CMA is
the increment of excess mean-squared error (EMSE).
Due to multi-modality of DSE-CMA cost surface, the
convergence rate is greatly affected by initialization of
the equalizer. Our studies in [6] show that DSE-CMA
is slow in convergence compared to the original form
of CMA when the algorithm is initialized with a large
value of || f ||, where f is the equalizer coefficients
vector.
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As it has been pointed out in [5], CMA has desir-
able robustness properties similar to those of LMS un-
der perfect blind equalizability (PBE) condition. Thus,
it is also worthwhile to evaluate the variable step-size
scheme (that was previously applied to the LMS algo-
rithm) to the DSE-CMA with expectation to increase
the convergence rate as compared to the fixed step-size
algorithm. On the other hand, it has been derived in
[4] that the final excess mean square error (EMSE) is
directly proportional to the adaptation step-size of the
DSE-CMA, while the convergence time increases as
the step-size decreases. In this paper, we will exam-
ine the use of a family of variable step-size adaptation
based on the prediction error [7] and [8] to cope with
the slow convergence rate in the DSE-CMA. We also
present a method to adapt the variable step-size by uti-
lizing an averaging of the prediction error. The idea of
using prediction error to control the step-size adapta-
tion is motivated by the fact that a large prediction er-
ror will increase the step-size in order to provide faster
tracking, while a small prediction error will decrease
the step-size in order to give smaller misadjustment.
The final aim is to increase the convergence speed of
DSE-CMA while at the same time maintaining the ro-
bustness properties and low computational complexity
of the algorithm.

2. SYSTEM MODEL

For space limitations we focus on the case of equal-
izing communication systems with an FIR channel
model and fractionally-spaced filters with sampling in-
terval T'/2 (T being the symbol period). A multirate
model of a digital communication system is shown in
Fig. 1, where the source symbol (z,,) is drawn from
a finite alphabet; it is a random variable with zero
mean, independent and identically distributed (i.i.d)
with variance 02 = E{| z, |%}, baud-spaced at
sample index n, while the fractionally-spaced sam-
ple is denoted using the sample index k. The vector
c = [co, - ,cn,—1]" isan N, x 1 vector representing
the fractionally-spaced channel impulse response and
f = [fo, -, fn;—1]° is a fractionally-spaced equal-
izer coefficient vector of size Ny x 1. The number
of channel and equalizer coefficients is denoted as NV,
and NNy, respectively. The fractionally-spaced received
signal is denoted as r;. Note that the original source
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Fig. 1. Multirate model for noiseless fractionally-
spaced systems.

symbol is £(n) = [Tn,ZTn—1,** s Tn_N,+1]¢, Which
is a vector of length N, = (N, + Ny — 1)/2] with
baud-spaced source symbols.

Defining C as the time decimated channel convolu-
tion matrix of N; X Ny, defined by:

a Co
C1 Co

CN,—1 CN_ -2 : : C1 Co

CN.-1 CN.—2 :

i CN,—1 CN.—2]
)
the system output may be expressed as:

yn = x'(n)Cf, @

where (.) represents a transpose operator. The equal-
izer coefficients are updated according to the following
algorithm:

f(n + 1) = f(n) + Iﬂ'* (n)¢cma(yn), 3)

where p is a constant called the step-size (usually
small), and ¢)¢ma(yr ) is the CMA error function.
The error function of CMA is described as [2]:

Qbcma(yn) = yn('y_ | Yn |2)a 4

where ~ is a dispersion constant, which is defined as
v = Ellz(n)|"]/Ellz(n)?].

Under a perfect blind equalization (PBE) condition
(as stated in [5]), equalizers minimizing the CM cost
function can perfectly recover the original source sym-
bols for some system delay § (i.e., y, = xp—s). Re-
quirements for perfect symbol recovery conditions are:
in the T'/2-spaced fractionally-spaced and a channel
with even-length, a necessary condition for channel in-
vertibility is that Ny > N, — 2, no additive channel
noise, for the even-length T'/2-spaced channel impulse
Tesponse, Coven(21) and coqq(2 1) have no common
roots, sub-Gaussian source and i.i.d. zero mean source
(white source).

By transforming the error function in eq. (4) into a
sign using a sign function, complexity reduction in the
adaptation process (3) is achieved, as multiplication is
now reduced to a sign operation. However, in order to
preserve information lost in the quantization process,
a small perturbation random signal is added, so-called
dithering technique [4]. Thus the error function in eq.
(4) becomes:

Qbdse—cma(yn) = asign (yn('y_ | Yn |2) + o d’n) y
©)

where « is a dither amplitude and {d,, } is an i.i.d pro-
cess uniformly distributed on (—1, 1].

