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ABSTRACT

This paper presents a computer model for Rayleigh
fading channels. The simulated Rayleigh fading chan-
nel model is based on Smith’s method and shows ease
of implementation and greater mathematical tractabil-
ity. We then investigate the level-crossing rate (LCR),
the average duration of fades (ADF), the probabil-
ity density function (PDF), the cumulative distribu-
tion function (CDF) and the autocorrelation functions
(ACF) of this proposed model. The simulated results
are verified against the analytical Clarke’s channel
model.

1. INTRODUCTION

Simulation models for fading channels are extremely
important for the development, performance analysis,
and test of modern wireless communication systems.
The designed fading channel simulator should fit the
desired statistical behavior with high precision before
analyzing the performance of a new mobile commu-
nication system. Accuracy, efficiency, flexibility and
ease of implementation are the challenging require-
ments in designing the simulation models [1].

The characteristic quantities describing the statis-
tics of mobile fading channels are the probability den-
sity function (PDF), cumulative distribution function
(CDF), the autocorrelation function (ACF), the level-
crossing rate (LCR) and the average duration of fades
(ADF). The level-crossing rate (LCR) and average du-
ration of fades (ADF) are useful for designing error
control codes and diversity schemes to be used in mo-
bile communication systems, since it becomes possible
to relate the time rate of change of the received signal
to the signal level and velocity of the mobile [2].

John I. Smith demonstrated a simple computer pro-
gram in [3]. We modified this method and developed
a new method which promises a greater mathematical
tractability. Verification of this new method against the
analytic fading channel model is thus necessary and a
detailed analysis of the statistical characteristics of this
new method is given.

The aim of this work is to design a fading chan-
nel simulator based on Smith’s method and to ana-
lyze the LCR and ADF of this simulation model for
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Rayleigh fading channels. The results obtained will
serve as the foothold for the further investigation of the
recently proposed parabolic channel model [4], which
will be analyzed in future works. Therefore, we first
describe in Section II the stochastic reference model
for the Rayleigh fading channel. In Section III, we
briefly demonstrate the concept of zero-padding and
up-sampling which will be exploited in the next sec-
tion. Section IV presents the proposed Rayleigh fading
simulator and the analysis of its statistical characteris-
tics. The simulation results are compared with analytic
results.

2. DESCRIPTION OF THE ANALYTICAL
MODEL

The detailed derivation of Jakes Power spectral density
or Clarke power spectral density can be found in [5].
We here review this derivation briefly and give some
initial simulation results.

To derive the Jakes power spectral density, we fol-
low these assumptions [6]:

1. The propagation of the electromagnetic waves
takes place in the two-dimensional(horizontal)
plane, and the receiver is located in the center of
an isotropic scattering area.

. The angles of arrival o of the waves arriving the
receiving antenna are uniformly distributed in the
interval [—, 7).

. The antenna radiation pattern of the receiving
antenna is circular-symmetrical (omnidirectional
antenna).

The probability density function of the angles of ar-
rival « is thus given by

1
_J 3= a€-mm),
Po= { , elsewhere. )
The Doppler frequencies can then be defined by
f = f(a) = fm cos(a), ()]

where f,, is the maximal Doppler frequency. Obvi-
ously f is also a random variable. The probability den-
sity function of the Doppler frequencies f, denoted by
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Fig. 1. Histogram of the angles of arrival o and the pdf of
the Doppler frequencies f.

pf(f), can be given by [5]

— e, |fI < frm
= ﬂfm 1_(f/fm)2 3
ps(f) { 0. \ f> o 3

This function of random variables is simulated and
shown in Fig, 1 with f,,, = 20Hz.

The power spectral density S,,,.(f) of the scattered
components u(t) = p1(t) + pa(t), received at the re-
ceiving antenna, is obviously proportional to p¢(f) of
the Doppler frequencies. The following relation holds:

The relation between the probability density function
and the power spectrum density is thus established.
Further investigation which takes Eq.(3) into account
will lead into the Jakes Power spectral density or
Clarke power spectral density:

20
Suu(f) = { 7 fe/ 1= (7 ) | £ < fms ©
0 1> fm-

where [7°_ Suu(f)df = 203, and 20 is the power of
the scattered components u(t) = p1(t) + pa(2).

The autocorrelation function (ACF) r,,(7) of the
scattered component p(t) = p1(t) + jue(t) can be
obtained by taking the inverse Fourier transform of the

Jakes power spectral density of Eq.(5):
Tup(T) = 203 Jo(27 frmT) ©6)

where Jy(-) is the zeroth-order Bessel function of the
first kind.

3. FREQUENCY ZERO-APPENDING FOR
TIME INTERPOLATION

Zero-padding is a well-known topic in signal analysis,
normally associated with upsampling or unifying sig-
nals’ lengths in circular convolution.

In this work we use zero-padding in the frequency
domain for the purpose of increasing the resolution in
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Fig. 2. Zero-appending X (k) to provide finer interpola-
tion for a time sequence z(n) with duration 2L = 10s and
sampling period T; = 0.5s. After zero-appending, time du-
ration remains unchanged, but the new sampling period is
Ts = 0.2s, thus a better resolution is achieved for z(n).

the time domain. This approach is defined by simply
appending a number of zeros to both ends of the spec-
trum, hence we use the name zero-appending. Based
on the duality property of the Fourier Transform, we
can state that zero-appending in the frequency domain
corresponds to ideal interpolation in the time domain.
We demonstrate this theorem using a simple exam-
ple. The sequence z(n) is obtained by sampling a sinc
function z(¢) = sinc(¢/T) with T = 1s, Ts = 0.5s,
and the total time duration is from —L = 5sto L = 5s,
N = 2L/Ts, therefore N = 20, that is, both z(n)
and its DFT X (k) are 20 point sequence. We ex-
ploit again the time-domain/frequency-domain duality
of DFT, that is, the time duration of the signal in time
domain will determine the frequency resolution in fre-
quency domain, while the frequency span in frequency
domain will determine the time resolution in time do-
main. We append a total of M — N zeros to the spec-
trum, divided into two halves, one half on each end of
the spectrum of X (k). An IDFT is then performed on
X (k) to provide a finer interpolation in the time do-
main. Fig. 2 shows that a total of M — N = 30 zeros
are padded in the frequency domain to provide suffi-
cient detail to yield a good picture of z(n).

4. DESIGN AND ANALYSIS OF THE
RAYLEIGH FADING CHANNEL

Smith demonstrated a computer simulator of Rayleigh
fading channel in [3]. A detailed presentation of this
method can also be found in [2]. This method uses
a complex Gaussian random number generator to pro-
duce a line spectrum with complex weights in the pos-
itive frequency band. The maximum frequency com-
ponent of the line spectrum is f,,. The negative fre-
quency components are constructed by simply conju-
gating the complex Gaussian values obtained for the
positive frequencies. The random valued line spectrum
is then multiplied by a discrete frequency presentation
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Fig. 3. The ACFs of the reference model and its FFT (fr, =
20Hz, 05 = 1, K = 5, A1 = 1/(K fm) = 0.01s, L =
2s).

of /Syuu(f) having the same number of points as the
noise source. An IFFT is then performed on the re-
sulting frequency domain signal to get two time series.
The square root of the summed squared of the two
time series is the Rayleigh fading signal with proper
Doppler spread and time correlation. Note that this
method requires a truncation of the spectrum because
Equation (5) approaches infinity at the baseband edge.
We present here a new method which avoids this trun-
cation and gives better resolution by zero-appending.
Moreover, we will show that this method promises
greater mathematical tractability.

To implement this simulator, the following steps are
used:

1. In Eq.(6), specify the power o3, maximal Doppler
spectral f,,,, andlet A7 = 1/(K f,), here K > 1
is a constant. Define the range of 7 from —L to

L. Compute the N point r,,,,.
. To perform an FFT on 7, to get N point S,,,,.

. Generate NV complex Gaussian random variables,
normalize the total power to 1.

. Multiple the N complex Gaussian random vari-
able by the obtained Doppler spectrum /S,
from step 2.

. Perform an IFFT on the resulting frequency do-
main signal to obtain the N point scattered com-
ponent u = u; + jug. The envelope of obtained
u is the simulated Rayleigh fading signal with the
proper Doppler spread.