3. VARIABLE STEP-SIZE DSE-CMAS

Asexpressed in eq. (3), the choice of the step-size p re-
flects a tradeoff between misadjustment and the speed
of adaptation. The aim of using variable step-size in
adaptation algorithms is to provide capability of giv-
ing both fast tracking and small misadjustment at the
same time.

The variable step-size algorithm for adjusting the
step-size 1 may be controlled by the prediction er-
ror. It was shown that this algorithm outperforms
the fixed step-size adaptation in LMS type algorithms
[7] and [8]. Based on the similarity in the desirable
robustness properties between LMS and CMA algo-
rithms, we will utilize the variable step-size to re-
place the constant step-size for the conventional DSE-
CMA adaptation algorithm in eq. (5). However, we
need to redefine the estimation error ¢ in [7] accord-
ing to the error function of blind DSE-CMA, where
€ = tYdse—cma(¥n). Instead of choosing ¢ as a func-
tion of Yema(yr,) as in our previous work [9], it can
be justified based on DSE-CMA properties that deter-
mining e as a function of v/dse—cma(Yn) Will guaran-
tee the update identical to the CMA. Those proper-
ties can be summarized as follows: « is selected large
enough to satisfy & > |¥ema(yn)|. The initialization
and, thus, adaptation is performed within the convex
hull F,, which is formed by the hyperplanes B, :=
{f | r'f |= Y3l (c) for r € R}. R is the set of
all possible received vector r. The steady state excess
mean-squared error DSE-CMA (Jex(dse—cma)) Should
be chosen to satisfy Jex(dse—cma) = K()Jex(cma)
where K () := ﬁ{;ﬁimz;g, ke and o2 are the kur-
tosis and the second moment of the source symbol, re-
spectively.

3.1. Algorithms

Adaptation of DSE-CMA is followed by adaptation of
the step-size p(n) according to the following schemes:
Bpe 1:

p(n) = Au(n — 1) + e, (6)

with0 < A <1, 3 > 0, and

Pmax, for M(") > Pmax;
w(m) = { Pmin, for p(n) < min, ™
u(n), otherwise.

Adaptation step-size in Type 1 is based on the energy
of instantaneous error, where the constant parameter
[ controls the level of misadjustment as well as the
convergence time of the algorithm. The constant value
[max 18 selected to provide maximum possible conver-
gence speed, i.e., near to the point where the algorithm
is going to be unstable. The constant gi5;, is chosen to
provide a minimum level of tracking ability. The more
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Fig. 2. Trajectories of variable step-size DSE-CMA al-
gorithms for BPSK, well-behaved noisy channel with
SNR=30 dB. Global MSE minima marked by “*”. Lo-
cal MSE minima marked by ” x ”.
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realistic approach of Type 1 is using an average value
of the prediction error as in Type 2 below.
Bpe 2:

®

where the variable p(n) is updated according to the av-
erage value of the squared error as follows:

p(n) =np(n—1)+(L—n)c(n—1)%, (9

with 0 < n < 1, which is usually called as the forget-
ting factor. The constant value A and 3 are the same as
those of the Type 1 algorithm.

Bype 3:

w(n+1) = Au(n) + Bp(n)?,

p(n +1) = Au(n) + Bp(n)?, (10)

where the variable p(n) is updated according to the au-
tocorrelation error as follows:

p(n) =np(n —1)+ (1 —n)e(n)e(n—-1),  (11)

with 0 < n < 1, which is also called as the forgetting
factor.

The mean behaviour and stability analysis of the al-
gorithms have been discussed extensively in [7] and
[8]. The trajectory of the variable step-size DSE-
CMA for different types of schemes can be seen in
Fig. 2. In this figure the constant modulus cost sur-
face has been plotted for a well-behaved channel [5]
¢ = [1.0,-0.5,0.2, 0.3] with BPSK source signal, and
SNR=30 dB.

3.2. The excess MSE of DSE-CMA in noisy channel

When the additive white Gaussian noise perturbs the
channel, the vector of the received signal (z) becomes:

(12)

where w is the vector of additive white Gaussian noise.

Following the assumption in [4], excess MSE is
defined at the time index n as the expected er-
ror, which is achieved by the zero-forcing solution
(f5). Using the parameter error vector f f -
fs, the output error can be defined as e, r'f +

Z=r-+W,
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wif. It is assumed that F(n) = E{f(n)ft*(n)}.
The source-power-normalized autocorrelation matrix
R = % E{r(n)rt(n)} is Toeplitz, therefore it can
be equated to R = QAQ? to simplify the deriva-
tion, where the matrix A is diagonal and the matrix
Q is orthogonal. Applying the same way to F(n)
yields F(n) = QX(n)Q*. On the other hand, if the
PBE condition is hold, than it is guaranteed that f will
achieves zero error. Hence, the small-error approxi-
mation approach is also held. The excess MSE can be
expressed as follows:

Jox = lim Jex(n), (13)
‘where
Jex(n) = E{len’}
E{| rTf +wTf ?}. (14)

Here, it is assumed that error vector f is statistically
independent of the input vector r and noise vector w.
The step-size is chosen small enough.

Following the procedure in [4] and assuming that
white Gaussian noise is added, J.x may be expressed
as follows:

Jox = afZi/\imi(n) + aﬁ,Eixi(n), (15)
where )\; and z; is the i*" diagonal element of A and
X(n), respectively. o2 is the second moment of Gaus-
sian noise. It is clear that eq.(15) shows the increment
of excess MSE because of addition white Gaussian
noise to the channel.

4. SIMULATION RESULTS

We examined the variable step-size DSE-CMAs in
different environments. We have simulated a BPSK
source signal under noiseless channel, a BPSK source
signal under noisy channel (to show the effect of noise
on the variable step-size algorithms), and an 8-PAM
source signal (to show the effect of higher-order mod-
ulation on the variable step-size algorithms). Re-
sults have been obtained via generation of indepen-
dent symbols using 100 different runs. In all simula-
tions, the parameters of the algorithms have been set
in order to achieve the same minimum mean-squared
error (MMSE), so that the convergence rate can be
compared easily. For all variable step-size algorithms,
we used fimax = 0.02 and pimin = 1 x 1075, The
impulse response response of the channel is: ¢ =
[0.04, —0.05, 0.07, —0.21, —0.5, 0.72, 0.36, 0.21,
0.03, 0.07].

The performance of the variable step-size DSE-
CMA has been compared to that of the fixed step-size
DSE-CMA. It can be seen in Fig. 3 that variable step-
size algorithms in noiseless channel outperform the
fixed step-size DSE-CMA in achieving its convergence
point. For the all variable step-size algorithms, A has
been set to 0.97 to provide a forgetting factor, while 3
in Type 1 algorithm is set to 2 x 1073, 9 x 1072 in
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Fig. 3. Averaged MSE trajectories for fixed step-
size DSE-CMA and variable step-size DSE-CMAs for
noiseless channel. Source signal is modulated with
BPSK.
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Fig. 4. Averaged MSE trajectories for fixed step-
size DSE-CMA and variable step-size DSE-CMAs for
noisy channel, with SNR=30 dB. Source signal is mod-
ulated with BPSK.

Type 2 algorithm, and 5 x 102 for the third algorithm
in order to achieve the MMSE —26 dB. The parame-
ter 7 in Type 2 and Type 3 algorithms was set to 0.99,
while the fixed step-size of the DSE-CMA was chosen
as 1 x 1072 and o = 1. The source signal of BPSK
has been used in this simulation.

A violation of the PBE condition is considered
where Gaussian noise with SNR=30 dB is added. Fig.
4 shows that the variable step-size DSE-CMA is still
able to achieve its convergence point. As compared to
the fixed step-size DSE-CMA, it can be seen that vari-
able step-size DSE-CMAs have faster convergence.
The setting of parameters for all algorithms is the same
as in the previous simulation. However, it is clear that
MMSE is now degraded to —24 dB as a result of noise
addition.

Secondly, we consider a source signal modulated
with 8-PAM. The parameters of the algorithms were
set to achieve a steady state MMSE of —26 dB. Fig. 5
shows that when the higher constellation of the mod-
ulation is used, the performance of the variable step-
size algorithms in terms of convergence rate decreases.
Yet, in overall the convergence rate of variable step-
size DSE-CMA is faster than the fixed step-size DSE-
CMA. The parameters were set as follows: A = 0.97
for all algorithms, 3 = 5 x 10~ for Type 1 algorithm,
3 = 6 x 107 for Type 2 algorithm and 3 = 2 x 10~*
for Type 3 algorithm, while » = 0.99 for both Type
2 and Type 3 algorithms. The fixed step-size of the
DSE-CMA was chosen as 1 x 1072 and o = 1.5

5. CONCLUSIONS

In this paper, we proposed a dithered signed-error con-
stant modulus algorithm (DSE-CMA) with variable
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Fig. 5. Averaged MSE trajectories for fixed step-
size DSE-CMA and variable step-size DSE-CMAs for
noiseless channel. Source signal is modulated with 8-
PAM.

step-size. Different variable step-size schemes based
on prediction error has been examined. It is shown
that the variable step-size DSE-CMA algorithms are all
robust against violation of the perfect blind equaliza-
tion (PBE) condition, where in this simulation Gaus-
sian noise has been added. Thus, together with its low
computational complexity properties, variable step-
size DSE-CMA can yield a higher performance for
blind adaptive channel equalization than the fixed step-
size DSE-CMA algorithm.
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