Fig.3 shows the ACF and its FFT with f,, = 20Hz,
o2 =1,K =5 At =1/(Kf,) = 0.01s, L = 2s.
Based on the discussion in the previous section, the
parameters of the fading process u can be easily calcu-
lated. The variance of u, 02 = (2L)o3, the duration of
the fading signal 2L = 4s, and the time resolution of
the fading signal At = A7 = 0.01s.
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Fig. 4. The simulated fading envelope, its PDF and CDF,
and the histogram of the fading phase (fm = 20Hz, o3 = 1,
K =10, At = 1/(K fm) = 0.0055, L = 2).

— Ideal
— Simulated

Autocorrelation function

02 CX)

0.1 o o1
Time separation, < (s)

Fig. 5. The ACFs of the reference model and the simulation
model (fn = 20Hz, 02 = 1, K = 10, At = 1/(Kfm) =
0.005s, L = 2s).

We now decide that the resolution is not satisfactory
with K = 5 and let K = 10. The time resolution is
thus doubled, At = 0.005s . The envelope of the sim-
ulated u is shown in Fig. 4. The PDF of the envelope
is Rayleigh distributed, and the phase of u is uniformly
distributed. The plot also shows the CDF of the enve-
lope. The ACF of u is plotted in Fig.5. Theoretical
values are also plotted for the PDF, CDF and the ACF
for the purpose of verification.

The advantages of this method are obvious. First,
it is easy to implement. Second, the truncation of the
spectrum is avoided. Third, a better resolution can be
achieved by increasing the constant K, which means
effectively appending more zeros to the Doppler spec-
trum. Moreover, the variance and the ACF of the sim-
ulated u are simply related to the power o2 and the
theoretical ACF specified in step 1: both are simply
scaled down by the time duration 2L defined in step
1. Based on the above discussion and the previous sec-
tion, it is obvious that all the properties of the simu-
lated Rayleigh fading signal can be specified in step 1,
e.g., power, Doppler spread, time resolution, and time
duration.

Apart from the probability density function, the
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Fig. 6. Normalized level crossing rates of the envelopes.
Simulation values obtained at f,, = 90Hz, L = 10s for
K =2,5,10, 20, 50.

cumulative distribution function, the autocorrelation
function, and other statistical quantities that character-
ize the mobile fading channels like level crossing rate
(LCR) and average duration of fades (ADF), are all
important for the design of the channel simulator and
mobile communication systems.

The level crossing rate, N, is defined as the ex-
pected rate at which the envelope crosses a specified
signal level, R, in the positive direction. In general, it
is given by [7]

Na= [ ip(RA)dE = VB fmpe, ()
0

where the dot indicates the time derivative and p(R, 7*)
is the joint density function of r and r at r = R.
And p = R/R,ns is the value of the specified level
R, normalized to the local rms amplitude of the fad-
ing envelope. We simulate the Ng for different K at
fm = 90Hz, L = 10s and plot the results to com-
pare with the ideal situation. From Fig. 6, the effect of
zero-appending is significant. In this example, curves
with K > 10 give satisfactory results which are close
enough to the ideal curve.

The average duration of fades, T , is defined as the
average period of time for which the received signal is
below a specified level R. Let 7; be the duration of the
it® fade, then the average duration of fade for a total
time interval of length T'is 7 = > 7;/(INgT'). Like
level crossing rate Ng, the average duration of fade
can be also expressed as a function of p and f,, as [7]

F=¢" Y pfmV2r ®)

Fig. 7 shows the simulation of the average duration
of fade for different K at f,,, = 90 Hz, L = 10s and
the theoretical curve. Like the level crossing rate, the
effect of zero-appending is significant. Again, curves
with K > 10 give satisfactory results which are close
enough to the ideal curve. Simulation also shows that
K should not be arbitrarily large with the fixed time
duration of 2L. In the example, overshoot is observed
when K > 50 for both the level crossing rate and the
average duration of fades with L = 10s.
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Fig. 7. Normalized durations of fade of the envelopes.
Simulation values obtained at f,, = 90Hz, L = 10s for
K =2,5,10,20,50.

5. CONCLUSIONS

We presented a method to efficiently simulate Rayleigh
fading channels. The significance of this method is
its ease of implementation and greater mathematical
tractability of the model parameters. Some important
statistics especially the LCR and ADF of the model are
investigated for the verification against the analytical
model. Simulation results show that the channel simu-
lator accurately reproduces all of the important statis-
tical properties, such as the probability density func-
tion (PDF), autocorrelation (ACF), level crossing rate
(LCR) and the average duration of fades (ADF).
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